1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "arch-utils.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element
*setspucmdlist
= NULL
;
52 static struct cmd_list_element
*showspucmdlist
= NULL
;
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p
= 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p
= 1;
60 /* The tdep structure. */
63 /* The spufs ID identifying our address space. */
66 /* SPU-specific vector type. */
67 struct type
*spu_builtin_type_vec128
;
71 /* SPU-specific vector type. */
73 spu_builtin_type_vec128 (struct gdbarch
*gdbarch
)
75 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
77 if (!tdep
->spu_builtin_type_vec128
)
79 const struct builtin_type
*bt
= builtin_type (gdbarch
);
82 t
= arch_composite_type (gdbarch
,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION
);
84 append_composite_type_field (t
, "uint128", bt
->builtin_int128
);
85 append_composite_type_field (t
, "v2_int64",
86 init_vector_type (bt
->builtin_int64
, 2));
87 append_composite_type_field (t
, "v4_int32",
88 init_vector_type (bt
->builtin_int32
, 4));
89 append_composite_type_field (t
, "v8_int16",
90 init_vector_type (bt
->builtin_int16
, 8));
91 append_composite_type_field (t
, "v16_int8",
92 init_vector_type (bt
->builtin_int8
, 16));
93 append_composite_type_field (t
, "v2_double",
94 init_vector_type (bt
->builtin_double
, 2));
95 append_composite_type_field (t
, "v4_float",
96 init_vector_type (bt
->builtin_float
, 4));
99 TYPE_NAME (t
) = "spu_builtin_type_vec128";
101 tdep
->spu_builtin_type_vec128
= t
;
104 return tdep
->spu_builtin_type_vec128
;
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element
*infospucmdlist
= NULL
;
114 spu_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
116 static char *register_names
[] =
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
139 if (reg_nr
>= sizeof register_names
/ sizeof *register_names
)
142 return register_names
[reg_nr
];
146 spu_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
148 if (reg_nr
< SPU_NUM_GPRS
)
149 return spu_builtin_type_vec128 (gdbarch
);
154 return builtin_type (gdbarch
)->builtin_uint32
;
157 return builtin_type (gdbarch
)->builtin_func_ptr
;
160 return builtin_type (gdbarch
)->builtin_data_ptr
;
162 case SPU_FPSCR_REGNUM
:
163 return builtin_type (gdbarch
)->builtin_uint128
;
165 case SPU_SRR0_REGNUM
:
166 return builtin_type (gdbarch
)->builtin_uint32
;
168 case SPU_LSLR_REGNUM
:
169 return builtin_type (gdbarch
)->builtin_uint32
;
171 case SPU_DECR_REGNUM
:
172 return builtin_type (gdbarch
)->builtin_uint32
;
174 case SPU_DECR_STATUS_REGNUM
:
175 return builtin_type (gdbarch
)->builtin_uint32
;
178 internal_error (__FILE__
, __LINE__
, "invalid regnum");
182 /* Pseudo registers for preferred slots - stack pointer. */
185 spu_pseudo_register_read_spu (struct regcache
*regcache
, const char *regname
,
188 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
189 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
194 regcache_raw_read_unsigned (regcache
, SPU_ID_REGNUM
, &id
);
195 xsnprintf (annex
, sizeof annex
, "%d/%s", (int) id
, regname
);
196 memset (reg
, 0, sizeof reg
);
197 target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
200 store_unsigned_integer (buf
, 4, byte_order
, strtoulst (reg
, NULL
, 16));
204 spu_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
205 int regnum
, gdb_byte
*buf
)
214 regcache_raw_read (regcache
, SPU_RAW_SP_REGNUM
, reg
);
215 memcpy (buf
, reg
, 4);
218 case SPU_FPSCR_REGNUM
:
219 regcache_raw_read_unsigned (regcache
, SPU_ID_REGNUM
, &id
);
220 xsnprintf (annex
, sizeof annex
, "%d/fpcr", (int) id
);
221 target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
, buf
, 0, 16);
224 case SPU_SRR0_REGNUM
:
225 spu_pseudo_register_read_spu (regcache
, "srr0", buf
);
228 case SPU_LSLR_REGNUM
:
229 spu_pseudo_register_read_spu (regcache
, "lslr", buf
);
232 case SPU_DECR_REGNUM
:
233 spu_pseudo_register_read_spu (regcache
, "decr", buf
);
236 case SPU_DECR_STATUS_REGNUM
:
237 spu_pseudo_register_read_spu (regcache
, "decr_status", buf
);
241 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
246 spu_pseudo_register_write_spu (struct regcache
*regcache
, const char *regname
,
249 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
250 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
255 regcache_raw_read_unsigned (regcache
, SPU_ID_REGNUM
, &id
);
256 xsnprintf (annex
, sizeof annex
, "%d/%s", (int) id
, regname
);
257 xsnprintf (reg
, sizeof reg
, "0x%s",
258 phex_nz (extract_unsigned_integer (buf
, 4, byte_order
), 4));
259 target_write (¤t_target
, TARGET_OBJECT_SPU
, annex
,
260 reg
, 0, strlen (reg
));
264 spu_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
265 int regnum
, const gdb_byte
*buf
)
274 regcache_raw_read (regcache
, SPU_RAW_SP_REGNUM
, reg
);
275 memcpy (reg
, buf
, 4);
276 regcache_raw_write (regcache
, SPU_RAW_SP_REGNUM
, reg
);
279 case SPU_FPSCR_REGNUM
:
280 regcache_raw_read_unsigned (regcache
, SPU_ID_REGNUM
, &id
);
281 xsnprintf (annex
, sizeof annex
, "%d/fpcr", (int) id
);
282 target_write (¤t_target
, TARGET_OBJECT_SPU
, annex
, buf
, 0, 16);
285 case SPU_SRR0_REGNUM
:
286 spu_pseudo_register_write_spu (regcache
, "srr0", buf
);
289 case SPU_LSLR_REGNUM
:
290 spu_pseudo_register_write_spu (regcache
, "lslr", buf
);
293 case SPU_DECR_REGNUM
:
294 spu_pseudo_register_write_spu (regcache
, "decr", buf
);
297 case SPU_DECR_STATUS_REGNUM
:
298 spu_pseudo_register_write_spu (regcache
, "decr_status", buf
);
302 internal_error (__FILE__
, __LINE__
, _("invalid regnum"));
306 /* Value conversion -- access scalar values at the preferred slot. */
308 static struct value
*
309 spu_value_from_register (struct type
*type
, int regnum
,
310 struct frame_info
*frame
)
312 struct value
*value
= default_value_from_register (type
, regnum
, frame
);
313 int len
= TYPE_LENGTH (type
);
315 if (regnum
< SPU_NUM_GPRS
&& len
< 16)
317 int preferred_slot
= len
< 4 ? 4 - len
: 0;
318 set_value_offset (value
, preferred_slot
);
324 /* Register groups. */
327 spu_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
328 struct reggroup
*group
)
330 /* Registers displayed via 'info regs'. */
331 if (group
== general_reggroup
)
334 /* Registers displayed via 'info float'. */
335 if (group
== float_reggroup
)
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group
== save_reggroup
|| group
== restore_reggroup
)
343 return default_register_reggroup_p (gdbarch
, regnum
, group
);
347 /* Address handling. */
350 spu_gdbarch_id (struct gdbarch
*gdbarch
)
352 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
359 && symfile_objfile
&& symfile_objfile
->obfd
360 && bfd_get_arch (symfile_objfile
->obfd
) == bfd_arch_spu
361 && symfile_objfile
->sections
!= symfile_objfile
->sections_end
)
362 id
= SPUADDR_SPU (obj_section_addr (symfile_objfile
->sections
));
368 spu_address_class_type_flags (int byte_size
, int dwarf2_addr_class
)
370 if (dwarf2_addr_class
== 1)
371 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
;
377 spu_address_class_type_flags_to_name (struct gdbarch
*gdbarch
, int type_flags
)
379 if (type_flags
& TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
)
386 spu_address_class_name_to_type_flags (struct gdbarch
*gdbarch
,
387 const char *name
, int *type_flags_ptr
)
389 if (strcmp (name
, "__ea") == 0)
391 *type_flags_ptr
= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
;
399 spu_address_to_pointer (struct gdbarch
*gdbarch
,
400 struct type
*type
, gdb_byte
*buf
, CORE_ADDR addr
)
402 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
403 store_unsigned_integer (buf
, TYPE_LENGTH (type
), byte_order
,
404 SPUADDR_ADDR (addr
));
408 spu_pointer_to_address (struct gdbarch
*gdbarch
,
409 struct type
*type
, const gdb_byte
*buf
)
411 int id
= spu_gdbarch_id (gdbarch
);
412 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
414 = extract_unsigned_integer (buf
, TYPE_LENGTH (type
), byte_order
);
416 /* Do not convert __ea pointers. */
417 if (TYPE_ADDRESS_CLASS_1 (type
))
420 return addr
? SPUADDR (id
, addr
) : 0;
424 spu_integer_to_address (struct gdbarch
*gdbarch
,
425 struct type
*type
, const gdb_byte
*buf
)
427 int id
= spu_gdbarch_id (gdbarch
);
428 ULONGEST addr
= unpack_long (type
, buf
);
430 return SPUADDR (id
, addr
);
434 /* Decoding SPU instructions. */
471 is_rr (unsigned int insn
, int op
, int *rt
, int *ra
, int *rb
)
473 if ((insn
>> 21) == op
)
476 *ra
= (insn
>> 7) & 127;
477 *rb
= (insn
>> 14) & 127;
485 is_rrr (unsigned int insn
, int op
, int *rt
, int *ra
, int *rb
, int *rc
)
487 if ((insn
>> 28) == op
)
489 *rt
= (insn
>> 21) & 127;
490 *ra
= (insn
>> 7) & 127;
491 *rb
= (insn
>> 14) & 127;
500 is_ri7 (unsigned int insn
, int op
, int *rt
, int *ra
, int *i7
)
502 if ((insn
>> 21) == op
)
505 *ra
= (insn
>> 7) & 127;
506 *i7
= (((insn
>> 14) & 127) ^ 0x40) - 0x40;
514 is_ri10 (unsigned int insn
, int op
, int *rt
, int *ra
, int *i10
)
516 if ((insn
>> 24) == op
)
519 *ra
= (insn
>> 7) & 127;
520 *i10
= (((insn
>> 14) & 0x3ff) ^ 0x200) - 0x200;
528 is_ri16 (unsigned int insn
, int op
, int *rt
, int *i16
)
530 if ((insn
>> 23) == op
)
533 *i16
= (((insn
>> 7) & 0xffff) ^ 0x8000) - 0x8000;
541 is_ri18 (unsigned int insn
, int op
, int *rt
, int *i18
)
543 if ((insn
>> 25) == op
)
546 *i18
= (((insn
>> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
554 is_branch (unsigned int insn
, int *offset
, int *reg
)
558 if (is_ri16 (insn
, op_br
, &rt
, &i16
)
559 || is_ri16 (insn
, op_brsl
, &rt
, &i16
)
560 || is_ri16 (insn
, op_brnz
, &rt
, &i16
)
561 || is_ri16 (insn
, op_brz
, &rt
, &i16
)
562 || is_ri16 (insn
, op_brhnz
, &rt
, &i16
)
563 || is_ri16 (insn
, op_brhz
, &rt
, &i16
))
565 *reg
= SPU_PC_REGNUM
;
570 if (is_ri16 (insn
, op_bra
, &rt
, &i16
)
571 || is_ri16 (insn
, op_brasl
, &rt
, &i16
))
578 if (is_ri7 (insn
, op_bi
, &rt
, reg
, &i7
)
579 || is_ri7 (insn
, op_bisl
, &rt
, reg
, &i7
)
580 || is_ri7 (insn
, op_biz
, &rt
, reg
, &i7
)
581 || is_ri7 (insn
, op_binz
, &rt
, reg
, &i7
)
582 || is_ri7 (insn
, op_bihz
, &rt
, reg
, &i7
)
583 || is_ri7 (insn
, op_bihnz
, &rt
, reg
, &i7
))
593 /* Prolog parsing. */
595 struct spu_prologue_data
597 /* Stack frame size. -1 if analysis was unsuccessful. */
600 /* How to find the CFA. The CFA is equal to SP at function entry. */
604 /* Offset relative to CFA where a register is saved. -1 if invalid. */
605 int reg_offset
[SPU_NUM_GPRS
];
609 spu_analyze_prologue (struct gdbarch
*gdbarch
,
610 CORE_ADDR start_pc
, CORE_ADDR end_pc
,
611 struct spu_prologue_data
*data
)
613 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
618 int reg_immed
[SPU_NUM_GPRS
];
620 CORE_ADDR prolog_pc
= start_pc
;
625 /* Initialize DATA to default values. */
628 data
->cfa_reg
= SPU_RAW_SP_REGNUM
;
629 data
->cfa_offset
= 0;
631 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
632 data
->reg_offset
[i
] = -1;
634 /* Set up REG_IMMED array. This is non-zero for a register if we know its
635 preferred slot currently holds this immediate value. */
636 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
639 /* Scan instructions until the first branch.
