736993e1ca94eb56ec7b88b8dd6a44f541d5dae7
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "disasm.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static const char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 LONGEST len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (struct regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1186 }
1187
1188 static void
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1190 {
1191 /* Keep interrupt enabled state unchanged. */
1192 ULONGEST old_pc;
1193
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1197 }
1198
1199
1200 /* Cell/B.E. cross-architecture unwinder support. */
1201
1202 struct spu2ppu_cache
1203 {
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206 };
1207
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210 {
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1213 }
1214
1215 static void
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218 {
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1221 }
1222
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226 {
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1229 gdb_byte *buf;
1230
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234 }
1235
1236 static int
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239 {
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi).release ();
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288 {
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 delete cache->regcache;
1291 }
1292
1293 static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
1295 default_frame_unwind_stop_reason,
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302 };
1303
1304
1305 /* Function calling convention. */
1306
1307 static CORE_ADDR
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return sp & ~15;
1311 }
1312
1313 static CORE_ADDR
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318 {
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327 }
1328
1329 static int
1330 spu_scalar_value_p (struct type *type)
1331 {
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 case TYPE_CODE_RVALUE_REF:
1342 return TYPE_LENGTH (type) <= 16;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static void
1350 spu_value_to_regcache (struct regcache *regcache, int regnum,
1351 struct type *type, const gdb_byte *in)
1352 {
1353 int len = TYPE_LENGTH (type);
1354
1355 if (spu_scalar_value_p (type))
1356 {
1357 int preferred_slot = len < 4 ? 4 - len : 0;
1358 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1359 }
1360 else
1361 {
1362 while (len >= 16)
1363 {
1364 regcache_cooked_write (regcache, regnum++, in);
1365 in += 16;
1366 len -= 16;
1367 }
1368
1369 if (len > 0)
1370 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1371 }
1372 }
1373
1374 static void
1375 spu_regcache_to_value (struct regcache *regcache, int regnum,
1376 struct type *type, gdb_byte *out)
1377 {
1378 int len = TYPE_LENGTH (type);
1379
1380 if (spu_scalar_value_p (type))
1381 {
1382 int preferred_slot = len < 4 ? 4 - len : 0;
1383 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1384 }
1385 else
1386 {
1387 while (len >= 16)
1388 {
1389 regcache_cooked_read (regcache, regnum++, out);
1390 out += 16;
1391 len -= 16;
1392 }
1393
1394 if (len > 0)
1395 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1396 }
1397 }
1398
1399 static CORE_ADDR
1400 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1401 struct regcache *regcache, CORE_ADDR bp_addr,
1402 int nargs, struct value **args, CORE_ADDR sp,
1403 int struct_return, CORE_ADDR struct_addr)
1404 {
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 CORE_ADDR sp_delta;
1407 int i;
1408 int regnum = SPU_ARG1_REGNUM;
1409 int stack_arg = -1;
1410 gdb_byte buf[16];
1411
1412 /* Set the return address. */
1413 memset (buf, 0, sizeof buf);
1414 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1415 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1416
1417 /* If STRUCT_RETURN is true, then the struct return address (in
1418 STRUCT_ADDR) will consume the first argument-passing register.
1419 Both adjust the register count and store that value. */
1420 if (struct_return)
1421 {
1422 memset (buf, 0, sizeof buf);
1423 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1424 regcache_cooked_write (regcache, regnum++, buf);
1425 }
1426
1427 /* Fill in argument registers. */
1428 for (i = 0; i < nargs; i++)
1429 {
1430 struct value *arg = args[i];
1431 struct type *type = check_typedef (value_type (arg));
1432 const gdb_byte *contents = value_contents (arg);
1433 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1434
1435 /* If the argument doesn't wholly fit into registers, it and
1436 all subsequent arguments go to the stack. */
1437 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1438 {
1439 stack_arg = i;
1440 break;
1441 }
1442
1443 spu_value_to_regcache (regcache, regnum, type, contents);
1444 regnum += n_regs;
1445 }
1446
1447 /* Overflow arguments go to the stack. */
1448 if (stack_arg != -1)
1449 {
1450 CORE_ADDR ap;
1451
1452 /* Allocate all required stack size. */
1453 for (i = stack_arg; i < nargs; i++)
1454 {
1455 struct type *type = check_typedef (value_type (args[i]));
1456 sp -= align_up (TYPE_LENGTH (type), 16);
1457 }
1458
1459 /* Fill in stack arguments. */
1460 ap = sp;
1461 for (i = stack_arg; i < nargs; i++)
1462 {
1463 struct value *arg = args[i];
1464 struct type *type = check_typedef (value_type (arg));
1465 int len = TYPE_LENGTH (type);
1466 int preferred_slot;
1467
1468 if (spu_scalar_value_p (type))
1469 preferred_slot = len < 4 ? 4 - len : 0;
1470 else
1471 preferred_slot = 0;
1472
1473 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1474 ap += align_up (TYPE_LENGTH (type), 16);
1475 }
1476 }
1477
1478 /* Allocate stack frame header. */
1479 sp -= 32;
1480
1481 /* Store stack back chain. */
1482 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1483 target_write_memory (sp, buf, 16);
1484
1485 /* Finally, update all slots of the SP register. */
1486 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1487 for (i = 0; i < 4; i++)
1488 {
1489 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1490 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1491 }
1492 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1493
1494 return sp;
1495 }
1496
1497 static struct frame_id
1498 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1501 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1502 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1503 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1504 }
1505
1506 /* Function return value access. */
1507
1508 static enum return_value_convention
1509 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1510 struct type *type, struct regcache *regcache,
1511 gdb_byte *out, const gdb_byte *in)
