gdb/
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
6 Based on a port by Sid Manning <sid@us.ibm.com>.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "trad-frame.h"
34 #include "symtab.h"
35 #include "symfile.h"
36 #include "value.h"
37 #include "inferior.h"
38 #include "dis-asm.h"
39 #include "objfiles.h"
40 #include "language.h"
41 #include "regcache.h"
42 #include "reggroups.h"
43 #include "floatformat.h"
44 #include "block.h"
45 #include "observer.h"
46 #include "infcall.h"
47 #include "dwarf2.h"
48 #include "exceptions.h"
49 #include "spu-tdep.h"
50
51
52 /* The list of available "set spu " and "show spu " commands. */
53 static struct cmd_list_element *setspucmdlist = NULL;
54 static struct cmd_list_element *showspucmdlist = NULL;
55
56 /* Whether to stop for new SPE contexts. */
57 static int spu_stop_on_load_p = 0;
58 /* Whether to automatically flush the SW-managed cache. */
59 static int spu_auto_flush_cache_p = 1;
60
61
62 /* The tdep structure. */
63 struct gdbarch_tdep
64 {
65 /* The spufs ID identifying our address space. */
66 int id;
67
68 /* SPU-specific vector type. */
69 struct type *spu_builtin_type_vec128;
70 };
71
72
73 /* SPU-specific vector type. */
74 static struct type *
75 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
76 {
77 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78
79 if (!tdep->spu_builtin_type_vec128)
80 {
81 const struct builtin_type *bt = builtin_type (gdbarch);
82 struct type *t;
83
84 t = arch_composite_type (gdbarch,
85 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
86 append_composite_type_field (t, "uint128", bt->builtin_int128);
87 append_composite_type_field (t, "v2_int64",
88 init_vector_type (bt->builtin_int64, 2));
89 append_composite_type_field (t, "v4_int32",
90 init_vector_type (bt->builtin_int32, 4));
91 append_composite_type_field (t, "v8_int16",
92 init_vector_type (bt->builtin_int16, 8));
93 append_composite_type_field (t, "v16_int8",
94 init_vector_type (bt->builtin_int8, 16));
95 append_composite_type_field (t, "v2_double",
96 init_vector_type (bt->builtin_double, 2));
97 append_composite_type_field (t, "v4_float",
98 init_vector_type (bt->builtin_float, 4));
99
100 TYPE_VECTOR (t) = 1;
101 TYPE_NAME (t) = "spu_builtin_type_vec128";
102
103 tdep->spu_builtin_type_vec128 = t;
104 }
105
106 return tdep->spu_builtin_type_vec128;
107 }
108
109
110 /* The list of available "info spu " commands. */
111 static struct cmd_list_element *infospucmdlist = NULL;
112
113 /* Registers. */
114
115 static const char *
116 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
117 {
118 static char *register_names[] =
119 {
120 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
121 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
122 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
123 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
124 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
125 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
126 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
127 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
128 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
129 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
130 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
131 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
132 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
133 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
134 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
135 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
136 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
137 };
138
139 if (reg_nr < 0)
140 return NULL;
141 if (reg_nr >= sizeof register_names / sizeof *register_names)
142 return NULL;
143
144 return register_names[reg_nr];
145 }
146
147 static struct type *
148 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
149 {
150 if (reg_nr < SPU_NUM_GPRS)
151 return spu_builtin_type_vec128 (gdbarch);
152
153 switch (reg_nr)
154 {
155 case SPU_ID_REGNUM:
156 return builtin_type (gdbarch)->builtin_uint32;
157
158 case SPU_PC_REGNUM:
159 return builtin_type (gdbarch)->builtin_func_ptr;
160
161 case SPU_SP_REGNUM:
162 return builtin_type (gdbarch)->builtin_data_ptr;
163
164 case SPU_FPSCR_REGNUM:
165 return builtin_type (gdbarch)->builtin_uint128;
166
167 case SPU_SRR0_REGNUM:
168 return builtin_type (gdbarch)->builtin_uint32;
169
170 case SPU_LSLR_REGNUM:
171 return builtin_type (gdbarch)->builtin_uint32;
172
173 case SPU_DECR_REGNUM:
174 return builtin_type (gdbarch)->builtin_uint32;
175
176 case SPU_DECR_STATUS_REGNUM:
177 return builtin_type (gdbarch)->builtin_uint32;
178
179 default:
180 internal_error (__FILE__, __LINE__, _("invalid regnum"));
181 }
182 }
183
184 /* Pseudo registers for preferred slots - stack pointer. */
185
186 static enum register_status
187 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
188 gdb_byte *buf)
189 {
190 struct gdbarch *gdbarch = get_regcache_arch (regcache);
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
192 enum register_status status;
193 gdb_byte reg[32];
194 char annex[32];
195 ULONGEST id;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 gdb_byte reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 /* Value conversion -- access scalar values at the preferred slot. */
314
315 static struct value *
316 spu_value_from_register (struct type *type, int regnum,
317 struct frame_info *frame)
318 {
319 struct value *value = default_value_from_register (type, regnum, frame);
320 int len = TYPE_LENGTH (type);
321
322 if (regnum < SPU_NUM_GPRS && len < 16)
323 {
324 int preferred_slot = len < 4 ? 4 - len : 0;
325 set_value_offset (value, preferred_slot);
326 }
327
328 return value;
329 }
330
331 /* Register groups. */
332
333 static int
334 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
335 struct reggroup *group)
336 {
337 /* Registers displayed via 'info regs'. */
338 if (group == general_reggroup)
339 return 1;
340
341 /* Registers displayed via 'info float'. */
342 if (group == float_reggroup)
343 return 0;
344
345 /* Registers that need to be saved/restored in order to
346 push or pop frames. */
347 if (group == save_reggroup || group == restore_reggroup)
348 return 1;
349
350 return default_register_reggroup_p (gdbarch, regnum, group);
351 }
352
353
354 /* Address handling. */
355
356 static int
357 spu_gdbarch_id (struct gdbarch *gdbarch)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360 int id = tdep->id;
361
362 /* The objfile architecture of a standalone SPU executable does not
363 provide an SPU ID. Retrieve it from the objfile's relocated
364 address range in this special case. */
365 if (id == -1
366 && symfile_objfile && symfile_objfile->obfd
367 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
368 && symfile_objfile->sections != symfile_objfile->sections_end)
369 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
370
371 return id;
372 }
373
374 static int
375 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
376 {
377 if (dwarf2_addr_class == 1)
378 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
379 else
380 return 0;
381 }
382
383 static const char *
384 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
385 {
386 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
387 return "__ea";
388 else
389 return NULL;
390 }
391
392 static int
393 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
394 const char *name, int *type_flags_ptr)
395 {
396 if (strcmp (name, "__ea") == 0)
397 {
398 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
399 return 1;
400 }
401 else
402 return 0;
403 }
404
405 static void
406 spu_address_to_pointer (struct gdbarch *gdbarch,
407 struct type *type, gdb_byte *buf, CORE_ADDR addr)
408 {
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
411 SPUADDR_ADDR (addr));
412 }
413
414 static CORE_ADDR
415 spu_pointer_to_address (struct gdbarch *gdbarch,
416 struct type *type, const gdb_byte *buf)
417 {
418 int id = spu_gdbarch_id (gdbarch);
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 ULONGEST addr
421 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
422
423 /* Do not convert __ea pointers. */
424 if (TYPE_ADDRESS_CLASS_1 (type))
425 return addr;
426
427 return addr? SPUADDR (id, addr) : 0;
428 }
429
430 static CORE_ADDR
431 spu_integer_to_address (struct gdbarch *gdbarch,
432 struct type *type, const gdb_byte *buf)
433 {
434 int id = spu_gdbarch_id (gdbarch);
435 ULONGEST addr = unpack_long (type, buf);
436
437 return SPUADDR (id, addr);
438 }
439
440
441 /* Decoding SPU instructions. */
442
443 enum
444 {
445 op_lqd = 0x34,
446 op_lqx = 0x3c4,
447 op_lqa = 0x61,
448 op_lqr = 0x67,
449 op_stqd = 0x24,
450 op_stqx = 0x144,
451 op_stqa = 0x41,
452 op_stqr = 0x47,
453
454 op_il = 0x081,
455 op_ila = 0x21,
456 op_a = 0x0c0,
457 op_ai = 0x1c,
458
459 op_selb = 0x4,
460
461 op_br = 0x64,
462 op_bra = 0x60,
463 op_brsl = 0x66,
464 op_brasl = 0x62,
465 op_brnz = 0x42,
466 op_brz = 0x40,
467 op_brhnz = 0x46,
468 op_brhz = 0x44,
469 op_bi = 0x1a8,
470 op_bisl = 0x1a9,
471 op_biz = 0x128,
472 op_binz = 0x129,
473 op_bihz = 0x12a,
474 op_bihnz = 0x12b,
475 };
476
477 static int
478 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
