2009-10-23 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static void
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
201 }
202
203 static void
204 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206 {
207 gdb_byte reg[16];
208 char annex[32];
209 ULONGEST id;
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243 }
244
245 static void
246 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261 }
262
263 static void
264 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266 {
267 gdb_byte reg[16];
268 char annex[32];
269 ULONGEST id;
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304 }
305
306 /* Value conversion -- access scalar values at the preferred slot. */
307
308 static struct value *
309 spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
311 {
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
314
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
320
321 return value;
322 }
323
324 /* Register groups. */
325
326 static int
327 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329 {
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344 }
345
346
347 /* Address handling. */
348
349 static int
350 spu_gdbarch_id (struct gdbarch *gdbarch)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365 }
366
367 static ULONGEST
368 spu_lslr (int id)
369 {
370 gdb_byte buf[32];
371 char annex[32];
372
373 if (id == -1)
374 return SPU_LS_SIZE - 1;
375
376 xsnprintf (annex, sizeof annex, "%d/lslr", id);
377 memset (buf, 0, sizeof buf);
378 target_read (&current_target, TARGET_OBJECT_SPU, annex,
379 buf, 0, sizeof buf);
380
381 return strtoulst (buf, NULL, 16);
382 }
383
384 static int
385 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
386 {
387 if (dwarf2_addr_class == 1)
388 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
389 else
390 return 0;
391 }
392
393 static const char *
394 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
395 {
396 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
397 return "__ea";
398 else
399 return NULL;
400 }
401
402 static int
403 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
404 const char *name, int *type_flags_ptr)
405 {
406 if (strcmp (name, "__ea") == 0)
407 {
408 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
409 return 1;
410 }
411 else
412 return 0;
413 }
414
415 static void
416 spu_address_to_pointer (struct gdbarch *gdbarch,
417 struct type *type, gdb_byte *buf, CORE_ADDR addr)
418 {
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
421 SPUADDR_ADDR (addr));
422 }
423
424 static CORE_ADDR
425 spu_pointer_to_address (struct gdbarch *gdbarch,
426 struct type *type, const gdb_byte *buf)
427 {
428 int id = spu_gdbarch_id (gdbarch);
429 ULONGEST lslr = spu_lslr (id);
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 ULONGEST addr
432 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
433
434 /* Do not convert __ea pointers. */
435 if (TYPE_ADDRESS_CLASS_1 (type))
436 return addr;
437
438 return addr? SPUADDR (id, addr & lslr) : 0;
439 }
440
441 static CORE_ADDR
442 spu_integer_to_address (struct gdbarch *gdbarch,
443 struct type *type, const gdb_byte *buf)
444 {
445 int id = spu_gdbarch_id (gdbarch);
446 ULONGEST lslr = spu_lslr (id);
447 ULONGEST addr = unpack_long (type, buf);
448
449 return SPUADDR (id, addr & lslr);
450 }
451
452
453 /* Decoding SPU instructions. */
454
455 enum
456 {
457 op_lqd = 0x34,
458 op_lqx = 0x3c4,
459 op_lqa = 0x61,
460 op_lqr = 0x67,
461 op_stqd = 0x24,
462 op_stqx = 0x144,
463 op_stqa = 0x41,
464 op_stqr = 0x47,
465
466 op_il = 0x081,
467 op_ila = 0x21,
468 op_a = 0x0c0,
469 op_ai = 0x1c,
470
471 op_selb = 0x4,
472
473 op_br = 0x64,
474 op_bra = 0x60,
475 op_brsl = 0x66,
476 op_brasl = 0x62,
477 op_brnz = 0x42,
478 op_brz = 0x40,
479 op_brhnz = 0x46,
480 op_brhz = 0x44,
481 op_bi = 0x1a8,
482 op_bisl = 0x1a9,
483 op_biz = 0x128,
484 op_binz = 0x129,
485 op_bihz = 0x12a,
486 op_bihnz = 0x12b,
487 };
488
489 static int
490 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
491 {
492 if ((insn >> 21) == op)
493 {
494 *rt = insn & 127;
495 *ra = (insn >> 7) & 127;
496 *rb = (insn >> 14) & 127;
497 return 1;
498 }
499
500 return 0;
501 }
502
503 static int
504 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
505 {
506 if ((insn >> 28) == op)
507 {
508 *rt = (insn >> 21) & 127;
509 *ra = (insn >> 7) & 127;
510 *rb = (insn >> 14) & 127;
511 *rc = insn & 127;
512 return 1;
513 }
514
515 return 0;
516 }
517
518 static int
519 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
520 {
521 if ((insn >> 21) == op)
522 {
523 *rt = insn & 127;
524 *ra = (insn >> 7) & 127;
525 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 static int
533 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
534 {
535 if ((insn >> 24) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
548 {
549 if ((insn >> 23) == op)
550 {
551 *rt = insn & 127;
552 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
553 return 1;
554 }
555
556 return 0;
557 }
558
559 static int
560 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
561 {
562 if ((insn >> 25) == op)
563 {
564 *rt = insn & 127;
565 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
566 return 1;
567 }
568
569 return 0;
570 }
571
572 static int
573 is_branch (unsigned int insn, int *offset, int *reg)
574 {
575 int rt, i7, i16;
576
577 if (is_ri16 (insn, op_br, &rt, &i16)
578 || is_ri16 (insn, op_brsl, &rt, &i16)
579 || is_ri16 (insn, op_brnz, &rt, &i16)
580 || is_ri16 (insn, op_brz, &rt, &i16)
581 || is_ri16 (insn, op_brhnz, &rt, &i16)
582 || is_ri16 (insn, op_brhz, &rt, &i16))
583 {
584 *reg = SPU_PC_REGNUM;
585 *offset = i16 << 2;
586 return 1;
587 }
588
589 if (is_ri16 (insn, op_bra, &rt, &i16)
590 || is_ri16 (insn, op_brasl, &rt, &i16))
591 {
592 *reg = -1;
593 *offset = i16 << 2;
594 return 1;
595 }
596
597 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
598 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
599 || is_ri7 (insn, op_biz, &rt, reg, &i7)
600 || is_ri7 (insn, op_binz, &rt, reg, &i7)
601 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
602 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
603 {
604 *offset = 0;
605 return 1;
606 }
607
608 return 0;
609 }
610
611
612 /* Prolog parsing. */
613
614 struct spu_prologue_data
615 {
616 /* Stack frame size. -1 if analysis was unsuccessful. */
617 int size;
618
619 /* How to find the CFA. The CFA is equal to SP at function entry. */
620 int cfa_reg;
621 int cfa_offset;
622
623 /* Offset relative to CFA where a register is saved. -1 if invalid. */
624 int reg_offset[SPU_NUM_GPRS];
625 };
626
627 static CORE_ADDR
628 spu_analyze_prologue (struct gdbarch *gdbarch,
629 CORE_ADDR start_pc, CORE_ADDR end_pc,
630 struct spu_prologue_data *data)
631 {
632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
633 int found_sp = 0;
634 int found_fp = 0;
635 int found_lr = 0;
636 int reg_immed[SPU_NUM_GPRS];
637 gdb_byte buf[16];
638 CORE_ADDR prolog_pc = start_pc;
639 CORE_ADDR pc;
640 int i;
641
642
643 /* Initialize DATA to default values. */
644 data->size = -1;
645
646 data->cfa_reg = SPU_RAW_SP_REGNUM;
647 data->cfa_offset = 0;
648
649 for (i = 0; i < SPU_NUM_GPRS; i++)
650 data->reg_offset[i] = -1;
651
652 /* Set up REG_IMMED array. This is non-zero for a register if we know its
653 preferred slot currently holds this immediate value. */
654 for (i = 0; i < SPU_NUM_GPRS; i++)
655 reg_immed[i] = 0;
656
657 /* Scan instructions until the first branch.
658
659 The following instructions are important prolog components:
660
661 - The first instruction to set up the stack pointer.
662 - The first instruction to set up the frame pointer.
663 - The first instruction to save the link register.
664
665 We return the instruction after the latest of these three,
666 or the incoming PC if none is found. The first instruction
667 to set up the stack pointer also defines the frame size.
