2007-04-12 Luis Machado <luisgpm@br.ibm.com>
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "frame.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "symtab.h"
36 #include "symfile.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "objfiles.h"
41 #include "language.h"
42 #include "regcache.h"
43 #include "reggroups.h"
44 #include "floatformat.h"
45
46 #include "spu-tdep.h"
47
48 /* SPU-specific vector type. */
49 struct type *spu_builtin_type_vec128;
50
51 /* Registers. */
52
53 static const char *
54 spu_register_name (int reg_nr)
55 {
56 static char *register_names[] =
57 {
58 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
59 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
60 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
63 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
64 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
65 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
66 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
67 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
68 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
69 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
70 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
71 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
72 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
73 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
74 "id", "pc", "sp"
75 };
76
77 if (reg_nr < 0)
78 return NULL;
79 if (reg_nr >= sizeof register_names / sizeof *register_names)
80 return NULL;
81
82 return register_names[reg_nr];
83 }
84
85 static struct type *
86 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
87 {
88 if (reg_nr < SPU_NUM_GPRS)
89 return spu_builtin_type_vec128;
90
91 switch (reg_nr)
92 {
93 case SPU_ID_REGNUM:
94 return builtin_type_uint32;
95
96 case SPU_PC_REGNUM:
97 return builtin_type_void_func_ptr;
98
99 case SPU_SP_REGNUM:
100 return builtin_type_void_data_ptr;
101
102 default:
103 internal_error (__FILE__, __LINE__, "invalid regnum");
104 }
105 }
106
107 /* Pseudo registers for preferred slots - stack pointer. */
108
109 static void
110 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
111 int regnum, gdb_byte *buf)
112 {
113 gdb_byte reg[16];
114
115 switch (regnum)
116 {
117 case SPU_SP_REGNUM:
118 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
119 memcpy (buf, reg, 4);
120 break;
121
122 default:
123 internal_error (__FILE__, __LINE__, _("invalid regnum"));
124 }
125 }
126
127 static void
128 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
129 int regnum, const gdb_byte *buf)
130 {
131 gdb_byte reg[16];
132
133 switch (regnum)
134 {
135 case SPU_SP_REGNUM:
136 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
137 memcpy (reg, buf, 4);
138 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
139 break;
140
141 default:
142 internal_error (__FILE__, __LINE__, _("invalid regnum"));
143 }
144 }
145
146 /* Value conversion -- access scalar values at the preferred slot. */
147
148 static struct value *
149 spu_value_from_register (struct type *type, int regnum,
150 struct frame_info *frame)
151 {
152 struct value *value = default_value_from_register (type, regnum, frame);
153 int len = TYPE_LENGTH (type);
154
155 if (regnum < SPU_NUM_GPRS && len < 16)
156 {
157 int preferred_slot = len < 4 ? 4 - len : 0;
158 set_value_offset (value, preferred_slot);
159 }
160
161 return value;
162 }
163
164 /* Register groups. */
165
166 static int
167 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
168 struct reggroup *group)
169 {
170 /* Registers displayed via 'info regs'. */
171 if (group == general_reggroup)
172 return 1;
173
174 /* Registers displayed via 'info float'. */
175 if (group == float_reggroup)
176 return 0;
177
178 /* Registers that need to be saved/restored in order to
179 push or pop frames. */
180 if (group == save_reggroup || group == restore_reggroup)
181 return 1;
182
183 return default_register_reggroup_p (gdbarch, regnum, group);
184 }
185
186
187 /* Decoding SPU instructions. */
188
189 enum
190 {
191 op_lqd = 0x34,
192 op_lqx = 0x3c4,
193 op_lqa = 0x61,
194 op_lqr = 0x67,
195 op_stqd = 0x24,
