* gdbarch.sh: Document the return_value method. Explain that
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "observer.h"
44
45 #include "spu-tdep.h"
46
47
48 /* The tdep structure. */
49 struct gdbarch_tdep
50 {
51 /* SPU-specific vector type. */
52 struct type *spu_builtin_type_vec128;
53 };
54
55
56 /* SPU-specific vector type. */
57 static struct type *
58 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
59 {
60 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
61
62 if (!tdep->spu_builtin_type_vec128)
63 {
64 struct type *t;
65
66 t = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
67 append_composite_type_field (t, "uint128", builtin_type_int128);
68 append_composite_type_field (t, "v2_int64",
69 init_vector_type (builtin_type_int64, 2));
70 append_composite_type_field (t, "v4_int32",
71 init_vector_type (builtin_type_int32, 4));
72 append_composite_type_field (t, "v8_int16",
73 init_vector_type (builtin_type_int16, 8));
74 append_composite_type_field (t, "v16_int8",
75 init_vector_type (builtin_type_int8, 16));
76 append_composite_type_field (t, "v2_double",
77 init_vector_type (builtin_type_double, 2));
78 append_composite_type_field (t, "v4_float",
79 init_vector_type (builtin_type_float, 4));
80
81 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
82 TYPE_NAME (t) = "spu_builtin_type_vec128";
83
84 tdep->spu_builtin_type_vec128 = t;
85 }
86
87 return tdep->spu_builtin_type_vec128;
88 }
89
90
91 /* The list of available "info spu " commands. */
92 static struct cmd_list_element *infospucmdlist = NULL;
93
94 /* Registers. */
95
96 static const char *
97 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
98 {
99 static char *register_names[] =
100 {
101 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
102 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
103 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
104 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
105 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
106 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
107 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
108 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
109 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
110 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
111 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
112 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
113 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
114 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
115 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
116 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
117 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
118 };
119
120 if (reg_nr < 0)
121 return NULL;
122 if (reg_nr >= sizeof register_names / sizeof *register_names)
123 return NULL;
124
125 return register_names[reg_nr];
126 }
127
128 static struct type *
129 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
130 {
131 if (reg_nr < SPU_NUM_GPRS)
132 return spu_builtin_type_vec128 (gdbarch);
133
134 switch (reg_nr)
135 {
136 case SPU_ID_REGNUM:
137 return builtin_type_uint32;
138
139 case SPU_PC_REGNUM:
140 return builtin_type_void_func_ptr;
141
142 case SPU_SP_REGNUM:
143 return builtin_type_void_data_ptr;
144
145 case SPU_FPSCR_REGNUM:
146 return builtin_type_uint128;
147
148 case SPU_SRR0_REGNUM:
149 return builtin_type_uint32;
150
151 case SPU_LSLR_REGNUM:
152 return builtin_type_uint32;
153
154 case SPU_DECR_REGNUM:
155 return builtin_type_uint32;
156
157 case SPU_DECR_STATUS_REGNUM:
158 return builtin_type_uint32;
159
160 default:
161 internal_error (__FILE__, __LINE__, "invalid regnum");
162 }
163 }
164
165 /* Pseudo registers for preferred slots - stack pointer. */
166
167 static void
168 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
169 gdb_byte *buf)
170 {
171 gdb_byte reg[32];
172 char annex[32];
173 ULONGEST id;
174
175 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
176 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
177 memset (reg, 0, sizeof reg);
178 target_read (&current_target, TARGET_OBJECT_SPU, annex,
179 reg, 0, sizeof reg);
180
181 store_unsigned_integer (buf, 4, strtoulst (reg, NULL, 16));
182 }
183
184 static void
185 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
186 int regnum, gdb_byte *buf)
187 {
188 gdb_byte reg[16];
189 char annex[32];
190 ULONGEST id;
191
192 switch (regnum)
193 {
194 case SPU_SP_REGNUM:
195 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
196 memcpy (buf, reg, 4);
197 break;
198
199 case SPU_FPSCR_REGNUM:
200 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
201 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
203 break;
204
205 case SPU_SRR0_REGNUM:
206 spu_pseudo_register_read_spu (regcache, "srr0", buf);
207 break;
208
209 case SPU_LSLR_REGNUM:
210 spu_pseudo_register_read_spu (regcache, "lslr", buf);
211 break;
212
213 case SPU_DECR_REGNUM:
214 spu_pseudo_register_read_spu (regcache, "decr", buf);
215 break;
216
217 case SPU_DECR_STATUS_REGNUM:
218 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
219 break;
220
221 default:
222 internal_error (__FILE__, __LINE__, _("invalid regnum"));
223 }
224 }
225
226 static void
227 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
228 const gdb_byte *buf)
229 {
230 gdb_byte reg[32];
231 char annex[32];
232 ULONGEST id;
233
234 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
235 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
236 xsnprintf (reg, sizeof reg, "0x%s",
237 phex_nz (extract_unsigned_integer (buf, 4), 4));
238 target_write (&current_target, TARGET_OBJECT_SPU, annex,
239 reg, 0, strlen (reg));
240 }
241
242 static void
243 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
244 int regnum, const gdb_byte *buf)
245 {
246 gdb_byte reg[16];
247 char annex[32];
248 ULONGEST id;
249
250 switch (regnum)
251 {
252 case SPU_SP_REGNUM:
253 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
254 memcpy (reg, buf, 4);
255 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
256 break;
257
258 case SPU_FPSCR_REGNUM:
259 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
260 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
261 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
262 break;
263
264 case SPU_SRR0_REGNUM:
265 spu_pseudo_register_write_spu (regcache, "srr0", buf);
266 break;
267
268 case SPU_LSLR_REGNUM:
269 spu_pseudo_register_write_spu (regcache, "lslr", buf);
270 break;
271
272 case SPU_DECR_REGNUM:
273 spu_pseudo_register_write_spu (regcache, "decr", buf);
274 break;
275
276 case SPU_DECR_STATUS_REGNUM:
277 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
278 break;
279
280 default:
281 internal_error (__FILE__, __LINE__, _("invalid regnum"));
282 }
283 }
284
285 /* Value conversion -- access scalar values at the preferred slot. */
286
287 static struct value *
288 spu_value_from_register (struct type *type, int regnum,
289 struct frame_info *frame)
290 {
291 struct value *value = default_value_from_register (type, regnum, frame);
292 int len = TYPE_LENGTH (type);
293
294 if (regnum < SPU_NUM_GPRS && len < 16)
295 {
296 int preferred_slot = len < 4 ? 4 - len : 0;
