1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
25 #include "arch-utils.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
43 #include "reggroups.h"
44 #include "floatformat.h"
48 /* SPU-specific vector type. */
49 struct type
*spu_builtin_type_vec128
;
54 spu_register_name (int reg_nr
)
56 static char *register_names
[] =
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
63 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
64 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
65 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
66 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
67 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
68 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
69 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
70 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
71 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
72 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
73 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
79 if (reg_nr
>= sizeof register_names
/ sizeof *register_names
)
82 return register_names
[reg_nr
];
86 spu_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
88 if (reg_nr
< SPU_NUM_GPRS
)
89 return spu_builtin_type_vec128
;
94 return builtin_type_uint32
;
97 return builtin_type_void_func_ptr
;
100 return builtin_type_void_data_ptr
;
103 internal_error (__FILE__
, __LINE__
, "invalid regnum");
107 /* Pseudo registers for preferred slots - stack pointer. */
110 spu_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
111 int regnum
, gdb_byte
*buf
)
118 regcache_raw_read (regcache
, SPU_RAW_SP_REGNUM
, reg
);
119 memcpy (buf
, reg
, 4);
123 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
128 spu_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
129 int regnum
, const gdb_byte
*buf
)
136 regcache_raw_read (regcache
, SPU_RAW_SP_REGNUM
, reg
);
137 memcpy (reg
, buf
, 4);
138 regcache_raw_write (regcache
, SPU_RAW_SP_REGNUM
, reg
);
142 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
146 /* Value conversion -- access scalar values at the preferred slot. */
148 static struct value
*
149 spu_value_from_register (struct type
*type
, int regnum
,
150 struct frame_info
*frame
)
152 struct value
*value
= default_value_from_register (type
, regnum
, frame
);
153 int len
= TYPE_LENGTH (type
);
155 if (regnum
< SPU_NUM_GPRS
&& len
< 16)
157 int preferred_slot
= len
< 4 ? 4 - len
: 0;
158 set_value_offset (value
, preferred_slot
);
164 /* Register groups. */
167 spu_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
168 struct reggroup
*group
)
170 /* Registers displayed via 'info regs'. */
171 if (group
== general_reggroup
)
174 /* Registers displayed via 'info float'. */
175 if (group
== float_reggroup
)
178 /* Registers that need to be saved/restored in order to
179 push or pop frames. */
180 if (group
== save_reggroup
|| group
== restore_reggroup
)
183 return default_register_reggroup_p (gdbarch
, regnum
, group
);
187 /* Decoding SPU instructions. */
224 is_rr (unsigned int insn
, int op
, int *rt
, int *ra
, int *rb
)
226 if ((insn
>> 21) == op
)
229 *ra
= (insn
>> 7) & 127;
230 *rb
= (insn
>> 14) & 127;
238 is_rrr (unsigned int insn
, int op
, int *rt
, int *ra
, int *rb
, int *rc
)
240 if ((insn
>> 28) == op
)
242 *rt
= (insn
>> 21) & 127;
243 *ra
= (insn
>> 7) & 127;
244 *rb
= (insn
>> 14) & 127;
253 is_ri7 (unsigned int insn
, int op
, int *rt
, int *ra
, int *i7
)
255 if ((insn
>> 21) == op
)
258 *ra
= (insn
>> 7) & 127;
259 *i7
= (((insn
>> 14) & 127) ^ 0x40) - 0x40;
267 is_ri10 (unsigned int insn
, int op
, int *rt
, int *ra
, int *i10
)
269 if ((insn
>> 24) == op
)
272 *ra
= (insn
>> 7) & 127;
273 *i10
= (((insn
>> 14) & 0x3ff) ^ 0x200) - 0x200;
281 is_ri16 (unsigned int insn
, int op
, int *rt
, int *i16
)
