Add target_ops argument to to_stop
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include <string.h>
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45 #include "infcall.h"
46 #include "dwarf2.h"
47 #include "exceptions.h"
48 #include "spu-tdep.h"
49
50
51 /* The list of available "set spu " and "show spu " commands. */
52 static struct cmd_list_element *setspucmdlist = NULL;
53 static struct cmd_list_element *showspucmdlist = NULL;
54
55 /* Whether to stop for new SPE contexts. */
56 static int spu_stop_on_load_p = 0;
57 /* Whether to automatically flush the SW-managed cache. */
58 static int spu_auto_flush_cache_p = 1;
59
60
61 /* The tdep structure. */
62 struct gdbarch_tdep
63 {
64 /* The spufs ID identifying our address space. */
65 int id;
66
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69 };
70
71
72 /* SPU-specific vector type. */
73 static struct type *
74 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
80 const struct builtin_type *bt = builtin_type (gdbarch);
81 struct type *t;
82
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
85 append_composite_type_field (t, "uint128", bt->builtin_int128);
86 append_composite_type_field (t, "v2_int64",
87 init_vector_type (bt->builtin_int64, 2));
88 append_composite_type_field (t, "v4_int32",
89 init_vector_type (bt->builtin_int32, 4));
90 append_composite_type_field (t, "v8_int16",
91 init_vector_type (bt->builtin_int16, 8));
92 append_composite_type_field (t, "v16_int8",
93 init_vector_type (bt->builtin_int8, 16));
94 append_composite_type_field (t, "v2_double",
95 init_vector_type (bt->builtin_double, 2));
96 append_composite_type_field (t, "v4_float",
97 init_vector_type (bt->builtin_float, 4));
98
99 TYPE_VECTOR (t) = 1;
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106 }
107
108
109 /* The list of available "info spu " commands. */
110 static struct cmd_list_element *infospucmdlist = NULL;
111
112 /* Registers. */
113
114 static const char *
115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
116 {
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144 }
145
146 static struct type *
147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148 {
149 if (reg_nr < SPU_NUM_GPRS)
150 return spu_builtin_type_vec128 (gdbarch);
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
155 return builtin_type (gdbarch)->builtin_uint32;
156
157 case SPU_PC_REGNUM:
158 return builtin_type (gdbarch)->builtin_func_ptr;
159
160 case SPU_SP_REGNUM:
161 return builtin_type (gdbarch)->builtin_data_ptr;
162
163 case SPU_FPSCR_REGNUM:
164 return builtin_type (gdbarch)->builtin_uint128;
165
166 case SPU_SRR0_REGNUM:
167 return builtin_type (gdbarch)->builtin_uint32;
168
169 case SPU_LSLR_REGNUM:
170 return builtin_type (gdbarch)->builtin_uint32;
171
172 case SPU_DECR_REGNUM:
173 return builtin_type (gdbarch)->builtin_uint32;
174
175 case SPU_DECR_STATUS_REGNUM:
176 return builtin_type (gdbarch)->builtin_uint32;
177
178 default:
179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
180 }
181 }
182
183 /* Pseudo registers for preferred slots - stack pointer. */
184
185 static enum register_status
186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188 {
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 enum register_status status;
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195 ULONGEST ul;
196
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
207 return REG_VALID;
208 }
209
210 static enum register_status
211 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213 {
214 gdb_byte reg[16];
215 char annex[32];
216 ULONGEST id;
217 enum register_status status;
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
225 memcpy (buf, reg, 4);
226 return status;
227
228 case SPU_FPSCR_REGNUM:
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
234 return status;
235
236 case SPU_SRR0_REGNUM:
237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
238
239 case SPU_LSLR_REGNUM:
240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
241
242 case SPU_DECR_REGNUM:
243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
244
245 case SPU_DECR_STATUS_REGNUM:
246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
247
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251 }
252
253 static void
254 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256 {
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
259 char reg[32];
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
268 (gdb_byte *) reg, 0, strlen (reg));
269 }
270
271 static void
272 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274 {
275 gdb_byte reg[16];
276 char annex[32];
277 ULONGEST id;
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312 }
313
314 /* Value conversion -- access scalar values at the preferred slot. */
315
316 static struct value *
317 spu_value_from_register (struct type *type, int regnum,
318 struct frame_info *frame)
319 {
320 struct value *value = default_value_from_register (type, regnum, frame);
321 int len = TYPE_LENGTH (type);
322
323 if (regnum < SPU_NUM_GPRS && len < 16)
324 {
325 int preferred_slot = len < 4 ? 4 - len : 0;
326 set_value_offset (value, preferred_slot);
327 }
328
329 return value;
330 }
331
332 /* Register groups. */
333
334 static int
335 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
336 struct reggroup *group)
337 {
338 /* Registers displayed via 'info regs'. */
339 if (group == general_reggroup)
340 return 1;
341
342 /* Registers displayed via 'info float'. */
343 if (group == float_reggroup)
344 return 0;
345
346 /* Registers that need to be saved/restored in order to
347 push or pop frames. */
348 if (group == save_reggroup || group == restore_reggroup)
349 return 1;
350
351 return default_register_reggroup_p (gdbarch, regnum, group);
352 }
353
354
355 /* Address handling. */
356
357 static int
358 spu_gdbarch_id (struct gdbarch *gdbarch)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361 int id = tdep->id;
362
363 /* The objfile architecture of a standalone SPU executable does not
364 provide an SPU ID. Retrieve it from the objfile's relocated
365 address range in this special case. */
366 if (id == -1
367 && symfile_objfile && symfile_objfile->obfd
368 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
369 && symfile_objfile->sections != symfile_objfile->sections_end)
370 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
371
372 return id;
373 }
374
375 static int
376 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
377 {
378 if (dwarf2_addr_class == 1)
379 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
380 else
381 return 0;
382 }
383
384 static const char *
385 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
386 {
387 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 return "__ea";
389 else
390 return NULL;
391 }
392
393 static int
394 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
395 const char *name, int *type_flags_ptr)
396 {
397 if (strcmp (name, "__ea") == 0)
398 {
399 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
400 return 1;
401 }
402 else
403 return 0;
404 }
405
406 static void
407 spu_address_to_pointer (struct gdbarch *gdbarch,
408 struct type *type, gdb_byte *buf, CORE_ADDR addr)
409 {
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
412 SPUADDR_ADDR (addr));
413 }
414
415 static CORE_ADDR
416 spu_pointer_to_address (struct gdbarch *gdbarch,
417 struct type *type, const gdb_byte *buf)
418 {
419 int id = spu_gdbarch_id (gdbarch);
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421 ULONGEST addr
422 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
423
424 /* Do not convert __ea pointers. */
425 if (TYPE_ADDRESS_CLASS_1 (type))
426 return addr;
427
428 return addr? SPUADDR (id, addr) : 0;
429 }
430
431 static CORE_ADDR
432 spu_integer_to_address (struct gdbarch *gdbarch,
433 struct type *type, const gdb_byte *buf)
434 {
435 int id = spu_gdbarch_id (gdbarch);
436 ULONGEST addr = unpack_long (type, buf);
437
438 return SPUADDR (id, addr);
439 }
440
441
442 /* Decoding SPU instructions. */
443
444 enum
445 {
446 op_lqd = 0x34,
447 op_lqx = 0x3c4,
448 op_lqa = 0x61,
449 op_lqr = 0x67,
450 op_stqd = 0x24,
451 op_stqx = 0x144,
452 op_stqa = 0x41,
453 op_stqr = 0x47,
454
455 op_il = 0x081,
456 op_ila = 0x21,
457 op_a = 0x0c0,
458 op_ai = 0x1c,
459
460 op_selb = 0x8,
461
462 op_br = 0x64,
463 op_bra = 0x60,
464 op_brsl = 0x66,
465 op_brasl = 0x62,
466 op_brnz = 0x42,
467 op_brz = 0x40,
468 op_brhnz = 0x46,
469 op_brhz = 0x44,
470 op_bi = 0x1a8,
471 op_bisl = 0x1a9,
472 op_biz = 0x128,
473 op_binz = 0x129,
474 op_bihz = 0x12a,
475 op_bihnz = 0x12b,
476 };
477
478 static int
479 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
480 {
481 if ((insn >> 21) == op)
482 {
483 *rt = insn & 127;
484 *ra = (insn >> 7) & 127;
485 *rb = (insn >> 14) & 127;
486 return 1;
487 }
488
489 return 0;
490 }
491
492 static int
493 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
494 {
495 if ((insn >> 28) == op)
496 {
497 *rt = (insn >> 21) & 127;
498 *ra = (insn >> 7) & 127;
499 *rb = (insn >> 14) & 127;
500 *rc = insn & 127;
501 return 1;
502 }
503
504 return 0;
505 }
506
507 static int
508 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
509 {
510 if ((insn >> 21) == op)
511 {
512 *rt = insn & 127;
513 *ra = (insn >> 7) & 127;
514 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
