e06fc7d8a4ff9c03215e4a69755516a9de7c58c0
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "frame.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "symtab.h"
36 #include "symfile.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "objfiles.h"
41 #include "language.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44 #include "floatformat.h"
45
46 #include "spu-tdep.h"
47
48 /* SPU-specific vector type. */
49 struct type *spu_builtin_type_vec128;
50
51 /* Registers. */
52
53 static const char *
54 spu_register_name (int reg_nr)
55 {
56 static char *register_names[] =
57 {
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
63 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
64 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
65 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
66 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
67 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
68 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
69 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
70 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
71 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
72 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
73 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
74 "id", "pc", "sp"
75 };
76
77 if (reg_nr < 0)
78 return NULL;
79 if (reg_nr >= sizeof register_names / sizeof *register_names)
80 return NULL;
81
82 return register_names[reg_nr];
83 }
84
85 static struct type *
86 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
87 {
88 if (reg_nr < SPU_NUM_GPRS)
89 return spu_builtin_type_vec128;
90
91 switch (reg_nr)
92 {
93 case SPU_ID_REGNUM:
94 return builtin_type_uint32;
95
96 case SPU_PC_REGNUM:
97 return builtin_type_void_func_ptr;
98
99 case SPU_SP_REGNUM:
100 return builtin_type_void_data_ptr;
101
102 default:
103 internal_error (__FILE__, __LINE__, "invalid regnum");
104 }
105 }
106
107 /* Pseudo registers for preferred slots - stack pointer. */
108
109 static void
110 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
111 int regnum, gdb_byte *buf)
112 {
113 gdb_byte reg[16];
114
115 switch (regnum)
116 {
117 case SPU_SP_REGNUM:
118 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
119 memcpy (buf, reg, 4);
120 break;
121
122 default:
123 internal_error (__FILE__, __LINE__, _("invalid regnum"));
124 }
125 }
126
127 static void
128 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
129 int regnum, const gdb_byte *buf)
130 {
131 gdb_byte reg[16];
132
133 switch (regnum)
134 {
135 case SPU_SP_REGNUM:
136 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
137 memcpy (reg, buf, 4);
138 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
139 break;
140
141 default:
142 internal_error (__FILE__, __LINE__, _("invalid regnum"));
143 }
144 }
145
146 /* Value conversion -- access scalar values at the preferred slot. */
147
148 static struct value *
149 spu_value_from_register (struct type *type, int regnum,
150 struct frame_info *frame)
151 {
152 struct value *value = default_value_from_register (type, regnum, frame);
153 int len = TYPE_LENGTH (type);
154
155 if (regnum < SPU_NUM_GPRS && len < 16)
156 {
157 int preferred_slot = len < 4 ? 4 - len : 0;
158 set_value_offset (value, preferred_slot);
159 }
160
161 return value;
162 }
163
164 /* Register groups. */
165
166 static int
167 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
168 struct reggroup *group)
169 {
170 /* Registers displayed via 'info regs'. */
171 if (group == general_reggroup)
172 return 1;
173
174 /* Registers displayed via 'info float'. */
175 if (group == float_reggroup)
176 return 0;
177
178 /* Registers that need to be saved/restored in order to
179 push or pop frames. */
180 if (group == save_reggroup || group == restore_reggroup)
181 return 1;
182
183 return default_register_reggroup_p (gdbarch, regnum, group);
184 }
185
186
187 /* Decoding SPU instructions. */
188
189 enum
190 {
191 op_lqd = 0x34,
192 op_lqx = 0x3c4,
193 op_lqa = 0x61,
194 op_lqr = 0x67,
195 op_stqd = 0x24,
196 op_stqx = 0x144,
197 op_stqa = 0x41,
198 op_stqr = 0x47,