297 set_value_offset (value, preferred_slot);
298 }
299
300 return value;
301 }
302
303 /* Register groups. */
304
305 static int
306 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
307 struct reggroup *group)
308 {
309 /* Registers displayed via 'info regs'. */
310 if (group == general_reggroup)
311 return 1;
312
313 /* Registers displayed via 'info float'. */
314 if (group == float_reggroup)
315 return 0;
316
317 /* Registers that need to be saved/restored in order to
318 push or pop frames. */
319 if (group == save_reggroup || group == restore_reggroup)
320 return 1;
321
322 return default_register_reggroup_p (gdbarch, regnum, group);
323 }
324
325 /* Address conversion. */
326
327 static CORE_ADDR
328 spu_pointer_to_address (struct type *type, const gdb_byte *buf)
329 {
330 ULONGEST addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
331 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
332
333 if (target_has_registers && target_has_stack && target_has_memory)
334 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
335 SPU_LSLR_REGNUM);
336
337 return addr & lslr;
338 }
339
340 static CORE_ADDR
341 spu_integer_to_address (struct gdbarch *gdbarch,
342 struct type *type, const gdb_byte *buf)
343 {
344 ULONGEST addr = unpack_long (type, buf);
345 ULONGEST lslr = SPU_LS_SIZE - 1; /* Hard-wired LS size. */
346
347 if (target_has_registers && target_has_stack && target_has_memory)
348 lslr = get_frame_register_unsigned (get_selected_frame (NULL),
349 SPU_LSLR_REGNUM);
350
351 return addr & lslr;
352 }
353
354
355 /* Decoding SPU instructions. */
356
357 enum
358 {
359 op_lqd = 0x34,
360 op_lqx = 0x3c4,
361 op_lqa = 0x61,
362 op_lqr = 0x67,
363 op_stqd = 0x24,
364 op_stqx = 0x144,
365 op_stqa = 0x41,
366 op_stqr = 0x47,
367
368 op_il = 0x081,
369 op_ila = 0x21,
370 op_a = 0x0c0,
371 op_ai = 0x1c,
372
373 op_selb = 0x4,
374
375 op_br = 0x64,
376 op_bra = 0x60,
377 op_brsl = 0x66,
378 op_brasl = 0x62,
379 op_brnz = 0x42,
380 op_brz = 0x40,
381 op_brhnz = 0x46,
382 op_brhz = 0x44,
383 op_bi = 0x1a8,
384 op_bisl = 0x1a9,
385 op_biz = 0x128,
386 op_binz = 0x129,
387 op_bihz = 0x12a,
388 op_bihnz = 0x12b,
389 };
390
391 static int
392 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
393 {
394 if ((insn >> 21) == op)
395 {
396 *rt = insn & 127;
397 *ra = (insn >> 7) & 127;
398 *rb = (insn >> 14) & 127;
399 return 1;
400 }
401
402 return 0;
403 }
404
405 static int
406 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
407 {
408 if ((insn >> 28) == op)
409 {
410 *rt = (insn >> 21) & 127;
411 *ra = (insn >> 7) & 127;
412 *rb = (insn >> 14) & 127;
413 *rc = insn & 127;
414 return 1;
415 }
416
417 return 0;
418 }
419
420 static int
421 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
422 {
423 if ((insn >> 21) == op)
424 {
425 *rt = insn & 127;
426 *ra = (insn >> 7) & 127;
427 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
428 return 1;
429 }
430
431 return 0;
432 }
433
434 static int
435 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
436 {
437 if ((insn >> 24) == op)
438 {
439 *rt = insn & 127;
440 *ra = (insn >> 7) & 127;
441 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
442 return 1;
443 }
444
445 return 0;
446 }
447
448 static int
449 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
450 {
451 if ((insn >> 23) == op)
452 {
453 *rt = insn & 127;
454 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
455 return 1;
456 }
457
458 return 0;
459 }
460
461 static int
462 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
463 {
464 if ((insn >> 25) == op)
465 {
466 *rt = insn & 127;
467 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 is_branch (unsigned int insn, int *offset, int *reg)
476 {
477 int rt, i7, i16;
478
479 if (is_ri16 (insn, op_br, &rt, &i16)
480 || is_ri16 (insn, op_brsl, &rt, &i16)
481 || is_ri16 (insn, op_brnz, &rt, &i16)
482 || is_ri16 (insn, op_brz, &rt, &i16)
483 || is_ri16 (insn, op_brhnz, &rt, &i16)
484 || is_ri16 (insn, op_brhz, &rt, &i16))
485 {
486 *reg = SPU_PC_REGNUM;
487 *offset = i16 << 2;
488 return 1;
489 }
490
491 if (is_ri16 (insn, op_bra, &rt, &i16)
492 || is_ri16 (insn, op_brasl, &rt, &i16))
493 {
494 *reg = -1;
495 *offset = i16 << 2;
496 return 1;
497 }
498
499 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
500 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
501 || is_ri7 (insn, op_biz, &rt, reg, &i7)
502 || is_ri7 (insn, op_binz, &rt, reg, &i7)
503 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
504 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
505 {
506 *offset = 0;
507 return 1;
508 }
509
510 return 0;
511 }
512
513
514 /* Prolog parsing. */
515
516 struct spu_prologue_data
517 {
518 /* Stack frame size. -1 if analysis was unsuccessful. */
519 int size;
520
521 /* How to find the CFA. The CFA is equal to SP at function entry. */
522 int cfa_reg;
523 int cfa_offset;
524
525 /* Offset relative to CFA where a register is saved. -1 if invalid. */
526 int reg_offset[SPU_NUM_GPRS];
527 };
528
529 static CORE_ADDR
530 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
531 struct spu_prologue_data *data)
532 {
533 int found_sp = 0;
534 int found_fp = 0;
535 int found_lr = 0;
536 int reg_immed[SPU_NUM_GPRS];
537 gdb_byte buf[16];
538 CORE_ADDR prolog_pc = start_pc;
539 CORE_ADDR pc;
540 int i;
541
542
543 /* Initialize DATA to default values. */
544 data->size = -1;
545
546 data->cfa_reg = SPU_RAW_SP_REGNUM;
547 data->cfa_offset = 0;
548
549 for (i = 0; i < SPU_NUM_GPRS; i++)
550 data->reg_offset[i] = -1;
551
552 /* Set up REG_IMMED array. This is non-zero for a register if we know its
553 preferred slot currently holds this immediate value. */
554 for (i = 0; i < SPU_NUM_GPRS; i++)
555 reg_immed[i] = 0;
556
557 /* Scan instructions until the first branch.
558
559 The following instructions are important prolog components:
560
561 - The first instruction to set up the stack pointer.
562 - The first instruction to set up the frame pointer.
563 - The first instruction to save the link register.
564
565 We return the instruction after the latest of these three,
566 or the incoming PC if none is found. The first instruction
567 to set up the stack pointer also defines the frame size.
568
569 Note that instructions saving incoming arguments to their stack
570 slots are not counted as important, because they are hard to
571 identify with certainty. This should not matter much, because
572 arguments are relevant only in code compiled with debug data,
573 and in such code the GDB core will advance until the first source
574 line anyway, using SAL data.
575
576 For purposes of stack unwinding, we analyze the following types
577 of instructions in addition:
578
579 - Any instruction adding to the current frame pointer.
580 - Any instruction loading an immediate constant into a register.
581 - Any instruction storing a register onto the stack.
582
583 These are used to compute the CFA and REG_OFFSET output. */
584
585 for (pc = start_pc; pc < end_pc; pc += 4)
586 {
587 unsigned int insn;
588 int rt, ra, rb, rc, immed;
589
590 if (target_read_memory (pc, buf, 4))
591 break;
592 insn = extract_unsigned_integer (buf, 4);
593
594 /* AI is the typical instruction to set up a stack frame.