668
669 Note that instructions saving incoming arguments to their stack
670 slots are not counted as important, because they are hard to
671 identify with certainty. This should not matter much, because
672 arguments are relevant only in code compiled with debug data,
673 and in such code the GDB core will advance until the first source
674 line anyway, using SAL data.
675
676 For purposes of stack unwinding, we analyze the following types
677 of instructions in addition:
678
679 - Any instruction adding to the current frame pointer.
680 - Any instruction loading an immediate constant into a register.
681 - Any instruction storing a register onto the stack.
682
683 These are used to compute the CFA and REG_OFFSET output. */
684
685 for (pc = start_pc; pc < end_pc; pc += 4)
686 {
687 unsigned int insn;
688 int rt, ra, rb, rc, immed;
689
690 if (target_read_memory (pc, buf, 4))
691 break;
692 insn = extract_unsigned_integer (buf, 4, byte_order);
693
694 /* AI is the typical instruction to set up a stack frame.
695 It is also used to initialize the frame pointer. */
696 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
697 {
698 if (rt == data->cfa_reg && ra == data->cfa_reg)
699 data->cfa_offset -= immed;
700
701 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
702 && !found_sp)
703 {
704 found_sp = 1;
705 prolog_pc = pc + 4;
706
707 data->size = -immed;
708 }
709 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
710 && !found_fp)
711 {
712 found_fp = 1;
713 prolog_pc = pc + 4;
714
715 data->cfa_reg = SPU_FP_REGNUM;
716 data->cfa_offset -= immed;
717 }
718 }
719
720 /* A is used to set up stack frames of size >= 512 bytes.
721 If we have tracked the contents of the addend register,
722 we can handle this as well. */
723 else if (is_rr (insn, op_a, &rt, &ra, &rb))
724 {
725 if (rt == data->cfa_reg && ra == data->cfa_reg)
726 {
727 if (reg_immed[rb] != 0)
728 data->cfa_offset -= reg_immed[rb];
729 else
730 data->cfa_reg = -1; /* We don't know the CFA any more. */
731 }
732
733 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
734 && !found_sp)
735 {
736 found_sp = 1;
737 prolog_pc = pc + 4;
738
739 if (reg_immed[rb] != 0)
740 data->size = -reg_immed[rb];
741 }
742 }
743
744 /* We need to track IL and ILA used to load immediate constants
745 in case they are later used as input to an A instruction. */
746 else if (is_ri16 (insn, op_il, &rt, &immed))
747 {
748 reg_immed[rt] = immed;
749
750 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
751 found_sp = 1;
752 }
753
754 else if (is_ri18 (insn, op_ila, &rt, &immed))
755 {
756 reg_immed[rt] = immed & 0x3ffff;
757
758 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
759 found_sp = 1;
760 }
761
762 /* STQD is used to save registers to the stack. */
763 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
764 {
765 if (ra == data->cfa_reg)
766 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
767
768 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
769 && !found_lr)
770 {
771 found_lr = 1;
772 prolog_pc = pc + 4;
773 }
774 }
775
776 /* _start uses SELB to set up the stack pointer. */
777 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
778 {
779 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
780 found_sp = 1;
781 }
782
783 /* We terminate if we find a branch. */
784 else if (is_branch (insn, &immed, &ra))
785 break;
786 }
787
788
789 /* If we successfully parsed until here, and didn't find any instruction
790 modifying SP, we assume we have a frameless function. */
791 if (!found_sp)
792 data->size = 0;
793
794 /* Return cooked instead of raw SP. */
795 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
796 data->cfa_reg = SPU_SP_REGNUM;
797
798 return prolog_pc;
799 }
800
801 /* Return the first instruction after the prologue starting at PC. */
802 static CORE_ADDR
803 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
804 {
805 struct spu_prologue_data data;
806 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
807 }
808
809 /* Return the frame pointer in use at address PC. */
810 static void
811 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
812 int *reg, LONGEST *offset)
813 {
814 struct spu_prologue_data data;
815 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
816
817 if (data.size != -1 && data.cfa_reg != -1)
818 {
819 /* The 'frame pointer' address is CFA minus frame size. */
820 *reg = data.cfa_reg;
821 *offset = data.cfa_offset - data.size;
822 }
823 else
824 {
825 /* ??? We don't really know ... */
826 *reg = SPU_SP_REGNUM;
827 *offset = 0;
828 }
829 }
830
831 /* Return true if we are in the function's epilogue, i.e. after the
832 instruction that destroyed the function's stack frame.
833
834 1) scan forward from the point of execution:
835 a) If you find an instruction that modifies the stack pointer
836 or transfers control (except a return), execution is not in
837 an epilogue, return.
838 b) Stop scanning if you find a return instruction or reach the
839 end of the function or reach the hard limit for the size of
840 an epilogue.
841 2) scan backward from the point of execution:
842 a) If you find an instruction that modifies the stack pointer,
843 execution *is* in an epilogue, return.
844 b) Stop scanning if you reach an instruction that transfers
845 control or the beginning of the function or reach the hard
846 limit for the size of an epilogue. */
847
848 static int
849 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
850 {
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
853 bfd_byte buf[4];
854 unsigned int insn;
855 int rt, ra, rb, rc, immed;
856
857 /* Find the search limits based on function boundaries and hard limit.
858 We assume the epilogue can be up to 64 instructions long. */
859
860 const int spu_max_epilogue_size = 64 * 4;
861
862 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
863 return 0;
864
865 if (pc - func_start < spu_max_epilogue_size)
866 epilogue_start = func_start;
867 else
868 epilogue_start = pc - spu_max_epilogue_size;
869
870 if (func_end - pc < spu_max_epilogue_size)
871 epilogue_end = func_end;
872 else
873 epilogue_end = pc + spu_max_epilogue_size;
874
875 /* Scan forward until next 'bi $0'. */
876
877 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
878 {
879 if (target_read_memory (scan_pc, buf, 4))
880 return 0;
881 insn = extract_unsigned_integer (buf, 4, byte_order);
882
883 if (is_branch (insn, &immed, &ra))
884 {
885 if (immed == 0 && ra == SPU_LR_REGNUM)
886 break;
887
888 return 0;
889 }
890
891 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
892 || is_rr (insn, op_a, &rt, &ra, &rb)
893 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
894 {
895 if (rt == SPU_RAW_SP_REGNUM)
896 return 0;
897 }
898 }
899
900 if (scan_pc >= epilogue_end)
901 return 0;
902
903 /* Scan backward until adjustment to stack pointer (R1). */
904
905 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
906 {
907 if (target_read_memory (scan_pc, buf, 4))
908 return 0;
909 insn = extract_unsigned_integer (buf, 4, byte_order);
910
911 if (is_branch (insn, &immed, &ra))
912 return 0;
913
914 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
915 || is_rr (insn, op_a, &rt, &ra, &rb)
916 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
917 {
918 if (rt == SPU_RAW_SP_REGNUM)
919 return 1;
920 }
921 }
922
923 return 0;
924 }
925
926
927 /* Normal stack frames. */
928
929 struct spu_unwind_cache
930 {
931 CORE_ADDR func;
932 CORE_ADDR frame_base;
933 CORE_ADDR local_base;
934
935 struct trad_frame_saved_reg *saved_regs;
936 };
937
938 static struct spu_unwind_cache *
939 spu_frame_unwind_cache (struct frame_info *this_frame,
940 void **this_prologue_cache)
941 {
942 struct gdbarch *gdbarch = get_frame_arch (this_frame);
943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
944 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
945 struct spu_unwind_cache *info;
946 struct spu_prologue_data data;
947 CORE_ADDR id = tdep->id;
948 gdb_byte buf[16];
949
950 if (*this_prologue_cache)
951 return *this_prologue_cache;
952
953 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
