testsuite: Fix recent GCC FAIL: gdb.arch/i386-signal.exp
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "objfiles.h"
37 #include "language.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "floatformat.h"
41 #include "block.h"
42 #include "observer.h"
43 #include "infcall.h"
44 #include "dwarf2.h"
45 #include "dwarf2-frame.h"
46 #include "ax.h"
47 #include "spu-tdep.h"
48 #include "location.h"
49
50 /* The list of available "set spu " and "show spu " commands. */
51 static struct cmd_list_element *setspucmdlist = NULL;
52 static struct cmd_list_element *showspucmdlist = NULL;
53
54 /* Whether to stop for new SPE contexts. */
55 static int spu_stop_on_load_p = 0;
56 /* Whether to automatically flush the SW-managed cache. */
57 static int spu_auto_flush_cache_p = 1;
58
59
60 /* The tdep structure. */
61 struct gdbarch_tdep
62 {
63 /* The spufs ID identifying our address space. */
64 int id;
65
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68 };
69
70
71 /* SPU-specific vector type. */
72 static struct type *
73 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74 {
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
79 const struct builtin_type *bt = builtin_type (gdbarch);
80 struct type *t;
81
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
84 append_composite_type_field (t, "uint128", bt->builtin_int128);
85 append_composite_type_field (t, "v2_int64",
86 init_vector_type (bt->builtin_int64, 2));
87 append_composite_type_field (t, "v4_int32",
88 init_vector_type (bt->builtin_int32, 4));
89 append_composite_type_field (t, "v8_int16",
90 init_vector_type (bt->builtin_int16, 8));
91 append_composite_type_field (t, "v16_int8",
92 init_vector_type (bt->builtin_int8, 16));
93 append_composite_type_field (t, "v2_double",
94 init_vector_type (bt->builtin_double, 2));
95 append_composite_type_field (t, "v4_float",
96 init_vector_type (bt->builtin_float, 4));
97
98 TYPE_VECTOR (t) = 1;
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105 }
106
107
108 /* The list of available "info spu " commands. */
109 static struct cmd_list_element *infospucmdlist = NULL;
110
111 /* Registers. */
112
113 static const char *
114 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
115 {
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143 }
144
145 static struct type *
146 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147 {
148 if (reg_nr < SPU_NUM_GPRS)
149 return spu_builtin_type_vec128 (gdbarch);
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
154 return builtin_type (gdbarch)->builtin_uint32;
155
156 case SPU_PC_REGNUM:
157 return builtin_type (gdbarch)->builtin_func_ptr;
158
159 case SPU_SP_REGNUM:
160 return builtin_type (gdbarch)->builtin_data_ptr;
161
162 case SPU_FPSCR_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint128;
164
165 case SPU_SRR0_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_LSLR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 case SPU_DECR_STATUS_REGNUM:
175 return builtin_type (gdbarch)->builtin_uint32;
176
177 default:
178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
179 }
180 }
181
182 /* Pseudo registers for preferred slots - stack pointer. */
183
184 static enum register_status
185 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187 {
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
190 enum register_status status;
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
194 ULONGEST ul;
195
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
206 return REG_VALID;
207 }
208
209 static enum register_status
210 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212 {
213 gdb_byte reg[16];
214 char annex[32];
215 ULONGEST id;
216 enum register_status status;
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
224 memcpy (buf, reg, 4);
225 return status;
226
227 case SPU_FPSCR_REGNUM:
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
233 return status;
234
235 case SPU_SRR0_REGNUM:
236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
237
238 case SPU_LSLR_REGNUM:
239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
240
241 case SPU_DECR_REGNUM:
242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
243
244 case SPU_DECR_STATUS_REGNUM:
245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
246
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250 }
251
252 static void
253 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255 {
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
258 char reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 (gdb_byte *) reg, 0, strlen (reg));
268 }
269
270 static void
271 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273 {
274 gdb_byte reg[16];
275 char annex[32];
276 ULONGEST id;
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311 }
312
313 static int
314 spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316 {
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333 }
334
335 static int
336 spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338 {
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355 }
356
357
358 /* Value conversion -- access scalar values at the preferred slot. */
359
360 static struct value *
361 spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
363 {
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
366 LONGEST len = TYPE_LENGTH (type);
367
368 if (regnum < SPU_NUM_GPRS && len < 16)
369 {
370 int preferred_slot = len < 4 ? 4 - len : 0;
371 set_value_offset (value, preferred_slot);
372 }
373
374 return value;
375 }
376
377 /* Register groups. */
378
379 static int
380 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382 {
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397 }
398
399 /* DWARF-2 register numbers. */
400
401 static int
402 spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403 {
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406 }
407
408
409 /* Address handling. */
410
411 static int
412 spu_gdbarch_id (struct gdbarch *gdbarch)
413 {
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
418 provide an SPU ID. Retrieve it from the objfile's relocated
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427 }
428
429 static int
430 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431 {
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436 }
437
438 static const char *
439 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440 {
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445 }
446
447 static int
448 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450 {
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458 }
459
460 static void
461 spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467 }
468
469 static CORE_ADDR
470 spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
472 {
473 int id = spu_gdbarch_id (gdbarch);
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
477
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
482 return addr? SPUADDR (id, addr) : 0;
483 }
484
485 static CORE_ADDR
486 spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488 {
489 int id = spu_gdbarch_id (gdbarch);
490 ULONGEST addr = unpack_long (type, buf);
491
492 return SPUADDR (id, addr);
493 }
494
495
496 /* Decoding SPU instructions. */
497
498 enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
514 op_selb = 0x8,
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532 static int
533 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534 {
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544 }
545
546 static int
547 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548 {
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559 }
560
561 static int
562 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563 {
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573 }
574
575 static int
576 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577 {
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587 }
588
589 static int
590 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591 {
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600 }
601
602 static int
603 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604 {
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613 }
614
615 static int
616 is_branch (unsigned int insn, int *offset, int *reg)
617 {
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652 }
653
654
655 /* Prolog parsing. */
656
657 struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670 static CORE_ADDR
671 spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
673 struct spu_prologue_data *data)
674 {
675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
679 int found_bc = 0;
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
708 - The first instruction to save the backchain.
709
710 We return the instruction after the latest of these four,
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
737 insn = extract_unsigned_integer (buf, 4, byte_order);
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852 }
853
854 /* Return the first instruction after the prologue starting at PC. */
855 static CORE_ADDR
856 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
857 {
858 struct spu_prologue_data data;
859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
860 }
861
862 /* Return the frame pointer in use at address PC. */
863 static void
864 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
866 {
867 struct spu_prologue_data data;
868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
878 /* ??? We don't really know ... */
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882 }
883
884 /* Implement the stack_frame_destroyed_p gdbarch method.
