035725987c375d5b0e063a4cffe3120ba28606a3
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 /* Ask stabsread.h to define the vars it normally declares `extern'. */
40 #define EXTERN /**/
41 #include "stabsread.h" /* Our own declarations */
42 #undef EXTERN
43
44 /* The routines that read and process a complete stabs for a C struct or
45 C++ class pass lists of data member fields and lists of member function
46 fields in an instance of a field_info structure, as defined below.
47 This is part of some reorganization of low level C++ support and is
48 expected to eventually go away... (FIXME) */
49
50 struct field_info
51 {
52 struct nextfield
53 {
54 struct nextfield *next;
55 int visibility;
56 struct field field;
57 } *list;
58 struct next_fnfieldlist
59 {
60 struct next_fnfieldlist *next;
61 struct fn_fieldlist fn_fieldlist;
62 } *fnlist;
63 };
64
65 static struct type *
66 dbx_alloc_type PARAMS ((int [2], struct objfile *));
67
68 static void
69 read_huge_number PARAMS ((char **, int, long *, int *));
70
71 static void
72 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
73 struct objfile *));
74
75 static void
76 fix_common_block PARAMS ((struct symbol *, int));
77
78 static struct type *
79 read_range_type PARAMS ((char **, int [2], struct objfile *));
80
81 static struct type *
82 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
83
84 static struct type *
85 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
89
90 static struct type *
91 rs6000_builtin_type PARAMS ((int));
92
93 static int
94 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
95 struct objfile *));
96
97 static int
98 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
99 struct objfile *));
100
101 static int
102 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
103 struct objfile *));
104
105 static int
106 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
107 struct objfile *));
108
109 static int
110 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
111
112 static int
113 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
114 struct objfile *));
115
116 static struct type *
117 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
118
119 static struct type *
120 read_array_type PARAMS ((char **, struct type *, struct objfile *));
121
122 static struct type **
123 read_args PARAMS ((char **, int, struct objfile *));
124
125 static void
126 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
127 struct objfile *));
128
129 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
130 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
131
132 /* Define this as 1 if a pcc declaration of a char or short argument
133 gives the correct address. Otherwise assume pcc gives the
134 address of the corresponding int, which is not the same on a
135 big-endian machine. */
136
137 #ifndef BELIEVE_PCC_PROMOTION
138 #define BELIEVE_PCC_PROMOTION 0
139 #endif
140
141 /* During some calls to read_type (and thus to read_range_type), this
142 contains the name of the type being defined. Range types are only
143 used in C as basic types. We use the name to distinguish the otherwise
144 identical basic types "int" and "long" and their unsigned versions.
145 FIXME, this should disappear with better type management. */
146
147 static char *long_kludge_name;
148
149 #if 0
150 struct complaint dbx_class_complaint =
151 {
152 "encountered DBX-style class variable debugging information.\n\
153 You seem to have compiled your program with \
154 \"g++ -g0\" instead of \"g++ -g\".\n\
155 Therefore GDB will not know about your class variables", 0, 0
156 };
157 #endif
158
159 struct complaint invalid_cpp_abbrev_complaint =
160 {"invalid C++ abbreviation `%s'", 0, 0};
161
162 struct complaint invalid_cpp_type_complaint =
163 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
164
165 struct complaint member_fn_complaint =
166 {"member function type missing, got '%c'", 0, 0};
167
168 struct complaint const_vol_complaint =
169 {"const/volatile indicator missing, got '%c'", 0, 0};
170
171 struct complaint error_type_complaint =
172 {"debug info mismatch between compiler and debugger", 0, 0};
173
174 struct complaint invalid_member_complaint =
175 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
176
177 struct complaint range_type_base_complaint =
178 {"base type %d of range type is not defined", 0, 0};
179
180 struct complaint reg_value_complaint =
181 {"register number too large in symbol %s", 0, 0};
182
183 struct complaint vtbl_notfound_complaint =
184 {"virtual function table pointer not found when defining class `%s'", 0, 0};
185
186 struct complaint unrecognized_cplus_name_complaint =
187 {"Unknown C++ symbol name `%s'", 0, 0};
188
189 struct complaint rs6000_builtin_complaint =
190 {"Unknown builtin type %d", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
205 } while (0)
206
207 \f
208 int
209 hashname (name)
210 char *name;
211 {
212 register char *p = name;
213 register int total = p[0];
214 register int c;
215
216 c = p[1];
217 total += c << 2;
218 if (c)
219 {
220 c = p[2];
221 total += c << 4;
222 if (c)
223 {
224 total += p[3] << 6;
225 }
226 }
227
228 /* Ensure result is positive. */
229 if (total < 0)
230 {
231 total += (1000 << 6);
232 }
233 return (total % HASHSIZE);
234 }
235
236 \f
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
260 filenum, index, symnum);
261
262 if (filenum == 0)
263 {
264 if (index < 0)
265 {
266 /* Caller wants address of address of type. We think
267 that negative (rs6k builtin) types will never appear as
268 "lvalues", (nor should they), so we stuff the real type
269 pointer into a temp, and return its address. If referenced,
270 this will do the right thing. */
271 static struct type *temp_type;
272
273 temp_type = rs6000_builtin_type(index);
274 return &temp_type;
275 }
276
277 /* Type is defined outside of header files.