515 return 1;
516 }
517
518 return 0;
519 }
520
521 static int
522 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
523 {
524 if ((insn >> 24) == op)
525 {
526 *rt = insn & 127;
527 *ra = (insn >> 7) & 127;
528 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
529 return 1;
530 }
531
532 return 0;
533 }
534
535 static int
536 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
537 {
538 if ((insn >> 23) == op)
539 {
540 *rt = insn & 127;
541 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
542 return 1;
543 }
544
545 return 0;
546 }
547
548 static int
549 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
550 {
551 if ((insn >> 25) == op)
552 {
553 *rt = insn & 127;
554 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_branch (unsigned int insn, int *offset, int *reg)
563 {
564 int rt, i7, i16;
565
566 if (is_ri16 (insn, op_br, &rt, &i16)
567 || is_ri16 (insn, op_brsl, &rt, &i16)
568 || is_ri16 (insn, op_brnz, &rt, &i16)
569 || is_ri16 (insn, op_brz, &rt, &i16)
570 || is_ri16 (insn, op_brhnz, &rt, &i16)
571 || is_ri16 (insn, op_brhz, &rt, &i16))
572 {
573 *reg = SPU_PC_REGNUM;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri16 (insn, op_bra, &rt, &i16)
579 || is_ri16 (insn, op_brasl, &rt, &i16))
580 {
581 *reg = -1;
582 *offset = i16 << 2;
583 return 1;
584 }
585
586 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
587 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
588 || is_ri7 (insn, op_biz, &rt, reg, &i7)
589 || is_ri7 (insn, op_binz, &rt, reg, &i7)
590 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
591 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
592 {
593 *offset = 0;
594 return 1;
595 }
596
597 return 0;
598 }
599
600
601 /* Prolog parsing. */
602
603 struct spu_prologue_data
604 {
605 /* Stack frame size. -1 if analysis was unsuccessful. */
606 int size;
607
608 /* How to find the CFA. The CFA is equal to SP at function entry. */
609 int cfa_reg;
610 int cfa_offset;
611
612 /* Offset relative to CFA where a register is saved. -1 if invalid. */
613 int reg_offset[SPU_NUM_GPRS];
614 };
615
616 static CORE_ADDR
617 spu_analyze_prologue (struct gdbarch *gdbarch,
618 CORE_ADDR start_pc, CORE_ADDR end_pc,
619 struct spu_prologue_data *data)
620 {
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622 int found_sp = 0;
623 int found_fp = 0;
624 int found_lr = 0;
625 int found_bc = 0;
626 int reg_immed[SPU_NUM_GPRS];
627 gdb_byte buf[16];
628 CORE_ADDR prolog_pc = start_pc;
629 CORE_ADDR pc;
630 int i;
631
632
633 /* Initialize DATA to default values. */
634 data->size = -1;
635
636 data->cfa_reg = SPU_RAW_SP_REGNUM;
637 data->cfa_offset = 0;
638
639 for (i = 0; i < SPU_NUM_GPRS; i++)
640 data->reg_offset[i] = -1;
641
642 /* Set up REG_IMMED array. This is non-zero for a register if we know its
643 preferred slot currently holds this immediate value. */
644 for (i = 0; i < SPU_NUM_GPRS; i++)
645 reg_immed[i] = 0;
646
647 /* Scan instructions until the first branch.
648
649 The following instructions are important prolog components:
650
651 - The first instruction to set up the stack pointer.
652 - The first instruction to set up the frame pointer.
653 - The first instruction to save the link register.
654 - The first instruction to save the backchain.
655
656 We return the instruction after the latest of these four,
657 or the incoming PC if none is found. The first instruction
658 to set up the stack pointer also defines the frame size.
659
660 Note that instructions saving incoming arguments to their stack
661 slots are not counted as important, because they are hard to
662 identify with certainty. This should not matter much, because
663 arguments are relevant only in code compiled with debug data,
664 and in such code the GDB core will advance until the first source
665 line anyway, using SAL data.
666
667 For purposes of stack unwinding, we analyze the following types
668 of instructions in addition:
669
670 - Any instruction adding to the current frame pointer.
671 - Any instruction loading an immediate constant into a register.
672 - Any instruction storing a register onto the stack.
673
674 These are used to compute the CFA and REG_OFFSET output. */
675
676 for (pc = start_pc; pc < end_pc; pc += 4)
677 {
678 unsigned int insn;
679 int rt, ra, rb, rc, immed;
680
681 if (target_read_memory (pc, buf, 4))
682 break;
683 insn = extract_unsigned_integer (buf, 4, byte_order);
684
685 /* AI is the typical instruction to set up a stack frame.
686 It is also used to initialize the frame pointer. */
687 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
688 {
689 if (rt == data->cfa_reg && ra == data->cfa_reg)
690 data->cfa_offset -= immed;
691
692 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_sp)
694 {
695 found_sp = 1;
696 prolog_pc = pc + 4;
697
698 data->size = -immed;
699 }
700 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
701 && !found_fp)
702 {
703 found_fp = 1;
704 prolog_pc = pc + 4;
705
706 data->cfa_reg = SPU_FP_REGNUM;
707 data->cfa_offset -= immed;
708 }
709 }
710
711 /* A is used to set up stack frames of size >= 512 bytes.
712 If we have tracked the contents of the addend register,
713 we can handle this as well. */
714 else if (is_rr (insn, op_a, &rt, &ra, &rb))
715 {
716 if (rt == data->cfa_reg && ra == data->cfa_reg)
717 {
718 if (reg_immed[rb] != 0)
719 data->cfa_offset -= reg_immed[rb];
720 else
721 data->cfa_reg = -1; /* We don't know the CFA any more. */
722 }
723
724 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
725 && !found_sp)
726 {
727 found_sp = 1;
728 prolog_pc = pc + 4;
729
730 if (reg_immed[rb] != 0)
731 data->size = -reg_immed[rb];
732 }
733 }
734
735 /* We need to track IL and ILA used to load immediate constants
736 in case they are later used as input to an A instruction. */
737 else if (is_ri16 (insn, op_il, &rt, &immed))
738 {
739 reg_immed[rt] = immed;
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
743 }
744
745 else if (is_ri18 (insn, op_ila, &rt, &immed))
746 {
747 reg_immed[rt] = immed & 0x3ffff;
748
749 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
750 found_sp = 1;
751 }
752
753 /* STQD is used to save registers to the stack. */
754 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
755 {
756 if (ra == data->cfa_reg)
757 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
758
759 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
760 && !found_lr)
761 {
762 found_lr = 1;
763 prolog_pc = pc + 4;
764 }
765
766 if (ra == SPU_RAW_SP_REGNUM
767 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
768 && !found_bc)
769 {
770 found_bc = 1;
771 prolog_pc = pc + 4;
772 }
773 }
774
775 /* _start uses SELB to set up the stack pointer. */
776 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
777 {
778 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
779 found_sp = 1;
780 }
781
782 /* We terminate if we find a branch. */
783 else if (is_branch (insn, &immed, &ra))
784 break;
785 }
786
787
788 /* If we successfully parsed until here, and didn't find any instruction
789 modifying SP, we assume we have a frameless function. */
790 if (!found_sp)
791 data->size = 0;
792
793 /* Return cooked instead of raw SP. */
794 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
795 data->cfa_reg = SPU_SP_REGNUM;
796
797 return prolog_pc;
798 }
799
800 /* Return the first instruction after the prologue starting at PC. */
801 static CORE_ADDR
802 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
803 {
804 struct spu_prologue_data data;
805 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
806 }
807
808 /* Return the frame pointer in use at address PC. */
809 static void
810 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
811 int *reg, LONGEST *offset)
812 {
813 struct spu_prologue_data data;
814 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
815
816 if (data.size != -1 && data.cfa_reg != -1)
817 {
818 /* The 'frame pointer' address is CFA minus frame size. */
819 *reg = data.cfa_reg;
820 *offset = data.cfa_offset - data.size;
821 }
822 else
823 {
824 /* ??? We don't really know ... */
825 *reg = SPU_SP_REGNUM;
826 *offset = 0;
827 }
828 }
829
830 /* Return true if we are in the function's epilogue, i.e. after the
831 instruction that destroyed the function's stack frame.
832
833 1) scan forward from the point of execution:
834 a) If you find an instruction that modifies the stack pointer
835 or transfers control (except a return), execution is not in
836 an epilogue, return.
837 b) Stop scanning if you find a return instruction or reach the
838 end of the function or reach the hard limit for the size of
839 an epilogue.
840 2) scan backward from the point of execution:
841 a) If you find an instruction that modifies the stack pointer,
842 execution *is* in an epilogue, return.
843 b) Stop scanning if you reach an instruction that transfers
844 control or the beginning of the function or reach the hard
845 limit for the size of an epilogue. */
846
847 static int
848 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
849 {
850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
851 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
852 bfd_byte buf[4];
853 unsigned int insn;
854 int rt, ra, rb, immed;
855
856 /* Find the search limits based on function boundaries and hard limit.