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900 static int
901 spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
902 {
903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
907 int rt, ra, rb, immed;
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
933 insn = extract_unsigned_integer (buf, 4, byte_order);
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
961 insn = extract_unsigned_integer (buf, 4, byte_order);
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976 }
977
978
979 /* Normal stack frames. */
980
981 struct spu_unwind_cache
982 {
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988 };
989
990 static struct spu_unwind_cache *
991 spu_frame_unwind_cache (struct frame_info *this_frame,
992 void **this_prologue_cache)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
999 CORE_ADDR id = tdep->id;
1000 gdb_byte buf[16];
1001
1002 if (*this_prologue_cache)
1003 return (struct spu_unwind_cache *) *this_prologue_cache;
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
1012 info->func = get_frame_func (this_frame);
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
1016 info->func = get_frame_pc (this_frame);
1017 data.size = -1;
1018 }
1019 else
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
1030 get_frame_register (this_frame, data.cfa_reg, buf);
1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
1032 cfa = SPUADDR (id, cfa);
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
1049 CORE_ADDR reg;
1050 LONGEST backchain;
1051 ULONGEST lslr;
1052 int status;
1053
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
1059 /* Get the backchain. */
1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
1066 if (status && backchain > 0 && backchain <= lslr)
1067 {
1068 /* Assume the link register is saved into its slot. */
1069 if (backchain + 16 <= lslr)
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
1072
1073 /* Frame bases. */
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
1076 }
1077 }
1078
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
1083 /* The previous SP is equal to the CFA. */
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
1086
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
1093
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1102 extract_unsigned_integer (buf + 8, 4, byte_order));
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1105 extract_unsigned_integer (buf, 4, byte_order));
1106
1107 return info;
1108 }
1109
1110 static void
1111 spu_frame_this_id (struct frame_info *this_frame,
1112 void **this_prologue_cache, struct frame_id *this_id)
1113 {
1114 struct spu_unwind_cache *info =
1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121 }
1122
1123 static struct value *
1124 spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
1126 {
1127 struct spu_unwind_cache *info
1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1135 }
1136
1137 static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
1139 default_frame_unwind_stop_reason,
1140 spu_frame_this_id,
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
1144 };
1145
1146 static CORE_ADDR
1147 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1148 {
1149 struct spu_unwind_cache *info
1150 = spu_frame_unwind_cache (this_frame, this_cache);
1151 return info->local_base;
1152 }
1153
1154 static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159 };
1160
1161 static CORE_ADDR
1162 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163 {
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
1167 return SPUADDR (tdep->id, pc & -4);
1168 }
1169
1170 static CORE_ADDR
1171 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172 {
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
1176 }
1177
1178 static CORE_ADDR
1179 spu_read_pc (struct regcache *regcache)
1180 {
1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1184 /* Mask off interrupt enable bit. */
1185 return SPUADDR (tdep->id, pc & -4);
1186 }
1187
1188 static void
1189 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1190 {
1191 /* Keep interrupt enabled state unchanged. */
1192 ULONGEST old_pc;
1193
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1197 }
1198
1199
1200 /* Cell/B.E. cross-architecture unwinder support. */
1201
1202 struct spu2ppu_cache
1203 {
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206 };
1207
1208 static struct gdbarch *
1209 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210 {
1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1212 return get_regcache_arch (cache->regcache);
1213 }
1214
1215 static void
1216 spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218 {
1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1220 *this_id = cache->frame_id;
1221 }
1222
1223 static struct value *
1224 spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226 {
1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1229 gdb_byte *buf;
1230
1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234 }
1235
1236 static int
1237 spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239 {
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void
1287 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288 {
1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
1290 regcache_xfree (cache->regcache);
1291 }
1292
1293 static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
1295 default_frame_unwind_stop_reason,
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302 };
1303
1304
1305 /* Function calling convention. */
1306
1307 static CORE_ADDR
1308 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309 {
1310 return sp & ~15;
1311 }
1312
1313 static CORE_ADDR
1314 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318 {
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327 }
1328
1329 static int
1330 spu_scalar_value_p (struct type *type)
1331 {
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 return TYPE_LENGTH (type) <= 16;
1342
1343 default:
1344 return 0;
1345 }
1346 }
1347
1348 static void
1349 spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1351 {
1352 int len = TYPE_LENGTH (type);
1353
1354 if (spu_scalar_value_p (type))
1355 {
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1358 }
1359 else
1360 {
1361 while (len >= 16)
1362 {
1363 regcache_cooked_write (regcache, regnum++, in);
1364 in += 16;
1365 len -= 16;
1366 }
1367
1368 if (len > 0)
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1370 }
1371 }
1372
1373 static void
1374 spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1376 {
1377 int len = TYPE_LENGTH (type);
1378
1379 if (spu_scalar_value_p (type))
1380 {
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1383 }
1384 else
1385 {
1386 while (len >= 16)
1387 {
1388 regcache_cooked_read (regcache, regnum++, out);
1389 out += 16;
1390 len -= 16;
1391 }
1392
1393 if (len > 0)
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1395 }
1396 }
1397
1398 static CORE_ADDR
1399 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 CORE_ADDR sp_delta;
1406 int i;
1407 int regnum = SPU_ARG1_REGNUM;
1408 int stack_arg = -1;
1409 gdb_byte buf[16];
1410
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1415
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1419 if (struct_return)
1420 {
1421 memset (buf, 0, sizeof buf);
1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1423 regcache_cooked_write (regcache, regnum++, buf);
1424 }
1425
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1428 {
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
1433
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1437 {
1438 stack_arg = i;
1439 break;
1440 }
1441
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1443 regnum += n_regs;
1444 }
1445
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1448 {
1449 CORE_ADDR ap;
1450
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1453 {
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1456 }
1457
1458 /* Fill in stack arguments. */
1459 ap = sp;
1460 for (i = stack_arg; i < nargs; i++)
1461 {
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1465 int preferred_slot;