479 {
480 if ((insn >> 21) == op)
481 {
482 *rt = insn & 127;
483 *ra = (insn >> 7) & 127;
484 *rb = (insn >> 14) & 127;
485 return 1;
486 }
487
488 return 0;
489 }
490
491 static int
492 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
493 {
494 if ((insn >> 28) == op)
495 {
496 *rt = (insn >> 21) & 127;
497 *ra = (insn >> 7) & 127;
498 *rb = (insn >> 14) & 127;
499 *rc = insn & 127;
500 return 1;
501 }
502
503 return 0;
504 }
505
506 static int
507 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
508 {
509 if ((insn >> 21) == op)
510 {
511 *rt = insn & 127;
512 *ra = (insn >> 7) & 127;
513 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
514 return 1;
515 }
516
517 return 0;
518 }
519
520 static int
521 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
522 {
523 if ((insn >> 24) == op)
524 {
525 *rt = insn & 127;
526 *ra = (insn >> 7) & 127;
527 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
528 return 1;
529 }
530
531 return 0;
532 }
533
534 static int
535 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
536 {
537 if ((insn >> 23) == op)
538 {
539 *rt = insn & 127;
540 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
541 return 1;
542 }
543
544 return 0;
545 }
546
547 static int
548 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
549 {
550 if ((insn >> 25) == op)
551 {
552 *rt = insn & 127;
553 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
554 return 1;
555 }
556
557 return 0;
558 }
559
560 static int
561 is_branch (unsigned int insn, int *offset, int *reg)
562 {
563 int rt, i7, i16;
564
565 if (is_ri16 (insn, op_br, &rt, &i16)
566 || is_ri16 (insn, op_brsl, &rt, &i16)
567 || is_ri16 (insn, op_brnz, &rt, &i16)
568 || is_ri16 (insn, op_brz, &rt, &i16)
569 || is_ri16 (insn, op_brhnz, &rt, &i16)
570 || is_ri16 (insn, op_brhz, &rt, &i16))
571 {
572 *reg = SPU_PC_REGNUM;
573 *offset = i16 << 2;
574 return 1;
575 }
576
577 if (is_ri16 (insn, op_bra, &rt, &i16)
578 || is_ri16 (insn, op_brasl, &rt, &i16))
579 {
580 *reg = -1;
581 *offset = i16 << 2;
582 return 1;
583 }
584
585 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
586 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
587 || is_ri7 (insn, op_biz, &rt, reg, &i7)
588 || is_ri7 (insn, op_binz, &rt, reg, &i7)
589 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
590 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
591 {
592 *offset = 0;
593 return 1;
594 }
595
596 return 0;
597 }
598
599
600 /* Prolog parsing. */
601
602 struct spu_prologue_data
603 {
604 /* Stack frame size. -1 if analysis was unsuccessful. */
605 int size;
606
607 /* How to find the CFA. The CFA is equal to SP at function entry. */
608 int cfa_reg;
609 int cfa_offset;
610
611 /* Offset relative to CFA where a register is saved. -1 if invalid. */
612 int reg_offset[SPU_NUM_GPRS];
613 };
614
615 static CORE_ADDR
616 spu_analyze_prologue (struct gdbarch *gdbarch,
617 CORE_ADDR start_pc, CORE_ADDR end_pc,
618 struct spu_prologue_data *data)
619 {
620 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
621 int found_sp = 0;
622 int found_fp = 0;
623 int found_lr = 0;
624 int found_bc = 0;
625 int reg_immed[SPU_NUM_GPRS];
626 gdb_byte buf[16];
627 CORE_ADDR prolog_pc = start_pc;
628 CORE_ADDR pc;
629 int i;
630
631
632 /* Initialize DATA to default values. */
633 data->size = -1;
634
635 data->cfa_reg = SPU_RAW_SP_REGNUM;
636 data->cfa_offset = 0;
637
638 for (i = 0; i < SPU_NUM_GPRS; i++)
639 data->reg_offset[i] = -1;
640
641 /* Set up REG_IMMED array. This is non-zero for a register if we know its
642 preferred slot currently holds this immediate value. */
643 for (i = 0; i < SPU_NUM_GPRS; i++)
644 reg_immed[i] = 0;
645
646 /* Scan instructions until the first branch.
647
648 The following instructions are important prolog components:
649
650 - The first instruction to set up the stack pointer.
651 - The first instruction to set up the frame pointer.
652 - The first instruction to save the link register.
653 - The first instruction to save the backchain.
654
655 We return the instruction after the latest of these four,
656 or the incoming PC if none is found. The first instruction
657 to set up the stack pointer also defines the frame size.
658
659 Note that instructions saving incoming arguments to their stack
660 slots are not counted as important, because they are hard to
661 identify with certainty. This should not matter much, because
662 arguments are relevant only in code compiled with debug data,
663 and in such code the GDB core will advance until the first source
664 line anyway, using SAL data.
665
666 For purposes of stack unwinding, we analyze the following types
667 of instructions in addition:
668
669 - Any instruction adding to the current frame pointer.
670 - Any instruction loading an immediate constant into a register.
671 - Any instruction storing a register onto the stack.
672
673 These are used to compute the CFA and REG_OFFSET output. */
674
675 for (pc = start_pc; pc < end_pc; pc += 4)
676 {
677 unsigned int insn;
678 int rt, ra, rb, rc, immed;
679
680 if (target_read_memory (pc, buf, 4))
681 break;
682 insn = extract_unsigned_integer (buf, 4, byte_order);
683
684 /* AI is the typical instruction to set up a stack frame.
685 It is also used to initialize the frame pointer. */
686 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
687 {
688 if (rt == data->cfa_reg && ra == data->cfa_reg)
689 data->cfa_offset -= immed;
690
691 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
692 && !found_sp)
693 {
694 found_sp = 1;
695 prolog_pc = pc + 4;
696
697 data->size = -immed;
698 }
699 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
700 && !found_fp)
701 {
702 found_fp = 1;
703 prolog_pc = pc + 4;
704
705 data->cfa_reg = SPU_FP_REGNUM;
706 data->cfa_offset -= immed;
707 }
708 }
709
710 /* A is used to set up stack frames of size >= 512 bytes.
711 If we have tracked the contents of the addend register,
712 we can handle this as well. */
713 else if (is_rr (insn, op_a, &rt, &ra, &rb))
714 {
715 if (rt == data->cfa_reg && ra == data->cfa_reg)
716 {
717 if (reg_immed[rb] != 0)
718 data->cfa_offset -= reg_immed[rb];
719 else
720 data->cfa_reg = -1; /* We don't know the CFA any more. */
721 }
722
723 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
724 && !found_sp)
725 {
726 found_sp = 1;
727 prolog_pc = pc + 4;
728
729 if (reg_immed[rb] != 0)
730 data->size = -reg_immed[rb];
731 }
732 }
733
734 /* We need to track IL and ILA used to load immediate constants
735 in case they are later used as input to an A instruction. */
736 else if (is_ri16 (insn, op_il, &rt, &immed))
737 {
738 reg_immed[rt] = immed;
739
740 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
741 found_sp = 1;
742 }
743
744 else if (is_ri18 (insn, op_ila, &rt, &immed))
745 {
746 reg_immed[rt] = immed & 0x3ffff;
747
748 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
749 found_sp = 1;
750 }
751
752 /* STQD is used to save registers to the stack. */
753 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
754 {
755 if (ra == data->cfa_reg)
756 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
757
758 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
759 && !found_lr)
760 {
761 found_lr = 1;
762 prolog_pc = pc + 4;
763 }
764
765 if (ra == SPU_RAW_SP_REGNUM
766 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
767 && !found_bc)
768 {
769 found_bc = 1;
770 prolog_pc = pc + 4;
771 }
772 }
773
774 /* _start uses SELB to set up the stack pointer. */
775 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
776 {
777 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
778 found_sp = 1;
779 }
780
781 /* We terminate if we find a branch. */
782 else if (is_branch (insn, &immed, &ra))
783 break;
784 }
785
786
787 /* If we successfully parsed until here, and didn't find any instruction
788 modifying SP, we assume we have a frameless function. */
789 if (!found_sp)
790 data->size = 0;
791
792 /* Return cooked instead of raw SP. */
793 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
794 data->cfa_reg = SPU_SP_REGNUM;
795
796 return prolog_pc;
797 }
798
799 /* Return the first instruction after the prologue starting at PC. */
800 static CORE_ADDR
801 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
802 {
803 struct spu_prologue_data data;
804 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
805 }
806
807 /* Return the frame pointer in use at address PC. */
808 static void
809 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
810 int *reg, LONGEST *offset)
811 {
812 struct spu_prologue_data data;
813 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
814
815 if (data.size != -1 && data.cfa_reg != -1)
816 {
817 /* The 'frame pointer' address is CFA minus frame size. */
818 *reg = data.cfa_reg;
819 *offset = data.cfa_offset - data.size;
820 }
821 else
822 {
823 /* ??? We don't really know ... */
824 *reg = SPU_SP_REGNUM;
825 *offset = 0;
826 }
827 }
828
829 /* Return true if we are in the function's epilogue, i.e. after the
830 instruction that destroyed the function's stack frame.
831
832 1) scan forward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer
834 or transfers control (except a return), execution is not in
835 an epilogue, return.