199
200 op_il = 0x081,
201 op_ila = 0x21,
202 op_a = 0x0c0,
203 op_ai = 0x1c,
204
205 op_selb = 0x4,
206
207 op_br = 0x64,
208 op_bra = 0x60,
209 op_brsl = 0x66,
210 op_brasl = 0x62,
211 op_brnz = 0x42,
212 op_brz = 0x40,
213 op_brhnz = 0x46,
214 op_brhz = 0x44,
215 op_bi = 0x1a8,
216 op_bisl = 0x1a9,
217 op_biz = 0x128,
218 op_binz = 0x129,
219 op_bihz = 0x12a,
220 op_bihnz = 0x12b,
221 };
222
223 static int
224 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
225 {
226 if ((insn >> 21) == op)
227 {
228 *rt = insn & 127;
229 *ra = (insn >> 7) & 127;
230 *rb = (insn >> 14) & 127;
231 return 1;
232 }
233
234 return 0;
235 }
236
237 static int
238 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
239 {
240 if ((insn >> 28) == op)
241 {
242 *rt = (insn >> 21) & 127;
243 *ra = (insn >> 7) & 127;
244 *rb = (insn >> 14) & 127;
245 *rc = insn & 127;
246 return 1;
247 }
248
249 return 0;
250 }
251
252 static int
253 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
254 {
255 if ((insn >> 21) == op)
256 {
257 *rt = insn & 127;
258 *ra = (insn >> 7) & 127;
259 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
260 return 1;
261 }
262
263 return 0;
264 }
265
266 static int
267 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
268 {
269 if ((insn >> 24) == op)
270 {
271 *rt = insn & 127;
272 *ra = (insn >> 7) & 127;
273 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
274 return 1;
275 }
276
277 return 0;
278 }
279
280 static int
281 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
282 {
283 if ((insn >> 23) == op)
284 {
285 *rt = insn & 127;
286 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
287 return 1;
288 }
289
290 return 0;
291 }
292
293 static int
294 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
295 {
296 if ((insn >> 25) == op)
297 {
298 *rt = insn & 127;
299 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
300 return 1;
301 }
302
303 return 0;
304 }
305
306 static int
307 is_branch (unsigned int insn, int *offset, int *reg)
308 {
309 int rt, i7, i16;
310
311 if (is_ri16 (insn, op_br, &rt, &i16)
312 || is_ri16 (insn, op_brsl, &rt, &i16)
313 || is_ri16 (insn, op_brnz, &rt, &i16)
314 || is_ri16 (insn, op_brz, &rt, &i16)
315 || is_ri16 (insn, op_brhnz, &rt, &i16)
316 || is_ri16 (insn, op_brhz, &rt, &i16))
317 {
318 *reg = SPU_PC_REGNUM;
319 *offset = i16 << 2;
320 return 1;
321 }
322
323 if (is_ri16 (insn, op_bra, &rt, &i16)
324 || is_ri16 (insn, op_brasl, &rt, &i16))
325 {
326 *reg = -1;
327 *offset = i16 << 2;
328 return 1;
329 }
330
331 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
332 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
333 || is_ri7 (insn, op_biz, &rt, reg, &i7)
334 || is_ri7 (insn, op_binz, &rt, reg, &i7)
335 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
336 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
337 {
338 *offset = 0;
339 return 1;
340 }
341
342 return 0;
343 }
344
345
346 /* Prolog parsing. */
347
348 struct spu_prologue_data
349 {
350 /* Stack frame size. -1 if analysis was unsuccessful. */
351 int size;
352
353 /* How to find the CFA. The CFA is equal to SP at function entry. */
354 int cfa_reg;
355 int cfa_offset;
356
357 /* Offset relative to CFA where a register is saved. -1 if invalid. */
358 int reg_offset[SPU_NUM_GPRS];
359 };
360
361 static CORE_ADDR
362 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
363 struct spu_prologue_data *data)
364 {
365 int found_sp = 0;
366 int found_fp = 0;
367 int found_lr = 0;
368 int reg_immed[SPU_NUM_GPRS];
369 gdb_byte buf[16];
370 CORE_ADDR prolog_pc = start_pc;
371 CORE_ADDR pc;
372 int i;
373
374
375 /* Initialize DATA to default values. */
376 data->size = -1;
377
378 data->cfa_reg = SPU_RAW_SP_REGNUM;
379 data->cfa_offset = 0;
380
381 for (i = 0; i < SPU_NUM_GPRS; i++)
382 data->reg_offset[i] = -1;
383
384 /* Set up REG_IMMED array. This is non-zero for a register if we know its
385 preferred slot currently holds this immediate value. */
386 for (i = 0; i < SPU_NUM_GPRS; i++)
387 reg_immed[i] = 0;
388
389 /* Scan instructions until the first branch.