641 The following instructions are important prolog components:
643 - The first instruction to set up the stack pointer.
644 - The first instruction to set up the frame pointer.
645 - The first instruction to save the link register.
646 - The first instruction to save the backchain.
648 We return the instruction after the latest of these four,
649 or the incoming PC if none is found. The first instruction
650 to set up the stack pointer also defines the frame size.
652 Note that instructions saving incoming arguments to their stack
653 slots are not counted as important, because they are hard to
654 identify with certainty. This should not matter much, because
655 arguments are relevant only in code compiled with debug data,
656 and in such code the GDB core will advance until the first source
657 line anyway, using SAL data.
659 For purposes of stack unwinding, we analyze the following types
660 of instructions in addition:
662 - Any instruction adding to the current frame pointer.
663 - Any instruction loading an immediate constant into a register.
664 - Any instruction storing a register onto the stack.
666 These are used to compute the CFA and REG_OFFSET output. */
668 for (pc
= start_pc
; pc
< end_pc
; pc
+= 4)
671 int rt
, ra
, rb
, rc
, immed
;
673 if (target_read_memory (pc
, buf
, 4))
675 insn
= extract_unsigned_integer (buf
, 4, byte_order
);
677 /* AI is the typical instruction to set up a stack frame.
678 It is also used to initialize the frame pointer. */
679 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
))
681 if (rt
== data
->cfa_reg
&& ra
== data
->cfa_reg
)
682 data
->cfa_offset
-= immed
;
684 if (rt
== SPU_RAW_SP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
692 else if (rt
== SPU_FP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
698 data
->cfa_reg
= SPU_FP_REGNUM
;
699 data
->cfa_offset
-= immed
;
703 /* A is used to set up stack frames of size >= 512 bytes.
704 If we have tracked the contents of the addend register,
705 we can handle this as well. */
706 else if (is_rr (insn
, op_a
, &rt
, &ra
, &rb
))
708 if (rt
== data
->cfa_reg
&& ra
== data
->cfa_reg
)
710 if (reg_immed
[rb
] != 0)
711 data
->cfa_offset
-= reg_immed
[rb
];
713 data
->cfa_reg
= -1; /* We don't know the CFA any more. */
716 if (rt
== SPU_RAW_SP_REGNUM
&& ra
== SPU_RAW_SP_REGNUM
722 if (reg_immed
[rb
] != 0)
723 data
->size
= -reg_immed
[rb
];
727 /* We need to track IL and ILA used to load immediate constants
728 in case they are later used as input to an A instruction. */
729 else if (is_ri16 (insn
, op_il
, &rt
, &immed
))
731 reg_immed
[rt
] = immed
;
733 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
737 else if (is_ri18 (insn
, op_ila
, &rt
, &immed
))
739 reg_immed
[rt
] = immed
& 0x3ffff;
741 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
745 /* STQD is used to save registers to the stack. */
746 else if (is_ri10 (insn
, op_stqd
, &rt
, &ra
, &immed
))
748 if (ra
== data
->cfa_reg
)
749 data
->reg_offset
[rt
] = data
->cfa_offset
- (immed
<< 4);
751 if (ra
== data
->cfa_reg
&& rt
== SPU_LR_REGNUM
758 if (ra
== SPU_RAW_SP_REGNUM
759 && (found_sp
? immed
== 0 : rt
== SPU_RAW_SP_REGNUM
)
767 /* _start uses SELB to set up the stack pointer. */
768 else if (is_rrr (insn
, op_selb
, &rt
, &ra
, &rb
, &rc
))
770 if (rt
== SPU_RAW_SP_REGNUM
&& !found_sp
)
774 /* We terminate if we find a branch. */
775 else if (is_branch (insn
, &immed
, &ra
))
780 /* If we successfully parsed until here, and didn't find any instruction
781 modifying SP, we assume we have a frameless function. */
785 /* Return cooked instead of raw SP. */
786 if (data
->cfa_reg
== SPU_RAW_SP_REGNUM
)
787 data
->cfa_reg
= SPU_SP_REGNUM
;
792 /* Return the first instruction after the prologue starting at PC. */
794 spu_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
796 struct spu_prologue_data data
;
797 return spu_analyze_prologue (gdbarch
, pc
, (CORE_ADDR
)-1, &data
);
800 /* Return the frame pointer in use at address PC. */
802 spu_virtual_frame_pointer (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
803 int *reg
, LONGEST
*offset
)
805 struct spu_prologue_data data
;
806 spu_analyze_prologue (gdbarch
, pc
, (CORE_ADDR
)-1, &data
);
808 if (data
.size
!= -1 && data
.cfa_reg
!= -1)
810 /* The 'frame pointer' address is CFA minus frame size. */
812 *offset
= data
.cfa_offset
- data
.size
;
816 /* ??? We don't really know ... */
817 *reg
= SPU_SP_REGNUM
;
822 /* Return true if we are in the function's epilogue, i.e. after the
823 instruction that destroyed the function's stack frame.
825 1) scan forward from the point of execution:
826 a) If you find an instruction that modifies the stack pointer
827 or transfers control (except a return), execution is not in
829 b) Stop scanning if you find a return instruction or reach the
830 end of the function or reach the hard limit for the size of
832 2) scan backward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer,
834 execution *is* in an epilogue, return.
835 b) Stop scanning if you reach an instruction that transfers
836 control or the beginning of the function or reach the hard
837 limit for the size of an epilogue. */
840 spu_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
842 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
843 CORE_ADDR scan_pc
, func_start
, func_end
, epilogue_start
, epilogue_end
;
846 int rt
, ra
, rb
, rc
, immed
;
848 /* Find the search limits based on function boundaries and hard limit.