283 if ((insn
>> 23) == op
)
286 *i16
= (((insn
>> 7) & 0xffff) ^ 0x8000) - 0x8000;
294 is_ri18 (unsigned int insn
, int op
, int *rt
, int *i18
)
296 if ((insn
>> 25) == op
)
299 *i18
= (((insn
>> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
307 is_branch (unsigned int insn
, int *offset
, int *reg
)
311 if (is_ri16 (insn
, op_br
, &rt
, &i16
)
312 || is_ri16 (insn
, op_brsl
, &rt
, &i16
)
313 || is_ri16 (insn
, op_brnz
, &rt
, &i16
)
314 || is_ri16 (insn
, op_brz
, &rt
, &i16
)
315 || is_ri16 (insn
, op_brhnz
, &rt
, &i16
)
316 || is_ri16 (insn
, op_brhz
, &rt
, &i16
))
318 *reg
= SPU_PC_REGNUM
;
323 if (is_ri16 (insn
, op_bra
, &rt
, &i16
)
324 || is_ri16 (insn
, op_brasl
, &rt
, &i16
))
331 if (is_ri7 (insn
, op_bi
, &rt
, reg
, &i7
)
332 || is_ri7 (insn
, op_bisl
, &rt
, reg
, &i7
)
333 || is_ri7 (insn
, op_biz
, &rt
, reg
, &i7
)
334 || is_ri7 (insn
, op_binz
, &rt
, reg
, &i7
)
335 || is_ri7 (insn
, op_bihz
, &rt
, reg
, &i7
)
336 || is_ri7 (insn
, op_bihnz
, &rt
, reg
, &i7
))
346 /* Prolog parsing. */
348 struct spu_prologue_data
350 /* Stack frame size. -1 if analysis was unsuccessful. */
353 /* How to find the CFA. The CFA is equal to SP at function entry. */
357 /* Offset relative to CFA where a register is saved. -1 if invalid. */
358 int reg_offset
[SPU_NUM_GPRS
];
362 spu_analyze_prologue (CORE_ADDR start_pc
, CORE_ADDR end_pc
,
363 struct spu_prologue_data
*data
)
368 int reg_immed
[SPU_NUM_GPRS
];
370 CORE_ADDR prolog_pc
= start_pc
;
375 /* Initialize DATA to default values. */
378 data
->cfa_reg
= SPU_RAW_SP_REGNUM
;
379 data
->cfa_offset
= 0;
381 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
382 data
->reg_offset
[i
] = -1;
384 /* Set up REG_IMMED array. This is non-zero for a register if we know its
385 preferred slot currently holds this immediate value. */
386 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
389 /* Scan instructions until the first branch.
391 The following instructions are important prolog components:
393 - The first instruction to set up the stack pointer.
394 - The first instruction to set up the frame pointer.
395 - The first instruction to save the link register.
397 We return the instruction after the latest of these three,
398 or the incoming PC if none is found. The first instruction
399 to set up the stack pointer also defines the frame size.
401 Note that instructions saving incoming arguments to their stack
402 slots are not counted as important, because they are hard to
403 identify with certainty. This should not matter much, because
404 arguments are relevant only in code compiled with debug data,
405 and in such code the GDB core will advance until the first source
406 line anyway, using SAL data.
408 For purposes of stack unwinding, we analyze the following types
409 of instructions in addition:
411 - Any instruction adding to the current frame pointer.
412 - Any instruction loading an immediate constant into a register.
413 - Any instruction storing a register onto the stack.
415 These are used to compute the CFA and REG_OFFSET output. */
417 for (pc
= start_pc
; pc
< end_pc
; pc
+= 4)
420 int rt
, ra
, rb
, rc
, immed
;
422 if (target_read_memory (pc
, buf
, 4))
424 insn
= extract_unsigned_integer (buf
, 4);
426 /* AI is the typical instruction to set up a stack frame.
427 It is also used to initialize the frame pointer. */
428 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
))
430 if (rt
== data
->cfa_reg
&& ra
== data
->cfa_reg
)
431 data
->cfa_offset
-= immed
;
433 if (rt
== SPU_RAW_SP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
441 else if (rt
== SPU_FP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
447 data
->cfa_reg
= SPU_FP_REGNUM
;
448 data
->cfa_offset
-= immed
;
452 /* A is used to set up stack frames of size >= 512 bytes.