390
391 The following instructions are important prolog components:
392
393 - The first instruction to set up the stack pointer.
394 - The first instruction to set up the frame pointer.
395 - The first instruction to save the link register.
396
397 We return the instruction after the latest of these three,
398 or the incoming PC if none is found. The first instruction
399 to set up the stack pointer also defines the frame size.
400
401 Note that instructions saving incoming arguments to their stack
402 slots are not counted as important, because they are hard to
403 identify with certainty. This should not matter much, because
404 arguments are relevant only in code compiled with debug data,
405 and in such code the GDB core will advance until the first source
406 line anyway, using SAL data.
407
408 For purposes of stack unwinding, we analyze the following types
409 of instructions in addition:
410
411 - Any instruction adding to the current frame pointer.
412 - Any instruction loading an immediate constant into a register.
413 - Any instruction storing a register onto the stack.
414
415 These are used to compute the CFA and REG_OFFSET output. */
416
417 for (pc = start_pc; pc < end_pc; pc += 4)
418 {
419 unsigned int insn;
420 int rt, ra, rb, rc, immed;
421
422 if (target_read_memory (pc, buf, 4))
423 break;
424 insn = extract_unsigned_integer (buf, 4);
425
426 /* AI is the typical instruction to set up a stack frame.
427 It is also used to initialize the frame pointer. */
428 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
429 {
430 if (rt == data->cfa_reg && ra == data->cfa_reg)
431 data->cfa_offset -= immed;
432
433 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
434 && !found_sp)
435 {
436 found_sp = 1;
437 prolog_pc = pc + 4;
438
439 data->size = -immed;
440 }
441 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
442 && !found_fp)
443 {
444 found_fp = 1;
445 prolog_pc = pc + 4;
446
447 data->cfa_reg = SPU_FP_REGNUM;
448 data->cfa_offset -= immed;
449 }
450 }
451
452 /* A is used to set up stack frames of size >= 512 bytes.
453 If we have tracked the contents of the addend register,
454 we can handle this as well. */
455 else if (is_rr (insn, op_a, &rt, &ra, &rb))
456 {
457 if (rt == data->cfa_reg && ra == data->cfa_reg)
458 {
459 if (reg_immed[rb] != 0)
460 data->cfa_offset -= reg_immed[rb];
461 else
462 data->cfa_reg = -1; /* We don't know the CFA any more. */
463 }
464
465 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
466 && !found_sp)
467 {
468 found_sp = 1;
469 prolog_pc = pc + 4;
470
471 if (reg_immed[rb] != 0)
472 data->size = -reg_immed[rb];
473 }
474 }
475
476 /* We need to track IL and ILA used to load immediate constants
477 in case they are later used as input to an A instruction. */
478 else if (is_ri16 (insn, op_il, &rt, &immed))
479 {
480 reg_immed[rt] = immed;
481
482 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
483 found_sp = 1;
484 }
485
486 else if (is_ri18 (insn, op_ila, &rt, &immed))
487 {
488 reg_immed[rt] = immed & 0x3ffff;
489
490 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
491 found_sp = 1;
492 }
493
494 /* STQD is used to save registers to the stack. */
495 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
496 {
497 if (ra == data->cfa_reg)
498 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
499
500 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
501 && !found_lr)
502 {
503 found_lr = 1;
504 prolog_pc = pc + 4;
505 }
506 }
507
508 /* _start uses SELB to set up the stack pointer. */
509 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
510 {
511 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
512 found_sp = 1;
513 }
514
515 /* We terminate if we find a branch. */
516 else if (is_branch (insn, &immed, &ra))
517 break;
518 }
519
520
521 /* If we successfully parsed until here, and didn't find any instruction
522 modifying SP, we assume we have a frameless function. */
523 if (!found_sp)
524 data->size = 0;
525
526 /* Return cooked instead of raw SP. */
527 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
528 data->cfa_reg = SPU_SP_REGNUM;
529
530 return prolog_pc;
531 }