849 We assume the epilogue can be up to 64 instructions long. */
851 const int spu_max_epilogue_size
= 64 * 4;
853 if (!find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
856 if (pc
- func_start
< spu_max_epilogue_size
)
857 epilogue_start
= func_start
;
859 epilogue_start
= pc
- spu_max_epilogue_size
;
861 if (func_end
- pc
< spu_max_epilogue_size
)
862 epilogue_end
= func_end
;
864 epilogue_end
= pc
+ spu_max_epilogue_size
;
866 /* Scan forward until next 'bi $0'. */
868 for (scan_pc
= pc
; scan_pc
< epilogue_end
; scan_pc
+= 4)
870 if (target_read_memory (scan_pc
, buf
, 4))
872 insn
= extract_unsigned_integer (buf
, 4, byte_order
);
874 if (is_branch (insn
, &immed
, &ra
))
876 if (immed
== 0 && ra
== SPU_LR_REGNUM
)
882 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
)
883 || is_rr (insn
, op_a
, &rt
, &ra
, &rb
)
884 || is_ri10 (insn
, op_lqd
, &rt
, &ra
, &immed
))
886 if (rt
== SPU_RAW_SP_REGNUM
)
891 if (scan_pc
>= epilogue_end
)
894 /* Scan backward until adjustment to stack pointer (R1). */
896 for (scan_pc
= pc
- 4; scan_pc
>= epilogue_start
; scan_pc
-= 4)
898 if (target_read_memory (scan_pc
, buf
, 4))
900 insn
= extract_unsigned_integer (buf
, 4, byte_order
);
902 if (is_branch (insn
, &immed
, &ra
))
905 if (is_ri10 (insn
, op_ai
, &rt
, &ra
, &immed
)
906 || is_rr (insn
, op_a
, &rt
, &ra
, &rb
)
907 || is_ri10 (insn
, op_lqd
, &rt
, &ra
, &immed
))
909 if (rt
== SPU_RAW_SP_REGNUM
)
918 /* Normal stack frames. */
920 struct spu_unwind_cache
923 CORE_ADDR frame_base
;
924 CORE_ADDR local_base
;
926 struct trad_frame_saved_reg
*saved_regs
;
929 static struct spu_unwind_cache
*
930 spu_frame_unwind_cache (struct frame_info
*this_frame
,
931 void **this_prologue_cache
)
933 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
934 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
935 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
936 struct spu_unwind_cache
*info
;
937 struct spu_prologue_data data
;
938 CORE_ADDR id
= tdep
->id
;
941 if (*this_prologue_cache
)
942 return *this_prologue_cache
;
944 info
= FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache
);
945 *this_prologue_cache
= info
;
946 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
947 info
->frame_base
= 0;
948 info
->local_base
= 0;
950 /* Find the start of the current function, and analyze its prologue. */
951 info
->func
= get_frame_func (this_frame
);
954 /* Fall back to using the current PC as frame ID. */
955 info
->func
= get_frame_pc (this_frame
);
959 spu_analyze_prologue (gdbarch
, info
->func
, get_frame_pc (this_frame
),
962 /* If successful, use prologue analysis data. */
963 if (data
.size
!= -1 && data
.cfa_reg
!= -1)
968 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
969 get_frame_register (this_frame
, data
.cfa_reg
, buf
);
970 cfa
= extract_unsigned_integer (buf
, 4, byte_order
) + data
.cfa_offset
;
971 cfa
= SPUADDR (id
, cfa
);
973 /* Call-saved register slots. */
974 for (i
= 0; i
< SPU_NUM_GPRS
; i
++)
975 if (i
== SPU_LR_REGNUM
976 || (i
>= SPU_SAVED1_REGNUM
&& i
<= SPU_SAVEDN_REGNUM
))
977 if (data
.reg_offset
[i
] != -1)
978 info
->saved_regs
[i
].addr
= cfa
- data
.reg_offset
[i
];
981 info
->frame_base
= cfa
;
982 info
->local_base
= cfa
- data
.size
;
985 /* Otherwise, fall back to reading the backchain link. */
993 /* Get local store limit. */
994 lslr
= get_frame_register_unsigned (this_frame
, SPU_LSLR_REGNUM
);
996 lslr
= (ULONGEST
) -1;
998 /* Get the backchain. */
999 reg
= get_frame_register_unsigned (this_frame
, SPU_SP_REGNUM
);
1000 status
= safe_read_memory_integer (SPUADDR (id
, reg
), 4, byte_order
,
1003 /* A zero backchain terminates the frame chain. Also, sanity
1004 check against the local store size limit. */
1005 if (status
&& backchain
> 0 && backchain
<= lslr
)
1007 /* Assume the link register is saved into its slot. */
1008 if (backchain
+ 16 <= lslr
)
1009 info
->saved_regs
[SPU_LR_REGNUM
].addr
= SPUADDR (id
, backchain
+ 16);
1012 info
->frame_base
= SPUADDR (id
, backchain
);
1013 info
->local_base
= SPUADDR (id
, reg
);
1017 /* If we didn't find a frame, we cannot determine SP / return address. */
1018 if (info
->frame_base
== 0)
1021 /* The previous SP is equal to the CFA. */
1022 trad_frame_set_value (info
->saved_regs
, SPU_SP_REGNUM
,
1023 SPUADDR_ADDR (info
->frame_base
));
1025 /* Read full contents of the unwound link register in order to
1026 be able to determine the return address. */
1027 if (trad_frame_addr_p (info
->saved_regs
, SPU_LR_REGNUM
))
1028 target_read_memory (info
->saved_regs
[SPU_LR_REGNUM
].addr
, buf
, 16);
1030 get_frame_register (this_frame
, SPU_LR_REGNUM
, buf
);
1032 /* Normally, the return address is contained in the slot 0 of the
1033 link register, and slots 1-3 are zero. For an overlay return,
1034 slot 0 contains the address of the overlay manager return stub,
1035 slot 1 contains the partition number of the overlay section to
1036 be returned to, and slot 2 contains the return address within
1037 that section. Return the latter address in that case. */
1038 if (extract_unsigned_integer (buf
+ 8, 4, byte_order
) != 0)
1039 trad_frame_set_value (info
->saved_regs
, SPU_PC_REGNUM
,
1040 extract_unsigned_integer (buf
+ 8, 4, byte_order
));
1042 trad_frame_set_value (info
->saved_regs
, SPU_PC_REGNUM
,
1043 extract_unsigned_integer (buf
, 4, byte_order
));
1049 spu_frame_this_id (struct frame_info
*this_frame
,
1050 void **this_prologue_cache
, struct frame_id
*this_id
)
1052 struct spu_unwind_cache
*info
=
1053 spu_frame_unwind_cache (this_frame
, this_prologue_cache
);
1055 if (info
->frame_base
== 0)
1058 *this_id
= frame_id_build (info
->frame_base
, info
->func
);
1061 static struct value
*
1062 spu_frame_prev_register (struct frame_info
*this_frame
,
1063 void **this_prologue_cache
, int regnum
)
1065 struct spu_unwind_cache
*info
1066 = spu_frame_unwind_cache (this_frame
, this_prologue_cache
);
1068 /* Special-case the stack pointer. */
1069 if (regnum
== SPU_RAW_SP_REGNUM
)
1070 regnum
= SPU_SP_REGNUM
;
1072 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
1075 static const struct frame_unwind spu_frame_unwind
= {
1078 spu_frame_prev_register
,
1080 default_frame_sniffer
1084 spu_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1086 struct spu_unwind_cache
*info
1087 = spu_frame_unwind_cache (this_frame
, this_cache
);
1088 return info
->local_base
;
1091 static const struct frame_base spu_frame_base
= {
1093 spu_frame_base_address
,
1094 spu_frame_base_address
,
1095 spu_frame_base_address
1099 spu_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1101 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1102 CORE_ADDR pc
= frame_unwind_register_unsigned (next_frame
, SPU_PC_REGNUM
);
1103 /* Mask off interrupt enable bit. */
1104 return SPUADDR (tdep
->id
, pc
& -4);
1108 spu_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1110 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1111 CORE_ADDR sp
= frame_unwind_register_unsigned (next_frame
, SPU_SP_REGNUM
);
1112 return SPUADDR (tdep
->id
, sp
);
1116 spu_read_pc (struct regcache
*regcache
)
1118 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_regcache_arch (regcache
));
1120 regcache_cooked_read_unsigned (regcache
, SPU_PC_REGNUM
, &pc
);
1121 /* Mask off interrupt enable bit. */
1122 return SPUADDR (tdep
->id
, pc
& -4);
1126 spu_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1128 /* Keep interrupt enabled state unchanged. */
1130 regcache_cooked_read_unsigned (regcache
, SPU_PC_REGNUM
, &old_pc
);
1131 regcache_cooked_write_unsigned (regcache
, SPU_PC_REGNUM
,
1132 (SPUADDR_ADDR (pc
) & -4) | (old_pc
& 3));
1136 /* Cell/B.E. cross-architecture unwinder support. */
1138 struct spu2ppu_cache
1140 struct frame_id frame_id
;
1141 struct regcache
*regcache
;
1144 static struct gdbarch
*
1145 spu2ppu_prev_arch (struct frame_info
*this_frame
, void **this_cache
)
1147 struct spu2ppu_cache
*cache
= *this_cache
;
1148 return get_regcache_arch (cache
->regcache
);
1152 spu2ppu_this_id (struct frame_info
*this_frame
,
1153 void **this_cache
, struct frame_id
*this_id
)
1155 struct spu2ppu_cache
*cache
= *this_cache
;
1156 *this_id
= cache
->frame_id
;
1159 static struct value
*
1160 spu2ppu_prev_register (struct frame_info
*this_frame
,
1161 void **this_cache
, int regnum
)
1163 struct spu2ppu_cache
*cache
= *this_cache
;
1164 struct gdbarch
*gdbarch
= get_regcache_arch (cache
->regcache
);
1167 buf
= alloca (register_size (gdbarch
, regnum
));
1168 regcache_cooked_read (cache
->regcache
, regnum
, buf
);
1169 return frame_unwind_got_bytes (this_frame
, regnum
, buf
);
1173 spu2ppu_sniffer (const struct frame_unwind
*self
,
1174 struct frame_info
*this_frame
, void **this_prologue_cache
)
1176 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1177 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1178 CORE_ADDR base
, func
, backchain
;
1181 if (gdbarch_bfd_arch_info (target_gdbarch
)->arch
== bfd_arch_spu
)
1184 base
= get_frame_sp (this_frame
);
1185 func
= get_frame_pc (this_frame
);
1186 if (target_read_memory (base
, buf
, 4))
1188 backchain
= extract_unsigned_integer (buf
, 4, byte_order
);
1192 struct frame_info
*fi
;
1194 struct spu2ppu_cache
*cache
1195 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache
);
1197 cache
->frame_id
= frame_id_build (base
+ 16, func
);
1199 for (fi
= get_next_frame (this_frame
); fi
; fi
= get_next_frame (fi
))
1200 if (gdbarch_bfd_arch_info (get_frame_arch (fi
))->arch
!= bfd_arch_spu
)
1205 cache
->regcache
= frame_save_as_regcache (fi
);
1206 *this_prologue_cache
= cache
;
1211 struct regcache
*regcache
;
1212 regcache
= get_thread_arch_regcache (inferior_ptid
, target_gdbarch
);
1213 cache
->regcache
= regcache_dup (regcache
);
1214 *this_prologue_cache
= cache
;
1223 spu2ppu_dealloc_cache (struct frame_info
*self
, void *this_cache
)
1225 struct spu2ppu_cache
*cache
= this_cache
;
1226 regcache_xfree (cache
->regcache
);
1229 static const struct frame_unwind spu2ppu_unwind
= {
1232 spu2ppu_prev_register
,
1235 spu2ppu_dealloc_cache
,
1240 /* Function calling convention. */
1243 spu_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
1249 spu_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
, CORE_ADDR funaddr
,
1250 struct value
**args
, int nargs
, struct type
*value_type
,
1251 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
1252 struct regcache
*regcache
)
1254 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1255 sp
= (sp
- 4) & ~15;
1256 /* Store the address of that breakpoint */
1258 /* The call starts at the callee's entry point. */
1265 spu_scalar_value_p (struct type
*type
)
1267 switch (TYPE_CODE (type
))
1270 case TYPE_CODE_ENUM
:
1271 case TYPE_CODE_RANGE
:
1272 case TYPE_CODE_CHAR
:
1273 case TYPE_CODE_BOOL
:
1276 return TYPE_LENGTH (type
) <= 16;
1284 spu_value_to_regcache (struct regcache
*regcache
, int regnum
,
1285 struct type
*type
, const gdb_byte
*in
)
1287 int len
= TYPE_LENGTH (type
);
1289 if (spu_scalar_value_p (type
))
1291 int preferred_slot
= len
< 4 ? 4 - len
: 0;
1292 regcache_cooked_write_part (regcache
, regnum
, preferred_slot
, len
, in
);
1298 regcache_cooked_write (regcache
, regnum
++, in
);
1304 regcache_cooked_write_part (regcache
, regnum
, 0, len
, in
);
1309 spu_regcache_to_value (struct regcache
*regcache
, int regnum
,
1310 struct type
*type
, gdb_byte
*out
)
1312 int len
= TYPE_LENGTH (type
);
1314 if (spu_scalar_value_p (type
))
1316 int preferred_slot
= len
< 4 ? 4 - len
: 0;
1317 regcache_cooked_read_part (regcache
, regnum
, preferred_slot
, len
, out
);
1323 regcache_cooked_read (regcache
, regnum
++, out
);
1329 regcache_cooked_read_part (regcache
, regnum
, 0, len
, out
);
1334 spu_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1335 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1336 int nargs
, struct value
**args
, CORE_ADDR sp
,
1337 int struct_return
, CORE_ADDR struct_addr
)
1339 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1342 int regnum
= SPU_ARG1_REGNUM
;
1346 /* Set the return address. */
1347 memset (buf
, 0, sizeof buf
);
1348 store_unsigned_integer (buf
, 4, byte_order
, SPUADDR_ADDR (bp_addr
));
1349 regcache_cooked_write (regcache
, SPU_LR_REGNUM
, buf
);
