Constify 'la_name' in struct language_defn
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46 #include "dwarf2.h"
47 #include "exceptions.h"
48 #include "spu-tdep.h"
49
50
51 /* The list of available "set spu " and "show spu " commands. */
52 static struct cmd_list_element *setspucmdlist = NULL;
53 static struct cmd_list_element *showspucmdlist = NULL;
54
55 /* Whether to stop for new SPE contexts. */
56 static int spu_stop_on_load_p = 0;
57 /* Whether to automatically flush the SW-managed cache. */
58 static int spu_auto_flush_cache_p = 1;
59
60
61 /* The tdep structure. */
62 struct gdbarch_tdep
63 {
64 /* The spufs ID identifying our address space. */
65 int id;
66
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69 };
70
71
72 /* SPU-specific vector type. */
73 static struct type *
74 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
80 const struct builtin_type *bt = builtin_type (gdbarch);
81 struct type *t;
82
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
98
99 TYPE_VECTOR (t) = 1;
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106 }
107
108
109 /* The list of available "info spu " commands. */
110 static struct cmd_list_element *infospucmdlist = NULL;
111
112 /* Registers. */
113
114 static const char *
115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 {
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144 }
145
146 static struct type *
147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 {
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
155 return builtin_type (gdbarch)->builtin_uint32;
156
157 case SPU_PC_REGNUM:
158 return builtin_type (gdbarch)->builtin_func_ptr;
159
160 case SPU_SP_REGNUM:
161 return builtin_type (gdbarch)->builtin_data_ptr;
162
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
165
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
168
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
171
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
174
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
177
178 default:
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
180 }
181 }
182
183 /* Pseudo registers for preferred slots - stack pointer. */
184
185 static enum register_status
186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188 {
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195 ULONGEST ul;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
207 return REG_VALID;
208 }
209
210 static enum register_status
211 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213 {
214 gdb_byte reg[16];
215 char annex[32];
216 ULONGEST id;
217 enum register_status status;
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
225 memcpy (buf, reg, 4);
226 return status;
227
228 case SPU_FPSCR_REGNUM:
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 return status;
235
236 case SPU_SRR0_REGNUM:
237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238
239 case SPU_LSLR_REGNUM:
240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241
242 case SPU_DECR_REGNUM:
243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244
245 case SPU_DECR_STATUS_REGNUM:
246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251 }
252
253 static void
254 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 char reg[32];
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
268 (gdb_byte *) reg, 0, strlen (reg));
269 }
270
271 static void
272 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274 {
275 gdb_byte reg[16];
276 char annex[32];
277 ULONGEST id;
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312 }
313
314 /* Value conversion -- access scalar values at the preferred slot. */
315
316 static struct value *
317 spu_value_from_register (struct type *type, int regnum,
318 struct frame_info *frame)
319 {
320 struct value *value = default_value_from_register (type, regnum, frame);
321 int len = TYPE_LENGTH (type);
322
323 if (regnum < SPU_NUM_GPRS && len < 16)
324 {
325 int preferred_slot = len < 4 ? 4 - len : 0;
326 set_value_offset (value, preferred_slot);
327 }
328
329 return value;
330 }
331
332 /* Register groups. */
333
334 static int
335 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
336 struct reggroup *group)
337 {
338 /* Registers displayed via 'info regs'. */
339 if (group == general_reggroup)
340 return 1;
341
342 /* Registers displayed via 'info float'. */
343 if (group == float_reggroup)
344 return 0;
345
346 /* Registers that need to be saved/restored in order to
347 push or pop frames. */
348 if (group == save_reggroup || group == restore_reggroup)
349 return 1;
350
351 return default_register_reggroup_p (gdbarch, regnum, group);
352 }
353
354
355 /* Address handling. */
356
357 static int
358 spu_gdbarch_id (struct gdbarch *gdbarch)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361 int id = tdep->id;
362
363 /* The objfile architecture of a standalone SPU executable does not
364 provide an SPU ID. Retrieve it from the objfile's relocated
365 address range in this special case. */
366 if (id == -1
367 && symfile_objfile && symfile_objfile->obfd
368 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
369 && symfile_objfile->sections != symfile_objfile->sections_end)
370 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
371
372 return id;
373 }
374
375 static int
376 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
377 {
378 if (dwarf2_addr_class == 1)
379 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
380 else
381 return 0;
382 }
383
384 static const char *
385 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
386 {
387 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 return "__ea";
389 else
390 return NULL;
391 }
392
393 static int
394 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
395 const char *name, int *type_flags_ptr)
396 {
397 if (strcmp (name, "__ea") == 0)
398 {
399 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
400 return 1;
401 }
402 else
403 return 0;
404 }
405
406 static void
407 spu_address_to_pointer (struct gdbarch *gdbarch,
408 struct type *type, gdb_byte *buf, CORE_ADDR addr)
409 {
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
412 SPUADDR_ADDR (addr));
413 }
414
415 static CORE_ADDR
416 spu_pointer_to_address (struct gdbarch *gdbarch,
417 struct type *type, const gdb_byte *buf)
418 {
419 int id = spu_gdbarch_id (gdbarch);
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421 ULONGEST addr
422 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
423
424 /* Do not convert __ea pointers. */
425 if (TYPE_ADDRESS_CLASS_1 (type))
426 return addr;
427
428 return addr? SPUADDR (id, addr) : 0;
429 }
430
431 static CORE_ADDR
432 spu_integer_to_address (struct gdbarch *gdbarch,
433 struct type *type, const gdb_byte *buf)
434 {
435 int id = spu_gdbarch_id (gdbarch);
436 ULONGEST addr = unpack_long (type, buf);
437
438 return SPUADDR (id, addr);
439 }
440
441
442 /* Decoding SPU instructions. */
443
444 enum
445 {
446 op_lqd = 0x34,
447 op_lqx = 0x3c4,
448 op_lqa = 0x61,
449 op_lqr = 0x67,
450 op_stqd = 0x24,
451 op_stqx = 0x144,
452 op_stqa = 0x41,
453 op_stqr = 0x47,
454
455 op_il = 0x081,
456 op_ila = 0x21,
457 op_a = 0x0c0,
458 op_ai = 0x1c,
459
460 op_selb = 0x8,
461
462 op_br = 0x64,
463 op_bra = 0x60,
464 op_brsl = 0x66,
465 op_brasl = 0x62,
466 op_brnz = 0x42,
467 op_brz = 0x40,
468 op_brhnz = 0x46,
469 op_brhz = 0x44,
470 op_bi = 0x1a8,
471 op_bisl = 0x1a9,
472 op_biz = 0x128,
473 op_binz = 0x129,
474 op_bihz = 0x12a,
475 op_bihnz = 0x12b,
476 };
477
478 static int
479 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
480 {
481 if ((insn >> 21) == op)
482 {
483 *rt = insn & 127;
484 *ra = (insn >> 7) & 127;
485 *rb = (insn >> 14) & 127;
486 return 1;
487 }
488
489 return 0;
490 }
491
492 static int
493 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
494 {
495 if ((insn >> 28) == op)
496 {
497 *rt = (insn >> 21) & 127;
498 *ra = (insn >> 7) & 127;
499 *rb = (insn >> 14) & 127;
500 *rc = insn & 127;
501 return 1;
502 }
503
504 return 0;
505 }
506
507 static int
508 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
509 {
510 if ((insn >> 21) == op)
511 {
512 *rt = insn & 127;
513 *ra = (insn >> 7) & 127;
514 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
515 return 1;
516 }
517
518 return 0;
519 }
520
521 static int
522 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
523 {
524 if ((insn >> 24) == op)
525 {
526 *rt = insn & 127;
527 *ra = (insn >> 7) & 127;
528 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
529 return 1;
530 }
531
532 return 0;
533 }
534
535 static int
536 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
537 {
538 if ((insn >> 23) == op)
539 {
540 *rt = insn & 127;
541 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
542 return 1;
543 }
544
545 return 0;
546 }
547
548 static int
549 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
550 {
551 if ((insn >> 25) == op)
552 {
553 *rt = insn & 127;
554 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_branch (unsigned int insn, int *offset, int *reg)
563 {
564 int rt, i7, i16;
565
566 if (is_ri16 (insn, op_br, &rt, &i16)
567 || is_ri16 (insn, op_brsl, &rt, &i16)
568 || is_ri16 (insn, op_brnz, &rt, &i16)
569 || is_ri16 (insn, op_brz, &rt, &i16)
570 || is_ri16 (insn, op_brhnz, &rt, &i16)
571 || is_ri16 (insn, op_brhz, &rt, &i16))
572 {
573 *reg = SPU_PC_REGNUM;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri16 (insn, op_bra, &rt, &i16)
579 || is_ri16 (insn, op_brasl, &rt, &i16))
580 {
581 *reg = -1;
582 *offset = i16 << 2;
583 return 1;
584 }
585
586 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
587 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
588 || is_ri7 (insn, op_biz, &rt, reg, &i7)
589 || is_ri7 (insn, op_binz, &rt, reg, &i7)
590 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
591 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
592 {
593 *offset = 0;
594 return 1;
595 }
596
597 return 0;
598 }
599
600
601 /* Prolog parsing. */
602
603 struct spu_prologue_data
604 {
605 /* Stack frame size. -1 if analysis was unsuccessful. */
606 int size;
607
608 /* How to find the CFA. The CFA is equal to SP at function entry. */
609 int cfa_reg;
610 int cfa_offset;
611
612 /* Offset relative to CFA where a register is saved. -1 if invalid. */
613 int reg_offset[SPU_NUM_GPRS];
614 };
615
616 static CORE_ADDR
617 spu_analyze_prologue (struct gdbarch *gdbarch,
618 CORE_ADDR start_pc, CORE_ADDR end_pc,
619 struct spu_prologue_data *data)
620 {
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622 int found_sp = 0;
623 int found_fp = 0;
624 int found_lr = 0;
625 int found_bc = 0;
626 int reg_immed[SPU_NUM_GPRS];
627 gdb_byte buf[16];
628 CORE_ADDR prolog_pc = start_pc;
629 CORE_ADDR pc;
630 int i;
631
632
633 /* Initialize DATA to default values. */
634 data->size = -1;
635
636 data->cfa_reg = SPU_RAW_SP_REGNUM;
637 data->cfa_offset = 0;
638
639 for (i = 0; i < SPU_NUM_GPRS; i++)
640 data->reg_offset[i] = -1;
641
642 /* Set up REG_IMMED array. This is non-zero for a register if we know its
643 preferred slot currently holds this immediate value. */
644 for (i = 0; i < SPU_NUM_GPRS; i++)
645 reg_immed[i] = 0;
646
647 /* Scan instructions until the first branch.