1512 {
1513 struct type *func_type = function ? value_type (function) : NULL;
1514 enum return_value_convention rvc;
1515 int opencl_vector = 0;
1516
1517 if (func_type)
1518 {
1519 func_type = check_typedef (func_type);
1520
1521 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1522 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1523
1524 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1525 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1526 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type))
1528 opencl_vector = 1;
1529 }
1530
1531 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1532 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1533 else
1534 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1535
1536 if (in)
1537 {
1538 switch (rvc)
1539 {
1540 case RETURN_VALUE_REGISTER_CONVENTION:
1541 if (opencl_vector && TYPE_LENGTH (type) == 2)
1542 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1543 else
1544 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1545 break;
1546
1547 case RETURN_VALUE_STRUCT_CONVENTION:
1548 error (_("Cannot set function return value."));
1549 break;
1550 }
1551 }
1552 else if (out)
1553 {
1554 switch (rvc)
1555 {
1556 case RETURN_VALUE_REGISTER_CONVENTION:
1557 if (opencl_vector && TYPE_LENGTH (type) == 2)
1558 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1559 else
1560 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1561 break;
1562
1563 case RETURN_VALUE_STRUCT_CONVENTION:
1564 error (_("Function return value unknown."));
1565 break;
1566 }
1567 }
1568
1569 return rvc;
1570 }
1571
1572
1573 /* Breakpoints. */
1574 constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
1575
1576 typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
1577
1578 static int
1579 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1580 struct bp_target_info *bp_tgt)
1581 {
1582 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1583 that in a combined application, we have some breakpoints inserted in SPU
1584 code, and now the application forks (on the PPU side). GDB common code
1585 will assume that the fork system call copied all breakpoints into the new
1586 process' address space, and that all those copies now need to be removed
1587 (see breakpoint.c:detach_breakpoints).
1588
1589 While this is certainly true for PPU side breakpoints, it is not true
1590 for SPU side breakpoints. fork will clone the SPU context file
1591 descriptors, so that all the existing SPU contexts are in accessible
1592 in the new process. However, the contents of the SPU contexts themselves
1593 are *not* cloned. Therefore the effect of detach_breakpoints is to
1594 remove SPU breakpoints from the *original* SPU context's local store
1595 -- this is not the correct behaviour.
1596
1597 The workaround is to check whether the PID we are asked to remove this
1598 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1599 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1600 true in the context of detach_breakpoints. If so, we simply do nothing.
1601 [ Note that for the fork child process, it does not matter if breakpoints
1602 remain inserted, because those SPU contexts are not runnable anyway --
1603 the Linux kernel allows only the original process to invoke spu_run. */
1604
1605 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1606 return 0;
1607
1608 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1609 }
1610
1611
1612 /* Software single-stepping support. */
1613
1614 static std::vector<CORE_ADDR>
1615 spu_software_single_step (struct regcache *regcache)
1616 {
1617 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 CORE_ADDR pc, next_pc;
1620 unsigned int insn;
1621 int offset, reg;
1622 gdb_byte buf[4];
1623 ULONGEST lslr;
1624 std::vector<CORE_ADDR> next_pcs;
1625
1626 pc = regcache_read_pc (regcache);
1627
1628 if (target_read_memory (pc, buf, 4))
1629 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1630 paddress (gdbarch, pc));
1631
1632 insn = extract_unsigned_integer (buf, 4, byte_order);
1633
1634 /* Get local store limit. */
1635 lslr = regcache_raw_get_unsigned (regcache, SPU_LSLR_REGNUM);
1636 if (!lslr)
1637 lslr = (ULONGEST) -1;
1638
1639 /* Next sequential instruction is at PC + 4, except if the current
1640 instruction is a PPE-assisted call, in which case it is at PC + 8.
1641 Wrap around LS limit to be on the safe side. */
1642 if ((insn & 0xffffff00) == 0x00002100)
1643 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1644 else
1645 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1646
1647 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
1648
1649 if (is_branch (insn, &offset, &reg))
1650 {
1651 CORE_ADDR target = offset;
1652
1653 if (reg == SPU_PC_REGNUM)
1654 target += SPUADDR_ADDR (pc);
1655 else if (reg != -1)
1656 target += regcache_raw_get_unsigned (regcache, reg) & -4;
1657
1658 target = target & lslr;
1659 if (target != next_pc)
1660 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
1661 }
1662
1663 return next_pcs;
1664 }
1665
1666
1667 /* Longjmp support. */
1668
1669 static int
1670 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1671 {
1672 struct gdbarch *gdbarch = get_frame_arch (frame);
1673 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1675 gdb_byte buf[4];
1676 CORE_ADDR jb_addr;
1677 int optim, unavail;
1678
1679 /* Jump buffer is pointed to by the argument register $r3. */
1680 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1681 &optim, &unavail))
1682 return 0;
1683
1684 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1685 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1686 return 0;
1687
1688 *pc = extract_unsigned_integer (buf, 4, byte_order);
1689 *pc = SPUADDR (tdep->id, *pc);
1690 return 1;
1691 }
1692
1693
1694 /* Disassembler. */
1695
1696 struct spu_dis_asm_info : disassemble_info
1697 {
1698 int id;
1699 };
1700
1701 static void
1702 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1703 {
1704 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1705 gdb_disassembler *di
1706 = static_cast<gdb_disassembler *>(info->application_data);
1707
1708 print_address (di->arch (), SPUADDR (data->id, addr),
1709 (struct ui_file *) info->stream);
1710 }
1711
1712 static int
1713 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1714 {
1715 /* The opcodes disassembler does 18-bit address arithmetic. Make
1716 sure the SPU ID encoded in the high bits is added back when we
1717 call print_address. */
1718 struct spu_dis_asm_info spu_info;
1719
1720 memcpy (&spu_info, info, sizeof (*info));
1721 spu_info.id = SPUADDR_SPU (memaddr);
1722 spu_info.print_address_func = spu_dis_asm_print_address;
1723 return default_print_insn (memaddr, &spu_info);
1724 }
1725
1726
1727 /* Target overlays for the SPU overlay manager.
