*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46
47 #include "spu-tdep.h"
48
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static void
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
201 }
202
203 static void
204 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206 {
207 gdb_byte reg[16];
208 char annex[32];
209 ULONGEST id;
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243 }
244
245 static void
246 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248 {
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261 }
262
263 static void
264 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266 {
267 gdb_byte reg[16];
268 char annex[32];
269 ULONGEST id;
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304 }
305
306 /* Value conversion -- access scalar values at the preferred slot. */
307
308 static struct value *
309 spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
311 {
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
314
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
320
321 return value;
322 }
323
324 /* Register groups. */
325
326 static int
327 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329 {
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344 }
345
346
347 /* Address handling. */
348
349 static int
350 spu_gdbarch_id (struct gdbarch *gdbarch)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365 }
366
367 static int
368 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
369 {
370 if (dwarf2_addr_class == 1)
371 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
372 else
373 return 0;
374 }
375
376 static const char *
377 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
378 {
379 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
380 return "__ea";
381 else
382 return NULL;
383 }
384
385 static int
386 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
387 const char *name, int *type_flags_ptr)
388 {
389 if (strcmp (name, "__ea") == 0)
390 {
391 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
392 return 1;
393 }
394 else
395 return 0;
396 }
397
398 static void
399 spu_address_to_pointer (struct gdbarch *gdbarch,
400 struct type *type, gdb_byte *buf, CORE_ADDR addr)
401 {
402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
403 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
404 SPUADDR_ADDR (addr));
405 }
406
407 static CORE_ADDR
408 spu_pointer_to_address (struct gdbarch *gdbarch,
409 struct type *type, const gdb_byte *buf)
410 {
411 int id = spu_gdbarch_id (gdbarch);
412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
413 ULONGEST addr
414 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
415
416 /* Do not convert __ea pointers. */
417 if (TYPE_ADDRESS_CLASS_1 (type))
418 return addr;
419
420 return addr? SPUADDR (id, addr) : 0;
421 }
422
423 static CORE_ADDR
424 spu_integer_to_address (struct gdbarch *gdbarch,
425 struct type *type, const gdb_byte *buf)
426 {
427 int id = spu_gdbarch_id (gdbarch);
428 ULONGEST addr = unpack_long (type, buf);
429
430 return SPUADDR (id, addr);
431 }
432
433
434 /* Decoding SPU instructions. */
435
436 enum
437 {
438 op_lqd = 0x34,
439 op_lqx = 0x3c4,
440 op_lqa = 0x61,
441 op_lqr = 0x67,
442 op_stqd = 0x24,
443 op_stqx = 0x144,
444 op_stqa = 0x41,
445 op_stqr = 0x47,
446
447 op_il = 0x081,
448 op_ila = 0x21,
449 op_a = 0x0c0,
450 op_ai = 0x1c,
451
452 op_selb = 0x4,
453
454 op_br = 0x64,
455 op_bra = 0x60,
456 op_brsl = 0x66,
457 op_brasl = 0x62,
458 op_brnz = 0x42,
459 op_brz = 0x40,
460 op_brhnz = 0x46,
461 op_brhz = 0x44,
462 op_bi = 0x1a8,
463 op_bisl = 0x1a9,
464 op_biz = 0x128,
465 op_binz = 0x129,
466 op_bihz = 0x12a,
467 op_bihnz = 0x12b,
468 };
469
470 static int
471 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
472 {
473 if ((insn >> 21) == op)
474 {
475 *rt = insn & 127;
476 *ra = (insn >> 7) & 127;
477 *rb = (insn >> 14) & 127;
478 return 1;
479 }
480
481 return 0;
482 }
483
484 static int
485 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
486 {
487 if ((insn >> 28) == op)
488 {
489 *rt = (insn >> 21) & 127;
490 *ra = (insn >> 7) & 127;
491 *rb = (insn >> 14) & 127;
492 *rc = insn & 127;
493 return 1;
494 }
495
496 return 0;
497 }
498
499 static int
500 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
501 {
502 if ((insn >> 21) == op)
503 {
504 *rt = insn & 127;
505 *ra = (insn >> 7) & 127;
506 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
507 return 1;
508 }
509
510 return 0;
511 }
512
513 static int
514 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
515 {
516 if ((insn >> 24) == op)
517 {
518 *rt = insn & 127;
519 *ra = (insn >> 7) & 127;
520 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
521 return 1;
522 }
523
524 return 0;
525 }
526
527 static int
528 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
529 {
530 if ((insn >> 23) == op)
531 {
532 *rt = insn & 127;
533 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
534 return 1;
535 }
536
537 return 0;
538 }
539
540 static int
541 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
542 {
543 if ((insn >> 25) == op)
544 {
545 *rt = insn & 127;
546 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
547 return 1;
548 }
549
550 return 0;
551 }
552
553 static int
554 is_branch (unsigned int insn, int *offset, int *reg)
555 {
556 int rt, i7, i16;
557
558 if (is_ri16 (insn, op_br, &rt, &i16)
559 || is_ri16 (insn, op_brsl, &rt, &i16)
560 || is_ri16 (insn, op_brnz, &rt, &i16)
561 || is_ri16 (insn, op_brz, &rt, &i16)
562 || is_ri16 (insn, op_brhnz, &rt, &i16)
563 || is_ri16 (insn, op_brhz, &rt, &i16))
564 {
565 *reg = SPU_PC_REGNUM;
566 *offset = i16 << 2;
567 return 1;
568 }
569
570 if (is_ri16 (insn, op_bra, &rt, &i16)
571 || is_ri16 (insn, op_brasl, &rt, &i16))
572 {
573 *reg = -1;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
579 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
580 || is_ri7 (insn, op_biz, &rt, reg, &i7)
581 || is_ri7 (insn, op_binz, &rt, reg, &i7)
582 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
583 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
584 {
585 *offset = 0;
586 return 1;
587 }
588
589 return 0;
590 }
591
592
593 /* Prolog parsing. */
594
595 struct spu_prologue_data
596 {
597 /* Stack frame size. -1 if analysis was unsuccessful. */
598 int size;
599
600 /* How to find the CFA. The CFA is equal to SP at function entry. */
601 int cfa_reg;
602 int cfa_offset;
603
604 /* Offset relative to CFA where a register is saved. -1 if invalid. */
605 int reg_offset[SPU_NUM_GPRS];
606 };
607
608 static CORE_ADDR
609 spu_analyze_prologue (struct gdbarch *gdbarch,
610 CORE_ADDR start_pc, CORE_ADDR end_pc,
611 struct spu_prologue_data *data)
612 {
613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
614 int found_sp = 0;
615 int found_fp = 0;
616 int found_lr = 0;
617 int found_bc = 0;
618 int reg_immed[SPU_NUM_GPRS];
619 gdb_byte buf[16];
620 CORE_ADDR prolog_pc = start_pc;
621 CORE_ADDR pc;
622 int i;
623
624
625 /* Initialize DATA to default values. */
626 data->size = -1;
627
628 data->cfa_reg = SPU_RAW_SP_REGNUM;
629 data->cfa_offset = 0;
630
631 for (i = 0; i < SPU_NUM_GPRS; i++)
632 data->reg_offset[i] = -1;
633
634 /* Set up REG_IMMED array. This is non-zero for a register if we know its
635 preferred slot currently holds this immediate value. */
636 for (i = 0; i < SPU_NUM_GPRS; i++)
637 reg_immed[i] = 0;
638
639 /* Scan instructions until the first branch.
640
641 The following instructions are important prolog components:
642
643 - The first instruction to set up the stack pointer.
644 - The first instruction to set up the frame pointer.
645 - The first instruction to save the link register.
646 - The first instruction to save the backchain.
647
648 We return the instruction after the latest of these four,
649 or the incoming PC if none is found. The first instruction
650 to set up the stack pointer also defines the frame size.
651
652 Note that instructions saving incoming arguments to their stack
653 slots are not counted as important, because they are hard to
654 identify with certainty. This should not matter much, because
655 arguments are relevant only in code compiled with debug data,
656 and in such code the GDB core will advance until the first source
657 line anyway, using SAL data.
658
659 For purposes of stack unwinding, we analyze the following types
660 of instructions in addition:
661
662 - Any instruction adding to the current frame pointer.