453 If we have tracked the contents of the addend register,
454 we can handle this as well. */
455 else if (is_rr (insn
, op_a
, &rt
, &ra
, &rb
))
457 if (rt
== data
->cfa_reg
&& ra
== data
->cfa_reg
)
459 if (reg_immed
[rb
] != 0)
460 data
->cfa_offset
-= reg_immed
[rb
];
462 data
->cfa_reg
= -1; /* We don't know the CFA any more. */
465 if (rt
== SPU_RAW_SP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
471 if (reg_immed
[rb
] != 0)
472 data
->size
= -reg_immed
[rb
];
476 /* We need to track IL and ILA used to load immediate constants
477 in case they are later used as input to an A instruction. */
478 else if (is_ri16 (insn
, op_il
, &rt
, &immed
))
480 reg_immed
[rt
] = immed
;
482 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
486 else if (is_ri18 (insn
, op_ila
, &rt
, &immed
))
488 reg_immed
[rt
] = immed
& 0x3ffff;
490 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
494 /* STQD is used to save registers to the stack. */
495 else if (is_ri10 (insn
, op_stqd
, &rt
, &ra
, &immed
))
497 if (ra
== data
->cfa_reg
)
498 data
->reg_offset
[rt
] = data
->cfa_offset
- (immed
<< 4);
500 if (ra
== data
->cfa_reg
&& rt
== SPU_LR_REGNUM
508 /* _start uses SELB to set up the stack pointer. */
509 else if (is_rrr (insn
, op_selb
, &rt
, &ra
, &rb
, &rc
))
511 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
515 /* We terminate if we find a branch. */
516 else if (is_branch (insn
, &immed
, &ra
))
521 /* If we successfully parsed until here, and didn't find any instruction
522 modifying SP, we assume we have a frameless function. */
526 /* Return cooked instead of raw SP. */
527 if (data
->cfa_reg
== SPU_RAW_SP_REGNUM
)
528 data
->cfa_reg
= SPU_SP_REGNUM
;
533 /* Return the first instruction after the prologue starting at PC. */
535 spu_skip_prologue (CORE_ADDR pc
)
537 struct spu_prologue_data data
;
538 return spu_analyze_prologue (pc
, (CORE_ADDR
)-1, &data
);
541 /* Return the frame pointer in use at address PC. */
543 spu_virtual_frame_pointer (CORE_ADDR pc
, int *reg
, LONGEST
*offset
)
545 struct spu_prologue_data data
;
546 spu_analyze_prologue (pc
, (CORE_ADDR
)-1, &data
);
548 if (data
.size
!= -1 && data
.cfa_reg
!= -1)
550 /* The 'frame pointer' address is CFA minus frame size. */
552 *offset
= data
.cfa_offset
- data
.size
;
556 /* ??? We don't really know ... */
557 *reg
= SPU_SP_REGNUM
;
562 /* Return true if we are in the function's epilogue, i.e. after the
563 instruction that destroyed the function's stack frame.
565 1) scan forward from the point of execution:
566 a) If you find an instruction that modifies the stack pointer
567 or transfers control (except a return), execution is not in
569 b) Stop scanning if you find a return instruction or reach the
570 end of the function or reach the hard limit for the size of
572 2) scan backward from the point of execution:
573 a) If you find an instruction that modifies the stack pointer,
574 execution *is* in an epilogue, return.
575 b) Stop scanning if you reach an instruction that transfers
576 control or the beginning of the function or reach the hard
577 limit for the size of an epilogue. */
580 spu_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
582 CORE_ADDR scan_pc
, func_start
, func_end
, epilogue_start
, epilogue_end
;
585 int rt
, ra
, rb
, rc
, immed
;
587 /* Find the search limits based on function boundaries and hard limit.