1728
1729 See the documentation of simple_overlay_update for how the
1730 interface is supposed to work.
1731
1732 Data structures used by the overlay manager:
1733
1734 struct ovly_table
1735 {
1736 u32 vma;
1737 u32 size;
1738 u32 pos;
1739 u32 buf;
1740 } _ovly_table[]; -- one entry per overlay section
1741
1742 struct ovly_buf_table
1743 {
1744 u32 mapped;
1745 } _ovly_buf_table[]; -- one entry per overlay buffer
1746
1747 _ovly_table should never change.
1748
1749 Both tables are aligned to a 16-byte boundary, the symbols
1750 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1751 size set to the size of the respective array. buf in _ovly_table is
1752 an index into _ovly_buf_table.
1753
1754 mapped is an index into _ovly_table. Both the mapped and buf indices start
1755 from one to reference the first entry in their respective tables. */
1756
1757 /* Using the per-objfile private data mechanism, we store for each
1758 objfile an array of "struct spu_overlay_table" structures, one
1759 for each obj_section of the objfile. This structure holds two
1760 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1761 is *not* an overlay section. If it is non-zero, it represents
1762 a target address. The overlay section is mapped iff the target
1763 integer at this location equals MAPPED_VAL. */
1764
1765 static const struct objfile_data *spu_overlay_data;
1766
1767 struct spu_overlay_table
1768 {
1769 CORE_ADDR mapped_ptr;
1770 CORE_ADDR mapped_val;
1771 };
1772
1773 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1774 the _ovly_table data structure from the target and initialize the
1775 spu_overlay_table data structure from it. */
1776 static struct spu_overlay_table *
1777 spu_get_overlay_table (struct objfile *objfile)
1778 {
1779 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1780 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1781 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1782 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1783 unsigned ovly_table_size, ovly_buf_table_size;
1784 struct spu_overlay_table *tbl;
1785 struct obj_section *osect;
1786 gdb_byte *ovly_table;
1787 int i;
1788
1789 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1790 if (tbl)
1791 return tbl;
1792
1793 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1794 if (!ovly_table_msym.minsym)
1795 return NULL;
1796
1797 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1798 NULL, objfile);
1799 if (!ovly_buf_table_msym.minsym)
1800 return NULL;
1801
1802 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1803 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1804
1805 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1806 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1807
1808 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1809 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1810
1811 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1812 objfile->sections_end - objfile->sections,
1813 struct spu_overlay_table);
1814
1815 for (i = 0; i < ovly_table_size / 16; i++)
1816 {
1817 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1818 4, byte_order);
1819 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1820 4, byte_order);
1821 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1822 4, byte_order);
1823 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1824 4, byte_order);
1825
1826 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1827 continue;
1828
1829 ALL_OBJFILE_OSECTIONS (objfile, osect)
1830 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1831 && pos == osect->the_bfd_section->filepos)
1832 {
1833 int ndx = osect - objfile->sections;
1834 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1835 tbl[ndx].mapped_val = i + 1;
1836 break;
1837 }
1838 }
1839
1840 xfree (ovly_table);
1841 set_objfile_data (objfile, spu_overlay_data, tbl);
1842 return tbl;
1843 }
1844
1845 /* Read _ovly_buf_table entry from the target to dermine whether
1846 OSECT is currently mapped, and update the mapped state. */
1847 static void
1848 spu_overlay_update_osect (struct obj_section *osect)
1849 {
1850 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1851 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1852 struct spu_overlay_table *ovly_table;
1853 CORE_ADDR id, val;
1854
1855 ovly_table = spu_get_overlay_table (osect->objfile);
1856 if (!ovly_table)
1857 return;
1858
1859 ovly_table += osect - osect->objfile->sections;
1860 if (ovly_table->mapped_ptr == 0)
1861 return;
1862
1863 id = SPUADDR_SPU (obj_section_addr (osect));
1864 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1865 4, byte_order);
1866 osect->ovly_mapped = (val == ovly_table->mapped_val);
1867 }
1868
1869 /* If OSECT is NULL, then update all sections' mapped state.