278 Find it in this object file's type vector. */
279 if (index >= type_vector_length)
280 {
281 old_len = type_vector_length;
282 if (old_len == 0)
283 {
284 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
285 type_vector = (struct type **)
286 malloc (type_vector_length * sizeof (struct type *));
287 }
288 while (index >= type_vector_length)
289 {
290 type_vector_length *= 2;
291 }
292 type_vector = (struct type **)
293 xrealloc ((char *) type_vector,
294 (type_vector_length * sizeof (struct type *)));
295 memset (&type_vector[old_len], 0,
296 (type_vector_length - old_len) * sizeof (struct type *));
297 }
298 return (&type_vector[index]);
299 }
300 else
301 {
302 real_filenum = this_object_header_files[filenum];
303
304 if (real_filenum >= n_header_files)
305 {
306 abort ();
307 }
308
309 f = &header_files[real_filenum];
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (typenums, objfile)
335 int typenums[2];
336 struct objfile *objfile;
337 {
338 register struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* for all the stabs in a given stab vector, build appropriate types
359 and fix their symbols in given symbol vector. */
360
361 static void
362 patch_block_stabs (symbols, stabs, objfile)
363 struct pending *symbols;
364 struct pending_stabs *stabs;
365 struct objfile *objfile;
366 {
367 int ii;
368 char *name;
369 char *pp;
370 struct symbol *sym;
371
372 if (stabs)
373 {
374
375 /* for all the stab entries, find their corresponding symbols and
376 patch their types! */
377
378 for (ii = 0; ii < stabs->count; ++ii)
379 {
380 name = stabs->stab[ii];
381 pp = (char*) strchr (name, ':');
382 sym = find_symbol_in_list (symbols, name, pp-name);
383 if (!sym)
384 {
385 /* On xcoff, if a global is defined and never referenced,
386 ld will remove it from the executable. There is then
387 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
388 sym = (struct symbol *)
389 obstack_alloc (&objfile->symbol_obstack,
390 sizeof (struct symbol));
391
392 memset (sym, 0, sizeof (struct symbol));
393 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
394 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
395 SYMBOL_NAME (sym) =
396 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 /* I don't think the linker does this with functions,
401 so as far as I know this is never executed.
402 But it doesn't hurt to check. */
403 SYMBOL_TYPE (sym) =
404 lookup_function_type (read_type (&pp, objfile));
405 }
406 else
407 {
408 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
409 }
410 add_symbol_to_list (sym, &global_symbols);
411 }
412 else
413 {
414 pp += 2;
415 if (*(pp-1) == 'F' || *(pp-1) == 'f')
416 {
417 SYMBOL_TYPE (sym) =
418 lookup_function_type (read_type (&pp, objfile));
419 }
420 else
421 {
422 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
423 }
424 }
425 }
426 }
427 }
428
429 \f
430 /* Read a number by which a type is referred to in dbx data,
431 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
432 Just a single number N is equivalent to (0,N).
433 Return the two numbers by storing them in the vector TYPENUMS.
434 TYPENUMS will then be used as an argument to dbx_lookup_type. */
435
436 void
437 read_type_number (pp, typenums)
438 register char **pp;
439 register int *typenums;
440 {
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_number (pp, ',');
445 typenums[1] = read_number (pp, ')');
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_number (pp, 0);
451 }
452 }
453
454 \f
455 /* To handle GNU C++ typename abbreviation, we need to be able to
456 fill in a type's name as soon as space for that type is allocated.