588 We assume the epilogue can be up to 64 instructions long. */
590 const int spu_max_epilogue_size
= 64 * 4;
592 if (!find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
595 if (pc
- func_start
< spu_max_epilogue_size
)
596 epilogue_start
= func_start
;
598 epilogue_start
= pc
- spu_max_epilogue_size
;
600 if (func_end
- pc
< spu_max_epilogue_size
)
601 epilogue_end
= func_end
;
603 epilogue_end
= pc
+ spu_max_epilogue_size
;
605 /* Scan forward until next 'bi $0'. */
607 for (scan_pc
= pc
; scan_pc
< epilogue_end
; scan_pc
+= 4)
609 if (target_read_memory (scan_pc
, buf
, 4))
611 insn
= extract_unsigned_integer (buf
, 4);
613 if (is_branch (insn
, &immed
, &ra
))
615 if (immed
== 0 && ra
== SPU_LR_REGNUM
)
621 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
)
622 || is_rr (insn
, op_a
, &rt
, &ra
, &rb
)
623 || is_ri10 (insn
, op_lqd
, &rt
, &ra
, &immed
))
625 if (rt
== SPU_RAW_SP_REGNUM
)
630 if (scan_pc
>= epilogue_end
)
633 /* Scan backward until adjustment to stack pointer (R1). */
635 for (scan_pc
= pc
- 4; scan_pc
>= epilogue_start
; scan_pc
-= 4)
637 if (target_read_memory (scan_pc
, buf
, 4))
639 insn
= extract_unsigned_integer (buf
, 4);
641 if (is_branch (insn
, &immed
, &ra
))
644 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
)
645 || is_rr (insn
, op_a
, &rt
, &ra
, &rb
)
646 || is_ri10 (insn
, op_lqd
, &rt
, &ra
, &immed
))
648 if (rt
== SPU_RAW_SP_REGNUM
)
657 /* Normal stack frames. */
659 struct spu_unwind_cache
662 CORE_ADDR frame_base
;
663 CORE_ADDR local_base
;
665 struct trad_frame_saved_reg
*saved_regs
;
668 static struct spu_unwind_cache
*
669 spu_frame_unwind_cache (struct frame_info
*next_frame
,
670 void **this_prologue_cache
)
672 struct spu_unwind_cache
*info
;
673 struct spu_prologue_data data
;
675 if (*this_prologue_cache
)
676 return *this_prologue_cache
;
678 info
= FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache
);
679 *this_prologue_cache
= info
;
680 info
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
681 info
->frame_base
= 0;
682 info
->local_base
= 0;
684 /* Find the start of the current function, and analyze its prologue. */
685 info
->func
= frame_func_unwind (next_frame
, NORMAL_FRAME
);
688 /* Fall back to using the current PC as frame ID. */
689 info
->func
= frame_pc_unwind (next_frame
);
693 spu_analyze_prologue (info
->func
, frame_pc_unwind (next_frame
), &data
);
696 /* If successful, use prologue analysis data. */
697 if (data
.size
!= -1 && data
.cfa_reg
!= -1)
703 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
704 frame_unwind_register (next_frame
, data
.cfa_reg
, buf
);
705 cfa
= extract_unsigned_integer (buf
, 4) + data
.cfa_offset
;
707 /* Call-saved register slots. */
708 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
709 if (i
== SPU_LR_REGNUM
710 || (i
>= SPU_SAVED1_REGNUM
&& i
<= SPU_SAVEDN_REGNUM
))
711 if (data
.reg_offset
[i
] != -1)
712 info
->saved_regs
[i
].addr
= cfa
- data
.reg_offset
[i
];
714 /* The previous PC comes from the link register. */
715 if (trad_frame_addr_p (info
->saved_regs
, SPU_LR_REGNUM
))
716 info
->saved_regs
[SPU_PC_REGNUM
] = info
->saved_regs
[SPU_LR_REGNUM
];
718 info
->saved_regs
[SPU_PC_REGNUM
].realreg
= SPU_LR_REGNUM
;
720 /* The previous SP is equal to the CFA. */