836 b) Stop scanning if you find a return instruction or reach the
837 end of the function or reach the hard limit for the size of
838 an epilogue.
839 2) scan backward from the point of execution:
840 a) If you find an instruction that modifies the stack pointer,
841 execution *is* in an epilogue, return.
842 b) Stop scanning if you reach an instruction that transfers
843 control or the beginning of the function or reach the hard
844 limit for the size of an epilogue. */
845
846 static int
847 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
848 {
849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
851 bfd_byte buf[4];
852 unsigned int insn;
853 int rt, ra, rb, rc, immed;
854
855 /* Find the search limits based on function boundaries and hard limit.
856 We assume the epilogue can be up to 64 instructions long. */
857
858 const int spu_max_epilogue_size = 64 * 4;
859
860 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
861 return 0;
862
863 if (pc - func_start < spu_max_epilogue_size)
864 epilogue_start = func_start;
865 else
866 epilogue_start = pc - spu_max_epilogue_size;
867
868 if (func_end - pc < spu_max_epilogue_size)
869 epilogue_end = func_end;
870 else
871 epilogue_end = pc + spu_max_epilogue_size;
872
873 /* Scan forward until next 'bi $0'. */
874
875 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
876 {
877 if (target_read_memory (scan_pc, buf, 4))
878 return 0;
879 insn = extract_unsigned_integer (buf, 4, byte_order);
880
881 if (is_branch (insn, &immed, &ra))
882 {
883 if (immed == 0 && ra == SPU_LR_REGNUM)
884 break;
885
886 return 0;
887 }
888
889 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
890 || is_rr (insn, op_a, &rt, &ra, &rb)
891 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
892 {
893 if (rt == SPU_RAW_SP_REGNUM)
894 return 0;
895 }
896 }
897
898 if (scan_pc >= epilogue_end)
899 return 0;
900
901 /* Scan backward until adjustment to stack pointer (R1). */
902
903 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
904 {
905 if (target_read_memory (scan_pc, buf, 4))
906 return 0;
907 insn = extract_unsigned_integer (buf, 4, byte_order);
908
909 if (is_branch (insn, &immed, &ra))
910 return 0;
911
912 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
913 || is_rr (insn, op_a, &rt, &ra, &rb)
914 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
915 {
916 if (rt == SPU_RAW_SP_REGNUM)
917 return 1;
918 }
919 }
920
921 return 0;
922 }
923
924
925 /* Normal stack frames. */
926
927 struct spu_unwind_cache
928 {
929 CORE_ADDR func;
930 CORE_ADDR frame_base;
931 CORE_ADDR local_base;
932
933 struct trad_frame_saved_reg *saved_regs;
934 };
935
936 static struct spu_unwind_cache *
937 spu_frame_unwind_cache (struct frame_info *this_frame,
938 void **this_prologue_cache)
939 {
940 struct gdbarch *gdbarch = get_frame_arch (this_frame);
941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
943 struct spu_unwind_cache *info;
944 struct spu_prologue_data data;
945 CORE_ADDR id = tdep->id;
946 gdb_byte buf[16];
947
948 if (*this_prologue_cache)
949 return *this_prologue_cache;
950
951 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
952 *this_prologue_cache = info;
953 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
954 info->frame_base = 0;
955 info->local_base = 0;
956
957 /* Find the start of the current function, and analyze its prologue. */
958 info->func = get_frame_func (this_frame);
959 if (info->func == 0)
960 {
961 /* Fall back to using the current PC as frame ID. */
962 info->func = get_frame_pc (this_frame);
963 data.size = -1;
964 }
965 else
966 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
967 &data);
968
969 /* If successful, use prologue analysis data. */
970 if (data.size != -1 && data.cfa_reg != -1)
971 {
972 CORE_ADDR cfa;
973 int i;
974
975 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
976 get_frame_register (this_frame, data.cfa_reg, buf);
977 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
978 cfa = SPUADDR (id, cfa);
979
980 /* Call-saved register slots. */
981 for (i = 0; i < SPU_NUM_GPRS; i++)
982 if (i == SPU_LR_REGNUM
983 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
984 if (data.reg_offset[i] != -1)
985 info->saved_regs[i].addr = cfa - data.reg_offset[i];
986
987 /* Frame bases. */
988 info->frame_base = cfa;
989 info->local_base = cfa - data.size;
990 }
991
992 /* Otherwise, fall back to reading the backchain link. */
993 else
994 {
995 CORE_ADDR reg;
996 LONGEST backchain;
997 ULONGEST lslr;
998 int status;
999
1000 /* Get local store limit. */
1001 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1002 if (!lslr)
1003 lslr = (ULONGEST) -1;
1004
1005 /* Get the backchain. */
1006 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1007 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1008 &backchain);
1009
1010 /* A zero backchain terminates the frame chain. Also, sanity
1011 check against the local store size limit. */
1012 if (status && backchain > 0 && backchain <= lslr)
1013 {
1014 /* Assume the link register is saved into its slot. */
1015 if (backchain + 16 <= lslr)
1016 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1017 backchain + 16);
1018
1019 /* Frame bases. */
1020 info->frame_base = SPUADDR (id, backchain);
1021 info->local_base = SPUADDR (id, reg);
1022 }
1023 }
1024
1025 /* If we didn't find a frame, we cannot determine SP / return address. */
1026 if (info->frame_base == 0)
1027 return info;
1028
1029 /* The previous SP is equal to the CFA. */
1030 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1031 SPUADDR_ADDR (info->frame_base));
1032
1033 /* Read full contents of the unwound link register in order to
1034 be able to determine the return address. */
1035 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1036 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1037 else
1038 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1039
1040 /* Normally, the return address is contained in the slot 0 of the
1041 link register, and slots 1-3 are zero. For an overlay return,
1042 slot 0 contains the address of the overlay manager return stub,
1043 slot 1 contains the partition number of the overlay section to
1044 be returned to, and slot 2 contains the return address within
1045 that section. Return the latter address in that case. */
1046 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1047 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1048 extract_unsigned_integer (buf + 8, 4, byte_order));
1049 else
1050 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1051 extract_unsigned_integer (buf, 4, byte_order));
1052
1053 return info;
1054 }
1055
1056 static void
1057 spu_frame_this_id (struct frame_info *this_frame,
1058 void **this_prologue_cache, struct frame_id *this_id)
1059 {
1060 struct spu_unwind_cache *info =
1061 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1062
1063 if (info->frame_base == 0)
1064 return;
1065
1066 *this_id = frame_id_build (info->frame_base, info->func);
1067 }
1068
1069 static struct value *
1070 spu_frame_prev_register (struct frame_info *this_frame,
1071 void **this_prologue_cache, int regnum)
1072 {
1073 struct spu_unwind_cache *info
1074 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1075
1076 /* Special-case the stack pointer. */
1077 if (regnum == SPU_RAW_SP_REGNUM)
1078 regnum = SPU_SP_REGNUM;
1079
1080 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1081 }
1082
1083 static const struct frame_unwind spu_frame_unwind = {
1084 NORMAL_FRAME,
1085 default_frame_unwind_stop_reason,
1086 spu_frame_this_id,
1087 spu_frame_prev_register,
1088 NULL,
1089 default_frame_sniffer
1090 };
1091
1092 static CORE_ADDR
1093 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1094 {
1095 struct spu_unwind_cache *info
1096 = spu_frame_unwind_cache (this_frame, this_cache);
1097 return info->local_base;
1098 }
1099
1100 static const struct frame_base spu_frame_base = {
1101 &spu_frame_unwind,
1102 spu_frame_base_address,
1103 spu_frame_base_address,
1104 spu_frame_base_address
1105 };
1106
1107 static CORE_ADDR
1108 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109 {
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1112 /* Mask off interrupt enable bit. */
1113 return SPUADDR (tdep->id, pc & -4);
1114 }
1115
1116 static CORE_ADDR
1117 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1118 {
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1120 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1121 return SPUADDR (tdep->id, sp);
1122 }
1123
1124 static CORE_ADDR
1125 spu_read_pc (struct regcache *regcache)
1126 {
1127 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1128 ULONGEST pc;
1129 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1130 /* Mask off interrupt enable bit. */
1131 return SPUADDR (tdep->id, pc & -4);
1132 }
1133
1134 static void
1135 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1136 {
1137 /* Keep interrupt enabled state unchanged. */
1138 ULONGEST old_pc;
1139 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1140 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1141 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1142 }
1143
1144
1145 /* Cell/B.E. cross-architecture unwinder support. */
1146
1147 struct spu2ppu_cache
1148 {
1149 struct frame_id frame_id;
1150 struct regcache *regcache;
1151 };
1152
1153 static struct gdbarch *
1154 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1155 {
1156 struct spu2ppu_cache *cache = *this_cache;
1157 return get_regcache_arch (cache->regcache);
1158 }
1159
1160 static void
1161 spu2ppu_this_id (struct frame_info *this_frame,
1162 void **this_cache, struct frame_id *this_id)
1163 {
1164 struct spu2ppu_cache *cache = *this_cache;
1165 *this_id = cache->frame_id;
1166 }
1167
1168 static struct value *
1169 spu2ppu_prev_register (struct frame_info *this_frame,
1170 void **this_cache, int regnum)
1171 {