1351 /* If STRUCT_RETURN is true, then the struct return address (in
1352 STRUCT_ADDR) will consume the first argument-passing register.
1353 Both adjust the register count and store that value. */
1356 memset (buf
, 0, sizeof buf
);
1357 store_unsigned_integer (buf
, 4, byte_order
, SPUADDR_ADDR (struct_addr
));
1358 regcache_cooked_write (regcache
, regnum
++, buf
);
1361 /* Fill in argument registers. */
1362 for (i
= 0; i
< nargs
; i
++)
1364 struct value
*arg
= args
[i
];
1365 struct type
*type
= check_typedef (value_type (arg
));
1366 const gdb_byte
*contents
= value_contents (arg
);
1367 int len
= TYPE_LENGTH (type
);
1368 int n_regs
= align_up (len
, 16) / 16;
1370 /* If the argument doesn't wholly fit into registers, it and
1371 all subsequent arguments go to the stack. */
1372 if (regnum
+ n_regs
- 1 > SPU_ARGN_REGNUM
)
1378 spu_value_to_regcache (regcache
, regnum
, type
, contents
);
1382 /* Overflow arguments go to the stack. */
1383 if (stack_arg
!= -1)
1387 /* Allocate all required stack size. */
1388 for (i
= stack_arg
; i
< nargs
; i
++)
1390 struct type
*type
= check_typedef (value_type (args
[i
]));
1391 sp
-= align_up (TYPE_LENGTH (type
), 16);
1394 /* Fill in stack arguments. */
1396 for (i
= stack_arg
; i
< nargs
; i
++)
1398 struct value
*arg
= args
[i
];
1399 struct type
*type
= check_typedef (value_type (arg
));
1400 int len
= TYPE_LENGTH (type
);
1403 if (spu_scalar_value_p (type
))
1404 preferred_slot
= len
< 4 ? 4 - len
: 0;
1408 target_write_memory (ap
+ preferred_slot
, value_contents (arg
), len
);
1409 ap
+= align_up (TYPE_LENGTH (type
), 16);
1413 /* Allocate stack frame header. */
1416 /* Store stack back chain. */
1417 regcache_cooked_read (regcache
, SPU_RAW_SP_REGNUM
, buf
);
1418 target_write_memory (sp
, buf
, 16);
1420 /* Finally, update all slots of the SP register. */
1421 sp_delta
= sp
- extract_unsigned_integer (buf
, 4, byte_order
);
1422 for (i
= 0; i
< 4; i
++)
1424 CORE_ADDR sp_slot
= extract_unsigned_integer (buf
+ 4*i
, 4, byte_order
);
1425 store_unsigned_integer (buf
+ 4*i
, 4, byte_order
, sp_slot
+ sp_delta
);
1427 regcache_cooked_write (regcache
, SPU_RAW_SP_REGNUM
, buf
);
1432 static struct frame_id
1433 spu_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1435 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1436 CORE_ADDR pc
= get_frame_register_unsigned (this_frame
, SPU_PC_REGNUM
);
1437 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, SPU_SP_REGNUM
);
1438 return frame_id_build (SPUADDR (tdep
->id
, sp
), SPUADDR (tdep
->id
, pc
& -4));
1441 /* Function return value access. */
1443 static enum return_value_convention
1444 spu_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1445 struct type
*type
, struct regcache
*regcache
,
1446 gdb_byte
*out
, const gdb_byte
*in
)
1448 enum return_value_convention rvc
;
1450 if (TYPE_LENGTH (type
) <= (SPU_ARGN_REGNUM
- SPU_ARG1_REGNUM
+ 1) * 16)
1451 rvc
= RETURN_VALUE_REGISTER_CONVENTION
;
1453 rvc
= RETURN_VALUE_STRUCT_CONVENTION
;
1459 case RETURN_VALUE_REGISTER_CONVENTION
:
1460 spu_value_to_regcache (regcache
, SPU_ARG1_REGNUM
, type
, in
);
1463 case RETURN_VALUE_STRUCT_CONVENTION
:
1464 error ("Cannot set function return value.");
1472 case RETURN_VALUE_REGISTER_CONVENTION
:
1473 spu_regcache_to_value (regcache
, SPU_ARG1_REGNUM
, type
, out
);
1476 case RETURN_VALUE_STRUCT_CONVENTION
:
1477 error ("Function return value unknown.");
1488 static const gdb_byte
*
1489 spu_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
* pcptr
, int *lenptr
)
1491 static const gdb_byte breakpoint
[] = { 0x00, 0x00, 0x3f, 0xff };
1493 *lenptr
= sizeof breakpoint
;
1498 spu_memory_remove_breakpoint (struct gdbarch
*gdbarch
,
1499 struct bp_target_info
*bp_tgt
)
1501 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1502 that in a combined application, we have some breakpoints inserted in SPU
1503 code, and now the application forks (on the PPU side). GDB common code
1504 will assume that the fork system call copied all breakpoints into the new
1505 process' address space, and that all those copies now need to be removed
1506 (see breakpoint.c:detach_breakpoints).
1508 While this is certainly true for PPU side breakpoints, it is not true
1509 for SPU side breakpoints. fork will clone the SPU context file
1510 descriptors, so that all the existing SPU contexts are in accessible
1511 in the new process. However, the contents of the SPU contexts themselves
1512 are *not* cloned. Therefore the effect of detach_breakpoints is to
1513 remove SPU breakpoints from the *original* SPU context's local store
1514 -- this is not the correct behaviour.
1516 The workaround is to check whether the PID we are asked to remove this
1517 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1518 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1519 true in the context of detach_breakpoints. If so, we simply do nothing.
1520 [ Note that for the fork child process, it does not matter if breakpoints
1521 remain inserted, because those SPU contexts are not runnable anyway --
1522 the Linux kernel allows only the original process to invoke spu_run. */
1524 if (ptid_get_pid (inferior_ptid
) != current_inferior ()->pid
)
1527 return default_memory_remove_breakpoint (gdbarch
, bp_tgt
);
1531 /* Software single-stepping support. */
1534 spu_software_single_step (struct frame_info
*frame
)
1536 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1537 struct address_space
*aspace
= get_frame_address_space (frame
);
1538 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1539 CORE_ADDR pc
, next_pc
;
1545 pc
= get_frame_pc (frame
);
1547 if (target_read_memory (pc
, buf
, 4))
1549 insn
= extract_unsigned_integer (buf
, 4, byte_order
);
1551 /* Get local store limit. */
1552 lslr
= get_frame_register_unsigned (frame
, SPU_LSLR_REGNUM
);
1554 lslr
= (ULONGEST
) -1;
1556 /* Next sequential instruction is at PC + 4, except if the current
1557 instruction is a PPE-assisted call, in which case it is at PC + 8.
1558 Wrap around LS limit to be on the safe side. */
1559 if ((insn
& 0xffffff00) == 0x00002100)
1560 next_pc
= (SPUADDR_ADDR (pc
) + 8) & lslr
;
1562 next_pc
= (SPUADDR_ADDR (pc
) + 4) & lslr
;
1564 insert_single_step_breakpoint (gdbarch
,
1565 aspace
, SPUADDR (SPUADDR_SPU (pc
), next_pc
));
1567 if (is_branch (insn
, &offset
, ®
))
1569 CORE_ADDR target
= offset
;
1571 if (reg
== SPU_PC_REGNUM
)
1572 target
+= SPUADDR_ADDR (pc
);
1575 get_frame_register_bytes (frame
, reg
, 0, 4, buf
);
1576 target
+= extract_unsigned_integer (buf
, 4, byte_order
) & -4;
1579 target
= target
& lslr
;
1580 if (target
!= next_pc
)
1581 insert_single_step_breakpoint (gdbarch
, aspace
,
1582 SPUADDR (SPUADDR_SPU (pc
), target
));
1589 /* Longjmp support. */
1592 spu_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
1594 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1595 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1596 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1600 /* Jump buffer is pointed to by the argument register $r3. */
1601 get_frame_register_bytes (frame
, SPU_ARG1_REGNUM
, 0, 4, buf
);
1602 jb_addr
= extract_unsigned_integer (buf
, 4, byte_order
);
1603 if (target_read_memory (SPUADDR (tdep
->id
, jb_addr
), buf
, 4))
1606 *pc
= extract_unsigned_integer (buf
, 4, byte_order
);
1607 *pc
= SPUADDR (tdep
->id
, *pc
);
1614 struct spu_dis_asm_data
1616 struct gdbarch
*gdbarch
;
1621 spu_dis_asm_print_address (bfd_vma addr
, struct disassemble_info
*info
)
1623 struct spu_dis_asm_data
*data
= info
->application_data
;
1624 print_address (data
->gdbarch
, SPUADDR (data
->id
, addr
), info
->stream
);
1628 gdb_print_insn_spu (bfd_vma memaddr
, struct disassemble_info
*info
)
1630 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1631 SPU ID encoded in the high bits is added back when we call print_address. */
1632 struct disassemble_info spu_info
= *info
;
1633 struct spu_dis_asm_data data
;
1634 data
.gdbarch
= info
->application_data
;
1635 data
.id
= SPUADDR_SPU (memaddr
);
1637 spu_info
.application_data
= &data
;
1638 spu_info
.print_address_func
= spu_dis_asm_print_address
;
1639 return print_insn_spu (memaddr
, &spu_info
);
1643 /* Target overlays for the SPU overlay manager.