721 trad_frame_set_value (info
->saved_regs
, SPU_SP_REGNUM
, cfa
);
724 info
->frame_base
= cfa
;
725 info
->local_base
= cfa
- data
.size
;
728 /* Otherwise, fall back to reading the backchain link. */
731 CORE_ADDR reg
, backchain
;
733 /* Get the backchain. */
734 reg
= frame_unwind_register_unsigned (next_frame
, SPU_SP_REGNUM
);
735 backchain
= read_memory_unsigned_integer (reg
, 4);
737 /* A zero backchain terminates the frame chain. Also, sanity
738 check against the local store size limit. */
739 if (backchain
!= 0 && backchain
< SPU_LS_SIZE
)
741 /* Assume the link register is saved into its slot. */
742 if (backchain
+ 16 < SPU_LS_SIZE
)
743 info
->saved_regs
[SPU_LR_REGNUM
].addr
= backchain
+ 16;
745 /* This will also be the previous PC. */
746 if (trad_frame_addr_p (info
->saved_regs
, SPU_LR_REGNUM
))
747 info
->saved_regs
[SPU_PC_REGNUM
] = info
->saved_regs
[SPU_LR_REGNUM
];
749 info
->saved_regs
[SPU_PC_REGNUM
].realreg
= SPU_LR_REGNUM
;
751 /* The previous SP will equal the backchain value. */
752 trad_frame_set_value (info
->saved_regs
, SPU_SP_REGNUM
, backchain
);
755 info
->frame_base
= backchain
;
756 info
->local_base
= reg
;
764 spu_frame_this_id (struct frame_info
*next_frame
,
765 void **this_prologue_cache
, struct frame_id
*this_id
)
767 struct spu_unwind_cache
*info
=
768 spu_frame_unwind_cache (next_frame
, this_prologue_cache
);
770 if (info
->frame_base
== 0)
773 *this_id
= frame_id_build (info
->frame_base
, info
->func
);
777 spu_frame_prev_register (struct frame_info
*next_frame
,
778 void **this_prologue_cache
,
779 int regnum
, int *optimizedp
,
780 enum lval_type
*lvalp
, CORE_ADDR
* addrp
,
781 int *realnump
, gdb_byte
*bufferp
)
783 struct spu_unwind_cache
*info
784 = spu_frame_unwind_cache (next_frame
, this_prologue_cache
);
786 /* Special-case the stack pointer. */
787 if (regnum
== SPU_RAW_SP_REGNUM
)
788 regnum
= SPU_SP_REGNUM
;
790 trad_frame_get_prev_register (next_frame
, info
->saved_regs
, regnum
,
791 optimizedp
, lvalp
, addrp
, realnump
, bufferp
);
794 static const struct frame_unwind spu_frame_unwind
= {
797 spu_frame_prev_register
800 const struct frame_unwind
*
801 spu_frame_sniffer (struct frame_info
*next_frame
)
803 return &spu_frame_unwind
;
807 spu_frame_base_address (struct frame_info
*next_frame
, void **this_cache
)
809 struct spu_unwind_cache
*info
810 = spu_frame_unwind_cache (next_frame
, this_cache
);
811 return info
->local_base
;
814 static const struct frame_base spu_frame_base
= {
816 spu_frame_base_address
,
817 spu_frame_base_address
,
818 spu_frame_base_address
822 spu_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
824 CORE_ADDR pc
= frame_unwind_register_unsigned (next_frame
, SPU_PC_REGNUM
);
825 /* Mask off interrupt enable bit. */
830 spu_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
832 return frame_unwind_register_unsigned (next_frame
, SPU_SP_REGNUM
);
836 spu_read_pc (ptid_t ptid
)
838 CORE_ADDR pc
= read_register_pid (SPU_PC_REGNUM
, ptid
);
839 /* Mask off interrupt enable bit. */
844 spu_write_pc (CORE_ADDR pc
, ptid_t ptid
)
846 /* Keep interrupt enabled state unchanged. */
847 CORE_ADDR old_pc
= read_register_pid (SPU_PC_REGNUM
, ptid
);
848 write_register_pid (SPU_PC_REGNUM
, (pc