1870 If OSECT is non-NULL, then update only OSECT's mapped state. */
1871 static void
1872 spu_overlay_update (struct obj_section *osect)
1873 {
1874 /* Just one section. */
1875 if (osect)
1876 spu_overlay_update_osect (osect);
1877
1878 /* All sections. */
1879 else
1880 {
1881 struct objfile *objfile;
1882
1883 ALL_OBJSECTIONS (objfile, osect)
1884 if (section_is_overlay (osect))
1885 spu_overlay_update_osect (osect);
1886 }
1887 }
1888
1889 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1890 If there is one, go through all sections and make sure for non-
1891 overlay sections LMA equals VMA, while for overlay sections LMA
1892 is larger than SPU_OVERLAY_LMA. */
1893 static void
1894 spu_overlay_new_objfile (struct objfile *objfile)
1895 {
1896 struct spu_overlay_table *ovly_table;
1897 struct obj_section *osect;
1898
1899 /* If we've already touched this file, do nothing. */
1900 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1901 return;
1902
1903 /* Consider only SPU objfiles. */
1904 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1905 return;
1906
1907 /* Check if this objfile has overlays. */
1908 ovly_table = spu_get_overlay_table (objfile);
1909 if (!ovly_table)
1910 return;
1911
1912 /* Now go and fiddle with all the LMAs. */
1913 ALL_OBJFILE_OSECTIONS (objfile, osect)
1914 {
1915 bfd *obfd = objfile->obfd;
1916 asection *bsect = osect->the_bfd_section;
1917 int ndx = osect - objfile->sections;
1918
1919 if (ovly_table[ndx].mapped_ptr == 0)
1920 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1921 else
1922 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1923 }
1924 }
1925
1926
1927 /* Insert temporary breakpoint on "main" function of newly loaded
1928 SPE context OBJFILE. */
1929 static void
1930 spu_catch_start (struct objfile *objfile)
1931 {
1932 struct bound_minimal_symbol minsym;
1933 struct compunit_symtab *cust;
1934 CORE_ADDR pc;
1935
1936 /* Do this only if requested by "set spu stop-on-load on". */
1937 if (!spu_stop_on_load_p)
1938 return;
1939
1940 /* Consider only SPU objfiles. */
1941 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1942 return;
1943
1944 /* The main objfile is handled differently. */
1945 if (objfile == symfile_objfile)
1946 return;
1947
1948 /* There can be multiple symbols named "main". Search for the
1949 "main" in *this* objfile. */
1950 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1951 if (!minsym.minsym)
1952 return;
1953
1954 /* If we have debugging information, try to use it -- this
1955 will allow us to properly skip the prologue. */
1956 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1957 cust
1958 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1959 minsym.minsym));
1960 if (cust != NULL)
1961 {
1962 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1963 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1964 struct symbol *sym;
1965 struct symtab_and_line sal;
1966
1967 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1968 if (sym)
1969 {
1970 fixup_symbol_section (sym, objfile);
1971 sal = find_function_start_sal (sym, 1);
1972 pc = sal.pc;
1973 }
1974 }
1975
1976 /* Use a numerical address for the set_breakpoint command to avoid having
1977 the breakpoint re-set incorrectly. */
1978 event_location_up location = new_address_location (pc, NULL, 0);
1979 create_breakpoint (get_objfile_arch (objfile), location.get (),
1980 NULL /* cond_string */, -1 /* thread */,
1981 NULL /* extra_string */,
1982 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1983 bp_breakpoint /* type_wanted */,
1984 0 /* ignore_count */,
1985 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1986 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1987 1 /* enabled */, 0 /* internal */, 0);
1988 }
1989
1990
1991 /* Look up OBJFILE loaded into FRAME's SPU context. */
1992 static struct objfile *
1993 spu_objfile_from_frame (struct frame_info *frame)
1994 {
1995 struct gdbarch *gdbarch = get_frame_arch (frame);
1996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1997 struct objfile *obj;
1998
1999 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2000 return NULL;
2001
2002 ALL_OBJFILES (obj)
2003 {
2004 if (obj->sections != obj->sections_end
2005 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2006 return obj;
2007 }
2008
2009 return NULL;
2010 }
2011
2012 /* Flush cache for ea pointer access if available. */
2013 static void
2014 flush_ea_cache (void)
2015 {
2016 struct bound_minimal_symbol msymbol;
2017 struct objfile *obj;
2018
2019 if (!has_stack_frames ())
2020 return;
2021
2022 obj = spu_objfile_from_frame (get_current_frame ());
2023 if (obj == NULL)
2024 return;
2025
2026 /* Lookup inferior function __cache_flush. */
2027 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2028 if (msymbol.minsym != NULL)
2029 {
2030 struct type *type;
2031 CORE_ADDR addr;
2032
2033 type = objfile_type (obj)->builtin_void;
2034 type = lookup_function_type (type);
2035 type = lookup_pointer_type (type);
2036 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2037
2038 call_function_by_hand (value_from_pointer (type, addr), NULL, 0, NULL);
2039 }
2040 }
2041
2042 /* This handler is called when the inferior has stopped. If it is stopped in
2043 SPU architecture then flush the ea cache if used. */
2044 static void
2045 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2046 {
2047 if (!spu_auto_flush_cache_p)
2048 return;
2049
2050 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2051 re-entering this function when __cache_flush stops. */
2052 spu_auto_flush_cache_p = 0;
2053 flush_ea_cache ();
2054 spu_auto_flush_cache_p = 1;
2055 }
2056
2057
2058 /* "info spu" commands. */
2059
2060 static void
2061 info_spu_event_command (const char *args, int from_tty)
2062 {
2063 struct frame_info *frame = get_selected_frame (NULL);
2064 ULONGEST event_status = 0;
2065 ULONGEST event_mask = 0;
2066 gdb_byte buf[100];
2067 char annex[32];
2068 LONGEST len;
2069 int id;
2070
2071 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2072 error (_("\"info spu\" is only supported on the SPU architecture."));