1645 See the documentation of simple_overlay_update for how the
1646 interface is supposed to work.
1648 Data structures used by the overlay manager:
1656 } _ovly_table[]; -- one entry per overlay section
1658 struct ovly_buf_table
1661 } _ovly_buf_table[]; -- one entry per overlay buffer
1663 _ovly_table should never change.
1665 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1666 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1667 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1669 mapped is an index into _ovly_table. Both the mapped and buf indices start
1670 from one to reference the first entry in their respective tables. */
1672 /* Using the per-objfile private data mechanism, we store for each
1673 objfile an array of "struct spu_overlay_table" structures, one
1674 for each obj_section of the objfile. This structure holds two
1675 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1676 is *not* an overlay section. If it is non-zero, it represents
1677 a target address. The overlay section is mapped iff the target
1678 integer at this location equals MAPPED_VAL. */
1680 static const struct objfile_data
*spu_overlay_data
;
1682 struct spu_overlay_table
1684 CORE_ADDR mapped_ptr
;
1685 CORE_ADDR mapped_val
;
1688 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1689 the _ovly_table data structure from the target and initialize the
1690 spu_overlay_table data structure from it. */
1691 static struct spu_overlay_table
*
1692 spu_get_overlay_table (struct objfile
*objfile
)
1694 enum bfd_endian byte_order
= bfd_big_endian (objfile
->obfd
)?
1695 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
;
1696 struct minimal_symbol
*ovly_table_msym
, *ovly_buf_table_msym
;
1697 CORE_ADDR ovly_table_base
, ovly_buf_table_base
;
1698 unsigned ovly_table_size
, ovly_buf_table_size
;
1699 struct spu_overlay_table
*tbl
;
1700 struct obj_section
*osect
;
1704 tbl
= objfile_data (objfile
, spu_overlay_data
);
1708 ovly_table_msym
= lookup_minimal_symbol ("_ovly_table", NULL
, objfile
);
1709 if (!ovly_table_msym
)
1712 ovly_buf_table_msym
= lookup_minimal_symbol ("_ovly_buf_table", NULL
, objfile
);
1713 if (!ovly_buf_table_msym
)
1716 ovly_table_base
= SYMBOL_VALUE_ADDRESS (ovly_table_msym
);
1717 ovly_table_size
= MSYMBOL_SIZE (ovly_table_msym
);
1719 ovly_buf_table_base
= SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym
);
1720 ovly_buf_table_size
= MSYMBOL_SIZE (ovly_buf_table_msym
);
1722 ovly_table
= xmalloc (ovly_table_size
);
1723 read_memory (ovly_table_base
, ovly_table
, ovly_table_size
);
1725 tbl
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
1726 objfile
->sections_end
- objfile
->sections
,
1727 struct spu_overlay_table
);
1729 for (i
= 0; i
< ovly_table_size
/ 16; i
++)
1731 CORE_ADDR vma
= extract_unsigned_integer (ovly_table
+ 16*i
+ 0,
1733 CORE_ADDR size
= extract_unsigned_integer (ovly_table
+ 16*i
+ 4,
1735 CORE_ADDR pos
= extract_unsigned_integer (ovly_table
+ 16*i
+ 8,
1737 CORE_ADDR buf
= extract_unsigned_integer (ovly_table
+ 16*i
+ 12,
1740 if (buf
== 0 || (buf
- 1) * 4 >= ovly_buf_table_size
)
1743 ALL_OBJFILE_OSECTIONS (objfile
, osect
)
1744 if (vma
== bfd_section_vma (objfile
->obfd
, osect
->the_bfd_section
)
1745 && pos
== osect
->the_bfd_section
->filepos
)
1747 int ndx
= osect
- objfile
->sections
;
1748 tbl
[ndx
].mapped_ptr
= ovly_buf_table_base
+ (buf
- 1) * 4;
1749 tbl
[ndx
].mapped_val
= i
+ 1;
1755 set_objfile_data (objfile
, spu_overlay_data
, tbl
);
1759 /* Read _ovly_buf_table entry from the target to dermine whether
1760 OSECT is currently mapped, and update the mapped state. */
1762 spu_overlay_update_osect (struct obj_section
*osect
)
1764 enum bfd_endian byte_order
= bfd_big_endian (osect
->objfile
->obfd
)?
1765 BFD_ENDIAN_BIG
: BFD_ENDIAN_LITTLE
;
1766 struct spu_overlay_table
*ovly_table
;
1769 ovly_table
= spu_get_overlay_table (osect
->objfile
);
1773 ovly_table
+= osect
- osect
->objfile
->sections
;
1774 if (ovly_table
->mapped_ptr
== 0)
1777 id
= SPUADDR_SPU (obj_section_addr (osect
));
1778 val
= read_memory_unsigned_integer (SPUADDR (id
, ovly_table
->mapped_ptr
),
1780 osect
->ovly_mapped
= (val
== ovly_table
->mapped_val
);
1783 /* If OSECT is NULL, then update all sections' mapped state.
1784 If OSECT is non-NULL, then update only OSECT's mapped state. */
1786 spu_overlay_update (struct obj_section
*osect
)
1788 /* Just one section. */
1790 spu_overlay_update_osect (osect
);
1795 struct objfile
*objfile
;
1797 ALL_OBJSECTIONS (objfile
, osect
)
1798 if (section_is_overlay (osect
))
1799 spu_overlay_update_osect (osect
);
1803 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1804 If there is one, go through all sections and make sure for non-
1805 overlay sections LMA equals VMA, while for overlay sections LMA
1806 is larger than SPU_OVERLAY_LMA. */
1808 spu_overlay_new_objfile (struct objfile
*objfile
)
1810 struct spu_overlay_table
*ovly_table
;
1811 struct obj_section
*osect
;
1813 /* If we've already touched this file, do nothing. */
1814 if (!objfile
|| objfile_data (objfile
, spu_overlay_data
) != NULL
)
1817 /* Consider only SPU objfiles. */
1818 if (bfd_get_arch (objfile
->obfd
) != bfd_arch_spu
)
1821 /* Check if this objfile has overlays. */
1822 ovly_table
= spu_get_overlay_table (objfile
);
1826 /* Now go and fiddle with all the LMAs. */
1827 ALL_OBJFILE_OSECTIONS (objfile
, osect
)
1829 bfd
*obfd
= objfile
->obfd
;
1830 asection
*bsect
= osect
->the_bfd_section
;
1831 int ndx
= osect
- objfile
->sections
;
1833 if (ovly_table
[ndx
].mapped_ptr
== 0)
1834 bfd_section_lma (obfd
, bsect
) = bfd_section_vma (obfd
, bsect
);
1836 bfd_section_lma (obfd
, bsect
) = SPU_OVERLAY_LMA
+ bsect
->filepos
;
1841 /* Insert temporary breakpoint on "main" function of newly loaded
1842 SPE context OBJFILE. */
1844 spu_catch_start (struct objfile
*objfile
)
1846 struct minimal_symbol
*minsym
;
1847 struct symtab
*symtab
;
1851 /* Do this only if requested by "set spu stop-on-load on". */
1852 if (!spu_stop_on_load_p
)
1855 /* Consider only SPU objfiles. */
1856 if (!objfile
|| bfd_get_arch (objfile
->obfd
) != bfd_arch_spu
)
1859 /* The main objfile is handled differently. */
1860 if (objfile
== symfile_objfile
)
1863 /* There can be multiple symbols named "main". Search for the
1864 "main" in *this* objfile. */
1865 minsym
= lookup_minimal_symbol ("main", NULL
, objfile
);
1869 /* If we have debugging information, try to use it -- this
1870 will allow us to properly skip the prologue. */
1871 pc
= SYMBOL_VALUE_ADDRESS (minsym
);
1872 symtab
= find_pc_sect_symtab (pc
, SYMBOL_OBJ_SECTION (minsym
));
1875 struct blockvector
*bv
= BLOCKVECTOR (symtab
);
1876 struct block
*block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
1878 struct symtab_and_line sal
;
1880 sym
= lookup_block_symbol (block
, "main", VAR_DOMAIN
);
1883 fixup_symbol_section (sym
, objfile
);
1884 sal
= find_function_start_sal (sym
, 1);
1889 /* Use a numerical address for the set_breakpoint command to avoid having
1890 the breakpoint re-set incorrectly. */
1891 xsnprintf (buf
, sizeof buf
, "*%s", core_addr_to_string (pc
));
1892 create_breakpoint (get_objfile_arch (objfile
), buf
/* arg */,
1893 NULL
/* cond_string */, -1 /* thread */,
1894 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1895 bp_breakpoint
/* type_wanted */,
1896 0 /* ignore_count */,
1897 AUTO_BOOLEAN_FALSE
/* pending_break_support */,
1898 NULL
/* ops */, 0 /* from_tty */, 1 /* enabled */);
1902 /* Look up OBJFILE loaded into FRAME's SPU context. */
1903 static struct objfile
*
1904 spu_objfile_from_frame (struct frame_info
*frame
)
1906 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1907 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1908 struct objfile
*obj
;
1910 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_spu
)
1915 if (obj
->sections
!= obj
->sections_end
1916 && SPUADDR_SPU (obj_section_addr (obj
->sections
)) == tdep
->id
)
1923 /* Flush cache for ea pointer access if available. */
1925 flush_ea_cache (void)
1927 struct minimal_symbol
*msymbol
;
1928 struct objfile
*obj
;
1930 if (!has_stack_frames ())
1933 obj
= spu_objfile_from_frame (get_current_frame ());
1937 /* Lookup inferior function __cache_flush. */
1938 msymbol
= lookup_minimal_symbol ("__cache_flush", NULL
, obj
);
1939 if (msymbol
!= NULL
)
1944 type
= objfile_type (obj
)->builtin_void
;
1945 type
= lookup_function_type (type
);
1946 type
= lookup_pointer_type (type
);
1947 addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
1949 call_function_by_hand (value_from_pointer (type
, addr
), 0, NULL
);
1953 /* This handler is called when the inferior has stopped. If it is stopped in
1954 SPU architecture then flush the ea cache if used. */
1956 spu_attach_normal_stop (struct bpstats
*bs
, int print_frame
)
1958 if (!spu_auto_flush_cache_p
)
1961 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1962 re-entering this function when __cache_flush stops. */
1963 spu_auto_flush_cache_p
= 0;
1965 spu_auto_flush_cache_p
= 1;
1969 /* "info spu" commands. */
1972 info_spu_event_command (char *args
, int from_tty
)
1974 struct frame_info
*frame
= get_selected_frame (NULL
);
1975 ULONGEST event_status
= 0;
1976 ULONGEST event_mask
= 0;
1977 struct cleanup
*chain