& -4) | (old_pc
& 3), ptid
);
852 /* Function calling convention. */
855 spu_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
861 spu_scalar_value_p (struct type
*type
)
863 switch (TYPE_CODE (type
))
867 case TYPE_CODE_RANGE
:
872 return TYPE_LENGTH (type
) <= 16;
880 spu_value_to_regcache (struct regcache
*regcache
, int regnum
,
881 struct type
*type
, const gdb_byte
*in
)
883 int len
= TYPE_LENGTH (type
);
885 if (spu_scalar_value_p (type
))
887 int preferred_slot
= len
< 4 ? 4 - len
: 0;
888 regcache_cooked_write_part (regcache
, regnum
, preferred_slot
, len
, in
);
894 regcache_cooked_write (regcache
, regnum
++, in
);
900 regcache_cooked_write_part (regcache
, regnum
, 0, len
, in
);
905 spu_regcache_to_value (struct regcache
*regcache
, int regnum
,
906 struct type
*type
, gdb_byte
*out
)
908 int len
= TYPE_LENGTH (type
);
910 if (spu_scalar_value_p (type
))
912 int preferred_slot
= len
< 4 ? 4 - len
: 0;
913 regcache_cooked_read_part (regcache
, regnum
, preferred_slot
, len
, out
);
919 regcache_cooked_read (regcache
, regnum
++, out
);
925 regcache_cooked_read_part (regcache
, regnum
, 0, len
, out
);
930 spu_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
931 struct regcache
*regcache
, CORE_ADDR bp_addr
,
932 int nargs
, struct value
**args
, CORE_ADDR sp
,
933 int struct_return
, CORE_ADDR struct_addr
)
936 int regnum
= SPU_ARG1_REGNUM
;
940 /* Set the return address. */
941 memset (buf
, 0, sizeof buf
);
942 store_unsigned_integer (buf
, 4, bp_addr
);
943 regcache_cooked_write (regcache
, SPU_LR_REGNUM
, buf
);
945 /* If STRUCT_RETURN is true, then the struct return address (in
946 STRUCT_ADDR) will consume the first argument-passing register.
947 Both adjust the register count and store that value. */
950 memset (buf
, 0, sizeof buf
);
951 store_unsigned_integer (buf
, 4, struct_addr
);
952 regcache_cooked_write (regcache
, regnum
++, buf
);
955 /* Fill in argument registers. */
956 for (i
= 0; i
< nargs
; i
++)
958 struct value
*arg
= args
[i
];
959 struct type
*type
= check_typedef (value_type (arg
));
960 const gdb_byte
*contents
= value_contents (arg
);
961 int len
= TYPE_LENGTH (type
);
962 int n_regs
= align_up (len
, 16) / 16;
964 /* If the argument doesn't wholly fit into registers, it and
965 all subsequent arguments go to the stack. */
966 if (regnum
+ n_regs
- 1 > SPU_ARGN_REGNUM
)
972 spu_value_to_regcache (regcache
, regnum
, type
, contents
);
976 /* Overflow arguments go to the stack. */
981 /* Allocate all required stack size. */
982 for (i
= stack_arg
; i
< nargs
; i
++)
984 struct type
*type
= check_typedef (value_type (args
[i
]));
985 sp
-= align_up (TYPE_LENGTH (type
), 16);
988 /* Fill in stack arguments. */
990 for (i
= stack_arg
; i
< nargs
; i
++)
992 struct value
*arg
= args
[i
];
993 struct type
*type
= check_typedef (value_type (arg
));
994 int len
= TYPE_LENGTH (type
);
997 if (spu_scalar_value_p (type
))
998 preferred_slot
= len
< 4 ? 4 - len
: 0;
1002 target_write_memory (ap
+ preferred_slot
, value_contents (arg
), len
);
1003 ap
+= align_up (TYPE_LENGTH (type
), 16);
1007 /* Allocate stack frame header. */
1010 /* Finally, update the SP register. */
1011 regcache_cooked_write_unsigned (regcache
, SPU_SP_REGNUM
, sp
);
1016 static struct frame_id