663 - Any instruction loading an immediate constant into a register.
664 - Any instruction storing a register onto the stack.
665
666 These are used to compute the CFA and REG_OFFSET output. */
667
668 for (pc = start_pc; pc < end_pc; pc += 4)
669 {
670 unsigned int insn;
671 int rt, ra, rb, rc, immed;
672
673 if (target_read_memory (pc, buf, 4))
674 break;
675 insn = extract_unsigned_integer (buf, 4, byte_order);
676
677 /* AI is the typical instruction to set up a stack frame.
678 It is also used to initialize the frame pointer. */
679 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
680 {
681 if (rt == data->cfa_reg && ra == data->cfa_reg)
682 data->cfa_offset -= immed;
683
684 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
685 && !found_sp)
686 {
687 found_sp = 1;
688 prolog_pc = pc + 4;
689
690 data->size = -immed;
691 }
692 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_fp)
694 {
695 found_fp = 1;
696 prolog_pc = pc + 4;
697
698 data->cfa_reg = SPU_FP_REGNUM;
699 data->cfa_offset -= immed;
700 }
701 }
702
703 /* A is used to set up stack frames of size >= 512 bytes.
704 If we have tracked the contents of the addend register,
705 we can handle this as well. */
706 else if (is_rr (insn, op_a, &rt, &ra, &rb))
707 {
708 if (rt == data->cfa_reg && ra == data->cfa_reg)
709 {
710 if (reg_immed[rb] != 0)
711 data->cfa_offset -= reg_immed[rb];
712 else
713 data->cfa_reg = -1; /* We don't know the CFA any more. */
714 }
715
716 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
717 && !found_sp)
718 {
719 found_sp = 1;
720 prolog_pc = pc + 4;
721
722 if (reg_immed[rb] != 0)
723 data->size = -reg_immed[rb];
724 }
725 }
726
727 /* We need to track IL and ILA used to load immediate constants
728 in case they are later used as input to an A instruction. */
729 else if (is_ri16 (insn, op_il, &rt, &immed))
730 {
731 reg_immed[rt] = immed;
732
733 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
734 found_sp = 1;
735 }
736
737 else if (is_ri18 (insn, op_ila, &rt, &immed))
738 {
739 reg_immed[rt] = immed & 0x3ffff;
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
743 }
744
745 /* STQD is used to save registers to the stack. */
746 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
747 {
748 if (ra == data->cfa_reg)
749 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
750
751 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
752 && !found_lr)
753 {
754 found_lr = 1;
755 prolog_pc = pc + 4;
756 }
757
758 if (ra == SPU_RAW_SP_REGNUM
759 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
760 && !found_bc)
761 {
762 found_bc = 1;
763 prolog_pc = pc + 4;
764 }
765 }
766
767 /* _start uses SELB to set up the stack pointer. */
768 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
769 {
770 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
771 found_sp = 1;
772 }
773
774 /* We terminate if we find a branch. */
775 else if (is_branch (insn, &immed, &ra))
776 break;
777 }
778
779
780 /* If we successfully parsed until here, and didn't find any instruction
781 modifying SP, we assume we have a frameless function. */
782 if (!found_sp)
783 data->size = 0;
784
785 /* Return cooked instead of raw SP. */
786 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
787 data->cfa_reg = SPU_SP_REGNUM;
788
789 return prolog_pc;
790 }
791
792 /* Return the first instruction after the prologue starting at PC. */
793 static CORE_ADDR
794 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
795 {
796 struct spu_prologue_data data;
797 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
798 }
799
800 /* Return the frame pointer in use at address PC. */
801 static void
802 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
803 int *reg, LONGEST *offset)
804 {
805 struct spu_prologue_data data;
806 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
807
808 if (data.size != -1 && data.cfa_reg != -1)
809 {
810 /* The 'frame pointer' address is CFA minus frame size. */
811 *reg = data.cfa_reg;
812 *offset = data.cfa_offset - data.size;
813 }
814 else
815 {
816 /* ??? We don't really know ... */
817 *reg = SPU_SP_REGNUM;
818 *offset = 0;
819 }
820 }
821
822 /* Return true if we are in the function's epilogue, i.e. after the
823 instruction that destroyed the function's stack frame.
824
825 1) scan forward from the point of execution:
826 a) If you find an instruction that modifies the stack pointer
827 or transfers control (except a return), execution is not in
828 an epilogue, return.
829 b) Stop scanning if you find a return instruction or reach the
830 end of the function or reach the hard limit for the size of
831 an epilogue.
832 2) scan backward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer,
834 execution *is* in an epilogue, return.
835 b) Stop scanning if you reach an instruction that transfers
836 control or the beginning of the function or reach the hard
837 limit for the size of an epilogue. */
838
839 static int
840 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
841 {
842 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
843 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
844 bfd_byte buf[4];
845 unsigned int insn;
846 int rt, ra, rb, rc, immed;
847
848 /* Find the search limits based on function boundaries and hard limit.
849 We assume the epilogue can be up to 64 instructions long. */
850
851 const int spu_max_epilogue_size = 64 * 4;
852
853 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
854 return 0;
855
856 if (pc - func_start < spu_max_epilogue_size)
857 epilogue_start = func_start;
858 else
859 epilogue_start = pc - spu_max_epilogue_size;
860
861 if (func_end - pc < spu_max_epilogue_size)
862 epilogue_end = func_end;
863 else
864 epilogue_end = pc + spu_max_epilogue_size;
865
866 /* Scan forward until next 'bi $0'. */
867
868 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
869 {
870 if (target_read_memory (scan_pc, buf, 4))
871 return 0;
872 insn = extract_unsigned_integer (buf, 4, byte_order);
873
874 if (is_branch (insn, &immed, &ra))
875 {
876 if (immed == 0 && ra == SPU_LR_REGNUM)
877 break;
878
879 return 0;
880 }
881
882 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
883 || is_rr (insn, op_a, &rt, &ra, &rb)
884 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
885 {
886 if (rt == SPU_RAW_SP_REGNUM)
887 return 0;
888 }
889 }
890
891 if (scan_pc >= epilogue_end)
892 return 0;
893
894 /* Scan backward until adjustment to stack pointer (R1). */
895
896 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
897 {
898 if (target_read_memory (scan_pc, buf, 4))
899 return 0;
900 insn = extract_unsigned_integer (buf, 4, byte_order);
901
902 if (is_branch (insn, &immed, &ra))
903 return 0;
904
905 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
906 || is_rr (insn, op_a, &rt, &ra, &rb)
907 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
908 {
909 if (rt == SPU_RAW_SP_REGNUM)
910 return 1;
911 }
912 }
913
914 return 0;
915 }
916
917
918 /* Normal stack frames. */
919
920 struct spu_unwind_cache
921 {
922 CORE_ADDR func;
923 CORE_ADDR frame_base;
924 CORE_ADDR local_base;
925
926 struct trad_frame_saved_reg *saved_regs;
927 };
928
929 static struct spu_unwind_cache *
930 spu_frame_unwind_cache (struct frame_info *this_frame,
931 void **this_prologue_cache)
932 {
933 struct gdbarch *gdbarch = get_frame_arch (this_frame);
934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
936 struct spu_unwind_cache *info;
937 struct spu_prologue_data data;
938 CORE_ADDR id = tdep->id;
939 gdb_byte buf[16];
940
941 if (*this_prologue_cache)
942 return *this_prologue_cache;
943
944 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
945 *this_prologue_cache = info;
946 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
947 info->frame_base = 0;
948 info->local_base = 0;
949
950 /* Find the start of the current function, and analyze its prologue. */
951 info->func = get_frame_func (this_frame);
952 if (info->func == 0)
953 {
954 /* Fall back to using the current PC as frame ID. */
955 info->func = get_frame_pc (this_frame);
956 data.size = -1;
957 }
958 else
959 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
960 &data);
961
962 /* If successful, use prologue analysis data. */
963 if (data.size != -1 && data.cfa_reg != -1)
964 {
965 CORE_ADDR cfa;
966 int i;
967
968 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
969 get_frame_register (this_frame, data.cfa_reg, buf);
970 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
971 cfa = SPUADDR (id, cfa);
972
973 /* Call-saved register slots. */
974 for (i = 0; i < SPU_NUM_GPRS; i++)
975 if (i == SPU_LR_REGNUM
976 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
977 if (data.reg_offset[i] != -1)
978 info->saved_regs[i].addr = cfa - data.reg_offset[i];
979
980 /* Frame bases. */
981 info->frame_base = cfa;
982 info->local_base = cfa - data.size;
983 }
984
985 /* Otherwise, fall back to reading the backchain link. */
986 else
987 {
988 CORE_ADDR reg;
989 LONGEST backchain;
990 ULONGEST lslr;
991 int status;
992
993 /* Get local store limit. */
994 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
995 if (!lslr)
996 lslr = (ULONGEST) -1;
997
998 /* Get the backchain. */
999 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1000 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1001 &backchain);
1002
1003 /* A zero backchain terminates the frame chain. Also, sanity
1004 check against the local store size limit. */
1005 if (status && backchain > 0 && backchain <= lslr)
1006 {
1007 /* Assume the link register is saved into its slot. */