;
1983 if (gdbarch_bfd_arch_info (get_frame_arch (frame
))->arch
!= bfd_arch_spu
)
1984 error (_("\"info spu\" is only supported on the SPU architecture."));
1986 id
= get_frame_register_unsigned (frame
, SPU_ID_REGNUM
);
1988 xsnprintf (annex
, sizeof annex
, "%d/event_status", id
);
1989 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
1990 buf
, 0, (sizeof (buf
) - 1));
1992 error (_("Could not read event_status."));
1994 event_status
= strtoulst (buf
, NULL
, 16);
1996 xsnprintf (annex
, sizeof annex
, "%d/event_mask", id
);
1997 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
1998 buf
, 0, (sizeof (buf
) - 1));
2000 error (_("Could not read event_mask."));
2002 event_mask
= strtoulst (buf
, NULL
, 16);
2004 chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "SPUInfoEvent");
2006 if (ui_out_is_mi_like_p (uiout
))
2008 ui_out_field_fmt (uiout
, "event_status",
2009 "0x%s", phex_nz (event_status
, 4));
2010 ui_out_field_fmt (uiout
, "event_mask",
2011 "0x%s", phex_nz (event_mask
, 4));
2015 printf_filtered (_("Event Status 0x%s\n"), phex (event_status
, 4));
2016 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask
, 4));
2019 do_cleanups (chain
);
2023 info_spu_signal_command (char *args
, int from_tty
)
2025 struct frame_info
*frame
= get_selected_frame (NULL
);
2026 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2027 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2028 ULONGEST signal1
= 0;
2029 ULONGEST signal1_type
= 0;
2030 int signal1_pending
= 0;
2031 ULONGEST signal2
= 0;
2032 ULONGEST signal2_type
= 0;
2033 int signal2_pending
= 0;
2034 struct cleanup
*chain
;
2040 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_spu
)
2041 error (_("\"info spu\" is only supported on the SPU architecture."));
2043 id
= get_frame_register_unsigned (frame
, SPU_ID_REGNUM
);
2045 xsnprintf (annex
, sizeof annex
, "%d/signal1", id
);
2046 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
, buf
, 0, 4);
2048 error (_("Could not read signal1."));
2051 signal1
= extract_unsigned_integer (buf
, 4, byte_order
);
2052 signal1_pending
= 1;
2055 xsnprintf (annex
, sizeof annex
, "%d/signal1_type", id
);
2056 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2057 buf
, 0, (sizeof (buf
) - 1));
2059 error (_("Could not read signal1_type."));
2061 signal1_type
= strtoulst (buf
, NULL
, 16);
2063 xsnprintf (annex
, sizeof annex
, "%d/signal2", id
);
2064 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
, buf
, 0, 4);
2066 error (_("Could not read signal2."));
2069 signal2
= extract_unsigned_integer (buf
, 4, byte_order
);
2070 signal2_pending
= 1;
2073 xsnprintf (annex
, sizeof annex
, "%d/signal2_type", id
);
2074 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2075 buf
, 0, (sizeof (buf
) - 1));
2077 error (_("Could not read signal2_type."));
2079 signal2_type
= strtoulst (buf
, NULL
, 16);
2081 chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "SPUInfoSignal");
2083 if (ui_out_is_mi_like_p (uiout
))
2085 ui_out_field_int (uiout
, "signal1_pending", signal1_pending
);
2086 ui_out_field_fmt (uiout
, "signal1", "0x%s", phex_nz (signal1
, 4));
2087 ui_out_field_int (uiout
, "signal1_type", signal1_type
);
2088 ui_out_field_int (uiout
, "signal2_pending", signal2_pending
);
2089 ui_out_field_fmt (uiout
, "signal2", "0x%s", phex_nz (signal2
, 4));
2090 ui_out_field_int (uiout
, "signal2_type", signal2_type
);
2094 if (signal1_pending
)
2095 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1
, 4));
2097 printf_filtered (_("Signal 1 not pending "));
2100 printf_filtered (_("(Type Or)\n"));
2102 printf_filtered (_("(Type Overwrite)\n"));
2104 if (signal2_pending
)
2105 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2
, 4));
2107 printf_filtered (_("Signal 2 not pending "));
2110 printf_filtered (_("(Type Or)\n"));
2112 printf_filtered (_("(Type Overwrite)\n"));
2115 do_cleanups (chain
);
2119 info_spu_mailbox_list (gdb_byte
*buf
, int nr
, enum bfd_endian byte_order
,
2120 const char *field
, const char *msg
)
2122 struct cleanup
*chain
;
2128 chain
= make_cleanup_ui_out_table_begin_end (uiout
, 1, nr
, "mbox");
2130 ui_out_table_header (uiout
, 32, ui_left
, field
, msg
);
2131 ui_out_table_body (uiout
);
2133 for (i
= 0; i
< nr
; i
++)
2135 struct cleanup
*val_chain
;
2137 val_chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "mbox");
2138 val
= extract_unsigned_integer (buf
+ 4*i
, 4, byte_order
);
2139 ui_out_field_fmt (uiout
, field
, "0x%s", phex (val
, 4));
2140 do_cleanups (val_chain
);
2142 if (!ui_out_is_mi_like_p (uiout
))
2143 printf_filtered ("\n");
2146 do_cleanups (chain
);
2150 info_spu_mailbox_command (char *args
, int from_tty
)
2152 struct frame_info
*frame
= get_selected_frame (NULL
);
2153 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2154 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2155 struct cleanup
*chain
;
2161 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_spu
)
2162 error (_("\"info spu\" is only supported on the SPU architecture."));
2164 id
= get_frame_register_unsigned (frame
, SPU_ID_REGNUM
);
2166 chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "SPUInfoMailbox");
2168 xsnprintf (annex
, sizeof annex
, "%d/mbox_info", id
);
2169 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2170 buf
, 0, sizeof buf
);
2172 error (_("Could not read mbox_info."));
2174 info_spu_mailbox_list (buf
, len
/ 4, byte_order
,
2175 "mbox", "SPU Outbound Mailbox");
2177 xsnprintf (annex
, sizeof annex
, "%d/ibox_info", id
);
2178 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2179 buf
, 0, sizeof buf
);
2181 error (_("Could not read ibox_info."));
2183 info_spu_mailbox_list (buf
, len
/ 4, byte_order
,
2184 "ibox", "SPU Outbound Interrupt Mailbox");
2186 xsnprintf (annex
, sizeof annex
, "%d/wbox_info", id
);
2187 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2188 buf
, 0, sizeof buf
);
2190 error (_("Could not read wbox_info."));
2192 info_spu_mailbox_list (buf
, len
/ 4, byte_order
,
2193 "wbox", "SPU Inbound Mailbox");
2195 do_cleanups (chain
);
2199 spu_mfc_get_bitfield (ULONGEST word
, int first
, int last
)
2201 ULONGEST mask
= ~(~(ULONGEST
)0 << (last
- first
+ 1));
2202 return (word
>> (63 - last
)) & mask
;
2206 info_spu_dma_cmdlist (gdb_byte
*buf
, int nr
, enum bfd_endian byte_order
)
2208 static char *spu_mfc_opcode
[256] =
2210 /* 00 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2211 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2212 /* 10 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2213 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2214 /* 20 */ "put", "putb", "putf", NULL
, "putl", "putlb", "putlf", NULL
,
2215 "puts", "putbs", "putfs", NULL
, NULL
, NULL
, NULL
, NULL
,
2216 /* 30 */ "putr", "putrb", "putrf", NULL
, "putrl", "putrlb", "putrlf", NULL
,
2217 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2218 /* 40 */ "get", "getb", "getf", NULL
, "getl", "getlb", "getlf", NULL
,
2219 "gets", "getbs", "getfs", NULL
, NULL
, NULL
, NULL
, NULL
,
2220 /* 50 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2221 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2222 /* 60 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2223 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2224 /* 70 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2225 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2226 /* 80 */ "sdcrt", "sdcrtst", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2227 NULL
, "sdcrz", NULL
, NULL
, NULL
, "sdcrst", NULL
, "sdcrf",
2228 /* 90 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2229 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2230 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL
, NULL
, NULL
, NULL
, NULL
,
2231 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2232 /* b0 */ "putlluc", NULL
, NULL
, NULL
, "putllc", NULL
, NULL
, NULL
,
2233 "putqlluc", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2234 /* c0 */ "barrier", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2235 "mfceieio", NULL
, NULL
, NULL
, "mfcsync", NULL
, NULL
, NULL
,
2236 /* d0 */ "getllar", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2237 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2238 /* e0 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2239 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2240 /* f0 */ NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2241 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
2244 int *seq
= alloca (nr
* sizeof (int));
2246 struct cleanup
*chain
;
2250 /* Determine sequence in which to display (valid) entries. */
2251 for (i
= 0; i
< nr
; i
++)
2253 /* Search for the first valid entry all of whose
2254 dependencies are met. */
2255 for (j
= 0; j
< nr
; j
++)
2257 ULONGEST mfc_cq_dw3
;
2258 ULONGEST dependencies
;
2260 if (done
& (1 << (nr
- 1 - j
)))
2264 = extract_unsigned_integer (buf
+ 32*j
+ 24,8, byte_order
);
2265 if (!spu_mfc_get_bitfield (mfc_cq_dw3
, 16, 16))
2268 dependencies
= spu_mfc_get_bitfield (mfc_cq_dw3
, 0, nr
- 1);
2269 if ((dependencies
& done
) != dependencies
)
2273 done
|= 1 << (nr
- 1 - j
);
2284 chain
= make_cleanup_ui_out_table_begin_end (uiout
, 10, nr
, "dma_cmd");
2286 ui_out_table_header (uiout