1172 struct spu2ppu_cache *cache = *this_cache;
1173 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1174 gdb_byte *buf;
1175
1176 buf = alloca (register_size (gdbarch, regnum));
1177 regcache_cooked_read (cache->regcache, regnum, buf);
1178 return frame_unwind_got_bytes (this_frame, regnum, buf);
1179 }
1180
1181 static int
1182 spu2ppu_sniffer (const struct frame_unwind *self,
1183 struct frame_info *this_frame, void **this_prologue_cache)
1184 {
1185 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 CORE_ADDR base, func, backchain;
1188 gdb_byte buf[4];
1189
1190 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1191 return 0;
1192
1193 base = get_frame_sp (this_frame);
1194 func = get_frame_pc (this_frame);
1195 if (target_read_memory (base, buf, 4))
1196 return 0;
1197 backchain = extract_unsigned_integer (buf, 4, byte_order);
1198
1199 if (!backchain)
1200 {
1201 struct frame_info *fi;
1202
1203 struct spu2ppu_cache *cache
1204 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1205
1206 cache->frame_id = frame_id_build (base + 16, func);
1207
1208 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1209 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1210 break;
1211
1212 if (fi)
1213 {
1214 cache->regcache = frame_save_as_regcache (fi);
1215 *this_prologue_cache = cache;
1216 return 1;
1217 }
1218 else
1219 {
1220 struct regcache *regcache;
1221 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1222 cache->regcache = regcache_dup (regcache);
1223 *this_prologue_cache = cache;
1224 return 1;
1225 }
1226 }
1227
1228 return 0;
1229 }
1230
1231 static void
1232 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1233 {
1234 struct spu2ppu_cache *cache = this_cache;
1235 regcache_xfree (cache->regcache);
1236 }
1237
1238 static const struct frame_unwind spu2ppu_unwind = {
1239 ARCH_FRAME,
1240 default_frame_unwind_stop_reason,
1241 spu2ppu_this_id,
1242 spu2ppu_prev_register,
1243 NULL,
1244 spu2ppu_sniffer,
1245 spu2ppu_dealloc_cache,
1246 spu2ppu_prev_arch,
1247 };
1248
1249
1250 /* Function calling convention. */
1251
1252 static CORE_ADDR
1253 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1254 {
1255 return sp & ~15;
1256 }
1257
1258 static CORE_ADDR
1259 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1260 struct value **args, int nargs, struct type *value_type,
1261 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1262 struct regcache *regcache)
1263 {
1264 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1265 sp = (sp - 4) & ~15;
1266 /* Store the address of that breakpoint */
1267 *bp_addr = sp;
1268 /* The call starts at the callee's entry point. */
1269 *real_pc = funaddr;
1270
1271 return sp;
1272 }
1273
1274 static int
1275 spu_scalar_value_p (struct type *type)
1276 {
1277 switch (TYPE_CODE (type))
1278 {
1279 case TYPE_CODE_INT:
1280 case TYPE_CODE_ENUM:
1281 case TYPE_CODE_RANGE:
1282 case TYPE_CODE_CHAR:
1283 case TYPE_CODE_BOOL:
1284 case TYPE_CODE_PTR:
1285 case TYPE_CODE_REF:
1286 return TYPE_LENGTH (type) <= 16;
1287
1288 default:
1289 return 0;
1290 }
1291 }
1292
1293 static void
1294 spu_value_to_regcache (struct regcache *regcache, int regnum,
1295 struct type *type, const gdb_byte *in)
1296 {
1297 int len = TYPE_LENGTH (type);
1298
1299 if (spu_scalar_value_p (type))
1300 {
1301 int preferred_slot = len < 4 ? 4 - len : 0;
1302 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1303 }
1304 else
1305 {
1306 while (len >= 16)
1307 {
1308 regcache_cooked_write (regcache, regnum++, in);
1309 in += 16;
1310 len -= 16;
1311 }
1312
1313 if (len > 0)
1314 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1315 }
1316 }
1317
1318 static void
1319 spu_regcache_to_value (struct regcache *regcache, int regnum,
1320 struct type *type, gdb_byte *out)
1321 {
1322 int len = TYPE_LENGTH (type);
1323
1324 if (spu_scalar_value_p (type))
1325 {
1326 int preferred_slot = len < 4 ? 4 - len : 0;
1327 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1328 }
1329 else
1330 {
1331 while (len >= 16)
1332 {
1333 regcache_cooked_read (regcache, regnum++, out);
1334 out += 16;
1335 len -= 16;
1336 }
1337
1338 if (len > 0)
1339 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1340 }
1341 }
1342
1343 static CORE_ADDR
1344 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1345 struct regcache *regcache, CORE_ADDR bp_addr,
1346 int nargs, struct value **args, CORE_ADDR sp,
1347 int struct_return, CORE_ADDR struct_addr)
1348 {
1349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1350 CORE_ADDR sp_delta;
1351 int i;
1352 int regnum = SPU_ARG1_REGNUM;
1353 int stack_arg = -1;
1354 gdb_byte buf[16];
1355
1356 /* Set the return address. */
1357 memset (buf, 0, sizeof buf);
1358 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1359 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1360
1361 /* If STRUCT_RETURN is true, then the struct return address (in
1362 STRUCT_ADDR) will consume the first argument-passing register.
1363 Both adjust the register count and store that value. */
1364 if (struct_return)
1365 {
1366 memset (buf, 0, sizeof buf);
1367 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1368 regcache_cooked_write (regcache, regnum++, buf);
1369 }
1370
1371 /* Fill in argument registers. */
1372 for (i = 0; i < nargs; i++)
1373 {
1374 struct value *arg = args[i];
1375 struct type *type = check_typedef (value_type (arg));
1376 const gdb_byte *contents = value_contents (arg);
1377 int len = TYPE_LENGTH (type);
1378 int n_regs = align_up (len, 16) / 16;
1379
1380 /* If the argument doesn't wholly fit into registers, it and
1381 all subsequent arguments go to the stack. */
1382 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1383 {
1384 stack_arg = i;
1385 break;
1386 }
1387
1388 spu_value_to_regcache (regcache, regnum, type, contents);
1389 regnum += n_regs;
1390 }
1391
1392 /* Overflow arguments go to the stack. */
1393 if (stack_arg != -1)
1394 {
1395 CORE_ADDR ap;
1396
1397 /* Allocate all required stack size. */
1398 for (i = stack_arg; i < nargs; i++)
1399 {
1400 struct type *type = check_typedef (value_type (args[i]));
1401 sp -= align_up (TYPE_LENGTH (type), 16);
1402 }
1403
1404 /* Fill in stack arguments. */
1405 ap = sp;
1406 for (i = stack_arg; i < nargs; i++)
1407 {
1408 struct value *arg = args[i];
1409 struct type *type = check_typedef (value_type (arg));
1410 int len = TYPE_LENGTH (type);
1411 int preferred_slot;
1412
1413 if (spu_scalar_value_p (type))
1414 preferred_slot = len < 4 ? 4 - len : 0;
1415 else
1416 preferred_slot = 0;
1417
1418 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1419 ap += align_up (TYPE_LENGTH (type), 16);
1420 }
1421 }
1422
1423 /* Allocate stack frame header. */
1424 sp -= 32;
1425
1426 /* Store stack back chain. */
1427 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1428 target_write_memory (sp, buf, 16);
1429
1430 /* Finally, update all slots of the SP register. */
1431 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1432 for (i = 0; i < 4; i++)
1433 {
1434 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1435 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1436 }
1437 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1438
1439 return sp;
1440 }
1441
1442 static struct frame_id
1443 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1444 {
1445 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1446 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1447 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1448 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1449 }
1450
1451 /* Function return value access. */
1452
1453 static enum return_value_convention
1454 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1455 struct type *type, struct regcache *regcache,
1456 gdb_byte *out, const gdb_byte *in)
1457 {
1458 enum return_value_convention rvc;
1459 int opencl_vector = 0;
1460
1461 if (func_type
1462 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1463 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1464 && TYPE_VECTOR (type))
1465 opencl_vector = 1;
1466
1467 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1468 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1469 else
1470 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1471
1472 if (in)
1473 {
1474 switch (rvc)
1475 {
1476 case RETURN_VALUE_REGISTER_CONVENTION:
1477 if (opencl_vector && TYPE_LENGTH (type) == 2)
1478 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1479 else
1480 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1481 break;
1482
1483 case RETURN_VALUE_STRUCT_CONVENTION:
1484 error (_("Cannot set function return value."));
1485 break;
1486 }
1487 }
1488 else if (out)
1489 {
1490 switch (rvc)
1491 {
1492 case RETURN_VALUE_REGISTER_CONVENTION:
1493 if (opencl_vector && TYPE_LENGTH (type) == 2)
1494 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1495 else
1496 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1497 break;
1498
1499 case RETURN_VALUE_STRUCT_CONVENTION:
1500 error (_("Function return value unknown."));
1501 break;
1502 }
1503 }
1504
1505 return rvc;
1506 }
1507
1508
1509 /* Breakpoints. */
1510
1511 static const gdb_byte *
1512 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1513 CORE_ADDR * pcptr, int *lenptr)
1514 {
1515 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1516
1517 *lenptr = sizeof breakpoint;
1518 return breakpoint;
1519 }
1520
1521 static int
1522 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1523 struct bp_target_info *bp_tgt)
1524 {
1525 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1526 that in a combined application, we have some breakpoints inserted in SPU
1527 code, and now the application forks (on the PPU side). GDB common code
1528 will assume that the fork system call copied all breakpoints into the new
1529 process' address space, and that all those copies now need to be removed
1530 (see breakpoint.c:detach_breakpoints).