1008 if (backchain + 16 <= lslr)
1009 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
1010
1011 /* Frame bases. */
1012 info->frame_base = SPUADDR (id, backchain);
1013 info->local_base = SPUADDR (id, reg);
1014 }
1015 }
1016
1017 /* If we didn't find a frame, we cannot determine SP / return address. */
1018 if (info->frame_base == 0)
1019 return info;
1020
1021 /* The previous SP is equal to the CFA. */
1022 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1023 SPUADDR_ADDR (info->frame_base));
1024
1025 /* Read full contents of the unwound link register in order to
1026 be able to determine the return address. */
1027 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1028 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1029 else
1030 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1031
1032 /* Normally, the return address is contained in the slot 0 of the
1033 link register, and slots 1-3 are zero. For an overlay return,
1034 slot 0 contains the address of the overlay manager return stub,
1035 slot 1 contains the partition number of the overlay section to
1036 be returned to, and slot 2 contains the return address within
1037 that section. Return the latter address in that case. */
1038 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1039 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1040 extract_unsigned_integer (buf + 8, 4, byte_order));
1041 else
1042 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1043 extract_unsigned_integer (buf, 4, byte_order));
1044
1045 return info;
1046 }
1047
1048 static void
1049 spu_frame_this_id (struct frame_info *this_frame,
1050 void **this_prologue_cache, struct frame_id *this_id)
1051 {
1052 struct spu_unwind_cache *info =
1053 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1054
1055 if (info->frame_base == 0)
1056 return;
1057
1058 *this_id = frame_id_build (info->frame_base, info->func);
1059 }
1060
1061 static struct value *
1062 spu_frame_prev_register (struct frame_info *this_frame,
1063 void **this_prologue_cache, int regnum)
1064 {
1065 struct spu_unwind_cache *info
1066 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1067
1068 /* Special-case the stack pointer. */
1069 if (regnum == SPU_RAW_SP_REGNUM)
1070 regnum = SPU_SP_REGNUM;
1071
1072 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1073 }
1074
1075 static const struct frame_unwind spu_frame_unwind = {
1076 NORMAL_FRAME,
1077 spu_frame_this_id,
1078 spu_frame_prev_register,
1079 NULL,
1080 default_frame_sniffer
1081 };
1082
1083 static CORE_ADDR
1084 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1085 {
1086 struct spu_unwind_cache *info
1087 = spu_frame_unwind_cache (this_frame, this_cache);
1088 return info->local_base;
1089 }
1090
1091 static const struct frame_base spu_frame_base = {
1092 &spu_frame_unwind,
1093 spu_frame_base_address,
1094 spu_frame_base_address,
1095 spu_frame_base_address
1096 };
1097
1098 static CORE_ADDR
1099 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1100 {
1101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1102 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1103 /* Mask off interrupt enable bit. */
1104 return SPUADDR (tdep->id, pc & -4);
1105 }
1106
1107 static CORE_ADDR
1108 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109 {
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1112 return SPUADDR (tdep->id, sp);
1113 }
1114
1115 static CORE_ADDR
1116 spu_read_pc (struct regcache *regcache)
1117 {
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1119 ULONGEST pc;
1120 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1121 /* Mask off interrupt enable bit. */
1122 return SPUADDR (tdep->id, pc & -4);
1123 }
1124
1125 static void
1126 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1127 {
1128 /* Keep interrupt enabled state unchanged. */
1129 ULONGEST old_pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1131 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1132 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1133 }
1134
1135
1136 /* Cell/B.E. cross-architecture unwinder support. */
1137
1138 struct spu2ppu_cache
1139 {
1140 struct frame_id frame_id;
1141 struct regcache *regcache;
1142 };
1143
1144 static struct gdbarch *
1145 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1146 {
1147 struct spu2ppu_cache *cache = *this_cache;
1148 return get_regcache_arch (cache->regcache);
1149 }
1150
1151 static void
1152 spu2ppu_this_id (struct frame_info *this_frame,
1153 void **this_cache, struct frame_id *this_id)
1154 {
1155 struct spu2ppu_cache *cache = *this_cache;
1156 *this_id = cache->frame_id;
1157 }
1158
1159 static struct value *
1160 spu2ppu_prev_register (struct frame_info *this_frame,
1161 void **this_cache, int regnum)
1162 {
1163 struct spu2ppu_cache *cache = *this_cache;
1164 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1165 gdb_byte *buf;
1166
1167 buf = alloca (register_size (gdbarch, regnum));
1168 regcache_cooked_read (cache->regcache, regnum, buf);
1169 return frame_unwind_got_bytes (this_frame, regnum, buf);
1170 }
1171
1172 static int
1173 spu2ppu_sniffer (const struct frame_unwind *self,
1174 struct frame_info *this_frame, void **this_prologue_cache)
1175 {
1176 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 CORE_ADDR base, func, backchain;
1179 gdb_byte buf[4];
1180
1181 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1182 return 0;
1183
1184 base = get_frame_sp (this_frame);
1185 func = get_frame_pc (this_frame);
1186 if (target_read_memory (base, buf, 4))
1187 return 0;
1188 backchain = extract_unsigned_integer (buf, 4, byte_order);
1189
1190 if (!backchain)
1191 {
1192 struct frame_info *fi;
1193
1194 struct spu2ppu_cache *cache
1195 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1196
1197 cache->frame_id = frame_id_build (base + 16, func);
1198
1199 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1200 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1201 break;
1202
1203 if (fi)
1204 {
1205 cache->regcache = frame_save_as_regcache (fi);
1206 *this_prologue_cache = cache;
1207 return 1;
1208 }
1209 else
1210 {
1211 struct regcache *regcache;
1212 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1213 cache->regcache = regcache_dup (regcache);
1214 *this_prologue_cache = cache;
1215 return 1;
1216 }
1217 }
1218
1219 return 0;
1220 }
1221
1222 static void
1223 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1224 {
1225 struct spu2ppu_cache *cache = this_cache;
1226 regcache_xfree (cache->regcache);
1227 }
1228
1229 static const struct frame_unwind spu2ppu_unwind = {
1230 ARCH_FRAME,
1231 spu2ppu_this_id,
1232 spu2ppu_prev_register,
1233 NULL,
1234 spu2ppu_sniffer,
1235 spu2ppu_dealloc_cache,
1236 spu2ppu_prev_arch,
1237 };
1238
1239
1240 /* Function calling convention. */
1241
1242 static CORE_ADDR
1243 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1244 {
1245 return sp & ~15;
1246 }
1247
1248 static CORE_ADDR
1249 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1250 struct value **args, int nargs, struct type *value_type,
1251 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1252 struct regcache *regcache)
1253 {
1254 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1255 sp = (sp - 4) & ~15;
1256 /* Store the address of that breakpoint */
1257 *bp_addr = sp;
1258 /* The call starts at the callee's entry point. */
1259 *real_pc = funaddr;
1260
1261 return sp;
1262 }
1263
1264 static int
1265 spu_scalar_value_p (struct type *type)
1266 {
1267 switch (TYPE_CODE (type))
1268 {
1269 case TYPE_CODE_INT:
1270 case TYPE_CODE_ENUM:
1271 case TYPE_CODE_RANGE:
1272 case TYPE_CODE_CHAR:
1273 case TYPE_CODE_BOOL:
1274 case TYPE_CODE_PTR:
1275 case TYPE_CODE_REF:
1276 return TYPE_LENGTH (type) <= 16;
1277
1278 default:
1279 return 0;
1280 }
1281 }
1282
1283 static void
1284 spu_value_to_regcache (struct regcache *regcache, int regnum,
1285 struct type *type, const gdb_byte *in)
1286 {
1287 int len = TYPE_LENGTH (type);
1288
1289 if (spu_scalar_value_p (type))
1290 {
1291 int preferred_slot = len < 4 ? 4 - len : 0;
1292 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1293 }
1294 else
1295 {
1296 while (len >= 16)
1297 {
1298 regcache_cooked_write (regcache, regnum++, in);
1299 in += 16;
1300 len -= 16;
1301 }
1302
1303 if (len > 0)
1304 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1305 }
1306 }
1307
1308 static void
1309 spu_regcache_to_value (struct regcache *regcache, int regnum,
1310 struct type *type, gdb_byte *out)
1311 {
1312 int len = TYPE_LENGTH (type);
1313
1314 if (spu_scalar_value_p (type))
1315 {
1316 int preferred_slot = len < 4 ? 4 - len : 0;
1317 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1318 }
1319 else
1320 {
1321 while (len >= 16)
1322 {
1323 regcache_cooked_read (regcache, regnum++, out);
1324 out += 16;
1325 len -= 16;
1326 }
1327
1328 if (len > 0)
1329 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1330 }
1331 }
1332
1333 static CORE_ADDR
1334 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1335 struct regcache *regcache, CORE_ADDR bp_addr,
1336 int nargs, struct value **args, CORE_ADDR sp,
1337 int struct_return, CORE_ADDR struct_addr)
1338 {
1339 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1340 CORE_ADDR sp_delta;
1341 int i;
1342 int regnum = SPU_ARG1_REGNUM;
1343 int stack_arg = -1;
1344 gdb_byte buf[16];
1345
1346 /* Set the return address. */
1347 memset (buf, 0, sizeof buf);
1348 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1349 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1350