1466
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1469 else
1470 preferred_slot = 0;
1471
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1474 }
1475 }
1476
1477 /* Allocate stack frame header. */
1478 sp -= 32;
1479
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1483
1484 /* Finally, update all slots of the SP register. */
1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1486 for (i = 0; i < 4; i++)
1487 {
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1490 }
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1492
1493 return sp;
1494 }
1495
1496 static struct frame_id
1497 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1498 {
1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1503 }
1504
1505 /* Function return value access. */
1506
1507 static enum return_value_convention
1508 spu_return_value (struct gdbarch *gdbarch, struct value *function,
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
1511 {
1512 struct type *func_type = function ? value_type (function) : NULL;
1513 enum return_value_convention rvc;
1514 int opencl_vector = 0;
1515
1516 if (func_type)
1517 {
1518 func_type = check_typedef (func_type);
1519
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1527 opencl_vector = 1;
1528 }
1529
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1532 else
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1534
1535 if (in)
1536 {
1537 switch (rvc)
1538 {
1539 case RETURN_VALUE_REGISTER_CONVENTION:
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1542 else
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1544 break;
1545
1546 case RETURN_VALUE_STRUCT_CONVENTION:
1547 error (_("Cannot set function return value."));
1548 break;
1549 }
1550 }
1551 else if (out)
1552 {
1553 switch (rvc)
1554 {
1555 case RETURN_VALUE_REGISTER_CONVENTION:
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1558 else
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1560 break;
1561
1562 case RETURN_VALUE_STRUCT_CONVENTION:
1563 error (_("Function return value unknown."));
1564 break;
1565 }
1566 }
1567
1568 return rvc;
1569 }
1570
1571
1572 /* Breakpoints. */
1573
1574 static const gdb_byte *
1575 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1576 CORE_ADDR * pcptr, int *lenptr)
1577 {
1578 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1579
1580 *lenptr = sizeof breakpoint;
1581 return breakpoint;
1582 }
1583
1584 static int
1585 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1586 struct bp_target_info *bp_tgt)
1587 {
1588 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1589 that in a combined application, we have some breakpoints inserted in SPU
1590 code, and now the application forks (on the PPU side). GDB common code
1591 will assume that the fork system call copied all breakpoints into the new
1592 process' address space, and that all those copies now need to be removed
1593 (see breakpoint.c:detach_breakpoints).
1594
1595 While this is certainly true for PPU side breakpoints, it is not true
1596 for SPU side breakpoints. fork will clone the SPU context file
1597 descriptors, so that all the existing SPU contexts are in accessible
1598 in the new process. However, the contents of the SPU contexts themselves
1599 are *not* cloned. Therefore the effect of detach_breakpoints is to
1600 remove SPU breakpoints from the *original* SPU context's local store
1601 -- this is not the correct behaviour.
1602
1603 The workaround is to check whether the PID we are asked to remove this
1604 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1605 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1606 true in the context of detach_breakpoints. If so, we simply do nothing.
1607 [ Note that for the fork child process, it does not matter if breakpoints
1608 remain inserted, because those SPU contexts are not runnable anyway --
1609 the Linux kernel allows only the original process to invoke spu_run. */
1610
1611 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1612 return 0;
1613
1614 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1615 }
1616
1617
1618 /* Software single-stepping support. */
1619
1620 static int
1621 spu_software_single_step (struct frame_info *frame)
1622 {
1623 struct gdbarch *gdbarch = get_frame_arch (frame);
1624 struct address_space *aspace = get_frame_address_space (frame);
1625 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1626 CORE_ADDR pc, next_pc;
1627 unsigned int insn;
1628 int offset, reg;
1629 gdb_byte buf[4];
1630 ULONGEST lslr;
1631
1632 pc = get_frame_pc (frame);
1633
1634 if (target_read_memory (pc, buf, 4))
1635 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1636 paddress (gdbarch, pc));
1637
1638 insn = extract_unsigned_integer (buf, 4, byte_order);
1639
1640 /* Get local store limit. */
1641 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1642 if (!lslr)
1643 lslr = (ULONGEST) -1;
1644
1645 /* Next sequential instruction is at PC + 4, except if the current
1646 instruction is a PPE-assisted call, in which case it is at PC + 8.
1647 Wrap around LS limit to be on the safe side. */
1648 if ((insn & 0xffffff00) == 0x00002100)
1649 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
1650 else
1651 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
1652
1653 insert_single_step_breakpoint (gdbarch,
1654 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
1655
1656 if (is_branch (insn, &offset, &reg))
1657 {
1658 CORE_ADDR target = offset;
1659
1660 if (reg == SPU_PC_REGNUM)
1661 target += SPUADDR_ADDR (pc);
1662 else if (reg != -1)
1663 {
1664 int optim, unavail;
1665
1666 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1667 &optim, &unavail))
1668 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1669 else
1670 {
1671 if (optim)
1672 throw_error (OPTIMIZED_OUT_ERROR,
1673 _("Could not determine address of "
1674 "single-step breakpoint."));
1675 if (unavail)
1676 throw_error (NOT_AVAILABLE_ERROR,
1677 _("Could not determine address of "
1678 "single-step breakpoint."));
1679 }
1680 }
1681
1682 target = target & lslr;
1683 if (target != next_pc)
1684 insert_single_step_breakpoint (gdbarch, aspace,
1685 SPUADDR (SPUADDR_SPU (pc), target));
1686 }
1687
1688 return 1;
1689 }
1690
1691
1692 /* Longjmp support. */
1693
1694 static int
1695 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1696 {
1697 struct gdbarch *gdbarch = get_frame_arch (frame);
1698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1700 gdb_byte buf[4];
1701 CORE_ADDR jb_addr;
1702 int optim, unavail;
1703
1704 /* Jump buffer is pointed to by the argument register $r3. */
1705 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1706 &optim, &unavail))
1707 return 0;
1708
1709 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1710 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1711 return 0;
1712
1713 *pc = extract_unsigned_integer (buf, 4, byte_order);
1714 *pc = SPUADDR (tdep->id, *pc);
1715 return 1;
1716 }
1717
1718
1719 /* Disassembler. */
1720
1721 struct spu_dis_asm_data
1722 {
1723 struct gdbarch *gdbarch;
1724 int id;
1725 };
1726
1727 static void
1728 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1729 {
1730 struct spu_dis_asm_data *data
1731 = (struct spu_dis_asm_data *) info->application_data;
1732 print_address (data->gdbarch, SPUADDR (data->id, addr),
1733 (struct ui_file *) info->stream);
1734 }
1735
1736 static int
1737 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1738 {
1739 /* The opcodes disassembler does 18-bit address arithmetic. Make
1740 sure the SPU ID encoded in the high bits is added back when we
1741 call print_address. */
1742 struct disassemble_info spu_info = *info;
1743 struct spu_dis_asm_data data;
1744 data.gdbarch = (struct gdbarch *) info->application_data;
1745 data.id = SPUADDR_SPU (memaddr);
1746
1747 spu_info.application_data = &data;
1748 spu_info.print_address_func = spu_dis_asm_print_address;
1749 return print_insn_spu (memaddr, &spu_info);
1750 }
1751
1752
1753 /* Target overlays for the SPU overlay manager.
