Fix --diable-shared --enable-plugins build breakage
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "exceptions.h"
48 #include "spu-tdep.h"
49
50
51 /* The list of available "set spu " and "show spu " commands. */
52 static struct cmd_list_element *setspucmdlist = NULL;
53 static struct cmd_list_element *showspucmdlist = NULL;
54
55 /* Whether to stop for new SPE contexts. */
56 static int spu_stop_on_load_p = 0;
57 /* Whether to automatically flush the SW-managed cache. */
58 static int spu_auto_flush_cache_p = 1;
59
60
61 /* The tdep structure. */
62 struct gdbarch_tdep
63 {
64 /* The spufs ID identifying our address space. */
65 int id;
66
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69 };
70
71
72 /* SPU-specific vector type. */
73 static struct type *
74 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
80 const struct builtin_type *bt = builtin_type (gdbarch);
81 struct type *t;
82
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
98
99 TYPE_VECTOR (t) = 1;
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106 }
107
108
109 /* The list of available "info spu " commands. */
110 static struct cmd_list_element *infospucmdlist = NULL;
111
112 /* Registers. */
113
114 static const char *
115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 {
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144 }
145
146 static struct type *
147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 {
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
155 return builtin_type (gdbarch)->builtin_uint32;
156
157 case SPU_PC_REGNUM:
158 return builtin_type (gdbarch)->builtin_func_ptr;
159
160 case SPU_SP_REGNUM:
161 return builtin_type (gdbarch)->builtin_data_ptr;
162
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
165
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
168
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
171
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
174
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
177
178 default:
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
180 }
181 }
182
183 /* Pseudo registers for preferred slots - stack pointer. */
184
185 static enum register_status
186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188 {
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195 ULONGEST ul;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
207 return REG_VALID;
208 }
209
210 static enum register_status
211 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213 {
214 gdb_byte reg[16];
215 char annex[32];
216 ULONGEST id;
217 enum register_status status;
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
225 memcpy (buf, reg, 4);
226 return status;
227
228 case SPU_FPSCR_REGNUM:
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 return status;
235
236 case SPU_SRR0_REGNUM:
237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238
239 case SPU_LSLR_REGNUM:
240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241
242 case SPU_DECR_REGNUM:
243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244
245 case SPU_DECR_STATUS_REGNUM:
246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251 }
252
253 static void
254 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 char reg[32];
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
268 (gdb_byte *) reg, 0, strlen (reg));
269 }
270
271 static void
272 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274 {
275 gdb_byte reg[16];
276 char annex[32];
277 ULONGEST id;
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312 }
313
314 static int
315 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
316 struct agent_expr *ax, int regnum)
317 {
318 switch (regnum)
319 {
320 case SPU_SP_REGNUM:
321 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
322 return 0;
323
324 case SPU_FPSCR_REGNUM:
325 case SPU_SRR0_REGNUM:
326 case SPU_LSLR_REGNUM:
327 case SPU_DECR_REGNUM:
328 case SPU_DECR_STATUS_REGNUM:
329 return -1;
330
331 default:
332 internal_error (__FILE__, __LINE__, _("invalid regnum"));
333 }
334 }
335
336 static int
337 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
338 struct agent_expr *ax, int regnum)
339 {
340 switch (regnum)
341 {
342 case SPU_SP_REGNUM:
343 ax_reg (ax, SPU_RAW_SP_REGNUM);
344 return 0;
345
346 case SPU_FPSCR_REGNUM:
347 case SPU_SRR0_REGNUM:
348 case SPU_LSLR_REGNUM:
349 case SPU_DECR_REGNUM:
350 case SPU_DECR_STATUS_REGNUM:
351 return -1;
352
353 default:
354 internal_error (__FILE__, __LINE__, _("invalid regnum"));
355 }
356 }
357
358
359 /* Value conversion -- access scalar values at the preferred slot. */
360
361 static struct value *
362 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
363 int regnum, struct frame_id frame_id)
364 {
365 struct value *value = default_value_from_register (gdbarch, type,
366 regnum, frame_id);
367 int len = TYPE_LENGTH (type);
368
369 if (regnum < SPU_NUM_GPRS && len < 16)
370 {
371 int preferred_slot = len < 4 ? 4 - len : 0;
372 set_value_offset (value, preferred_slot);
373 }
374
375 return value;
376 }
377
378 /* Register groups. */
379
380 static int
381 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
382 struct reggroup *group)
383 {
384 /* Registers displayed via 'info regs'. */
385 if (group == general_reggroup)
386 return 1;
387
388 /* Registers displayed via 'info float'. */
389 if (group == float_reggroup)
390 return 0;
391
392 /* Registers that need to be saved/restored in order to
393 push or pop frames. */
394 if (group == save_reggroup || group == restore_reggroup)
395 return 1;
396
397 return default_register_reggroup_p (gdbarch, regnum, group);
398 }
399
400 /* DWARF-2 register numbers. */
401
402 static int
403 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404 {
405 /* Use cooked instead of raw SP. */
406 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
407 }
408
409
410 /* Address handling. */
411
412 static int
413 spu_gdbarch_id (struct gdbarch *gdbarch)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int id = tdep->id;
417
418 /* The objfile architecture of a standalone SPU executable does not
419 provide an SPU ID. Retrieve it from the objfile's relocated
420 address range in this special case. */
421 if (id == -1
422 && symfile_objfile && symfile_objfile->obfd
423 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
424 && symfile_objfile->sections != symfile_objfile->sections_end)
425 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
426
427 return id;
428 }
429
430 static int
431 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432 {
433 if (dwarf2_addr_class == 1)
434 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
435 else
436 return 0;
437 }
438
439 static const char *
440 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441 {
442 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
443 return "__ea";
444 else
445 return NULL;
446 }
447
448 static int
449 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
450 const char *name, int *type_flags_ptr)
451 {
452 if (strcmp (name, "__ea") == 0)
453 {
454 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
455 return 1;
456 }
457 else
458 return 0;
459 }
460
461 static void
462 spu_address_to_pointer (struct gdbarch *gdbarch,
463 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
467 SPUADDR_ADDR (addr));
468 }
469
470 static CORE_ADDR
471 spu_pointer_to_address (struct gdbarch *gdbarch,
472 struct type *type, const gdb_byte *buf)
473 {
474 int id = spu_gdbarch_id (gdbarch);
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 ULONGEST addr
477 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
478
479 /* Do not convert __ea pointers. */
480 if (TYPE_ADDRESS_CLASS_1 (type))
481 return addr;
482
483 return addr? SPUADDR (id, addr) : 0;
484 }
485
486 static CORE_ADDR
487 spu_integer_to_address (struct gdbarch *gdbarch,
488 struct type *type, const gdb_byte *buf)
489 {
490 int id = spu_gdbarch_id (gdbarch);
491 ULONGEST addr = unpack_long (type, buf);
492
493 return SPUADDR (id, addr);
494 }
495
496
497 /* Decoding SPU instructions. */
498
499 enum
500 {
501 op_lqd = 0x34,
502 op_lqx = 0x3c4,
503 op_lqa = 0x61,
504 op_lqr = 0x67,
505 op_stqd = 0x24,
506 op_stqx = 0x144,
507 op_stqa = 0x41,
508 op_stqr = 0x47,
509
510 op_il = 0x081,
511 op_ila = 0x21,
512 op_a = 0x0c0,
513 op_ai = 0x1c,
514
515 op_selb = 0x8,
516
517 op_br = 0x64,
518 op_bra = 0x60,
519 op_brsl = 0x66,
520 op_brasl = 0x62,
521 op_brnz = 0x42,
522 op_brz = 0x40,
523 op_brhnz = 0x46,
524 op_brhz = 0x44,
525 op_bi = 0x1a8,
526 op_bisl = 0x1a9,
527 op_biz = 0x128,
528 op_binz = 0x129,
529 op_bihz = 0x12a,
530 op_bihnz = 0x12b,
531 };
532
533 static int
534 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535 {
536 if ((insn >> 21) == op)
537 {
538 *rt = insn & 127;
539 *ra = (insn >> 7) & 127;
540 *rb = (insn >> 14) & 127;
541 return 1;
542 }
543
544 return 0;
545 }
546
547 static int
548 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549 {
550 if ((insn >> 28) == op)
551 {
552 *rt = (insn >> 21) & 127;
553 *ra = (insn >> 7) & 127;
554 *rb = (insn >> 14) & 127;
555 *rc = insn & 127;
556 return 1;
557 }
558
559 return 0;
560 }
561
562 static int
563 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564 {
565 if ((insn >> 21) == op)
566 {
567 *rt = insn & 127;
568 *ra = (insn >> 7) & 127;
569 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
570 return 1;
571 }
572
573 return 0;