1531
1532 While this is certainly true for PPU side breakpoints, it is not true
1533 for SPU side breakpoints. fork will clone the SPU context file
1534 descriptors, so that all the existing SPU contexts are in accessible
1535 in the new process. However, the contents of the SPU contexts themselves
1536 are *not* cloned. Therefore the effect of detach_breakpoints is to
1537 remove SPU breakpoints from the *original* SPU context's local store
1538 -- this is not the correct behaviour.
1539
1540 The workaround is to check whether the PID we are asked to remove this
1541 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1542 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1543 true in the context of detach_breakpoints. If so, we simply do nothing.
1544 [ Note that for the fork child process, it does not matter if breakpoints
1545 remain inserted, because those SPU contexts are not runnable anyway --
1546 the Linux kernel allows only the original process to invoke spu_run. */
1547
1548 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1549 return 0;
1550
1551 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1552 }
1553
1554
1555 /* Software single-stepping support. */
1556
1557 static int
1558 spu_software_single_step (struct frame_info *frame)
1559 {
1560 struct gdbarch *gdbarch = get_frame_arch (frame);
1561 struct address_space *aspace = get_frame_address_space (frame);
1562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1563 CORE_ADDR pc, next_pc;
1564 unsigned int insn;
1565 int offset, reg;
1566 gdb_byte buf[4];
1567 ULONGEST lslr;
1568
1569 pc = get_frame_pc (frame);
1570
1571 if (target_read_memory (pc, buf, 4))
1572 return 1;
1573 insn = extract_unsigned_integer (buf, 4, byte_order);
1574
1575 /* Get local store limit. */
1576 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1577 if (!lslr)
1578 lslr = (ULONGEST) -1;
1579
1580 /* Next sequential instruction is at PC + 4, except if the current
1581 instruction is a PPE-assisted call, in which case it is at PC + 8.
1582 Wrap around LS limit to be on the safe side. */
1583 if ((insn & 0xffffff00) == 0x00002100)
1584 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1585 else
1586 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1587
1588 insert_single_step_breakpoint (gdbarch,
1589 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1590
1591 if (is_branch (insn, &offset, &reg))
1592 {
1593 CORE_ADDR target = offset;
1594
1595 if (reg == SPU_PC_REGNUM)
1596 target += SPUADDR_ADDR (pc);
1597 else if (reg != -1)
1598 {
1599 int optim, unavail;
1600
1601 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1602 &optim, &unavail))
1603 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1604 else
1605 {
1606 if (optim)
1607 error (_("Could not determine address of "
1608 "single-step breakpoint."));
1609 if (unavail)
1610 throw_error (NOT_AVAILABLE_ERROR,
1611 _("Could not determine address of "
1612 "single-step breakpoint."));
1613 }
1614 }
1615
1616 target = target & lslr;
1617 if (target != next_pc)
1618 insert_single_step_breakpoint (gdbarch, aspace,
1619 SPUADDR (SPUADDR_SPU (pc), target));
1620 }
1621
1622 return 1;
1623 }
1624
1625
1626 /* Longjmp support. */
1627
1628 static int
1629 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1630 {
1631 struct gdbarch *gdbarch = get_frame_arch (frame);
1632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1634 gdb_byte buf[4];
1635 CORE_ADDR jb_addr;
1636 int optim, unavail;
1637
1638 /* Jump buffer is pointed to by the argument register $r3. */
1639 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1640 &optim, &unavail))
1641 return 0;
1642
1643 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1644 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1645 return 0;
1646
1647 *pc = extract_unsigned_integer (buf, 4, byte_order);
1648 *pc = SPUADDR (tdep->id, *pc);
1649 return 1;
1650 }
1651
1652
1653 /* Disassembler. */
1654
1655 struct spu_dis_asm_data
1656 {
1657 struct gdbarch *gdbarch;
1658 int id;
1659 };
1660
1661 static void
1662 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1663 {
1664 struct spu_dis_asm_data *data = info->application_data;
1665 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1666 }
1667
1668 static int
1669 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1670 {
1671 /* The opcodes disassembler does 18-bit address arithmetic. Make
1672 sure the SPU ID encoded in the high bits is added back when we
1673 call print_address. */
1674 struct disassemble_info spu_info = *info;
1675 struct spu_dis_asm_data data;
1676 data.gdbarch = info->application_data;
1677 data.id = SPUADDR_SPU (memaddr);
1678
1679 spu_info.application_data = &data;
1680 spu_info.print_address_func = spu_dis_asm_print_address;
1681 return print_insn_spu (memaddr, &spu_info);
1682 }
1683
1684
1685 /* Target overlays for the SPU overlay manager.
1686
1687 See the documentation of simple_overlay_update for how the
1688 interface is supposed to work.
1689
1690 Data structures used by the overlay manager:
1691
1692 struct ovly_table
1693 {
1694 u32 vma;
1695 u32 size;
1696 u32 pos;
1697 u32 buf;
1698 } _ovly_table[]; -- one entry per overlay section
1699
1700 struct ovly_buf_table
1701 {
1702 u32 mapped;
1703 } _ovly_buf_table[]; -- one entry per overlay buffer
1704
1705 _ovly_table should never change.
1706
1707 Both tables are aligned to a 16-byte boundary, the symbols
1708 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1709 size set to the size of the respective array. buf in _ovly_table is
1710 an index into _ovly_buf_table.
1711
1712 mapped is an index into _ovly_table. Both the mapped and buf indices start
1713 from one to reference the first entry in their respective tables. */
1714
1715 /* Using the per-objfile private data mechanism, we store for each
1716 objfile an array of "struct spu_overlay_table" structures, one
1717 for each obj_section of the objfile. This structure holds two
1718 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1719 is *not* an overlay section. If it is non-zero, it represents
1720 a target address. The overlay section is mapped iff the target
1721 integer at this location equals MAPPED_VAL. */
1722
1723 static const struct objfile_data *spu_overlay_data;
1724
1725 struct spu_overlay_table
1726 {
1727 CORE_ADDR mapped_ptr;
1728 CORE_ADDR mapped_val;
1729 };
1730
1731 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1732 the _ovly_table data structure from the target and initialize the
1733 spu_overlay_table data structure from it. */
1734 static struct spu_overlay_table *
1735 spu_get_overlay_table (struct objfile *objfile)
1736 {
1737 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1738 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1739 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1740 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1741 unsigned ovly_table_size, ovly_buf_table_size;
1742 struct spu_overlay_table *tbl;
1743 struct obj_section *osect;
1744 char *ovly_table;
1745 int i;
1746
1747 tbl = objfile_data (objfile, spu_overlay_data);
1748 if (tbl)
1749 return tbl;
1750
1751 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1752 if (!ovly_table_msym)
1753 return NULL;
1754
1755 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1756 NULL, objfile);
1757 if (!ovly_buf_table_msym)
1758 return NULL;
1759
1760 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1761 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1762
1763 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1764 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1765
1766 ovly_table = xmalloc (ovly_table_size);
1767 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1768
1769 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1770 objfile->sections_end - objfile->sections,
1771 struct spu_overlay_table);
1772
1773 for (i = 0; i < ovly_table_size / 16; i++)
1774 {
1775 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1776 4, byte_order);
1777 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1778 4, byte_order);
1779 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1780 4, byte_order);
1781 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1782 4, byte_order);
1783
1784 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1785 continue;
1786
1787 ALL_OBJFILE_OSECTIONS (objfile, osect)
1788 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1789 && pos == osect->the_bfd_section->filepos)
1790 {
1791 int ndx = osect - objfile->sections;
1792 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1793 tbl[ndx].mapped_val = i + 1;
1794 break;
1795 }
1796 }
1797
1798 xfree (ovly_table);
1799 set_objfile_data (objfile, spu_overlay_data, tbl);
1800 return tbl;
1801 }
1802
1803 /* Read _ovly_buf_table entry from the target to dermine whether
1804 OSECT is currently mapped, and update the mapped state. */
1805 static void
1806 spu_overlay_update_osect (struct obj_section *osect)
1807 {
1808 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1809 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1810 struct spu_overlay_table *ovly_table;
1811 CORE_ADDR id, val;
1812
1813 ovly_table = spu_get_overlay_table (osect->objfile);
1814 if (!ovly_table)
1815 return;
1816
1817 ovly_table += osect - osect->objfile->sections;
1818 if (ovly_table->mapped_ptr == 0)
1819 return;
1820
1821 id = SPUADDR_SPU (obj_section_addr (osect));
1822 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1823 4, byte_order);
1824 osect->ovly_mapped = (val == ovly_table->mapped_val);
1825 }
1826
1827 /* If OSECT is NULL, then update all sections' mapped state.