1351 /* If STRUCT_RETURN is true, then the struct return address (in
1352 STRUCT_ADDR) will consume the first argument-passing register.
1353 Both adjust the register count and store that value. */
1354 if (struct_return)
1355 {
1356 memset (buf, 0, sizeof buf);
1357 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1358 regcache_cooked_write (regcache, regnum++, buf);
1359 }
1360
1361 /* Fill in argument registers. */
1362 for (i = 0; i < nargs; i++)
1363 {
1364 struct value *arg = args[i];
1365 struct type *type = check_typedef (value_type (arg));
1366 const gdb_byte *contents = value_contents (arg);
1367 int len = TYPE_LENGTH (type);
1368 int n_regs = align_up (len, 16) / 16;
1369
1370 /* If the argument doesn't wholly fit into registers, it and
1371 all subsequent arguments go to the stack. */
1372 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1373 {
1374 stack_arg = i;
1375 break;
1376 }
1377
1378 spu_value_to_regcache (regcache, regnum, type, contents);
1379 regnum += n_regs;
1380 }
1381
1382 /* Overflow arguments go to the stack. */
1383 if (stack_arg != -1)
1384 {
1385 CORE_ADDR ap;
1386
1387 /* Allocate all required stack size. */
1388 for (i = stack_arg; i < nargs; i++)
1389 {
1390 struct type *type = check_typedef (value_type (args[i]));
1391 sp -= align_up (TYPE_LENGTH (type), 16);
1392 }
1393
1394 /* Fill in stack arguments. */
1395 ap = sp;
1396 for (i = stack_arg; i < nargs; i++)
1397 {
1398 struct value *arg = args[i];
1399 struct type *type = check_typedef (value_type (arg));
1400 int len = TYPE_LENGTH (type);
1401 int preferred_slot;
1402
1403 if (spu_scalar_value_p (type))
1404 preferred_slot = len < 4 ? 4 - len : 0;
1405 else
1406 preferred_slot = 0;
1407
1408 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1409 ap += align_up (TYPE_LENGTH (type), 16);
1410 }
1411 }
1412
1413 /* Allocate stack frame header. */
1414 sp -= 32;
1415
1416 /* Store stack back chain. */
1417 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1418 target_write_memory (sp, buf, 16);
1419
1420 /* Finally, update all slots of the SP register. */
1421 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1422 for (i = 0; i < 4; i++)
1423 {
1424 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1425 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1426 }
1427 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1428
1429 return sp;
1430 }
1431
1432 static struct frame_id
1433 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1434 {
1435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1436 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1437 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1438 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1439 }
1440
1441 /* Function return value access. */
1442
1443 static enum return_value_convention
1444 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1445 struct type *type, struct regcache *regcache,
1446 gdb_byte *out, const gdb_byte *in)
1447 {
1448 enum return_value_convention rvc;
1449
1450 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1451 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1452 else
1453 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1454
1455 if (in)
1456 {
1457 switch (rvc)
1458 {
1459 case RETURN_VALUE_REGISTER_CONVENTION:
1460 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1461 break;
1462
1463 case RETURN_VALUE_STRUCT_CONVENTION:
1464 error ("Cannot set function return value.");
1465 break;
1466 }
1467 }
1468 else if (out)
1469 {
1470 switch (rvc)
1471 {
1472 case RETURN_VALUE_REGISTER_CONVENTION:
1473 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1474 break;
1475
1476 case RETURN_VALUE_STRUCT_CONVENTION:
1477 error ("Function return value unknown.");
1478 break;
1479 }
1480 }
1481
1482 return rvc;
1483 }
1484
1485
1486 /* Breakpoints. */
1487
1488 static const gdb_byte *
1489 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1490 {
1491 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1492
1493 *lenptr = sizeof breakpoint;
1494 return breakpoint;
1495 }
1496
1497 static int
1498 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1499 struct bp_target_info *bp_tgt)
1500 {
1501 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1502 that in a combined application, we have some breakpoints inserted in SPU
1503 code, and now the application forks (on the PPU side). GDB common code
1504 will assume that the fork system call copied all breakpoints into the new
1505 process' address space, and that all those copies now need to be removed
1506 (see breakpoint.c:detach_breakpoints).
1507
1508 While this is certainly true for PPU side breakpoints, it is not true
1509 for SPU side breakpoints. fork will clone the SPU context file
1510 descriptors, so that all the existing SPU contexts are in accessible
1511 in the new process. However, the contents of the SPU contexts themselves
1512 are *not* cloned. Therefore the effect of detach_breakpoints is to
1513 remove SPU breakpoints from the *original* SPU context's local store
1514 -- this is not the correct behaviour.
1515
1516 The workaround is to check whether the PID we are asked to remove this
1517 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1518 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1519 true in the context of detach_breakpoints. If so, we simply do nothing.
1520 [ Note that for the fork child process, it does not matter if breakpoints
1521 remain inserted, because those SPU contexts are not runnable anyway --
1522 the Linux kernel allows only the original process to invoke spu_run. */
1523
1524 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1525 return 0;
1526
1527 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1528 }
1529
1530
1531 /* Software single-stepping support. */
1532
1533 static int
1534 spu_software_single_step (struct frame_info *frame)
1535 {
1536 struct gdbarch *gdbarch = get_frame_arch (frame);
1537 struct address_space *aspace = get_frame_address_space (frame);
1538 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539 CORE_ADDR pc, next_pc;
1540 unsigned int insn;
1541 int offset, reg;
1542 gdb_byte buf[4];
1543 ULONGEST lslr;
1544
1545 pc = get_frame_pc (frame);
1546
1547 if (target_read_memory (pc, buf, 4))
1548 return 1;
1549 insn = extract_unsigned_integer (buf, 4, byte_order);
1550
1551 /* Get local store limit. */
1552 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1553 if (!lslr)
1554 lslr = (ULONGEST) -1;
1555
1556 /* Next sequential instruction is at PC + 4, except if the current
1557 instruction is a PPE-assisted call, in which case it is at PC + 8.