574 }
575
576 static int
577 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578 {
579 if ((insn >> 24) == op)
580 {
581 *rt = insn & 127;
582 *ra = (insn >> 7) & 127;
583 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
584 return 1;
585 }
586
587 return 0;
588 }
589
590 static int
591 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592 {
593 if ((insn >> 23) == op)
594 {
595 *rt = insn & 127;
596 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
597 return 1;
598 }
599
600 return 0;
601 }
602
603 static int
604 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605 {
606 if ((insn >> 25) == op)
607 {
608 *rt = insn & 127;
609 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
610 return 1;
611 }
612
613 return 0;
614 }
615
616 static int
617 is_branch (unsigned int insn, int *offset, int *reg)
618 {
619 int rt, i7, i16;
620
621 if (is_ri16 (insn, op_br, &rt, &i16)
622 || is_ri16 (insn, op_brsl, &rt, &i16)
623 || is_ri16 (insn, op_brnz, &rt, &i16)
624 || is_ri16 (insn, op_brz, &rt, &i16)
625 || is_ri16 (insn, op_brhnz, &rt, &i16)
626 || is_ri16 (insn, op_brhz, &rt, &i16))
627 {
628 *reg = SPU_PC_REGNUM;
629 *offset = i16 << 2;
630 return 1;
631 }
632
633 if (is_ri16 (insn, op_bra, &rt, &i16)
634 || is_ri16 (insn, op_brasl, &rt, &i16))
635 {
636 *reg = -1;
637 *offset = i16 << 2;
638 return 1;
639 }
640
641 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
642 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
643 || is_ri7 (insn, op_biz, &rt, reg, &i7)
644 || is_ri7 (insn, op_binz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
646 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
647 {
648 *offset = 0;
649 return 1;
650 }
651
652 return 0;
653 }
654
655
656 /* Prolog parsing. */
657
658 struct spu_prologue_data
659 {
660 /* Stack frame size. -1 if analysis was unsuccessful. */
661 int size;
662
663 /* How to find the CFA. The CFA is equal to SP at function entry. */
664 int cfa_reg;
665 int cfa_offset;
666
667 /* Offset relative to CFA where a register is saved. -1 if invalid. */
668 int reg_offset[SPU_NUM_GPRS];
669 };
670
671 static CORE_ADDR
672 spu_analyze_prologue (struct gdbarch *gdbarch,
673 CORE_ADDR start_pc, CORE_ADDR end_pc,
674 struct spu_prologue_data *data)
675 {
676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
677 int found_sp = 0;
678 int found_fp = 0;
679 int found_lr = 0;
680 int found_bc = 0;
681 int reg_immed[SPU_NUM_GPRS];
682 gdb_byte buf[16];
683 CORE_ADDR prolog_pc = start_pc;
684 CORE_ADDR pc;
685 int i;
686
687
688 /* Initialize DATA to default values. */
689 data->size = -1;
690
691 data->cfa_reg = SPU_RAW_SP_REGNUM;
692 data->cfa_offset = 0;
693
694 for (i = 0; i < SPU_NUM_GPRS; i++)
695 data->reg_offset[i] = -1;
696
697 /* Set up REG_IMMED array. This is non-zero for a register if we know its
698 preferred slot currently holds this immediate value. */
699 for (i = 0; i < SPU_NUM_GPRS; i++)
700 reg_immed[i] = 0;
701
702 /* Scan instructions until the first branch.
703
704 The following instructions are important prolog components:
705
706 - The first instruction to set up the stack pointer.
707 - The first instruction to set up the frame pointer.
708 - The first instruction to save the link register.
709 - The first instruction to save the backchain.
710
711 We return the instruction after the latest of these four,
712 or the incoming PC if none is found. The first instruction
713 to set up the stack pointer also defines the frame size.
714
715 Note that instructions saving incoming arguments to their stack
716 slots are not counted as important, because they are hard to
717 identify with certainty. This should not matter much, because
718 arguments are relevant only in code compiled with debug data,
719 and in such code the GDB core will advance until the first source
720 line anyway, using SAL data.
721
722 For purposes of stack unwinding, we analyze the following types
723 of instructions in addition:
724
725 - Any instruction adding to the current frame pointer.
726 - Any instruction loading an immediate constant into a register.
727 - Any instruction storing a register onto the stack.
728
729 These are used to compute the CFA and REG_OFFSET output. */
730
731 for (pc = start_pc; pc < end_pc; pc += 4)
732 {
733 unsigned int insn;
734 int rt, ra, rb, rc, immed;
735
736 if (target_read_memory (pc, buf, 4))
737 break;
738 insn = extract_unsigned_integer (buf, 4, byte_order);
739
740 /* AI is the typical instruction to set up a stack frame.
741 It is also used to initialize the frame pointer. */
742 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 {
744 if (rt == data->cfa_reg && ra == data->cfa_reg)
745 data->cfa_offset -= immed;
746
747 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
748 && !found_sp)
749 {
750 found_sp = 1;
751 prolog_pc = pc + 4;
752
753 data->size = -immed;
754 }
755 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
756 && !found_fp)
757 {
758 found_fp = 1;
759 prolog_pc = pc + 4;
760
761 data->cfa_reg = SPU_FP_REGNUM;
762 data->cfa_offset -= immed;
763 }
764 }
765
766 /* A is used to set up stack frames of size >= 512 bytes.
767 If we have tracked the contents of the addend register,
768 we can handle this as well. */
769 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 {
771 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 {
773 if (reg_immed[rb] != 0)
774 data->cfa_offset -= reg_immed[rb];
775 else
776 data->cfa_reg = -1; /* We don't know the CFA any more. */
777 }
778
779 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
780 && !found_sp)
781 {
782 found_sp = 1;
783 prolog_pc = pc + 4;
784
785 if (reg_immed[rb] != 0)
786 data->size = -reg_immed[rb];
787 }
788 }
789
790 /* We need to track IL and ILA used to load immediate constants
791 in case they are later used as input to an A instruction. */
792 else if (is_ri16 (insn, op_il, &rt, &immed))
793 {
794 reg_immed[rt] = immed;
795
796 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
797 found_sp = 1;
798 }
799
800 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 {
802 reg_immed[rt] = immed & 0x3ffff;
803
804 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
805 found_sp = 1;
806 }
807
808 /* STQD is used to save registers to the stack. */
809 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 {
811 if (ra == data->cfa_reg)
812 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813
814 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
815 && !found_lr)
816 {
817 found_lr = 1;
818 prolog_pc = pc + 4;
819 }
820
821 if (ra == SPU_RAW_SP_REGNUM
822 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
823 && !found_bc)
824 {
825 found_bc = 1;
826 prolog_pc = pc + 4;
827 }
828 }
829
830 /* _start uses SELB to set up the stack pointer. */
831 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 {
833 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
834 found_sp = 1;
835 }
836
837 /* We terminate if we find a branch. */
838 else if (is_branch (insn, &immed, &ra))
839 break;
840 }
841
842
843 /* If we successfully parsed until here, and didn't find any instruction
844 modifying SP, we assume we have a frameless function. */
845 if (!found_sp)
846 data->size = 0;
847
848 /* Return cooked instead of raw SP. */
849 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
850 data->cfa_reg = SPU_SP_REGNUM;
851
852 return prolog_pc;
853 }
854
855 /* Return the first instruction after the prologue starting at PC. */
856 static CORE_ADDR
857 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
858 {
859 struct spu_prologue_data data;
860 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
861 }
862
863 /* Return the frame pointer in use at address PC. */
864 static void
865 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
866 int *reg, LONGEST *offset)
867 {
868 struct spu_prologue_data data;
869 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
870
871 if (data.size != -1 && data.cfa_reg != -1)
872 {
873 /* The 'frame pointer' address is CFA minus frame size. */
874 *reg = data.cfa_reg;
875 *offset = data.cfa_offset - data.size;
876 }
877 else
878 {
879 /* ??? We don't really know ... */
880 *reg = SPU_SP_REGNUM;
881 *offset = 0;
882 }
883 }
884
885 /* Return true if we are in the function's epilogue, i.e. after the
886 instruction that destroyed the function's stack frame.
887
888 1) scan forward from the point of execution:
889 a) If you find an instruction that modifies the stack pointer
890 or transfers control (except a return), execution is not in
891 an epilogue, return.
892 b) Stop scanning if you find a return instruction or reach the
893 end of the function or reach the hard limit for the size of
894 an epilogue.
895 2) scan backward from the point of execution:
896 a) If you find an instruction that modifies the stack pointer,
897 execution *is* in an epilogue, return.
898 b) Stop scanning if you reach an instruction that transfers
899 control or the beginning of the function or reach the hard
900 limit for the size of an epilogue. */
901
902 static int
903 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
904 {
905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
906 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
907 bfd_byte buf[4];
908 unsigned int insn;
909 int rt, ra, rb, immed;
910
911 /* Find the search limits based on function boundaries and hard limit.