196 op_stqx = 0x144,
197 op_stqa = 0x41,
198 op_stqr = 0x47,
199
200 op_il = 0x081,
201 op_ila = 0x21,
202 op_a = 0x0c0,
203 op_ai = 0x1c,
204
205 op_selb = 0x4,
206
207 op_br = 0x64,
208 op_bra = 0x60,
209 op_brsl = 0x66,
210 op_brasl = 0x62,
211 op_brnz = 0x42,
212 op_brz = 0x40,
213 op_brhnz = 0x46,
214 op_brhz = 0x44,
215 op_bi = 0x1a8,
216 op_bisl = 0x1a9,
217 op_biz = 0x128,
218 op_binz = 0x129,
219 op_bihz = 0x12a,
220 op_bihnz = 0x12b,
221 };
222
223 static int
224 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
225 {
226 if ((insn >> 21) == op)
227 {
228 *rt = insn & 127;
229 *ra = (insn >> 7) & 127;
230 *rb = (insn >> 14) & 127;
231 return 1;
232 }
233
234 return 0;
235 }
236
237 static int
238 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
239 {
240 if ((insn >> 28) == op)
241 {
242 *rt = (insn >> 21) & 127;
243 *ra = (insn >> 7) & 127;
244 *rb = (insn >> 14) & 127;
245 *rc = insn & 127;
246 return 1;
247 }
248
249 return 0;
250 }
251
252 static int
253 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
254 {
255 if ((insn >> 21) == op)
256 {
257 *rt = insn & 127;
258 *ra = (insn >> 7) & 127;
259 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
260 return 1;
261 }
262
263 return 0;
264 }
265
266 static int
267 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
268 {
269 if ((insn >> 24) == op)
270 {
271 *rt = insn & 127;
272 *ra = (insn >> 7) & 127;
273 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
274 return 1;
275 }
276
277 return 0;
278 }
279
280 static int
281 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
282 {
283 if ((insn >> 23) == op)
284 {
285 *rt = insn & 127;
286 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
287 return 1;
288 }
289
290 return 0;
291 }
292
293 static int
294 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
295 {
296 if ((insn >> 25) == op)
297 {
298 *rt = insn & 127;
299 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
300 return 1;
301 }
302
303 return 0;
304 }
305
306 static int
307 is_branch (unsigned int insn, int *offset, int *reg)
308 {
309 int rt, i7, i16;
310
311 if (is_ri16 (insn, op_br, &rt, &i16)
312 || is_ri16 (insn, op_brsl, &rt, &i16)
313 || is_ri16 (insn, op_brnz, &rt, &i16)
314 || is_ri16 (insn, op_brz, &rt, &i16)
315 || is_ri16 (insn, op_brhnz, &rt, &i16)
316 || is_ri16 (insn, op_brhz, &rt, &i16))
317 {
318 *reg = SPU_PC_REGNUM;
319 *offset = i16 << 2;
320 return 1;
321 }
322
323 if (is_ri16 (insn, op_bra, &rt, &i16)
324 || is_ri16 (insn, op_brasl, &rt, &i16))
325 {
326 *reg = -1;
327 *offset = i16 << 2;
328 return 1;
329 }
330
331 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
332 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
333 || is_ri7 (insn, op_biz, &rt, reg, &i7)
334 || is_ri7 (insn, op_binz, &rt, reg, &i7)
335 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
336 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
337 {
338 *offset = 0;
339 return 1;
340 }
341
342 return 0;
343 }
344
345
346 /* Prolog parsing. */
347
348 struct spu_prologue_data
349 {
350 /* Stack frame size. -1 if analysis was unsuccessful. */
351 int size;
352
353 /* How to find the CFA. The CFA is equal to SP at function entry. */
354 int cfa_reg;
355 int cfa_offset;
356
357 /* Offset relative to CFA where a register is saved. -1 if invalid. */
358 int reg_offset[SPU_NUM_GPRS];
359 };
360
361 static CORE_ADDR
362 spu_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR end_pc,
363 struct spu_prologue_data *data)
364 {
365 int found_sp = 0;
366 int found_fp = 0;
367 int found_lr = 0;
368 int reg_immed[SPU_NUM_GPRS];
369 gdb_byte buf[16];
370 CORE_ADDR prolog_pc = start_pc;
371 CORE_ADDR pc;
372 int i;
373
374
375 /* Initialize DATA to default values. */
376 data->size = -1;
377
378 data->cfa_reg = SPU_RAW_SP_REGNUM;
379 data->cfa_offset = 0;
380
381 for (i = 0; i < SPU_NUM_GPRS; i++)
382 data->reg_offset[i] = -1;
383
384 /* Set up REG_IMMED array. This is non-zero for a register if we know its
385 preferred slot currently holds this immediate value. */
386 for (i = 0; i < SPU_NUM_GPRS; i++)
387 reg_immed[i] = 0;
388
389 /* Scan instructions until the first branch.