648
649 The following instructions are important prolog components:
650
651 - The first instruction to set up the stack pointer.
652 - The first instruction to set up the frame pointer.
653 - The first instruction to save the link register.
654 - The first instruction to save the backchain.
655
656 We return the instruction after the latest of these four,
657 or the incoming PC if none is found. The first instruction
658 to set up the stack pointer also defines the frame size.
659
660 Note that instructions saving incoming arguments to their stack
661 slots are not counted as important, because they are hard to
662 identify with certainty. This should not matter much, because
663 arguments are relevant only in code compiled with debug data,
664 and in such code the GDB core will advance until the first source
665 line anyway, using SAL data.
666
667 For purposes of stack unwinding, we analyze the following types
668 of instructions in addition:
669
670 - Any instruction adding to the current frame pointer.
671 - Any instruction loading an immediate constant into a register.
672 - Any instruction storing a register onto the stack.
673
674 These are used to compute the CFA and REG_OFFSET output. */
675
676 for (pc = start_pc; pc < end_pc; pc += 4)
677 {
678 unsigned int insn;
679 int rt, ra, rb, rc, immed;
680
681 if (target_read_memory (pc, buf, 4))
682 break;
683 insn = extract_unsigned_integer (buf, 4, byte_order);
684
685 /* AI is the typical instruction to set up a stack frame.
686 It is also used to initialize the frame pointer. */
687 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
688 {
689 if (rt == data->cfa_reg && ra == data->cfa_reg)
690 data->cfa_offset -= immed;
691
692 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_sp)
694 {
695 found_sp = 1;
696 prolog_pc = pc + 4;
697
698 data->size = -immed;
699 }
700 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
701 && !found_fp)
702 {
703 found_fp = 1;
704 prolog_pc = pc + 4;
705
706 data->cfa_reg = SPU_FP_REGNUM;
707 data->cfa_offset -= immed;
708 }
709 }
710
711 /* A is used to set up stack frames of size >= 512 bytes.
712 If we have tracked the contents of the addend register,
713 we can handle this as well. */
714 else if (is_rr (insn, op_a, &rt, &ra, &rb))
715 {
716 if (rt == data->cfa_reg && ra == data->cfa_reg)
717 {
718 if (reg_immed[rb] != 0)
719 data->cfa_offset -= reg_immed[rb];
720 else
721 data->cfa_reg = -1; /* We don't know the CFA any more. */
722 }
723
724 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
725 && !found_sp)
726 {
727 found_sp = 1;
728 prolog_pc = pc + 4;
729
730 if (reg_immed[rb] != 0)
731 data->size = -reg_immed[rb];
732 }
733 }
734
735 /* We need to track IL and ILA used to load immediate constants
736 in case they are later used as input to an A instruction. */
737 else if (is_ri16 (insn, op_il, &rt, &immed))
738 {
739 reg_immed[rt] = immed;
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
743 }
744
745 else if (is_ri18 (insn, op_ila, &rt, &immed))
746 {
747 reg_immed[rt] = immed & 0x3ffff;
748
749 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
750 found_sp = 1;
751 }
752
753 /* STQD is used to save registers to the stack. */
754 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
755 {
756 if (ra == data->cfa_reg)
757 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
758
759 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
760 && !found_lr)
761 {
762 found_lr = 1;
763 prolog_pc = pc + 4;
764 }
765
766 if (ra == SPU_RAW_SP_REGNUM
767 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
768 && !found_bc)
769 {
770 found_bc = 1;
771 prolog_pc = pc + 4;
772 }
773 }
774
775 /* _start uses SELB to set up the stack pointer. */
776 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
777 {
778 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
779 found_sp = 1;
780 }
781
782 /* We terminate if we find a branch. */
783 else if (is_branch (insn, &immed, &ra))
784 break;
785 }
786
787
788 /* If we successfully parsed until here, and didn't find any instruction
789 modifying SP, we assume we have a frameless function. */
790 if (!found_sp)
791 data->size = 0;
792
793 /* Return cooked instead of raw SP. */
794 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
795 data->cfa_reg = SPU_SP_REGNUM;
796
797 return prolog_pc;
798 }
799
800 /* Return the first instruction after the prologue starting at PC. */
801 static CORE_ADDR
802 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
803 {
804 struct spu_prologue_data data;
805 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
806 }
807
808 /* Return the frame pointer in use at address PC. */
809 static void
810 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
811 int *reg, LONGEST *offset)
812 {
813 struct spu_prologue_data data;
814 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
815
816 if (data.size != -1 && data.cfa_reg != -1)
817 {
818 /* The 'frame pointer' address is CFA minus frame size. */
819 *reg = data.cfa_reg;
820 *offset = data.cfa_offset - data.size;
821 }
822 else
823 {
824 /* ??? We don't really know ... */
825 *reg = SPU_SP_REGNUM;
826 *offset = 0;
827 }
828 }
829
830 /* Return true if we are in the function's epilogue, i.e. after the
831 instruction that destroyed the function's stack frame.
832
833 1) scan forward from the point of execution:
834 a) If you find an instruction that modifies the stack pointer
835 or transfers control (except a return), execution is not in
836 an epilogue, return.
837 b) Stop scanning if you find a return instruction or reach the
838 end of the function or reach the hard limit for the size of
839 an epilogue.
840 2) scan backward from the point of execution:
841 a) If you find an instruction that modifies the stack pointer,
842 execution *is* in an epilogue, return.
843 b) Stop scanning if you reach an instruction that transfers
844 control or the beginning of the function or reach the hard
845 limit for the size of an epilogue. */
846
847 static int
848 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
849 {
850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
851 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
852 bfd_byte buf[4];
853 unsigned int insn;
854 int rt, ra, rb, immed;
855
856 /* Find the search limits based on function boundaries and hard limit.