912 We assume the epilogue can be up to 64 instructions long. */
913
914 const int spu_max_epilogue_size = 64 * 4;
915
916 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
917 return 0;
918
919 if (pc - func_start < spu_max_epilogue_size)
920 epilogue_start = func_start;
921 else
922 epilogue_start = pc - spu_max_epilogue_size;
923
924 if (func_end - pc < spu_max_epilogue_size)
925 epilogue_end = func_end;
926 else
927 epilogue_end = pc + spu_max_epilogue_size;
928
929 /* Scan forward until next 'bi $0'. */
930
931 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
932 {
933 if (target_read_memory (scan_pc, buf, 4))
934 return 0;
935 insn = extract_unsigned_integer (buf, 4, byte_order);
936
937 if (is_branch (insn, &immed, &ra))
938 {
939 if (immed == 0 && ra == SPU_LR_REGNUM)
940 break;
941
942 return 0;
943 }
944
945 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
946 || is_rr (insn, op_a, &rt, &ra, &rb)
947 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
948 {
949 if (rt == SPU_RAW_SP_REGNUM)
950 return 0;
951 }
952 }
953
954 if (scan_pc >= epilogue_end)
955 return 0;
956
957 /* Scan backward until adjustment to stack pointer (R1). */
958
959 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
960 {
961 if (target_read_memory (scan_pc, buf, 4))
962 return 0;
963 insn = extract_unsigned_integer (buf, 4, byte_order);
964
965 if (is_branch (insn, &immed, &ra))
966 return 0;
967
968 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
969 || is_rr (insn, op_a, &rt, &ra, &rb)
970 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
971 {
972 if (rt == SPU_RAW_SP_REGNUM)
973 return 1;
974 }
975 }
976
977 return 0;
978 }
979
980
981 /* Normal stack frames. */
982
983 struct spu_unwind_cache
984 {
985 CORE_ADDR func;
986 CORE_ADDR frame_base;
987 CORE_ADDR local_base;
988
989 struct trad_frame_saved_reg *saved_regs;
990 };
991
992 static struct spu_unwind_cache *
993 spu_frame_unwind_cache (struct frame_info *this_frame,
994 void **this_prologue_cache)
995 {
996 struct gdbarch *gdbarch = get_frame_arch (this_frame);
997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
999 struct spu_unwind_cache *info;
1000 struct spu_prologue_data data;
1001 CORE_ADDR id = tdep->id;
1002 gdb_byte buf[16];
1003
1004 if (*this_prologue_cache)
1005 return *this_prologue_cache;
1006
1007 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1008 *this_prologue_cache = info;
1009 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1010 info->frame_base = 0;
1011 info->local_base = 0;
1012
1013 /* Find the start of the current function, and analyze its prologue. */
1014 info->func = get_frame_func (this_frame);
1015 if (info->func == 0)
1016 {
1017 /* Fall back to using the current PC as frame ID. */
1018 info->func = get_frame_pc (this_frame);
1019 data.size = -1;
1020 }
1021 else
1022 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1023 &data);
1024
1025 /* If successful, use prologue analysis data. */
1026 if (data.size != -1 && data.cfa_reg != -1)
1027 {
1028 CORE_ADDR cfa;
1029 int i;
1030
1031 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1032 get_frame_register (this_frame, data.cfa_reg, buf);
1033 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1034 cfa = SPUADDR (id, cfa);
1035
1036 /* Call-saved register slots. */
1037 for (i = 0; i < SPU_NUM_GPRS; i++)
1038 if (i == SPU_LR_REGNUM
1039 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1040 if (data.reg_offset[i] != -1)
1041 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1042
1043 /* Frame bases. */
1044 info->frame_base = cfa;
1045 info->local_base = cfa - data.size;
1046 }
1047
1048 /* Otherwise, fall back to reading the backchain link. */
1049 else
1050 {
1051 CORE_ADDR reg;
1052 LONGEST backchain;
1053 ULONGEST lslr;
1054 int status;
1055
1056 /* Get local store limit. */
1057 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1058 if (!lslr)
1059 lslr = (ULONGEST) -1;
1060
1061 /* Get the backchain. */
1062 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1063 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1064 &backchain);
1065
1066 /* A zero backchain terminates the frame chain. Also, sanity
1067 check against the local store size limit. */
1068 if (status && backchain > 0 && backchain <= lslr)
1069 {
1070 /* Assume the link register is saved into its slot. */
1071 if (backchain + 16 <= lslr)
1072 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1073 backchain + 16);
1074
1075 /* Frame bases. */
1076 info->frame_base = SPUADDR (id, backchain);
1077 info->local_base = SPUADDR (id, reg);
1078 }
1079 }
1080
1081 /* If we didn't find a frame, we cannot determine SP / return address. */
1082 if (info->frame_base == 0)
1083 return info;
1084
1085 /* The previous SP is equal to the CFA. */
1086 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1087 SPUADDR_ADDR (info->frame_base));
1088
1089 /* Read full contents of the unwound link register in order to
1090 be able to determine the return address. */
1091 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1092 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1093 else
1094 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1095
1096 /* Normally, the return address is contained in the slot 0 of the
1097 link register, and slots 1-3 are zero. For an overlay return,
1098 slot 0 contains the address of the overlay manager return stub,
1099 slot 1 contains the partition number of the overlay section to
1100 be returned to, and slot 2 contains the return address within
1101 that section. Return the latter address in that case. */
1102 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1103 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1104 extract_unsigned_integer (buf + 8, 4, byte_order));
1105 else
1106 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1107 extract_unsigned_integer (buf, 4, byte_order));
1108
1109 return info;
1110 }
1111
1112 static void
1113 spu_frame_this_id (struct frame_info *this_frame,
1114 void **this_prologue_cache, struct frame_id *this_id)
1115 {
1116 struct spu_unwind_cache *info =
1117 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1118
1119 if (info->frame_base == 0)
1120 return;
1121
1122 *this_id = frame_id_build (info->frame_base, info->func);
1123 }
1124
1125 static struct value *
1126 spu_frame_prev_register (struct frame_info *this_frame,
1127 void **this_prologue_cache, int regnum)
1128 {
1129 struct spu_unwind_cache *info
1130 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1131
1132 /* Special-case the stack pointer. */
1133 if (regnum == SPU_RAW_SP_REGNUM)
1134 regnum = SPU_SP_REGNUM;
1135
1136 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1137 }
1138
1139 static const struct frame_unwind spu_frame_unwind = {
1140 NORMAL_FRAME,
1141 default_frame_unwind_stop_reason,
1142 spu_frame_this_id,
1143 spu_frame_prev_register,
1144 NULL,
1145 default_frame_sniffer
1146 };
1147
1148 static CORE_ADDR
1149 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1150 {
1151 struct spu_unwind_cache *info
1152 = spu_frame_unwind_cache (this_frame, this_cache);
1153 return info->local_base;
1154 }
1155
1156 static const struct frame_base spu_frame_base = {
1157 &spu_frame_unwind,
1158 spu_frame_base_address,
1159 spu_frame_base_address,
1160 spu_frame_base_address
1161 };
1162
1163 static CORE_ADDR
1164 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165 {
1166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1167 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1168 /* Mask off interrupt enable bit. */
1169 return SPUADDR (tdep->id, pc & -4);
1170 }
1171
1172 static CORE_ADDR
1173 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1174 {
1175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1176 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1177 return SPUADDR (tdep->id, sp);
1178 }
1179
1180 static CORE_ADDR
1181 spu_read_pc (struct regcache *regcache)
1182 {
1183 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1184 ULONGEST pc;
1185 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1186 /* Mask off interrupt enable bit. */
1187 return SPUADDR (tdep->id, pc & -4);
1188 }
1189
1190 static void
1191 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1192 {
1193 /* Keep interrupt enabled state unchanged. */
1194 ULONGEST old_pc;
1195
1196 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1197 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1198 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1199 }
1200
1201
1202 /* Cell/B.E. cross-architecture unwinder support. */
1203
1204 struct spu2ppu_cache
1205 {
1206 struct frame_id frame_id;
1207 struct regcache *regcache;
1208 };
1209
1210 static struct gdbarch *
1211 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1212 {
1213 struct spu2ppu_cache *cache = *this_cache;
1214 return get_regcache_arch (cache->regcache);
1215 }
1216
1217 static void
1218 spu2ppu_this_id (struct frame_info *this_frame,
1219 void **this_cache, struct frame_id *this_id)
1220 {
1221 struct spu2ppu_cache *cache = *this_cache;
1222 *this_id = cache->frame_id;
1223 }
1224
1225 static struct value *
1226 spu2ppu_prev_register (struct frame_info *this_frame,
1227 void **this_cache, int regnum)
1228 {
1229 struct spu2ppu_cache *cache = *this_cache;
1230 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1231 gdb_byte *buf;
1232
1233 buf = alloca (register_size (gdbarch, regnum));
1234 regcache_cooked_read (cache->regcache, regnum, buf);
1235 return frame_unwind_got_bytes (this_frame, regnum, buf);
1236 }
1237
1238 static int
1239 spu2ppu_sniffer (const struct frame_unwind *self,
1240 struct frame_info *this_frame, void **this_prologue_cache)
1241 {