1754
1755 See the documentation of simple_overlay_update for how the
1756 interface is supposed to work.
1757
1758 Data structures used by the overlay manager:
1759
1760 struct ovly_table
1761 {
1762 u32 vma;
1763 u32 size;
1764 u32 pos;
1765 u32 buf;
1766 } _ovly_table[]; -- one entry per overlay section
1767
1768 struct ovly_buf_table
1769 {
1770 u32 mapped;
1771 } _ovly_buf_table[]; -- one entry per overlay buffer
1772
1773 _ovly_table should never change.
1774
1775 Both tables are aligned to a 16-byte boundary, the symbols
1776 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1777 size set to the size of the respective array. buf in _ovly_table is
1778 an index into _ovly_buf_table.
1779
1780 mapped is an index into _ovly_table. Both the mapped and buf indices start
1781 from one to reference the first entry in their respective tables. */
1782
1783 /* Using the per-objfile private data mechanism, we store for each
1784 objfile an array of "struct spu_overlay_table" structures, one
1785 for each obj_section of the objfile. This structure holds two
1786 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1787 is *not* an overlay section. If it is non-zero, it represents
1788 a target address. The overlay section is mapped iff the target
1789 integer at this location equals MAPPED_VAL. */
1790
1791 static const struct objfile_data *spu_overlay_data;
1792
1793 struct spu_overlay_table
1794 {
1795 CORE_ADDR mapped_ptr;
1796 CORE_ADDR mapped_val;
1797 };
1798
1799 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1800 the _ovly_table data structure from the target and initialize the
1801 spu_overlay_table data structure from it. */
1802 static struct spu_overlay_table *
1803 spu_get_overlay_table (struct objfile *objfile)
1804 {
1805 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1806 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1807 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
1808 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1809 unsigned ovly_table_size, ovly_buf_table_size;
1810 struct spu_overlay_table *tbl;
1811 struct obj_section *osect;
1812 gdb_byte *ovly_table;
1813 int i;
1814
1815 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
1816 if (tbl)
1817 return tbl;
1818
1819 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1820 if (!ovly_table_msym.minsym)
1821 return NULL;
1822
1823 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1824 NULL, objfile);
1825 if (!ovly_buf_table_msym.minsym)
1826 return NULL;
1827
1828 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
1829 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
1830
1831 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1832 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
1833
1834 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
1835 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1836
1837 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1838 objfile->sections_end - objfile->sections,
1839 struct spu_overlay_table);
1840
1841 for (i = 0; i < ovly_table_size / 16; i++)
1842 {
1843 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1844 4, byte_order);
1845 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1846 4, byte_order);
1847 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1848 4, byte_order);
1849 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1850 4, byte_order);
1851
1852 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1853 continue;
1854
1855 ALL_OBJFILE_OSECTIONS (objfile, osect)
1856 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1857 && pos == osect->the_bfd_section->filepos)
1858 {
1859 int ndx = osect - objfile->sections;
1860 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1861 tbl[ndx].mapped_val = i + 1;
1862 break;
1863 }
1864 }
1865
1866 xfree (ovly_table);
1867 set_objfile_data (objfile, spu_overlay_data, tbl);
1868 return tbl;
1869 }
1870
1871 /* Read _ovly_buf_table entry from the target to dermine whether
1872 OSECT is currently mapped, and update the mapped state. */
1873 static void
1874 spu_overlay_update_osect (struct obj_section *osect)
1875 {
1876 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1877 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1878 struct spu_overlay_table *ovly_table;
1879 CORE_ADDR id, val;
1880
1881 ovly_table = spu_get_overlay_table (osect->objfile);
1882 if (!ovly_table)
1883 return;
1884
1885 ovly_table += osect - osect->objfile->sections;
1886 if (ovly_table->mapped_ptr == 0)
1887 return;
1888
1889 id = SPUADDR_SPU (obj_section_addr (osect));
1890 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1891 4, byte_order);
1892 osect->ovly_mapped = (val == ovly_table->mapped_val);
1893 }
1894
1895 /* If OSECT is NULL, then update all sections' mapped state.
1896 If OSECT is non-NULL, then update only OSECT's mapped state. */
1897 static void
1898 spu_overlay_update (struct obj_section *osect)
1899 {
1900 /* Just one section. */
1901 if (osect)
1902 spu_overlay_update_osect (osect);
1903
1904 /* All sections. */
1905 else
1906 {
1907 struct objfile *objfile;
1908
1909 ALL_OBJSECTIONS (objfile, osect)
1910 if (section_is_overlay (osect))
1911 spu_overlay_update_osect (osect);
1912 }
1913 }
1914
1915 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1916 If there is one, go through all sections and make sure for non-
1917 overlay sections LMA equals VMA, while for overlay sections LMA
1918 is larger than SPU_OVERLAY_LMA. */
1919 static void
1920 spu_overlay_new_objfile (struct objfile *objfile)
1921 {
1922 struct spu_overlay_table *ovly_table;
1923 struct obj_section *osect;
1924
1925 /* If we've already touched this file, do nothing. */
1926 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1927 return;
1928
1929 /* Consider only SPU objfiles. */
1930 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1931 return;
1932
1933 /* Check if this objfile has overlays. */
1934 ovly_table = spu_get_overlay_table (objfile);
1935 if (!ovly_table)
1936 return;
1937
1938 /* Now go and fiddle with all the LMAs. */
1939 ALL_OBJFILE_OSECTIONS (objfile, osect)
1940 {
1941 bfd *obfd = objfile->obfd;
1942 asection *bsect = osect->the_bfd_section;
1943 int ndx = osect - objfile->sections;
1944
1945 if (ovly_table[ndx].mapped_ptr == 0)
1946 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1947 else
1948 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
1949 }
1950 }
1951
1952
1953 /* Insert temporary breakpoint on "main" function of newly loaded
1954 SPE context OBJFILE. */
1955 static void
1956 spu_catch_start (struct objfile *objfile)
1957 {
1958 struct bound_minimal_symbol minsym;
1959 struct compunit_symtab *cust;
1960 CORE_ADDR pc;
1961 struct event_location *location;
1962 struct cleanup *back_to;
1963
1964 /* Do this only if requested by "set spu stop-on-load on". */
1965 if (!spu_stop_on_load_p)
1966 return;
1967
1968 /* Consider only SPU objfiles. */
1969 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1970 return;
1971
1972 /* The main objfile is handled differently. */
1973 if (objfile == symfile_objfile)
1974 return;
1975
1976 /* There can be multiple symbols named "main". Search for the
1977 "main" in *this* objfile. */
1978 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1979 if (!minsym.minsym)
1980 return;
1981
1982 /* If we have debugging information, try to use it -- this