857 We assume the epilogue can be up to 64 instructions long. */
858
859 const int spu_max_epilogue_size = 64 * 4;
860
861 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
862 return 0;
863
864 if (pc - func_start < spu_max_epilogue_size)
865 epilogue_start = func_start;
866 else
867 epilogue_start = pc - spu_max_epilogue_size;
868
869 if (func_end - pc < spu_max_epilogue_size)
870 epilogue_end = func_end;
871 else
872 epilogue_end = pc + spu_max_epilogue_size;
873
874 /* Scan forward until next 'bi $0'. */
875
876 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
877 {
878 if (target_read_memory (scan_pc, buf, 4))
879 return 0;
880 insn = extract_unsigned_integer (buf, 4, byte_order);
881
882 if (is_branch (insn, &immed, &ra))
883 {
884 if (immed == 0 && ra == SPU_LR_REGNUM)
885 break;
886
887 return 0;
888 }
889
890 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
891 || is_rr (insn, op_a, &rt, &ra, &rb)
892 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
893 {
894 if (rt == SPU_RAW_SP_REGNUM)
895 return 0;
896 }
897 }
898
899 if (scan_pc >= epilogue_end)
900 return 0;
901
902 /* Scan backward until adjustment to stack pointer (R1). */
903
904 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
905 {
906 if (target_read_memory (scan_pc, buf, 4))
907 return 0;
908 insn = extract_unsigned_integer (buf, 4, byte_order);
909
910 if (is_branch (insn, &immed, &ra))
911 return 0;
912
913 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
914 || is_rr (insn, op_a, &rt, &ra, &rb)
915 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
916 {
917 if (rt == SPU_RAW_SP_REGNUM)
918 return 1;
919 }
920 }
921
922 return 0;
923 }
924
925
926 /* Normal stack frames. */
927
928 struct spu_unwind_cache
929 {
930 CORE_ADDR func;
931 CORE_ADDR frame_base;
932 CORE_ADDR local_base;
933
934 struct trad_frame_saved_reg *saved_regs;
935 };
936
937 static struct spu_unwind_cache *
938 spu_frame_unwind_cache (struct frame_info *this_frame,
939 void **this_prologue_cache)
940 {
941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
943 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
944 struct spu_unwind_cache *info;
945 struct spu_prologue_data data;
946 CORE_ADDR id = tdep->id;
947 gdb_byte buf[16];
948
949 if (*this_prologue_cache)
950 return *this_prologue_cache;
951
952 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
953 *this_prologue_cache = info;
954 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
955 info->frame_base = 0;
956 info->local_base = 0;
957
958 /* Find the start of the current function, and analyze its prologue. */
959 info->func = get_frame_func (this_frame);
960 if (info->func == 0)
961 {
962 /* Fall back to using the current PC as frame ID. */
963 info->func = get_frame_pc (this_frame);
964 data.size = -1;
965 }
966 else
967 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
968 &data);
969
970 /* If successful, use prologue analysis data. */
971 if (data.size != -1 && data.cfa_reg != -1)
972 {
973 CORE_ADDR cfa;
974 int i;
975
976 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
977 get_frame_register (this_frame, data.cfa_reg, buf);
978 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
979 cfa = SPUADDR (id, cfa);
980
981 /* Call-saved register slots. */
982 for (i = 0; i < SPU_NUM_GPRS; i++)
983 if (i == SPU_LR_REGNUM
984 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
985 if (data.reg_offset[i] != -1)
986 info->saved_regs[i].addr = cfa - data.reg_offset[i];
987
988 /* Frame bases. */
989 info->frame_base = cfa;
990 info->local_base = cfa - data.size;
991 }
992
993 /* Otherwise, fall back to reading the backchain link. */
994 else
995 {
996 CORE_ADDR reg;
997 LONGEST backchain;
998 ULONGEST lslr;
999 int status;
1000
1001 /* Get local store limit. */
1002 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1003 if (!lslr)
1004 lslr = (ULONGEST) -1;
1005
1006 /* Get the backchain. */
1007 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1008 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1009 &backchain);
1010
1011 /* A zero backchain terminates the frame chain. Also, sanity
1012 check against the local store size limit. */
1013 if (status && backchain > 0 && backchain <= lslr)
1014 {
1015 /* Assume the link register is saved into its slot. */
1016 if (backchain + 16 <= lslr)
1017 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1018 backchain + 16);
1019
1020 /* Frame bases. */
1021 info->frame_base = SPUADDR (id, backchain);
1022 info->local_base = SPUADDR (id, reg);
1023 }
1024 }
1025
1026 /* If we didn't find a frame, we cannot determine SP / return address. */
1027 if (info->frame_base == 0)
1028 return info;
1029
1030 /* The previous SP is equal to the CFA. */
1031 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1032 SPUADDR_ADDR (info->frame_base));
1033
1034 /* Read full contents of the unwound link register in order to
1035 be able to determine the return address. */
1036 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1037 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1038 else
1039 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1040
1041 /* Normally, the return address is contained in the slot 0 of the
1042 link register, and slots 1-3 are zero. For an overlay return,
1043 slot 0 contains the address of the overlay manager return stub,
1044 slot 1 contains the partition number of the overlay section to
1045 be returned to, and slot 2 contains the return address within
1046 that section. Return the latter address in that case. */
1047 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1048 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1049 extract_unsigned_integer (buf + 8, 4, byte_order));
1050 else
1051 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1052 extract_unsigned_integer (buf, 4, byte_order));
1053
1054 return info;
1055 }
1056
1057 static void
1058 spu_frame_this_id (struct frame_info *this_frame,
1059 void **this_prologue_cache, struct frame_id *this_id)
1060 {
1061 struct spu_unwind_cache *info =
1062 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1063
1064 if (info->frame_base == 0)
1065 return;
1066
1067 *this_id = frame_id_build (info->frame_base, info->func);
1068 }
1069
1070 static struct value *
1071 spu_frame_prev_register (struct frame_info *this_frame,
1072 void **this_prologue_cache, int regnum)
1073 {
1074 struct spu_unwind_cache *info
1075 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1076
1077 /* Special-case the stack pointer. */
1078 if (regnum == SPU_RAW_SP_REGNUM)
1079 regnum = SPU_SP_REGNUM;
1080
1081 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1082 }
1083
1084 static const struct frame_unwind spu_frame_unwind = {
1085 NORMAL_FRAME,
1086 default_frame_unwind_stop_reason,
1087 spu_frame_this_id,
1088 spu_frame_prev_register,
1089 NULL,
1090 default_frame_sniffer
1091 };
1092
1093 static CORE_ADDR
1094 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1095 {
1096 struct spu_unwind_cache *info
1097 = spu_frame_unwind_cache (this_frame, this_cache);
1098 return info->local_base;
1099 }
1100
1101 static const struct frame_base spu_frame_base = {
1102 &spu_frame_unwind,
1103 spu_frame_base_address,
1104 spu_frame_base_address,
1105 spu_frame_base_address
1106 };
1107
1108 static CORE_ADDR
1109 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1110 {
1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1112 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1113 /* Mask off interrupt enable bit. */
1114 return SPUADDR (tdep->id, pc & -4);
1115 }
1116
1117 static CORE_ADDR
1118 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1119 {
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1122 return SPUADDR (tdep->id, sp);
1123 }
1124
1125 static CORE_ADDR
1126 spu_read_pc (struct regcache *regcache)
1127 {
1128 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1129 ULONGEST pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1131 /* Mask off interrupt enable bit. */
1132 return SPUADDR (tdep->id, pc & -4);
1133 }
1134
1135 static void
1136 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1137 {
1138 /* Keep interrupt enabled state unchanged. */
1139 ULONGEST old_pc;
1140
1141 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1142 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1143 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1144 }
1145
1146
1147 /* Cell/B.E. cross-architecture unwinder support. */
1148
1149 struct spu2ppu_cache
1150 {
1151 struct frame_id frame_id;
1152 struct regcache *regcache;
1153 };
1154
1155 static struct gdbarch *
1156 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1157 {
1158 struct spu2ppu_cache *cache = *this_cache;
1159 return get_regcache_arch (cache->regcache);
1160 }
1161
1162 static void
1163 spu2ppu_this_id (struct frame_info *this_frame,
1164 void **this_cache, struct frame_id *this_id)
1165 {
1166 struct spu2ppu_cache *cache = *this_cache;
1167 *this_id = cache->frame_id;
1168 }
1169
1170 static struct value *
1171 spu2ppu_prev_register (struct frame_info *this_frame,
1172 void **this_cache, int regnum)
1173 {
1174 struct spu2ppu_cache *cache = *this_cache;
1175 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1176 gdb_byte *buf;
1177
1178 buf = alloca (register_size (gdbarch, regnum));
1179 regcache_cooked_read (cache->regcache, regnum, buf);
1180 return frame_unwind_got_bytes (this_frame, regnum, buf);
1181 }
1182
1183 static int
1184 spu2ppu_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **this_prologue_cache)
1186 {
1187 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 CORE_ADDR base, func, backchain;
1190 gdb_byte buf[4];