1242 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1244 CORE_ADDR base, func, backchain;
1245 gdb_byte buf[4];
1246
1247 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1248 return 0;
1249
1250 base = get_frame_sp (this_frame);
1251 func = get_frame_pc (this_frame);
1252 if (target_read_memory (base, buf, 4))
1253 return 0;
1254 backchain = extract_unsigned_integer (buf, 4, byte_order);
1255
1256 if (!backchain)
1257 {
1258 struct frame_info *fi;
1259
1260 struct spu2ppu_cache *cache
1261 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1262
1263 cache->frame_id = frame_id_build (base + 16, func);
1264
1265 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1266 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1267 break;
1268
1269 if (fi)
1270 {
1271 cache->regcache = frame_save_as_regcache (fi);
1272 *this_prologue_cache = cache;
1273 return 1;
1274 }
1275 else
1276 {
1277 struct regcache *regcache;
1278 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1279 cache->regcache = regcache_dup (regcache);
1280 *this_prologue_cache = cache;
1281 return 1;
1282 }
1283 }
1284
1285 return 0;
1286 }
1287
1288 static void
1289 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1290 {
1291 struct spu2ppu_cache *cache = this_cache;
1292 regcache_xfree (cache->regcache);
1293 }
1294
1295 static const struct frame_unwind spu2ppu_unwind = {
1296 ARCH_FRAME,
1297 default_frame_unwind_stop_reason,
1298 spu2ppu_this_id,
1299 spu2ppu_prev_register,
1300 NULL,
1301 spu2ppu_sniffer,
1302 spu2ppu_dealloc_cache,
1303 spu2ppu_prev_arch,
1304 };
1305
1306
1307 /* Function calling convention. */
1308
1309 static CORE_ADDR
1310 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1311 {
1312 return sp & ~15;
1313 }
1314
1315 static CORE_ADDR
1316 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1317 struct value **args, int nargs, struct type *value_type,
1318 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1319 struct regcache *regcache)
1320 {
1321 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1322 sp = (sp - 4) & ~15;
1323 /* Store the address of that breakpoint */
1324 *bp_addr = sp;
1325 /* The call starts at the callee's entry point. */
1326 *real_pc = funaddr;
1327
1328 return sp;
1329 }
1330
1331 static int
1332 spu_scalar_value_p (struct type *type)
1333 {
1334 switch (TYPE_CODE (type))
1335 {
1336 case TYPE_CODE_INT:
1337 case TYPE_CODE_ENUM:
1338 case TYPE_CODE_RANGE:
1339 case TYPE_CODE_CHAR:
1340 case TYPE_CODE_BOOL:
1341 case TYPE_CODE_PTR:
1342 case TYPE_CODE_REF:
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348 }
1349
1350 static void
1351 spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353 {
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
1359 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
1365 regcache_cooked_write (regcache, regnum++, in);
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
1371 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1372 }
1373 }
1374
1375 static void
1376 spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378 {
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
1384 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
1390 regcache_cooked_read (regcache, regnum++, out);
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
1396 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1397 }
1398 }
1399
1400 static CORE_ADDR
1401 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
1404 int struct_return, CORE_ADDR struct_addr)
1405 {
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 CORE_ADDR sp_delta;
1408 int i;
1409 int regnum = SPU_ARG1_REGNUM;
1410 int stack_arg = -1;
1411 gdb_byte buf[16];
1412
1413 /* Set the return address. */
1414 memset (buf, 0, sizeof buf);
1415 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1416 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1417
1418 /* If STRUCT_RETURN is true, then the struct return address (in
1419 STRUCT_ADDR) will consume the first argument-passing register.
1420 Both adjust the register count and store that value. */
1421 if (struct_return)
1422 {
1423 memset (buf, 0, sizeof buf);
1424 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1425 regcache_cooked_write (regcache, regnum++, buf);
1426 }
1427
1428 /* Fill in argument registers. */
1429 for (i = 0; i < nargs; i++)
1430 {
1431 struct value *arg = args[i];
1432 struct type *type = check_typedef (value_type (arg));
1433 const gdb_byte *contents = value_contents (arg);
1434 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1435
1436 /* If the argument doesn't wholly fit into registers, it and
1437 all subsequent arguments go to the stack. */
1438 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1439 {
1440 stack_arg = i;
1441 break;
1442 }
1443
1444 spu_value_to_regcache (regcache, regnum, type, contents);
1445 regnum += n_regs;
1446 }
1447
1448 /* Overflow arguments go to the stack. */
1449 if (stack_arg != -1)
1450 {
1451 CORE_ADDR ap;
1452
1453 /* Allocate all required stack size. */
1454 for (i = stack_arg; i < nargs; i++)
1455 {
1456 struct type *type = check_typedef (value_type (args[i]));
1457 sp -= align_up (TYPE_LENGTH (type), 16);
1458 }
1459
1460 /* Fill in stack arguments. */
1461 ap = sp;
1462 for (i = stack_arg; i < nargs; i++)
1463 {
1464 struct value *arg = args[i];
1465 struct type *type = check_typedef (value_type (arg));
1466 int len = TYPE_LENGTH (type);
1467 int preferred_slot;
1468
1469 if (spu_scalar_value_p (type))
1470 preferred_slot = len < 4 ? 4 - len : 0;
1471 else
1472 preferred_slot = 0;
1473
1474 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1475 ap += align_up (TYPE_LENGTH (type), 16);
1476 }
1477 }
1478
1479 /* Allocate stack frame header. */
1480 sp -= 32;
1481
1482 /* Store stack back chain. */
1483 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1484 target_write_memory (sp, buf, 16);
1485
1486 /* Finally, update all slots of the SP register. */
1487 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1488 for (i = 0; i < 4; i++)
1489 {
1490 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1491 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1492 }
1493 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1494
1495 return sp;
1496 }
1497
1498 static struct frame_id
1499 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1500 {
1501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1502 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1503 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1504 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1505 }
1506
1507 /* Function return value access. */
1508
1509 static enum return_value_convention
1510 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1511 struct type *type, struct regcache *regcache,
1512 gdb_byte *out, const gdb_byte *in)
1513 {
1514 struct type *func_type = function ? value_type (function) : NULL;
1515 enum return_value_convention rvc;
1516 int opencl_vector = 0;
1517
1518 if (func_type)
1519 {
1520 func_type = check_typedef (func_type);
1521
1522 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1523 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1524
1525 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1526 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1527 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 && TYPE_VECTOR (type))
1529 opencl_vector = 1;
1530 }
1531
1532 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1533 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1534 else
1535 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1536
1537 if (in)
1538 {
1539 switch (rvc)
1540 {
1541 case RETURN_VALUE_REGISTER_CONVENTION:
1542 if (opencl_vector && TYPE_LENGTH (type) == 2)
1543 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1544 else
1545 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1546 break;
1547
1548 case RETURN_VALUE_STRUCT_CONVENTION:
1549 error (_("Cannot set function return value."));
1550 break;
1551 }
1552 }
1553 else if (out)
1554 {
1555 switch (rvc)
1556 {
1557 case RETURN_VALUE_REGISTER_CONVENTION:
1558 if (opencl_vector && TYPE_LENGTH (type) == 2)
1559 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1560 else
1561 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1562 break;
1563
1564 case RETURN_VALUE_STRUCT_CONVENTION:
1565 error (_("Function return value unknown."));
1566 break;
1567 }
1568 }
1569
1570 return rvc;
1571 }
1572
1573
1574 /* Breakpoints. */
1575
1576 static const gdb_byte *
1577 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1578 CORE_ADDR * pcptr, int *lenptr)
1579 {
1580 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1581
1582 *lenptr = sizeof breakpoint;
1583 return breakpoint;
1584 }
1585
1586 static int
1587 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1588 struct bp_target_info *bp_tgt)
1589 {
1590 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1591 that in a combined application, we have some breakpoints inserted in SPU
1592 code, and now the application forks (on the PPU side). GDB common code
1593 will assume that the fork system call copied all breakpoints into the new
1594 process' address space, and that all those copies now need to be removed
1595 (see breakpoint.c:detach_breakpoints).
1596
1597 While this is certainly true for PPU side breakpoints, it is not true
1598 for SPU side breakpoints. fork will clone the SPU context file
1599 descriptors, so that all the existing SPU contexts are in accessible
1600 in the new process. However, the contents of the SPU contexts themselves
1601 are *not* cloned. Therefore the effect of detach_breakpoints is to
1602 remove SPU breakpoints from the *original* SPU context's local store
1603 -- this is not the correct behaviour.