1983 will allow us to properly skip the prologue. */
1984 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
1985 cust
1986 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1987 minsym.minsym));
1988 if (cust != NULL)
1989 {
1990 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
1991 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1992 struct symbol *sym;
1993 struct symtab_and_line sal;
1994
1995 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
1996 if (sym)
1997 {
1998 fixup_symbol_section (sym, objfile);
1999 sal = find_function_start_sal (sym, 1);
2000 pc = sal.pc;
2001 }
2002 }
2003
2004 /* Use a numerical address for the set_breakpoint command to avoid having
2005 the breakpoint re-set incorrectly. */
2006 location = new_address_location (pc, NULL, 0);
2007 back_to = make_cleanup_delete_event_location (location);
2008 create_breakpoint (get_objfile_arch (objfile), location,
2009 NULL /* cond_string */, -1 /* thread */,
2010 NULL /* extra_string */,
2011 0 /* parse_condition_and_thread */, 1 /* tempflag */,
2012 bp_breakpoint /* type_wanted */,
2013 0 /* ignore_count */,
2014 AUTO_BOOLEAN_FALSE /* pending_break_support */,
2015 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
2016 1 /* enabled */, 0 /* internal */, 0);
2017 do_cleanups (back_to);
2018 }
2019
2020
2021 /* Look up OBJFILE loaded into FRAME's SPU context. */
2022 static struct objfile *
2023 spu_objfile_from_frame (struct frame_info *frame)
2024 {
2025 struct gdbarch *gdbarch = get_frame_arch (frame);
2026 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2027 struct objfile *obj;
2028
2029 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2030 return NULL;
2031
2032 ALL_OBJFILES (obj)
2033 {
2034 if (obj->sections != obj->sections_end
2035 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2036 return obj;
2037 }
2038
2039 return NULL;
2040 }
2041
2042 /* Flush cache for ea pointer access if available. */
2043 static void
2044 flush_ea_cache (void)
2045 {
2046 struct bound_minimal_symbol msymbol;
2047 struct objfile *obj;
2048
2049 if (!has_stack_frames ())
2050 return;
2051
2052 obj = spu_objfile_from_frame (get_current_frame ());
2053 if (obj == NULL)
2054 return;
2055
2056 /* Lookup inferior function __cache_flush. */
2057 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
2058 if (msymbol.minsym != NULL)
2059 {
2060 struct type *type;
2061 CORE_ADDR addr;
2062
2063 type = objfile_type (obj)->builtin_void;
2064 type = lookup_function_type (type);
2065 type = lookup_pointer_type (type);
2066 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2067
2068 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2069 }
2070 }
2071
2072 /* This handler is called when the inferior has stopped. If it is stopped in
2073 SPU architecture then flush the ea cache if used. */
2074 static void
2075 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2076 {
2077 if (!spu_auto_flush_cache_p)
2078 return;
2079
2080 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2081 re-entering this function when __cache_flush stops. */
2082 spu_auto_flush_cache_p = 0;
2083 flush_ea_cache ();
2084 spu_auto_flush_cache_p = 1;
2085 }
2086
2087
2088 /* "info spu" commands. */
2089
2090 static void
2091 info_spu_event_command (char *args, int from_tty)
2092 {
2093 struct frame_info *frame = get_selected_frame (NULL);
2094 ULONGEST event_status = 0;
2095 ULONGEST event_mask = 0;
2096 struct cleanup *chain;
2097 gdb_byte buf[100];
2098 char annex[32];
2099 LONGEST len;
2100 int id;
2101
2102 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2103 error (_("\"info spu\" is only supported on the SPU architecture."));
2104
2105 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2106
2107 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2108 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2109 buf, 0, (sizeof (buf) - 1));
2110 if (len <= 0)
2111 error (_("Could not read event_status."));
2112 buf[len] = '\0';
2113 event_status = strtoulst ((char *) buf, NULL, 16);
2114
2115 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2116 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2117 buf, 0, (sizeof (buf) - 1));
2118 if (len <= 0)
2119 error (_("Could not read event_mask."));
2120 buf[len] = '\0';
2121 event_mask = strtoulst ((char *) buf, NULL, 16);
2122
2123 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
2124
2125 if (ui_out_is_mi_like_p (current_uiout))
2126 {
2127 ui_out_field_fmt (current_uiout, "event_status",
2128 "0x%s", phex_nz (event_status, 4));
2129 ui_out_field_fmt (current_uiout, "event_mask",
2130 "0x%s", phex_nz (event_mask, 4));
2131 }
2132 else
2133 {
2134 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2135 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2136 }
2137
2138 do_cleanups (chain);
2139 }
2140
2141 static void
2142 info_spu_signal_command (char *args, int from_tty)
2143 {
2144 struct frame_info *frame = get_selected_frame (NULL);
2145 struct gdbarch *gdbarch = get_frame_arch (frame);
2146 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2147 ULONGEST signal1 = 0;
2148 ULONGEST signal1_type = 0;
2149 int signal1_pending = 0;
2150 ULONGEST signal2 = 0;
2151 ULONGEST signal2_type = 0;
2152 int signal2_pending = 0;
2153 struct cleanup *chain;
2154 char annex[32];
2155 gdb_byte buf[100];
2156 LONGEST len;
2157 int id;
2158
2159 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2160 error (_("\"info spu\" is only supported on the SPU architecture."));
2161
2162 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2163
2164 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2165 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2166 if (len < 0)
2167 error (_("Could not read signal1."));
2168 else if (len == 4)
2169 {
2170 signal1 = extract_unsigned_integer (buf, 4, byte_order);
2171 signal1_pending = 1;
2172 }
2173
2174 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2175 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2176 buf, 0, (sizeof (buf) - 1));
2177 if (len <= 0)
2178 error (_("Could not read signal1_type."));
2179 buf[len] = '\0';
2180 signal1_type = strtoulst ((char *) buf, NULL, 16);
2181
2182 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2183 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2184 if (len < 0)
2185 error (_("Could not read signal2."));
2186 else if (len == 4)
2187 {
2188 signal2 = extract_unsigned_integer (buf, 4, byte_order);
2189 signal2_pending = 1;
2190 }
2191
2192 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2193 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2194 buf, 0, (sizeof (buf) - 1));
2195 if (len <= 0)
2196 error (_("Could not read signal2_type."));
2197 buf[len] = '\0';
2198 signal2_type = strtoulst ((char *) buf, NULL, 16);
2199
2200 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
2201
2202 if (ui_out_is_mi_like_p (current_uiout))
2203 {
2204 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2205 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2206 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2207 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2208 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2209 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
2210 }
2211 else
2212 {
2213 if (signal1_pending)
2214 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2215 else
2216 printf_filtered (_("Signal 1 not pending "));