2073
2074 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2075
2076 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2077 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2078 buf, 0, (sizeof (buf) - 1));
2079 if (len <= 0)
2080 error (_("Could not read event_status."));
2081 buf[len] = '\0';
2082 event_status = strtoulst ((char *) buf, NULL, 16);
2083
2084 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2085 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2086 buf, 0, (sizeof (buf) - 1));
2087 if (len <= 0)
2088 error (_("Could not read event_mask."));
2089 buf[len] = '\0';
2090 event_mask = strtoulst ((char *) buf, NULL, 16);
2091
2092 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
2093
2094 if (current_uiout->is_mi_like_p ())
2095 {
2096 current_uiout->field_fmt ("event_status",
2097 "0x%s", phex_nz (event_status, 4));
2098 current_uiout->field_fmt ("event_mask",
2099 "0x%s", phex_nz (event_mask, 4));
2100 }
2101 else
2102 {
2103 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2104 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2105 }
2106 }
2107
2108 static void
2109 info_spu_signal_command (const char *args, int from_tty)
2110 {
2111 struct frame_info *frame = get_selected_frame (NULL);
2112 struct gdbarch *gdbarch = get_frame_arch (frame);
2113 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2114 ULONGEST signal1 = 0;
2115 ULONGEST signal1_type = 0;
2116 int signal1_pending = 0;
2117 ULONGEST signal2 = 0;
2118 ULONGEST signal2_type = 0;
2119 int signal2_pending = 0;
2120 char annex[32];
2121 gdb_byte buf[100];
2122 LONGEST len;
2123 int id;
2124
2125 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2126 error (_("\"info spu\" is only supported on the SPU architecture."));
2127
2128 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2129
2130 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2131 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2132 if (len < 0)
2133 error (_("Could not read signal1."));
2134 else if (len == 4)
2135 {
2136 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2137 signal1_pending = 1;
2138 }
2139
2140 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2141 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2142 buf, 0, (sizeof (buf) - 1));
2143 if (len <= 0)
2144 error (_("Could not read signal1_type."));
2145 buf[len] = '\0';
2146 signal1_type = strtoulst ((char *) buf, NULL, 16);
2147
2148 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2149 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2150 if (len < 0)
2151 error (_("Could not read signal2."));
2152 else if (len == 4)
2153 {
2154 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2155 signal2_pending = 1;
2156 }
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2160 buf, 0, (sizeof (buf) - 1));
2161 if (len <= 0)
2162 error (_("Could not read signal2_type."));
2163 buf[len] = '\0';
2164 signal2_type = strtoulst ((char *) buf, NULL, 16);
2165
2166 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
2167
2168 if (current_uiout->is_mi_like_p ())
2169 {
2170 current_uiout->field_int ("signal1_pending", signal1_pending);
2171 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2172 current_uiout->field_int ("signal1_type", signal1_type);
2173 current_uiout->field_int ("signal2_pending", signal2_pending);
2174 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2175 current_uiout->field_int ("signal2_type", signal2_type);
2176 }
2177 else
2178 {
2179 if (signal1_pending)
2180 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2181 else
2182 printf_filtered (_("Signal 1 not pending "));
2183
2184 if (signal1_type)
2185 printf_filtered (_("(Type Or)\n"));
2186 else
2187 printf_filtered (_("(Type Overwrite)\n"));
2188
2189 if (signal2_pending)
2190 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2191 else
2192 printf_filtered (_("Signal 2 not pending "));
2193
2194 if (signal2_type)
2195 printf_filtered (_("(Type Or)\n"));
2196 else
2197 printf_filtered (_("(Type Overwrite)\n"));
2198 }
2199 }
2200
2201 static void
2202 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2203 const char *field, const char *msg)
2204 {
2205 int i;
2206
2207 if (nr <= 0)
2208 return;
2209
2210 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
2211
2212 current_uiout->table_header (32, ui_left, field, msg);
2213 current_uiout->table_body ();
2214
2215 for (i = 0; i < nr; i++)
2216 {
2217 {
2218 ULONGEST val;
2219 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2220 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2221 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2222 }
2223
2224 if (!current_uiout->is_mi_like_p ())
2225 printf_filtered ("\n");
2226 }
2227 }
2228
2229 static void
2230 info_spu_mailbox_command (const char *args, int from_tty)
2231 {
2232 struct frame_info *frame = get_selected_frame (NULL);
2233 struct gdbarch *gdbarch = get_frame_arch (frame);
2234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2235 char annex[32];
2236 gdb_byte buf[1024];
2237 LONGEST len;
2238 int id;
2239
2240 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2241 error (_("\"info spu\" is only supported on the SPU architecture."));
2242
2243 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2244
2245 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
2246
2247 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2248 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2249 buf, 0, sizeof buf);
2250 if (len < 0)
2251 error (_("Could not read mbox_info."));
2252
2253 info_spu_mailbox_list (buf, len / 4, byte_order,
2254 "mbox", "SPU Outbound Mailbox");
2255
2256 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2257 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2258 buf, 0, sizeof buf);
2259 if (len < 0)
2260 error (_("Could not read ibox_info."));
2261
2262 info_spu_mailbox_list (buf, len / 4, byte_order,
2263 "ibox", "SPU Outbound Interrupt Mailbox");
2264
2265 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2266 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2267 buf, 0, sizeof buf);
2268 if (len < 0)