857 We assume the epilogue can be up to 64 instructions long. */
858
859 const int spu_max_epilogue_size = 64 * 4;
860
861 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
862 return 0;
863
864 if (pc - func_start < spu_max_epilogue_size)
865 epilogue_start = func_start;
866 else
867 epilogue_start = pc - spu_max_epilogue_size;
868
869 if (func_end - pc < spu_max_epilogue_size)
870 epilogue_end = func_end;
871 else
872 epilogue_end = pc + spu_max_epilogue_size;
873
874 /* Scan forward until next 'bi $0'. */
875
876 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
877 {
878 if (target_read_memory (scan_pc, buf, 4))
879 return 0;
880 insn = extract_unsigned_integer (buf, 4, byte_order);
881
882 if (is_branch (insn, &immed, &ra))
883 {
884 if (immed == 0 && ra == SPU_LR_REGNUM)
885 break;
886
887 return 0;
888 }
889
890 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
891 || is_rr (insn, op_a, &rt, &ra, &rb)
892 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
893 {
894 if (rt == SPU_RAW_SP_REGNUM)
895 return 0;
896 }
897 }
898
899 if (scan_pc >= epilogue_end)
900 return 0;
901
902 /* Scan backward until adjustment to stack pointer (R1). */
903
904 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
905 {
906 if (target_read_memory (scan_pc, buf, 4))
907 return 0;
908 insn = extract_unsigned_integer (buf, 4, byte_order);
909
910 if (is_branch (insn, &immed, &ra))
911 return 0;
912
913 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
914 || is_rr (insn, op_a, &rt, &ra, &rb)
915 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
916 {
917 if (rt == SPU_RAW_SP_REGNUM)
918 return 1;
919 }
920 }
921
922 return 0;
923 }
924
925
926 /* Normal stack frames. */
927
928 struct spu_unwind_cache
929 {
930 CORE_ADDR func;
931 CORE_ADDR frame_base;
932 CORE_ADDR local_base;
933
934 struct trad_frame_saved_reg *saved_regs;
935 };
936
937 static struct spu_unwind_cache *
938 spu_frame_unwind_cache (struct frame_info *this_frame,
939 void **this_prologue_cache)
940 {
941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
943 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
944 struct spu_unwind_cache *info;
945 struct spu_prologue_data data;
946 CORE_ADDR id = tdep->id;
947 gdb_byte buf[16];
948
949 if (*this_prologue_cache)
950 return *this_prologue_cache;
951
952 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
953 *this_prologue_cache = info;
954 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
955 info->frame_base = 0;
956 info->local_base = 0;
957
958 /* Find the start of the current function, and analyze its prologue. */
959 info->func = get_frame_func (this_frame);
960 if (info->func == 0)
961 {
962 /* Fall back to using the current PC as frame ID. */
963 info->func = get_frame_pc (this_frame);
964 data.size = -1;
965 }
966 else
967 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
968 &data);
969
970 /* If successful, use prologue analysis data. */
971 if (data.size != -1 && data.cfa_reg != -1)
972 {
973 CORE_ADDR cfa;
974 int i;
975
976 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
977 get_frame_register (this_frame, data.cfa_reg, buf);
978 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
979 cfa = SPUADDR (id, cfa);
980
981 /* Call-saved register slots. */
982 for (i = 0; i < SPU_NUM_GPRS; i++)
983 if (i == SPU_LR_REGNUM
984 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
985 if (data.reg_offset[i] != -1)
986 info->saved_regs[i].addr = cfa - data.reg_offset[i];
987
988 /* Frame bases. */
989 info->frame_base = cfa;
990 info->local_base = cfa - data.size;
991 }
992
993 /* Otherwise, fall back to reading the backchain link. */
994 else
995 {
996 CORE_ADDR reg;
997 LONGEST backchain;
998 ULONGEST lslr;
999 int status;
1000
1001 /* Get local store limit. */
1002 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1003 if (!lslr)
1004 lslr = (ULONGEST) -1;
1005
1006 /* Get the backchain. */
1007 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1008 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1009 &backchain);
1010
1011 /* A zero backchain terminates the frame chain. Also, sanity
1012 check against the local store size limit. */
1013 if (status && backchain > 0 && backchain <= lslr)
1014 {
1015 /* Assume the link register is saved into its slot. */
1016 if (backchain + 16 <= lslr)
1017 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1018 backchain + 16);
1019
1020 /* Frame bases. */
1021 info->frame_base = SPUADDR (id, backchain);
1022 info->local_base = SPUADDR (id, reg);
1023 }
1024 }
1025
1026 /* If we didn't find a frame, we cannot determine SP / return address. */
1027 if (info->frame_base == 0)
1028 return info;
1029
1030 /* The previous SP is equal to the CFA. */
1031 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1032 SPUADDR_ADDR (info->frame_base));
1033
1034 /* Read full contents of the unwound link register in order to
1035 be able to determine the return address. */
1036 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1037 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1038 else
1039 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1040
1041 /* Normally, the return address is contained in the slot 0 of the
1042 link register, and slots 1-3 are zero. For an overlay return,
1043 slot 0 contains the address of the overlay manager return stub,
1044 slot 1 contains the partition number of the overlay section to
1045 be returned to, and slot 2 contains the return address within
1046 that section. Return the latter address in that case. */
1047 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1048 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1049 extract_unsigned_integer (buf + 8, 4, byte_order));
1050 else
1051 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1052 extract_unsigned_integer (buf, 4, byte_order));
1053
1054 return info;
1055 }
1056
1057 static void
1058 spu_frame_this_id (struct frame_info *this_frame,
1059 void **this_prologue_cache, struct frame_id *this_id)
1060 {
1061 struct spu_unwind_cache *info =
1062 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1063
1064 if (info->frame_base == 0)
1065 return;
1066
1067 *this_id = frame_id_build (info->frame_base, info->func);
1068 }
1069
1070 static struct value *
1071 spu_frame_prev_register (struct frame_info *this_frame,
1072 void **this_prologue_cache, int regnum)
1073 {
1074 struct spu_unwind_cache *info
1075 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1076
1077 /* Special-case the stack pointer. */
1078 if (regnum == SPU_RAW_SP_REGNUM)
1079 regnum = SPU_SP_REGNUM;
1080
1081 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1082 }
1083
1084 static const struct frame_unwind spu_frame_unwind = {
1085 NORMAL_FRAME,
1086 default_frame_unwind_stop_reason,
1087 spu_frame_this_id,
1088 spu_frame_prev_register,
1089 NULL,
1090 default_frame_sniffer
1091 };
1092
1093 static CORE_ADDR
1094 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1095 {
1096 struct spu_unwind_cache *info
1097 = spu_frame_unwind_cache (this_frame, this_cache);
1098 return info->local_base;
1099 }
1100
1101 static const struct frame_base spu_frame_base = {
1102 &spu_frame_unwind,
1103 spu_frame_base_address,
1104 spu_frame_base_address,
1105 spu_frame_base_address
1106 };
1107
1108 static CORE_ADDR
1109 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1110 {
1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1113 /* Mask off interrupt enable bit. */
1114 return SPUADDR (tdep->id, pc & -4);
1115 }
1116
1117 static CORE_ADDR
1118 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1119 {
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1122 return SPUADDR (tdep->id, sp);
1123 }
1124
1125 static CORE_ADDR
1126 spu_read_pc (struct regcache *regcache)
1127 {
1128 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1129 ULONGEST pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1131 /* Mask off interrupt enable bit. */
1132 return SPUADDR (tdep->id, pc & -4);
1133 }
1134
1135 static void
1136 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1137 {
1138 /* Keep interrupt enabled state unchanged. */
1139 ULONGEST old_pc;
1140
1141 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1142 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1143 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1144 }
1145
1146
1147 /* Cell/B.E. cross-architecture unwinder support. */
1148
1149 struct spu2ppu_cache
1150 {
1151 struct frame_id frame_id;
1152 struct regcache *regcache;
1153 };
1154
1155 static struct gdbarch *
1156 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1157 {
1158 struct spu2ppu_cache *cache = *this_cache;
1159 return get_regcache_arch (cache->regcache);
1160 }
1161
1162 static void
1163 spu2ppu_this_id (struct frame_info *this_frame,
1164 void **this_cache, struct frame_id *this_id)
1165 {
1166 struct spu2ppu_cache *cache = *this_cache;
1167 *this_id = cache->frame_id;
1168 }
1169
1170 static struct value *
1171 spu2ppu_prev_register (struct frame_info *this_frame,
1172 void **this_cache, int regnum)
1173 {
1174 struct spu2ppu_cache *cache = *this_cache;
1175 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1176 gdb_byte *buf;
1177
1178 buf = alloca (register_size (gdbarch, regnum));
1179 regcache_cooked_read (cache->regcache, regnum, buf);
1180 return frame_unwind_got_bytes (this_frame, regnum, buf);
1181 }
1182
1183 static int
1184 spu2ppu_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **this_prologue_cache)
1186 {
1187 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 CORE_ADDR base, func, backchain;
1190 gdb_byte buf[4];
1191
1192 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1193 return 0;
1194
1195 base = get_frame_sp (this_frame);
1196 func = get_frame_pc (this_frame);
1197 if (target_read_memory (base, buf, 4))
1198 return 0;
1199 backchain = extract_unsigned_integer (buf, 4, byte_order);