390
391 The following instructions are important prolog components:
392
393 - The first instruction to set up the stack pointer.
394 - The first instruction to set up the frame pointer.
395 - The first instruction to save the link register.
396
397 We return the instruction after the latest of these three,
398 or the incoming PC if none is found. The first instruction
399 to set up the stack pointer also defines the frame size.
400
401 Note that instructions saving incoming arguments to their stack
402 slots are not counted as important, because they are hard to
403 identify with certainty. This should not matter much, because
404 arguments are relevant only in code compiled with debug data,
405 and in such code the GDB core will advance until the first source
406 line anyway, using SAL data.
407
408 For purposes of stack unwinding, we analyze the following types
409 of instructions in addition:
410
411 - Any instruction adding to the current frame pointer.
412 - Any instruction loading an immediate constant into a register.
413 - Any instruction storing a register onto the stack.
414
415 These are used to compute the CFA and REG_OFFSET output. */
416
417 for (pc = start_pc; pc < end_pc; pc += 4)
418 {
419 unsigned int insn;
420 int rt, ra, rb, rc, immed;
421
422 if (target_read_memory (pc, buf, 4))
423 break;
424 insn = extract_unsigned_integer (buf, 4);
425
426 /* AI is the typical instruction to set up a stack frame.
427 It is also used to initialize the frame pointer. */
428 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
429 {
430 if (rt == data->cfa_reg && ra == data->cfa_reg)
431 data->cfa_offset -= immed;
432
433 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
434 && !found_sp)
435 {
436 found_sp = 1;
437 prolog_pc = pc + 4;
438
439 data->size = -immed;
440 }
441 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
442 && !found_fp)
443 {
444 found_fp = 1;
445 prolog_pc = pc + 4;
446
447 data->cfa_reg = SPU_FP_REGNUM;
448 data->cfa_offset -= immed;
449 }
450 }
451
452 /* A is used to set up stack frames of size >= 512 bytes.
453 If we have tracked the contents of the addend register,
454 we can handle this as well. */
455 else if (is_rr (insn, op_a, &rt, &ra, &rb))
456 {
457 if (rt == data->cfa_reg && ra == data->cfa_reg)
458 {
459 if (reg_immed[rb] != 0)
460 data->cfa_offset -= reg_immed[rb];
461 else
462 data->cfa_reg = -1; /* We don't know the CFA any more. */
463 }
464
465 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
466 && !found_sp)
467 {
468 found_sp = 1;
469 prolog_pc = pc + 4;
470
471 if (reg_immed[rb] != 0)
472 data->size = -reg_immed[rb];
473 }
474 }
475
476 /* We need to track IL and ILA used to load immediate constants
477 in case they are later used as input to an A instruction. */
478 else if (is_ri16 (insn, op_il, &rt, &immed))
479 {
480 reg_immed[rt] = immed;
481
482 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
483 found_sp = 1;
484 }
485
486 else if (is_ri18 (insn, op_ila, &rt, &immed))
487 {
488 reg_immed[rt] = immed & 0x3ffff;
489
490 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
491 found_sp = 1;
492 }
493
494 /* STQD is used to save registers to the stack. */
495 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
496 {
497 if (ra == data->cfa_reg)
498 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
499
500 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
501 && !found_lr)
502 {
503 found_lr = 1;
504 prolog_pc = pc + 4;
505 }
506 }
507
508 /* _start uses SELB to set up the stack pointer. */
509 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
510 {
511 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
512 found_sp = 1;
513 }
514
515 /* We terminate if we find a branch. */
516 else if (is_branch (insn, &immed, &ra))
517 break;
518 }
519
520
521 /* If we successfully parsed until here, and didn't find any instruction
522 modifying SP, we assume we have a frameless function. */
523 if (!found_sp)
524 data->size = 0;
525
526 /* Return cooked instead of raw SP. */
527 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
528 data->cfa_reg = SPU_SP_REGNUM;
529
530 return prolog_pc;
531 }
532
533 /* Return the first instruction after the prologue starting at PC. */
534 static CORE_ADDR
535 spu_skip_prologue (CORE_ADDR pc)
536 {
537 struct spu_prologue_data data;
538 return spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
539 }
540
541 /* Return the frame pointer in use at address PC. */
542 static void
543 spu_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
544 {
545 struct spu_prologue_data data;
546 spu_analyze_prologue (pc, (CORE_ADDR)-1, &data);
547
548 if (data.size != -1 && data.cfa_reg != -1)
549 {
550 /* The 'frame pointer' address is CFA minus frame size. */
551 *reg = data.cfa_reg;
552 *offset = data.cfa_offset - data.size;
553 }
554 else
555 {
556 /* ??? We don't really know ... */
557 *reg = SPU_SP_REGNUM;
558 *offset = 0;
559 }
560 }
561
562 /* Return true if we are in the function's epilogue, i.e. after the
563 instruction that destroyed the function's stack frame.