1191
1192 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1193 return 0;
1194
1195 base = get_frame_sp (this_frame);
1196 func = get_frame_pc (this_frame);
1197 if (target_read_memory (base, buf, 4))
1198 return 0;
1199 backchain = extract_unsigned_integer (buf, 4, byte_order);
1200
1201 if (!backchain)
1202 {
1203 struct frame_info *fi;
1204
1205 struct spu2ppu_cache *cache
1206 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1207
1208 cache->frame_id = frame_id_build (base + 16, func);
1209
1210 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1211 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1212 break;
1213
1214 if (fi)
1215 {
1216 cache->regcache = frame_save_as_regcache (fi);
1217 *this_prologue_cache = cache;
1218 return 1;
1219 }
1220 else
1221 {
1222 struct regcache *regcache;
1223 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1224 cache->regcache = regcache_dup (regcache);
1225 *this_prologue_cache = cache;
1226 return 1;
1227 }
1228 }
1229
1230 return 0;
1231 }
1232
1233 static void
1234 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1235 {
1236 struct spu2ppu_cache *cache = this_cache;
1237 regcache_xfree (cache->regcache);
1238 }
1239
1240 static const struct frame_unwind spu2ppu_unwind = {
1241 ARCH_FRAME,
1242 default_frame_unwind_stop_reason,
1243 spu2ppu_this_id,
1244 spu2ppu_prev_register,
1245 NULL,
1246 spu2ppu_sniffer,
1247 spu2ppu_dealloc_cache,
1248 spu2ppu_prev_arch,
1249 };
1250
1251
1252 /* Function calling convention. */
1253
1254 static CORE_ADDR
1255 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1256 {
1257 return sp & ~15;
1258 }
1259
1260 static CORE_ADDR
1261 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1262 struct value **args, int nargs, struct type *value_type,
1263 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1264 struct regcache *regcache)
1265 {
1266 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1267 sp = (sp - 4) & ~15;
1268 /* Store the address of that breakpoint */
1269 *bp_addr = sp;
1270 /* The call starts at the callee's entry point. */
1271 *real_pc = funaddr;
1272
1273 return sp;
1274 }
1275
1276 static int
1277 spu_scalar_value_p (struct type *type)
1278 {
1279 switch (TYPE_CODE (type))
1280 {
1281 case TYPE_CODE_INT:
1282 case TYPE_CODE_ENUM:
1283 case TYPE_CODE_RANGE:
1284 case TYPE_CODE_CHAR:
1285 case TYPE_CODE_BOOL:
1286 case TYPE_CODE_PTR:
1287 case TYPE_CODE_REF:
1288 return TYPE_LENGTH (type) <= 16;
1289
1290 default:
1291 return 0;
1292 }
1293 }
1294
1295 static void
1296 spu_value_to_regcache (struct regcache *regcache, int regnum,
1297 struct type *type, const gdb_byte *in)
1298 {
1299 int len = TYPE_LENGTH (type);
1300
1301 if (spu_scalar_value_p (type))
1302 {
1303 int preferred_slot = len < 4 ? 4 - len : 0;
1304 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1305 }
1306 else
1307 {
1308 while (len >= 16)
1309 {
1310 regcache_cooked_write (regcache, regnum++, in);
1311 in += 16;
1312 len -= 16;
1313 }
1314
1315 if (len > 0)
1316 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1317 }
1318 }
1319
1320 static void
1321 spu_regcache_to_value (struct regcache *regcache, int regnum,
1322 struct type *type, gdb_byte *out)
1323 {
1324 int len = TYPE_LENGTH (type);
1325
1326 if (spu_scalar_value_p (type))
1327 {
1328 int preferred_slot = len < 4 ? 4 - len : 0;
1329 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1330 }
1331 else
1332 {
1333 while (len >= 16)
1334 {
1335 regcache_cooked_read (regcache, regnum++, out);
1336 out += 16;
1337 len -= 16;
1338 }
1339
1340 if (len > 0)
1341 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1342 }
1343 }
1344
1345 static CORE_ADDR
1346 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1347 struct regcache *regcache, CORE_ADDR bp_addr,
1348 int nargs, struct value **args, CORE_ADDR sp,
1349 int struct_return, CORE_ADDR struct_addr)
1350 {
1351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1352 CORE_ADDR sp_delta;
1353 int i;
1354 int regnum = SPU_ARG1_REGNUM;
1355 int stack_arg = -1;
1356 gdb_byte buf[16];
1357
1358 /* Set the return address. */
1359 memset (buf, 0, sizeof buf);
1360 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1361 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1362
1363 /* If STRUCT_RETURN is true, then the struct return address (in
1364 STRUCT_ADDR) will consume the first argument-passing register.
1365 Both adjust the register count and store that value. */
1366 if (struct_return)
1367 {
1368 memset (buf, 0, sizeof buf);
1369 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1370 regcache_cooked_write (regcache, regnum++, buf);
1371 }
1372
1373 /* Fill in argument registers. */
1374 for (i = 0; i < nargs; i++)
1375 {
1376 struct value *arg = args[i];
1377 struct type *type = check_typedef (value_type (arg));
1378 const gdb_byte *contents = value_contents (arg);
1379 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1380
1381 /* If the argument doesn't wholly fit into registers, it and
1382 all subsequent arguments go to the stack. */
1383 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1384 {
1385 stack_arg = i;
1386 break;
1387 }
1388
1389 spu_value_to_regcache (regcache, regnum, type, contents);
1390 regnum += n_regs;
1391 }
1392
1393 /* Overflow arguments go to the stack. */
1394 if (stack_arg != -1)
1395 {
1396 CORE_ADDR ap;
1397
1398 /* Allocate all required stack size. */
1399 for (i = stack_arg; i < nargs; i++)
1400 {
1401 struct type *type = check_typedef (value_type (args[i]));
1402 sp -= align_up (TYPE_LENGTH (type), 16);
1403 }
1404
1405 /* Fill in stack arguments. */
1406 ap = sp;
1407 for (i = stack_arg; i < nargs; i++)
1408 {
1409 struct value *arg = args[i];
1410 struct type *type = check_typedef (value_type (arg));
1411 int len = TYPE_LENGTH (type);
1412 int preferred_slot;
1413
1414 if (spu_scalar_value_p (type))
1415 preferred_slot = len < 4 ? 4 - len : 0;
1416 else
1417 preferred_slot = 0;
1418
1419 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1420 ap += align_up (TYPE_LENGTH (type), 16);
1421 }
1422 }
1423
1424 /* Allocate stack frame header. */
1425 sp -= 32;
1426
1427 /* Store stack back chain. */
1428 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1429 target_write_memory (sp, buf, 16);
1430
1431 /* Finally, update all slots of the SP register. */
1432 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1433 for (i = 0; i < 4; i++)
1434 {
1435 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1436 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1437 }
1438 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1439
1440 return sp;
1441 }
1442
1443 static struct frame_id
1444 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1445 {
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1447 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1448 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1449 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1450 }
1451
1452 /* Function return value access. */
1453
1454 static enum return_value_convention
1455 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1456 struct type *type, struct regcache *regcache,
1457 gdb_byte *out, const gdb_byte *in)
1458 {
1459 struct type *func_type = function ? value_type (function) : NULL;
1460 enum return_value_convention rvc;
1461 int opencl_vector = 0;
1462
1463 if (func_type)
1464 {
1465 func_type = check_typedef (func_type);
1466
1467 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1468 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1469
1470 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1471 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1472 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1473 && TYPE_VECTOR (type))
1474 opencl_vector = 1;
1475 }
1476
1477 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1478 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1479 else
1480 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1481
1482 if (in)
1483 {
1484 switch (rvc)
1485 {
1486 case RETURN_VALUE_REGISTER_CONVENTION:
1487 if (opencl_vector && TYPE_LENGTH (type) == 2)
1488 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1489 else
1490 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1491 break;
1492
1493 case RETURN_VALUE_STRUCT_CONVENTION:
1494 error (_("Cannot set function return value."));
1495 break;
1496 }
1497 }
1498 else if (out)
1499 {
1500 switch (rvc)
1501 {
1502 case RETURN_VALUE_REGISTER_CONVENTION:
1503 if (opencl_vector && TYPE_LENGTH (type) == 2)
1504 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1505 else
1506 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1507 break;
1508
1509 case RETURN_VALUE_STRUCT_CONVENTION:
1510 error (_("Function return value unknown."));
1511 break;
1512 }
1513 }
1514
1515 return rvc;
1516 }
1517
1518
1519 /* Breakpoints. */
1520
1521 static const gdb_byte *
1522 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1523 CORE_ADDR * pcptr, int *lenptr)
1524 {
1525 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1526
1527 *lenptr = sizeof breakpoint;
1528 return breakpoint;
1529 }
1530
1531 static int
1532 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1533 struct bp_target_info *bp_tgt)
1534 {
1535 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1536 that in a combined application, we have some breakpoints inserted in SPU
1537 code, and now the application forks (on the PPU side). GDB common code
1538 will assume that the fork system call copied all breakpoints into the new
1539 process' address space, and that all those copies now need to be removed
1540 (see breakpoint.c:detach_breakpoints).