954 *this_prologue_cache = info;
955 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
956 info->frame_base = 0;
957 info->local_base = 0;
958
959 /* Find the start of the current function, and analyze its prologue. */
960 info->func = get_frame_func (this_frame);
961 if (info->func == 0)
962 {
963 /* Fall back to using the current PC as frame ID. */
964 info->func = get_frame_pc (this_frame);
965 data.size = -1;
966 }
967 else
968 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
969 &data);
970
971 /* If successful, use prologue analysis data. */
972 if (data.size != -1 && data.cfa_reg != -1)
973 {
974 CORE_ADDR cfa;
975 int i;
976
977 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
978 get_frame_register (this_frame, data.cfa_reg, buf);
979 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
980 cfa = SPUADDR (id, cfa);
981
982 /* Call-saved register slots. */
983 for (i = 0; i < SPU_NUM_GPRS; i++)
984 if (i == SPU_LR_REGNUM
985 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
986 if (data.reg_offset[i] != -1)
987 info->saved_regs[i].addr = cfa - data.reg_offset[i];
988
989 /* Frame bases. */
990 info->frame_base = cfa;
991 info->local_base = cfa - data.size;
992 }
993
994 /* Otherwise, fall back to reading the backchain link. */
995 else
996 {
997 CORE_ADDR reg;
998 LONGEST backchain;
999 int status;
1000
1001 /* Get the backchain. */
1002 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1003 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1004 &backchain);
1005
1006 /* A zero backchain terminates the frame chain. Also, sanity
1007 check against the local store size limit. */
1008 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
1009 {
1010 /* Assume the link register is saved into its slot. */
1011 if (backchain + 16 < SPU_LS_SIZE)
1012 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
1013
1014 /* Frame bases. */
1015 info->frame_base = SPUADDR (id, backchain);
1016 info->local_base = SPUADDR (id, reg);
1017 }
1018 }
1019
1020 /* If we didn't find a frame, we cannot determine SP / return address. */
1021 if (info->frame_base == 0)
1022 return info;
1023
1024 /* The previous SP is equal to the CFA. */
1025 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1026 SPUADDR_ADDR (info->frame_base));
1027
1028 /* Read full contents of the unwound link register in order to
1029 be able to determine the return address. */
1030 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1031 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1032 else
1033 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1034
1035 /* Normally, the return address is contained in the slot 0 of the
1036 link register, and slots 1-3 are zero. For an overlay return,
1037 slot 0 contains the address of the overlay manager return stub,
1038 slot 1 contains the partition number of the overlay section to
1039 be returned to, and slot 2 contains the return address within
1040 that section. Return the latter address in that case. */
1041 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1042 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1043 extract_unsigned_integer (buf + 8, 4, byte_order));
1044 else
1045 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1046 extract_unsigned_integer (buf, 4, byte_order));
1047
1048 return info;
1049 }
1050
1051 static void
1052 spu_frame_this_id (struct frame_info *this_frame,
1053 void **this_prologue_cache, struct frame_id *this_id)
1054 {
1055 struct spu_unwind_cache *info =
1056 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1057
1058 if (info->frame_base == 0)
1059 return;
1060
1061 *this_id = frame_id_build (info->frame_base, info->func);
1062 }
1063
1064 static struct value *
1065 spu_frame_prev_register (struct frame_info *this_frame,
1066 void **this_prologue_cache, int regnum)
1067 {
1068 struct spu_unwind_cache *info
1069 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1070
1071 /* Special-case the stack pointer. */
1072 if (regnum == SPU_RAW_SP_REGNUM)
1073 regnum = SPU_SP_REGNUM;
1074
1075 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1076 }
1077
1078 static const struct frame_unwind spu_frame_unwind = {
1079 NORMAL_FRAME,
1080 spu_frame_this_id,
1081 spu_frame_prev_register,
1082 NULL,
1083 default_frame_sniffer
1084 };
1085
1086 static CORE_ADDR
1087 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1088 {
1089 struct spu_unwind_cache *info
1090 = spu_frame_unwind_cache (this_frame, this_cache);
1091 return info->local_base;
1092 }
1093
1094 static const struct frame_base spu_frame_base = {
1095 &spu_frame_unwind,
1096 spu_frame_base_address,
1097 spu_frame_base_address,
1098 spu_frame_base_address
1099 };
1100
1101 static CORE_ADDR
1102 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1103 {
1104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1105 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1106 /* Mask off interrupt enable bit. */
1107 return SPUADDR (tdep->id, pc & -4);
1108 }
1109
1110 static CORE_ADDR
1111 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1112 {
1113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1114 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1115 return SPUADDR (tdep->id, sp);
1116 }
1117
1118 static CORE_ADDR
1119 spu_read_pc (struct regcache *regcache)
1120 {
1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1122 ULONGEST pc;
1123 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1124 /* Mask off interrupt enable bit. */
1125 return SPUADDR (tdep->id, pc & -4);
1126 }
1127
1128 static void
1129 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1130 {
1131 /* Keep interrupt enabled state unchanged. */
1132 ULONGEST old_pc;
1133 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1134 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1135 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1136 }
1137
1138
1139 /* Cell/B.E. cross-architecture unwinder support. */
1140
1141 struct spu2ppu_cache
1142 {
1143 struct frame_id frame_id;
1144 struct regcache *regcache;
1145 };
1146
1147 static struct gdbarch *
1148 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1149 {
1150 struct spu2ppu_cache *cache = *this_cache;
1151 return get_regcache_arch (cache->regcache);
1152 }
1153
1154 static void
1155 spu2ppu_this_id (struct frame_info *this_frame,
1156 void **this_cache, struct frame_id *this_id)
1157 {
1158 struct spu2ppu_cache *cache = *this_cache;
1159 *this_id = cache->frame_id;
1160 }
1161
1162 static struct value *
1163 spu2ppu_prev_register (struct frame_info *this_frame,
1164 void **this_cache, int regnum)
1165 {
1166 struct spu2ppu_cache *cache = *this_cache;
1167 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1168 gdb_byte *buf;
1169
1170 buf = alloca (register_size (gdbarch, regnum));
1171 regcache_cooked_read (cache->regcache, regnum, buf);
1172 return frame_unwind_got_bytes (this_frame, regnum, buf);
1173 }
1174
1175 static int
1176 spu2ppu_sniffer (const struct frame_unwind *self,
1177 struct frame_info *this_frame, void **this_prologue_cache)
1178 {
1179 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1181 CORE_ADDR base, func, backchain;
1182 gdb_byte buf[4];
1183
1184 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1185 return 0;
1186
1187 base = get_frame_sp (this_frame);
1188 func = get_frame_pc (this_frame);
1189 if (target_read_memory (base, buf, 4))
1190 return 0;
1191 backchain = extract_unsigned_integer (buf, 4, byte_order);
1192
1193 if (!backchain)
1194 {
1195 struct frame_info *fi;
1196
1197 struct spu2ppu_cache *cache
1198 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1199
1200 cache->frame_id = frame_id_build (base + 16, func);
1201
1202 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1203 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1204 break;
1205
1206 if (fi)
1207 {
1208 cache->regcache = frame_save_as_regcache (fi);
1209 *this_prologue_cache = cache;
1210 return 1;
1211 }
1212 else
1213 {
1214 struct regcache *regcache;
1215 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1216 cache->regcache = regcache_dup (regcache);