564
565 1) scan forward from the point of execution:
566 a) If you find an instruction that modifies the stack pointer
567 or transfers control (except a return), execution is not in
568 an epilogue, return.
569 b) Stop scanning if you find a return instruction or reach the
570 end of the function or reach the hard limit for the size of
571 an epilogue.
572 2) scan backward from the point of execution:
573 a) If you find an instruction that modifies the stack pointer,
574 execution *is* in an epilogue, return.
575 b) Stop scanning if you reach an instruction that transfers
576 control or the beginning of the function or reach the hard
577 limit for the size of an epilogue. */
578
579 static int
580 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
581 {
582 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
583 bfd_byte buf[4];
584 unsigned int insn;
585 int rt, ra, rb, rc, immed;
586
587 /* Find the search limits based on function boundaries and hard limit.
588 We assume the epilogue can be up to 64 instructions long. */
589
590 const int spu_max_epilogue_size = 64 * 4;
591
592 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
593 return 0;
594
595 if (pc - func_start < spu_max_epilogue_size)
596 epilogue_start = func_start;
597 else
598 epilogue_start = pc - spu_max_epilogue_size;
599
600 if (func_end - pc < spu_max_epilogue_size)
601 epilogue_end = func_end;
602 else
603 epilogue_end = pc + spu_max_epilogue_size;
604
605 /* Scan forward until next 'bi $0'. */
606
607 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
608 {
609 if (target_read_memory (scan_pc, buf, 4))
610 return 0;
611 insn = extract_unsigned_integer (buf, 4);
612
613 if (is_branch (insn, &immed, &ra))
614 {
615 if (immed == 0 && ra == SPU_LR_REGNUM)
616 break;
617
618 return 0;
619 }
620
621 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
622 || is_rr (insn, op_a, &rt, &ra, &rb)
623 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
624 {
625 if (rt == SPU_RAW_SP_REGNUM)
626 return 0;
627 }
628 }
629
630 if (scan_pc >= epilogue_end)
631 return 0;
632
633 /* Scan backward until adjustment to stack pointer (R1). */
634
635 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
636 {
637 if (target_read_memory (scan_pc, buf, 4))
638 return 0;
639 insn = extract_unsigned_integer (buf, 4);
640
641 if (is_branch (insn, &immed, &ra))
642 return 0;
643
644 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
645 || is_rr (insn, op_a, &rt, &ra, &rb)
646 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
647 {
648 if (rt == SPU_RAW_SP_REGNUM)
649 return 1;
650 }
651 }
652
653 return 0;
654 }
655
656
657 /* Normal stack frames. */
658
659 struct spu_unwind_cache
660 {
661 CORE_ADDR func;
662 CORE_ADDR frame_base;
663 CORE_ADDR local_base;
664
665 struct trad_frame_saved_reg *saved_regs;
666 };
667
668 static struct spu_unwind_cache *
669 spu_frame_unwind_cache (struct frame_info *next_frame,
670 void **this_prologue_cache)
671 {
672 struct spu_unwind_cache *info;
673 struct spu_prologue_data data;
674
675 if (*this_prologue_cache)
676 return *this_prologue_cache;
677
678 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
679 *this_prologue_cache = info;
680 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
681 info->frame_base = 0;
682 info->local_base = 0;
683
684 /* Find the start of the current function, and analyze its prologue. */
685 info->func = frame_func_unwind (next_frame, NORMAL_FRAME);