1017 spu_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1019 return frame_id_build (spu_unwind_sp (gdbarch
, next_frame
),
1020 spu_unwind_pc (gdbarch
, next_frame
));
1023 /* Function return value access. */
1025 static enum return_value_convention
1026 spu_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
1027 struct regcache
*regcache
, gdb_byte
*out
, const gdb_byte
*in
)
1029 enum return_value_convention rvc
;
1031 if (TYPE_LENGTH (type
) <= (SPU_ARGN_REGNUM
- SPU_ARG1_REGNUM
+ 1) * 16)
1032 rvc
= RETURN_VALUE_REGISTER_CONVENTION
;
1034 rvc
= RETURN_VALUE_STRUCT_CONVENTION
;
1040 case RETURN_VALUE_REGISTER_CONVENTION
:
1041 spu_value_to_regcache (regcache
, SPU_ARG1_REGNUM
, type
, in
);
1044 case RETURN_VALUE_STRUCT_CONVENTION
:
1045 error ("Cannot set function return value.");
1053 case RETURN_VALUE_REGISTER_CONVENTION
:
1054 spu_regcache_to_value (regcache
, SPU_ARG1_REGNUM
, type
, out
);
1057 case RETURN_VALUE_STRUCT_CONVENTION
:
1058 error ("Function return value unknown.");
1069 static const gdb_byte
*
1070 spu_breakpoint_from_pc (CORE_ADDR
* pcptr
, int *lenptr
)
1072 static const gdb_byte breakpoint
[] = { 0x00, 0x00, 0x3f, 0xff };
1074 *lenptr
= sizeof breakpoint
;
1079 /* Software single-stepping support. */
1082 spu_software_single_step (enum target_signal signal
, int insert_breakpoints_p
)
1084 if (insert_breakpoints_p
)
1086 CORE_ADDR pc
, next_pc
;
1091 regcache_cooked_read (current_regcache
, SPU_PC_REGNUM
, buf
);
1092 /* Mask off interrupt enable bit. */
1093 pc
= extract_unsigned_integer (buf
, 4) & -4;
1095 if (target_read_memory (pc
, buf
, 4))
1097 insn
= extract_unsigned_integer (buf
, 4);
1099 /* Next sequential instruction is at PC + 4, except if the current
1100 instruction is a PPE-assisted call, in which case it is at PC + 8.
1101 Wrap around LS limit to be on the safe side. */
1102 if ((insn
& 0xffffff00) == 0x00002100)
1103 next_pc
= (pc
+ 8) & (SPU_LS_SIZE
- 1);
1105 next_pc
= (pc
+ 4) & (SPU_LS_SIZE
- 1);
1107 insert_single_step_breakpoint (next_pc
);
1109 if (is_branch (insn
, &offset
, ®
))
1111 CORE_ADDR target
= offset
;
1113 if (reg
== SPU_PC_REGNUM
)
1117 regcache_cooked_read_part (current_regcache
, reg
, 0, 4, buf
);
1118 target
+= extract_unsigned_integer (buf
, 4) & -4;
1121 target
= target
& (SPU_LS_SIZE
- 1);
1122 if (target
!= next_pc
)
1123 insert_single_step_breakpoint (target
);
1127 remove_single_step_breakpoints ();
1131 /* Set up gdbarch struct. */
1133 static struct gdbarch
*
1134 spu_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1136 struct gdbarch
*gdbarch
;
1138 /* Find a candidate among the list of pre-declared architectures. */
1139 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1141 return arches
->gdbarch
;
1144 if (info
.bfd_arch_info
->mach
!= bfd_mach_spu
)
1147 /* Yes, create a new architecture. */
1148 gdbarch
= gdbarch_alloc (&info
, NULL
);
1151 set_gdbarch_print_insn (gdbarch
, print_insn_spu
);
1154 set_gdbarch_num_regs (gdbarch
, SPU_NUM_REGS
);
1155 set_gdbarch_num_pseudo_regs (gdbarch
, SPU_NUM_PSEUDO_REGS
);
1156 set_gdbarch_sp_regnum (gdbarch
, SPU_SP_REGNUM
);
1157 set_gdbarch_pc_regnum (gdbarch
, SPU_PC_REGNUM
);
1158 set_gdbarch_read_pc (gdbarch
, spu_read_pc
);
1159 set_gdbarch_write_pc (gdbarch
, spu_write_pc