1604
1605 The workaround is to check whether the PID we are asked to remove this
1606 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1607 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1608 true in the context of detach_breakpoints. If so, we simply do nothing.
1609 [ Note that for the fork child process, it does not matter if breakpoints
1610 remain inserted, because those SPU contexts are not runnable anyway --
1611 the Linux kernel allows only the original process to invoke spu_run. */
1612
1613 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1614 return 0;
1615
1616 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1617 }
1618
1619
1620 /* Software single-stepping support. */
1621
1622 static int
1623 spu_software_single_step (struct frame_info *frame)
1624 {
1625 struct gdbarch *gdbarch = get_frame_arch (frame);
1626 struct address_space *aspace = get_frame_address_space (frame);
1627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1628 CORE_ADDR pc, next_pc;
1629 unsigned int insn;
1630 int offset, reg;
1631 gdb_byte buf[4];
1632 ULONGEST lslr;
1633
1634 pc = get_frame_pc (frame);
1635
1636 if (target_read_memory (pc, buf, 4))
1637 return 1;
1638 insn = extract_unsigned_integer (buf, 4, byte_order);
1639
1640 /* Get local store limit. */
1641 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1642 if (!lslr)
1643 lslr = (ULONGEST) -1;
1644
1645 /* Next sequential instruction is at PC + 4, except if the current
1646 instruction is a PPE-assisted call, in which case it is at PC + 8.
1647 Wrap around LS limit to be on the safe side. */
1648 if ((insn & 0xffffff00) == 0x00002100)
1649 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1650 else
1651 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1652
1653 insert_single_step_breakpoint (gdbarch,
1654 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1655
1656 if (is_branch (insn, &offset, &reg))
1657 {
1658 CORE_ADDR target = offset;
1659
1660 if (reg == SPU_PC_REGNUM)
1661 target += SPUADDR_ADDR (pc);
1662 else if (reg != -1)
1663 {
1664 int optim, unavail;
1665
1666 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1667 &optim, &unavail))
1668 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1669 else
1670 {
1671 if (optim)
1672 throw_error (OPTIMIZED_OUT_ERROR,
1673 _("Could not determine address of "
1674 "single-step breakpoint."));
1675 if (unavail)
1676 throw_error (NOT_AVAILABLE_ERROR,
1677 _("Could not determine address of "
1678 "single-step breakpoint."));
1679 }
1680 }
1681
1682 target = target & lslr;
1683 if (target != next_pc)
1684 insert_single_step_breakpoint (gdbarch, aspace,
1685 SPUADDR (SPUADDR_SPU (pc), target));
1686 }
1687
1688 return 1;
1689 }
1690
1691
1692 /* Longjmp support. */
1693
1694 static int
1695 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1696 {
1697 struct gdbarch *gdbarch = get_frame_arch (frame);
1698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1700 gdb_byte buf[4];
1701 CORE_ADDR jb_addr;
1702 int optim, unavail;
1703
1704 /* Jump buffer is pointed to by the argument register $r3. */
1705 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1706 &optim, &unavail))
1707 return 0;
1708
1709 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1710 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1711 return 0;
1712
1713 *pc = extract_unsigned_integer (buf, 4, byte_order);
1714 *pc = SPUADDR (tdep->id, *pc);
1715 return 1;
1716 }
1717
1718
1719 /* Disassembler. */
1720
1721 struct spu_dis_asm_data
1722 {
1723 struct gdbarch *gdbarch;
1724 int id;
1725 };
1726
1727 static void
1728 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1729 {
1730 struct spu_dis_asm_data *data = info->application_data;
1731 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1732 }
1733
1734 static int
1735 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1736 {
1737 /* The opcodes disassembler does 18-bit address arithmetic. Make
1738 sure the SPU ID encoded in the high bits is added back when we
1739 call print_address. */
1740 struct disassemble_info spu_info = *info;
1741 struct spu_dis_asm_data data;
1742 data.gdbarch = info->application_data;
1743 data.id = SPUADDR_SPU (memaddr);
1744
1745 spu_info.application_data = &data;
1746 spu_info.print_address_func = spu_dis_asm_print_address;
1747 return print_insn_spu (memaddr, &spu_info);
1748 }
1749
1750
1751 /* Target overlays for the SPU overlay manager.
1752
1753 See the documentation of simple_overlay_update for how the
1754 interface is supposed to work.
1755
1756 Data structures used by the overlay manager:
1757
1758 struct ovly_table
1759 {
1760 u32 vma;
1761 u32 size;
1762 u32 pos;
1763 u32 buf;
1764 } _ovly_table[]; -- one entry per overlay section
1765
1766 struct ovly_buf_table
1767 {
1768 u32 mapped;
1769 } _ovly_buf_table[]; -- one entry per overlay buffer
1770
1771 _ovly_table should never change.
1772
1773 Both tables are aligned to a 16-byte boundary, the symbols
1774 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1775 size set to the size of the respective array. buf in _ovly_table is
1776 an index into _ovly_buf_table.
1777
1778 mapped is an index into _ovly_table. Both the mapped and buf indices start
1779 from one to reference the first entry in their respective tables. */
1780
1781 /* Using the per-objfile private data mechanism, we store for each
1782 objfile an array of "struct spu_overlay_table" structures, one
1783 for each obj_section of the objfile. This structure holds two
1784 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1785 is *not* an overlay section. If it is non-zero, it represents
1786 a target address. The overlay section is mapped iff the target
1787 integer at this location equals MAPPED_VAL. */
1788
1789 static const struct objfile_data *spu_overlay_data;
1790
1791 struct spu_overlay_table
1792 {
1793 CORE_ADDR mapped_ptr;
1794 CORE_ADDR mapped_val;
1795 };
1796
1797 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1798 the _ovly_table data structure from the target and initialize the
1799 spu_overlay_table data structure from it. */
1800 static struct spu_overlay_table *
1801 spu_get_overlay_table (struct objfile *objfile)
1802 {
1803 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1804 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1805 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1806 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1807 unsigned ovly_table_size, ovly_buf_table_size;
1808 struct spu_overlay_table *tbl;
1809 struct obj_section *osect;
1810 gdb_byte *ovly_table;
1811 int i;
1812
1813 tbl = objfile_data (objfile, spu_overlay_data);
1814 if (tbl)
1815 return tbl;
1816
1817 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1818 if (!ovly_table_msym.minsym)
1819 return NULL;
1820
1821 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1822 NULL, objfile);
1823 if (!ovly_buf_table_msym.minsym)
1824 return NULL;
1825
1826 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1827 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1828
1829 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1830 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1831
1832 ovly_table = xmalloc (ovly_table_size);
1833 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1834
1835 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1836 objfile->sections_end - objfile->sections,
1837 struct spu_overlay_table);
1838
1839 for (i = 0; i < ovly_table_size / 16; i++)
1840 {
1841 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1842 4, byte_order);
1843 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1844 4, byte_order);
1845 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1846 4, byte_order);
1847 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1848 4, byte_order);
1849
1850 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1851 continue;
1852
1853 ALL_OBJFILE_OSECTIONS (objfile, osect)
1854 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1855 && pos == osect->the_bfd_section->filepos)
1856 {
1857 int ndx = osect - objfile->sections;
1858 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1859 tbl[ndx].mapped_val = i + 1;
1860 break;
1861 }
1862 }
1863
1864 xfree (ovly_table);
1865 set_objfile_data (objfile, spu_overlay_data, tbl);
1866 return tbl;
1867 }
1868
1869 /* Read _ovly_buf_table entry from the target to dermine whether
1870 OSECT is currently mapped, and update the mapped state. */
1871 static void
1872 spu_overlay_update_osect (struct obj_section *osect)
1873 {
1874 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1875 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1876 struct spu_overlay_table *ovly_table;
1877 CORE_ADDR id, val;
1878
1879 ovly_table = spu_get_overlay_table (osect->objfile);
1880 if (!ovly_table)
1881 return;
1882
1883 ovly_table += osect - osect->objfile->sections;
1884 if (ovly_table->mapped_ptr == 0)
1885 return;
1886
1887 id = SPUADDR_SPU (obj_section_addr (osect));
1888 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1889 4, byte_order);
1890 osect->ovly_mapped = (val == ovly_table->mapped_val);
1891 }
1892
1893 /* If OSECT is NULL, then update all sections' mapped state.