1558 Wrap around LS limit to be on the safe side. */
1559 if ((insn & 0xffffff00) == 0x00002100)
1560 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1561 else
1562 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1563
1564 insert_single_step_breakpoint (gdbarch,
1565 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1566
1567 if (is_branch (insn, &offset, &reg))
1568 {
1569 CORE_ADDR target = offset;
1570
1571 if (reg == SPU_PC_REGNUM)
1572 target += SPUADDR_ADDR (pc);
1573 else if (reg != -1)
1574 {
1575 get_frame_register_bytes (frame, reg, 0, 4, buf);
1576 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1577 }
1578
1579 target = target & lslr;
1580 if (target != next_pc)
1581 insert_single_step_breakpoint (gdbarch, aspace,
1582 SPUADDR (SPUADDR_SPU (pc), target));
1583 }
1584
1585 return 1;
1586 }
1587
1588
1589 /* Longjmp support. */
1590
1591 static int
1592 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1593 {
1594 struct gdbarch *gdbarch = get_frame_arch (frame);
1595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1597 gdb_byte buf[4];
1598 CORE_ADDR jb_addr;
1599
1600 /* Jump buffer is pointed to by the argument register $r3. */
1601 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1602 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1603 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1604 return 0;
1605
1606 *pc = extract_unsigned_integer (buf, 4, byte_order);
1607 *pc = SPUADDR (tdep->id, *pc);
1608 return 1;
1609 }
1610
1611
1612 /* Disassembler. */
1613
1614 struct spu_dis_asm_data
1615 {
1616 struct gdbarch *gdbarch;
1617 int id;
1618 };
1619
1620 static void
1621 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1622 {
1623 struct spu_dis_asm_data *data = info->application_data;
1624 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1625 }
1626
1627 static int
1628 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1629 {
1630 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1631 SPU ID encoded in the high bits is added back when we call print_address. */
1632 struct disassemble_info spu_info = *info;
1633 struct spu_dis_asm_data data;
1634 data.gdbarch = info->application_data;
1635 data.id = SPUADDR_SPU (memaddr);
1636
1637 spu_info.application_data = &data;
1638 spu_info.print_address_func = spu_dis_asm_print_address;
1639 return print_insn_spu (memaddr, &spu_info);
1640 }
1641
1642
1643 /* Target overlays for the SPU overlay manager.
1644
1645 See the documentation of simple_overlay_update for how the
1646 interface is supposed to work.
1647
1648 Data structures used by the overlay manager:
1649
1650 struct ovly_table
1651 {
1652 u32 vma;
1653 u32 size;
1654 u32 pos;
1655 u32 buf;
1656 } _ovly_table[]; -- one entry per overlay section
1657
1658 struct ovly_buf_table
1659 {
1660 u32 mapped;
1661 } _ovly_buf_table[]; -- one entry per overlay buffer
1662
1663 _ovly_table should never change.
1664
1665 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1666 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1667 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1668
1669 mapped is an index into _ovly_table. Both the mapped and buf indices start
1670 from one to reference the first entry in their respective tables. */
1671
1672 /* Using the per-objfile private data mechanism, we store for each
1673 objfile an array of "struct spu_overlay_table" structures, one
1674 for each obj_section of the objfile. This structure holds two
1675 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1676 is *not* an overlay section. If it is non-zero, it represents
1677 a target address. The overlay section is mapped iff the target
1678 integer at this location equals MAPPED_VAL. */
1679
1680 static const struct objfile_data *spu_overlay_data;
1681
1682 struct spu_overlay_table
1683 {
1684 CORE_ADDR mapped_ptr;
1685 CORE_ADDR mapped_val;
1686 };
1687
1688 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1689 the _ovly_table data structure from the target and initialize the
1690 spu_overlay_table data structure from it. */
1691 static struct spu_overlay_table *
1692 spu_get_overlay_table (struct objfile *objfile)
1693 {
1694 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1695 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1696 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1697 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1698 unsigned ovly_table_size, ovly_buf_table_size;
1699 struct spu_overlay_table *tbl;
1700 struct obj_section *osect;
1701 char *ovly_table;
1702 int i;
1703
1704 tbl = objfile_data (objfile, spu_overlay_data);
1705 if (tbl)
1706 return tbl;
1707
1708 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1709 if (!ovly_table_msym)
1710 return NULL;
1711
1712 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1713 if (!ovly_buf_table_msym)
1714 return NULL;
1715
1716 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1717 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1718
1719 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1720 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1721
1722 ovly_table = xmalloc (ovly_table_size);
1723 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1724
1725 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1726 objfile->sections_end - objfile->sections,
1727 struct spu_overlay_table);
1728
1729 for (i = 0; i < ovly_table_size / 16; i++)
1730 {
1731 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1732 4, byte_order);
1733 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1734 4, byte_order);
1735 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1736 4, byte_order);
1737 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1738 4, byte_order);
1739
1740 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1741 continue;
1742
1743 ALL_OBJFILE_OSECTIONS (objfile, osect)
1744 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1745 && pos == osect->the_bfd_section->filepos)
1746 {
1747 int ndx = osect - objfile->sections;
1748 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1749 tbl[ndx].mapped_val = i + 1;
1750 break;
1751 }
1752 }
1753
1754 xfree (ovly_table);
1755 set_objfile_data (objfile, spu_overlay_data, tbl);
1756 return tbl;
1757 }
1758
1759 /* Read _ovly_buf_table entry from the target to dermine whether
1760 OSECT is currently mapped, and update the mapped state. */
1761 static void
1762 spu_overlay_update_osect (struct obj_section *osect)
1763 {
1764 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1765 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1766 struct spu_overlay_table *ovly_table;
1767 CORE_ADDR id, val;
1768
1769 ovly_table = spu_get_overlay_table (osect->objfile);
1770 if (!ovly_table)
1771 return;
1772
1773 ovly_table += osect - osect->objfile->sections;
1774 if (ovly_table->mapped_ptr == 0)
1775 return;
1776
1777 id = SPUADDR_SPU (obj_section_addr (osect));
1778 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1779 4, byte_order);
1780 osect->ovly_mapped = (val == ovly_table->mapped_val);
1781 }
1782
1783 /* If OSECT is NULL, then update all sections' mapped state.