1200
1201 if (!backchain)
1202 {
1203 struct frame_info *fi;
1204
1205 struct spu2ppu_cache *cache
1206 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1207
1208 cache->frame_id = frame_id_build (base + 16, func);
1209
1210 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1211 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1212 break;
1213
1214 if (fi)
1215 {
1216 cache->regcache = frame_save_as_regcache (fi);
1217 *this_prologue_cache = cache;
1218 return 1;
1219 }
1220 else
1221 {
1222 struct regcache *regcache;
1223 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1224 cache->regcache = regcache_dup (regcache);
1225 *this_prologue_cache = cache;
1226 return 1;
1227 }
1228 }
1229
1230 return 0;
1231 }
1232
1233 static void
1234 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1235 {
1236 struct spu2ppu_cache *cache = this_cache;
1237 regcache_xfree (cache->regcache);
1238 }
1239
1240 static const struct frame_unwind spu2ppu_unwind = {
1241 ARCH_FRAME,
1242 default_frame_unwind_stop_reason,
1243 spu2ppu_this_id,
1244 spu2ppu_prev_register,
1245 NULL,
1246 spu2ppu_sniffer,
1247 spu2ppu_dealloc_cache,
1248 spu2ppu_prev_arch,
1249 };
1250
1251
1252 /* Function calling convention. */
1253
1254 static CORE_ADDR
1255 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1256 {
1257 return sp & ~15;
1258 }
1259
1260 static CORE_ADDR
1261 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1262 struct value **args, int nargs, struct type *value_type,
1263 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1264 struct regcache *regcache)
1265 {
1266 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1267 sp = (sp - 4) & ~15;
1268 /* Store the address of that breakpoint */
1269 *bp_addr = sp;
1270 /* The call starts at the callee's entry point. */
1271 *real_pc = funaddr;
1272
1273 return sp;
1274 }
1275
1276 static int
1277 spu_scalar_value_p (struct type *type)
1278 {
1279 switch (TYPE_CODE (type))
1280 {
1281 case TYPE_CODE_INT:
1282 case TYPE_CODE_ENUM:
1283 case TYPE_CODE_RANGE:
1284 case TYPE_CODE_CHAR:
1285 case TYPE_CODE_BOOL:
1286 case TYPE_CODE_PTR:
1287 case TYPE_CODE_REF:
1288 return TYPE_LENGTH (type) <= 16;
1289
1290 default:
1291 return 0;
1292 }
1293 }
1294
1295 static void
1296 spu_value_to_regcache (struct regcache *regcache, int regnum,
1297 struct type *type, const gdb_byte *in)
1298 {
1299 int len = TYPE_LENGTH (type);
1300
1301 if (spu_scalar_value_p (type))
1302 {
1303 int preferred_slot = len < 4 ? 4 - len : 0;
1304 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1305 }
1306 else
1307 {
1308 while (len >= 16)
1309 {
1310 regcache_cooked_write (regcache, regnum++, in);
1311 in += 16;
1312 len -= 16;
1313 }
1314
1315 if (len > 0)
1316 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1317 }
1318 }
1319
1320 static void
1321 spu_regcache_to_value (struct regcache *regcache, int regnum,
1322 struct type *type, gdb_byte *out)
1323 {
1324 int len = TYPE_LENGTH (type);
1325
1326 if (spu_scalar_value_p (type))
1327 {
1328 int preferred_slot = len < 4 ? 4 - len : 0;
1329 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1330 }
1331 else
1332 {
1333 while (len >= 16)
1334 {
1335 regcache_cooked_read (regcache, regnum++, out);
1336 out += 16;
1337 len -= 16;
1338 }
1339
1340 if (len > 0)
1341 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1342 }
1343 }
1344
1345 static CORE_ADDR
1346 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1347 struct regcache *regcache, CORE_ADDR bp_addr,
1348 int nargs, struct value **args, CORE_ADDR sp,
1349 int struct_return, CORE_ADDR struct_addr)
1350 {
1351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1352 CORE_ADDR sp_delta;
1353 int i;
1354 int regnum = SPU_ARG1_REGNUM;
1355 int stack_arg = -1;
1356 gdb_byte buf[16];
1357
1358 /* Set the return address. */
1359 memset (buf, 0, sizeof buf);
1360 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1361 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1362
1363 /* If STRUCT_RETURN is true, then the struct return address (in
1364 STRUCT_ADDR) will consume the first argument-passing register.
1365 Both adjust the register count and store that value. */
1366 if (struct_return)
1367 {
1368 memset (buf, 0, sizeof buf);
1369 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1370 regcache_cooked_write (regcache, regnum++, buf);
1371 }
1372
1373 /* Fill in argument registers. */
1374 for (i = 0; i < nargs; i++)
1375 {
1376 struct value *arg = args[i];
1377 struct type *type = check_typedef (value_type (arg));
1378 const gdb_byte *contents = value_contents (arg);
1379 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1380
1381 /* If the argument doesn't wholly fit into registers, it and
1382 all subsequent arguments go to the stack. */
1383 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1384 {
1385 stack_arg = i;
1386 break;
1387 }
1388
1389 spu_value_to_regcache (regcache, regnum, type, contents);
1390 regnum += n_regs;
1391 }
1392
1393 /* Overflow arguments go to the stack. */
1394 if (stack_arg != -1)
1395 {
1396 CORE_ADDR ap;
1397
1398 /* Allocate all required stack size. */
1399 for (i = stack_arg; i < nargs; i++)
1400 {
1401 struct type *type = check_typedef (value_type (args[i]));
1402 sp -= align_up (TYPE_LENGTH (type), 16);
1403 }
1404
1405 /* Fill in stack arguments. */
1406 ap = sp;
1407 for (i = stack_arg; i < nargs; i++)
1408 {
1409 struct value *arg = args[i];
1410 struct type *type = check_typedef (value_type (arg));
1411 int len = TYPE_LENGTH (type);
1412 int preferred_slot;
1413
1414 if (spu_scalar_value_p (type))
1415 preferred_slot = len < 4 ? 4 - len : 0;
1416 else
1417 preferred_slot = 0;
1418
1419 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1420 ap += align_up (TYPE_LENGTH (type), 16);
1421 }
1422 }
1423
1424 /* Allocate stack frame header. */
1425 sp -= 32;
1426
1427 /* Store stack back chain. */
1428 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1429 target_write_memory (sp, buf, 16);
1430
1431 /* Finally, update all slots of the SP register. */
1432 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1433 for (i = 0; i < 4; i++)
1434 {
1435 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1436 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1437 }
1438 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1439
1440 return sp;
1441 }
1442
1443 static struct frame_id
1444 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1445 {
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1447 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1448 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1449 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1450 }
1451
1452 /* Function return value access. */
1453
1454 static enum return_value_convention
1455 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1456 struct type *type, struct regcache *regcache,
1457 gdb_byte *out, const gdb_byte *in)
1458 {
1459 struct type *func_type = function ? value_type (function) : NULL;
1460 enum return_value_convention rvc;
1461 int opencl_vector = 0;
1462
1463 if (func_type)
1464 {
1465 func_type = check_typedef (func_type);
1466
1467 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1468 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1469
1470 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1471 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1472 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1473 && TYPE_VECTOR (type))
1474 opencl_vector = 1;
1475 }
1476
1477 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1478 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1479 else
1480 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1481
1482 if (in)
1483 {
1484 switch (rvc)
1485 {
1486 case RETURN_VALUE_REGISTER_CONVENTION:
1487 if (opencl_vector && TYPE_LENGTH (type) == 2)
1488 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1489 else
1490 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1491 break;
1492
1493 case RETURN_VALUE_STRUCT_CONVENTION:
1494 error (_("Cannot set function return value."));
1495 break;
1496 }
1497 }
1498 else if (out)
1499 {
1500 switch (rvc)
1501 {
1502 case RETURN_VALUE_REGISTER_CONVENTION:
1503 if (opencl_vector && TYPE_LENGTH (type) == 2)
1504 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1505 else
1506 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1507 break;
1508
1509 case RETURN_VALUE_STRUCT_CONVENTION:
1510 error (_("Function return value unknown."));
1511 break;
1512 }
1513 }
1514
1515 return rvc;
1516 }
1517
1518
1519 /* Breakpoints. */
1520
1521 static const gdb_byte *
1522 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1523 CORE_ADDR * pcptr, int *lenptr)
1524 {
1525 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1526
1527 *lenptr = sizeof breakpoint;
1528 return breakpoint;
1529 }
1530
1531 static int
1532 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1533 struct bp_target_info *bp_tgt)
1534 {
1535 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1536 that in a combined application, we have some breakpoints inserted in SPU
1537 code, and now the application forks (on the PPU side). GDB common code
1538 will assume that the fork system call copied all breakpoints into the new
1539 process' address space, and that all those copies now need to be removed
1540 (see breakpoint.c:detach_breakpoints).
1541
1542 While this is certainly true for PPU side breakpoints, it is not true
1543 for SPU side breakpoints. fork will clone the SPU context file
1544 descriptors, so that all the existing SPU contexts are in accessible
1545 in the new process. However, the contents of the SPU contexts themselves
1546 are *not* cloned. Therefore the effect of detach_breakpoints is to
1547 remove SPU breakpoints from the *original* SPU context's local store
1548 -- this is not the correct behaviour.