1217 *this_prologue_cache = cache;
1218 return 1;
1219 }
1220 }
1221
1222 return 0;
1223 }
1224
1225 static void
1226 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1227 {
1228 struct spu2ppu_cache *cache = this_cache;
1229 regcache_xfree (cache->regcache);
1230 }
1231
1232 static const struct frame_unwind spu2ppu_unwind = {
1233 ARCH_FRAME,
1234 spu2ppu_this_id,
1235 spu2ppu_prev_register,
1236 NULL,
1237 spu2ppu_sniffer,
1238 spu2ppu_dealloc_cache,
1239 spu2ppu_prev_arch,
1240 };
1241
1242
1243 /* Function calling convention. */
1244
1245 static CORE_ADDR
1246 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1247 {
1248 return sp & ~15;
1249 }
1250
1251 static CORE_ADDR
1252 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1253 struct value **args, int nargs, struct type *value_type,
1254 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1255 struct regcache *regcache)
1256 {
1257 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1258 sp = (sp - 4) & ~15;
1259 /* Store the address of that breakpoint */
1260 *bp_addr = sp;
1261 /* The call starts at the callee's entry point. */
1262 *real_pc = funaddr;
1263
1264 return sp;
1265 }
1266
1267 static int
1268 spu_scalar_value_p (struct type *type)
1269 {
1270 switch (TYPE_CODE (type))
1271 {
1272 case TYPE_CODE_INT:
1273 case TYPE_CODE_ENUM:
1274 case TYPE_CODE_RANGE:
1275 case TYPE_CODE_CHAR:
1276 case TYPE_CODE_BOOL:
1277 case TYPE_CODE_PTR:
1278 case TYPE_CODE_REF:
1279 return TYPE_LENGTH (type) <= 16;
1280
1281 default:
1282 return 0;
1283 }
1284 }
1285
1286 static void
1287 spu_value_to_regcache (struct regcache *regcache, int regnum,
1288 struct type *type, const gdb_byte *in)
1289 {
1290 int len = TYPE_LENGTH (type);
1291
1292 if (spu_scalar_value_p (type))
1293 {
1294 int preferred_slot = len < 4 ? 4 - len : 0;
1295 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1296 }
1297 else
1298 {
1299 while (len >= 16)
1300 {
1301 regcache_cooked_write (regcache, regnum++, in);
1302 in += 16;
1303 len -= 16;
1304 }
1305
1306 if (len > 0)
1307 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1308 }
1309 }
1310
1311 static void
1312 spu_regcache_to_value (struct regcache *regcache, int regnum,
1313 struct type *type, gdb_byte *out)
1314 {
1315 int len = TYPE_LENGTH (type);
1316
1317 if (spu_scalar_value_p (type))
1318 {
1319 int preferred_slot = len < 4 ? 4 - len : 0;
1320 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1321 }
1322 else
1323 {
1324 while (len >= 16)
1325 {
1326 regcache_cooked_read (regcache, regnum++, out);
1327 out += 16;
1328 len -= 16;
1329 }
1330
1331 if (len > 0)
1332 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1333 }
1334 }
1335
1336 static CORE_ADDR
1337 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1338 struct regcache *regcache, CORE_ADDR bp_addr,
1339 int nargs, struct value **args, CORE_ADDR sp,
1340 int struct_return, CORE_ADDR struct_addr)
1341 {
1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1343 CORE_ADDR sp_delta;
1344 int i;
1345 int regnum = SPU_ARG1_REGNUM;
1346 int stack_arg = -1;
1347 gdb_byte buf[16];
1348
1349 /* Set the return address. */
1350 memset (buf, 0, sizeof buf);
1351 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1352 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1353
1354 /* If STRUCT_RETURN is true, then the struct return address (in
1355 STRUCT_ADDR) will consume the first argument-passing register.
1356 Both adjust the register count and store that value. */
1357 if (struct_return)
1358 {
1359 memset (buf, 0, sizeof buf);
1360 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1361 regcache_cooked_write (regcache, regnum++, buf);
1362 }
1363
1364 /* Fill in argument registers. */
1365 for (i = 0; i < nargs; i++)
1366 {
1367 struct value *arg = args[i];
1368 struct type *type = check_typedef (value_type (arg));
1369 const gdb_byte *contents = value_contents (arg);
1370 int len = TYPE_LENGTH (type);
1371 int n_regs = align_up (len, 16) / 16;
1372
1373 /* If the argument doesn't wholly fit into registers, it and
1374 all subsequent arguments go to the stack. */
1375 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1376 {
1377 stack_arg = i;
1378 break;
1379 }
1380
1381 spu_value_to_regcache (regcache, regnum, type, contents);
1382 regnum += n_regs;
1383 }
1384
1385 /* Overflow arguments go to the stack. */
1386 if (stack_arg != -1)
1387 {
1388 CORE_ADDR ap;
1389
1390 /* Allocate all required stack size. */
1391 for (i = stack_arg; i < nargs; i++)
1392 {
1393 struct type *type = check_typedef (value_type (args[i]));
1394 sp -= align_up (TYPE_LENGTH (type), 16);
1395 }
1396
1397 /* Fill in stack arguments. */
1398 ap = sp;
1399 for (i = stack_arg; i < nargs; i++)
1400 {
1401 struct value *arg = args[i];
1402 struct type *type = check_typedef (value_type (arg));
1403 int len = TYPE_LENGTH (type);
1404 int preferred_slot;
1405
1406 if (spu_scalar_value_p (type))
1407 preferred_slot = len < 4 ? 4 - len : 0;
1408 else
1409 preferred_slot = 0;
1410
1411 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1412 ap += align_up (TYPE_LENGTH (type), 16);
1413 }
1414 }
1415
1416 /* Allocate stack frame header. */
1417 sp -= 32;
1418
1419 /* Store stack back chain. */
1420 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1421 target_write_memory (sp, buf, 16);
1422
1423 /* Finally, update all slots of the SP register. */
1424 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1425 for (i = 0; i < 4; i++)
1426 {
1427 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1428 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1429 }
1430 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1431
1432 return sp;
1433 }
1434
1435 static struct frame_id
1436 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1437 {
1438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1439 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1440 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1441 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1442 }
1443
1444 /* Function return value access. */
1445
1446 static enum return_value_convention
1447 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1448 struct type *type, struct regcache *regcache,
1449 gdb_byte *out, const gdb_byte *in)
1450 {
1451 enum return_value_convention rvc;
1452
1453 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1454 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1455 else
1456 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1457
1458 if (in)
1459 {
1460 switch (rvc)
1461 {
1462 case RETURN_VALUE_REGISTER_CONVENTION:
1463 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1464 break;
1465
1466 case RETURN_VALUE_STRUCT_CONVENTION:
1467 error ("Cannot set function return value.");
1468 break;
1469 }
1470 }
1471 else if (out)
1472 {
1473 switch (rvc)
1474 {
1475 case RETURN_VALUE_REGISTER_CONVENTION:
1476 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1477 break;
1478
1479 case RETURN_VALUE_STRUCT_CONVENTION:
1480 error ("Function return value unknown.");
1481 break;
1482 }
1483 }
1484
1485 return rvc;
1486 }
1487
1488
1489 /* Breakpoints. */
1490
1491 static const gdb_byte *
1492 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1493 {
1494 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1495
1496 *lenptr = sizeof breakpoint;
1497 return breakpoint;
1498 }
1499
1500
1501 /* Software single-stepping support. */
1502
1503 static int
1504 spu_software_single_step (struct frame_info *frame)
1505 {
1506 struct gdbarch *gdbarch = get_frame_arch (frame);
1507 struct address_space *aspace = get_frame_address_space (frame);
1508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1509 CORE_ADDR pc, next_pc;
1510 unsigned int insn;
1511 int offset, reg;
1512 gdb_byte buf[4];
1513
1514 pc = get_frame_pc (frame);
1515
1516 if (target_read_memory (pc, buf, 4))
1517 return 1;
1518 insn = extract_unsigned_integer (buf, 4, byte_order);
1519
1520 /* Next sequential instruction is at PC + 4, except if the current
1521 instruction is a PPE-assisted call, in which case it is at PC + 8.