2217
2218 if (signal1_type)
2219 printf_filtered (_("(Type Or)\n"));
2220 else
2221 printf_filtered (_("(Type Overwrite)\n"));
2222
2223 if (signal2_pending)
2224 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2225 else
2226 printf_filtered (_("Signal 2 not pending "));
2227
2228 if (signal2_type)
2229 printf_filtered (_("(Type Or)\n"));
2230 else
2231 printf_filtered (_("(Type Overwrite)\n"));
2232 }
2233
2234 do_cleanups (chain);
2235 }
2236
2237 static void
2238 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
2239 const char *field, const char *msg)
2240 {
2241 struct cleanup *chain;
2242 int i;
2243
2244 if (nr <= 0)
2245 return;
2246
2247 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
2248
2249 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2250 ui_out_table_body (current_uiout);
2251
2252 for (i = 0; i < nr; i++)
2253 {
2254 struct cleanup *val_chain;
2255 ULONGEST val;
2256 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
2257 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2258 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
2259 do_cleanups (val_chain);
2260
2261 if (!ui_out_is_mi_like_p (current_uiout))
2262 printf_filtered ("\n");
2263 }
2264
2265 do_cleanups (chain);
2266 }
2267
2268 static void
2269 info_spu_mailbox_command (char *args, int from_tty)
2270 {
2271 struct frame_info *frame = get_selected_frame (NULL);
2272 struct gdbarch *gdbarch = get_frame_arch (frame);
2273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2274 struct cleanup *chain;
2275 char annex[32];
2276 gdb_byte buf[1024];
2277 LONGEST len;
2278 int id;
2279
2280 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2281 error (_("\"info spu\" is only supported on the SPU architecture."));
2282
2283 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2284
2285 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
2286
2287 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2288 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2289 buf, 0, sizeof buf);
2290 if (len < 0)
2291 error (_("Could not read mbox_info."));
2292
2293 info_spu_mailbox_list (buf, len / 4, byte_order,
2294 "mbox", "SPU Outbound Mailbox");
2295
2296 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2297 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2298 buf, 0, sizeof buf);
2299 if (len < 0)
2300 error (_("Could not read ibox_info."));
2301
2302 info_spu_mailbox_list (buf, len / 4, byte_order,
2303 "ibox", "SPU Outbound Interrupt Mailbox");
2304
2305 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2306 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2307 buf, 0, sizeof buf);
2308 if (len < 0)
2309 error (_("Could not read wbox_info."));
2310
2311 info_spu_mailbox_list (buf, len / 4, byte_order,
2312 "wbox", "SPU Inbound Mailbox");
2313
2314 do_cleanups (chain);
2315 }
2316
2317 static ULONGEST
2318 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2319 {
2320 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2321 return (word >> (63 - last)) & mask;
2322 }
2323
2324 static void
2325 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2326 {
2327 static char *spu_mfc_opcode[256] =
2328 {
2329 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2334 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2335 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2338 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2339 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2346 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2347 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2352 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2355 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2356 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2357 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2360 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2361 };
2362
2363 int *seq = XALLOCAVEC (int, nr);
2364 int done = 0;
2365 struct cleanup *chain;
2366 int i, j;
2367
2368
2369 /* Determine sequence in which to display (valid) entries. */
2370 for (i = 0; i < nr; i++)
2371 {
2372 /* Search for the first valid entry all of whose
2373 dependencies are met. */
2374 for (j = 0; j < nr; j++)
2375 {
2376 ULONGEST mfc_cq_dw3;
2377 ULONGEST dependencies;
2378
2379 if (done & (1 << (nr - 1 - j)))
2380 continue;
2381
2382 mfc_cq_dw3
2383 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2384 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2385 continue;
2386
2387 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2388 if ((dependencies & done) != dependencies)
2389 continue;
2390
2391 seq[i] = j;
2392 done |= 1 << (nr - 1 - j);
2393 break;
2394 }
2395
2396 if (j == nr)
2397 break;
2398 }
2399
2400 nr = i;
2401
2402
2403 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2404 "dma_cmd");
2405
2406 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2407 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2408 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2409 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2410 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2411 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2412 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2413 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2414 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2415 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
2416
2417 ui_out_table_body (current_uiout);
2418
2419 for (i = 0; i < nr; i++)
2420 {
2421 struct cleanup *cmd_chain;
2422 ULONGEST mfc_cq_dw0;
2423 ULONGEST mfc_cq_dw1;
2424 ULONGEST mfc_cq_dw2;
2425 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2426 int list_lsa, list_size, mfc_lsa, mfc_size;
2427 ULONGEST mfc_ea;
2428 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2429
2430 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2431 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2432
2433 mfc_cq_dw0
2434 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2435 mfc_cq_dw1
2436 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2437 mfc_cq_dw2
2438 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2439
2440 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2441 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2442 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2443 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2444 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2445 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2446 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2447
2448 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2449 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2450
2451 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2452 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2453 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2454 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2455 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2456
2457 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
2458
2459 if (spu_mfc_opcode[mfc_cmd_opcode])
2460 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2461 else
2462 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
2463
2464 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2465 ui_out_field_int (current_uiout, "tid", tclass_id);
2466 ui_out_field_int (current_uiout, "rid", rclass_id);