532
533 /* Return the first instruction after the prologue starting at PC. */
534 static CORE_ADDR
535 spu_skip_prologue (CORE_ADDR pc)
536 {
537 struct spu_prologue_data data;
538 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
539 }
540
541 /* Return the frame pointer in use at address PC. */
542 static void
543 spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
544 {
545 struct spu_prologue_data data;
546 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
547
548 if (data.size != -1 && data.cfa_reg != -1)
549 {
550 /* The 'frame pointer' address is CFA minus frame size. */
551 *reg = data.cfa_reg;
552 *offset = data.cfa_offset - data.size;
553 }
554 else
555 {
556 /* ??? We don't really know ... */
557 *reg = SPU_SP_REGNUM;
558 *offset = 0;
559 }
560 }
561
562 /* Normal stack frames. */
563
564 struct spu_unwind_cache
565 {
566 CORE_ADDR func;
567 CORE_ADDR frame_base;
568 CORE_ADDR local_base;
569
570 struct trad_frame_saved_reg *saved_regs;
571 };
572
573 static struct spu_unwind_cache *
574 spu_frame_unwind_cache (struct frame_info *next_frame,
575 void **this_prologue_cache)
576 {
577 struct spu_unwind_cache *info;
578 struct spu_prologue_data data;
579
580 if (*this_prologue_cache)
581 return *this_prologue_cache;
582
583 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
584 *this_prologue_cache = info;
585 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
586 info->frame_base = 0;
587 info->local_base = 0;
588
589 /* Find the start of the current function, and analyze its prologue. */
590 info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
591 if (info->func == 0)
592 {
593 /* Fall back to using the current PC as frame ID. */
594 info->func = frame_pc_unwind (next_frame);
595 data.size = -1;
596 }
597 else
598 spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
599
600
601 /* If successful, use prologue analysis data. */
602 if (data.size != -1 && data.cfa_reg != -1)
603 {
604 CORE_ADDR cfa;
605 int i;
606 gdb_byte buf[16];
607
608 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
609 frame_unwind_register (next_frame, data.cfa_reg, buf);
610 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
611
612 /* Call-saved register slots. */
613 for (i = 0; i < SPU_NUM_GPRS; i++)
614 if (i == SPU_LR_REGNUM
615 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
616 if (data.reg_offset[i] != -1)
617 info->saved_regs[i].addr = cfa - data.reg_offset[i];
618
619 /* The previous PC comes from the link register. */
620 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
621 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
622 else
623 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
624
625 /* The previous SP is equal to the CFA. */
626 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa);
627
628 /* Frame bases. */
629 info->frame_base = cfa;
630 info->local_base = cfa - data.size;
631 }
632
633 /* Otherwise, fall back to reading the backchain link. */
634 else
635 {
636 CORE_ADDR reg, backchain;
637
638 /* Get the backchain. */
639 reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
640 backchain = read_memory_unsigned_integer (reg, 4);
641
642 /* A zero backchain terminates the frame chain. Also, sanity
643 check against the local store size limit. */
644 if (backchain != 0 && backchain < SPU_LS_SIZE)
645 {
646 /* Assume the link register is saved into its slot. */
647 if (backchain + 16 < SPU_LS_SIZE)
648 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
649
650 /* This will also be the previous PC. */
651 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
652 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
653 else
654 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
655
656 /* The previous SP will equal the backchain value. */
657 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain);
658
659 /* Frame bases. */
660 info->frame_base = backchain;
661 info->local_base = reg;
662 }
663 }
664
665 return info;
666 }
667
668 static void
669 spu_frame_this_id (struct frame_info *next_frame,
670 void **this_prologue_cache, struct frame_id *this_id)
671 {
672 struct spu_unwind_cache *info =