457 `type_synonym_name' is the name of the type being allocated.
458 It is cleared as soon as it is used (lest all allocated types
459 get this name). */
460
461 static char *type_synonym_name;
462
463 /* ARGSUSED */
464 struct symbol *
465 define_symbol (valu, string, desc, type, objfile)
466 unsigned int valu;
467 char *string;
468 int desc;
469 int type;
470 struct objfile *objfile;
471 {
472 register struct symbol *sym;
473 char *p = (char *) strchr (string, ':');
474 int deftype;
475 int synonym = 0;
476 register int i;
477 struct type *temptype;
478
479 /* We would like to eliminate nameless symbols, but keep their types.
480 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
481 to type 2, but, should not create a symbol to address that type. Since
482 the symbol will be nameless, there is no way any user can refer to it. */
483
484 int nameless;
485
486 /* Ignore syms with empty names. */
487 if (string[0] == 0)
488 return 0;
489
490 /* Ignore old-style symbols from cc -go */
491 if (p == 0)
492 return 0;
493
494 /* If a nameless stab entry, all we need is the type, not the symbol.
495 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
496 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
497
498 sym = (struct symbol *)
499 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
500 memset (sym, 0, sizeof (struct symbol));
501
502 if (processing_gcc_compilation)
503 {
504 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
505 number of bytes occupied by a type or object, which we ignore. */
506 SYMBOL_LINE(sym) = desc;
507 }
508 else
509 {
510 SYMBOL_LINE(sym) = 0; /* unknown */
511 }
512
513 if (string[0] == CPLUS_MARKER)
514 {
515 /* Special GNU C++ names. */
516 switch (string[1])
517 {
518 case 't':
519 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
520 &objfile -> symbol_obstack);
521 break;
522
523 case 'v': /* $vtbl_ptr_type */
524 /* Was: SYMBOL_NAME (sym) = "vptr"; */
525 goto normal;
526
527 case 'e':
528 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
529 &objfile -> symbol_obstack);
530 break;
531
532 case '_':
533 /* This was an anonymous type that was never fixed up. */
534 goto normal;
535
536 default:
537 complain (unrecognized_cplus_name_complaint, string);
538 goto normal; /* Do *something* with it */
539 }
540 }
541 else
542 {
543 normal:
544 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
545 SYMBOL_NAME (sym) = (char *)
546 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
547 /* Open-coded bcopy--saves function call time. */
548 /* FIXME: Does it really? Try replacing with simple strcpy and
549 try it on an executable with a large symbol table. */
550 {
551 register char *p1 = string;
552 register char *p2 = SYMBOL_NAME (sym);
553 while (p1 != p)
554 {
555 *p2++ = *p1++;
556 }
557 *p2++ = '\0';
558 }
559
560 /* If this symbol is from a C++ compilation, then attempt to cache the
561 demangled form for future reference. This is a typical time versus
562 space tradeoff, that was decided in favor of time because it sped up
563 C++ symbol lookups by a factor of about 20. */
564
565 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
566 }
567 p++;
568
569 /* Determine the type of name being defined. */
570 /* The Acorn RISC machine's compiler can put out locals that don't
571 start with "234=" or "(3,4)=", so assume anything other than the
572 deftypes we know how to handle is a local. */
573 if (!strchr ("cfFGpPrStTvVXCR", *p))
574 deftype = 'l';
575 else
576 deftype = *p++;
577
578 /* c is a special case, not followed by a type-number.