2467
2468 if (ea_valid_p)
2469 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
2470 else
2471 ui_out_field_skip (current_uiout, "ea");
2472
2473 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
2474 if (qw_valid_p)
2475 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
2476 else
2477 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
2478
2479 if (list_valid_p)
2480 {
2481 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2482 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
2483 }
2484 else
2485 {
2486 ui_out_field_skip (current_uiout, "lstaddr");
2487 ui_out_field_skip (current_uiout, "lstsize");
2488 }
2489
2490 if (cmd_error_p)
2491 ui_out_field_string (current_uiout, "error_p", "*");
2492 else
2493 ui_out_field_skip (current_uiout, "error_p");
2494
2495 do_cleanups (cmd_chain);
2496
2497 if (!ui_out_is_mi_like_p (current_uiout))
2498 printf_filtered ("\n");
2499 }
2500
2501 do_cleanups (chain);
2502 }
2503
2504 static void
2505 info_spu_dma_command (char *args, int from_tty)
2506 {
2507 struct frame_info *frame = get_selected_frame (NULL);
2508 struct gdbarch *gdbarch = get_frame_arch (frame);
2509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2510 ULONGEST dma_info_type;
2511 ULONGEST dma_info_mask;
2512 ULONGEST dma_info_status;
2513 ULONGEST dma_info_stall_and_notify;
2514 ULONGEST dma_info_atomic_command_status;
2515 struct cleanup *chain;
2516 char annex[32];
2517 gdb_byte buf[1024];
2518 LONGEST len;
2519 int id;
2520
2521 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2522 error (_("\"info spu\" is only supported on the SPU architecture."));
2523
2524 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2525
2526 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2527 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2528 buf, 0, 40 + 16 * 32);
2529 if (len <= 0)
2530 error (_("Could not read dma_info."));
2531
2532 dma_info_type
2533 = extract_unsigned_integer (buf, 8, byte_order);
2534 dma_info_mask
2535 = extract_unsigned_integer (buf + 8, 8, byte_order);
2536 dma_info_status
2537 = extract_unsigned_integer (buf + 16, 8, byte_order);
2538 dma_info_stall_and_notify
2539 = extract_unsigned_integer (buf + 24, 8, byte_order);
2540 dma_info_atomic_command_status
2541 = extract_unsigned_integer (buf + 32, 8, byte_order);
2542
2543 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
2544
2545 if (ui_out_is_mi_like_p (current_uiout))
2546 {
2547 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
2548 phex_nz (dma_info_type, 4));
2549 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
2550 phex_nz (dma_info_mask, 4));
2551 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
2552 phex_nz (dma_info_status, 4));
2553 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
2554 phex_nz (dma_info_stall_and_notify, 4));
2555 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
2556 phex_nz (dma_info_atomic_command_status, 4));
2557 }
2558 else
2559 {
2560 const char *query_msg = _("no query pending");
2561
2562 if (dma_info_type & 4)
2563 switch (dma_info_type & 3)
2564 {
2565 case 1: query_msg = _("'any' query pending"); break;
2566 case 2: query_msg = _("'all' query pending"); break;
2567 default: query_msg = _("undefined query type"); break;
2568 }
2569
2570 printf_filtered (_("Tag-Group Status 0x%s\n"),
2571 phex (dma_info_status, 4));
2572 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2573 phex (dma_info_mask, 4), query_msg);
2574 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2575 phex (dma_info_stall_and_notify, 4));
2576 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2577 phex (dma_info_atomic_command_status, 4));
2578 printf_filtered ("\n");
2579 }
2580
2581 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2582 do_cleanups (chain);
2583 }
2584
2585 static void
2586 info_spu_proxydma_command (char *args, int from_tty)
2587 {
2588 struct frame_info *frame = get_selected_frame (NULL);
2589 struct gdbarch *gdbarch = get_frame_arch (frame);
2590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2591 ULONGEST dma_info_type;
2592 ULONGEST dma_info_mask;
2593 ULONGEST dma_info_status;
2594 struct cleanup *chain;
2595 char annex[32];
2596 gdb_byte buf[1024];
2597 LONGEST len;
2598 int id;
2599
2600 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2601 error (_("\"info spu\" is only supported on the SPU architecture."));
2602
2603 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2604
2605 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2606 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2607 buf, 0, 24 + 8 * 32);
2608 if (len <= 0)
2609 error (_("Could not read proxydma_info."));
2610
2611 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2612 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2613 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2614
2615 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2616 "SPUInfoProxyDMA");
2617
2618 if (ui_out_is_mi_like_p (current_uiout))
2619 {
2620 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
2621 phex_nz (dma_info_type, 4));
2622 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
2623 phex_nz (dma_info_mask, 4));
2624 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
2625 phex_nz (dma_info_status, 4));
2626 }
2627 else
2628 {
2629 const char *query_msg;
2630
2631 switch (dma_info_type & 3)
2632 {
2633 case 0: query_msg = _("no query pending"); break;
2634 case 1: query_msg = _("'any' query pending"); break;
2635 case 2: query_msg = _("'all' query pending"); break;
2636 default: query_msg = _("undefined query type"); break;
2637 }
2638
2639 printf_filtered (_("Tag-Group Status 0x%s\n"),
2640 phex (dma_info_status, 4));
2641 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2642 phex (dma_info_mask, 4), query_msg);
2643 printf_filtered ("\n");
2644 }
2645
2646 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2647 do_cleanups (chain);
2648 }
2649
2650 static void
2651 info_spu_command (char *args, int from_tty)
2652 {
2653 printf_unfiltered (_("\"info spu\" must be followed by "
2654 "the name of an SPU facility.\n"));
2655 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
2656 }
2657
2658
2659 /* Root of all "set spu "/"show spu " commands. */
2660
2661 static void
2662 show_spu_command (char *args, int from_tty)
2663 {
2664 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2665 }
2666
2667 static void
2668 set_spu_command (char *args, int from_tty)
2669 {
2670 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2671 }
2672
2673 static void
2674 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2675 struct cmd_list_element *c, const char *value)
2676 {
2677 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2678 value);
2679 }
2680
2681 static void
2682 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2683 struct cmd_list_element *c, const char *value)
2684 {
2685 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2686 value);
2687 }
2688
2689
2690 /* Set up gdbarch struct. */
2691
2692 static struct gdbarch *
2693 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2694 {
2695 struct gdbarch *gdbarch;
2696 struct gdbarch_tdep *tdep;
2697 int id = -1;
2698
2699 /* Which spufs ID was requested as address space? */
2700 if (info.tdep_info)
2701 id = *(int *)info.tdep_info;
2702 /* For objfile architectures of SPU solibs, decode the ID from the name.