673 spu_frame_unwind_cache (next_frame, this_prologue_cache);
674
675 if (info->frame_base == 0)
676 return;
677
678 *this_id = frame_id_build (info->frame_base, info->func);
679 }
680
681 static void
682 spu_frame_prev_register (struct frame_info *next_frame,
683 void **this_prologue_cache,
684 int regnum, int *optimizedp,
685 enum lval_type *lvalp, CORE_ADDR * addrp,
686 int *realnump, gdb_byte *bufferp)
687 {
688 struct spu_unwind_cache *info
689 = spu_frame_unwind_cache (next_frame, this_prologue_cache);
690
691 /* Special-case the stack pointer. */
692 if (regnum == SPU_RAW_SP_REGNUM)
693 regnum = SPU_SP_REGNUM;
694
695 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
696 optimizedp, lvalp, addrp, realnump, bufferp);
697 }
698
699 static const struct frame_unwind spu_frame_unwind = {
700 NORMAL_FRAME,
701 spu_frame_this_id,
702 spu_frame_prev_register
703 };
704
705 const struct frame_unwind *
706 spu_frame_sniffer (struct frame_info *next_frame)
707 {
708 return &spu_frame_unwind;
709 }
710
711 static CORE_ADDR
712 spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
713 {
714 struct spu_unwind_cache *info
715 = spu_frame_unwind_cache (next_frame, this_cache);
716 return info->local_base;
717 }
718
719 static const struct frame_base spu_frame_base = {
720 &spu_frame_unwind,
721 spu_frame_base_address,
722 spu_frame_base_address,
723 spu_frame_base_address
724 };
725
726 static CORE_ADDR
727 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
728 {
729 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
730 /* Mask off interrupt enable bit. */
731 return pc & -4;
732 }
733
734 static CORE_ADDR
735 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
736 {
737 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
738 }
739
740 static CORE_ADDR
741 spu_read_pc (ptid_t ptid)
742 {
743 CORE_ADDR pc = read_register_pid (SPU_PC_REGNUM, ptid);
744 /* Mask off interrupt enable bit. */
745 return pc & -4;
746 }
747
748 static void
749 spu_write_pc (CORE_ADDR pc, ptid_t ptid)
750 {
751 /* Keep interrupt enabled state unchanged. */
752 CORE_ADDR old_pc = read_register_pid (SPU_PC_REGNUM, ptid);
753 write_register_pid (SPU_PC_REGNUM, (pc & -4) | (old_pc & 3), ptid);
754 }
755
756
757 /* Function calling convention. */
758
759 static int
760 spu_scalar_value_p (struct type *type)
761 {
762 switch (TYPE_CODE (type))
763 {
764 case TYPE_CODE_INT:
765 case TYPE_CODE_ENUM:
766 case TYPE_CODE_RANGE:
767 case TYPE_CODE_CHAR:
768 case TYPE_CODE_BOOL:
769 case TYPE_CODE_PTR:
770 case TYPE_CODE_REF:
771 return TYPE_LENGTH (type) <= 16;
772
773 default:
774 return 0;
775 }
776 }
777
778 static void
779 spu_value_to_regcache (struct regcache *regcache, int regnum,
780 struct type *type, const gdb_byte *in)
781 {
782 int len = TYPE_LENGTH (type);
783
784 if (spu_scalar_value_p (type))
785 {
786 int preferred_slot = len < 4 ? 4 - len : 0;
787 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
788 }
789 else
790 {
791 while (len >= 16)
792 {
793 regcache_cooked_write (regcache, regnum++, in);
794 in += 16;
795 len -= 16;
796 }
797
798 if (len > 0)
799 regcache_cooked_write_part (regcache, regnum, 0, len, in);
800 }
801 }
802
803 static void
804 spu_regcache_to_value (struct regcache *regcache, int regnum,
805 struct type *type, gdb_byte *out)
806 {
807 int len = TYPE_LENGTH (type);
808
809 if (spu_scalar_value_p (type))
810 {
811 int preferred_slot = len < 4 ? 4 - len : 0;
812 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
813 }
814 else
815 {
816 while (len >= 16)
817 {
818 regcache_cooked_read (regcache, regnum++, out);
819 out += 16;
820 len -= 16;
821 }
822
823 if (len > 0)
824 regcache_cooked_read_part (regcache, regnum, 0, len, out);
825 }
826 }
827
828 static CORE_ADDR
829 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
830 struct regcache *regcache, CORE_ADDR bp_addr,
831 int nargs, struct value **args, CORE_ADDR sp,
832 int struct_return, CORE_ADDR struct_addr)
833 {
834 int i;
835 int regnum = SPU_ARG1_REGNUM;
836 int stack_arg = -1;
837 gdb_byte buf[16];
838
839 /* Set the return address. */
840 memset (buf, 0, sizeof buf);
841 store_unsigned_integer (buf, 4, bp_addr);