2269 error (_("Could not read wbox_info."));
2270
2271 info_spu_mailbox_list (buf, len / 4, byte_order,
2272 "wbox", "SPU Inbound Mailbox");
2273 }
2274
2275 static ULONGEST
2276 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2277 {
2278 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2279 return (word >> (63 - last)) & mask;
2280 }
2281
2282 static void
2283 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2284 {
2285 static const char *spu_mfc_opcode[256] =
2286 {
2287 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2288 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2292 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2293 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2294 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2296 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2297 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2299 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2300 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2303 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2304 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2305 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2307 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2308 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2309 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2310 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2311 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2312 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2313 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2314 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2319 };
2320
2321 int *seq = XALLOCAVEC (int, nr);
2322 int done = 0;
2323 int i, j;
2324
2325
2326 /* Determine sequence in which to display (valid) entries. */
2327 for (i = 0; i < nr; i++)
2328 {
2329 /* Search for the first valid entry all of whose
2330 dependencies are met. */
2331 for (j = 0; j < nr; j++)
2332 {
2333 ULONGEST mfc_cq_dw3;
2334 ULONGEST dependencies;
2335
2336 if (done & (1 << (nr - 1 - j)))
2337 continue;
2338
2339 mfc_cq_dw3
2340 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2341 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2342 continue;
2343
2344 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2345 if ((dependencies & done) != dependencies)
2346 continue;
2347
2348 seq[i] = j;
2349 done |= 1 << (nr - 1 - j);
2350 break;
2351 }
2352
2353 if (j == nr)
2354 break;
2355 }
2356
2357 nr = i;
2358
2359
2360 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
2361
2362 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2363 current_uiout->table_header (3, ui_left, "tag", "Tag");
2364 current_uiout->table_header (3, ui_left, "tid", "TId");
2365 current_uiout->table_header (3, ui_left, "rid", "RId");
2366 current_uiout->table_header (18, ui_left, "ea", "EA");
2367 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2368 current_uiout->table_header (7, ui_left, "size", "Size");
2369 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2370 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2371 current_uiout->table_header (1, ui_left, "error_p", "E");
2372
2373 current_uiout->table_body ();
2374
2375 for (i = 0; i < nr; i++)
2376 {
2377 ULONGEST mfc_cq_dw0;
2378 ULONGEST mfc_cq_dw1;
2379 ULONGEST mfc_cq_dw2;
2380 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2381 int list_lsa, list_size, mfc_lsa, mfc_size;
2382 ULONGEST mfc_ea;
2383 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2384
2385 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2386 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2387
2388 mfc_cq_dw0
2389 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2390 mfc_cq_dw1
2391 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2392 mfc_cq_dw2
2393 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2394
2395 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2396 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2397 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2398 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2399 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2400 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2401 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2402
2403 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2404 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2405
2406 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2407 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2408 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2409 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2410 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2411
2412 {
2413 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
2414
2415 if (spu_mfc_opcode[mfc_cmd_opcode])
2416 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2417 else
2418 current_uiout->field_int ("opcode", mfc_cmd_opcode);
2419
2420 current_uiout->field_int ("tag", mfc_cmd_tag);
2421 current_uiout->field_int ("tid", tclass_id);
2422 current_uiout->field_int ("rid", rclass_id);
2423
2424 if (ea_valid_p)
2425 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2426 else
2427 current_uiout->field_skip ("ea");
2428
2429 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2430 if (qw_valid_p)
2431 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2432 else
2433 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
2434
2435 if (list_valid_p)
2436 {
2437 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2438 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2439 }
2440 else
2441 {
2442 current_uiout->field_skip ("lstaddr");
2443 current_uiout->field_skip ("lstsize");
2444 }
2445
2446 if (cmd_error_p)
2447 current_uiout->field_string ("error_p", "*");
2448 else
2449 current_uiout->field_skip ("error_p");
2450 }
2451
2452 if (!current_uiout->is_mi_like_p ())
2453 printf_filtered ("\n");
2454 }
2455 }
2456
2457 static void
2458 info_spu_dma_command (const char *args, int from_tty)
2459 {
2460 struct frame_info *frame = get_selected_frame (NULL);
2461 struct gdbarch *gdbarch = get_frame_arch (frame);