595 It is also used to initialize the frame pointer. */
596 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
597 {
598 if (rt == data->cfa_reg && ra == data->cfa_reg)
599 data->cfa_offset -= immed;
600
601 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
602 && !found_sp)
603 {
604 found_sp = 1;
605 prolog_pc = pc + 4;
606
607 data->size = -immed;
608 }
609 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
610 && !found_fp)
611 {
612 found_fp = 1;
613 prolog_pc = pc + 4;
614
615 data->cfa_reg = SPU_FP_REGNUM;
616 data->cfa_offset -= immed;
617 }
618 }
619
620 /* A is used to set up stack frames of size >= 512 bytes.
621 If we have tracked the contents of the addend register,
622 we can handle this as well. */
623 else if (is_rr (insn, op_a, &rt, &ra, &rb))
624 {
625 if (rt == data->cfa_reg && ra == data->cfa_reg)
626 {
627 if (reg_immed[rb] != 0)
628 data->cfa_offset -= reg_immed[rb];
629 else
630 data->cfa_reg = -1; /* We don't know the CFA any more. */
631 }
632
633 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
634 && !found_sp)
635 {
636 found_sp = 1;
637 prolog_pc = pc + 4;
638
639 if (reg_immed[rb] != 0)
640 data->size = -reg_immed[rb];
641 }
642 }
643
644 /* We need to track IL and ILA used to load immediate constants
645 in case they are later used as input to an A instruction. */
646 else if (is_ri16 (insn, op_il, &rt, &immed))
647 {
648 reg_immed[rt] = immed;
649
650 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
651 found_sp = 1;
652 }
653
654 else if (is_ri18 (insn, op_ila, &rt, &immed))
655 {
656 reg_immed[rt] = immed & 0x3ffff;
657
658 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
659 found_sp = 1;
660 }
661
662 /* STQD is used to save registers to the stack. */
663 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
664 {
665 if (ra == data->cfa_reg)
666 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
667
668 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
669 && !found_lr)
670 {
671 found_lr = 1;
672 prolog_pc = pc + 4;
673 }
674 }
675
676 /* _start uses SELB to set up the stack pointer. */
677 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
678 {
679 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
680 found_sp = 1;
681 }
682
683 /* We terminate if we find a branch. */
684 else if (is_branch (insn, &immed, &ra))
685 break;
686 }
687
688
689 /* If we successfully parsed until here, and didn't find any instruction
690 modifying SP, we assume we have a frameless function. */
691 if (!found_sp)
692 data->size = 0;
693
694 /* Return cooked instead of raw SP. */
695 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
696 data->cfa_reg = SPU_SP_REGNUM;
697
698 return prolog_pc;
699 }
700
701 /* Return the first instruction after the prologue starting at PC. */
702 static CORE_ADDR
703 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
704 {
705 struct spu_prologue_data data;
706 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
707 }
708
709 /* Return the frame pointer in use at address PC. */
710 static void
711 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
712 int *reg, LONGEST *offset)
713 {
714 struct spu_prologue_data data;
715 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
716
717 if (data.size != -1 && data.cfa_reg != -1)
718 {
719 /* The 'frame pointer' address is CFA minus frame size. */
720 *reg = data.cfa_reg;
721 *offset = data.cfa_offset - data.size;
722 }
723 else
724 {
725 /* ??? We don't really know ... */
726 *reg = SPU_SP_REGNUM;
727 *offset = 0;
728 }
729 }
730
731 /* Return true if we are in the function's epilogue, i.e. after the
732 instruction that destroyed the function's stack frame.
733
734 1) scan forward from the point of execution:
735 a) If you find an instruction that modifies the stack pointer
736 or transfers control (except a return), execution is not in
737 an epilogue, return.
738 b) Stop scanning if you find a return instruction or reach the
739 end of the function or reach the hard limit for the size of
740 an epilogue.
741 2) scan backward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer,
743 execution *is* in an epilogue, return.
744 b) Stop scanning if you reach an instruction that transfers
745 control or the beginning of the function or reach the hard
746 limit for the size of an epilogue. */
747
748 static int
749 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
750 {
751 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
752 bfd_byte buf[4];
753 unsigned int insn;
754 int rt, ra, rb, rc, immed;
755
756 /* Find the search limits based on function boundaries and hard limit.
757 We assume the epilogue can be up to 64 instructions long. */
758
759 const int spu_max_epilogue_size = 64 * 4;
760
761 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
762 return 0;
763
764 if (pc - func_start < spu_max_epilogue_size)
765 epilogue_start = func_start;
766 else
767 epilogue_start = pc - spu_max_epilogue_size;
768
769 if (func_end - pc < spu_max_epilogue_size)
770 epilogue_end = func_end;
771 else
772 epilogue_end = pc + spu_max_epilogue_size;
773
774 /* Scan forward until next 'bi $0'. */
775
776 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
777 {
778 if (target_read_memory (scan_pc, buf, 4))
779 return 0;
780 insn = extract_unsigned_integer (buf, 4);
781
782 if (is_branch (insn, &immed, &ra))
783 {
784 if (immed == 0 && ra == SPU_LR_REGNUM)
785 break;
786
787 return 0;
788 }
789
790 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
791 || is_rr (insn, op_a, &rt, &ra, &rb)
792 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
793 {
794 if (rt == SPU_RAW_SP_REGNUM)
795 return 0;
796 }
797 }
798
799 if (scan_pc >= epilogue_end)
800 return 0;
801
802 /* Scan backward until adjustment to stack pointer (R1). */
803
804 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
805 {
806 if (target_read_memory (scan_pc, buf, 4))
807 return 0;
808 insn = extract_unsigned_integer (buf, 4);
809
810 if (is_branch (insn, &immed, &ra))
811 return 0;
812
813 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
814 || is_rr (insn, op_a, &rt, &ra, &rb)
815 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
816 {
817 if (rt == SPU_RAW_SP_REGNUM)
818 return 1;
819 }
820 }
821
822 return 0;
823 }
824
825
826 /* Normal stack frames. */
827
828 struct spu_unwind_cache
829 {
830 CORE_ADDR func;
831 CORE_ADDR frame_base;
832 CORE_ADDR local_base;
833
834 struct trad_frame_saved_reg *saved_regs;
835 };
836
837 static struct spu_unwind_cache *
838 spu_frame_unwind_cache (struct frame_info *next_frame,
839 void **this_prologue_cache)
840 {
841 struct spu_unwind_cache *info;
842 struct spu_prologue_data data;
843 gdb_byte buf[16];
844
845 if (*this_prologue_cache)
846 return *this_prologue_cache;
847
848 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
849 *this_prologue_cache = info;
850 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
851 info->frame_base = 0;
852 info->local_base = 0;
853
854 /* Find the start of the current function, and analyze its prologue. */
855 info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
856 if (info->func == 0)
857 {
858 /* Fall back to using the current PC as frame ID. */
859 info->func = frame_pc_unwind (next_frame);