842 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
843
844 /* If STRUCT_RETURN is true, then the struct return address (in
845 STRUCT_ADDR) will consume the first argument-passing register.
846 Both adjust the register count and store that value. */
847 if (struct_return)
848 {
849 memset (buf, 0, sizeof buf);
850 store_unsigned_integer (buf, 4, struct_addr);
851 regcache_cooked_write (regcache, regnum++, buf);
852 }
853
854 /* Fill in argument registers. */
855 for (i = 0; i < nargs; i++)
856 {
857 struct value *arg = args[i];
858 struct type *type = check_typedef (value_type (arg));
859 const gdb_byte *contents = value_contents (arg);
860 int len = TYPE_LENGTH (type);
861 int n_regs = align_up (len, 16) / 16;
862
863 /* If the argument doesn't wholly fit into registers, it and
864 all subsequent arguments go to the stack. */
865 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
866 {
867 stack_arg = i;
868 break;
869 }
870
871 spu_value_to_regcache (regcache, regnum, type, contents);
872 regnum += n_regs;
873 }
874
875 /* Overflow arguments go to the stack. */
876 if (stack_arg != -1)
877 {
878 CORE_ADDR ap;
879
880 /* Allocate all required stack size. */
881 for (i = stack_arg; i < nargs; i++)
882 {
883 struct type *type = check_typedef (value_type (args[i]));
884 sp -= align_up (TYPE_LENGTH (type), 16);
885 }
886
887 /* Fill in stack arguments. */
888 ap = sp;
889 for (i = stack_arg; i < nargs; i++)
890 {
891 struct value *arg = args[i];
892 struct type *type = check_typedef (value_type (arg));
893 int len = TYPE_LENGTH (type);
894 int preferred_slot;
895
896 if (spu_scalar_value_p (type))
897 preferred_slot = len < 4 ? 4 - len : 0;
898 else
899 preferred_slot = 0;
900
901 target_write_memory (ap + preferred_slot, value_contents (arg), len);
902 ap += align_up (TYPE_LENGTH (type), 16);
903 }
904 }
905
906 /* Allocate stack frame header. */
907 sp -= 32;
908
909 /* Finally, update the SP register. */
910 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
911
912 return sp;
913 }
914
915 static struct frame_id
916 spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
917 {
918 return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
919 spu_unwind_pc (gdbarch, next_frame));
920 }
921
922 /* Function return value access. */
923
924 static enum return_value_convention
925 spu_return_value (struct gdbarch *gdbarch, struct type *type,
926 struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
927 {
928 enum return_value_convention rvc;
929
930 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
931 rvc = RETURN_VALUE_REGISTER_CONVENTION;
932 else
933 rvc = RETURN_VALUE_STRUCT_CONVENTION;
934
935 if (in)
936 {
937 switch (rvc)
938 {
939 case RETURN_VALUE_REGISTER_CONVENTION:
940 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
941 break;
942
943 case RETURN_VALUE_STRUCT_CONVENTION:
944 error ("Cannot set function return value.");
945 break;
946 }
947 }
948 else if (out)
949 {
950 switch (rvc)
951 {
952 case RETURN_VALUE_REGISTER_CONVENTION:
953 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
954 break;
955
956 case RETURN_VALUE_STRUCT_CONVENTION:
957 error ("Function return value unknown.");
958 break;
959 }
960 }
961
962 return rvc;
963 }
964
965
966 /* Breakpoints. */
967
968 static const gdb_byte *
969 spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
970 {
971 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
972
973 *lenptr = sizeof breakpoint;
974 return breakpoint;
975 }
976
977
978 /* Software single-stepping support. */
979
980 void
981 spu_software_single_step (enum target_signal signal, int insert_breakpoints_p)
982 {
983 if (insert_breakpoints_p)
984 {
985 CORE_ADDR pc, next_pc;
986 unsigned int insn;
987 int offset, reg;
988 gdb_byte buf[4];
989
990 regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf);
991 /* Mask off interrupt enable bit. */
992 pc = extract_unsigned_integer (buf, 4) & -4;
993
994 if (target_read_memory (pc, buf, 4))
995 return;
996 insn = extract_unsigned_integer (buf, 4);
997
998 /* Next sequential instruction is at PC + 4, except if the current
999 instruction is a PPE-assisted call, in which case it is at PC + 8.