579 SYMBOL:c=iVALUE for an integer constant symbol.
580 SYMBOL:c=rVALUE for a floating constant symbol.
581 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
582 e.g. "b:c=e6,0" for "const b = blob1"
583 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
584 if (deftype == 'c')
585 {
586 if (*p++ != '=')
587 error ("Invalid symbol data at symtab pos %d.", symnum);
588 switch (*p++)
589 {
590 case 'r':
591 {
592 double d = atof (p);
593 char *dbl_valu;
594
595 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
596 FT_DBL_PREC_FLOAT);
597 dbl_valu = (char *)
598 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
599 memcpy (dbl_valu, &d, sizeof (double));
600 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
601 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
602 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
603 }
604 break;
605 case 'i':
606 {
607 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
608 FT_INTEGER);
609 SYMBOL_VALUE (sym) = atoi (p);
610 SYMBOL_CLASS (sym) = LOC_CONST;
611 }
612 break;
613 case 'e':
614 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
615 e.g. "b:c=e6,0" for "const b = blob1"
616 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
617 {
618 int typenums[2];
619
620 read_type_number (&p, typenums);
621 if (*p++ != ',')
622 error ("Invalid symbol data: no comma in enum const symbol");
623
624 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
625 SYMBOL_VALUE (sym) = atoi (p);
626 SYMBOL_CLASS (sym) = LOC_CONST;
627 }
628 break;
629 default:
630 error ("Invalid symbol data at symtab pos %d.", symnum);
631 }
632 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
633 add_symbol_to_list (sym, &file_symbols);
634 return sym;
635 }
636
637 /* Now usually comes a number that says which data type,
638 and possibly more stuff to define the type
639 (all of which is handled by read_type) */
640
641 if (deftype == 'p' && *p == 'F')
642 /* pF is a two-letter code that means a function parameter in Fortran.
643 The type-number specifies the type of the return value.
644 Translate it into a pointer-to-function type. */
645 {
646 p++;
647 SYMBOL_TYPE (sym)
648 = lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
649 }
650 else
651 {
652 /* The symbol class letter is followed by a type (typically the
653 type of the symbol, or its return-type, or etc). Read it. */
654
655 synonym = *p == 't';
656
657 if (synonym)
658 {
659 p++;
660 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
661 strlen (SYMBOL_NAME (sym)),
662 &objfile -> symbol_obstack);
663 }
664
665 /* Here we save the name of the symbol for read_range_type, which
666 ends up reading in the basic types. In stabs, unfortunately there
667 is no distinction between "int" and "long" types except their
668 names. Until we work out a saner type policy (eliminating most
669 builtin types and using the names specified in the files), we
670 save away the name so that far away from here in read_range_type,
671 we can examine it to decide between "int" and "long". FIXME. */
672 long_kludge_name = SYMBOL_NAME (sym);
673
674 SYMBOL_TYPE (sym) = read_type (&p, objfile);
675 }
676
677 switch (deftype)
678 {
679 case 'C':
680 /* The name of a caught exception. */
681 SYMBOL_CLASS (sym) = LOC_LABEL;
682 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
683 SYMBOL_VALUE_ADDRESS (sym) = valu;
684 add_symbol_to_list (sym, &local_symbols);
685 break;
686
687 case 'f':
688 /* A static function definition. */
689 SYMBOL_CLASS (sym) = LOC_BLOCK;
690 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
691 add_symbol_to_list (sym, &file_symbols);
692 /* fall into process_function_types. */
693
694 process_function_types:
695 /* Function result types are described as the result type in stabs.
696 We need to convert this to the function-returning-type-X type
697 in GDB. E.g. "int" is converted to "function returning int". */
698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
699 {
700 #if 0
701 /* This code doesn't work -- it needs to realloc and can't. */
702 /* Attempt to set up to record a function prototype... */
703 struct type *new = alloc_type (objfile);
704
705 /* Generate a template for the type of this function. The
706 types of the arguments will be added as we read the symbol
707 table. */
708 *new = *lookup_function_type (SYMBOL_TYPE(sym));
709 SYMBOL_TYPE(sym) = new;
710 TYPE_OBJFILE (new) = objfile;
711 in_function_type = new;
712 #else
713 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
714 #endif
715 }
716 /* fall into process_prototype_types */
717
718 process_prototype_types:
719 /* Sun acc puts declared types of arguments here. We don't care
720 about their actual types (FIXME -- we should remember the whole
721 function prototype), but the list may define some new types
722 that we have to remember, so we must scan it now. */
723 while (*p == ';') {
724 p++;
725 read_type (&p, objfile);
726 }
727 break;
728
729 case 'F':
730 /* A global function definition. */
731 SYMBOL_CLASS (sym) = LOC_BLOCK;
732 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
733 add_symbol_to_list (sym, &global_symbols);
734 goto process_function_types;
735
736 case 'G':
737 /* For a class G (global) symbol, it appears that the
738 value is not correct. It is necessary to search for the
739 corresponding linker definition to find the value.