860 data.size = -1;
861 }
862 else
863 spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
864
865
866 /* If successful, use prologue analysis data. */
867 if (data.size != -1 && data.cfa_reg != -1)
868 {
869 CORE_ADDR cfa;
870 int i;
871
872 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
873 frame_unwind_register (next_frame, data.cfa_reg, buf);
874 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
875
876 /* Call-saved register slots. */
877 for (i = 0; i < SPU_NUM_GPRS; i++)
878 if (i == SPU_LR_REGNUM
879 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
880 if (data.reg_offset[i] != -1)
881 info->saved_regs[i].addr = cfa - data.reg_offset[i];
882
883 /* Frame bases. */
884 info->frame_base = cfa;
885 info->local_base = cfa - data.size;
886 }
887
888 /* Otherwise, fall back to reading the backchain link. */
889 else
890 {
891 CORE_ADDR reg, backchain;
892
893 /* Get the backchain. */
894 reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
895 backchain = read_memory_unsigned_integer (reg, 4);
896
897 /* A zero backchain terminates the frame chain. Also, sanity
898 check against the local store size limit. */
899 if (backchain != 0 && backchain < SPU_LS_SIZE)
900 {
901 /* Assume the link register is saved into its slot. */
902 if (backchain + 16 < SPU_LS_SIZE)
903 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
904
905 /* Frame bases. */
906 info->frame_base = backchain;
907 info->local_base = reg;
908 }
909 }
910
911 /* The previous SP is equal to the CFA. */
912 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, info->frame_base);
913
914 /* Read full contents of the unwound link register in order to
915 be able to determine the return address. */
916 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
917 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
918 else
919 frame_unwind_register (next_frame, SPU_LR_REGNUM, buf);
920
921 /* Normally, the return address is contained in the slot 0 of the
922 link register, and slots 1-3 are zero. For an overlay return,
923 slot 0 contains the address of the overlay manager return stub,
924 slot 1 contains the partition number of the overlay section to
925 be returned to, and slot 2 contains the return address within
926 that section. Return the latter address in that case. */
927 if (extract_unsigned_integer (buf + 8, 4) != 0)
928 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
929 extract_unsigned_integer (buf + 8, 4));
930 else
931 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
932 extract_unsigned_integer (buf, 4));
933
934 return info;
935 }
936
937 static void
938 spu_frame_this_id (struct frame_info *next_frame,
939 void **this_prologue_cache, struct frame_id *this_id)
940 {
941 struct spu_unwind_cache *info =
942 spu_frame_unwind_cache (next_frame, this_prologue_cache);
943
944 if (info->frame_base == 0)
945 return;
946
947 *this_id = frame_id_build (info->frame_base, info->func);
948 }
949
950 static void
951 spu_frame_prev_register (struct frame_info *next_frame,
952 void **this_prologue_cache,
953 int regnum, int *optimizedp,
954 enum lval_type *lvalp, CORE_ADDR * addrp,
955 int *realnump, gdb_byte *bufferp)
956 {
957 struct spu_unwind_cache *info
958 = spu_frame_unwind_cache (next_frame, this_prologue_cache);
959
960 /* Special-case the stack pointer. */
961 if (regnum == SPU_RAW_SP_REGNUM)
962 regnum = SPU_SP_REGNUM;
963
964 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
965 optimizedp, lvalp, addrp, realnump, bufferp);
966 }
967
968 static const struct frame_unwind spu_frame_unwind = {
969 NORMAL_FRAME,
970 spu_frame_this_id,
971 spu_frame_prev_register
972 };
973
974 const struct frame_unwind *
975 spu_frame_sniffer (struct frame_info *next_frame)
976 {
977 return &spu_frame_unwind;
978 }
979
980 static CORE_ADDR
981 spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
982 {
983 struct spu_unwind_cache *info
984 = spu_frame_unwind_cache (next_frame, this_cache);
985 return info->local_base;
986 }
987
988 static const struct frame_base spu_frame_base = {
989 &spu_frame_unwind,
990 spu_frame_base_address,
991 spu_frame_base_address,
992 spu_frame_base_address
993 };
994
995 static CORE_ADDR
996 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
997 {
998 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
999 /* Mask off interrupt enable bit. */
1000 return pc & -4;
1001 }
1002
1003 static CORE_ADDR
1004 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005 {
1006 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1007 }
1008
1009 static CORE_ADDR
1010 spu_read_pc (struct regcache *regcache)
1011 {
1012 ULONGEST pc;
1013 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1014 /* Mask off interrupt enable bit. */
1015 return pc & -4;
1016 }
1017
1018 static void
1019 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1020 {
1021 /* Keep interrupt enabled state unchanged. */
1022 ULONGEST old_pc;
1023 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1024 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1025 (pc & -4) | (old_pc & 3));
1026 }
1027
1028
1029 /* Function calling convention. */
1030
1031 static CORE_ADDR
1032 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1033 {
1034 return sp & ~15;
1035 }
1036
1037 static int
1038 spu_scalar_value_p (struct type *type)
1039 {
1040 switch (TYPE_CODE (type))
1041 {
1042 case TYPE_CODE_INT:
1043 case TYPE_CODE_ENUM:
1044 case TYPE_CODE_RANGE:
1045 case TYPE_CODE_CHAR:
1046 case TYPE_CODE_BOOL:
1047 case TYPE_CODE_PTR:
1048 case TYPE_CODE_REF:
1049 return TYPE_LENGTH (type) <= 16;
1050
1051 default:
1052 return 0;
1053 }
1054 }
1055
1056 static void
1057 spu_value_to_regcache (struct regcache *regcache, int regnum,
1058 struct type *type, const gdb_byte *in)
1059 {
1060 int len = TYPE_LENGTH (type);
1061
1062 if (spu_scalar_value_p (type))
1063 {
1064 int preferred_slot = len < 4 ? 4 - len : 0;
1065 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1066 }
1067 else
1068 {
1069 while (len >= 16)
1070 {
1071 regcache_cooked_write (regcache, regnum++, in);
1072 in += 16;
1073 len -= 16;
1074 }
1075
1076 if (len > 0)
1077 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1078 }
1079 }
1080
1081 static void
1082 spu_regcache_to_value (struct regcache *regcache, int regnum,
1083 struct type *type, gdb_byte *out)
1084 {
1085 int len = TYPE_LENGTH (type);
1086
1087 if (spu_scalar_value_p (type))
1088 {
1089 int preferred_slot = len < 4 ? 4 - len : 0;
1090 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1091 }
1092 else
1093 {
1094 while (len >= 16)
1095 {
1096 regcache_cooked_read (regcache, regnum++, out);
1097 out += 16;
1098 len -= 16;
1099 }
1100
1101 if (len > 0)
1102 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1103 }
1104 }
1105
1106 static CORE_ADDR
1107 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1108 struct regcache *regcache, CORE_ADDR bp_addr,
1109 int nargs, struct value **args, CORE_ADDR sp,
1110 int struct_return, CORE_ADDR struct_addr)
1111 {
1112 int i;
1113 int regnum = SPU_ARG1_REGNUM;
1114 int stack_arg = -1;
1115 gdb_byte buf[16];
1116
1117 /* Set the return address. */
1118 memset (buf, 0, sizeof buf);
1119 store_unsigned_integer (buf, 4, bp_addr);