2462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2463 ULONGEST dma_info_type;
2464 ULONGEST dma_info_mask;
2465 ULONGEST dma_info_status;
2466 ULONGEST dma_info_stall_and_notify;
2467 ULONGEST dma_info_atomic_command_status;
2468 char annex[32];
2469 gdb_byte buf[1024];
2470 LONGEST len;
2471 int id;
2472
2473 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2474 error (_("\"info spu\" is only supported on the SPU architecture."));
2475
2476 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2477
2478 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2479 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2480 buf, 0, 40 + 16 * 32);
2481 if (len <= 0)
2482 error (_("Could not read dma_info."));
2483
2484 dma_info_type
2485 = extract_unsigned_integer (buf, 8, byte_order);
2486 dma_info_mask
2487 = extract_unsigned_integer (buf + 8, 8, byte_order);
2488 dma_info_status
2489 = extract_unsigned_integer (buf + 16, 8, byte_order);
2490 dma_info_stall_and_notify
2491 = extract_unsigned_integer (buf + 24, 8, byte_order);
2492 dma_info_atomic_command_status
2493 = extract_unsigned_integer (buf + 32, 8, byte_order);
2494
2495 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
2496
2497 if (current_uiout->is_mi_like_p ())
2498 {
2499 current_uiout->field_fmt ("dma_info_type", "0x%s",
2500 phex_nz (dma_info_type, 4));
2501 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2502 phex_nz (dma_info_mask, 4));
2503 current_uiout->field_fmt ("dma_info_status", "0x%s",
2504 phex_nz (dma_info_status, 4));
2505 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2506 phex_nz (dma_info_stall_and_notify, 4));
2507 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2508 phex_nz (dma_info_atomic_command_status, 4));
2509 }
2510 else
2511 {
2512 const char *query_msg = _("no query pending");
2513
2514 if (dma_info_type & 4)
2515 switch (dma_info_type & 3)
2516 {
2517 case 1: query_msg = _("'any' query pending"); break;
2518 case 2: query_msg = _("'all' query pending"); break;
2519 default: query_msg = _("undefined query type"); break;
2520 }
2521
2522 printf_filtered (_("Tag-Group Status 0x%s\n"),
2523 phex (dma_info_status, 4));
2524 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2525 phex (dma_info_mask, 4), query_msg);
2526 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2527 phex (dma_info_stall_and_notify, 4));
2528 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2529 phex (dma_info_atomic_command_status, 4));
2530 printf_filtered ("\n");
2531 }
2532
2533 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2534 }
2535
2536 static void
2537 info_spu_proxydma_command (const char *args, int from_tty)
2538 {
2539 struct frame_info *frame = get_selected_frame (NULL);
2540 struct gdbarch *gdbarch = get_frame_arch (frame);
2541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2542 ULONGEST dma_info_type;
2543 ULONGEST dma_info_mask;
2544 ULONGEST dma_info_status;
2545 char annex[32];
2546 gdb_byte buf[1024];
2547 LONGEST len;
2548 int id;
2549
2550 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2551 error (_("\"info spu\" is only supported on the SPU architecture."));
2552
2553 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2554
2555 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2556 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2557 buf, 0, 24 + 8 * 32);
2558 if (len <= 0)
2559 error (_("Could not read proxydma_info."));
2560
2561 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2562 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2563 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2564
2565 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
2566
2567 if (current_uiout->is_mi_like_p ())
2568 {
2569 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2570 phex_nz (dma_info_type, 4));
2571 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2572 phex_nz (dma_info_mask, 4));
2573 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2574 phex_nz (dma_info_status, 4));
2575 }
2576 else
2577 {
2578 const char *query_msg;
2579
2580 switch (dma_info_type & 3)
2581 {
2582 case 0: query_msg = _("no query pending"); break;
2583 case 1: query_msg = _("'any' query pending"); break;
2584 case 2: query_msg = _("'all' query pending"); break;
2585 default: query_msg = _("undefined query type"); break;
2586 }
2587
2588 printf_filtered (_("Tag-Group Status 0x%s\n"),
2589 phex (dma_info_status, 4));
2590 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2591 phex (dma_info_mask, 4), query_msg);
2592 printf_filtered ("\n");
2593 }
2594
2595 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2596 }
2597
2598 static void
2599 info_spu_command (const char *args, int from_tty)
2600 {
2601 printf_unfiltered (_("\"info spu\" must be followed by "
2602 "the name of an SPU facility.\n"));
2603 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2604 }
2605
2606
2607 /* Root of all "set spu "/"show spu " commands. */
2608
2609 static void
2610 show_spu_command (const char *args, int from_tty)
2611 {
2612 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2613 }
2614
2615 static void
2616 set_spu_command (const char *args, int from_tty)
2617 {
2618 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2619 }
2620
2621 static void
2622 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2623 struct cmd_list_element *c, const char *value)
2624 {
2625 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2626 value);
2627 }
2628
2629 static void
2630 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2631 struct cmd_list_element *c, const char *value)
2632 {
2633 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2634 value);
2635 }
2636
2637
2638 /* Set up gdbarch struct. */
2639
2640 static struct gdbarch *
2641 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2642 {
2643 struct gdbarch *gdbarch;
2644 struct gdbarch_tdep *tdep;
2645 int id = -1;
2646
2647 /* Which spufs ID was requested as address space? */
2648 if (info.id)
2649 id = *info.id;
2650 /* For objfile architectures of SPU solibs, decode the ID from the name.