1000 Wrap around LS limit to be on the safe side. */
1001 if ((insn & 0xffffff00) == 0x00002100)
1002 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1003 else
1004 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1005
1006 insert_single_step_breakpoint (next_pc);
1007
1008 if (is_branch (insn, &offset, &reg))
1009 {
1010 CORE_ADDR target = offset;
1011
1012 if (reg == SPU_PC_REGNUM)
1013 target += pc;
1014 else if (reg != -1)
1015 {
1016 regcache_cooked_read_part (current_regcache, reg, 0, 4, buf);
1017 target += extract_unsigned_integer (buf, 4) & -4;
1018 }
1019
1020 target = target & (SPU_LS_SIZE - 1);
1021 if (target != next_pc)
1022 insert_single_step_breakpoint (target);
1023 }
1024 }
1025 else
1026 remove_single_step_breakpoints ();
1027 }
1028
1029
1030 /* Set up gdbarch struct. */
1031
1032 static struct gdbarch *
1033 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1034 {
1035 struct gdbarch *gdbarch;
1036
1037 /* Find a candidate among the list of pre-declared architectures. */
1038 arches = gdbarch_list_lookup_by_info (arches, &info);
1039 if (arches != NULL)
1040 return arches->gdbarch;
1041
1042 /* Is is for us? */
1043 if (info.bfd_arch_info->mach != bfd_mach_spu)
1044 return NULL;
1045
1046 /* Yes, create a new architecture. */
1047 gdbarch = gdbarch_alloc (&info, NULL);
1048
1049 /* Disassembler. */
1050 set_gdbarch_print_insn (gdbarch, print_insn_spu);
1051
1052 /* Registers. */
1053 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
1054 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
1055 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
1056 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
1057 set_gdbarch_read_pc (gdbarch, spu_read_pc);
1058 set_gdbarch_write_pc (gdbarch, spu_write_pc);
1059 set_gdbarch_register_name (gdbarch, spu_register_name);
1060 set_gdbarch_register_type (gdbarch, spu_register_type);
1061 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
1062 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
1063 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
1064 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
1065
1066 /* Data types. */
1067 set_gdbarch_char_signed (gdbarch, 0);
1068 set_gdbarch_ptr_bit (gdbarch, 32);
1069 set_gdbarch_addr_bit (gdbarch, 32);
1070 set_gdbarch_short_bit (gdbarch, 16);
1071 set_gdbarch_int_bit (gdbarch, 32);
1072 set_gdbarch_long_bit (gdbarch, 32);
1073 set_gdbarch_long_long_bit (gdbarch, 64);
1074 set_gdbarch_float_bit (gdbarch, 32);
1075 set_gdbarch_double_bit (gdbarch, 64);
1076 set_gdbarch_long_double_bit (gdbarch, 64);
1077 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1078 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1079 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1080
1081 /* Inferior function calls. */
1082 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
1083 set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
1084 set_gdbarch_return_value (gdbarch, spu_return_value);
1085
1086 /* Frame handling. */
1087 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1088 frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
1089 frame_base_set_default (gdbarch, &spu_frame_base);
1090 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
1091 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
1092 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
1093 set_gdbarch_frame_args_skip (gdbarch, 0);
1094 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
1095
1096 /* Breakpoints. */
1097 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1098 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
1099 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1100 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
1101
1102 return gdbarch;
1103 }
1104
1105 /* Implement a SPU-specific vector type as replacement
1106 for __gdb_builtin_type_vec128. */
1107 static void
1108 spu_init_vector_type (void)
1109 {
1110 struct type *type;
1111
1112 type = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
1113 append_composite_type_field (type, "uint128", builtin_type_int128);
1114 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1115 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1116 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1117 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1118 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1119 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1120
1121 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1122 TYPE_NAME (type) = "spu_builtin_type_vec128";
1123 spu_builtin_type_vec128 = type;
1124 }
1125
1126 void
1127 _initialize_spu_tdep (void)
1128 {
1129 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
1130
1131 spu_init_vector_type ();
1132 }
This page took 0.054458 seconds and 4 git commands to generate.