1120 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1121
1122 /* If STRUCT_RETURN is true, then the struct return address (in
1123 STRUCT_ADDR) will consume the first argument-passing register.
1124 Both adjust the register count and store that value. */
1125 if (struct_return)
1126 {
1127 memset (buf, 0, sizeof buf);
1128 store_unsigned_integer (buf, 4, struct_addr);
1129 regcache_cooked_write (regcache, regnum++, buf);
1130 }
1131
1132 /* Fill in argument registers. */
1133 for (i = 0; i < nargs; i++)
1134 {
1135 struct value *arg = args[i];
1136 struct type *type = check_typedef (value_type (arg));
1137 const gdb_byte *contents = value_contents (arg);
1138 int len = TYPE_LENGTH (type);
1139 int n_regs = align_up (len, 16) / 16;
1140
1141 /* If the argument doesn't wholly fit into registers, it and
1142 all subsequent arguments go to the stack. */
1143 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1144 {
1145 stack_arg = i;
1146 break;
1147 }
1148
1149 spu_value_to_regcache (regcache, regnum, type, contents);
1150 regnum += n_regs;
1151 }
1152
1153 /* Overflow arguments go to the stack. */
1154 if (stack_arg != -1)
1155 {
1156 CORE_ADDR ap;
1157
1158 /* Allocate all required stack size. */
1159 for (i = stack_arg; i < nargs; i++)
1160 {
1161 struct type *type = check_typedef (value_type (args[i]));
1162 sp -= align_up (TYPE_LENGTH (type), 16);
1163 }
1164
1165 /* Fill in stack arguments. */
1166 ap = sp;
1167 for (i = stack_arg; i < nargs; i++)
1168 {
1169 struct value *arg = args[i];
1170 struct type *type = check_typedef (value_type (arg));
1171 int len = TYPE_LENGTH (type);
1172 int preferred_slot;
1173
1174 if (spu_scalar_value_p (type))
1175 preferred_slot = len < 4 ? 4 - len : 0;
1176 else
1177 preferred_slot = 0;
1178
1179 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1180 ap += align_up (TYPE_LENGTH (type), 16);
1181 }
1182 }
1183
1184 /* Allocate stack frame header. */
1185 sp -= 32;
1186
1187 /* Store stack back chain. */
1188 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1189 target_write_memory (sp, buf, 16);
1190
1191 /* Finally, update the SP register. */
1192 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
1193
1194 return sp;
1195 }
1196
1197 static struct frame_id
1198 spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1199 {
1200 return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
1201 spu_unwind_pc (gdbarch, next_frame));
1202 }
1203
1204 /* Function return value access. */
1205
1206 static enum return_value_convention
1207 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1208 struct type *type, struct regcache *regcache,
1209 gdb_byte *out, const gdb_byte *in)
1210 {
1211 enum return_value_convention rvc;
1212
1213 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1214 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1215 else
1216 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1217
1218 if (in)
1219 {
1220 switch (rvc)
1221 {
1222 case RETURN_VALUE_REGISTER_CONVENTION:
1223 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1224 break;
1225
1226 case RETURN_VALUE_STRUCT_CONVENTION:
1227 error ("Cannot set function return value.");
1228 break;
1229 }
1230 }
1231 else if (out)
1232 {
1233 switch (rvc)
1234 {
1235 case RETURN_VALUE_REGISTER_CONVENTION:
1236 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1237 break;
1238
1239 case RETURN_VALUE_STRUCT_CONVENTION:
1240 error ("Function return value unknown.");
1241 break;
1242 }
1243 }
1244
1245 return rvc;
1246 }
1247
1248
1249 /* Breakpoints. */
1250
1251 static const gdb_byte *
1252 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1253 {
1254 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1255
1256 *lenptr = sizeof breakpoint;
1257 return breakpoint;
1258 }
1259
1260
1261 /* Software single-stepping support. */
1262
1263 int
1264 spu_software_single_step (struct frame_info *frame)
1265 {
1266 CORE_ADDR pc, next_pc;
1267 unsigned int insn;
1268 int offset, reg;
1269 gdb_byte buf[4];
1270
1271 pc = get_frame_pc (frame);
1272
1273 if (target_read_memory (pc, buf, 4))
1274 return 1;
1275 insn = extract_unsigned_integer (buf, 4);
1276
1277 /* Next sequential instruction is at PC + 4, except if the current
1278 instruction is a PPE-assisted call, in which case it is at PC + 8.
1279 Wrap around LS limit to be on the safe side. */
1280 if ((insn & 0xffffff00) == 0x00002100)
1281 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1282 else
1283 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1284
1285 insert_single_step_breakpoint (next_pc);
1286
1287 if (is_branch (insn, &offset, &reg))
1288 {
1289 CORE_ADDR target = offset;
1290
1291 if (reg == SPU_PC_REGNUM)
1292 target += pc;
1293 else if (reg != -1)
1294 {
1295 get_frame_register_bytes (frame, reg, 0, 4, buf);
1296 target += extract_unsigned_integer (buf, 4) & -4;
1297 }
1298
1299 target = target & (SPU_LS_SIZE - 1);
1300 if (target != next_pc)
1301 insert_single_step_breakpoint (target);
1302 }
1303
1304 return 1;
1305 }
1306
1307 /* Target overlays for the SPU overlay manager.
1308
1309 See the documentation of simple_overlay_update for how the
1310 interface is supposed to work.
1311
1312 Data structures used by the overlay manager:
1313
1314 struct ovly_table
1315 {
1316 u32 vma;
1317 u32 size;
1318 u32 pos;
1319 u32 buf;
1320 } _ovly_table[]; -- one entry per overlay section
1321
1322 struct ovly_buf_table
1323 {
1324 u32 mapped;
1325 } _ovly_buf_table[]; -- one entry per overlay buffer
1326
1327 _ovly_table should never change.