1522 Wrap around LS limit to be on the safe side. */
1523 if ((insn & 0xffffff00) == 0x00002100)
1524 next_pc = (SPUADDR_ADDR (pc) + 8) & (SPU_LS_SIZE - 1);
1525 else
1526 next_pc = (SPUADDR_ADDR (pc) + 4) & (SPU_LS_SIZE - 1);
1527
1528 insert_single_step_breakpoint (gdbarch,
1529 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1530
1531 if (is_branch (insn, &offset, &reg))
1532 {
1533 CORE_ADDR target = offset;
1534
1535 if (reg == SPU_PC_REGNUM)
1536 target += SPUADDR_ADDR (pc);
1537 else if (reg != -1)
1538 {
1539 get_frame_register_bytes (frame, reg, 0, 4, buf);
1540 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1541 }
1542
1543 target = target & (SPU_LS_SIZE - 1);
1544 if (target != next_pc)
1545 insert_single_step_breakpoint (gdbarch, aspace,
1546 SPUADDR (SPUADDR_SPU (pc), target));
1547 }
1548
1549 return 1;
1550 }
1551
1552
1553 /* Longjmp support. */
1554
1555 static int
1556 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1557 {
1558 struct gdbarch *gdbarch = get_frame_arch (frame);
1559 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1561 gdb_byte buf[4];
1562 CORE_ADDR jb_addr;
1563
1564 /* Jump buffer is pointed to by the argument register $r3. */
1565 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1566 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1567 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1568 return 0;
1569
1570 *pc = extract_unsigned_integer (buf, 4, byte_order);
1571 *pc = SPUADDR (tdep->id, *pc);
1572 return 1;
1573 }
1574
1575
1576 /* Disassembler. */
1577
1578 struct spu_dis_asm_data
1579 {
1580 struct gdbarch *gdbarch;
1581 int id;
1582 };
1583
1584 static void
1585 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1586 {
1587 struct spu_dis_asm_data *data = info->application_data;
1588 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1589 }
1590
1591 static int
1592 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1593 {
1594 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1595 SPU ID encoded in the high bits is added back when we call print_address. */
1596 struct disassemble_info spu_info = *info;
1597 struct spu_dis_asm_data data;
1598 data.gdbarch = info->application_data;
1599 data.id = SPUADDR_SPU (memaddr);
1600
1601 spu_info.application_data = &data;
1602 spu_info.print_address_func = spu_dis_asm_print_address;
1603 return print_insn_spu (memaddr, &spu_info);
1604 }
1605
1606
1607 /* Target overlays for the SPU overlay manager.
1608
1609 See the documentation of simple_overlay_update for how the
1610 interface is supposed to work.
1611
1612 Data structures used by the overlay manager:
1613
1614 struct ovly_table
1615 {
1616 u32 vma;
1617 u32 size;
1618 u32 pos;
1619 u32 buf;
1620 } _ovly_table[]; -- one entry per overlay section
1621
1622 struct ovly_buf_table
1623 {
1624 u32 mapped;
1625 } _ovly_buf_table[]; -- one entry per overlay buffer
1626
1627 _ovly_table should never change.
1628
1629 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1630 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1631 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1632
1633 mapped is an index into _ovly_table. Both the mapped and buf indices start
1634 from one to reference the first entry in their respective tables. */
1635
1636 /* Using the per-objfile private data mechanism, we store for each
1637 objfile an array of "struct spu_overlay_table" structures, one
1638 for each obj_section of the objfile. This structure holds two
1639 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1640 is *not* an overlay section. If it is non-zero, it represents
1641 a target address. The overlay section is mapped iff the target
1642 integer at this location equals MAPPED_VAL. */
1643
1644 static const struct objfile_data *spu_overlay_data;
1645
1646 struct spu_overlay_table
1647 {
1648 CORE_ADDR mapped_ptr;
1649 CORE_ADDR mapped_val;
1650 };
1651
1652 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1653 the _ovly_table data structure from the target and initialize the
1654 spu_overlay_table data structure from it. */
1655 static struct spu_overlay_table *
1656 spu_get_overlay_table (struct objfile *objfile)
1657 {
1658 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1659 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1660 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1661 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1662 unsigned ovly_table_size, ovly_buf_table_size;
1663 struct spu_overlay_table *tbl;
1664 struct obj_section *osect;
1665 char *ovly_table;
1666 int i;
1667
1668 tbl = objfile_data (objfile, spu_overlay_data);
1669 if (tbl)
1670 return tbl;
1671
1672 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1673 if (!ovly_table_msym)
1674 return NULL;
1675
1676 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1677 if (!ovly_buf_table_msym)
1678 return NULL;
1679
1680 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1681 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1682
1683 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1684 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1685
1686 ovly_table = xmalloc (ovly_table_size);
1687 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1688
1689 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1690 objfile->sections_end - objfile->sections,
1691 struct spu_overlay_table);
1692
1693 for (i = 0; i < ovly_table_size / 16; i++)
1694 {
1695 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1696 4, byte_order);
1697 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1698 4, byte_order);
1699 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1700 4, byte_order);
1701 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1702 4, byte_order);
1703
1704 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1705 continue;
1706
1707 ALL_OBJFILE_OSECTIONS (objfile, osect)
1708 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1709 && pos == osect->the_bfd_section->filepos)
1710 {
1711 int ndx = osect - objfile->sections;
1712 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1713 tbl[ndx].mapped_val = i + 1;
1714 break;
1715 }
1716 }
1717
1718 xfree (ovly_table);
1719 set_objfile_data (objfile, spu_overlay_data, tbl);
1720 return tbl;
1721 }
1722
1723 /* Read _ovly_buf_table entry from the target to dermine whether
1724 OSECT is currently mapped, and update the mapped state. */
1725 static void
1726 spu_overlay_update_osect (struct obj_section *osect)
1727 {
1728 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1729 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1730 struct spu_overlay_table *ovly_table;
1731 CORE_ADDR id, val;
1732
1733 ovly_table = spu_get_overlay_table (osect->objfile);
1734 if (!ovly_table)
1735 return;
1736
1737 ovly_table += osect - osect->objfile->sections;
1738 if (ovly_table->mapped_ptr == 0)
1739 return;
1740
1741 id = SPUADDR_SPU (obj_section_addr (osect));
1742 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1743 4, byte_order);
1744 osect->ovly_mapped = (val == ovly_table->mapped_val);
1745 }
1746
1747 /* If OSECT is NULL, then update all sections' mapped state.
1748 If OSECT is non-NULL, then update only OSECT's mapped state. */
1749 static void
1750 spu_overlay_update (struct obj_section *osect)
1751 {
1752 /* Just one section. */
1753 if (osect)
1754 spu_overlay_update_osect (osect);
1755
1756 /* All sections. */
1757 else
1758 {
1759 struct objfile *objfile;
1760
1761 ALL_OBJSECTIONS (objfile, osect)
1762 if (section_is_overlay (osect))
1763 spu_overlay_update_osect (osect);
1764 }
1765 }
1766
1767 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1768 If there is one, go through all sections and make sure for non-
1769 overlay sections LMA equals VMA, while for overlay sections LMA
1770 is larger than local store size. */
1771 static void
1772 spu_overlay_new_objfile (struct objfile *objfile)
1773 {
1774 struct spu_overlay_table *ovly_table;
1775 struct obj_section *osect;
1776
1777 /* If we've already touched this file, do nothing. */
1778 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1779 return;
1780
1781 /* Consider only SPU objfiles. */
1782 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1783 return;
1784
1785 /* Check if this objfile has overlays. */
1786 ovly_table = spu_get_overlay_table (objfile);
1787 if (!ovly_table)
1788 return;
1789
1790 /* Now go and fiddle with all the LMAs. */
1791 ALL_OBJFILE_OSECTIONS (objfile, osect)
1792 {
1793 bfd *obfd = objfile->obfd;
1794 asection *bsect = osect->the_bfd_section;
1795 int ndx = osect - objfile->sections;
1796
1797 if (ovly_table[ndx].mapped_ptr == 0)
1798 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1799 else
1800 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1801 }
1802 }
1803
1804
1805 /* Insert temporary breakpoint on "main" function of newly loaded
1806 SPE context OBJFILE. */
1807 static void
1808 spu_catch_start (struct objfile *objfile)
1809 {
1810 struct minimal_symbol *minsym;
1811 struct symtab *symtab;
1812 CORE_ADDR pc;
1813 char buf[32];
1814
1815 /* Do this only if requested by "set spu stop-on-load on". */
1816 if (!spu_stop_on_load_p)
1817 return;
1818
1819 /* Consider only SPU objfiles. */
1820 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1821 return;
1822
1823 /* The main objfile is handled differently. */
1824 if (objfile == symfile_objfile)
1825 return;
1826
1827 /* There can be multiple symbols named "main". Search for the
1828 "main" in *this* objfile. */
1829 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1830 if (!minsym)
1831 return;
1832
1833 /* If we have debugging information, try to use it -- this
1834 will allow us to properly skip the prologue. */
1835 pc = SYMBOL_VALUE_ADDRESS (minsym);
1836 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1837 if (symtab != NULL)
1838 {
1839 struct blockvector *bv = BLOCKVECTOR (symtab);
1840 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1841 struct symbol *sym;
1842 struct symtab_and_line sal;
1843
1844 sym = lookup_block_symbol (block, "main", NULL, VAR_DOMAIN);
1845 if (sym)
1846 {
1847 fixup_symbol_section (sym, objfile);
1848 sal = find_function_start_sal (sym, 1);
1849 pc = sal.pc;
1850 }
1851 }
1852
1853 /* Use a numerical address for the set_breakpoint command to avoid having
1854 the breakpoint re-set incorrectly. */
1855 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1856 set_breakpoint (get_objfile_arch (objfile),
1857 buf, NULL /* condition */,
1858 0 /* hardwareflag */, 1 /* tempflag */,
1859 -1 /* thread */, 0 /* ignore_count */,
1860 0 /* pending */, 1 /* enabled */);
1861 }
1862
1863
1864 /* Look up OBJFILE loaded into FRAME's SPU context. */
1865 static struct objfile *
1866 spu_objfile_from_frame (struct frame_info *frame)
1867 {
1868 struct gdbarch *gdbarch = get_frame_arch (frame);