740 These definitions appear at the end of the namelist. */
741 i = hashname (SYMBOL_NAME (sym));
742 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
743 global_sym_chain[i] = sym;
744 SYMBOL_CLASS (sym) = LOC_STATIC;
745 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
746 add_symbol_to_list (sym, &global_symbols);
747 break;
748
749 /* This case is faked by a conditional above,
750 when there is no code letter in the dbx data.
751 Dbx data never actually contains 'l'. */
752 case 'l':
753 SYMBOL_CLASS (sym) = LOC_LOCAL;
754 SYMBOL_VALUE (sym) = valu;
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &local_symbols);
757 break;
758
759 case 'p':
760 /* Normally this is a parameter, a LOC_ARG. On the i960, it
761 can also be a LOC_LOCAL_ARG depending on symbol type. */
762 #ifndef DBX_PARM_SYMBOL_CLASS
763 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
764 #endif
765 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
766 SYMBOL_VALUE (sym) = valu;
767 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
768 #if 0
769 /* This doesn't work yet. */
770 add_param_to_type (&in_function_type, sym);
771 #endif
772 add_symbol_to_list (sym, &local_symbols);
773
774 /* If it's gcc-compiled, if it says `short', believe it. */
775 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
776 break;
777
778 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
779 /* This macro is defined on machines (e.g. sparc) where
780 we should believe the type of a PCC 'short' argument,
781 but shouldn't believe the address (the address is
782 the address of the corresponding int). Note that
783 this is only different from the BELIEVE_PCC_PROMOTION
784 case on big-endian machines.
785
786 My guess is that this correction, as opposed to changing
787 the parameter to an 'int' (as done below, for PCC
788 on most machines), is the right thing to do
789 on all machines, but I don't want to risk breaking
790 something that already works. On most PCC machines,
791 the sparc problem doesn't come up because the calling
792 function has to zero the top bytes (not knowing whether
793 the called function wants an int or a short), so there
794 is no practical difference between an int and a short
795 (except perhaps what happens when the GDB user types
796 "print short_arg = 0x10000;").
797
798 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
799 actually produces the correct address (we don't need to fix it
800 up). I made this code adapt so that it will offset the symbol
801 if it was pointing at an int-aligned location and not
802 otherwise. This way you can use the same gdb for 4.0.x and
803 4.1 systems.
804
805 If the parameter is shorter than an int, and is integral
806 (e.g. char, short, or unsigned equivalent), and is claimed to
807 be passed on an integer boundary, don't believe it! Offset the
808 parameter's address to the tail-end of that integer. */
809
810 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
811 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
812 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
813 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
814 {
815 SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
816 - TYPE_LENGTH (SYMBOL_TYPE (sym));
817 }
818 break;
819
820 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
821
822 /* If PCC says a parameter is a short or a char,
823 it is really an int. */
824 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
825 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
826 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
827 {
828 SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
829 ? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
830 : temptype;
831 }
832 break;
833
834 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
835
836 case 'R':
837 case 'P':
838 /* acc seems to use P to delare the prototypes of functions that
839 are referenced by this file. gdb is not prepared to deal
840 with this extra information. FIXME, it ought to. */
841 if (type == N_FUN)
842 goto process_prototype_types;
843
844 /* Parameter which is in a register. */
845 SYMBOL_CLASS (sym) = LOC_REGPARM;
846 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
847 if (SYMBOL_VALUE (sym) >= NUM_REGS)
848 {
849 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
850 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
851 }
852 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
853 add_symbol_to_list (sym, &local_symbols);
854 break;
855
856 case 'r':
857 /* Register variable (either global or local). */
858 SYMBOL_CLASS (sym) = LOC_REGISTER;
859 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
860 if (SYMBOL_VALUE (sym) >= NUM_REGS)
861 {
862 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
863 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
864 }
865 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
866 if (within_function)
867 add_symbol_to_list (sym, &local_symbols);
868 else
869 add_symbol_to_list (sym, &file_symbols);
870 break;
871
872 case 'S':