1328
1329 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1330 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1331 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1332
1333 mapped is an index into _ovly_table. Both the mapped and buf indices start
1334 from one to reference the first entry in their respective tables. */
1335
1336 /* Using the per-objfile private data mechanism, we store for each
1337 objfile an array of "struct spu_overlay_table" structures, one
1338 for each obj_section of the objfile. This structure holds two
1339 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1340 is *not* an overlay section. If it is non-zero, it represents
1341 a target address. The overlay section is mapped iff the target
1342 integer at this location equals MAPPED_VAL. */
1343
1344 static const struct objfile_data *spu_overlay_data;
1345
1346 struct spu_overlay_table
1347 {
1348 CORE_ADDR mapped_ptr;
1349 CORE_ADDR mapped_val;
1350 };
1351
1352 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1353 the _ovly_table data structure from the target and initialize the
1354 spu_overlay_table data structure from it. */
1355 static struct spu_overlay_table *
1356 spu_get_overlay_table (struct objfile *objfile)
1357 {
1358 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1359 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1360 unsigned ovly_table_size, ovly_buf_table_size;
1361 struct spu_overlay_table *tbl;
1362 struct obj_section *osect;
1363 char *ovly_table;
1364 int i;
1365
1366 tbl = objfile_data (objfile, spu_overlay_data);
1367 if (tbl)
1368 return tbl;
1369
1370 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1371 if (!ovly_table_msym)
1372 return NULL;
1373
1374 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1375 if (!ovly_buf_table_msym)
1376 return NULL;
1377
1378 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1379 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1380
1381 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1382 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1383
1384 ovly_table = xmalloc (ovly_table_size);
1385 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1386
1387 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1388 objfile->sections_end - objfile->sections,
1389 struct spu_overlay_table);
1390
1391 for (i = 0; i < ovly_table_size / 16; i++)
1392 {
1393 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, 4);
1394 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, 4);
1395 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, 4);
1396 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, 4);
1397
1398 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1399 continue;
1400
1401 ALL_OBJFILE_OSECTIONS (objfile, osect)
1402 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1403 && pos == osect->the_bfd_section->filepos)
1404 {
1405 int ndx = osect - objfile->sections;
1406 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1407 tbl[ndx].mapped_val = i + 1;
1408 break;
1409 }
1410 }
1411
1412 xfree (ovly_table);
1413 set_objfile_data (objfile, spu_overlay_data, tbl);
1414 return tbl;
1415 }
1416
1417 /* Read _ovly_buf_table entry from the target to dermine whether
1418 OSECT is currently mapped, and update the mapped state. */
1419 static void
1420 spu_overlay_update_osect (struct obj_section *osect)
1421 {
1422 struct spu_overlay_table *ovly_table;
1423 CORE_ADDR val;
1424
1425 ovly_table = spu_get_overlay_table (osect->objfile);
1426 if (!ovly_table)
1427 return;
1428
1429 ovly_table += osect - osect->objfile->sections;
1430 if (ovly_table->mapped_ptr == 0)
1431 return;
1432
1433 val = read_memory_unsigned_integer (ovly_table->mapped_ptr, 4);
1434 osect->ovly_mapped = (val == ovly_table->mapped_val);
1435 }
1436
1437 /* If OSECT is NULL, then update all sections' mapped state.
1438 If OSECT is non-NULL, then update only OSECT's mapped state. */
1439 static void
1440 spu_overlay_update (struct obj_section *osect)
1441 {
1442 /* Just one section. */
1443 if (osect)
1444 spu_overlay_update_osect (osect);
1445
1446 /* All sections. */
1447 else
1448 {
1449 struct objfile *objfile;
1450
1451 ALL_OBJSECTIONS (objfile, osect)
1452 if (section_is_overlay (osect->the_bfd_section))
1453 spu_overlay_update_osect (osect);
1454 }
1455 }
1456
1457 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1458 If there is one, go through all sections and make sure for non-
1459 overlay sections LMA equals VMA, while for overlay sections LMA
1460 is larger than local store size. */
1461 static void
1462 spu_overlay_new_objfile (struct objfile *objfile)
1463 {
1464 struct spu_overlay_table *ovly_table;
1465 struct obj_section *osect;
1466
1467 /* If we've already touched this file, do nothing. */
1468 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1469 return;
1470
1471 /* Check if this objfile has overlays. */
1472 ovly_table = spu_get_overlay_table (objfile);
1473 if (!ovly_table)
1474 return;
1475
1476 /* Now go and fiddle with all the LMAs. */
1477 ALL_OBJFILE_OSECTIONS (objfile, osect)
1478 {
1479 bfd *obfd = objfile->obfd;
1480 asection *bsect = osect->the_bfd_section;
1481 int ndx = osect - objfile->sections;
1482
1483 if (ovly_table[ndx].mapped_ptr == 0)
1484 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1485 else
1486 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1487 }
1488 }
1489
1490
1491 /* "info spu" commands. */
1492
1493 static void
1494 info_spu_event_command (char *args, int from_tty)
1495 {
1496 struct frame_info *frame = get_selected_frame (NULL);
1497 ULONGEST event_status = 0;
1498 ULONGEST event_mask = 0;
1499 struct cleanup *chain;
1500 gdb_byte buf[100];
1501 char annex[32];
1502 LONGEST len;
1503 int rc, id;
1504
1505 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1506
1507 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1508 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1509 buf, 0, (sizeof (buf) - 1));
1510 if (len <= 0)
1511 error (_("Could not read event_status."));
1512 buf[len] = '\0';
1513 event_status = strtoulst (buf, NULL, 16);
1514
1515 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1516 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1517 buf, 0, (sizeof (buf) - 1));
1518 if (len <= 0)
1519 error (_("Could not read event_mask."));
1520 buf[len] = '\0';
1521 event_mask = strtoulst (buf, NULL, 16);
1522
1523 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1524
1525 if (ui_out_is_mi_like_p (uiout))
1526 {
1527 ui_out_field_fmt (uiout, "event_status",
1528 "0x%s", phex_nz (event_status, 4));
1529 ui_out_field_fmt (uiout, "event_mask",
1530 "0x%s", phex_nz (event_mask, 4));
1531 }
1532 else
1533 {
1534 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1535 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1536 }
1537
1538 do_cleanups (chain);
1539 }
1540
1541 static void
1542 info_spu_signal_command (char *args, int from_tty)
1543 {
1544 struct frame_info *frame = get_selected_frame (NULL);
1545 ULONGEST signal1 = 0;
1546 ULONGEST signal1_type = 0;
1547 int signal1_pending = 0;
1548 ULONGEST signal2 = 0;
1549 ULONGEST signal2_type = 0;
1550 int signal2_pending = 0;
1551 struct cleanup *chain;
1552 char annex[32];
1553 gdb_byte buf[100];
1554 LONGEST len;
1555 int rc, id;
1556
1557 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1558
1559 xsnprintf (annex, sizeof annex, "%d/signal1", id);
1560 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1561 if (len < 0)
1562 error (_("Could not read signal1."));
1563 else if (len == 4)
1564 {
1565 signal1 = extract_unsigned_integer (buf, 4);
1566 signal1_pending = 1;
1567 }
1568
1569 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
1570 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1571 buf, 0, (sizeof (buf) - 1));
1572 if (len <= 0)
1573 error (_("Could not read signal1_type."));
1574 buf[len] = '\0';
1575 signal1_type = strtoulst (buf, NULL, 16);
1576
1577 xsnprintf (annex, sizeof annex, "%d/signal2", id);
1578 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1579 if (len < 0)
1580 error (_("Could not read signal2."));
1581 else if (len == 4)
1582 {
1583 signal2 = extract_unsigned_integer (buf, 4);
1584 signal2_pending = 1;
1585 }
1586
1587 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
1588 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1589 buf, 0, (sizeof (buf) - 1));
1590 if (len <= 0)
1591 error (_("Could not read signal2_type."));
1592 buf[len] = '\0';
1593 signal2_type = strtoulst (buf, NULL, 16);
1594
1595 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
1596
1597 if (ui_out_is_mi_like_p (uiout))
1598 {
1599 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
1600 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
1601 ui_out_field_int (uiout, "signal1_type", signal1_type);
1602 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
1603 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