2703 This assumes the filename convention employed by solib-spu.c. */
2704 else if (info.abfd)
2705 {
2706 const char *name = strrchr (info.abfd->filename, '@');
2707 if (name)
2708 sscanf (name, "@0x%*x <%d>", &id);
2709 }
2710
2711 /* Find a candidate among extant architectures. */
2712 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2713 arches != NULL;
2714 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2715 {
2716 tdep = gdbarch_tdep (arches->gdbarch);
2717 if (tdep && tdep->id == id)
2718 return arches->gdbarch;
2719 }
2720
2721 /* None found, so create a new architecture. */
2722 tdep = XCNEW (struct gdbarch_tdep);
2723 tdep->id = id;
2724 gdbarch = gdbarch_alloc (&info, tdep);
2725
2726 /* Disassembler. */
2727 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2728
2729 /* Registers. */
2730 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2731 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2732 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2733 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2734 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2735 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2736 set_gdbarch_register_name (gdbarch, spu_register_name);
2737 set_gdbarch_register_type (gdbarch, spu_register_type);
2738 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2739 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2740 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2741 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2742 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2743 set_gdbarch_ax_pseudo_register_collect
2744 (gdbarch, spu_ax_pseudo_register_collect);
2745 set_gdbarch_ax_pseudo_register_push_stack
2746 (gdbarch, spu_ax_pseudo_register_push_stack);
2747
2748 /* Data types. */
2749 set_gdbarch_char_signed (gdbarch, 0);
2750 set_gdbarch_ptr_bit (gdbarch, 32);
2751 set_gdbarch_addr_bit (gdbarch, 32);
2752 set_gdbarch_short_bit (gdbarch, 16);
2753 set_gdbarch_int_bit (gdbarch, 32);
2754 set_gdbarch_long_bit (gdbarch, 32);
2755 set_gdbarch_long_long_bit (gdbarch, 64);
2756 set_gdbarch_float_bit (gdbarch, 32);
2757 set_gdbarch_double_bit (gdbarch, 64);
2758 set_gdbarch_long_double_bit (gdbarch, 64);
2759 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2760 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2761 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2762
2763 /* Address handling. */
2764 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2765 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2766 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2767 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2768 set_gdbarch_address_class_type_flags_to_name
2769 (gdbarch, spu_address_class_type_flags_to_name);
2770 set_gdbarch_address_class_name_to_type_flags
2771 (gdbarch, spu_address_class_name_to_type_flags);
2772
2773
2774 /* Inferior function calls. */
2775 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2776 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2777 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2778 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2779 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2780 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2781 set_gdbarch_return_value (gdbarch, spu_return_value);
2782
2783 /* Frame handling. */
2784 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2785 dwarf2_append_unwinders (gdbarch);
2786 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2787 frame_base_set_default (gdbarch, &spu_frame_base);
2788 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2789 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2790 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2791 set_gdbarch_frame_args_skip (gdbarch, 0);
2792 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2793 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
2794
2795 /* Cell/B.E. cross-architecture unwinder support. */
2796 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2797
2798 /* Breakpoints. */
2799 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2800 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2801 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
2802 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2803 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2804
2805 /* Overlays. */
2806 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2807
2808 return gdbarch;
2809 }
2810
2811 /* Provide a prototype to silence -Wmissing-prototypes. */
2812 extern initialize_file_ftype _initialize_spu_tdep;
2813
2814 void
2815 _initialize_spu_tdep (void)
2816 {
2817 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2818
2819 /* Add ourselves to objfile event chain. */
2820 observer_attach_new_objfile (spu_overlay_new_objfile);
2821 spu_overlay_data = register_objfile_data ();
2822
2823 /* Install spu stop-on-load handler. */
2824 observer_attach_new_objfile (spu_catch_start);
2825
2826 /* Add ourselves to normal_stop event chain. */
2827 observer_attach_normal_stop (spu_attach_normal_stop);
2828
2829 /* Add root prefix command for all "set spu"/"show spu" commands. */
2830 add_prefix_cmd ("spu", no_class, set_spu_command,
2831 _("Various SPU specific commands."),
2832 &setspucmdlist, "set spu ", 0, &setlist);
2833 add_prefix_cmd ("spu", no_class, show_spu_command,
2834 _("Various SPU specific commands."),
2835 &showspucmdlist, "show spu ", 0, &showlist);
2836
2837 /* Toggle whether or not to add a temporary breakpoint at the "main"
2838 function of new SPE contexts. */
2839 add_setshow_boolean_cmd ("stop-on-load", class_support,
2840 &spu_stop_on_load_p, _("\
2841 Set whether to stop for new SPE threads."),
2842 _("\
2843 Show whether to stop for new SPE threads."),
2844 _("\
2845 Use \"on\" to give control to the user when a new SPE thread\n\
2846 enters its \"main\" function.\n\
2847 Use \"off\" to disable stopping for new SPE threads."),
2848 NULL,
2849 show_spu_stop_on_load,
2850 &setspucmdlist, &showspucmdlist);
2851
2852 /* Toggle whether or not to automatically flush the software-managed
2853 cache whenever SPE execution stops. */
2854 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2855 &spu_auto_flush_cache_p, _("\
2856 Set whether to automatically flush the software-managed cache."),
2857 _("\
2858 Show whether to automatically flush the software-managed cache."),
2859 _("\
2860 Use \"on\" to automatically flush the software-managed cache\n\
2861 whenever SPE execution stops.\n\
2862 Use \"off\" to never automatically flush the software-managed cache."),
2863 NULL,
2864 show_spu_auto_flush_cache,
2865 &setspucmdlist, &showspucmdlist);
2866
2867 /* Add root prefix command for all "info spu" commands. */
2868 add_prefix_cmd ("spu", class_info, info_spu_command,
2869 _("Various SPU specific commands."),
2870 &infospucmdlist, "info spu ", 0, &infolist);
2871
2872 /* Add various "info spu" commands. */
2873 add_cmd ("event", class_info, info_spu_event_command,
2874 _("Display SPU event facility status.\n"),
2875 &infospucmdlist);
2876 add_cmd ("signal", class_info, info_spu_signal_command,
2877 _("Display SPU signal notification facility status.\n"),
2878 &infospucmdlist);
2879 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2880 _("Display SPU mailbox facility status.\n"),
2881 &infospucmdlist);
2882 add_cmd ("dma", class_info, info_spu_dma_command,
2883 _("Display MFC DMA status.\n"),
2884 &infospucmdlist);
2885 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2886 _("Display MFC Proxy-DMA status.\n"),
2887 &infospucmdlist);
2888 }
This page took 0.106951 seconds and 4 git commands to generate.