1894 If OSECT is non-NULL, then update only OSECT's mapped state. */
1895 static void
1896 spu_overlay_update (struct obj_section *osect)
1897 {
1898 /* Just one section. */
1899 if (osect)
1900 spu_overlay_update_osect (osect);
1901
1902 /* All sections. */
1903 else
1904 {
1905 struct objfile *objfile;
1906
1907 ALL_OBJSECTIONS (objfile, osect)
1908 if (section_is_overlay (osect))
1909 spu_overlay_update_osect (osect);
1910 }
1911 }
1912
1913 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1914 If there is one, go through all sections and make sure for non-
1915 overlay sections LMA equals VMA, while for overlay sections LMA
1916 is larger than SPU_OVERLAY_LMA. */
1917 static void
1918 spu_overlay_new_objfile (struct objfile *objfile)
1919 {
1920 struct spu_overlay_table *ovly_table;
1921 struct obj_section *osect;
1922
1923 /* If we've already touched this file, do nothing. */
1924 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1925 return;
1926
1927 /* Consider only SPU objfiles. */
1928 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1929 return;
1930
1931 /* Check if this objfile has overlays. */
1932 ovly_table = spu_get_overlay_table (objfile);
1933 if (!ovly_table)
1934 return;
1935
1936 /* Now go and fiddle with all the LMAs. */
1937 ALL_OBJFILE_OSECTIONS (objfile, osect)
1938 {
1939 bfd *obfd = objfile->obfd;
1940 asection *bsect = osect->the_bfd_section;
1941 int ndx = osect - objfile->sections;
1942
1943 if (ovly_table[ndx].mapped_ptr == 0)
1944 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1945 else
1946 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1947 }
1948 }
1949
1950
1951 /* Insert temporary breakpoint on "main" function of newly loaded
1952 SPE context OBJFILE. */
1953 static void
1954 spu_catch_start (struct objfile *objfile)
1955 {
1956 struct bound_minimal_symbol minsym;
1957 struct symtab *symtab;
1958 CORE_ADDR pc;
1959 char buf[32];
1960
1961 /* Do this only if requested by "set spu stop-on-load on". */
1962 if (!spu_stop_on_load_p)
1963 return;
1964
1965 /* Consider only SPU objfiles. */
1966 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1967 return;
1968
1969 /* The main objfile is handled differently. */
1970 if (objfile == symfile_objfile)
1971 return;
1972
1973 /* There can be multiple symbols named "main". Search for the
1974 "main" in *this* objfile. */
1975 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1976 if (!minsym.minsym)
1977 return;
1978
1979 /* If we have debugging information, try to use it -- this
1980 will allow us to properly skip the prologue. */
1981 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1982 symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1983 minsym.minsym));
1984 if (symtab != NULL)
1985 {
1986 const struct blockvector *bv = BLOCKVECTOR (symtab);
1987 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1988 struct symbol *sym;
1989 struct symtab_and_line sal;
1990
1991 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1992 if (sym)
1993 {
1994 fixup_symbol_section (sym, objfile);
1995 sal = find_function_start_sal (sym, 1);
1996 pc = sal.pc;
1997 }
1998 }
1999
2000 /* Use a numerical address for the set_breakpoint command to avoid having
2001 the breakpoint re-set incorrectly. */
2002 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
2003 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2004 NULL /* cond_string */, -1 /* thread */,
2005 NULL /* extra_string */,
2006 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2007 bp_breakpoint /* type_wanted */,
2008 0 /* ignore_count */,
2009 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2010 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2011 1 /* enabled */, 0 /* internal */, 0);
2012 }
2013
2014
2015 /* Look up OBJFILE loaded into FRAME's SPU context. */
2016 static struct objfile *
2017 spu_objfile_from_frame (struct frame_info *frame)
2018 {
2019 struct gdbarch *gdbarch = get_frame_arch (frame);
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2021 struct objfile *obj;
2022
2023 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2024 return NULL;
2025
2026 ALL_OBJFILES (obj)
2027 {
2028 if (obj->sections != obj->sections_end
2029 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2030 return obj;
2031 }
2032
2033 return NULL;
2034 }
2035
2036 /* Flush cache for ea pointer access if available. */
2037 static void
2038 flush_ea_cache (void)
2039 {
2040 struct bound_minimal_symbol msymbol;
2041 struct objfile *obj;
2042
2043 if (!has_stack_frames ())
2044 return;
2045
2046 obj = spu_objfile_from_frame (get_current_frame ());
2047 if (obj == NULL)
2048 return;
2049
2050 /* Lookup inferior function __cache_flush. */
2051 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2052 if (msymbol.minsym != NULL)
2053 {
2054 struct type *type;
2055 CORE_ADDR addr;
2056
2057 type = objfile_type (obj)->builtin_void;
2058 type = lookup_function_type (type);
2059 type = lookup_pointer_type (type);
2060 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2061
2062 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2063 }
2064 }
2065
2066 /* This handler is called when the inferior has stopped. If it is stopped in
2067 SPU architecture then flush the ea cache if used. */
2068 static void
2069 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2070 {
2071 if (!spu_auto_flush_cache_p)
2072 return;
2073
2074 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2075 re-entering this function when __cache_flush stops. */
2076 spu_auto_flush_cache_p = 0;
2077 flush_ea_cache ();
2078 spu_auto_flush_cache_p = 1;
2079 }
2080
2081
2082 /* "info spu" commands. */
2083
2084 static void
2085 info_spu_event_command (char *args, int from_tty)
2086 {
2087 struct frame_info *frame = get_selected_frame (NULL);
2088 ULONGEST event_status = 0;
2089 ULONGEST event_mask = 0;
2090 struct cleanup *chain;
2091 gdb_byte buf[100];
2092 char annex[32];
2093 LONGEST len;
2094 int id;
2095
2096 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2103 buf, 0, (sizeof (buf) - 1));
2104 if (len <= 0)
2105 error (_("Could not read event_status."));
2106 buf[len] = '\0';
2107 event_status = strtoulst ((char *) buf, NULL, 16);
2108
2109 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2110 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2111 buf, 0, (sizeof (buf) - 1));
2112 if (len <= 0)
2113 error (_("Could not read event_mask."));
2114 buf[len] = '\0';
2115 event_mask = strtoulst ((char *) buf, NULL, 16);
2116
2117 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2118
2119 if (ui_out_is_mi_like_p (current_uiout))
2120 {
2121 ui_out_field_fmt (current_uiout, "event_status",
2122 "0x%s", phex_nz (event_status, 4));
2123 ui_out_field_fmt (current_uiout, "event_mask",
2124 "0x%s", phex_nz (event_mask, 4));
2125 }
2126 else
2127 {
2128 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2129 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2130 }
2131
2132 do_cleanups (chain);
2133 }
2134
2135 static void
2136 info_spu_signal_command (char *args, int from_tty)
2137 {
2138 struct frame_info *frame = get_selected_frame (NULL);
2139 struct gdbarch *gdbarch = get_frame_arch (frame);
2140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2141 ULONGEST signal1 = 0;
2142 ULONGEST signal1_type = 0;
2143 int signal1_pending = 0;
2144 ULONGEST signal2 = 0;
2145 ULONGEST signal2_type = 0;
2146 int signal2_pending = 0;
2147 struct cleanup *chain;
2148 char annex[32];
2149 gdb_byte buf[100];
2150 LONGEST len;
2151 int id;
2152
2153 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2154 error (_("\"info spu\" is only supported on the SPU architecture."));
2155
2156 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 if (len < 0)
2161 error (_("Could not read signal1."));
2162 else if (len == 4)
2163 {
2164 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2165 signal1_pending = 1;
2166 }
2167
2168 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2170 buf, 0, (sizeof (buf) - 1));
2171 if (len <= 0)
2172 error (_("Could not read signal1_type."));
2173 buf[len] = '\0';
2174 signal1_type = strtoulst ((char *) buf, NULL, 16);
2175
2176 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2177 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2178 if (len < 0)
2179 error (_("Could not read signal2."));
2180 else if (len == 4)
2181 {
2182 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2183 signal2_pending = 1;
2184 }
2185
2186 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2187 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2188 buf, 0, (sizeof (buf) - 1));
2189 if (len <= 0)
2190 error (_("Could not read signal2_type."));
2191 buf[len] = '\0';
2192 signal2_type = strtoulst ((char *) buf, NULL, 16);
2193
2194 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2195
2196 if (ui_out_is_mi_like_p (current_uiout))
2197 {
2198 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2199 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2200 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2201 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2202 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2203 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2204 }
2205 else
2206 {
2207 if (signal1_pending)
2208 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2209 else
2210 printf_filtered (_("Signal 1 not pending "));
2211
2212 if (signal1_type)
2213 printf_filtered (_("(Type Or)\n"));
2214 else
2215 printf_filtered (_("(Type Overwrite)\n"));
2216
2217 if (signal2_pending)
2218 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2219 else
2220 printf_filtered (_("Signal 2 not pending "));
2221
2222 if (signal2_type)
2223 printf_filtered (_("(Type Or)\n"));
2224 else
2225 printf_filtered (_("(Type Overwrite)\n"));
2226 }
2227
2228 do_cleanups (chain);
2229 }
2230
2231 static void
2232 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2233 const char *field, const char *msg)
2234 {
2235 struct cleanup *chain;
2236 int i;
2237
2238 if (nr <= 0)
2239 return;
2240
2241 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2242
2243 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2244 ui_out_table_body (current_uiout);
2245
2246 for (i = 0; i < nr; i++)
2247 {
2248 struct cleanup *val_chain;
2249 ULONGEST val;
2250 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2251 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2252 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2253 do_cleanups (val_chain);
2254
2255 if (!ui_out_is_mi_like_p (current_uiout))
2256 printf_filtered ("\n");
2257 }
2258
2259 do_cleanups (chain);
2260 }
2261
2262 static void
2263 info_spu_mailbox_command (char *args, int from_tty)
2264 {
2265 struct frame_info *frame = get_selected_frame (NULL);
2266 struct gdbarch *gdbarch = get_frame_arch (frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268 struct cleanup *chain;
2269 char annex[32];
2270 gdb_byte buf[1024];
2271 LONGEST len;
2272 int id;
2273
2274 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2275 error (_("\"info spu\" is only supported on the SPU architecture."));
2276
2277 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2278
2279 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2280
2281 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2282 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2283 buf, 0, sizeof buf);
2284 if (len < 0)
2285 error (_("Could not read mbox_info."));
2286
2287 info_spu_mailbox_list (buf, len / 4, byte_order,
2288 "mbox", "SPU Outbound Mailbox");
2289
2290 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2291 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2292 buf, 0, sizeof buf);
2293 if (len < 0)
2294 error (_("Could not read ibox_info."));
2295
2296 info_spu_mailbox_list (buf, len / 4, byte_order,
2297 "ibox", "SPU Outbound Interrupt Mailbox");