873 /* Static symbol at top level of file */
874 SYMBOL_CLASS (sym) = LOC_STATIC;
875 SYMBOL_VALUE_ADDRESS (sym) = valu;
876 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
877 add_symbol_to_list (sym, &file_symbols);
878 break;
879
880 case 't':
881 /* For a nameless type, we don't want a create a symbol, thus we
882 did not use `sym'. Return without further processing. */
883 if (nameless) return NULL;
884
885 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
886 SYMBOL_VALUE (sym) = valu;
887 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
888 /* C++ vagaries: we may have a type which is derived from
889 a base type which did not have its name defined when the
890 derived class was output. We fill in the derived class's
891 base part member's name here in that case. */
892 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
893 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
894 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
895 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
896 {
897 int j;
898 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
899 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
900 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
901 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
902 }
903
904 add_symbol_to_list (sym, &file_symbols);
905 break;
906
907 case 'T':
908 /* For a nameless type, we don't want a create a symbol, thus we
909 did not use `sym'. Return without further processing. */
910 if (nameless) return NULL;
911
912 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
913 SYMBOL_VALUE (sym) = valu;
914 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
915 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
916 TYPE_NAME (SYMBOL_TYPE (sym))
917 = obconcat (&objfile -> type_obstack, "",
918 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
919 ? "enum "
920 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
921 ? "struct " : "union ")),
922 SYMBOL_NAME (sym));
923 add_symbol_to_list (sym, &file_symbols);
924
925 if (synonym)
926 {
927 /* Clone the sym and then modify it. */
928 register struct symbol *typedef_sym = (struct symbol *)
929 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
930 *typedef_sym = *sym;
931 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
932 SYMBOL_VALUE (typedef_sym) = valu;
933 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
934 add_symbol_to_list (typedef_sym, &file_symbols);
935 }
936 break;
937
938 case 'V':
939 /* Static symbol of local scope */
940 SYMBOL_CLASS (sym) = LOC_STATIC;
941 SYMBOL_VALUE_ADDRESS (sym) = valu;
942 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
943 add_symbol_to_list (sym, &local_symbols);
944 break;
945
946 case 'v':
947 /* Reference parameter */
948 SYMBOL_CLASS (sym) = LOC_REF_ARG;
949 SYMBOL_VALUE (sym) = valu;
950 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
951 add_symbol_to_list (sym, &local_symbols);
952 break;
953
954 case 'X':
955 /* This is used by Sun FORTRAN for "function result value".
956 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
957 that Pascal uses it too, but when I tried it Pascal used
958 "x:3" (local symbol) instead. */
959 SYMBOL_CLASS (sym) = LOC_LOCAL;
960 SYMBOL_VALUE (sym) = valu;
961 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
962 add_symbol_to_list (sym, &local_symbols);
963 break;
964
965 default:
966 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
967 }
968 return sym;
969 }
970
971 \f
972 /* Skip rest of this symbol and return an error type.
973
974 General notes on error recovery: error_type always skips to the
975 end of the symbol (modulo cretinous dbx symbol name continuation).
976 Thus code like this:
977
978 if (*(*pp)++ != ';')
979 return error_type (pp);
980
981 is wrong because if *pp starts out pointing at '\0' (typically as the
982 result of an earlier error), it will be incremented to point to the
983 start of the next symbol, which might produce strange results, at least
984 if you run off the end of the string table. Instead use
985
986 if (**pp != ';')
987 return error_type (pp);
988 ++*pp;
989
990 or
991
992 if (**pp != ';')
993 foo = error_type (pp);
994 else
995 ++*pp;
996
997 And in case it isn't obvious, the point of all this hair is so the compiler
998 can define new types and new syntaxes, and old versions of the
999 debugger will be able to read the new symbol tables. */
1000
1001 struct type *
1002 error_type (pp)
1003 char **pp;
1004 {
1005 complain (&error_type_complaint);
1006 while (1)
1007 {
1008 /* Skip to end of symbol. */
1009 while (**pp != '\0')
1010 {
1011 (*pp)++;
1012 }
1013
1014 /* Check for and handle cretinous dbx symbol name continuation! */
1015 if ((*pp)[-1] == '\\')
1016 {
1017 *pp = next_symbol_text ();
1018 }
1019 else
1020 {
1021 break;
1022 }
1023 }
1024 return (builtin_type_error);
1025 }
1026
1027 \f
1028 /* Read a dbx type reference or definition;
1029 return the type that is meant.
1030 This can be just a number, in which case it references
1031 a type already defined and placed in type_vector.