1828 If OSECT is non-NULL, then update only OSECT's mapped state. */
1829 static void
1830 spu_overlay_update (struct obj_section *osect)
1831 {
1832 /* Just one section. */
1833 if (osect)
1834 spu_overlay_update_osect (osect);
1835
1836 /* All sections. */
1837 else
1838 {
1839 struct objfile *objfile;
1840
1841 ALL_OBJSECTIONS (objfile, osect)
1842 if (section_is_overlay (osect))
1843 spu_overlay_update_osect (osect);
1844 }
1845 }
1846
1847 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1848 If there is one, go through all sections and make sure for non-
1849 overlay sections LMA equals VMA, while for overlay sections LMA
1850 is larger than SPU_OVERLAY_LMA. */
1851 static void
1852 spu_overlay_new_objfile (struct objfile *objfile)
1853 {
1854 struct spu_overlay_table *ovly_table;
1855 struct obj_section *osect;
1856
1857 /* If we've already touched this file, do nothing. */
1858 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1859 return;
1860
1861 /* Consider only SPU objfiles. */
1862 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1863 return;
1864
1865 /* Check if this objfile has overlays. */
1866 ovly_table = spu_get_overlay_table (objfile);
1867 if (!ovly_table)
1868 return;
1869
1870 /* Now go and fiddle with all the LMAs. */
1871 ALL_OBJFILE_OSECTIONS (objfile, osect)
1872 {
1873 bfd *obfd = objfile->obfd;
1874 asection *bsect = osect->the_bfd_section;
1875 int ndx = osect - objfile->sections;
1876
1877 if (ovly_table[ndx].mapped_ptr == 0)
1878 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1879 else
1880 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1881 }
1882 }
1883
1884
1885 /* Insert temporary breakpoint on "main" function of newly loaded
1886 SPE context OBJFILE. */
1887 static void
1888 spu_catch_start (struct objfile *objfile)
1889 {
1890 struct minimal_symbol *minsym;
1891 struct symtab *symtab;
1892 CORE_ADDR pc;
1893 char buf[32];
1894
1895 /* Do this only if requested by "set spu stop-on-load on". */
1896 if (!spu_stop_on_load_p)
1897 return;
1898
1899 /* Consider only SPU objfiles. */
1900 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1901 return;
1902
1903 /* The main objfile is handled differently. */
1904 if (objfile == symfile_objfile)
1905 return;
1906
1907 /* There can be multiple symbols named "main". Search for the
1908 "main" in *this* objfile. */
1909 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1910 if (!minsym)
1911 return;
1912
1913 /* If we have debugging information, try to use it -- this
1914 will allow us to properly skip the prologue. */
1915 pc = SYMBOL_VALUE_ADDRESS (minsym);
1916 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1917 if (symtab != NULL)
1918 {
1919 struct blockvector *bv = BLOCKVECTOR (symtab);
1920 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1921 struct symbol *sym;
1922 struct symtab_and_line sal;
1923
1924 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1925 if (sym)
1926 {
1927 fixup_symbol_section (sym, objfile);
1928 sal = find_function_start_sal (sym, 1);
1929 pc = sal.pc;
1930 }
1931 }
1932
1933 /* Use a numerical address for the set_breakpoint command to avoid having
1934 the breakpoint re-set incorrectly. */
1935 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1936 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1937 NULL /* cond_string */, -1 /* thread */,
1938 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1939 bp_breakpoint /* type_wanted */,
1940 0 /* ignore_count */,
1941 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1942 NULL /* ops */, 0 /* from_tty */, 1 /* enabled */,
1943 0 /* internal */);
1944 }
1945
1946
1947 /* Look up OBJFILE loaded into FRAME's SPU context. */
1948 static struct objfile *
1949 spu_objfile_from_frame (struct frame_info *frame)
1950 {
1951 struct gdbarch *gdbarch = get_frame_arch (frame);
1952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1953 struct objfile *obj;
1954
1955 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1956 return NULL;
1957
1958 ALL_OBJFILES (obj)
1959 {
1960 if (obj->sections != obj->sections_end
1961 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1962 return obj;
1963 }
1964
1965 return NULL;
1966 }
1967
1968 /* Flush cache for ea pointer access if available. */
1969 static void
1970 flush_ea_cache (void)
1971 {
1972 struct minimal_symbol *msymbol;
1973 struct objfile *obj;
1974
1975 if (!has_stack_frames ())
1976 return;
1977
1978 obj = spu_objfile_from_frame (get_current_frame ());
1979 if (obj == NULL)
1980 return;
1981
1982 /* Lookup inferior function __cache_flush. */
1983 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1984 if (msymbol != NULL)
1985 {
1986 struct type *type;
1987 CORE_ADDR addr;
1988
1989 type = objfile_type (obj)->builtin_void;
1990 type = lookup_function_type (type);
1991 type = lookup_pointer_type (type);
1992 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1993
1994 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1995 }
1996 }
1997
1998 /* This handler is called when the inferior has stopped. If it is stopped in
1999 SPU architecture then flush the ea cache if used. */
2000 static void
2001 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2002 {
2003 if (!spu_auto_flush_cache_p)
2004 return;
2005
2006 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2007 re-entering this function when __cache_flush stops. */
2008 spu_auto_flush_cache_p = 0;
2009 flush_ea_cache ();
2010 spu_auto_flush_cache_p = 1;
2011 }
2012
2013
2014 /* "info spu" commands. */
2015
2016 static void
2017 info_spu_event_command (char *args, int from_tty)
2018 {
2019 struct frame_info *frame = get_selected_frame (NULL);
2020 ULONGEST event_status = 0;
2021 ULONGEST event_mask = 0;
2022 struct cleanup *chain;
2023 gdb_byte buf[100];
2024 char annex[32];
2025 LONGEST len;
2026 int rc, id;
2027
2028 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2029 error (_("\"info spu\" is only supported on the SPU architecture."));
2030
2031 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2032
2033 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2034 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2035 buf, 0, (sizeof (buf) - 1));
2036 if (len <= 0)
2037 error (_("Could not read event_status."));
2038 buf[len] = '\0';
2039 event_status = strtoulst (buf, NULL, 16);
2040
2041 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2042 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2043 buf, 0, (sizeof (buf) - 1));
2044 if (len <= 0)
2045 error (_("Could not read event_mask."));
2046 buf[len] = '\0';
2047 event_mask = strtoulst (buf, NULL, 16);
2048
2049 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
2050
2051 if (ui_out_is_mi_like_p (uiout))
2052 {
2053 ui_out_field_fmt (uiout, "event_status",
2054 "0x%s", phex_nz (event_status, 4));
2055 ui_out_field_fmt (uiout, "event_mask",
2056 "0x%s", phex_nz (event_mask, 4));
2057 }
2058 else
2059 {
2060 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2061 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2062 }
2063
2064 do_cleanups (chain);
2065 }
2066
2067 static void
2068 info_spu_signal_command (char *args, int from_tty)
2069 {
2070 struct frame_info *frame = get_selected_frame (NULL);
2071 struct gdbarch *gdbarch = get_frame_arch (frame);
2072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2073 ULONGEST signal1 = 0;
2074 ULONGEST signal1_type = 0;
2075 int signal1_pending = 0;
2076 ULONGEST signal2 = 0;
2077 ULONGEST signal2_type = 0;
2078 int signal2_pending = 0;
2079 struct cleanup *chain;
2080 char annex[32];
2081 gdb_byte buf[100];
2082 LONGEST len;
2083 int rc, id;
2084
2085 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2086 error (_("\"info spu\" is only supported on the SPU architecture."));
2087
2088 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2089
2090 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2091 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2092 if (len < 0)
2093 error (_("Could not read signal1."));
2094 else if (len == 4)
2095 {
2096 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2097 signal1_pending = 1;
2098 }
2099
2100 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2101 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2102 buf, 0, (sizeof (buf) - 1));
2103 if (len <= 0)
2104 error (_("Could not read signal1_type."));
2105 buf[len] = '\0';
2106 signal1_type = strtoulst (buf, NULL, 16);
2107
2108 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2109 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2110 if (len < 0)
2111 error (_("Could not read signal2."));
2112 else if (len == 4)
2113 {
2114 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2115 signal2_pending = 1;
2116 }
2117
2118 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2119 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2120 buf, 0, (sizeof (buf) - 1));
2121 if (len <= 0)
2122 error (_("Could not read signal2_type."));
2123 buf[len] = '\0';
2124 signal2_type = strtoulst (buf, NULL, 16);
2125
2126 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2127
2128 if (ui_out_is_mi_like_p (uiout))
2129 {
2130 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2131 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2132 ui_out_field_int (uiout, "signal1_type", signal1_type);
2133 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2134 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2135 ui_out_field_int (uiout, "signal2_type", signal2_type);
2136 }
2137 else
2138 {
2139 if (signal1_pending)
2140 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2141 else
2142 printf_filtered (_("Signal 1 not pending "));
2143
2144 if (signal1_type)
2145 printf_filtered (_("(Type Or)\n"));
2146 else
2147 printf_filtered (_("(Type Overwrite)\n"));
2148
2149 if (signal2_pending)
2150 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2151 else
2152 printf_filtered (_("Signal 2 not pending "));
2153
2154 if (signal2_type)
2155 printf_filtered (_("(Type Or)\n"));
2156 else
2157 printf_filtered (_("(Type Overwrite)\n"));
2158 }
2159
2160 do_cleanups (chain);
2161 }
2162
2163 static void
2164 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2165 const char *field, const char *msg)
2166 {
2167 struct cleanup *chain;
2168 int i;
2169
2170 if (nr <= 0)
2171 return;
2172
2173 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2174
2175 ui_out_table_header (uiout, 32, ui_left, field, msg);
2176 ui_out_table_body (uiout);
2177
2178 for (i = 0; i < nr; i++)
2179 {
2180 struct cleanup *val_chain;
2181 ULONGEST val;
2182 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2183 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2184 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2185 do_cleanups (val_chain);
2186
2187 if (!ui_out_is_mi_like_p (uiout))