1784 If OSECT is non-NULL, then update only OSECT's mapped state. */
1785 static void
1786 spu_overlay_update (struct obj_section *osect)
1787 {
1788 /* Just one section. */
1789 if (osect)
1790 spu_overlay_update_osect (osect);
1791
1792 /* All sections. */
1793 else
1794 {
1795 struct objfile *objfile;
1796
1797 ALL_OBJSECTIONS (objfile, osect)
1798 if (section_is_overlay (osect))
1799 spu_overlay_update_osect (osect);
1800 }
1801 }
1802
1803 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1804 If there is one, go through all sections and make sure for non-
1805 overlay sections LMA equals VMA, while for overlay sections LMA
1806 is larger than SPU_OVERLAY_LMA. */
1807 static void
1808 spu_overlay_new_objfile (struct objfile *objfile)
1809 {
1810 struct spu_overlay_table *ovly_table;
1811 struct obj_section *osect;
1812
1813 /* If we've already touched this file, do nothing. */
1814 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1815 return;
1816
1817 /* Consider only SPU objfiles. */
1818 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1819 return;
1820
1821 /* Check if this objfile has overlays. */
1822 ovly_table = spu_get_overlay_table (objfile);
1823 if (!ovly_table)
1824 return;
1825
1826 /* Now go and fiddle with all the LMAs. */
1827 ALL_OBJFILE_OSECTIONS (objfile, osect)
1828 {
1829 bfd *obfd = objfile->obfd;
1830 asection *bsect = osect->the_bfd_section;
1831 int ndx = osect - objfile->sections;
1832
1833 if (ovly_table[ndx].mapped_ptr == 0)
1834 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1835 else
1836 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1837 }
1838 }
1839
1840
1841 /* Insert temporary breakpoint on "main" function of newly loaded
1842 SPE context OBJFILE. */
1843 static void
1844 spu_catch_start (struct objfile *objfile)
1845 {
1846 struct minimal_symbol *minsym;
1847 struct symtab *symtab;
1848 CORE_ADDR pc;
1849 char buf[32];
1850
1851 /* Do this only if requested by "set spu stop-on-load on". */
1852 if (!spu_stop_on_load_p)
1853 return;
1854
1855 /* Consider only SPU objfiles. */
1856 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1857 return;
1858
1859 /* The main objfile is handled differently. */
1860 if (objfile == symfile_objfile)
1861 return;
1862
1863 /* There can be multiple symbols named "main". Search for the
1864 "main" in *this* objfile. */
1865 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1866 if (!minsym)
1867 return;
1868
1869 /* If we have debugging information, try to use it -- this
1870 will allow us to properly skip the prologue. */
1871 pc = SYMBOL_VALUE_ADDRESS (minsym);
1872 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1873 if (symtab != NULL)
1874 {
1875 struct blockvector *bv = BLOCKVECTOR (symtab);
1876 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1877 struct symbol *sym;
1878 struct symtab_and_line sal;
1879
1880 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1881 if (sym)
1882 {
1883 fixup_symbol_section (sym, objfile);
1884 sal = find_function_start_sal (sym, 1);
1885 pc = sal.pc;
1886 }
1887 }
1888
1889 /* Use a numerical address for the set_breakpoint command to avoid having
1890 the breakpoint re-set incorrectly. */
1891 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1892 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1893 NULL /* cond_string */, -1 /* thread */,
1894 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1895 bp_breakpoint /* type_wanted */,
1896 0 /* ignore_count */,
1897 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1898 NULL /* ops */, 0 /* from_tty */, 1 /* enabled */);
1899 }
1900
1901
1902 /* Look up OBJFILE loaded into FRAME's SPU context. */
1903 static struct objfile *
1904 spu_objfile_from_frame (struct frame_info *frame)
1905 {
1906 struct gdbarch *gdbarch = get_frame_arch (frame);
1907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1908 struct objfile *obj;
1909
1910 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1911 return NULL;
1912
1913 ALL_OBJFILES (obj)
1914 {
1915 if (obj->sections != obj->sections_end
1916 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1917 return obj;
1918 }
1919
1920 return NULL;
1921 }
1922
1923 /* Flush cache for ea pointer access if available. */
1924 static void
1925 flush_ea_cache (void)
1926 {
1927 struct minimal_symbol *msymbol;
1928 struct objfile *obj;
1929
1930 if (!has_stack_frames ())
1931 return;
1932
1933 obj = spu_objfile_from_frame (get_current_frame ());
1934 if (obj == NULL)
1935 return;
1936
1937 /* Lookup inferior function __cache_flush. */
1938 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1939 if (msymbol != NULL)
1940 {
1941 struct type *type;
1942 CORE_ADDR addr;
1943
1944 type = objfile_type (obj)->builtin_void;
1945 type = lookup_function_type (type);
1946 type = lookup_pointer_type (type);
1947 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1948
1949 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1950 }
1951 }
1952
1953 /* This handler is called when the inferior has stopped. If it is stopped in
1954 SPU architecture then flush the ea cache if used. */
1955 static void
1956 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1957 {
1958 if (!spu_auto_flush_cache_p)
1959 return;
1960
1961 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1962 re-entering this function when __cache_flush stops. */
1963 spu_auto_flush_cache_p = 0;
1964 flush_ea_cache ();
1965 spu_auto_flush_cache_p = 1;
1966 }
1967
1968
1969 /* "info spu" commands. */
1970
1971 static void
1972 info_spu_event_command (char *args, int from_tty)
1973 {
1974 struct frame_info *frame = get_selected_frame (NULL);
1975 ULONGEST event_status = 0;
1976 ULONGEST event_mask = 0;
1977 struct cleanup *chain;
1978 gdb_byte buf[100];
1979 char annex[32];
1980 LONGEST len;
1981 int rc, id;
1982
1983 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1984 error (_("\"info spu\" is only supported on the SPU architecture."));
1985
1986 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1987
1988 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1989 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1990 buf, 0, (sizeof (buf) - 1));
1991 if (len <= 0)
1992 error (_("Could not read event_status."));
1993 buf[len] = '\0';
1994 event_status = strtoulst (buf, NULL, 16);
1995
1996 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1997 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1998 buf, 0, (sizeof (buf) - 1));
1999 if (len <= 0)
2000 error (_("Could not read event_mask."));
2001 buf[len] = '\0';
2002 event_mask = strtoulst (buf, NULL, 16);
2003
2004 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
2005
2006 if (ui_out_is_mi_like_p (uiout))
2007 {
2008 ui_out_field_fmt (uiout, "event_status",
2009 "0x%s", phex_nz (event_status, 4));
2010 ui_out_field_fmt (uiout, "event_mask",
2011 "0x%s", phex_nz (event_mask, 4));
2012 }
2013 else
2014 {
2015 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2016 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2017 }
2018
2019 do_cleanups (chain);
2020 }
2021
2022 static void
2023 info_spu_signal_command (char *args, int from_tty)
2024 {
2025 struct frame_info *frame = get_selected_frame (NULL);
2026 struct gdbarch *gdbarch = get_frame_arch (frame);
2027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2028 ULONGEST signal1 = 0;
2029 ULONGEST signal1_type = 0;
2030 int signal1_pending = 0;
2031 ULONGEST signal2 = 0;
2032 ULONGEST signal2_type = 0;
2033 int signal2_pending = 0;
2034 struct cleanup *chain;
2035 char annex[32];
2036 gdb_byte buf[100];
2037 LONGEST len;
2038 int rc, id;
2039
2040 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2041 error (_("\"info spu\" is only supported on the SPU architecture."));
2042
2043 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2044
2045 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2046 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2047 if (len < 0)
2048 error (_("Could not read signal1."));
2049 else if (len == 4)
2050 {
2051 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2052 signal1_pending = 1;
2053 }
2054
2055 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2056 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2057 buf, 0, (sizeof (buf) - 1));
2058 if (len <= 0)
2059 error (_("Could not read signal1_type."));
2060 buf[len] = '\0';
2061 signal1_type = strtoulst (buf, NULL, 16);
2062
2063 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2064 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2065 if (len < 0)
2066 error (_("Could not read signal2."));
2067 else if (len == 4)
2068 {
2069 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2070 signal2_pending = 1;
2071 }
2072
2073 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2074 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2075 buf, 0, (sizeof (buf) - 1));
2076 if (len <= 0)
2077 error (_("Could not read signal2_type."));
2078 buf[len] = '\0';
2079 signal2_type = strtoulst (buf, NULL, 16);
2080
2081 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2082
2083 if (ui_out_is_mi_like_p (uiout))
2084 {
2085 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2086 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2087 ui_out_field_int (uiout, "signal1_type", signal1_type);
2088 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2089 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2090 ui_out_field_int (uiout, "signal2_type", signal2_type);
2091 }
2092 else
2093 {
2094 if (signal1_pending)
2095 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2096 else
2097 printf_filtered (_("Signal 1 not pending "));
2098
2099 if (signal1_type)
2100 printf_filtered (_("(Type Or)\n"));
2101 else
2102 printf_filtered (_("(Type Overwrite)\n"));
2103
2104 if (signal2_pending)
2105 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2106 else
2107 printf_filtered (_("Signal 2 not pending "));
2108
2109 if (signal2_type)
2110 printf_filtered (_("(Type Or)\n"));
2111 else
2112 printf_filtered (_("(Type Overwrite)\n"));
2113 }
2114
2115 do_cleanups (chain);
2116 }
2117
2118 static void
2119 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2120 const char *field, const char *msg)
2121 {
2122 struct cleanup *chain;
2123 int i;
2124
2125 if (nr <= 0)
2126 return;
2127
2128 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2129
2130 ui_out_table_header (uiout, 32, ui_left, field, msg);
2131 ui_out_table_body (uiout);
2132
2133 for (i = 0; i < nr; i++)
2134 {
2135 struct cleanup *val_chain;
2136 ULONGEST val;
2137 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
2138 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2139 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2140 do_cleanups (val_chain);
2141
2142 if (!ui_out_is_mi_like_p (uiout))
2143 printf_filtered ("\n");
2144 }
2145
2146 do_cleanups (chain);
2147 }
2148
2149 static void
2150 info_spu_mailbox_command (char *args, int from_tty)
2151 {
2152 struct frame_info *frame = get_selected_frame (NULL);
2153 struct gdbarch *gdbarch = get_frame_arch (frame);
2154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2155 struct cleanup *chain;
2156 char annex[32];
2157 gdb_byte buf[1024];
2158 LONGEST len;
2159 int i, id;
2160
2161 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2162 error (_("\"info spu\" is only supported on the SPU architecture."));
2163
2164 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2165
2166 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2167
2168 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2170 buf, 0, sizeof buf);
2171 if (len < 0)
2172 error (_("Could not read mbox_info."));
2173
2174 info_spu_mailbox_list (buf, len / 4, byte_order,
2175 "mbox", "SPU Outbound Mailbox");
2176
2177 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2178 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2179 buf, 0, sizeof buf);
2180 if (len < 0)
2181 error (_("Could not read ibox_info."));
2182
2183 info_spu_mailbox_list (buf, len / 4, byte_order,
2184 "ibox", "SPU Outbound Interrupt Mailbox");
2185
2186 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2187 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2188 buf, 0, sizeof buf);
2189 if (len < 0)
2190 error (_("Could not read wbox_info."));
2191
2192 info_spu_mailbox_list (buf, len / 4, byte_order,
2193 "wbox", "SPU Inbound Mailbox");
2194
2195 do_cleanups (chain);
2196 }
2197
2198 static ULONGEST
2199 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2200 {
2201 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2202 return (word >> (63 - last)) & mask;
2203 }
2204
2205 static void
2206 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2207 {