1541
1542 While this is certainly true for PPU side breakpoints, it is not true
1543 for SPU side breakpoints. fork will clone the SPU context file
1544 descriptors, so that all the existing SPU contexts are in accessible
1545 in the new process. However, the contents of the SPU contexts themselves
1546 are *not* cloned. Therefore the effect of detach_breakpoints is to
1547 remove SPU breakpoints from the *original* SPU context's local store
1548 -- this is not the correct behaviour.
1549
1550 The workaround is to check whether the PID we are asked to remove this
1551 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1552 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1553 true in the context of detach_breakpoints. If so, we simply do nothing.
1554 [ Note that for the fork child process, it does not matter if breakpoints
1555 remain inserted, because those SPU contexts are not runnable anyway --
1556 the Linux kernel allows only the original process to invoke spu_run. */
1557
1558 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1559 return 0;
1560
1561 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1562 }
1563
1564
1565 /* Software single-stepping support. */
1566
1567 static int
1568 spu_software_single_step (struct frame_info *frame)
1569 {
1570 struct gdbarch *gdbarch = get_frame_arch (frame);
1571 struct address_space *aspace = get_frame_address_space (frame);
1572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1573 CORE_ADDR pc, next_pc;
1574 unsigned int insn;
1575 int offset, reg;
1576 gdb_byte buf[4];
1577 ULONGEST lslr;
1578
1579 pc = get_frame_pc (frame);
1580
1581 if (target_read_memory (pc, buf, 4))
1582 return 1;
1583 insn = extract_unsigned_integer (buf, 4, byte_order);
1584
1585 /* Get local store limit. */
1586 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1587 if (!lslr)
1588 lslr = (ULONGEST) -1;
1589
1590 /* Next sequential instruction is at PC + 4, except if the current
1591 instruction is a PPE-assisted call, in which case it is at PC + 8.
1592 Wrap around LS limit to be on the safe side. */
1593 if ((insn & 0xffffff00) == 0x00002100)
1594 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1595 else
1596 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1597
1598 insert_single_step_breakpoint (gdbarch,
1599 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1600
1601 if (is_branch (insn, &offset, &reg))
1602 {
1603 CORE_ADDR target = offset;
1604
1605 if (reg == SPU_PC_REGNUM)
1606 target += SPUADDR_ADDR (pc);
1607 else if (reg != -1)
1608 {
1609 int optim, unavail;
1610
1611 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1612 &optim, &unavail))
1613 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1614 else
1615 {
1616 if (optim)
1617 throw_error (OPTIMIZED_OUT_ERROR,
1618 _("Could not determine address of "
1619 "single-step breakpoint."));
1620 if (unavail)
1621 throw_error (NOT_AVAILABLE_ERROR,
1622 _("Could not determine address of "
1623 "single-step breakpoint."));
1624 }
1625 }
1626
1627 target = target & lslr;
1628 if (target != next_pc)
1629 insert_single_step_breakpoint (gdbarch, aspace,
1630 SPUADDR (SPUADDR_SPU (pc), target));
1631 }
1632
1633 return 1;
1634 }
1635
1636
1637 /* Longjmp support. */
1638
1639 static int
1640 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1641 {
1642 struct gdbarch *gdbarch = get_frame_arch (frame);
1643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1645 gdb_byte buf[4];
1646 CORE_ADDR jb_addr;
1647 int optim, unavail;
1648
1649 /* Jump buffer is pointed to by the argument register $r3. */
1650 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1651 &optim, &unavail))
1652 return 0;
1653
1654 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1655 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1656 return 0;
1657
1658 *pc = extract_unsigned_integer (buf, 4, byte_order);
1659 *pc = SPUADDR (tdep->id, *pc);
1660 return 1;
1661 }
1662
1663
1664 /* Disassembler. */
1665
1666 struct spu_dis_asm_data
1667 {
1668 struct gdbarch *gdbarch;
1669 int id;
1670 };
1671
1672 static void
1673 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1674 {
1675 struct spu_dis_asm_data *data = info->application_data;
1676 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1677 }
1678
1679 static int
1680 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1681 {
1682 /* The opcodes disassembler does 18-bit address arithmetic. Make
1683 sure the SPU ID encoded in the high bits is added back when we
1684 call print_address. */
1685 struct disassemble_info spu_info = *info;
1686 struct spu_dis_asm_data data;
1687 data.gdbarch = info->application_data;
1688 data.id = SPUADDR_SPU (memaddr);
1689
1690 spu_info.application_data = &data;
1691 spu_info.print_address_func = spu_dis_asm_print_address;
1692 return print_insn_spu (memaddr, &spu_info);
1693 }
1694
1695
1696 /* Target overlays for the SPU overlay manager.
1697
1698 See the documentation of simple_overlay_update for how the
1699 interface is supposed to work.
1700
1701 Data structures used by the overlay manager:
1702
1703 struct ovly_table
1704 {
1705 u32 vma;
1706 u32 size;
1707 u32 pos;
1708 u32 buf;
1709 } _ovly_table[]; -- one entry per overlay section
1710
1711 struct ovly_buf_table
1712 {
1713 u32 mapped;
1714 } _ovly_buf_table[]; -- one entry per overlay buffer
1715
1716 _ovly_table should never change.
1717
1718 Both tables are aligned to a 16-byte boundary, the symbols
1719 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1720 size set to the size of the respective array. buf in _ovly_table is
1721 an index into _ovly_buf_table.
1722
1723 mapped is an index into _ovly_table. Both the mapped and buf indices start
1724 from one to reference the first entry in their respective tables. */
1725
1726 /* Using the per-objfile private data mechanism, we store for each
1727 objfile an array of "struct spu_overlay_table" structures, one
1728 for each obj_section of the objfile. This structure holds two
1729 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1730 is *not* an overlay section. If it is non-zero, it represents
1731 a target address. The overlay section is mapped iff the target
1732 integer at this location equals MAPPED_VAL. */
1733
1734 static const struct objfile_data *spu_overlay_data;
1735
1736 struct spu_overlay_table
1737 {
1738 CORE_ADDR mapped_ptr;
1739 CORE_ADDR mapped_val;
1740 };
1741
1742 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1743 the _ovly_table data structure from the target and initialize the
1744 spu_overlay_table data structure from it. */
1745 static struct spu_overlay_table *
1746 spu_get_overlay_table (struct objfile *objfile)
1747 {
1748 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1749 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1750 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1751 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1752 unsigned ovly_table_size, ovly_buf_table_size;
1753 struct spu_overlay_table *tbl;
1754 struct obj_section *osect;
1755 gdb_byte *ovly_table;
1756 int i;
1757
1758 tbl = objfile_data (objfile, spu_overlay_data);
1759 if (tbl)
1760 return tbl;
1761
1762 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1763 if (!ovly_table_msym)
1764 return NULL;
1765
1766 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1767 NULL, objfile);
1768 if (!ovly_buf_table_msym)
1769 return NULL;
1770
1771 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1772 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1773
1774 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1775 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1776
1777 ovly_table = xmalloc (ovly_table_size);
1778 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1779
1780 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1781 objfile->sections_end - objfile->sections,
1782 struct spu_overlay_table);
1783
1784 for (i = 0; i < ovly_table_size / 16; i++)
1785 {
1786 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1787 4, byte_order);
1788 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1789 4, byte_order);
1790 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1791 4, byte_order);
1792 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1793 4, byte_order);
1794
1795 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1796 continue;
1797
1798 ALL_OBJFILE_OSECTIONS (objfile, osect)
1799 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1800 && pos == osect->the_bfd_section->filepos)
1801 {
1802 int ndx = osect - objfile->sections;
1803 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1804 tbl[ndx].mapped_val = i + 1;
1805 break;
1806 }
1807 }
1808
1809 xfree (ovly_table);
1810 set_objfile_data (objfile, spu_overlay_data, tbl);
1811 return tbl;
1812 }
1813
1814 /* Read _ovly_buf_table entry from the target to dermine whether
1815 OSECT is currently mapped, and update the mapped state. */
1816 static void
1817 spu_overlay_update_osect (struct obj_section *osect)
1818 {
1819 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1820 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1821 struct spu_overlay_table *ovly_table;
1822 CORE_ADDR id, val;
1823
1824 ovly_table = spu_get_overlay_table (osect->objfile);
1825 if (!ovly_table)
1826 return;
1827
1828 ovly_table += osect - osect->objfile->sections;
1829 if (ovly_table->mapped_ptr == 0)
1830 return;
1831
1832 id = SPUADDR_SPU (obj_section_addr (osect));
1833 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1834 4, byte_order);
1835 osect->ovly_mapped = (val == ovly_table->mapped_val);
1836 }
1837
1838 /* If OSECT is NULL, then update all sections' mapped state.