2188 printf_filtered ("\n");
2189 }
2190
2191 do_cleanups (chain);
2192 }
2193
2194 static void
2195 info_spu_mailbox_command (char *args, int from_tty)
2196 {
2197 struct frame_info *frame = get_selected_frame (NULL);
2198 struct gdbarch *gdbarch = get_frame_arch (frame);
2199 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2200 struct cleanup *chain;
2201 char annex[32];
2202 gdb_byte buf[1024];
2203 LONGEST len;
2204 int i, id;
2205
2206 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2207 error (_("\"info spu\" is only supported on the SPU architecture."));
2208
2209 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2210
2211 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2212
2213 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2214 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2215 buf, 0, sizeof buf);
2216 if (len < 0)
2217 error (_("Could not read mbox_info."));
2218
2219 info_spu_mailbox_list (buf, len / 4, byte_order,
2220 "mbox", "SPU Outbound Mailbox");
2221
2222 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2223 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2224 buf, 0, sizeof buf);
2225 if (len < 0)
2226 error (_("Could not read ibox_info."));
2227
2228 info_spu_mailbox_list (buf, len / 4, byte_order,
2229 "ibox", "SPU Outbound Interrupt Mailbox");
2230
2231 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2232 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2233 buf, 0, sizeof buf);
2234 if (len < 0)
2235 error (_("Could not read wbox_info."));
2236
2237 info_spu_mailbox_list (buf, len / 4, byte_order,
2238 "wbox", "SPU Inbound Mailbox");
2239
2240 do_cleanups (chain);
2241 }
2242
2243 static ULONGEST
2244 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2245 {
2246 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2247 return (word >> (63 - last)) & mask;
2248 }
2249
2250 static void
2251 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2252 {
2253 static char *spu_mfc_opcode[256] =
2254 {
2255 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2256 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2257 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2258 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2259 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2260 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2261 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2262 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2263 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2264 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2265 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2266 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2267 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2269 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2271 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2272 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2273 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2275 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2276 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2278 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2281 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2283 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2284 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2285 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2287 };
2288
2289 int *seq = alloca (nr * sizeof (int));
2290 int done = 0;
2291 struct cleanup *chain;
2292 int i, j;
2293
2294
2295 /* Determine sequence in which to display (valid) entries. */
2296 for (i = 0; i < nr; i++)
2297 {
2298 /* Search for the first valid entry all of whose
2299 dependencies are met. */
2300 for (j = 0; j < nr; j++)
2301 {
2302 ULONGEST mfc_cq_dw3;
2303 ULONGEST dependencies;
2304
2305 if (done & (1 << (nr - 1 - j)))
2306 continue;
2307
2308 mfc_cq_dw3
2309 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2310 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2311 continue;
2312
2313 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2314 if ((dependencies & done) != dependencies)
2315 continue;
2316
2317 seq[i] = j;
2318 done |= 1 << (nr - 1 - j);
2319 break;
2320 }
2321
2322 if (j == nr)
2323 break;
2324 }
2325
2326 nr = i;
2327
2328
2329 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2330
2331 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2332 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2333 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2334 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2335 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2336 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2337 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2338 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2339 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2340 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2341
2342 ui_out_table_body (uiout);
2343
2344 for (i = 0; i < nr; i++)
2345 {
2346 struct cleanup *cmd_chain;
2347 ULONGEST mfc_cq_dw0;
2348 ULONGEST mfc_cq_dw1;
2349 ULONGEST mfc_cq_dw2;
2350 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2351 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2352 ULONGEST mfc_ea;
2353 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2354
2355 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2356 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2357
2358 mfc_cq_dw0
2359 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2360 mfc_cq_dw1
2361 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2362 mfc_cq_dw2
2363 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2364
2365 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2366 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2367 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2368 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2369 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2370 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2371 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2372
2373 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2374 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2375
2376 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2377 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2378 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2379 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2380 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2381 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2382
2383 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2384
2385 if (spu_mfc_opcode[mfc_cmd_opcode])
2386 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2387 else
2388 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2389
2390 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2391 ui_out_field_int (uiout, "tid", tclass_id);
2392 ui_out_field_int (uiout, "rid", rclass_id);
2393
2394 if (ea_valid_p)
2395 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2396 else
2397 ui_out_field_skip (uiout, "ea");
2398
2399 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2400 if (qw_valid_p)
2401 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2402 else
2403 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2404
2405 if (list_valid_p)
2406 {
2407 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2408 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2409 }
2410 else
2411 {
2412 ui_out_field_skip (uiout, "lstaddr");
2413 ui_out_field_skip (uiout, "lstsize");
2414 }
2415
2416 if (cmd_error_p)
2417 ui_out_field_string (uiout, "error_p", "*");
2418 else
2419 ui_out_field_skip (uiout, "error_p");
2420
2421 do_cleanups (cmd_chain);
2422
2423 if (!ui_out_is_mi_like_p (uiout))
2424 printf_filtered ("\n");
2425 }
2426
2427 do_cleanups (chain);
2428 }
2429
2430 static void
2431 info_spu_dma_command (char *args, int from_tty)
2432 {
2433 struct frame_info *frame = get_selected_frame (NULL);
2434 struct gdbarch *gdbarch = get_frame_arch (frame);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2436 ULONGEST dma_info_type;
2437 ULONGEST dma_info_mask;
2438 ULONGEST dma_info_status;
2439 ULONGEST dma_info_stall_and_notify;
2440 ULONGEST dma_info_atomic_command_status;
2441 struct cleanup *chain;
2442 char annex[32];
2443 gdb_byte buf[1024];
2444 LONGEST len;
2445 int i, id;
2446
2447 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2448 error (_("\"info spu\" is only supported on the SPU architecture."));
2449
2450 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2451
2452 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2453 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2454 buf, 0, 40 + 16 * 32);
2455 if (len <= 0)
2456 error (_("Could not read dma_info."));
2457
2458 dma_info_type
2459 = extract_unsigned_integer (buf, 8, byte_order);
2460 dma_info_mask
2461 = extract_unsigned_integer (buf + 8, 8, byte_order);
2462 dma_info_status
2463 = extract_unsigned_integer (buf + 16, 8, byte_order);
2464 dma_info_stall_and_notify
2465 = extract_unsigned_integer (buf + 24, 8, byte_order);
2466 dma_info_atomic_command_status
2467 = extract_unsigned_integer (buf + 32, 8, byte_order);
2468
2469 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2470
2471 if (ui_out_is_mi_like_p (uiout))
2472 {
2473 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2474 phex_nz (dma_info_type, 4));
2475 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2476 phex_nz (dma_info_mask, 4));
2477 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2478 phex_nz (dma_info_status, 4));
2479 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2480 phex_nz (dma_info_stall_and_notify, 4));
2481 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2482 phex_nz (dma_info_atomic_command_status, 4));
2483 }
2484 else
2485 {
2486 const char *query_msg = _("no query pending");
2487
2488 if (dma_info_type & 4)
2489 switch (dma_info_type & 3)
2490 {
2491 case 1: query_msg = _("'any' query pending"); break;
2492 case 2: query_msg = _("'all' query pending"); break;
2493 default: query_msg = _("undefined query type"); break;
2494 }
2495
2496 printf_filtered (_("Tag-Group Status 0x%s\n"),
2497 phex (dma_info_status, 4));
2498 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2499 phex (dma_info_mask, 4), query_msg);
2500 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2501 phex (dma_info_stall_and_notify, 4));
2502 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2503 phex (dma_info_atomic_command_status, 4));
2504 printf_filtered ("\n");
2505 }
2506
2507 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2508 do_cleanups (chain);
2509 }
2510
2511 static void
2512 info_spu_proxydma_command (char *args, int from_tty)
2513 {
2514 struct frame_info *frame = get_selected_frame (NULL);