2208 static char *spu_mfc_opcode[256] =
2209 {
2210 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2211 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2212 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2213 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2214 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2215 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2216 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2217 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2218 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2219 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2220 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2221 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2222 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2223 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2224 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2225 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2226 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2227 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2228 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2229 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2230 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2231 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2232 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2233 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2234 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2235 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2236 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2237 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2238 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2239 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2240 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2241 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2242 };
2243
2244 int *seq = alloca (nr * sizeof (int));
2245 int done = 0;
2246 struct cleanup *chain;
2247 int i, j;
2248
2249
2250 /* Determine sequence in which to display (valid) entries. */
2251 for (i = 0; i < nr; i++)
2252 {
2253 /* Search for the first valid entry all of whose
2254 dependencies are met. */
2255 for (j = 0; j < nr; j++)
2256 {
2257 ULONGEST mfc_cq_dw3;
2258 ULONGEST dependencies;
2259
2260 if (done & (1 << (nr - 1 - j)))
2261 continue;
2262
2263 mfc_cq_dw3
2264 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2265 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2266 continue;
2267
2268 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2269 if ((dependencies & done) != dependencies)
2270 continue;
2271
2272 seq[i] = j;
2273 done |= 1 << (nr - 1 - j);
2274 break;
2275 }
2276
2277 if (j == nr)
2278 break;
2279 }
2280
2281 nr = i;
2282
2283
2284 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2285
2286 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2287 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2288 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2289 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2290 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2291 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2292 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2293 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2294 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2295 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2296
2297 ui_out_table_body (uiout);
2298
2299 for (i = 0; i < nr; i++)
2300 {
2301 struct cleanup *cmd_chain;
2302 ULONGEST mfc_cq_dw0;
2303 ULONGEST mfc_cq_dw1;
2304 ULONGEST mfc_cq_dw2;
2305 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2306 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2307 ULONGEST mfc_ea;
2308 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2309
2310 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2311 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2312
2313 mfc_cq_dw0
2314 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2315 mfc_cq_dw1
2316 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2317 mfc_cq_dw2
2318 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2319
2320 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2321 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2322 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2323 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2324 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2325 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2326 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2327
2328 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2329 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2330
2331 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2332 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2333 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2334 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2335 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2336 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2337
2338 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2339
2340 if (spu_mfc_opcode[mfc_cmd_opcode])
2341 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2342 else
2343 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2344
2345 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2346 ui_out_field_int (uiout, "tid", tclass_id);
2347 ui_out_field_int (uiout, "rid", rclass_id);
2348
2349 if (ea_valid_p)
2350 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2351 else
2352 ui_out_field_skip (uiout, "ea");
2353
2354 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2355 if (qw_valid_p)
2356 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2357 else
2358 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2359
2360 if (list_valid_p)
2361 {
2362 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2363 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2364 }
2365 else
2366 {
2367 ui_out_field_skip (uiout, "lstaddr");
2368 ui_out_field_skip (uiout, "lstsize");
2369 }
2370
2371 if (cmd_error_p)
2372 ui_out_field_string (uiout, "error_p", "*");
2373 else
2374 ui_out_field_skip (uiout, "error_p");
2375
2376 do_cleanups (cmd_chain);
2377
2378 if (!ui_out_is_mi_like_p (uiout))
2379 printf_filtered ("\n");
2380 }
2381
2382 do_cleanups (chain);
2383 }
2384
2385 static void
2386 info_spu_dma_command (char *args, int from_tty)
2387 {
2388 struct frame_info *frame = get_selected_frame (NULL);
2389 struct gdbarch *gdbarch = get_frame_arch (frame);
2390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2391 ULONGEST dma_info_type;
2392 ULONGEST dma_info_mask;
2393 ULONGEST dma_info_status;
2394 ULONGEST dma_info_stall_and_notify;
2395 ULONGEST dma_info_atomic_command_status;
2396 struct cleanup *chain;
2397 char annex[32];
2398 gdb_byte buf[1024];
2399 LONGEST len;
2400 int i, id;
2401
2402 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2403 error (_("\"info spu\" is only supported on the SPU architecture."));
2404
2405 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2406
2407 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2408 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2409 buf, 0, 40 + 16 * 32);
2410 if (len <= 0)
2411 error (_("Could not read dma_info."));
2412
2413 dma_info_type
2414 = extract_unsigned_integer (buf, 8, byte_order);
2415 dma_info_mask
2416 = extract_unsigned_integer (buf + 8, 8, byte_order);
2417 dma_info_status
2418 = extract_unsigned_integer (buf + 16, 8, byte_order);
2419 dma_info_stall_and_notify
2420 = extract_unsigned_integer (buf + 24, 8, byte_order);
2421 dma_info_atomic_command_status
2422 = extract_unsigned_integer (buf + 32, 8, byte_order);
2423
2424 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2425
2426 if (ui_out_is_mi_like_p (uiout))
2427 {
2428 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2429 phex_nz (dma_info_type, 4));
2430 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2431 phex_nz (dma_info_mask, 4));
2432 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2433 phex_nz (dma_info_status, 4));
2434 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2435 phex_nz (dma_info_stall_and_notify, 4));
2436 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2437 phex_nz (dma_info_atomic_command_status, 4));
2438 }
2439 else
2440 {
2441 const char *query_msg = _("no query pending");
2442
2443 if (dma_info_type & 4)
2444 switch (dma_info_type & 3)
2445 {
2446 case 1: query_msg = _("'any' query pending"); break;
2447 case 2: query_msg = _("'all' query pending"); break;
2448 default: query_msg = _("undefined query type"); break;
2449 }
2450
2451 printf_filtered (_("Tag-Group Status 0x%s\n"),
2452 phex (dma_info_status, 4));
2453 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2454 phex (dma_info_mask, 4), query_msg);
2455 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2456 phex (dma_info_stall_and_notify, 4));
2457 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2458 phex (dma_info_atomic_command_status, 4));
2459 printf_filtered ("\n");
2460 }
2461
2462 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2463 do_cleanups (chain);
2464 }
2465
2466 static void
2467 info_spu_proxydma_command (char *args, int from_tty)
2468 {
2469 struct frame_info *frame = get_selected_frame (NULL);
2470 struct gdbarch *gdbarch = get_frame_arch (frame);
2471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2472 ULONGEST dma_info_type;
2473 ULONGEST dma_info_mask;
2474 ULONGEST dma_info_status;
2475 struct cleanup *chain;
2476 char annex[32];
2477 gdb_byte buf[1024];
2478 LONGEST len;
2479 int i, id;
2480
2481 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2482 error (_("\"info spu\" is only supported on the SPU architecture."));
2483
2484 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2485
2486 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2487 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2488 buf, 0, 24 + 8 * 32);
2489 if (len <= 0)
2490 error (_("Could not read proxydma_info."));
2491
2492 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2493 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2494 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2495
2496 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2497
2498 if (ui_out_is_mi_like_p (uiout))
2499 {
2500 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2501 phex_nz (dma_info_type, 4));
2502 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2503 phex_nz (dma_info_mask, 4));
2504 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2505 phex_nz (dma_info_status, 4));
2506 }
2507 else
2508 {
2509 const char *query_msg;
2510
2511 switch (dma_info_type & 3)
2512 {
2513 case 0: query_msg = _("no query pending"); break;
2514 case 1: query_msg = _("'any' query pending"); break;
2515 case 2: query_msg = _("'all' query pending"); break;
2516 default: query_msg = _("undefined query type"); break;
2517 }
2518
2519 printf_filtered (_("Tag-Group Status 0x%s\n"),
2520 phex (dma_info_status, 4));
2521 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2522 phex (dma_info_mask, 4), query_msg);
2523 printf_filtered ("\n");
2524 }
2525
2526 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2527 do_cleanups (chain);
2528 }
2529
2530 static void
2531 info_spu_command (char *args, int from_tty)
2532 {
2533 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2534 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2535 }
2536
2537
2538 /* Root of all "set spu "/"show spu " commands. */
2539
2540 static void
2541 show_spu_command (char *args, int from_tty)
2542 {
2543 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2544 }
2545
2546 static void
2547 set_spu_command (char *args, int from_tty)
2548 {
2549 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2550 }
2551
2552 static void
2553 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2554 struct cmd_list_element *c, const char *value)
2555 {
2556 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2557 value);
2558 }
2559
2560 static void
2561 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2562 struct cmd_list_element *c, const char *value)
2563 {
2564 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2565 value);
2566 }
2567
2568
2569 /* Set up gdbarch struct. */
2570
2571 static struct gdbarch *
2572 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2573 {
2574 struct gdbarch *gdbarch;
2575 struct gdbarch_tdep *tdep;
2576 int id = -1;
2577
2578 /* Which spufs ID was requested as address space? */
2579 if (info.tdep_info)
2580 id = *(int *)info.tdep_info;
2581 /* For objfile architectures of SPU solibs, decode the ID from the name.