686 if (info->func == 0)
687 {
688 /* Fall back to using the current PC as frame ID. */
689 info->func = frame_pc_unwind (next_frame);
690 data.size = -1;
691 }
692 else
693 spu_analyze_prologue (info->func, frame_pc_unwind (next_frame), &data);
694
695
696 /* If successful, use prologue analysis data. */
697 if (data.size != -1 && data.cfa_reg != -1)
698 {
699 CORE_ADDR cfa;
700 int i;
701 gdb_byte buf[16];
702
703 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
704 frame_unwind_register (next_frame, data.cfa_reg, buf);
705 cfa = extract_unsigned_integer (buf, 4) + data.cfa_offset;
706
707 /* Call-saved register slots. */
708 for (i = 0; i < SPU_NUM_GPRS; i++)
709 if (i == SPU_LR_REGNUM
710 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
711 if (data.reg_offset[i] != -1)
712 info->saved_regs[i].addr = cfa - data.reg_offset[i];
713
714 /* The previous PC comes from the link register. */
715 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
716 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
717 else
718 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
719
720 /* The previous SP is equal to the CFA. */
721 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, cfa);
722
723 /* Frame bases. */
724 info->frame_base = cfa;
725 info->local_base = cfa - data.size;
726 }
727
728 /* Otherwise, fall back to reading the backchain link. */
729 else
730 {
731 CORE_ADDR reg, backchain;
732
733 /* Get the backchain. */
734 reg = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
735 backchain = read_memory_unsigned_integer (reg, 4);
736
737 /* A zero backchain terminates the frame chain. Also, sanity
738 check against the local store size limit. */
739 if (backchain != 0 && backchain < SPU_LS_SIZE)
740 {
741 /* Assume the link register is saved into its slot. */
742 if (backchain + 16 < SPU_LS_SIZE)
743 info->saved_regs[SPU_LR_REGNUM].addr = backchain + 16;
744
745 /* This will also be the previous PC. */
746 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
747 info->saved_regs[SPU_PC_REGNUM] = info->saved_regs[SPU_LR_REGNUM];
748 else
749 info->saved_regs[SPU_PC_REGNUM].realreg = SPU_LR_REGNUM;
750
751 /* The previous SP will equal the backchain value. */
752 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, backchain);
753
754 /* Frame bases. */
755 info->frame_base = backchain;
756 info->local_base = reg;
757 }
758 }
759
760 return info;
761 }
762
763 static void
764 spu_frame_this_id (struct frame_info *next_frame,
765 void **this_prologue_cache, struct frame_id *this_id)
766 {
767 struct spu_unwind_cache *info =
768 spu_frame_unwind_cache (next_frame, this_prologue_cache);
769
770 if (info->frame_base == 0)
771 return;
772
773 *this_id = frame_id_build (info->frame_base, info->func);
774 }
775
776 static void
777 spu_frame_prev_register (struct frame_info *next_frame,
778 void **this_prologue_cache,
779 int regnum, int *optimizedp,
780 enum lval_type *lvalp, CORE_ADDR * addrp,
781 int *realnump, gdb_byte *bufferp)
782 {
783 struct spu_unwind_cache *info
784 = spu_frame_unwind_cache (next_frame, this_prologue_cache);
785
786 /* Special-case the stack pointer. */
787 if (regnum == SPU_RAW_SP_REGNUM)
788 regnum = SPU_SP_REGNUM;
789
790 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
791 optimizedp, lvalp, addrp, realnump, bufferp);
792 }
793
794 static const struct frame_unwind spu_frame_unwind = {
795 NORMAL_FRAME,
796 spu_frame_this_id,