1549
1550 The workaround is to check whether the PID we are asked to remove this
1551 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1552 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1553 true in the context of detach_breakpoints. If so, we simply do nothing.
1554 [ Note that for the fork child process, it does not matter if breakpoints
1555 remain inserted, because those SPU contexts are not runnable anyway --
1556 the Linux kernel allows only the original process to invoke spu_run. */
1557
1558 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1559 return 0;
1560
1561 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1562 }
1563
1564
1565 /* Software single-stepping support. */
1566
1567 static int
1568 spu_software_single_step (struct frame_info *frame)
1569 {
1570 struct gdbarch *gdbarch = get_frame_arch (frame);
1571 struct address_space *aspace = get_frame_address_space (frame);
1572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1573 CORE_ADDR pc, next_pc;
1574 unsigned int insn;
1575 int offset, reg;
1576 gdb_byte buf[4];
1577 ULONGEST lslr;
1578
1579 pc = get_frame_pc (frame);
1580
1581 if (target_read_memory (pc, buf, 4))
1582 return 1;
1583 insn = extract_unsigned_integer (buf, 4, byte_order);
1584
1585 /* Get local store limit. */
1586 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1587 if (!lslr)
1588 lslr = (ULONGEST) -1;
1589
1590 /* Next sequential instruction is at PC + 4, except if the current
1591 instruction is a PPE-assisted call, in which case it is at PC + 8.
1592 Wrap around LS limit to be on the safe side. */
1593 if ((insn & 0xffffff00) == 0x00002100)
1594 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1595 else
1596 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1597
1598 insert_single_step_breakpoint (gdbarch,
1599 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1600
1601 if (is_branch (insn, &offset, &reg))
1602 {
1603 CORE_ADDR target = offset;
1604
1605 if (reg == SPU_PC_REGNUM)
1606 target += SPUADDR_ADDR (pc);
1607 else if (reg != -1)
1608 {
1609 int optim, unavail;
1610
1611 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1612 &optim, &unavail))
1613 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1614 else
1615 {
1616 if (optim)
1617 error (_("Could not determine address of "
1618 "single-step breakpoint."));
1619 if (unavail)
1620 throw_error (NOT_AVAILABLE_ERROR,
1621 _("Could not determine address of "
1622 "single-step breakpoint."));
1623 }
1624 }
1625
1626 target = target & lslr;
1627 if (target != next_pc)
1628 insert_single_step_breakpoint (gdbarch, aspace,
1629 SPUADDR (SPUADDR_SPU (pc), target));
1630 }
1631
1632 return 1;
1633 }
1634
1635
1636 /* Longjmp support. */
1637
1638 static int
1639 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1640 {
1641 struct gdbarch *gdbarch = get_frame_arch (frame);
1642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1644 gdb_byte buf[4];
1645 CORE_ADDR jb_addr;
1646 int optim, unavail;
1647
1648 /* Jump buffer is pointed to by the argument register $r3. */
1649 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1650 &optim, &unavail))
1651 return 0;
1652
1653 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1654 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1655 return 0;
1656
1657 *pc = extract_unsigned_integer (buf, 4, byte_order);
1658 *pc = SPUADDR (tdep->id, *pc);
1659 return 1;
1660 }
1661
1662
1663 /* Disassembler. */
1664
1665 struct spu_dis_asm_data
1666 {
1667 struct gdbarch *gdbarch;
1668 int id;
1669 };
1670
1671 static void
1672 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1673 {
1674 struct spu_dis_asm_data *data = info->application_data;
1675 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1676 }
1677
1678 static int
1679 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1680 {
1681 /* The opcodes disassembler does 18-bit address arithmetic. Make
1682 sure the SPU ID encoded in the high bits is added back when we
1683 call print_address. */
1684 struct disassemble_info spu_info = *info;
1685 struct spu_dis_asm_data data;
1686 data.gdbarch = info->application_data;
1687 data.id = SPUADDR_SPU (memaddr);
1688
1689 spu_info.application_data = &data;
1690 spu_info.print_address_func = spu_dis_asm_print_address;
1691 return print_insn_spu (memaddr, &spu_info);
1692 }
1693
1694
1695 /* Target overlays for the SPU overlay manager.
1696
1697 See the documentation of simple_overlay_update for how the
1698 interface is supposed to work.
1699
1700 Data structures used by the overlay manager:
1701
1702 struct ovly_table
1703 {
1704 u32 vma;
1705 u32 size;
1706 u32 pos;
1707 u32 buf;
1708 } _ovly_table[]; -- one entry per overlay section
1709
1710 struct ovly_buf_table
1711 {
1712 u32 mapped;
1713 } _ovly_buf_table[]; -- one entry per overlay buffer
1714
1715 _ovly_table should never change.
1716
1717 Both tables are aligned to a 16-byte boundary, the symbols
1718 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1719 size set to the size of the respective array. buf in _ovly_table is
1720 an index into _ovly_buf_table.
1721
1722 mapped is an index into _ovly_table. Both the mapped and buf indices start
1723 from one to reference the first entry in their respective tables. */
1724
1725 /* Using the per-objfile private data mechanism, we store for each
1726 objfile an array of "struct spu_overlay_table" structures, one
1727 for each obj_section of the objfile. This structure holds two
1728 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1729 is *not* an overlay section. If it is non-zero, it represents
1730 a target address. The overlay section is mapped iff the target
1731 integer at this location equals MAPPED_VAL. */
1732
1733 static const struct objfile_data *spu_overlay_data;
1734
1735 struct spu_overlay_table
1736 {
1737 CORE_ADDR mapped_ptr;
1738 CORE_ADDR mapped_val;
1739 };
1740
1741 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1742 the _ovly_table data structure from the target and initialize the
1743 spu_overlay_table data structure from it. */
1744 static struct spu_overlay_table *
1745 spu_get_overlay_table (struct objfile *objfile)
1746 {
1747 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1748 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1749 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1750 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1751 unsigned ovly_table_size, ovly_buf_table_size;
1752 struct spu_overlay_table *tbl;
1753 struct obj_section *osect;
1754 gdb_byte *ovly_table;
1755 int i;
1756
1757 tbl = objfile_data (objfile, spu_overlay_data);
1758 if (tbl)
1759 return tbl;
1760
1761 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1762 if (!ovly_table_msym)
1763 return NULL;
1764
1765 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1766 NULL, objfile);
1767 if (!ovly_buf_table_msym)
1768 return NULL;
1769
1770 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1771 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1772
1773 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1774 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1775
1776 ovly_table = xmalloc (ovly_table_size);
1777 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1778
1779 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1780 objfile->sections_end - objfile->sections,
1781 struct spu_overlay_table);
1782
1783 for (i = 0; i < ovly_table_size / 16; i++)
1784 {
1785 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1786 4, byte_order);
1787 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1788 4, byte_order);
1789 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1790 4, byte_order);
1791 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1792 4, byte_order);
1793
1794 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1795 continue;
1796
1797 ALL_OBJFILE_OSECTIONS (objfile, osect)
1798 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1799 && pos == osect->the_bfd_section->filepos)
1800 {
1801 int ndx = osect - objfile->sections;
1802 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1803 tbl[ndx].mapped_val = i + 1;
1804 break;
1805 }
1806 }
1807
1808 xfree (ovly_table);
1809 set_objfile_data (objfile, spu_overlay_data, tbl);
1810 return tbl;
1811 }
1812
1813 /* Read _ovly_buf_table entry from the target to dermine whether
1814 OSECT is currently mapped, and update the mapped state. */
1815 static void
1816 spu_overlay_update_osect (struct obj_section *osect)
1817 {
1818 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1819 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1820 struct spu_overlay_table *ovly_table;
1821 CORE_ADDR id, val;
1822
1823 ovly_table = spu_get_overlay_table (osect->objfile);
1824 if (!ovly_table)
1825 return;
1826
1827 ovly_table += osect - osect->objfile->sections;
1828 if (ovly_table->mapped_ptr == 0)
1829 return;
1830
1831 id = SPUADDR_SPU (obj_section_addr (osect));
1832 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1833 4, byte_order);
1834 osect->ovly_mapped = (val == ovly_table->mapped_val);
1835 }
1836
1837 /* If OSECT is NULL, then update all sections' mapped state.