, 7, ui_left
, "opcode", "Opcode");
2287 ui_out_table_header (uiout
, 3, ui_left
, "tag", "Tag");
2288 ui_out_table_header (uiout
, 3, ui_left
, "tid", "TId");
2289 ui_out_table_header (uiout
, 3, ui_left
, "rid", "RId");
2290 ui_out_table_header (uiout
, 18, ui_left
, "ea", "EA");
2291 ui_out_table_header (uiout
, 7, ui_left
, "lsa", "LSA");
2292 ui_out_table_header (uiout
, 7, ui_left
, "size", "Size");
2293 ui_out_table_header (uiout
, 7, ui_left
, "lstaddr", "LstAddr");
2294 ui_out_table_header (uiout
, 7, ui_left
, "lstsize", "LstSize");
2295 ui_out_table_header (uiout
, 1, ui_left
, "error_p", "E");
2297 ui_out_table_body (uiout
);
2299 for (i
= 0; i
< nr
; i
++)
2301 struct cleanup
*cmd_chain
;
2302 ULONGEST mfc_cq_dw0
;
2303 ULONGEST mfc_cq_dw1
;
2304 ULONGEST mfc_cq_dw2
;
2305 int mfc_cmd_opcode
, mfc_cmd_tag
, rclass_id
, tclass_id
;
2306 int lsa
, size
, list_lsa
, list_size
, mfc_lsa
, mfc_size
;
2308 int list_valid_p
, noop_valid_p
, qw_valid_p
, ea_valid_p
, cmd_error_p
;
2310 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2311 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2314 = extract_unsigned_integer (buf
+ 32*seq
[i
], 8, byte_order
);
2316 = extract_unsigned_integer (buf
+ 32*seq
[i
] + 8, 8, byte_order
);
2318 = extract_unsigned_integer (buf
+ 32*seq
[i
] + 16, 8, byte_order
);
2320 list_lsa
= spu_mfc_get_bitfield (mfc_cq_dw0
, 0, 14);
2321 list_size
= spu_mfc_get_bitfield (mfc_cq_dw0
, 15, 26);
2322 mfc_cmd_opcode
= spu_mfc_get_bitfield (mfc_cq_dw0
, 27, 34);
2323 mfc_cmd_tag
= spu_mfc_get_bitfield (mfc_cq_dw0
, 35, 39);
2324 list_valid_p
= spu_mfc_get_bitfield (mfc_cq_dw0
, 40, 40);
2325 rclass_id
= spu_mfc_get_bitfield (mfc_cq_dw0
, 41, 43);
2326 tclass_id
= spu_mfc_get_bitfield (mfc_cq_dw0
, 44, 46);
2328 mfc_ea
= spu_mfc_get_bitfield (mfc_cq_dw1
, 0, 51) << 12
2329 | spu_mfc_get_bitfield (mfc_cq_dw2
, 25, 36);
2331 mfc_lsa
= spu_mfc_get_bitfield (mfc_cq_dw2
, 0, 13);
2332 mfc_size
= spu_mfc_get_bitfield (mfc_cq_dw2
, 14, 24);
2333 noop_valid_p
= spu_mfc_get_bitfield (mfc_cq_dw2
, 37, 37);
2334 qw_valid_p
= spu_mfc_get_bitfield (mfc_cq_dw2
, 38, 38);
2335 ea_valid_p
= spu_mfc_get_bitfield (mfc_cq_dw2
, 39, 39);
2336 cmd_error_p
= spu_mfc_get_bitfield (mfc_cq_dw2
, 40, 40);
2338 cmd_chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "cmd");
2340 if (spu_mfc_opcode
[mfc_cmd_opcode
])
2341 ui_out_field_string (uiout
, "opcode", spu_mfc_opcode
[mfc_cmd_opcode
]);
2343 ui_out_field_int (uiout
, "opcode", mfc_cmd_opcode
);
2345 ui_out_field_int (uiout
, "tag", mfc_cmd_tag
);
2346 ui_out_field_int (uiout
, "tid", tclass_id
);
2347 ui_out_field_int (uiout
, "rid", rclass_id
);
2350 ui_out_field_fmt (uiout
, "ea", "0x%s", phex (mfc_ea
, 8));
2352 ui_out_field_skip (uiout
, "ea");
2354 ui_out_field_fmt (uiout
, "lsa", "0x%05x", mfc_lsa
<< 4);
2356 ui_out_field_fmt (uiout
, "size", "0x%05x", mfc_size
<< 4);
2358 ui_out_field_fmt (uiout
, "size", "0x%05x", mfc_size
);
2362 ui_out_field_fmt (uiout
, "lstaddr", "0x%05x", list_lsa
<< 3);
2363 ui_out_field_fmt (uiout
, "lstsize", "0x%05x", list_size
<< 3);
2367 ui_out_field_skip (uiout
, "lstaddr");
2368 ui_out_field_skip (uiout
, "lstsize");
2372 ui_out_field_string (uiout
, "error_p", "*");
2374 ui_out_field_skip (uiout
, "error_p");
2376 do_cleanups (cmd_chain
);
2378 if (!ui_out_is_mi_like_p (uiout
))
2379 printf_filtered ("\n");
2382 do_cleanups (chain
);
2386 info_spu_dma_command (char *args
, int from_tty
)
2388 struct frame_info
*frame
= get_selected_frame (NULL
);
2389 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2390 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2391 ULONGEST dma_info_type
;
2392 ULONGEST dma_info_mask
;
2393 ULONGEST dma_info_status
;
2394 ULONGEST dma_info_stall_and_notify
;
2395 ULONGEST dma_info_atomic_command_status
;
2396 struct cleanup
*chain
;
2402 if (gdbarch_bfd_arch_info (get_frame_arch (frame
))->arch
!= bfd_arch_spu
)
2403 error (_("\"info spu\" is only supported on the SPU architecture."));
2405 id
= get_frame_register_unsigned (frame
, SPU_ID_REGNUM
);
2407 xsnprintf (annex
, sizeof annex
, "%d/dma_info", id
);
2408 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2409 buf
, 0, 40 + 16 * 32);
2411 error (_("Could not read dma_info."));
2414 = extract_unsigned_integer (buf
, 8, byte_order
);
2416 = extract_unsigned_integer (buf
+ 8, 8, byte_order
);
2418 = extract_unsigned_integer (buf
+ 16, 8, byte_order
);
2419 dma_info_stall_and_notify
2420 = extract_unsigned_integer (buf
+ 24, 8, byte_order
);
2421 dma_info_atomic_command_status
2422 = extract_unsigned_integer (buf
+ 32, 8, byte_order
);
2424 chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "SPUInfoDMA");
2426 if (ui_out_is_mi_like_p (uiout
))
2428 ui_out_field_fmt (uiout
, "dma_info_type", "0x%s",
2429 phex_nz (dma_info_type
, 4));
2430 ui_out_field_fmt (uiout
, "dma_info_mask", "0x%s",
2431 phex_nz (dma_info_mask
, 4));
2432 ui_out_field_fmt (uiout
, "dma_info_status", "0x%s",
2433 phex_nz (dma_info_status
, 4));
2434 ui_out_field_fmt (uiout
, "dma_info_stall_and_notify", "0x%s",
2435 phex_nz (dma_info_stall_and_notify
, 4));
2436 ui_out_field_fmt (uiout
, "dma_info_atomic_command_status", "0x%s",
2437 phex_nz (dma_info_atomic_command_status
, 4));
2441 const char *query_msg
= _("no query pending");
2443 if (dma_info_type
& 4)
2444 switch (dma_info_type
& 3)
2446 case 1: query_msg
= _("'any' query pending"); break;
2447 case 2: query_msg
= _("'all' query pending"); break;
2448 default: query_msg
= _("undefined query type"); break;
2451 printf_filtered (_("Tag-Group Status 0x%s\n"),
2452 phex (dma_info_status
, 4));
2453 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2454 phex (dma_info_mask
, 4), query_msg
);
2455 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2456 phex (dma_info_stall_and_notify
, 4));
2457 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2458 phex (dma_info_atomic_command_status
, 4));
2459 printf_filtered ("\n");
2462 info_spu_dma_cmdlist (buf
+ 40, 16, byte_order
);
2463 do_cleanups (chain
);
2467 info_spu_proxydma_command (char *args
, int from_tty
)
2469 struct frame_info
*frame
= get_selected_frame (NULL
);
2470 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2471 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2472 ULONGEST dma_info_type
;
2473 ULONGEST dma_info_mask
;
2474 ULONGEST dma_info_status
;
2475 struct cleanup
*chain
;
2481 if (gdbarch_bfd_arch_info (gdbarch
)->arch
!= bfd_arch_spu
)
2482 error (_("\"info spu\" is only supported on the SPU architecture."));
2484 id
= get_frame_register_unsigned (frame
, SPU_ID_REGNUM
);
2486 xsnprintf (annex
, sizeof annex
, "%d/proxydma_info", id
);
2487 len
= target_read (¤t_target
, TARGET_OBJECT_SPU
, annex
,
2488 buf
, 0, 24 + 8 * 32);
2490 error (_("Could not read proxydma_info."));
2492 dma_info_type
= extract_unsigned_integer (buf
, 8, byte_order
);
2493 dma_info_mask
= extract_unsigned_integer (buf
+ 8, 8, byte_order
);
2494 dma_info_status
= extract_unsigned_integer (buf
+ 16, 8, byte_order
);
2496 chain
= make_cleanup_ui_out_tuple_begin_end (uiout
, "SPUInfoProxyDMA");
2498 if (ui_out_is_mi_like_p (uiout
))
2500 ui_out_field_fmt (uiout
, "proxydma_info_type", "0x%s",
2501 phex_nz (dma_info_type
, 4));
2502 ui_out_field_fmt (uiout
, "proxydma_info_mask", "0x%s",
2503 phex_nz (dma_info_mask
, 4));
2504 ui_out_field_fmt (uiout
, "proxydma_info_status", "0x%s",
2505 phex_nz (dma_info_status
, 4));
2509 const char *query_msg
;
2511 switch (dma_info_type
& 3)
2513 case 0: query_msg
= _("no query pending"); break;
2514 case 1: query_msg
= _("'any' query pending"); break;
2515 case 2: query_msg
= _("'all' query pending"); break;
2516 default: query_msg
= _("undefined query type"); break;
2519 printf_filtered (_("Tag-Group Status 0x%s\n"),
2520 phex (dma_info_status
, 4));
2521 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2522 phex (dma_info_mask
, 4), query_msg
);
2523 printf_filtered ("\n");
2526 info_spu_dma_cmdlist (buf
+ 24, 8, byte_order
);
2527 do_cleanups (chain
);
2531 info_spu_command (char *args
, int from_tty
)
2533 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2534 help_list (infospucmdlist
, "info spu ", -1, gdb_stdout
);
2538 /* Root of all "set spu "/"show spu " commands. */
2541 show_spu_command (char *args
, int from_tty
)
2543 help_list (showspucmdlist
, "show spu ", all_commands
, gdb_stdout
);
2547 set_spu_command (char *args
, int from_tty
)
2549 help_list (setspucmdlist
, "set spu ", all_commands
, gdb_stdout
);
2553 show_spu_stop_on_load (struct ui_file
*file
, int from_tty
,
2554 struct cmd_list_element
*c
, const char *value
)
2556 fprintf_filtered (file
, _("Stopping for new SPE threads is %s.\n"),
2561 show_spu_auto_flush_cache (struct ui_file
*file
, int from_tty
,
2562 struct cmd_list_element
*c
, const char *value
)
2564 fprintf_filtered (file
, _("Automatic software-cache flush is %s.\n"),
2569 /* Set up gdbarch struct. */
2571 static struct gdbarch
*
2572 spu_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2574 struct gdbarch
*gdbarch
;
2575 struct gdbarch_tdep
*tdep
;
2578 /* Which spufs ID was requested as address space? */
2580 id
= *(int *)info
.tdep_info
;
2581 /* For objfile architectures of SPU solibs, decode the ID from the name.