797 spu_frame_prev_register
798 };
799
800 const struct frame_unwind *
801 spu_frame_sniffer (struct frame_info *next_frame)
802 {
803 return &spu_frame_unwind;
804 }
805
806 static CORE_ADDR
807 spu_frame_base_address (struct frame_info *next_frame, void **this_cache)
808 {
809 struct spu_unwind_cache *info
810 = spu_frame_unwind_cache (next_frame, this_cache);
811 return info->local_base;
812 }
813
814 static const struct frame_base spu_frame_base = {
815 &spu_frame_unwind,
816 spu_frame_base_address,
817 spu_frame_base_address,
818 spu_frame_base_address
819 };
820
821 static CORE_ADDR
822 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
823 {
824 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
825 /* Mask off interrupt enable bit. */
826 return pc & -4;
827 }
828
829 static CORE_ADDR
830 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
831 {
832 return frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
833 }
834
835 static CORE_ADDR
836 spu_read_pc (ptid_t ptid)
837 {
838 CORE_ADDR pc = read_register_pid (SPU_PC_REGNUM, ptid);
839 /* Mask off interrupt enable bit. */
840 return pc & -4;
841 }
842
843 static void
844 spu_write_pc (CORE_ADDR pc, ptid_t ptid)
845 {
846 /* Keep interrupt enabled state unchanged. */
847 CORE_ADDR old_pc = read_register_pid (SPU_PC_REGNUM, ptid);
848 write_register_pid (SPU_PC_REGNUM, (pc & -4) | (old_pc & 3), ptid);
849 }
850
851
852 /* Function calling convention. */
853
854 static CORE_ADDR
855 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
856 {
857 return sp & ~15;
858 }
859
860 static int
861 spu_scalar_value_p (struct type *type)
862 {
863 switch (TYPE_CODE (type))
864 {
865 case TYPE_CODE_INT:
866 case TYPE_CODE_ENUM:
867 case TYPE_CODE_RANGE:
868 case TYPE_CODE_CHAR:
869 case TYPE_CODE_BOOL:
870 case TYPE_CODE_PTR:
871 case TYPE_CODE_REF:
872 return TYPE_LENGTH (type) <= 16;
873
874 default:
875 return 0;
876 }
877 }
878
879 static void
880 spu_value_to_regcache (struct regcache *regcache, int regnum,
881 struct type *type, const gdb_byte *in)
882 {
883 int len = TYPE_LENGTH (type);
884
885 if (spu_scalar_value_p (type))
886 {
887 int preferred_slot = len < 4 ? 4 - len : 0;
888 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
889 }
890 else
891 {
892 while (len >= 16)
893 {
894 regcache_cooked_write (regcache, regnum++, in);
895 in += 16;
896 len -= 16;
897 }
898
899 if (len > 0)
900 regcache_cooked_write_part (regcache, regnum, 0, len, in);
901 }
902 }
903
904 static void
905 spu_regcache_to_value (struct regcache *regcache, int regnum,
906 struct type *type, gdb_byte *out)
907 {
908 int len = TYPE_LENGTH (type);
909
910 if (spu_scalar_value_p (type))
911 {
912 int preferred_slot = len < 4 ? 4 - len : 0;
913 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
914 }
915 else
916 {
917 while (len >= 16)
918 {
919 regcache_cooked_read (regcache, regnum++, out);
920 out += 16;
921 len -= 16;
922 }
923
924 if (len > 0)
925 regcache_cooked_read_part (regcache, regnum, 0, len, out);
926 }
927 }
928
929 static CORE_ADDR
930 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
931 struct regcache *regcache, CORE_ADDR bp_addr,
932 int nargs, struct value **args, CORE_ADDR sp,
933 int struct_return, CORE_ADDR struct_addr)
934 {
935 int i;
936 int regnum = SPU_ARG1_REGNUM;
937 int stack_arg = -1;
938 gdb_byte buf[16];
939
940 /* Set the return address. */
941 memset (buf, 0, sizeof buf);
942 store_unsigned_integer (buf, 4, bp_addr);