1838 If OSECT is non-NULL, then update only OSECT's mapped state. */
1839 static void
1840 spu_overlay_update (struct obj_section *osect)
1841 {
1842 /* Just one section. */
1843 if (osect)
1844 spu_overlay_update_osect (osect);
1845
1846 /* All sections. */
1847 else
1848 {
1849 struct objfile *objfile;
1850
1851 ALL_OBJSECTIONS (objfile, osect)
1852 if (section_is_overlay (osect))
1853 spu_overlay_update_osect (osect);
1854 }
1855 }
1856
1857 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1858 If there is one, go through all sections and make sure for non-
1859 overlay sections LMA equals VMA, while for overlay sections LMA
1860 is larger than SPU_OVERLAY_LMA. */
1861 static void
1862 spu_overlay_new_objfile (struct objfile *objfile)
1863 {
1864 struct spu_overlay_table *ovly_table;
1865 struct obj_section *osect;
1866
1867 /* If we've already touched this file, do nothing. */
1868 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1869 return;
1870
1871 /* Consider only SPU objfiles. */
1872 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1873 return;
1874
1875 /* Check if this objfile has overlays. */
1876 ovly_table = spu_get_overlay_table (objfile);
1877 if (!ovly_table)
1878 return;
1879
1880 /* Now go and fiddle with all the LMAs. */
1881 ALL_OBJFILE_OSECTIONS (objfile, osect)
1882 {
1883 bfd *obfd = objfile->obfd;
1884 asection *bsect = osect->the_bfd_section;
1885 int ndx = osect - objfile->sections;
1886
1887 if (ovly_table[ndx].mapped_ptr == 0)
1888 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1889 else
1890 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1891 }
1892 }
1893
1894
1895 /* Insert temporary breakpoint on "main" function of newly loaded
1896 SPE context OBJFILE. */
1897 static void
1898 spu_catch_start (struct objfile *objfile)
1899 {
1900 struct minimal_symbol *minsym;
1901 struct symtab *symtab;
1902 CORE_ADDR pc;
1903 char buf[32];
1904
1905 /* Do this only if requested by "set spu stop-on-load on". */
1906 if (!spu_stop_on_load_p)
1907 return;
1908
1909 /* Consider only SPU objfiles. */
1910 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1911 return;
1912
1913 /* The main objfile is handled differently. */
1914 if (objfile == symfile_objfile)
1915 return;
1916
1917 /* There can be multiple symbols named "main". Search for the
1918 "main" in *this* objfile. */
1919 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1920 if (!minsym)
1921 return;
1922
1923 /* If we have debugging information, try to use it -- this
1924 will allow us to properly skip the prologue. */
1925 pc = SYMBOL_VALUE_ADDRESS (minsym);
1926 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (objfile, minsym));
1927 if (symtab != NULL)
1928 {
1929 struct blockvector *bv = BLOCKVECTOR (symtab);
1930 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1931 struct symbol *sym;
1932 struct symtab_and_line sal;
1933
1934 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1935 if (sym)
1936 {
1937 fixup_symbol_section (sym, objfile);
1938 sal = find_function_start_sal (sym, 1);
1939 pc = sal.pc;
1940 }
1941 }
1942
1943 /* Use a numerical address for the set_breakpoint command to avoid having
1944 the breakpoint re-set incorrectly. */
1945 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1946 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1947 NULL /* cond_string */, -1 /* thread */,
1948 NULL /* extra_string */,
1949 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1950 bp_breakpoint /* type_wanted */,
1951 0 /* ignore_count */,
1952 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1953 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1954 1 /* enabled */, 0 /* internal */, 0);
1955 }
1956
1957
1958 /* Look up OBJFILE loaded into FRAME's SPU context. */
1959 static struct objfile *
1960 spu_objfile_from_frame (struct frame_info *frame)
1961 {
1962 struct gdbarch *gdbarch = get_frame_arch (frame);
1963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1964 struct objfile *obj;
1965
1966 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1967 return NULL;
1968
1969 ALL_OBJFILES (obj)
1970 {
1971 if (obj->sections != obj->sections_end
1972 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1973 return obj;
1974 }
1975
1976 return NULL;
1977 }
1978
1979 /* Flush cache for ea pointer access if available. */
1980 static void
1981 flush_ea_cache (void)
1982 {
1983 struct minimal_symbol *msymbol;
1984 struct objfile *obj;
1985
1986 if (!has_stack_frames ())
1987 return;
1988
1989 obj = spu_objfile_from_frame (get_current_frame ());
1990 if (obj == NULL)
1991 return;
1992
1993 /* Lookup inferior function __cache_flush. */
1994 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1995 if (msymbol != NULL)
1996 {
1997 struct type *type;
1998 CORE_ADDR addr;
1999
2000 type = objfile_type (obj)->builtin_void;
2001 type = lookup_function_type (type);
2002 type = lookup_pointer_type (type);
2003 addr = SYMBOL_VALUE_ADDRESS (msymbol);
2004
2005 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2006 }
2007 }
2008
2009 /* This handler is called when the inferior has stopped. If it is stopped in
2010 SPU architecture then flush the ea cache if used. */
2011 static void
2012 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2013 {
2014 if (!spu_auto_flush_cache_p)
2015 return;
2016
2017 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2018 re-entering this function when __cache_flush stops. */
2019 spu_auto_flush_cache_p = 0;
2020 flush_ea_cache ();
2021 spu_auto_flush_cache_p = 1;
2022 }
2023
2024
2025 /* "info spu" commands. */
2026
2027 static void
2028 info_spu_event_command (char *args, int from_tty)
2029 {
2030 struct frame_info *frame = get_selected_frame (NULL);
2031 ULONGEST event_status = 0;
2032 ULONGEST event_mask = 0;
2033 struct cleanup *chain;
2034 gdb_byte buf[100];
2035 char annex[32];
2036 LONGEST len;
2037 int id;
2038
2039 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2040 error (_("\"info spu\" is only supported on the SPU architecture."));
2041
2042 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2043
2044 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2045 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2046 buf, 0, (sizeof (buf) - 1));
2047 if (len <= 0)
2048 error (_("Could not read event_status."));
2049 buf[len] = '\0';
2050 event_status = strtoulst ((char *) buf, NULL, 16);
2051
2052 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2053 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2054 buf, 0, (sizeof (buf) - 1));
2055 if (len <= 0)
2056 error (_("Could not read event_mask."));
2057 buf[len] = '\0';
2058 event_mask = strtoulst ((char *) buf, NULL, 16);
2059
2060 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2061
2062 if (ui_out_is_mi_like_p (current_uiout))
2063 {
2064 ui_out_field_fmt (current_uiout, "event_status",
2065 "0x%s", phex_nz (event_status, 4));
2066 ui_out_field_fmt (current_uiout, "event_mask",
2067 "0x%s", phex_nz (event_mask, 4));
2068 }
2069 else
2070 {
2071 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2072 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2073 }
2074
2075 do_cleanups (chain);
2076 }
2077
2078 static void
2079 info_spu_signal_command (char *args, int from_tty)
2080 {
2081 struct frame_info *frame = get_selected_frame (NULL);
2082 struct gdbarch *gdbarch = get_frame_arch (frame);
2083 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2084 ULONGEST signal1 = 0;
2085 ULONGEST signal1_type = 0;
2086 int signal1_pending = 0;
2087 ULONGEST signal2 = 0;
2088 ULONGEST signal2_type = 0;
2089 int signal2_pending = 0;
2090 struct cleanup *chain;
2091 char annex[32];
2092 gdb_byte buf[100];
2093 LONGEST len;
2094 int id;
2095
2096 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2103 if (len < 0)
2104 error (_("Could not read signal1."));
2105 else if (len == 4)
2106 {
2107 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2108 signal1_pending = 1;
2109 }
2110
2111 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2112 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2113 buf, 0, (sizeof (buf) - 1));
2114 if (len <= 0)
2115 error (_("Could not read signal1_type."));
2116 buf[len] = '\0';
2117 signal1_type = strtoulst ((char *) buf, NULL, 16);
2118
2119 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2120 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2121 if (len < 0)
2122 error (_("Could not read signal2."));
2123 else if (len == 4)
2124 {
2125 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2126 signal2_pending = 1;
2127 }
2128
2129 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2130 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2131 buf, 0, (sizeof (buf) - 1));
2132 if (len <= 0)
2133 error (_("Could not read signal2_type."));
2134 buf[len] = '\0';
2135 signal2_type = strtoulst ((char *) buf, NULL, 16);
2136
2137 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2138
2139 if (ui_out_is_mi_like_p (current_uiout))
2140 {
2141 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2142 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2143 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2144 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2145 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2146 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2147 }
2148 else
2149 {
2150 if (signal1_pending)
2151 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2152 else
2153 printf_filtered (_("Signal 1 not pending "));
2154
2155 if (signal1_type)
2156 printf_filtered (_("(Type Or)\n"));
2157 else
2158 printf_filtered (_("(Type Overwrite)\n"));
2159
2160 if (signal2_pending)
2161 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2162 else
2163 printf_filtered (_("Signal 2 not pending "));
2164
2165 if (signal2_type)
2166 printf_filtered (_("(Type Or)\n"));
2167 else
2168 printf_filtered (_("(Type Overwrite)\n"));
2169 }
2170
2171 do_cleanups (chain);
2172 }
2173
2174 static void
2175 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2176 const char *field, const char *msg)
2177 {
2178 struct cleanup *chain;
2179 int i;
2180
2181 if (nr <= 0)
2182 return;
2183
2184 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2185
2186 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2187 ui_out_table_body (current_uiout);
2188
2189 for (i = 0; i < nr; i++)
2190 {
2191 struct cleanup *val_chain;
2192 ULONGEST val;
2193 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2194 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2195 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2196 do_cleanups (val_chain);
2197
2198 if (!ui_out_is_mi_like_p (current_uiout))
2199 printf_filtered ("\n");
2200 }
2201
2202 do_cleanups (chain);
2203 }
2204
2205 static void
2206 info_spu_mailbox_command (char *args, int from_tty)
2207 {
2208 struct frame_info *frame = get_selected_frame (NULL);
2209 struct gdbarch *gdbarch = get_frame_arch (frame);
2210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2211 struct cleanup *chain;
2212 char annex[32];
2213 gdb_byte buf[1024];
2214 LONGEST len;
2215 int id;
2216
2217 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2218 error (_("\"info spu\" is only supported on the SPU architecture."));
2219
2220 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2221
2222 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2223
2224 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2225 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2226 buf, 0, sizeof buf);
2227 if (len < 0)
2228 error (_("Could not read mbox_info."));
2229
2230 info_spu_mailbox_list (buf, len / 4, byte_order,
2231 "mbox", "SPU Outbound Mailbox");
2232
2233 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2234 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2235 buf, 0, sizeof buf);
2236 if (len < 0)
2237 error (_("Could not read ibox_info."));
2238
2239 info_spu_mailbox_list (buf, len / 4, byte_order,
2240 "ibox", "SPU Outbound Interrupt Mailbox");
2241
2242 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2243 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2244 buf, 0, sizeof buf);
2245 if (len < 0)
2246 error (_("Could not read wbox_info."));
2247
2248 info_spu_mailbox_list (buf, len / 4, byte_order,
2249 "wbox", "SPU Inbound Mailbox");