1604 ui_out_field_int (uiout, "signal2_type", signal2_type);
1605 }
1606 else
1607 {
1608 if (signal1_pending)
1609 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
1610 else
1611 printf_filtered (_("Signal 1 not pending "));
1612
1613 if (signal1_type)
1614 printf_filtered (_("(Type Or)\n"));
1615 else
1616 printf_filtered (_("(Type Overwrite)\n"));
1617
1618 if (signal2_pending)
1619 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
1620 else
1621 printf_filtered (_("Signal 2 not pending "));
1622
1623 if (signal2_type)
1624 printf_filtered (_("(Type Or)\n"));
1625 else
1626 printf_filtered (_("(Type Overwrite)\n"));
1627 }
1628
1629 do_cleanups (chain);
1630 }
1631
1632 static void
1633 info_spu_mailbox_list (gdb_byte *buf, int nr,
1634 const char *field, const char *msg)
1635 {
1636 struct cleanup *chain;
1637 int i;
1638
1639 if (nr <= 0)
1640 return;
1641
1642 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
1643
1644 ui_out_table_header (uiout, 32, ui_left, field, msg);
1645 ui_out_table_body (uiout);
1646
1647 for (i = 0; i < nr; i++)
1648 {
1649 struct cleanup *val_chain;
1650 ULONGEST val;
1651 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
1652 val = extract_unsigned_integer (buf + 4*i, 4);
1653 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
1654 do_cleanups (val_chain);
1655
1656 if (!ui_out_is_mi_like_p (uiout))
1657 printf_filtered ("\n");
1658 }
1659
1660 do_cleanups (chain);
1661 }
1662
1663 static void
1664 info_spu_mailbox_command (char *args, int from_tty)
1665 {
1666 struct frame_info *frame = get_selected_frame (NULL);
1667 struct cleanup *chain;
1668 char annex[32];
1669 gdb_byte buf[1024];
1670 LONGEST len;
1671 int i, id;
1672
1673 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1674
1675 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
1676
1677 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
1678 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1679 buf, 0, sizeof buf);
1680 if (len < 0)
1681 error (_("Could not read mbox_info."));
1682
1683 info_spu_mailbox_list (buf, len / 4, "mbox", "SPU Outbound Mailbox");
1684
1685 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
1686 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1687 buf, 0, sizeof buf);
1688 if (len < 0)
1689 error (_("Could not read ibox_info."));
1690
1691 info_spu_mailbox_list (buf, len / 4, "ibox", "SPU Outbound Interrupt Mailbox");
1692
1693 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
1694 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1695 buf, 0, sizeof buf);
1696 if (len < 0)
1697 error (_("Could not read wbox_info."));
1698
1699 info_spu_mailbox_list (buf, len / 4, "wbox", "SPU Inbound Mailbox");
1700
1701 do_cleanups (chain);
1702 }
1703
1704 static ULONGEST
1705 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
1706 {
1707 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
1708 return (word >> (63 - last)) & mask;
1709 }
1710
1711 static void
1712 info_spu_dma_cmdlist (gdb_byte *buf, int nr)
1713 {
1714 static char *spu_mfc_opcode[256] =
1715 {
1716 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1717 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1718 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1719 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1720 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
1721 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
1722 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
1723 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1724 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
1725 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
1726 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1727 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1728 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1729 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1730 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1731 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1732 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
1733 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
1734 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1735 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1736 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
1737 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1738 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
1739 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1740 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1741 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
1742 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1743 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1744 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1745 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1746 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1747 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1748 };
1749
1750 struct cleanup *chain;
1751 int i;
1752
1753 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
1754
1755 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
1756 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
1757 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
1758 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
1759 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
1760 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
1761 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
1762 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
1763 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
1764 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
1765
1766 ui_out_table_body (uiout);
1767
1768 for (i = 0; i < nr; i++)
1769 {
1770 struct cleanup *cmd_chain;
1771 ULONGEST mfc_cq_dw0;
1772 ULONGEST mfc_cq_dw1;
1773 ULONGEST mfc_cq_dw2;
1774 ULONGEST mfc_cq_dw3;
1775 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
1776 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
1777 ULONGEST mfc_ea;
1778 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
1779
1780 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
1781 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
1782
1783 mfc_cq_dw0 = extract_unsigned_integer (buf + 32*i, 8);
1784 mfc_cq_dw1 = extract_unsigned_integer (buf + 32*i + 8, 8);
1785 mfc_cq_dw2 = extract_unsigned_integer (buf + 32*i + 16, 8);
1786 mfc_cq_dw3 = extract_unsigned_integer (buf + 32*i + 24, 8);
1787
1788 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
1789 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
1790 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
1791 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
1792 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
1793 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
1794 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
1795
1796 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
1797 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
1798
1799 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
1800 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
1801 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
1802 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
1803 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
1804 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
1805
1806 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
1807
1808 if (spu_mfc_opcode[mfc_cmd_opcode])
1809 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
1810 else
1811 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
1812
1813 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
1814 ui_out_field_int (uiout, "tid", tclass_id);
1815 ui_out_field_int (uiout, "rid", rclass_id);
1816
1817 if (ea_valid_p)
1818 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
1819 else
1820 ui_out_field_skip (uiout, "ea");
1821
1822 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
1823 if (qw_valid_p)
1824 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
1825 else
1826 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
1827
1828 if (list_valid_p)
1829 {
1830 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
1831 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
1832 }
1833 else
1834 {
1835 ui_out_field_skip (uiout, "lstaddr");
1836 ui_out_field_skip (uiout, "lstsize");
1837 }
1838
1839 if (cmd_error_p)
1840 ui_out_field_string (uiout, "error_p", "*");
1841 else
1842 ui_out_field_skip (uiout, "error_p");
1843
1844 do_cleanups (cmd_chain);
1845
1846 if (!ui_out_is_mi_like_p (uiout))
1847 printf_filtered ("\n");
1848 }
1849
1850 do_cleanups (chain);
1851 }
1852
1853 static void
1854 info_spu_dma_command (char *args, int from_tty)
1855 {
1856 struct frame_info *frame = get_selected_frame (NULL);
1857 ULONGEST dma_info_type;
1858 ULONGEST dma_info_mask;
1859 ULONGEST dma_info_status;
1860 ULONGEST dma_info_stall_and_notify;
1861 ULONGEST dma_info_atomic_command_status;