943 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
944
945 /* If STRUCT_RETURN is true, then the struct return address (in
946 STRUCT_ADDR) will consume the first argument-passing register.
947 Both adjust the register count and store that value. */
948 if (struct_return)
949 {
950 memset (buf, 0, sizeof buf);
951 store_unsigned_integer (buf, 4, struct_addr);
952 regcache_cooked_write (regcache, regnum++, buf);
953 }
954
955 /* Fill in argument registers. */
956 for (i = 0; i < nargs; i++)
957 {
958 struct value *arg = args[i];
959 struct type *type = check_typedef (value_type (arg));
960 const gdb_byte *contents = value_contents (arg);
961 int len = TYPE_LENGTH (type);
962 int n_regs = align_up (len, 16) / 16;
963
964 /* If the argument doesn't wholly fit into registers, it and
965 all subsequent arguments go to the stack. */
966 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
967 {
968 stack_arg = i;
969 break;
970 }
971
972 spu_value_to_regcache (regcache, regnum, type, contents);
973 regnum += n_regs;
974 }
975
976 /* Overflow arguments go to the stack. */
977 if (stack_arg != -1)
978 {
979 CORE_ADDR ap;
980
981 /* Allocate all required stack size. */
982 for (i = stack_arg; i < nargs; i++)
983 {
984 struct type *type = check_typedef (value_type (args[i]));
985 sp -= align_up (TYPE_LENGTH (type), 16);
986 }
987
988 /* Fill in stack arguments. */
989 ap = sp;
990 for (i = stack_arg; i < nargs; i++)
991 {
992 struct value *arg = args[i];
993 struct type *type = check_typedef (value_type (arg));
994 int len = TYPE_LENGTH (type);
995 int preferred_slot;
996
997 if (spu_scalar_value_p (type))
998 preferred_slot = len < 4 ? 4 - len : 0;
999 else
1000 preferred_slot = 0;
1001
1002 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1003 ap += align_up (TYPE_LENGTH (type), 16);
1004 }
1005 }
1006
1007 /* Allocate stack frame header. */
1008 sp -= 32;
1009
1010 /* Finally, update the SP register. */
1011 regcache_cooked_write_unsigned (regcache, SPU_SP_REGNUM, sp);
1012
1013 return sp;
1014 }
1015
1016 static struct frame_id
1017 spu_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1018 {
1019 return frame_id_build (spu_unwind_sp (gdbarch, next_frame),
1020 spu_unwind_pc (gdbarch, next_frame));
1021 }
1022
1023 /* Function return value access. */
1024
1025 static enum return_value_convention
1026 spu_return_value (struct gdbarch *gdbarch, struct type *type,
1027 struct regcache *regcache, gdb_byte *out, const gdb_byte *in)
1028 {
1029 enum return_value_convention rvc;
1030
1031 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1032 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1033 else
1034 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1035
1036 if (in)
1037 {
1038 switch (rvc)
1039 {
1040 case RETURN_VALUE_REGISTER_CONVENTION:
1041 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1042 break;
1043
1044 case RETURN_VALUE_STRUCT_CONVENTION:
1045 error ("Cannot set function return value.");
1046 break;
1047 }
1048 }
1049 else if (out)
1050 {
1051 switch (rvc)
1052 {
1053 case RETURN_VALUE_REGISTER_CONVENTION:
1054 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1055 break;
1056
1057 case RETURN_VALUE_STRUCT_CONVENTION:
1058 error ("Function return value unknown.");
1059 break;
1060 }
1061 }
1062
1063 return rvc;
1064 }
1065
1066
1067 /* Breakpoints. */
1068
1069 static const gdb_byte *
1070 spu_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1071 {
1072 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1073
1074 *lenptr = sizeof breakpoint;
1075 return breakpoint;
1076 }
1077
1078
1079 /* Software single-stepping support. */
1080
1081 int
1082 spu_software_single_step (enum target_signal signal, int insert_breakpoints_p)
1083 {
1084 if (insert_breakpoints_p)
1085 {
1086 CORE_ADDR pc, next_pc;
1087 unsigned int insn;
1088 int offset, reg;
1089 gdb_byte buf[4];
1090
1091 regcache_cooked_read (current_regcache, SPU_PC_REGNUM, buf);
1092 /* Mask off interrupt enable bit. */
1093 pc = extract_unsigned_integer (buf, 4) & -4;
1094
1095 if (target_read_memory (pc, buf, 4))
1096 return 1;
1097 insn = extract_unsigned_integer (buf, 4);
1098
1099 /* Next sequential instruction is at PC + 4, except if the current
1100 instruction is a PPE-assisted call, in which case it is at PC + 8.