);
1160 set_gdbarch_register_name (gdbarch
, spu_register_name
);
1161 set_gdbarch_register_type (gdbarch
, spu_register_type
);
1162 set_gdbarch_pseudo_register_read (gdbarch
, spu_pseudo_register_read
);
1163 set_gdbarch_pseudo_register_write (gdbarch
, spu_pseudo_register_write
);
1164 set_gdbarch_value_from_register (gdbarch
, spu_value_from_register
);
1165 set_gdbarch_register_reggroup_p (gdbarch
, spu_register_reggroup_p
);
1168 set_gdbarch_char_signed (gdbarch
, 0);
1169 set_gdbarch_ptr_bit (gdbarch
, 32);
1170 set_gdbarch_addr_bit (gdbarch
, 32);
1171 set_gdbarch_short_bit (gdbarch
, 16);
1172 set_gdbarch_int_bit (gdbarch
, 32);
1173 set_gdbarch_long_bit (gdbarch
, 32);
1174 set_gdbarch_long_long_bit (gdbarch
, 64);
1175 set_gdbarch_float_bit (gdbarch
, 32);
1176 set_gdbarch_double_bit (gdbarch
, 64);
1177 set_gdbarch_long_double_bit (gdbarch
, 64);
1178 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
1179 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
1180 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
1182 /* Inferior function calls. */
1183 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
1184 set_gdbarch_frame_align (gdbarch
, spu_frame_align
);
1185 set_gdbarch_push_dummy_call (gdbarch
, spu_push_dummy_call
);
1186 set_gdbarch_unwind_dummy_id (gdbarch
, spu_unwind_dummy_id
);
1187 set_gdbarch_return_value (gdbarch
, spu_return_value
);
1189 /* Frame handling. */
1190 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1191 frame_unwind_append_sniffer (gdbarch
, spu_frame_sniffer
);
1192 frame_base_set_default (gdbarch
, &spu_frame_base
);
1193 set_gdbarch_unwind_pc (gdbarch
, spu_unwind_pc
);
1194 set_gdbarch_unwind_sp (gdbarch
, spu_unwind_sp
);
1195 set_gdbarch_virtual_frame_pointer (gdbarch
, spu_virtual_frame_pointer
);
1196 set_gdbarch_frame_args_skip (gdbarch
, 0);
1197 set_gdbarch_skip_prologue (gdbarch
, spu_skip_prologue
);
1198 set_gdbarch_in_function_epilogue_p (gdbarch
, spu_in_function_epilogue_p
);
1201 set_gdbarch_decr_pc_after_break (gdbarch
, 4);
1202 set_gdbarch_breakpoint_from_pc (gdbarch
, spu_breakpoint_from_pc
);
1203 set_gdbarch_cannot_step_breakpoint (gdbarch
, 1);
1204 set_gdbarch_software_single_step (gdbarch
, spu_software_single_step
);
1209 /* Implement a SPU-specific vector type as replacement
1210 for __gdb_builtin_type_vec128. */
1212 spu_init_vector_type (void)
1216 type
= init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION
);
1217 append_composite_type_field (type
, "uint128", builtin_type_int128
);
1218 append_composite_type_field (type
, "v2_int64", builtin_type_v2_int64
);
1219 append_composite_type_field (type
, "v4_int32", builtin_type_v4_int32
);
1220 append_composite_type_field (type
, "v8_int16", builtin_type_v8_int16
);
1221 append_composite_type_field (type
, "v16_int8", builtin_type_v16_int8
);
1222 append_composite_type_field (type
, "v2_double", builtin_type_v2_double
);
1223 append_composite_type_field (type
, "v4_float", builtin_type_v4_float
);
1225 TYPE_FLAGS (type
) |= TYPE_FLAG_VECTOR
;
1226 TYPE_NAME (type
) = "spu_builtin_type_vec128";
1227 spu_builtin_type_vec128
= type
;
1231 _initialize_spu_tdep (void)
1233 register_gdbarch_init (bfd_arch_spu
, spu_gdbarch_init
);
1235 spu_init_vector_type ();