2651 This assumes the filename convention employed by solib-spu.c. */
2652 else if (info.abfd)
2653 {
2654 const char *name = strrchr (info.abfd->filename, '@');
2655 if (name)
2656 sscanf (name, "@0x%*x <%d>", &id);
2657 }
2658
2659 /* Find a candidate among extant architectures. */
2660 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2661 arches != NULL;
2662 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2663 {
2664 tdep = gdbarch_tdep (arches->gdbarch);
2665 if (tdep && tdep->id == id)
2666 return arches->gdbarch;
2667 }
2668
2669 /* None found, so create a new architecture. */
2670 tdep = XCNEW (struct gdbarch_tdep);
2671 tdep->id = id;
2672 gdbarch = gdbarch_alloc (&info, tdep);
2673
2674 /* Disassembler. */
2675 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2676
2677 /* Registers. */
2678 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2679 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2680 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2681 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2682 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2683 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2684 set_gdbarch_register_name (gdbarch, spu_register_name);
2685 set_gdbarch_register_type (gdbarch, spu_register_type);
2686 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2687 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2688 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2689 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2690 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2691 set_gdbarch_ax_pseudo_register_collect
2692 (gdbarch, spu_ax_pseudo_register_collect);
2693 set_gdbarch_ax_pseudo_register_push_stack
2694 (gdbarch, spu_ax_pseudo_register_push_stack);
2695
2696 /* Data types. */
2697 set_gdbarch_char_signed (gdbarch, 0);
2698 set_gdbarch_ptr_bit (gdbarch, 32);
2699 set_gdbarch_addr_bit (gdbarch, 32);
2700 set_gdbarch_short_bit (gdbarch, 16);
2701 set_gdbarch_int_bit (gdbarch, 32);
2702 set_gdbarch_long_bit (gdbarch, 32);
2703 set_gdbarch_long_long_bit (gdbarch, 64);
2704 set_gdbarch_float_bit (gdbarch, 32);
2705 set_gdbarch_double_bit (gdbarch, 64);
2706 set_gdbarch_long_double_bit (gdbarch, 64);
2707 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2708 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2709 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2710
2711 /* Address handling. */
2712 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2713 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2714 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2715 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2716 set_gdbarch_address_class_type_flags_to_name
2717 (gdbarch, spu_address_class_type_flags_to_name);
2718 set_gdbarch_address_class_name_to_type_flags
2719 (gdbarch, spu_address_class_name_to_type_flags);
2720
2721
2722 /* Inferior function calls. */
2723 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2724 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2725 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2726 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2727 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2728 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2729 set_gdbarch_return_value (gdbarch, spu_return_value);
2730
2731 /* Frame handling. */
2732 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2733 dwarf2_append_unwinders (gdbarch);
2734 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2735 frame_base_set_default (gdbarch, &spu_frame_base);
2736 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2737 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2738 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2739 set_gdbarch_frame_args_skip (gdbarch, 0);
2740 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2741 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2742
2743 /* Cell/B.E. cross-architecture unwinder support. */
2744 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2745
2746 /* Breakpoints. */
2747 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2748 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2749 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
2750 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2751 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2752 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2753
2754 /* Overlays. */
2755 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2756
2757 return gdbarch;
2758 }
2759
2760 void
2761 _initialize_spu_tdep (void)
2762 {
2763 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2764
2765 /* Add ourselves to objfile event chain. */
2766 observer_attach_new_objfile (spu_overlay_new_objfile);
2767 spu_overlay_data = register_objfile_data ();
2768
2769 /* Install spu stop-on-load handler. */
2770 observer_attach_new_objfile (spu_catch_start);
2771
2772 /* Add ourselves to normal_stop event chain. */
2773 observer_attach_normal_stop (spu_attach_normal_stop);
2774
2775 /* Add root prefix command for all "set spu"/"show spu" commands. */
2776 add_prefix_cmd ("spu", no_class, set_spu_command,
2777 _("Various SPU specific commands."),
2778 &setspucmdlist, "set spu ", 0, &setlist);
2779 add_prefix_cmd ("spu", no_class, show_spu_command,
2780 _("Various SPU specific commands."),
2781 &showspucmdlist, "show spu ", 0, &showlist);
2782
2783 /* Toggle whether or not to add a temporary breakpoint at the "main"
2784 function of new SPE contexts. */
2785 add_setshow_boolean_cmd ("stop-on-load", class_support,
2786 &spu_stop_on_load_p, _("\
2787 Set whether to stop for new SPE threads."),
2788 _("\
2789 Show whether to stop for new SPE threads."),
2790 _("\
2791 Use \"on\" to give control to the user when a new SPE thread\n\
2792 enters its \"main\" function.\n\
2793 Use \"off\" to disable stopping for new SPE threads."),
2794 NULL,
2795 show_spu_stop_on_load,
2796 &setspucmdlist, &showspucmdlist);
2797
2798 /* Toggle whether or not to automatically flush the software-managed
2799 cache whenever SPE execution stops. */
2800 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2801 &spu_auto_flush_cache_p, _("\
2802 Set whether to automatically flush the software-managed cache."),
2803 _("\
2804 Show whether to automatically flush the software-managed cache."),
2805 _("\
2806 Use \"on\" to automatically flush the software-managed cache\n\
2807 whenever SPE execution stops.\n\
2808 Use \"off\" to never automatically flush the software-managed cache."),
2809 NULL,
2810 show_spu_auto_flush_cache,
2811 &setspucmdlist, &showspucmdlist);
2812
2813 /* Add root prefix command for all "info spu" commands. */
2814 add_prefix_cmd ("spu", class_info, info_spu_command,
2815 _("Various SPU specific commands."),
2816 &infospucmdlist, "info spu ", 0, &infolist);
2817
2818 /* Add various "info spu" commands. */
2819 add_cmd ("event", class_info, info_spu_event_command,
2820 _("Display SPU event facility status.\n"),
2821 &infospucmdlist);
2822 add_cmd ("signal", class_info, info_spu_signal_command,
2823 _("Display SPU signal notification facility status.\n"),
2824 &infospucmdlist);
2825 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2826 _("Display SPU mailbox facility status.\n"),
2827 &infospucmdlist);
2828 add_cmd ("dma", class_info, info_spu_dma_command,
2829 _("Display MFC DMA status.\n"),
2830 &infospucmdlist);
2831 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2832 _("Display MFC Proxy-DMA status.\n"),
2833 &infospucmdlist);
2834 }
This page took 0.230265 seconds and 3 git commands to generate.