1839 If OSECT is non-NULL, then update only OSECT's mapped state. */
1840 static void
1841 spu_overlay_update (struct obj_section *osect)
1842 {
1843 /* Just one section. */
1844 if (osect)
1845 spu_overlay_update_osect (osect);
1846
1847 /* All sections. */
1848 else
1849 {
1850 struct objfile *objfile;
1851
1852 ALL_OBJSECTIONS (objfile, osect)
1853 if (section_is_overlay (osect))
1854 spu_overlay_update_osect (osect);
1855 }
1856 }
1857
1858 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1859 If there is one, go through all sections and make sure for non-
1860 overlay sections LMA equals VMA, while for overlay sections LMA
1861 is larger than SPU_OVERLAY_LMA. */
1862 static void
1863 spu_overlay_new_objfile (struct objfile *objfile)
1864 {
1865 struct spu_overlay_table *ovly_table;
1866 struct obj_section *osect;
1867
1868 /* If we've already touched this file, do nothing. */
1869 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1870 return;
1871
1872 /* Consider only SPU objfiles. */
1873 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1874 return;
1875
1876 /* Check if this objfile has overlays. */
1877 ovly_table = spu_get_overlay_table (objfile);
1878 if (!ovly_table)
1879 return;
1880
1881 /* Now go and fiddle with all the LMAs. */
1882 ALL_OBJFILE_OSECTIONS (objfile, osect)
1883 {
1884 bfd *obfd = objfile->obfd;
1885 asection *bsect = osect->the_bfd_section;
1886 int ndx = osect - objfile->sections;
1887
1888 if (ovly_table[ndx].mapped_ptr == 0)
1889 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1890 else
1891 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1892 }
1893 }
1894
1895
1896 /* Insert temporary breakpoint on "main" function of newly loaded
1897 SPE context OBJFILE. */
1898 static void
1899 spu_catch_start (struct objfile *objfile)
1900 {
1901 struct minimal_symbol *minsym;
1902 struct symtab *symtab;
1903 CORE_ADDR pc;
1904 char buf[32];
1905
1906 /* Do this only if requested by "set spu stop-on-load on". */
1907 if (!spu_stop_on_load_p)
1908 return;
1909
1910 /* Consider only SPU objfiles. */
1911 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1912 return;
1913
1914 /* The main objfile is handled differently. */
1915 if (objfile == symfile_objfile)
1916 return;
1917
1918 /* There can be multiple symbols named "main". Search for the
1919 "main" in *this* objfile. */
1920 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1921 if (!minsym)
1922 return;
1923
1924 /* If we have debugging information, try to use it -- this
1925 will allow us to properly skip the prologue. */
1926 pc = SYMBOL_VALUE_ADDRESS (minsym);
1927 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (objfile, minsym));
1928 if (symtab != NULL)
1929 {
1930 struct blockvector *bv = BLOCKVECTOR (symtab);
1931 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1932 struct symbol *sym;
1933 struct symtab_and_line sal;
1934
1935 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
1936 if (sym)
1937 {
1938 fixup_symbol_section (sym, objfile);
1939 sal = find_function_start_sal (sym, 1);
1940 pc = sal.pc;
1941 }
1942 }
1943
1944 /* Use a numerical address for the set_breakpoint command to avoid having
1945 the breakpoint re-set incorrectly. */
1946 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1947 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1948 NULL /* cond_string */, -1 /* thread */,
1949 NULL /* extra_string */,
1950 0 /* parse_condition_and_thread */, 1 /* tempflag */,
1951 bp_breakpoint /* type_wanted */,
1952 0 /* ignore_count */,
1953 AUTO_BOOLEAN_FALSE /* pending_break_support */,
1954 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1955 1 /* enabled */, 0 /* internal */, 0);
1956 }
1957
1958
1959 /* Look up OBJFILE loaded into FRAME's SPU context. */
1960 static struct objfile *
1961 spu_objfile_from_frame (struct frame_info *frame)
1962 {
1963 struct gdbarch *gdbarch = get_frame_arch (frame);
1964 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1965 struct objfile *obj;
1966
1967 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1968 return NULL;
1969
1970 ALL_OBJFILES (obj)
1971 {
1972 if (obj->sections != obj->sections_end
1973 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1974 return obj;
1975 }
1976
1977 return NULL;
1978 }
1979
1980 /* Flush cache for ea pointer access if available. */
1981 static void
1982 flush_ea_cache (void)
1983 {
1984 struct minimal_symbol *msymbol;
1985 struct objfile *obj;
1986
1987 if (!has_stack_frames ())
1988 return;
1989
1990 obj = spu_objfile_from_frame (get_current_frame ());
1991 if (obj == NULL)
1992 return;
1993
1994 /* Lookup inferior function __cache_flush. */
1995 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1996 if (msymbol != NULL)
1997 {
1998 struct type *type;
1999 CORE_ADDR addr;
2000
2001 type = objfile_type (obj)->builtin_void;
2002 type = lookup_function_type (type);
2003 type = lookup_pointer_type (type);
2004 addr = SYMBOL_VALUE_ADDRESS (msymbol);
2005
2006 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2007 }
2008 }
2009
2010 /* This handler is called when the inferior has stopped. If it is stopped in
2011 SPU architecture then flush the ea cache if used. */
2012 static void
2013 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2014 {
2015 if (!spu_auto_flush_cache_p)
2016 return;
2017
2018 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2019 re-entering this function when __cache_flush stops. */
2020 spu_auto_flush_cache_p = 0;
2021 flush_ea_cache ();
2022 spu_auto_flush_cache_p = 1;
2023 }
2024
2025
2026 /* "info spu" commands. */
2027
2028 static void
2029 info_spu_event_command (char *args, int from_tty)
2030 {
2031 struct frame_info *frame = get_selected_frame (NULL);
2032 ULONGEST event_status = 0;
2033 ULONGEST event_mask = 0;
2034 struct cleanup *chain;
2035 gdb_byte buf[100];
2036 char annex[32];
2037 LONGEST len;
2038 int id;
2039
2040 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2041 error (_("\"info spu\" is only supported on the SPU architecture."));
2042
2043 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2044
2045 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2046 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2047 buf, 0, (sizeof (buf) - 1));
2048 if (len <= 0)
2049 error (_("Could not read event_status."));
2050 buf[len] = '\0';
2051 event_status = strtoulst ((char *) buf, NULL, 16);
2052
2053 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2054 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2055 buf, 0, (sizeof (buf) - 1));
2056 if (len <= 0)
2057 error (_("Could not read event_mask."));
2058 buf[len] = '\0';
2059 event_mask = strtoulst ((char *) buf, NULL, 16);
2060
2061 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2062
2063 if (ui_out_is_mi_like_p (current_uiout))
2064 {
2065 ui_out_field_fmt (current_uiout, "event_status",
2066 "0x%s", phex_nz (event_status, 4));
2067 ui_out_field_fmt (current_uiout, "event_mask",
2068 "0x%s", phex_nz (event_mask, 4));
2069 }
2070 else
2071 {
2072 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2073 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2074 }
2075
2076 do_cleanups (chain);
2077 }
2078
2079 static void
2080 info_spu_signal_command (char *args, int from_tty)
2081 {
2082 struct frame_info *frame = get_selected_frame (NULL);
2083 struct gdbarch *gdbarch = get_frame_arch (frame);
2084 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2085 ULONGEST signal1 = 0;
2086 ULONGEST signal1_type = 0;
2087 int signal1_pending = 0;
2088 ULONGEST signal2 = 0;
2089 ULONGEST signal2_type = 0;
2090 int signal2_pending = 0;
2091 struct cleanup *chain;
2092 char annex[32];
2093 gdb_byte buf[100];
2094 LONGEST len;
2095 int id;
2096
2097 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2098 error (_("\"info spu\" is only supported on the SPU architecture."));
2099
2100 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2101
2102 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2103 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2104 if (len < 0)
2105 error (_("Could not read signal1."));
2106 else if (len == 4)
2107 {
2108 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2109 signal1_pending = 1;
2110 }
2111
2112 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2113 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2114 buf, 0, (sizeof (buf) - 1));
2115 if (len <= 0)
2116 error (_("Could not read signal1_type."));
2117 buf[len] = '\0';
2118 signal1_type = strtoulst ((char *) buf, NULL, 16);
2119
2120 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2121 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2122 if (len < 0)
2123 error (_("Could not read signal2."));
2124 else if (len == 4)
2125 {
2126 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2127 signal2_pending = 1;
2128 }
2129
2130 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2131 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2132 buf, 0, (sizeof (buf) - 1));
2133 if (len <= 0)
2134 error (_("Could not read signal2_type."));
2135 buf[len] = '\0';
2136 signal2_type = strtoulst ((char *) buf, NULL, 16);
2137
2138 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2139
2140 if (ui_out_is_mi_like_p (current_uiout))
2141 {
2142 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2143 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2144 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2145 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2146 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2147 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2148 }
2149 else
2150 {
2151 if (signal1_pending)
2152 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2153 else
2154 printf_filtered (_("Signal 1 not pending "));
2155
2156 if (signal1_type)
2157 printf_filtered (_("(Type Or)\n"));
2158 else
2159 printf_filtered (_("(Type Overwrite)\n"));
2160
2161 if (signal2_pending)
2162 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2163 else
2164 printf_filtered (_("Signal 2 not pending "));
2165
2166 if (signal2_type)
2167 printf_filtered (_("(Type Or)\n"));
2168 else
2169 printf_filtered (_("(Type Overwrite)\n"));
2170 }
2171
2172 do_cleanups (chain);
2173 }
2174
2175 static void
2176 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2177 const char *field, const char *msg)
2178 {
2179 struct cleanup *chain;
2180 int i;
2181
2182 if (nr <= 0)
2183 return;
2184
2185 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2186
2187 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2188 ui_out_table_body (current_uiout);
2189
2190 for (i = 0; i < nr; i++)
2191 {
2192 struct cleanup *val_chain;
2193 ULONGEST val;
2194 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2195 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2196 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2197 do_cleanups (val_chain);