1869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1870 struct objfile *obj;
1871
1872 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1873 return NULL;
1874
1875 ALL_OBJFILES (obj)
1876 {
1877 if (obj->sections != obj->sections_end
1878 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1879 return obj;
1880 }
1881
1882 return NULL;
1883 }
1884
1885 /* Flush cache for ea pointer access if available. */
1886 static void
1887 flush_ea_cache (void)
1888 {
1889 struct minimal_symbol *msymbol;
1890 struct objfile *obj;
1891
1892 if (!has_stack_frames ())
1893 return;
1894
1895 obj = spu_objfile_from_frame (get_current_frame ());
1896 if (obj == NULL)
1897 return;
1898
1899 /* Lookup inferior function __cache_flush. */
1900 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1901 if (msymbol != NULL)
1902 {
1903 struct type *type;
1904 CORE_ADDR addr;
1905
1906 type = objfile_type (obj)->builtin_void;
1907 type = lookup_function_type (type);
1908 type = lookup_pointer_type (type);
1909 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1910
1911 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1912 }
1913 }
1914
1915 /* This handler is called when the inferior has stopped. If it is stopped in
1916 SPU architecture then flush the ea cache if used. */
1917 static void
1918 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1919 {
1920 if (!spu_auto_flush_cache_p)
1921 return;
1922
1923 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1924 re-entering this function when __cache_flush stops. */
1925 spu_auto_flush_cache_p = 0;
1926 flush_ea_cache ();
1927 spu_auto_flush_cache_p = 1;
1928 }
1929
1930
1931 /* "info spu" commands. */
1932
1933 static void
1934 info_spu_event_command (char *args, int from_tty)
1935 {
1936 struct frame_info *frame = get_selected_frame (NULL);
1937 ULONGEST event_status = 0;
1938 ULONGEST event_mask = 0;
1939 struct cleanup *chain;
1940 gdb_byte buf[100];
1941 char annex[32];
1942 LONGEST len;
1943 int rc, id;
1944
1945 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1946 error (_("\"info spu\" is only supported on the SPU architecture."));
1947
1948 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1949
1950 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1951 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1952 buf, 0, (sizeof (buf) - 1));
1953 if (len <= 0)
1954 error (_("Could not read event_status."));
1955 buf[len] = '\0';
1956 event_status = strtoulst (buf, NULL, 16);
1957
1958 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1959 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1960 buf, 0, (sizeof (buf) - 1));
1961 if (len <= 0)
1962 error (_("Could not read event_mask."));
1963 buf[len] = '\0';
1964 event_mask = strtoulst (buf, NULL, 16);
1965
1966 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1967
1968 if (ui_out_is_mi_like_p (uiout))
1969 {
1970 ui_out_field_fmt (uiout, "event_status",
1971 "0x%s", phex_nz (event_status, 4));
1972 ui_out_field_fmt (uiout, "event_mask",
1973 "0x%s", phex_nz (event_mask, 4));
1974 }
1975 else
1976 {
1977 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1978 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1979 }
1980
1981 do_cleanups (chain);
1982 }
1983
1984 static void
1985 info_spu_signal_command (char *args, int from_tty)
1986 {
1987 struct frame_info *frame = get_selected_frame (NULL);
1988 struct gdbarch *gdbarch = get_frame_arch (frame);
1989 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1990 ULONGEST signal1 = 0;
1991 ULONGEST signal1_type = 0;
1992 int signal1_pending = 0;
1993 ULONGEST signal2 = 0;
1994 ULONGEST signal2_type = 0;
1995 int signal2_pending = 0;
1996 struct cleanup *chain;
1997 char annex[32];
1998 gdb_byte buf[100];
1999 LONGEST len;
2000 int rc, id;
2001
2002 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2003 error (_("\"info spu\" is only supported on the SPU architecture."));
2004
2005 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2006
2007 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2008 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2009 if (len < 0)
2010 error (_("Could not read signal1."));
2011 else if (len == 4)
2012 {
2013 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2014 signal1_pending = 1;
2015 }
2016
2017 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2018 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2019 buf, 0, (sizeof (buf) - 1));
2020 if (len <= 0)
2021 error (_("Could not read signal1_type."));
2022 buf[len] = '\0';
2023 signal1_type = strtoulst (buf, NULL, 16);
2024
2025 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2026 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2027 if (len < 0)
2028 error (_("Could not read signal2."));
2029 else if (len == 4)
2030 {
2031 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2032 signal2_pending = 1;
2033 }
2034
2035 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2036 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2037 buf, 0, (sizeof (buf) - 1));
2038 if (len <= 0)
2039 error (_("Could not read signal2_type."));
2040 buf[len] = '\0';
2041 signal2_type = strtoulst (buf, NULL, 16);
2042
2043 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2044
2045 if (ui_out_is_mi_like_p (uiout))
2046 {
2047 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2048 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2049 ui_out_field_int (uiout, "signal1_type", signal1_type);
2050 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2051 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2052 ui_out_field_int (uiout, "signal2_type", signal2_type);
2053 }
2054 else
2055 {
2056 if (signal1_pending)
2057 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2058 else
2059 printf_filtered (_("Signal 1 not pending "));
2060
2061 if (signal1_type)
2062 printf_filtered (_("(Type Or)\n"));
2063 else
2064 printf_filtered (_("(Type Overwrite)\n"));
2065
2066 if (signal2_pending)
2067 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2068 else
2069 printf_filtered (_("Signal 2 not pending "));
2070
2071 if (signal2_type)
2072 printf_filtered (_("(Type Or)\n"));
2073 else
2074 printf_filtered (_("(Type Overwrite)\n"));
2075 }
2076
2077 do_cleanups (chain);
2078 }
2079
2080 static void
2081 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2082 const char *field, const char *msg)
2083 {
2084 struct cleanup *chain;
2085 int i;
2086
2087 if (nr <= 0)
2088 return;
2089
2090 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2091
2092 ui_out_table_header (uiout, 32, ui_left, field, msg);
2093 ui_out_table_body (uiout);
2094
2095 for (i = 0; i < nr; i++)
2096 {
2097 struct cleanup *val_chain;
2098 ULONGEST val;
2099 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2100 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2101 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2102 do_cleanups (val_chain);
2103
2104 if (!ui_out_is_mi_like_p (uiout))
2105 printf_filtered ("\n");
2106 }
2107
2108 do_cleanups (chain);
2109 }
2110
2111 static void
2112 info_spu_mailbox_command (char *args, int from_tty)
2113 {
2114 struct frame_info *frame = get_selected_frame (NULL);
2115 struct gdbarch *gdbarch = get_frame_arch (frame);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2117 struct cleanup *chain;
2118 char annex[32];
2119 gdb_byte buf[1024];
2120 LONGEST len;
2121 int i, id;
2122
2123 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2124 error (_("\"info spu\" is only supported on the SPU architecture."));
2125
2126 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2127
2128 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2129
2130 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2131 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2132 buf, 0, sizeof buf);
2133 if (len < 0)
2134 error (_("Could not read mbox_info."));
2135
2136 info_spu_mailbox_list (buf, len / 4, byte_order,
2137 "mbox", "SPU Outbound Mailbox");
2138
2139 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2140 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2141 buf, 0, sizeof buf);
2142 if (len < 0)
2143 error (_("Could not read ibox_info."));
2144
2145 info_spu_mailbox_list (buf, len / 4, byte_order,
2146 "ibox", "SPU Outbound Interrupt Mailbox");
2147
2148 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2149 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2150 buf, 0, sizeof buf);
2151 if (len < 0)
2152 error (_("Could not read wbox_info."));
2153
2154 info_spu_mailbox_list (buf, len / 4, byte_order,
2155 "wbox", "SPU Inbound Mailbox");
2156
2157 do_cleanups (chain);
2158 }
2159
2160 static ULONGEST
2161 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2162 {
2163 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2164 return (word >> (63 - last)) & mask;
2165 }
2166
2167 static void
2168 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2169 {
2170 static char *spu_mfc_opcode[256] =
2171 {
2172 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2173 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2174 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2175 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2176 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2177 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2178 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2179 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2180 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2181 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2182 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2183 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2184 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2185 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2186 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2187 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2188 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2189 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2190 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2191 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2192 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2193 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2194 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2195 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2196 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2197 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2198 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2199 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2200 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2201 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2202 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2203 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2204 };