2298
2299 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2300 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2301 buf, 0, sizeof buf);
2302 if (len < 0)
2303 error (_("Could not read wbox_info."));
2304
2305 info_spu_mailbox_list (buf, len / 4, byte_order,
2306 "wbox", "SPU Inbound Mailbox");
2307
2308 do_cleanups (chain);
2309 }
2310
2311 static ULONGEST
2312 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2313 {
2314 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2315 return (word >> (63 - last)) & mask;
2316 }
2317
2318 static void
2319 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2320 {
2321 static char *spu_mfc_opcode[256] =
2322 {
2323 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2328 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2329 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2332 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2333 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2341 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2346 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2349 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 };
2356
2357 int *seq = alloca (nr * sizeof (int));
2358 int done = 0;
2359 struct cleanup *chain;
2360 int i, j;
2361
2362
2363 /* Determine sequence in which to display (valid) entries. */
2364 for (i = 0; i < nr; i++)
2365 {
2366 /* Search for the first valid entry all of whose
2367 dependencies are met. */
2368 for (j = 0; j < nr; j++)
2369 {
2370 ULONGEST mfc_cq_dw3;
2371 ULONGEST dependencies;
2372
2373 if (done & (1 << (nr - 1 - j)))
2374 continue;
2375
2376 mfc_cq_dw3
2377 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2378 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2379 continue;
2380
2381 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2382 if ((dependencies & done) != dependencies)
2383 continue;
2384
2385 seq[i] = j;
2386 done |= 1 << (nr - 1 - j);
2387 break;
2388 }
2389
2390 if (j == nr)
2391 break;
2392 }
2393
2394 nr = i;
2395
2396
2397 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2398 "dma_cmd");
2399
2400 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2402 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2403 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2404 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2406 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2408 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2409 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2410
2411 ui_out_table_body (current_uiout);
2412
2413 for (i = 0; i < nr; i++)
2414 {
2415 struct cleanup *cmd_chain;
2416 ULONGEST mfc_cq_dw0;
2417 ULONGEST mfc_cq_dw1;
2418 ULONGEST mfc_cq_dw2;
2419 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2420 int list_lsa, list_size, mfc_lsa, mfc_size;
2421 ULONGEST mfc_ea;
2422 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2423
2424 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2425 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2426
2427 mfc_cq_dw0
2428 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2429 mfc_cq_dw1
2430 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2431 mfc_cq_dw2
2432 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2433
2434 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2435 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2436 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2437 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2438 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2439 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2440 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2441
2442 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2443 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2444
2445 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2446 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2447 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2448 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2449 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2450 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2451
2452 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2453
2454 if (spu_mfc_opcode[mfc_cmd_opcode])
2455 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2456 else
2457 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2458
2459 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2460 ui_out_field_int (current_uiout, "tid", tclass_id);
2461 ui_out_field_int (current_uiout, "rid", rclass_id);
2462
2463 if (ea_valid_p)
2464 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2465 else
2466 ui_out_field_skip (current_uiout, "ea");
2467
2468 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2469 if (qw_valid_p)
2470 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2471 else
2472 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2473
2474 if (list_valid_p)
2475 {
2476 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2477 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2478 }
2479 else
2480 {
2481 ui_out_field_skip (current_uiout, "lstaddr");
2482 ui_out_field_skip (current_uiout, "lstsize");
2483 }
2484
2485 if (cmd_error_p)
2486 ui_out_field_string (current_uiout, "error_p", "*");
2487 else
2488 ui_out_field_skip (current_uiout, "error_p");
2489
2490 do_cleanups (cmd_chain);
2491
2492 if (!ui_out_is_mi_like_p (current_uiout))
2493 printf_filtered ("\n");
2494 }
2495
2496 do_cleanups (chain);
2497 }
2498
2499 static void
2500 info_spu_dma_command (char *args, int from_tty)
2501 {
2502 struct frame_info *frame = get_selected_frame (NULL);
2503 struct gdbarch *gdbarch = get_frame_arch (frame);
2504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2505 ULONGEST dma_info_type;
2506 ULONGEST dma_info_mask;
2507 ULONGEST dma_info_status;
2508 ULONGEST dma_info_stall_and_notify;
2509 ULONGEST dma_info_atomic_command_status;
2510 struct cleanup *chain;
2511 char annex[32];
2512 gdb_byte buf[1024];
2513 LONGEST len;
2514 int id;
2515
2516 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2517 error (_("\"info spu\" is only supported on the SPU architecture."));
2518
2519 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2520
2521 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2522 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2523 buf, 0, 40 + 16 * 32);
2524 if (len <= 0)
2525 error (_("Could not read dma_info."));
2526
2527 dma_info_type
2528 = extract_unsigned_integer (buf, 8, byte_order);
2529 dma_info_mask
2530 = extract_unsigned_integer (buf + 8, 8, byte_order);
2531 dma_info_status
2532 = extract_unsigned_integer (buf + 16, 8, byte_order);
2533 dma_info_stall_and_notify
2534 = extract_unsigned_integer (buf + 24, 8, byte_order);
2535 dma_info_atomic_command_status
2536 = extract_unsigned_integer (buf + 32, 8, byte_order);
2537
2538 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2539
2540 if (ui_out_is_mi_like_p (current_uiout))
2541 {
2542 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2543 phex_nz (dma_info_type, 4));
2544 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2545 phex_nz (dma_info_mask, 4));
2546 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2547 phex_nz (dma_info_status, 4));
2548 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2549 phex_nz (dma_info_stall_and_notify, 4));
2550 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2551 phex_nz (dma_info_atomic_command_status, 4));
2552 }
2553 else
2554 {
2555 const char *query_msg = _("no query pending");
2556
2557 if (dma_info_type & 4)
2558 switch (dma_info_type & 3)
2559 {
2560 case 1: query_msg = _("'any' query pending"); break;
2561 case 2: query_msg = _("'all' query pending"); break;
2562 default: query_msg = _("undefined query type"); break;
2563 }
2564
2565 printf_filtered (_("Tag-Group Status 0x%s\n"),
2566 phex (dma_info_status, 4));
2567 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2568 phex (dma_info_mask, 4), query_msg);
2569 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2570 phex (dma_info_stall_and_notify, 4));
2571 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2572 phex (dma_info_atomic_command_status, 4));
2573 printf_filtered ("\n");
2574 }
2575
2576 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2577 do_cleanups (chain);
2578 }
2579
2580 static void
2581 info_spu_proxydma_command (char *args, int from_tty)
2582 {
2583 struct frame_info *frame = get_selected_frame (NULL);
2584 struct gdbarch *gdbarch = get_frame_arch (frame);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2586 ULONGEST dma_info_type;
2587 ULONGEST dma_info_mask;
2588 ULONGEST dma_info_status;
2589 struct cleanup *chain;
2590 char annex[32];
2591 gdb_byte buf[1024];
2592 LONGEST len;
2593 int id;
2594
2595 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2596 error (_("\"info spu\" is only supported on the SPU architecture."));
2597
2598 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2599
2600 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2601 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2602 buf, 0, 24 + 8 * 32);
2603 if (len <= 0)
2604 error (_("Could not read proxydma_info."));
2605
2606 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2607 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2608 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2609
2610 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2611 "SPUInfoProxyDMA");
2612
2613 if (ui_out_is_mi_like_p (current_uiout))
2614 {
2615 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2616 phex_nz (dma_info_type, 4));
2617 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2618 phex_nz (dma_info_mask, 4));
2619 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2620 phex_nz (dma_info_status, 4));
2621 }
2622 else
2623 {
2624 const char *query_msg;
2625
2626 switch (dma_info_type & 3)
2627 {
2628 case 0: query_msg = _("no query pending"); break;
2629 case 1: query_msg = _("'any' query pending"); break;
2630 case 2: query_msg = _("'all' query pending"); break;
2631 default: query_msg = _("undefined query type"); break;
2632 }
2633
2634 printf_filtered (_("Tag-Group Status 0x%s\n"),
2635 phex (dma_info_status, 4));
2636 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2637 phex (dma_info_mask, 4), query_msg);
2638 printf_filtered ("\n");
2639 }
2640
2641 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2642 do_cleanups (chain);
2643 }
2644
2645 static void
2646 info_spu_command (char *args, int from_tty)
2647 {
2648 printf_unfiltered (_("\"info spu\" must be followed by "
2649 "the name of an SPU facility.\n"));
2650 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2651 }
2652
2653
2654 /* Root of all "set spu "/"show spu " commands. */
2655
2656 static void
2657 show_spu_command (char *args, int from_tty)
2658 {
2659 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2660 }
2661
2662 static void
2663 set_spu_command (char *args, int from_tty)
2664 {
2665 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2666 }
2667
2668 static void
2669 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2670 struct cmd_list_element *c, const char *value)
2671 {
2672 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2673 value);
2674 }
2675
2676 static void
2677 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679 {
2680 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2681 value);
2682 }
2683
2684
2685 /* Set up gdbarch struct. */
2686
2687 static struct gdbarch *
2688 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2689 {
2690 struct gdbarch *gdbarch;
2691 struct gdbarch_tdep *tdep;
2692 int id = -1;
2693
2694 /* Which spufs ID was requested as address space? */
2695 if (info.tdep_info)
2696 id = *(int *)info.tdep_info;
2697 /* For objfile architectures of SPU solibs, decode the ID from the name.