2198
2199 if (!ui_out_is_mi_like_p (current_uiout))
2200 printf_filtered ("\n");
2201 }
2202
2203 do_cleanups (chain);
2204 }
2205
2206 static void
2207 info_spu_mailbox_command (char *args, int from_tty)
2208 {
2209 struct frame_info *frame = get_selected_frame (NULL);
2210 struct gdbarch *gdbarch = get_frame_arch (frame);
2211 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2212 struct cleanup *chain;
2213 char annex[32];
2214 gdb_byte buf[1024];
2215 LONGEST len;
2216 int id;
2217
2218 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2219 error (_("\"info spu\" is only supported on the SPU architecture."));
2220
2221 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2222
2223 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2224
2225 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2226 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2227 buf, 0, sizeof buf);
2228 if (len < 0)
2229 error (_("Could not read mbox_info."));
2230
2231 info_spu_mailbox_list (buf, len / 4, byte_order,
2232 "mbox", "SPU Outbound Mailbox");
2233
2234 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2235 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2236 buf, 0, sizeof buf);
2237 if (len < 0)
2238 error (_("Could not read ibox_info."));
2239
2240 info_spu_mailbox_list (buf, len / 4, byte_order,
2241 "ibox", "SPU Outbound Interrupt Mailbox");
2242
2243 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2244 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2245 buf, 0, sizeof buf);
2246 if (len < 0)
2247 error (_("Could not read wbox_info."));
2248
2249 info_spu_mailbox_list (buf, len / 4, byte_order,
2250 "wbox", "SPU Inbound Mailbox");
2251
2252 do_cleanups (chain);
2253 }
2254
2255 static ULONGEST
2256 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2257 {
2258 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2259 return (word >> (63 - last)) & mask;
2260 }
2261
2262 static void
2263 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2264 {
2265 static char *spu_mfc_opcode[256] =
2266 {
2267 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2269 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2271 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2272 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2273 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2275 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2276 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2277 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2278 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2281 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2283 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2284 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2285 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2287 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2288 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2290 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2293 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2296 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2297 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2299 };
2300
2301 int *seq = alloca (nr * sizeof (int));
2302 int done = 0;
2303 struct cleanup *chain;
2304 int i, j;
2305
2306
2307 /* Determine sequence in which to display (valid) entries. */
2308 for (i = 0; i < nr; i++)
2309 {
2310 /* Search for the first valid entry all of whose
2311 dependencies are met. */
2312 for (j = 0; j < nr; j++)
2313 {
2314 ULONGEST mfc_cq_dw3;
2315 ULONGEST dependencies;
2316
2317 if (done & (1 << (nr - 1 - j)))
2318 continue;
2319
2320 mfc_cq_dw3
2321 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2322 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2323 continue;
2324
2325 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2326 if ((dependencies & done) != dependencies)
2327 continue;
2328
2329 seq[i] = j;
2330 done |= 1 << (nr - 1 - j);
2331 break;
2332 }
2333
2334 if (j == nr)
2335 break;
2336 }
2337
2338 nr = i;
2339
2340
2341 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2342 "dma_cmd");
2343
2344 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2345 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2346 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2347 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2348 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2349 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2350 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2351 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2352 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2353 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2354
2355 ui_out_table_body (current_uiout);
2356
2357 for (i = 0; i < nr; i++)
2358 {
2359 struct cleanup *cmd_chain;
2360 ULONGEST mfc_cq_dw0;
2361 ULONGEST mfc_cq_dw1;
2362 ULONGEST mfc_cq_dw2;
2363 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2364 int list_lsa, list_size, mfc_lsa, mfc_size;
2365 ULONGEST mfc_ea;
2366 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2367
2368 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2369 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2370
2371 mfc_cq_dw0
2372 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2373 mfc_cq_dw1
2374 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2375 mfc_cq_dw2
2376 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2377
2378 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2379 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2380 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2381 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2382 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2383 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2384 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2385
2386 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2387 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2388
2389 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2390 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2391 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2392 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2393 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2394 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2395
2396 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2397
2398 if (spu_mfc_opcode[mfc_cmd_opcode])
2399 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2400 else
2401 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2402
2403 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2404 ui_out_field_int (current_uiout, "tid", tclass_id);
2405 ui_out_field_int (current_uiout, "rid", rclass_id);
2406
2407 if (ea_valid_p)
2408 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2409 else
2410 ui_out_field_skip (current_uiout, "ea");
2411
2412 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2413 if (qw_valid_p)
2414 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2415 else
2416 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2417
2418 if (list_valid_p)
2419 {
2420 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2421 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2422 }
2423 else
2424 {
2425 ui_out_field_skip (current_uiout, "lstaddr");
2426 ui_out_field_skip (current_uiout, "lstsize");
2427 }
2428
2429 if (cmd_error_p)
2430 ui_out_field_string (current_uiout, "error_p", "*");
2431 else
2432 ui_out_field_skip (current_uiout, "error_p");
2433
2434 do_cleanups (cmd_chain);
2435
2436 if (!ui_out_is_mi_like_p (current_uiout))
2437 printf_filtered ("\n");
2438 }
2439
2440 do_cleanups (chain);
2441 }
2442
2443 static void
2444 info_spu_dma_command (char *args, int from_tty)
2445 {
2446 struct frame_info *frame = get_selected_frame (NULL);
2447 struct gdbarch *gdbarch = get_frame_arch (frame);
2448 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2449 ULONGEST dma_info_type;
2450 ULONGEST dma_info_mask;
2451 ULONGEST dma_info_status;
2452 ULONGEST dma_info_stall_and_notify;
2453 ULONGEST dma_info_atomic_command_status;
2454 struct cleanup *chain;
2455 char annex[32];
2456 gdb_byte buf[1024];
2457 LONGEST len;
2458 int id;
2459
2460 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2461 error (_("\"info spu\" is only supported on the SPU architecture."));
2462
2463 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2464
2465 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2466 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2467 buf, 0, 40 + 16 * 32);
2468 if (len <= 0)
2469 error (_("Could not read dma_info."));
2470
2471 dma_info_type
2472 = extract_unsigned_integer (buf, 8, byte_order);
2473 dma_info_mask
2474 = extract_unsigned_integer (buf + 8, 8, byte_order);
2475 dma_info_status
2476 = extract_unsigned_integer (buf + 16, 8, byte_order);
2477 dma_info_stall_and_notify
2478 = extract_unsigned_integer (buf + 24, 8, byte_order);
2479 dma_info_atomic_command_status
2480 = extract_unsigned_integer (buf + 32, 8, byte_order);
2481
2482 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2483
2484 if (ui_out_is_mi_like_p (current_uiout))
2485 {
2486 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2487 phex_nz (dma_info_type, 4));
2488 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2489 phex_nz (dma_info_mask, 4));
2490 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2491 phex_nz (dma_info_status, 4));
2492 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2493 phex_nz (dma_info_stall_and_notify, 4));
2494 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2495 phex_nz (dma_info_atomic_command_status, 4));
2496 }
2497 else
2498 {
2499 const char *query_msg = _("no query pending");
2500
2501 if (dma_info_type & 4)
2502 switch (dma_info_type & 3)
2503 {
2504 case 1: query_msg = _("'any' query pending"); break;
2505 case 2: query_msg = _("'all' query pending"); break;
2506 default: query_msg = _("undefined query type"); break;
2507 }
2508
2509 printf_filtered (_("Tag-Group Status 0x%s\n"),
2510 phex (dma_info_status, 4));
2511 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2512 phex (dma_info_mask, 4), query_msg);
2513 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2514 phex (dma_info_stall_and_notify, 4));
2515 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2516 phex (dma_info_atomic_command_status, 4));
2517 printf_filtered ("\n");
2518 }
2519
2520 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2521 do_cleanups (chain);
2522 }
2523
2524 static void
2525 info_spu_proxydma_command (char *args, int from_tty)
2526 {
2527 struct frame_info *frame = get_selected_frame (NULL);
2528 struct gdbarch *gdbarch = get_frame_arch (frame);