2205
2206 int *seq = alloca (nr * sizeof (int));
2207 int done = 0;
2208 struct cleanup *chain;
2209 int i, j;
2210
2211
2212 /* Determine sequence in which to display (valid) entries. */
2213 for (i = 0; i < nr; i++)
2214 {
2215 /* Search for the first valid entry all of whose
2216 dependencies are met. */
2217 for (j = 0; j < nr; j++)
2218 {
2219 ULONGEST mfc_cq_dw3;
2220 ULONGEST dependencies;
2221
2222 if (done & (1 << (nr - 1 - j)))
2223 continue;
2224
2225 mfc_cq_dw3
2226 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2227 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2228 continue;
2229
2230 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2231 if ((dependencies & done) != dependencies)
2232 continue;
2233
2234 seq[i] = j;
2235 done |= 1 << (nr - 1 - j);
2236 break;
2237 }
2238
2239 if (j == nr)
2240 break;
2241 }
2242
2243 nr = i;
2244
2245
2246 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2247
2248 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2249 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2250 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2251 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2252 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2253 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2254 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2255 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2256 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2257 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2258
2259 ui_out_table_body (uiout);
2260
2261 for (i = 0; i < nr; i++)
2262 {
2263 struct cleanup *cmd_chain;
2264 ULONGEST mfc_cq_dw0;
2265 ULONGEST mfc_cq_dw1;
2266 ULONGEST mfc_cq_dw2;
2267 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2268 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2269 ULONGEST mfc_ea;
2270 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2271
2272 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2273 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2274
2275 mfc_cq_dw0
2276 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2277 mfc_cq_dw1
2278 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2279 mfc_cq_dw2
2280 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2281
2282 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2283 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2284 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2285 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2286 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2287 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2288 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2289
2290 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2291 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2292
2293 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2294 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2295 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2296 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2297 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2298 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2299
2300 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2301
2302 if (spu_mfc_opcode[mfc_cmd_opcode])
2303 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2304 else
2305 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2306
2307 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2308 ui_out_field_int (uiout, "tid", tclass_id);
2309 ui_out_field_int (uiout, "rid", rclass_id);
2310
2311 if (ea_valid_p)
2312 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2313 else
2314 ui_out_field_skip (uiout, "ea");
2315
2316 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2317 if (qw_valid_p)
2318 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2319 else
2320 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2321
2322 if (list_valid_p)
2323 {
2324 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2325 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2326 }
2327 else
2328 {
2329 ui_out_field_skip (uiout, "lstaddr");
2330 ui_out_field_skip (uiout, "lstsize");
2331 }
2332
2333 if (cmd_error_p)
2334 ui_out_field_string (uiout, "error_p", "*");
2335 else
2336 ui_out_field_skip (uiout, "error_p");
2337
2338 do_cleanups (cmd_chain);
2339
2340 if (!ui_out_is_mi_like_p (uiout))
2341 printf_filtered ("\n");
2342 }
2343
2344 do_cleanups (chain);
2345 }
2346
2347 static void
2348 info_spu_dma_command (char *args, int from_tty)
2349 {
2350 struct frame_info *frame = get_selected_frame (NULL);
2351 struct gdbarch *gdbarch = get_frame_arch (frame);
2352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2353 ULONGEST dma_info_type;
2354 ULONGEST dma_info_mask;
2355 ULONGEST dma_info_status;
2356 ULONGEST dma_info_stall_and_notify;
2357 ULONGEST dma_info_atomic_command_status;
2358 struct cleanup *chain;
2359 char annex[32];
2360 gdb_byte buf[1024];
2361 LONGEST len;
2362 int i, id;
2363
2364 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2365 error (_("\"info spu\" is only supported on the SPU architecture."));
2366
2367 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2368
2369 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2370 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2371 buf, 0, 40 + 16 * 32);
2372 if (len <= 0)
2373 error (_("Could not read dma_info."));
2374
2375 dma_info_type
2376 = extract_unsigned_integer (buf, 8, byte_order);
2377 dma_info_mask
2378 = extract_unsigned_integer (buf + 8, 8, byte_order);
2379 dma_info_status
2380 = extract_unsigned_integer (buf + 16, 8, byte_order);
2381 dma_info_stall_and_notify
2382 = extract_unsigned_integer (buf + 24, 8, byte_order);
2383 dma_info_atomic_command_status
2384 = extract_unsigned_integer (buf + 32, 8, byte_order);
2385
2386 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2387
2388 if (ui_out_is_mi_like_p (uiout))
2389 {
2390 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2391 phex_nz (dma_info_type, 4));
2392 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2393 phex_nz (dma_info_mask, 4));
2394 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2395 phex_nz (dma_info_status, 4));
2396 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2397 phex_nz (dma_info_stall_and_notify, 4));
2398 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2399 phex_nz (dma_info_atomic_command_status, 4));
2400 }
2401 else
2402 {
2403 const char *query_msg = _("no query pending");
2404
2405 if (dma_info_type & 4)
2406 switch (dma_info_type & 3)
2407 {
2408 case 1: query_msg = _("'any' query pending"); break;
2409 case 2: query_msg = _("'all' query pending"); break;
2410 default: query_msg = _("undefined query type"); break;
2411 }
2412
2413 printf_filtered (_("Tag-Group Status 0x%s\n"),
2414 phex (dma_info_status, 4));
2415 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2416 phex (dma_info_mask, 4), query_msg);
2417 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2418 phex (dma_info_stall_and_notify, 4));
2419 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2420 phex (dma_info_atomic_command_status, 4));
2421 printf_filtered ("\n");
2422 }
2423
2424 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2425 do_cleanups (chain);
2426 }
2427
2428 static void
2429 info_spu_proxydma_command (char *args, int from_tty)
2430 {
2431 struct frame_info *frame = get_selected_frame (NULL);
2432 struct gdbarch *gdbarch = get_frame_arch (frame);
2433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2434 ULONGEST dma_info_type;
2435 ULONGEST dma_info_mask;
2436 ULONGEST dma_info_status;
2437 struct cleanup *chain;
2438 char annex[32];
2439 gdb_byte buf[1024];
2440 LONGEST len;
2441 int i, id;
2442
2443 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2444 error (_("\"info spu\" is only supported on the SPU architecture."));
2445
2446 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2447
2448 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2449 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2450 buf, 0, 24 + 8 * 32);
2451 if (len <= 0)
2452 error (_("Could not read proxydma_info."));
2453
2454 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2455 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2456 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2457
2458 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2459
2460 if (ui_out_is_mi_like_p (uiout))
2461 {
2462 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2463 phex_nz (dma_info_type, 4));
2464 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2465 phex_nz (dma_info_mask, 4));
2466 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2467 phex_nz (dma_info_status, 4));
2468 }
2469 else
2470 {
2471 const char *query_msg;
2472
2473 switch (dma_info_type & 3)
2474 {
2475 case 0: query_msg = _("no query pending"); break;
2476 case 1: query_msg = _("'any' query pending"); break;
2477 case 2: query_msg = _("'all' query pending"); break;
2478 default: query_msg = _("undefined query type"); break;
2479 }
2480
2481 printf_filtered (_("Tag-Group Status 0x%s\n"),
2482 phex (dma_info_status, 4));
2483 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2484 phex (dma_info_mask, 4), query_msg);
2485 printf_filtered ("\n");
2486 }
2487
2488 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2489 do_cleanups (chain);
2490 }
2491
2492 static void
2493 info_spu_command (char *args, int from_tty)
2494 {
2495 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2496 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2497 }
2498
2499
2500 /* Root of all "set spu "/"show spu " commands. */
2501
2502 static void
2503 show_spu_command (char *args, int from_tty)
2504 {
2505 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2506 }
2507
2508 static void
2509 set_spu_command (char *args, int from_tty)
2510 {
2511 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2512 }
2513
2514 static void
2515 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2516 struct cmd_list_element *c, const char *value)
2517 {
2518 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2519 value);
2520 }
2521
2522 static void
2523 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2524 struct cmd_list_element *c, const char *value)
2525 {
2526 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2527 value);
2528 }
2529
2530
2531 /* Set up gdbarch struct. */
2532
2533 static struct gdbarch *
2534 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2535 {
2536 struct gdbarch *gdbarch;
2537 struct gdbarch_tdep *tdep;
2538 int id = -1;
2539
2540 /* Which spufs ID was requested as address space? */
2541 if (info.tdep_info)
2542 id = *(int *)info.tdep_info;
2543 /* For objfile architectures of SPU solibs, decode the ID from the name.