2250
2251 do_cleanups (chain);
2252 }
2253
2254 static ULONGEST
2255 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2256 {
2257 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2258 return (word >> (63 - last)) & mask;
2259 }
2260
2261 static void
2262 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2263 {
2264 static char *spu_mfc_opcode[256] =
2265 {
2266 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2267 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2271 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2272 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2274 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2275 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2276 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2278 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2281 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2283 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2284 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2285 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2287 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2288 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2289 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2292 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2296 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 };
2299
2300 int *seq = alloca (nr * sizeof (int));
2301 int done = 0;
2302 struct cleanup *chain;
2303 int i, j;
2304
2305
2306 /* Determine sequence in which to display (valid) entries. */
2307 for (i = 0; i < nr; i++)
2308 {
2309 /* Search for the first valid entry all of whose
2310 dependencies are met. */
2311 for (j = 0; j < nr; j++)
2312 {
2313 ULONGEST mfc_cq_dw3;
2314 ULONGEST dependencies;
2315
2316 if (done & (1 << (nr - 1 - j)))
2317 continue;
2318
2319 mfc_cq_dw3
2320 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2321 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2322 continue;
2323
2324 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2325 if ((dependencies & done) != dependencies)
2326 continue;
2327
2328 seq[i] = j;
2329 done |= 1 << (nr - 1 - j);
2330 break;
2331 }
2332
2333 if (j == nr)
2334 break;
2335 }
2336
2337 nr = i;
2338
2339
2340 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2341 "dma_cmd");
2342
2343 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2344 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2345 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2346 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2347 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2348 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2349 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2350 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2351 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2352 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2353
2354 ui_out_table_body (current_uiout);
2355
2356 for (i = 0; i < nr; i++)
2357 {
2358 struct cleanup *cmd_chain;
2359 ULONGEST mfc_cq_dw0;
2360 ULONGEST mfc_cq_dw1;
2361 ULONGEST mfc_cq_dw2;
2362 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2363 int list_lsa, list_size, mfc_lsa, mfc_size;
2364 ULONGEST mfc_ea;
2365 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2366
2367 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2368 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2369
2370 mfc_cq_dw0
2371 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2372 mfc_cq_dw1
2373 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2374 mfc_cq_dw2
2375 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2376
2377 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2378 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2379 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2380 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2381 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2382 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2383 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2384
2385 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2386 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2387
2388 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2389 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2390 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2391 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2392 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2393 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2394
2395 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2396
2397 if (spu_mfc_opcode[mfc_cmd_opcode])
2398 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2399 else
2400 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2401
2402 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2403 ui_out_field_int (current_uiout, "tid", tclass_id);
2404 ui_out_field_int (current_uiout, "rid", rclass_id);
2405
2406 if (ea_valid_p)
2407 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2408 else
2409 ui_out_field_skip (current_uiout, "ea");
2410
2411 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2412 if (qw_valid_p)
2413 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2414 else
2415 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2416
2417 if (list_valid_p)
2418 {
2419 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2420 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2421 }
2422 else
2423 {
2424 ui_out_field_skip (current_uiout, "lstaddr");
2425 ui_out_field_skip (current_uiout, "lstsize");
2426 }
2427
2428 if (cmd_error_p)
2429 ui_out_field_string (current_uiout, "error_p", "*");
2430 else
2431 ui_out_field_skip (current_uiout, "error_p");
2432
2433 do_cleanups (cmd_chain);
2434
2435 if (!ui_out_is_mi_like_p (current_uiout))
2436 printf_filtered ("\n");
2437 }
2438
2439 do_cleanups (chain);
2440 }
2441
2442 static void
2443 info_spu_dma_command (char *args, int from_tty)
2444 {
2445 struct frame_info *frame = get_selected_frame (NULL);
2446 struct gdbarch *gdbarch = get_frame_arch (frame);
2447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2448 ULONGEST dma_info_type;
2449 ULONGEST dma_info_mask;
2450 ULONGEST dma_info_status;
2451 ULONGEST dma_info_stall_and_notify;
2452 ULONGEST dma_info_atomic_command_status;
2453 struct cleanup *chain;
2454 char annex[32];
2455 gdb_byte buf[1024];
2456 LONGEST len;
2457 int id;
2458
2459 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2460 error (_("\"info spu\" is only supported on the SPU architecture."));
2461
2462 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2463
2464 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2465 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2466 buf, 0, 40 + 16 * 32);
2467 if (len <= 0)
2468 error (_("Could not read dma_info."));
2469
2470 dma_info_type
2471 = extract_unsigned_integer (buf, 8, byte_order);
2472 dma_info_mask
2473 = extract_unsigned_integer (buf + 8, 8, byte_order);
2474 dma_info_status
2475 = extract_unsigned_integer (buf + 16, 8, byte_order);
2476 dma_info_stall_and_notify
2477 = extract_unsigned_integer (buf + 24, 8, byte_order);
2478 dma_info_atomic_command_status
2479 = extract_unsigned_integer (buf + 32, 8, byte_order);
2480
2481 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2482
2483 if (ui_out_is_mi_like_p (current_uiout))
2484 {
2485 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2486 phex_nz (dma_info_type, 4));
2487 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2488 phex_nz (dma_info_mask, 4));
2489 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2490 phex_nz (dma_info_status, 4));
2491 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2492 phex_nz (dma_info_stall_and_notify, 4));
2493 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2494 phex_nz (dma_info_atomic_command_status, 4));
2495 }
2496 else
2497 {
2498 const char *query_msg = _("no query pending");
2499
2500 if (dma_info_type & 4)
2501 switch (dma_info_type & 3)
2502 {
2503 case 1: query_msg = _("'any' query pending"); break;
2504 case 2: query_msg = _("'all' query pending"); break;
2505 default: query_msg = _("undefined query type"); break;
2506 }
2507
2508 printf_filtered (_("Tag-Group Status 0x%s\n"),
2509 phex (dma_info_status, 4));
2510 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2511 phex (dma_info_mask, 4), query_msg);
2512 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2513 phex (dma_info_stall_and_notify, 4));
2514 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2515 phex (dma_info_atomic_command_status, 4));
2516 printf_filtered ("\n");
2517 }
2518
2519 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2520 do_cleanups (chain);
2521 }
2522
2523 static void
2524 info_spu_proxydma_command (char *args, int from_tty)
2525 {
2526 struct frame_info *frame = get_selected_frame (NULL);
2527 struct gdbarch *gdbarch = get_frame_arch (frame);
2528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2529 ULONGEST dma_info_type;
2530 ULONGEST dma_info_mask;
2531 ULONGEST dma_info_status;
2532 struct cleanup *chain;
2533 char annex[32];
2534 gdb_byte buf[1024];
2535 LONGEST len;
2536 int id;
2537
2538 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2539 error (_("\"info spu\" is only supported on the SPU architecture."));
2540
2541 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2542
2543 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2544 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2545 buf, 0, 24 + 8 * 32);
2546 if (len <= 0)
2547 error (_("Could not read proxydma_info."));
2548
2549 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2550 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2551 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2552
2553 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2554 "SPUInfoProxyDMA");
2555
2556 if (ui_out_is_mi_like_p (current_uiout))
2557 {
2558 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2559 phex_nz (dma_info_type, 4));
2560 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2561 phex_nz (dma_info_mask, 4));
2562 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2563 phex_nz (dma_info_status, 4));
2564 }
2565 else
2566 {
2567 const char *query_msg;
2568
2569 switch (dma_info_type & 3)
2570 {
2571 case 0: query_msg = _("no query pending"); break;
2572 case 1: query_msg = _("'any' query pending"); break;
2573 case 2: query_msg = _("'all' query pending"); break;
2574 default: query_msg = _("undefined query type"); break;
2575 }
2576
2577 printf_filtered (_("Tag-Group Status 0x%s\n"),
2578 phex (dma_info_status, 4));
2579 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2580 phex (dma_info_mask, 4), query_msg);
2581 printf_filtered ("\n");
2582 }
2583
2584 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2585 do_cleanups (chain);
2586 }
2587
2588 static void
2589 info_spu_command (char *args, int from_tty)
2590 {
2591 printf_unfiltered (_("\"info spu\" must be followed by "
2592 "the name of an SPU facility.\n"));
2593 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2594 }
2595
2596
2597 /* Root of all "set spu "/"show spu " commands. */
2598
2599 static void
2600 show_spu_command (char *args, int from_tty)
2601 {
2602 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2603 }
2604
2605 static void
2606 set_spu_command (char *args, int from_tty)
2607 {
2608 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2609 }
2610
2611 static void
2612 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2613 struct cmd_list_element *c, const char *value)
2614 {
2615 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2616 value);
2617 }
2618
2619 static void
2620 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2621 struct cmd_list_element *c, const char *value)
2622 {
2623 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2624 value);
2625 }
2626
2627
2628 /* Set up gdbarch struct. */
2629
2630 static struct gdbarch *
2631 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2632 {
2633 struct gdbarch *gdbarch;
2634 struct gdbarch_tdep *tdep;
2635 int id = -1;
2636
2637 /* Which spufs ID was requested as address space? */
2638 if (info.tdep_info)
2639 id = *(int *)info.tdep_info;
2640 /* For objfile architectures of SPU solibs, decode the ID from the name.