2515 struct gdbarch *gdbarch = get_frame_arch (frame);
2516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2517 ULONGEST dma_info_type;
2518 ULONGEST dma_info_mask;
2519 ULONGEST dma_info_status;
2520 struct cleanup *chain;
2521 char annex[32];
2522 gdb_byte buf[1024];
2523 LONGEST len;
2524 int i, id;
2525
2526 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2527 error (_("\"info spu\" is only supported on the SPU architecture."));
2528
2529 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2530
2531 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2532 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2533 buf, 0, 24 + 8 * 32);
2534 if (len <= 0)
2535 error (_("Could not read proxydma_info."));
2536
2537 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2538 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2539 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2540
2541 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2542
2543 if (ui_out_is_mi_like_p (uiout))
2544 {
2545 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2546 phex_nz (dma_info_type, 4));
2547 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2548 phex_nz (dma_info_mask, 4));
2549 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2550 phex_nz (dma_info_status, 4));
2551 }
2552 else
2553 {
2554 const char *query_msg;
2555
2556 switch (dma_info_type & 3)
2557 {
2558 case 0: query_msg = _("no query pending"); break;
2559 case 1: query_msg = _("'any' query pending"); break;
2560 case 2: query_msg = _("'all' query pending"); break;
2561 default: query_msg = _("undefined query type"); break;
2562 }
2563
2564 printf_filtered (_("Tag-Group Status 0x%s\n"),
2565 phex (dma_info_status, 4));
2566 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2567 phex (dma_info_mask, 4), query_msg);
2568 printf_filtered ("\n");
2569 }
2570
2571 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2572 do_cleanups (chain);
2573 }
2574
2575 static void
2576 info_spu_command (char *args, int from_tty)
2577 {
2578 printf_unfiltered (_("\"info spu\" must be followed by "
2579 "the name of an SPU facility.\n"));
2580 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2581 }
2582
2583
2584 /* Root of all "set spu "/"show spu " commands. */
2585
2586 static void
2587 show_spu_command (char *args, int from_tty)
2588 {
2589 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2590 }
2591
2592 static void
2593 set_spu_command (char *args, int from_tty)
2594 {
2595 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2596 }
2597
2598 static void
2599 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2600 struct cmd_list_element *c, const char *value)
2601 {
2602 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2603 value);
2604 }
2605
2606 static void
2607 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2608 struct cmd_list_element *c, const char *value)
2609 {
2610 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2611 value);
2612 }
2613
2614
2615 /* Set up gdbarch struct. */
2616
2617 static struct gdbarch *
2618 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2619 {
2620 struct gdbarch *gdbarch;
2621 struct gdbarch_tdep *tdep;
2622 int id = -1;
2623
2624 /* Which spufs ID was requested as address space? */
2625 if (info.tdep_info)
2626 id = *(int *)info.tdep_info;
2627 /* For objfile architectures of SPU solibs, decode the ID from the name.
2628 This assumes the filename convention employed by solib-spu.c. */
2629 else if (info.abfd)
2630 {
2631 char *name = strrchr (info.abfd->filename, '@');
2632 if (name)
2633 sscanf (name, "@0x%*x <%d>", &id);
2634 }
2635
2636 /* Find a candidate among extant architectures. */
2637 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2638 arches != NULL;
2639 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2640 {
2641 tdep = gdbarch_tdep (arches->gdbarch);
2642 if (tdep && tdep->id == id)
2643 return arches->gdbarch;
2644 }
2645
2646 /* None found, so create a new architecture. */
2647 tdep = XCALLOC (1, struct gdbarch_tdep);
2648 tdep->id = id;
2649 gdbarch = gdbarch_alloc (&info, tdep);
2650
2651 /* Disassembler. */
2652 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2653
2654 /* Registers. */
2655 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2656 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2657 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2658 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2659 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2660 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2661 set_gdbarch_register_name (gdbarch, spu_register_name);
2662 set_gdbarch_register_type (gdbarch, spu_register_type);
2663 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2664 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2665 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2666 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2667
2668 /* Data types. */
2669 set_gdbarch_char_signed (gdbarch, 0);
2670 set_gdbarch_ptr_bit (gdbarch, 32);
2671 set_gdbarch_addr_bit (gdbarch, 32);
2672 set_gdbarch_short_bit (gdbarch, 16);
2673 set_gdbarch_int_bit (gdbarch, 32);
2674 set_gdbarch_long_bit (gdbarch, 32);
2675 set_gdbarch_long_long_bit (gdbarch, 64);
2676 set_gdbarch_float_bit (gdbarch, 32);
2677 set_gdbarch_double_bit (gdbarch, 64);
2678 set_gdbarch_long_double_bit (gdbarch, 64);
2679 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2680 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2681 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2682
2683 /* Address handling. */
2684 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2685 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2686 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2687 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2688 set_gdbarch_address_class_type_flags_to_name
2689 (gdbarch, spu_address_class_type_flags_to_name);
2690 set_gdbarch_address_class_name_to_type_flags
2691 (gdbarch, spu_address_class_name_to_type_flags);
2692
2693
2694 /* Inferior function calls. */
2695 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2696 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2697 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2698 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2699 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2700 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2701 set_gdbarch_return_value (gdbarch, spu_return_value);
2702
2703 /* Frame handling. */
2704 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2705 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2706 frame_base_set_default (gdbarch, &spu_frame_base);
2707 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2708 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2709 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2710 set_gdbarch_frame_args_skip (gdbarch, 0);
2711 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2712 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2713
2714 /* Cell/B.E. cross-architecture unwinder support. */
2715 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2716
2717 /* Breakpoints. */
2718 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2719 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2720 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2721 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2722 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2723 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2724
2725 /* Overlays. */
2726 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2727
2728 return gdbarch;
2729 }
2730
2731 /* Provide a prototype to silence -Wmissing-prototypes. */
2732 extern initialize_file_ftype _initialize_spu_tdep;
2733
2734 void
2735 _initialize_spu_tdep (void)
2736 {
2737 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2738
2739 /* Add ourselves to objfile event chain. */
2740 observer_attach_new_objfile (spu_overlay_new_objfile);
2741 spu_overlay_data = register_objfile_data ();
2742
2743 /* Install spu stop-on-load handler. */
2744 observer_attach_new_objfile (spu_catch_start);
2745
2746 /* Add ourselves to normal_stop event chain. */
2747 observer_attach_normal_stop (spu_attach_normal_stop);
2748
2749 /* Add root prefix command for all "set spu"/"show spu" commands. */
2750 add_prefix_cmd ("spu", no_class, set_spu_command,
2751 _("Various SPU specific commands."),
2752 &setspucmdlist, "set spu ", 0, &setlist);
2753 add_prefix_cmd ("spu", no_class, show_spu_command,
2754 _("Various SPU specific commands."),
2755 &showspucmdlist, "show spu ", 0, &showlist);
2756
2757 /* Toggle whether or not to add a temporary breakpoint at the "main"
2758 function of new SPE contexts. */
2759 add_setshow_boolean_cmd ("stop-on-load", class_support,
2760 &spu_stop_on_load_p, _("\
2761 Set whether to stop for new SPE threads."),
2762 _("\
2763 Show whether to stop for new SPE threads."),
2764 _("\
2765 Use \"on\" to give control to the user when a new SPE thread\n\
2766 enters its \"main\" function.\n\
2767 Use \"off\" to disable stopping for new SPE threads."),
2768 NULL,
2769 show_spu_stop_on_load,
2770 &setspucmdlist, &showspucmdlist);
2771
2772 /* Toggle whether or not to automatically flush the software-managed
2773 cache whenever SPE execution stops. */
2774 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2775 &spu_auto_flush_cache_p, _("\
2776 Set whether to automatically flush the software-managed cache."),
2777 _("\
2778 Show whether to automatically flush the software-managed cache."),
2779 _("\
2780 Use \"on\" to automatically flush the software-managed cache\n\
2781 whenever SPE execution stops.\n\
2782 Use \"off\" to never automatically flush the software-managed cache."),
2783 NULL,
2784 show_spu_auto_flush_cache,
2785 &setspucmdlist, &showspucmdlist);
2786
2787 /* Add root prefix command for all "info spu" commands. */
2788 add_prefix_cmd ("spu", class_info, info_spu_command,
2789 _("Various SPU specific commands."),
2790 &infospucmdlist, "info spu ", 0, &infolist);
2791
2792 /* Add various "info spu" commands. */
2793 add_cmd ("event", class_info, info_spu_event_command,
2794 _("Display SPU event facility status.\n"),
2795 &infospucmdlist);
2796 add_cmd ("signal", class_info, info_spu_signal_command,
2797 _("Display SPU signal notification facility status.\n"),
2798 &infospucmdlist);
2799 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2800 _("Display SPU mailbox facility status.\n"),
2801 &infospucmdlist);
2802 add_cmd ("dma", class_info, info_spu_dma_command,
2803 _("Display MFC DMA status.\n"),
2804 &infospucmdlist);
2805 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2806 _("Display MFC Proxy-DMA status.\n"),
2807 &infospucmdlist);
2808 }
This page took 0.088147 seconds and 4 git commands to generate.