2698 This assumes the filename convention employed by solib-spu.c. */
2699 else if (info.abfd)
2700 {
2701 char *name = strrchr (info.abfd->filename, '@');
2702 if (name)
2703 sscanf (name, "@0x%*x <%d>", &id);
2704 }
2705
2706 /* Find a candidate among extant architectures. */
2707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2708 arches != NULL;
2709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2710 {
2711 tdep = gdbarch_tdep (arches->gdbarch);
2712 if (tdep && tdep->id == id)
2713 return arches->gdbarch;
2714 }
2715
2716 /* None found, so create a new architecture. */
2717 tdep = XCNEW (struct gdbarch_tdep);
2718 tdep->id = id;
2719 gdbarch = gdbarch_alloc (&info, tdep);
2720
2721 /* Disassembler. */
2722 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2723
2724 /* Registers. */
2725 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2726 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2727 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2728 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2729 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2730 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2731 set_gdbarch_register_name (gdbarch, spu_register_name);
2732 set_gdbarch_register_type (gdbarch, spu_register_type);
2733 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2734 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2735 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2736 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2737 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2738 set_gdbarch_ax_pseudo_register_collect
2739 (gdbarch, spu_ax_pseudo_register_collect);
2740 set_gdbarch_ax_pseudo_register_push_stack
2741 (gdbarch, spu_ax_pseudo_register_push_stack);
2742
2743 /* Data types. */
2744 set_gdbarch_char_signed (gdbarch, 0);
2745 set_gdbarch_ptr_bit (gdbarch, 32);
2746 set_gdbarch_addr_bit (gdbarch, 32);
2747 set_gdbarch_short_bit (gdbarch, 16);
2748 set_gdbarch_int_bit (gdbarch, 32);
2749 set_gdbarch_long_bit (gdbarch, 32);
2750 set_gdbarch_long_long_bit (gdbarch, 64);
2751 set_gdbarch_float_bit (gdbarch, 32);
2752 set_gdbarch_double_bit (gdbarch, 64);
2753 set_gdbarch_long_double_bit (gdbarch, 64);
2754 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2755 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2756 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2757
2758 /* Address handling. */
2759 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2760 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2761 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2762 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2763 set_gdbarch_address_class_type_flags_to_name
2764 (gdbarch, spu_address_class_type_flags_to_name);
2765 set_gdbarch_address_class_name_to_type_flags
2766 (gdbarch, spu_address_class_name_to_type_flags);
2767
2768
2769 /* Inferior function calls. */
2770 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2771 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2772 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2773 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2774 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2775 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2776 set_gdbarch_return_value (gdbarch, spu_return_value);
2777
2778 /* Frame handling. */
2779 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2780 dwarf2_append_unwinders (gdbarch);
2781 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2782 frame_base_set_default (gdbarch, &spu_frame_base);
2783 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2784 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2785 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2786 set_gdbarch_frame_args_skip (gdbarch, 0);
2787 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2788 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2789
2790 /* Cell/B.E. cross-architecture unwinder support. */
2791 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2792
2793 /* Breakpoints. */
2794 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2795 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2796 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2797 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2798 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2799 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2800
2801 /* Overlays. */
2802 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2803
2804 return gdbarch;
2805 }
2806
2807 /* Provide a prototype to silence -Wmissing-prototypes. */
2808 extern initialize_file_ftype _initialize_spu_tdep;
2809
2810 void
2811 _initialize_spu_tdep (void)
2812 {
2813 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2814
2815 /* Add ourselves to objfile event chain. */
2816 observer_attach_new_objfile (spu_overlay_new_objfile);
2817 spu_overlay_data = register_objfile_data ();
2818
2819 /* Install spu stop-on-load handler. */
2820 observer_attach_new_objfile (spu_catch_start);
2821
2822 /* Add ourselves to normal_stop event chain. */
2823 observer_attach_normal_stop (spu_attach_normal_stop);
2824
2825 /* Add root prefix command for all "set spu"/"show spu" commands. */
2826 add_prefix_cmd ("spu", no_class, set_spu_command,
2827 _("Various SPU specific commands."),
2828 &setspucmdlist, "set spu ", 0, &setlist);
2829 add_prefix_cmd ("spu", no_class, show_spu_command,
2830 _("Various SPU specific commands."),
2831 &showspucmdlist, "show spu ", 0, &showlist);
2832
2833 /* Toggle whether or not to add a temporary breakpoint at the "main"
2834 function of new SPE contexts. */
2835 add_setshow_boolean_cmd ("stop-on-load", class_support,
2836 &spu_stop_on_load_p, _("\
2837 Set whether to stop for new SPE threads."),
2838 _("\
2839 Show whether to stop for new SPE threads."),
2840 _("\
2841 Use \"on\" to give control to the user when a new SPE thread\n\
2842 enters its \"main\" function.\n\
2843 Use \"off\" to disable stopping for new SPE threads."),
2844 NULL,
2845 show_spu_stop_on_load,
2846 &setspucmdlist, &showspucmdlist);
2847
2848 /* Toggle whether or not to automatically flush the software-managed
2849 cache whenever SPE execution stops. */
2850 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2851 &spu_auto_flush_cache_p, _("\
2852 Set whether to automatically flush the software-managed cache."),
2853 _("\
2854 Show whether to automatically flush the software-managed cache."),
2855 _("\
2856 Use \"on\" to automatically flush the software-managed cache\n\
2857 whenever SPE execution stops.\n\
2858 Use \"off\" to never automatically flush the software-managed cache."),
2859 NULL,
2860 show_spu_auto_flush_cache,
2861 &setspucmdlist, &showspucmdlist);
2862
2863 /* Add root prefix command for all "info spu" commands. */
2864 add_prefix_cmd ("spu", class_info, info_spu_command,
2865 _("Various SPU specific commands."),
2866 &infospucmdlist, "info spu ", 0, &infolist);
2867
2868 /* Add various "info spu" commands. */
2869 add_cmd ("event", class_info, info_spu_event_command,
2870 _("Display SPU event facility status.\n"),
2871 &infospucmdlist);
2872 add_cmd ("signal", class_info, info_spu_signal_command,
2873 _("Display SPU signal notification facility status.\n"),
2874 &infospucmdlist);
2875 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2876 _("Display SPU mailbox facility status.\n"),
2877 &infospucmdlist);
2878 add_cmd ("dma", class_info, info_spu_dma_command,
2879 _("Display MFC DMA status.\n"),
2880 &infospucmdlist);
2881 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2882 _("Display MFC Proxy-DMA status.\n"),
2883 &infospucmdlist);
2884 }
This page took 0.156783 seconds and 4 git commands to generate.