2641 This assumes the filename convention employed by solib-spu.c. */
2642 else if (info.abfd)
2643 {
2644 char *name = strrchr (info.abfd->filename, '@');
2645 if (name)
2646 sscanf (name, "@0x%*x <%d>", &id);
2647 }
2648
2649 /* Find a candidate among extant architectures. */
2650 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2651 arches != NULL;
2652 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2653 {
2654 tdep = gdbarch_tdep (arches->gdbarch);
2655 if (tdep && tdep->id == id)
2656 return arches->gdbarch;
2657 }
2658
2659 /* None found, so create a new architecture. */
2660 tdep = XCALLOC (1, struct gdbarch_tdep);
2661 tdep->id = id;
2662 gdbarch = gdbarch_alloc (&info, tdep);
2663
2664 /* Disassembler. */
2665 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2666
2667 /* Registers. */
2668 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2669 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2670 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2671 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2672 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2673 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2674 set_gdbarch_register_name (gdbarch, spu_register_name);
2675 set_gdbarch_register_type (gdbarch, spu_register_type);
2676 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2677 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2678 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2679 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2680
2681 /* Data types. */
2682 set_gdbarch_char_signed (gdbarch, 0);
2683 set_gdbarch_ptr_bit (gdbarch, 32);
2684 set_gdbarch_addr_bit (gdbarch, 32);
2685 set_gdbarch_short_bit (gdbarch, 16);
2686 set_gdbarch_int_bit (gdbarch, 32);
2687 set_gdbarch_long_bit (gdbarch, 32);
2688 set_gdbarch_long_long_bit (gdbarch, 64);
2689 set_gdbarch_float_bit (gdbarch, 32);
2690 set_gdbarch_double_bit (gdbarch, 64);
2691 set_gdbarch_long_double_bit (gdbarch, 64);
2692 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2693 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2694 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2695
2696 /* Address handling. */
2697 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2698 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2699 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2700 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2701 set_gdbarch_address_class_type_flags_to_name
2702 (gdbarch, spu_address_class_type_flags_to_name);
2703 set_gdbarch_address_class_name_to_type_flags
2704 (gdbarch, spu_address_class_name_to_type_flags);
2705
2706
2707 /* Inferior function calls. */
2708 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2709 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2710 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2711 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2712 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2713 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2714 set_gdbarch_return_value (gdbarch, spu_return_value);
2715
2716 /* Frame handling. */
2717 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2718 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2719 frame_base_set_default (gdbarch, &spu_frame_base);
2720 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2721 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2722 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2723 set_gdbarch_frame_args_skip (gdbarch, 0);
2724 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2725 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2726
2727 /* Cell/B.E. cross-architecture unwinder support. */
2728 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2729
2730 /* Breakpoints. */
2731 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2732 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2733 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2734 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2735 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2736 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2737
2738 /* Overlays. */
2739 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2740
2741 return gdbarch;
2742 }
2743
2744 /* Provide a prototype to silence -Wmissing-prototypes. */
2745 extern initialize_file_ftype _initialize_spu_tdep;
2746
2747 void
2748 _initialize_spu_tdep (void)
2749 {
2750 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2751
2752 /* Add ourselves to objfile event chain. */
2753 observer_attach_new_objfile (spu_overlay_new_objfile);
2754 spu_overlay_data = register_objfile_data ();
2755
2756 /* Install spu stop-on-load handler. */
2757 observer_attach_new_objfile (spu_catch_start);
2758
2759 /* Add ourselves to normal_stop event chain. */
2760 observer_attach_normal_stop (spu_attach_normal_stop);
2761
2762 /* Add root prefix command for all "set spu"/"show spu" commands. */
2763 add_prefix_cmd ("spu", no_class, set_spu_command,
2764 _("Various SPU specific commands."),
2765 &setspucmdlist, "set spu ", 0, &setlist);
2766 add_prefix_cmd ("spu", no_class, show_spu_command,
2767 _("Various SPU specific commands."),
2768 &showspucmdlist, "show spu ", 0, &showlist);
2769
2770 /* Toggle whether or not to add a temporary breakpoint at the "main"
2771 function of new SPE contexts. */
2772 add_setshow_boolean_cmd ("stop-on-load", class_support,
2773 &spu_stop_on_load_p, _("\
2774 Set whether to stop for new SPE threads."),
2775 _("\
2776 Show whether to stop for new SPE threads."),
2777 _("\
2778 Use \"on\" to give control to the user when a new SPE thread\n\
2779 enters its \"main\" function.\n\
2780 Use \"off\" to disable stopping for new SPE threads."),
2781 NULL,
2782 show_spu_stop_on_load,
2783 &setspucmdlist, &showspucmdlist);
2784
2785 /* Toggle whether or not to automatically flush the software-managed
2786 cache whenever SPE execution stops. */
2787 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2788 &spu_auto_flush_cache_p, _("\
2789 Set whether to automatically flush the software-managed cache."),
2790 _("\
2791 Show whether to automatically flush the software-managed cache."),
2792 _("\
2793 Use \"on\" to automatically flush the software-managed cache\n\
2794 whenever SPE execution stops.\n\
2795 Use \"off\" to never automatically flush the software-managed cache."),
2796 NULL,
2797 show_spu_auto_flush_cache,
2798 &setspucmdlist, &showspucmdlist);
2799
2800 /* Add root prefix command for all "info spu" commands. */
2801 add_prefix_cmd ("spu", class_info, info_spu_command,
2802 _("Various SPU specific commands."),
2803 &infospucmdlist, "info spu ", 0, &infolist);
2804
2805 /* Add various "info spu" commands. */
2806 add_cmd ("event", class_info, info_spu_event_command,
2807 _("Display SPU event facility status.\n"),
2808 &infospucmdlist);
2809 add_cmd ("signal", class_info, info_spu_signal_command,
2810 _("Display SPU signal notification facility status.\n"),
2811 &infospucmdlist);
2812 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2813 _("Display SPU mailbox facility status.\n"),
2814 &infospucmdlist);
2815 add_cmd ("dma", class_info, info_spu_dma_command,
2816 _("Display MFC DMA status.\n"),
2817 &infospucmdlist);
2818 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2819 _("Display MFC Proxy-DMA status.\n"),
2820 &infospucmdlist);
2821 }
This page took 0.135508 seconds and 4 git commands to generate.