1101 Wrap around LS limit to be on the safe side. */
1102 if ((insn & 0xffffff00) == 0x00002100)
1103 next_pc = (pc + 8) & (SPU_LS_SIZE - 1);
1104 else
1105 next_pc = (pc + 4) & (SPU_LS_SIZE - 1);
1106
1107 insert_single_step_breakpoint (next_pc);
1108
1109 if (is_branch (insn, &offset, &reg))
1110 {
1111 CORE_ADDR target = offset;
1112
1113 if (reg == SPU_PC_REGNUM)
1114 target += pc;
1115 else if (reg != -1)
1116 {
1117 regcache_cooked_read_part (current_regcache, reg, 0, 4, buf);
1118 target += extract_unsigned_integer (buf, 4) & -4;
1119 }
1120
1121 target = target & (SPU_LS_SIZE - 1);
1122 if (target != next_pc)
1123 insert_single_step_breakpoint (target);
1124 }
1125 }
1126 else
1127 remove_single_step_breakpoints ();
1128
1129 return 1;
1130 }
1131
1132
1133 /* Set up gdbarch struct. */
1134
1135 static struct gdbarch *
1136 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1137 {
1138 struct gdbarch *gdbarch;
1139
1140 /* Find a candidate among the list of pre-declared architectures. */
1141 arches = gdbarch_list_lookup_by_info (arches, &info);
1142 if (arches != NULL)
1143 return arches->gdbarch;
1144
1145 /* Is is for us? */
1146 if (info.bfd_arch_info->mach != bfd_mach_spu)
1147 return NULL;
1148
1149 /* Yes, create a new architecture. */
1150 gdbarch = gdbarch_alloc (&info, NULL);
1151
1152 /* Disassembler. */
1153 set_gdbarch_print_insn (gdbarch, print_insn_spu);
1154
1155 /* Registers. */
1156 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
1157 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
1158 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
1159 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
1160 set_gdbarch_read_pc (gdbarch, spu_read_pc);
1161 set_gdbarch_write_pc (gdbarch, spu_write_pc);
1162 set_gdbarch_register_name (gdbarch, spu_register_name);
1163 set_gdbarch_register_type (gdbarch, spu_register_type);
1164 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
1165 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
1166 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
1167 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
1168
1169 /* Data types. */
1170 set_gdbarch_char_signed (gdbarch, 0);
1171 set_gdbarch_ptr_bit (gdbarch, 32);
1172 set_gdbarch_addr_bit (gdbarch, 32);
1173 set_gdbarch_short_bit (gdbarch, 16);
1174 set_gdbarch_int_bit (gdbarch, 32);
1175 set_gdbarch_long_bit (gdbarch, 32);
1176 set_gdbarch_long_long_bit (gdbarch, 64);
1177 set_gdbarch_float_bit (gdbarch, 32);
1178 set_gdbarch_double_bit (gdbarch, 64);
1179 set_gdbarch_long_double_bit (gdbarch, 64);
1180 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1181 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1182 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1183
1184 /* Inferior function calls. */
1185 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1186 set_gdbarch_frame_align (gdbarch, spu_frame_align);
1187 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
1188 set_gdbarch_unwind_dummy_id (gdbarch, spu_unwind_dummy_id);
1189 set_gdbarch_return_value (gdbarch, spu_return_value);
1190
1191 /* Frame handling. */
1192 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1193 frame_unwind_append_sniffer (gdbarch, spu_frame_sniffer);
1194 frame_base_set_default (gdbarch, &spu_frame_base);
1195 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
1196 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
1197 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
1198 set_gdbarch_frame_args_skip (gdbarch, 0);
1199 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
1200 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
1201
1202 /* Breakpoints. */
1203 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1204 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
1205 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1206 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
1207
1208 return gdbarch;
1209 }
1210
1211 /* Implement a SPU-specific vector type as replacement
1212 for __gdb_builtin_type_vec128. */
1213 static void
1214 spu_init_vector_type (void)
1215 {
1216 struct type *type;
1217
1218 type = init_composite_type ("__spu_builtin_type_vec128", TYPE_CODE_UNION);
1219 append_composite_type_field (type, "uint128", builtin_type_int128);
1220 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1221 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1222 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1223 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1224 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1225 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1226
1227 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1228 TYPE_NAME (type) = "spu_builtin_type_vec128";
1229 spu_builtin_type_vec128 = type;
1230 }
1231
1232 void
1233 _initialize_spu_tdep (void)
1234 {
1235 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
1236
1237 spu_init_vector_type ();
1238 }
This page took 0.05516 seconds and 5 git commands to generate.