2529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2530 ULONGEST dma_info_type;
2531 ULONGEST dma_info_mask;
2532 ULONGEST dma_info_status;
2533 struct cleanup *chain;
2534 char annex[32];
2535 gdb_byte buf[1024];
2536 LONGEST len;
2537 int id;
2538
2539 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2540 error (_("\"info spu\" is only supported on the SPU architecture."));
2541
2542 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2543
2544 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2545 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2546 buf, 0, 24 + 8 * 32);
2547 if (len <= 0)
2548 error (_("Could not read proxydma_info."));
2549
2550 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2551 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2552 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2553
2554 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2555 "SPUInfoProxyDMA");
2556
2557 if (ui_out_is_mi_like_p (current_uiout))
2558 {
2559 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2560 phex_nz (dma_info_type, 4));
2561 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2562 phex_nz (dma_info_mask, 4));
2563 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2564 phex_nz (dma_info_status, 4));
2565 }
2566 else
2567 {
2568 const char *query_msg;
2569
2570 switch (dma_info_type & 3)
2571 {
2572 case 0: query_msg = _("no query pending"); break;
2573 case 1: query_msg = _("'any' query pending"); break;
2574 case 2: query_msg = _("'all' query pending"); break;
2575 default: query_msg = _("undefined query type"); break;
2576 }
2577
2578 printf_filtered (_("Tag-Group Status 0x%s\n"),
2579 phex (dma_info_status, 4));
2580 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2581 phex (dma_info_mask, 4), query_msg);
2582 printf_filtered ("\n");
2583 }
2584
2585 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2586 do_cleanups (chain);
2587 }
2588
2589 static void
2590 info_spu_command (char *args, int from_tty)
2591 {
2592 printf_unfiltered (_("\"info spu\" must be followed by "
2593 "the name of an SPU facility.\n"));
2594 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2595 }
2596
2597
2598 /* Root of all "set spu "/"show spu " commands. */
2599
2600 static void
2601 show_spu_command (char *args, int from_tty)
2602 {
2603 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2604 }
2605
2606 static void
2607 set_spu_command (char *args, int from_tty)
2608 {
2609 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2610 }
2611
2612 static void
2613 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2614 struct cmd_list_element *c, const char *value)
2615 {
2616 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2617 value);
2618 }
2619
2620 static void
2621 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2622 struct cmd_list_element *c, const char *value)
2623 {
2624 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2625 value);
2626 }
2627
2628
2629 /* Set up gdbarch struct. */
2630
2631 static struct gdbarch *
2632 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633 {
2634 struct gdbarch *gdbarch;
2635 struct gdbarch_tdep *tdep;
2636 int id = -1;
2637
2638 /* Which spufs ID was requested as address space? */
2639 if (info.tdep_info)
2640 id = *(int *)info.tdep_info;
2641 /* For objfile architectures of SPU solibs, decode the ID from the name.
2642 This assumes the filename convention employed by solib-spu.c. */
2643 else if (info.abfd)
2644 {
2645 char *name = strrchr (info.abfd->filename, '@');
2646 if (name)
2647 sscanf (name, "@0x%*x <%d>", &id);
2648 }
2649
2650 /* Find a candidate among extant architectures. */
2651 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2652 arches != NULL;
2653 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2654 {
2655 tdep = gdbarch_tdep (arches->gdbarch);
2656 if (tdep && tdep->id == id)
2657 return arches->gdbarch;
2658 }
2659
2660 /* None found, so create a new architecture. */
2661 tdep = XCNEW (struct gdbarch_tdep);
2662 tdep->id = id;
2663 gdbarch = gdbarch_alloc (&info, tdep);
2664
2665 /* Disassembler. */
2666 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2667
2668 /* Registers. */
2669 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2670 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2671 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2672 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2673 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2674 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2675 set_gdbarch_register_name (gdbarch, spu_register_name);
2676 set_gdbarch_register_type (gdbarch, spu_register_type);
2677 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2678 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2679 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2680 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2681
2682 /* Data types. */
2683 set_gdbarch_char_signed (gdbarch, 0);
2684 set_gdbarch_ptr_bit (gdbarch, 32);
2685 set_gdbarch_addr_bit (gdbarch, 32);
2686 set_gdbarch_short_bit (gdbarch, 16);
2687 set_gdbarch_int_bit (gdbarch, 32);
2688 set_gdbarch_long_bit (gdbarch, 32);
2689 set_gdbarch_long_long_bit (gdbarch, 64);
2690 set_gdbarch_float_bit (gdbarch, 32);
2691 set_gdbarch_double_bit (gdbarch, 64);
2692 set_gdbarch_long_double_bit (gdbarch, 64);
2693 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2694 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2695 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2696
2697 /* Address handling. */
2698 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2699 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2700 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2701 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2702 set_gdbarch_address_class_type_flags_to_name
2703 (gdbarch, spu_address_class_type_flags_to_name);
2704 set_gdbarch_address_class_name_to_type_flags
2705 (gdbarch, spu_address_class_name_to_type_flags);
2706
2707
2708 /* Inferior function calls. */
2709 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2710 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2711 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2712 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2713 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2714 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2715 set_gdbarch_return_value (gdbarch, spu_return_value);
2716
2717 /* Frame handling. */
2718 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2719 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2720 frame_base_set_default (gdbarch, &spu_frame_base);
2721 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2722 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2723 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2724 set_gdbarch_frame_args_skip (gdbarch, 0);
2725 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2726 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2727
2728 /* Cell/B.E. cross-architecture unwinder support. */
2729 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2730
2731 /* Breakpoints. */
2732 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2733 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2734 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2735 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2736 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2737 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2738
2739 /* Overlays. */
2740 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2741
2742 return gdbarch;
2743 }
2744
2745 /* Provide a prototype to silence -Wmissing-prototypes. */
2746 extern initialize_file_ftype _initialize_spu_tdep;
2747
2748 void
2749 _initialize_spu_tdep (void)
2750 {
2751 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2752
2753 /* Add ourselves to objfile event chain. */
2754 observer_attach_new_objfile (spu_overlay_new_objfile);
2755 spu_overlay_data = register_objfile_data ();
2756
2757 /* Install spu stop-on-load handler. */
2758 observer_attach_new_objfile (spu_catch_start);
2759
2760 /* Add ourselves to normal_stop event chain. */
2761 observer_attach_normal_stop (spu_attach_normal_stop);
2762
2763 /* Add root prefix command for all "set spu"/"show spu" commands. */
2764 add_prefix_cmd ("spu", no_class, set_spu_command,
2765 _("Various SPU specific commands."),
2766 &setspucmdlist, "set spu ", 0, &setlist);
2767 add_prefix_cmd ("spu", no_class, show_spu_command,
2768 _("Various SPU specific commands."),
2769 &showspucmdlist, "show spu ", 0, &showlist);
2770
2771 /* Toggle whether or not to add a temporary breakpoint at the "main"
2772 function of new SPE contexts. */
2773 add_setshow_boolean_cmd ("stop-on-load", class_support,
2774 &spu_stop_on_load_p, _("\
2775 Set whether to stop for new SPE threads."),
2776 _("\
2777 Show whether to stop for new SPE threads."),
2778 _("\
2779 Use \"on\" to give control to the user when a new SPE thread\n\
2780 enters its \"main\" function.\n\
2781 Use \"off\" to disable stopping for new SPE threads."),
2782 NULL,
2783 show_spu_stop_on_load,
2784 &setspucmdlist, &showspucmdlist);
2785
2786 /* Toggle whether or not to automatically flush the software-managed
2787 cache whenever SPE execution stops. */
2788 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2789 &spu_auto_flush_cache_p, _("\
2790 Set whether to automatically flush the software-managed cache."),
2791 _("\
2792 Show whether to automatically flush the software-managed cache."),
2793 _("\
2794 Use \"on\" to automatically flush the software-managed cache\n\
2795 whenever SPE execution stops.\n\
2796 Use \"off\" to never automatically flush the software-managed cache."),
2797 NULL,
2798 show_spu_auto_flush_cache,
2799 &setspucmdlist, &showspucmdlist);
2800
2801 /* Add root prefix command for all "info spu" commands. */
2802 add_prefix_cmd ("spu", class_info, info_spu_command,
2803 _("Various SPU specific commands."),
2804 &infospucmdlist, "info spu ", 0, &infolist);
2805
2806 /* Add various "info spu" commands. */
2807 add_cmd ("event", class_info, info_spu_event_command,
2808 _("Display SPU event facility status.\n"),
2809 &infospucmdlist);
2810 add_cmd ("signal", class_info, info_spu_signal_command,
2811 _("Display SPU signal notification facility status.\n"),
2812 &infospucmdlist);
2813 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2814 _("Display SPU mailbox facility status.\n"),
2815 &infospucmdlist);
2816 add_cmd ("dma", class_info, info_spu_dma_command,
2817 _("Display MFC DMA status.\n"),
2818 &infospucmdlist);
2819 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2820 _("Display MFC Proxy-DMA status.\n"),
2821 &infospucmdlist);
2822 }
This page took 0.102857 seconds and 4 git commands to generate.