2582 This assumes the filename convention employed by solib-spu.c. */
2583 else if (info.abfd)
2584 {
2585 char *name = strrchr (info.abfd->filename, '@');
2586 if (name)
2587 sscanf (name, "@0x%*x <%d>", &id);
2588 }
2589
2590 /* Find a candidate among extant architectures. */
2591 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2592 arches != NULL;
2593 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2594 {
2595 tdep = gdbarch_tdep (arches->gdbarch);
2596 if (tdep && tdep->id == id)
2597 return arches->gdbarch;
2598 }
2599
2600 /* None found, so create a new architecture. */
2601 tdep = XCALLOC (1, struct gdbarch_tdep);
2602 tdep->id = id;
2603 gdbarch = gdbarch_alloc (&info, tdep);
2604
2605 /* Disassembler. */
2606 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2607
2608 /* Registers. */
2609 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2610 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2611 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2612 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2613 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2614 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2615 set_gdbarch_register_name (gdbarch, spu_register_name);
2616 set_gdbarch_register_type (gdbarch, spu_register_type);
2617 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2618 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2619 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2620 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2621
2622 /* Data types. */
2623 set_gdbarch_char_signed (gdbarch, 0);
2624 set_gdbarch_ptr_bit (gdbarch, 32);
2625 set_gdbarch_addr_bit (gdbarch, 32);
2626 set_gdbarch_short_bit (gdbarch, 16);
2627 set_gdbarch_int_bit (gdbarch, 32);
2628 set_gdbarch_long_bit (gdbarch, 32);
2629 set_gdbarch_long_long_bit (gdbarch, 64);
2630 set_gdbarch_float_bit (gdbarch, 32);
2631 set_gdbarch_double_bit (gdbarch, 64);
2632 set_gdbarch_long_double_bit (gdbarch, 64);
2633 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2634 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2635 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2636
2637 /* Address handling. */
2638 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2639 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2640 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2641 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2642 set_gdbarch_address_class_type_flags_to_name
2643 (gdbarch, spu_address_class_type_flags_to_name);
2644 set_gdbarch_address_class_name_to_type_flags
2645 (gdbarch, spu_address_class_name_to_type_flags);
2646
2647
2648 /* Inferior function calls. */
2649 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2650 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2651 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2652 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2653 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2654 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2655 set_gdbarch_return_value (gdbarch, spu_return_value);
2656
2657 /* Frame handling. */
2658 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2659 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2660 frame_base_set_default (gdbarch, &spu_frame_base);
2661 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2662 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2663 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2664 set_gdbarch_frame_args_skip (gdbarch, 0);
2665 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2666 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2667
2668 /* Cell/B.E. cross-architecture unwinder support. */
2669 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2670
2671 /* Breakpoints. */
2672 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2673 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2674 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2675 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2676 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2677 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2678
2679 /* Overlays. */
2680 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2681
2682 return gdbarch;
2683 }
2684
2685 /* Provide a prototype to silence -Wmissing-prototypes. */
2686 extern initialize_file_ftype _initialize_spu_tdep;
2687
2688 void
2689 _initialize_spu_tdep (void)
2690 {
2691 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2692
2693 /* Add ourselves to objfile event chain. */
2694 observer_attach_new_objfile (spu_overlay_new_objfile);
2695 spu_overlay_data = register_objfile_data ();
2696
2697 /* Install spu stop-on-load handler. */
2698 observer_attach_new_objfile (spu_catch_start);
2699
2700 /* Add ourselves to normal_stop event chain. */
2701 observer_attach_normal_stop (spu_attach_normal_stop);
2702
2703 /* Add root prefix command for all "set spu"/"show spu" commands. */
2704 add_prefix_cmd ("spu", no_class, set_spu_command,
2705 _("Various SPU specific commands."),
2706 &setspucmdlist, "set spu ", 0, &setlist);
2707 add_prefix_cmd ("spu", no_class, show_spu_command,
2708 _("Various SPU specific commands."),
2709 &showspucmdlist, "show spu ", 0, &showlist);
2710
2711 /* Toggle whether or not to add a temporary breakpoint at the "main"
2712 function of new SPE contexts. */
2713 add_setshow_boolean_cmd ("stop-on-load", class_support,
2714 &spu_stop_on_load_p, _("\
2715 Set whether to stop for new SPE threads."),
2716 _("\
2717 Show whether to stop for new SPE threads."),
2718 _("\
2719 Use \"on\" to give control to the user when a new SPE thread\n\
2720 enters its \"main\" function.\n\
2721 Use \"off\" to disable stopping for new SPE threads."),
2722 NULL,
2723 show_spu_stop_on_load,
2724 &setspucmdlist, &showspucmdlist);
2725
2726 /* Toggle whether or not to automatically flush the software-managed
2727 cache whenever SPE execution stops. */
2728 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2729 &spu_auto_flush_cache_p, _("\
2730 Set whether to automatically flush the software-managed cache."),
2731 _("\
2732 Show whether to automatically flush the software-managed cache."),
2733 _("\
2734 Use \"on\" to automatically flush the software-managed cache\n\
2735 whenever SPE execution stops.\n\
2736 Use \"off\" to never automatically flush the software-managed cache."),
2737 NULL,
2738 show_spu_auto_flush_cache,
2739 &setspucmdlist, &showspucmdlist);
2740
2741 /* Add root prefix command for all "info spu" commands. */
2742 add_prefix_cmd ("spu", class_info, info_spu_command,
2743 _("Various SPU specific commands."),
2744 &infospucmdlist, "info spu ", 0, &infolist);
2745
2746 /* Add various "info spu" commands. */
2747 add_cmd ("event", class_info, info_spu_event_command,
2748 _("Display SPU event facility status.\n"),
2749 &infospucmdlist);
2750 add_cmd ("signal", class_info, info_spu_signal_command,
2751 _("Display SPU signal notification facility status.\n"),
2752 &infospucmdlist);
2753 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2754 _("Display SPU mailbox facility status.\n"),
2755 &infospucmdlist);
2756 add_cmd ("dma", class_info, info_spu_dma_command,
2757 _("Display MFC DMA status.\n"),
2758 &infospucmdlist);
2759 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2760 _("Display MFC Proxy-DMA status.\n"),
2761 &infospucmdlist);
2762 }
This page took 0.087702 seconds and 4 git commands to generate.