1862 struct cleanup *chain;
1863 char annex[32];
1864 gdb_byte buf[1024];
1865 LONGEST len;
1866 int i, id;
1867
1868 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1869
1870 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
1871 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1872 buf, 0, 40 + 16 * 32);
1873 if (len <= 0)
1874 error (_("Could not read dma_info."));
1875
1876 dma_info_type = extract_unsigned_integer (buf, 8);
1877 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1878 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1879 dma_info_stall_and_notify = extract_unsigned_integer (buf + 24, 8);
1880 dma_info_atomic_command_status = extract_unsigned_integer (buf + 32, 8);
1881
1882 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
1883
1884 if (ui_out_is_mi_like_p (uiout))
1885 {
1886 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
1887 phex_nz (dma_info_type, 4));
1888 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
1889 phex_nz (dma_info_mask, 4));
1890 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
1891 phex_nz (dma_info_status, 4));
1892 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
1893 phex_nz (dma_info_stall_and_notify, 4));
1894 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
1895 phex_nz (dma_info_atomic_command_status, 4));
1896 }
1897 else
1898 {
1899 const char *query_msg;
1900
1901 switch (dma_info_type)
1902 {
1903 case 0: query_msg = _("no query pending"); break;
1904 case 1: query_msg = _("'any' query pending"); break;
1905 case 2: query_msg = _("'all' query pending"); break;
1906 default: query_msg = _("undefined query type"); break;
1907 }
1908
1909 printf_filtered (_("Tag-Group Status 0x%s\n"),
1910 phex (dma_info_status, 4));
1911 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
1912 phex (dma_info_mask, 4), query_msg);
1913 printf_filtered (_("Stall-and-Notify 0x%s\n"),
1914 phex (dma_info_stall_and_notify, 4));
1915 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
1916 phex (dma_info_atomic_command_status, 4));
1917 printf_filtered ("\n");
1918 }
1919
1920 info_spu_dma_cmdlist (buf + 40, 16);
1921 do_cleanups (chain);
1922 }
1923
1924 static void
1925 info_spu_proxydma_command (char *args, int from_tty)
1926 {
1927 struct frame_info *frame = get_selected_frame (NULL);
1928 ULONGEST dma_info_type;
1929 ULONGEST dma_info_mask;
1930 ULONGEST dma_info_status;
1931 struct cleanup *chain;
1932 char annex[32];
1933 gdb_byte buf[1024];
1934 LONGEST len;
1935 int i, id;
1936
1937 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1938
1939 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
1940 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1941 buf, 0, 24 + 8 * 32);
1942 if (len <= 0)
1943 error (_("Could not read proxydma_info."));
1944
1945 dma_info_type = extract_unsigned_integer (buf, 8);
1946 dma_info_mask = extract_unsigned_integer (buf + 8, 8);
1947 dma_info_status = extract_unsigned_integer (buf + 16, 8);
1948
1949 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
1950
1951 if (ui_out_is_mi_like_p (uiout))
1952 {
1953 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
1954 phex_nz (dma_info_type, 4));
1955 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
1956 phex_nz (dma_info_mask, 4));
1957 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
1958 phex_nz (dma_info_status, 4));
1959 }
1960 else
1961 {
1962 const char *query_msg;
1963
1964 switch (dma_info_type)
1965 {
1966 case 0: query_msg = _("no query pending"); break;
1967 case 1: query_msg = _("'any' query pending"); break;
1968 case 2: query_msg = _("'all' query pending"); break;
1969 default: query_msg = _("undefined query type"); break;
1970 }
1971
1972 printf_filtered (_("Tag-Group Status 0x%s\n"),
1973 phex (dma_info_status, 4));
1974 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
1975 phex (dma_info_mask, 4), query_msg);
1976 printf_filtered ("\n");
1977 }
1978
1979 info_spu_dma_cmdlist (buf + 24, 8);
1980 do_cleanups (chain);
1981 }
1982
1983 static void
1984 info_spu_command (char *args, int from_tty)
1985 {
1986 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
1987 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
1988 }
1989
1990
1991 /* Set up gdbarch struct. */
1992
1993 static struct gdbarch *
1994 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1995 {
1996 struct gdbarch *gdbarch;
1997 struct gdbarch_tdep *tdep;
1998
1999 /* Find a candidate among the list of pre-declared architectures. */
2000 arches = gdbarch_list_lookup_by_info (arches, &info);
2001 if (arches != NULL)
2002 return arches->gdbarch;
2003
2004 /* Is is for us? */
2005 if (info.bfd_arch_info->mach != bfd_mach_spu)
2006 return NULL;
2007
2008 /* Yes, create a new architecture. */
2009 tdep = XCALLOC (1, struct gdbarch_tdep);
2010 gdbarch = gdbarch_alloc (&info, tdep);
2011
2012 /* Disassembler. */
2013 set_gdbarch_print_insn (gdbarch, print_insn_spu);
2014
2015 /* Registers. */
2016 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2017 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2018 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2019 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2020 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2021 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2022 set_gdbarch_register_name (gdbarch, spu_register_name);
2023 set_gdbarch_register_type (gdbarch, spu_register_type);
2024 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2025 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2026 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2027 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2028
2029 /* Data types. */
2030 set_gdbarch_char_signed (gdbarch, 0);
2031 set_gdbarch_ptr_bit (gdbarch, 32);
2032 set_gdbarch_addr_bit (gdbarch, 32);
2033 set_gdbarch_short_bit (gdbarch, 16);
2034 set_gdbarch_int_bit (gdbarch, 32);
2035 set_gdbarch_long_bit (gdbarch, 32);
2036 set_gdbarch_long_long_bit (gdbarch, 64);
2037 set_gdbarch_float_bit (gdbarch, 32);
2038 set_gdbarch_double_bit (gdbarch, 64);
2039 set_gdbarch_long_double_bit (gdbarch, 64);
2040 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2041 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2042 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2043
2044 /* Address conversion. */
2045 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2046 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2047
2048 /* Inferior function calls. */
2049 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2050 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2051 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2052 set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
2053 set_gdbarch_return_value (gdbarch, spu_return_value);
2054
2055 /* Frame handling. */
2056 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2057 frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
2058 frame_base_set_default (gdbarch, &spu_frame_base);
2059 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2060 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2061 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2062 set_gdbarch_frame_args_skip (gdbarch, 0);
2063 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2064 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2065
2066 /* Breakpoints. */
2067 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2068 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2069 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2070 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2071
2072 /* Overlays. */
2073 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2074
2075 return gdbarch;
2076 }
2077
2078 void
2079 _initialize_spu_tdep (void)
2080 {
2081 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2082
2083 /* Add ourselves to objfile event chain. */
2084 observer_attach_new_objfile (spu_overlay_new_objfile);
2085 spu_overlay_data = register_objfile_data ();
2086
2087 /* Add root prefix command for all "info spu" commands. */
2088 add_prefix_cmd ("spu", class_info, info_spu_command,
2089 _("Various SPU specific commands."),
2090 &infospucmdlist, "info spu ", 0, &infolist);
2091
2092 /* Add various "info spu" commands. */
2093 add_cmd ("event", class_info, info_spu_event_command,
2094 _("Display SPU event facility status.\n"),
2095 &infospucmdlist);
2096 add_cmd ("signal", class_info, info_spu_signal_command,
2097 _("Display SPU signal notification facility status.\n"),
2098 &infospucmdlist);
2099 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2100 _("Display SPU mailbox facility status.\n"),
2101 &infospucmdlist);
2102 add_cmd ("dma", class_info, info_spu_dma_command,
2103 _("Display MFC DMA status.\n"),
2104 &infospucmdlist);
2105 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2106 _("Display MFC Proxy-DMA status.\n"),
2107 &infospucmdlist);
2108 }
This page took 0.07403 seconds and 4 git commands to generate.