2582 This assumes the filename convention employed by solib-spu.c. */
2585 char *name
= strrchr (info
.abfd
->filename
, '@');
2587 sscanf (name
, "@0x%*x <%d>", &id
);
2590 /* Find a candidate among extant architectures. */
2591 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2593 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
2595 tdep
= gdbarch_tdep (arches
->gdbarch
);
2596 if (tdep
&& tdep
->id
== id
)
2597 return arches
->gdbarch
;
2600 /* None found, so create a new architecture. */
2601 tdep
= XCALLOC (1, struct gdbarch_tdep
);
2603 gdbarch
= gdbarch_alloc (&info
, tdep
);
2606 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_spu
);
2609 set_gdbarch_num_regs (gdbarch
, SPU_NUM_REGS
);
2610 set_gdbarch_num_pseudo_regs (gdbarch
, SPU_NUM_PSEUDO_REGS
);
2611 set_gdbarch_sp_regnum (gdbarch
, SPU_SP_REGNUM
);
2612 set_gdbarch_pc_regnum (gdbarch
, SPU_PC_REGNUM
);
2613 set_gdbarch_read_pc (gdbarch
, spu_read_pc
);
2614 set_gdbarch_write_pc (gdbarch
, spu_write_pc
);
2615 set_gdbarch_register_name (gdbarch
, spu_register_name
);
2616 set_gdbarch_register_type (gdbarch
, spu_register_type
);
2617 set_gdbarch_pseudo_register_read (gdbarch
, spu_pseudo_register_read
);
2618 set_gdbarch_pseudo_register_write (gdbarch
, spu_pseudo_register_write
);
2619 set_gdbarch_value_from_register (gdbarch
, spu_value_from_register
);
2620 set_gdbarch_register_reggroup_p (gdbarch
, spu_register_reggroup_p
);
2623 set_gdbarch_char_signed (gdbarch
, 0);
2624 set_gdbarch_ptr_bit (gdbarch
, 32);
2625 set_gdbarch_addr_bit (gdbarch
, 32);
2626 set_gdbarch_short_bit (gdbarch
, 16);
2627 set_gdbarch_int_bit (gdbarch
, 32);
2628 set_gdbarch_long_bit (gdbarch
, 32);
2629 set_gdbarch_long_long_bit (gdbarch
, 64);
2630 set_gdbarch_float_bit (gdbarch
, 32);
2631 set_gdbarch_double_bit (gdbarch
, 64);
2632 set_gdbarch_long_double_bit (gdbarch
, 64);
2633 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
2634 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
2635 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
2637 /* Address handling. */
2638 set_gdbarch_address_to_pointer (gdbarch
, spu_address_to_pointer
);
2639 set_gdbarch_pointer_to_address (gdbarch
, spu_pointer_to_address
);
2640 set_gdbarch_integer_to_address (gdbarch
, spu_integer_to_address
);
2641 set_gdbarch_address_class_type_flags (gdbarch
, spu_address_class_type_flags
);
2642 set_gdbarch_address_class_type_flags_to_name
2643 (gdbarch
, spu_address_class_type_flags_to_name
);
2644 set_gdbarch_address_class_name_to_type_flags
2645 (gdbarch
, spu_address_class_name_to_type_flags
);
2648 /* Inferior function calls. */
2649 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
2650 set_gdbarch_frame_align (gdbarch
, spu_frame_align
);
2651 set_gdbarch_frame_red_zone_size (gdbarch
, 2000);
2652 set_gdbarch_push_dummy_code (gdbarch
, spu_push_dummy_code
);
2653 set_gdbarch_push_dummy_call (gdbarch
, spu_push_dummy_call
);
2654 set_gdbarch_dummy_id (gdbarch
, spu_dummy_id
);
2655 set_gdbarch_return_value (gdbarch
, spu_return_value
);
2657 /* Frame handling. */
2658 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2659 frame_unwind_append_unwinder (gdbarch
, &spu_frame_unwind
);
2660 frame_base_set_default (gdbarch
, &spu_frame_base
);
2661 set_gdbarch_unwind_pc (gdbarch
, spu_unwind_pc
);
2662 set_gdbarch_unwind_sp (gdbarch
, spu_unwind_sp
);
2663 set_gdbarch_virtual_frame_pointer (gdbarch
, spu_virtual_frame_pointer
);
2664 set_gdbarch_frame_args_skip (gdbarch
, 0);
2665 set_gdbarch_skip_prologue (gdbarch
, spu_skip_prologue
);
2666 set_gdbarch_in_function_epilogue_p (gdbarch
, spu_in_function_epilogue_p
);
2668 /* Cell/B.E. cross-architecture unwinder support. */
2669 frame_unwind_prepend_unwinder (gdbarch
, &spu2ppu_unwind
);
2672 set_gdbarch_decr_pc_after_break (gdbarch
, 4);
2673 set_gdbarch_breakpoint_from_pc (gdbarch
, spu_breakpoint_from_pc
);
2674 set_gdbarch_memory_remove_breakpoint (gdbarch
, spu_memory_remove_breakpoint
);
2675 set_gdbarch_cannot_step_breakpoint (gdbarch
, 1);
2676 set_gdbarch_software_single_step (gdbarch
, spu_software_single_step
);
2677 set_gdbarch_get_longjmp_target (gdbarch
, spu_get_longjmp_target
);
2680 set_gdbarch_overlay_update (gdbarch
, spu_overlay_update
);
2685 /* Provide a prototype to silence -Wmissing-prototypes. */
2686 extern initialize_file_ftype _initialize_spu_tdep
;
2689 _initialize_spu_tdep (void)
2691 register_gdbarch_init (bfd_arch_spu
, spu_gdbarch_init
);
2693 /* Add ourselves to objfile event chain. */
2694 observer_attach_new_objfile (spu_overlay_new_objfile
);
2695 spu_overlay_data
= register_objfile_data ();
2697 /* Install spu stop-on-load handler. */
2698 observer_attach_new_objfile (spu_catch_start
);
2700 /* Add ourselves to normal_stop event chain. */
2701 observer_attach_normal_stop (spu_attach_normal_stop
);
2703 /* Add root prefix command for all "set spu"/"show spu" commands. */
2704 add_prefix_cmd ("spu", no_class
, set_spu_command
,
2705 _("Various SPU specific commands."),
2706 &setspucmdlist
, "set spu ", 0, &setlist
);
2707 add_prefix_cmd ("spu", no_class
, show_spu_command
,
2708 _("Various SPU specific commands."),
2709 &showspucmdlist
, "show spu ", 0, &showlist
);
2711 /* Toggle whether or not to add a temporary breakpoint at the "main"
2712 function of new SPE contexts. */
2713 add_setshow_boolean_cmd ("stop-on-load", class_support
,
2714 &spu_stop_on_load_p
, _("\
2715 Set whether to stop for new SPE threads."),
2717 Show whether to stop for new SPE threads."),
2719 Use \"on\" to give control to the user when a new SPE thread\n\
2720 enters its \"main\" function.\n\
2721 Use \"off\" to disable stopping for new SPE threads."),
2723 show_spu_stop_on_load
,
2724 &setspucmdlist
, &showspucmdlist
);
2726 /* Toggle whether or not to automatically flush the software-managed
2727 cache whenever SPE execution stops. */
2728 add_setshow_boolean_cmd ("auto-flush-cache", class_support
,
2729 &spu_auto_flush_cache_p
, _("\
2730 Set whether to automatically flush the software-managed cache."),
2732 Show whether to automatically flush the software-managed cache."),
2734 Use \"on\" to automatically flush the software-managed cache\n\
2735 whenever SPE execution stops.\n\
2736 Use \"off\" to never automatically flush the software-managed cache."),
2738 show_spu_auto_flush_cache
,
2739 &setspucmdlist
, &showspucmdlist
);
2741 /* Add root prefix command for all "info spu" commands. */
2742 add_prefix_cmd ("spu", class_info
, info_spu_command
,
2743 _("Various SPU specific commands."),
2744 &infospucmdlist
, "info spu ", 0, &infolist
);
2746 /* Add various "info spu" commands. */
2747 add_cmd ("event", class_info
, info_spu_event_command
,
2748 _("Display SPU event facility status.\n"),
2750 add_cmd ("signal", class_info
, info_spu_signal_command
,
2751 _("Display SPU signal notification facility status.\n"),
2753 add_cmd ("mailbox", class_info
, info_spu_mailbox_command
,
2754 _("Display SPU mailbox facility status.\n"),
2756 add_cmd ("dma", class_info
, info_spu_dma_command
,
2757 _("Display MFC DMA status.\n"),
2759 add_cmd ("proxydma", class_info
, info_spu_proxydma_command
,
2760 _("Display MFC Proxy-DMA status.\n"),