2544 This assumes the filename convention employed by solib-spu.c. */
2545 else if (info.abfd)
2546 {
2547 char *name = strrchr (info.abfd->filename, '@');
2548 if (name)
2549 sscanf (name, "@0x%*x <%d>", &id);
2550 }
2551
2552 /* Find a candidate among extant architectures. */
2553 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2554 arches != NULL;
2555 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2556 {
2557 tdep = gdbarch_tdep (arches->gdbarch);
2558 if (tdep && tdep->id == id)
2559 return arches->gdbarch;
2560 }
2561
2562 /* None found, so create a new architecture. */
2563 tdep = XCALLOC (1, struct gdbarch_tdep);
2564 tdep->id = id;
2565 gdbarch = gdbarch_alloc (&info, tdep);
2566
2567 /* Disassembler. */
2568 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2569
2570 /* Registers. */
2571 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2572 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2573 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2574 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2575 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2576 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2577 set_gdbarch_register_name (gdbarch, spu_register_name);
2578 set_gdbarch_register_type (gdbarch, spu_register_type);
2579 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2580 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2581 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2582 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2583
2584 /* Data types. */
2585 set_gdbarch_char_signed (gdbarch, 0);
2586 set_gdbarch_ptr_bit (gdbarch, 32);
2587 set_gdbarch_addr_bit (gdbarch, 32);
2588 set_gdbarch_short_bit (gdbarch, 16);
2589 set_gdbarch_int_bit (gdbarch, 32);
2590 set_gdbarch_long_bit (gdbarch, 32);
2591 set_gdbarch_long_long_bit (gdbarch, 64);
2592 set_gdbarch_float_bit (gdbarch, 32);
2593 set_gdbarch_double_bit (gdbarch, 64);
2594 set_gdbarch_long_double_bit (gdbarch, 64);
2595 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2596 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2597 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2598
2599 /* Address handling. */
2600 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2601 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2602 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2603 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2604 set_gdbarch_address_class_type_flags_to_name
2605 (gdbarch, spu_address_class_type_flags_to_name);
2606 set_gdbarch_address_class_name_to_type_flags
2607 (gdbarch, spu_address_class_name_to_type_flags);
2608
2609
2610 /* Inferior function calls. */
2611 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2612 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2613 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2614 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2615 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2616 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2617 set_gdbarch_return_value (gdbarch, spu_return_value);
2618
2619 /* Frame handling. */
2620 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2621 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2622 frame_base_set_default (gdbarch, &spu_frame_base);
2623 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2624 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2625 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2626 set_gdbarch_frame_args_skip (gdbarch, 0);
2627 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2628 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2629
2630 /* Cell/B.E. cross-architecture unwinder support. */
2631 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2632
2633 /* Breakpoints. */
2634 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2635 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2636 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2637 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2638 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2639
2640 /* Overlays. */
2641 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2642
2643 return gdbarch;
2644 }
2645
2646 /* Provide a prototype to silence -Wmissing-prototypes. */
2647 extern initialize_file_ftype _initialize_spu_tdep;
2648
2649 void
2650 _initialize_spu_tdep (void)
2651 {
2652 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2653
2654 /* Add ourselves to objfile event chain. */
2655 observer_attach_new_objfile (spu_overlay_new_objfile);
2656 spu_overlay_data = register_objfile_data ();
2657
2658 /* Install spu stop-on-load handler. */
2659 observer_attach_new_objfile (spu_catch_start);
2660
2661 /* Add ourselves to normal_stop event chain. */
2662 observer_attach_normal_stop (spu_attach_normal_stop);
2663
2664 /* Add root prefix command for all "set spu"/"show spu" commands. */
2665 add_prefix_cmd ("spu", no_class, set_spu_command,
2666 _("Various SPU specific commands."),
2667 &setspucmdlist, "set spu ", 0, &setlist);
2668 add_prefix_cmd ("spu", no_class, show_spu_command,
2669 _("Various SPU specific commands."),
2670 &showspucmdlist, "show spu ", 0, &showlist);
2671
2672 /* Toggle whether or not to add a temporary breakpoint at the "main"
2673 function of new SPE contexts. */
2674 add_setshow_boolean_cmd ("stop-on-load", class_support,
2675 &spu_stop_on_load_p, _("\
2676 Set whether to stop for new SPE threads."),
2677 _("\
2678 Show whether to stop for new SPE threads."),
2679 _("\
2680 Use \"on\" to give control to the user when a new SPE thread\n\
2681 enters its \"main\" function.\n\
2682 Use \"off\" to disable stopping for new SPE threads."),
2683 NULL,
2684 show_spu_stop_on_load,
2685 &setspucmdlist, &showspucmdlist);
2686
2687 /* Toggle whether or not to automatically flush the software-managed
2688 cache whenever SPE execution stops. */
2689 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2690 &spu_auto_flush_cache_p, _("\
2691 Set whether to automatically flush the software-managed cache."),
2692 _("\
2693 Show whether to automatically flush the software-managed cache."),
2694 _("\
2695 Use \"on\" to automatically flush the software-managed cache\n\
2696 whenever SPE execution stops.\n\
2697 Use \"off\" to never automatically flush the software-managed cache."),
2698 NULL,
2699 show_spu_auto_flush_cache,
2700 &setspucmdlist, &showspucmdlist);
2701
2702 /* Add root prefix command for all "info spu" commands. */
2703 add_prefix_cmd ("spu", class_info, info_spu_command,
2704 _("Various SPU specific commands."),
2705 &infospucmdlist, "info spu ", 0, &infolist);
2706
2707 /* Add various "info spu" commands. */
2708 add_cmd ("event", class_info, info_spu_event_command,
2709 _("Display SPU event facility status.\n"),
2710 &infospucmdlist);
2711 add_cmd ("signal", class_info, info_spu_signal_command,
2712 _("Display SPU signal notification facility status.\n"),
2713 &infospucmdlist);
2714 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2715 _("Display SPU mailbox facility status.\n"),
2716 &infospucmdlist);
2717 add_cmd ("dma", class_info, info_spu_dma_command,
2718 _("Display MFC DMA status.\n"),
2719 &infospucmdlist);
2720 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2721 _("Display MFC Proxy-DMA status.\n"),
2722 &infospucmdlist);
2723 }
This page took 0.098004 seconds and 4 git commands to generate.