1032 Or the number can be followed by an =, in which case
1033 it means to define a new type according to the text that
1034 follows the =. */
1035
1036 struct type *
1037 read_type (pp, objfile)
1038 register char **pp;
1039 struct objfile *objfile;
1040 {
1041 register struct type *type = 0;
1042 struct type *type1;
1043 int typenums[2];
1044 int xtypenums[2];
1045 char type_descriptor;
1046
1047 /* Read type number if present. The type number may be omitted.
1048 for instance in a two-dimensional array declared with type
1049 "ar1;1;10;ar1;1;10;4". */
1050 if ((**pp >= '0' && **pp <= '9')
1051 || **pp == '(')
1052 {
1053 read_type_number (pp, typenums);
1054
1055 /* Type is not being defined here. Either it already exists,
1056 or this is a forward reference to it. dbx_alloc_type handles
1057 both cases. */
1058 if (**pp != '=')
1059 return dbx_alloc_type (typenums, objfile);
1060
1061 /* Type is being defined here. */
1062 #if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
1063 {
1064 struct type *tt;
1065
1066 /* if such a type already exists, this is an unnecessary duplication
1067 of the stab string, which is common in (RS/6000) xlc generated
1068 objects. In that case, simply return NULL and let the caller take
1069 care of it. */
1070
1071 tt = *dbx_lookup_type (typenums);
1072 if (tt && tt->length && tt->code)
1073 return NULL;
1074 }
1075 #endif
1076
1077 *pp += 2;
1078 }
1079 else
1080 {
1081 /* 'typenums=' not present, type is anonymous. Read and return
1082 the definition, but don't put it in the type vector. */
1083 typenums[0] = typenums[1] = -1;
1084 (*pp)++;
1085 }
1086
1087 type_descriptor = (*pp)[-1];
1088 switch (type_descriptor)
1089 {
1090 case 'x':
1091 {
1092 enum type_code code;
1093
1094 /* Used to index through file_symbols. */
1095 struct pending *ppt;
1096 int i;
1097
1098 /* Name including "struct", etc. */
1099 char *type_name;
1100
1101 /* Name without "struct", etc. */
1102 char *type_name_only;
1103
1104 {
1105 char *prefix;
1106 char *from, *to;
1107
1108 /* Set the type code according to the following letter. */
1109 switch ((*pp)[0])
1110 {
1111 case 's':
1112 code = TYPE_CODE_STRUCT;
1113 prefix = "struct ";
1114 break;
1115 case 'u':
1116 code = TYPE_CODE_UNION;
1117 prefix = "union ";
1118 break;
1119 case 'e':
1120 code = TYPE_CODE_ENUM;
1121 prefix = "enum ";
1122 break;
1123 default:
1124 return error_type (pp);
1125 }
1126
1127 to = type_name = (char *)
1128 obstack_alloc (&objfile -> type_obstack,
1129 (strlen (prefix) +
1130 ((char *) strchr (*pp, ':') - (*pp)) + 1));
1131
1132 /* Copy the prefix. */
1133 from = prefix;
1134 while ((*to++ = *from++) != '\0')
1135 ;
1136 to--;
1137
1138 type_name_only = to;
1139
1140 /* Copy the name. */
1141 from = *pp + 1;
1142 while ((*to++ = *from++) != ':')
1143 ;
1144 *--to = '\0';
1145
1146 /* Set the pointer ahead of the name which we just read. */
1147 *pp = from;
1148
1149 #if 0
1150 /* The following hack is clearly wrong, because it doesn't
1151 check whether we are in a baseclass. I tried to reproduce
1152 the case that it is trying to fix, but I couldn't get
1153 g++ to put out a cross reference to a basetype. Perhaps
1154 it doesn't do it anymore. */
1155 /* Note: for C++, the cross reference may be to a base type which
1156 has not yet been seen. In this case, we skip to the comma,
1157 which will mark the end of the base class name. (The ':'
1158 at the end of the base class name will be skipped as well.)
1159 But sometimes (ie. when the cross ref is the last thing on
1160 the line) there will be no ','. */
1161 from = (char *) strchr (*pp, ',');
1162 if (from)
1163 *pp = from;
1164 #endif /* 0 */
1165 }
1166
1167 /* Now check to see whether the type has already been declared. */
1168 /* This is necessary at least in the case where the
1169 program says something like
1170 struct foo bar[5];
1171 The compiler puts out a cross-reference; we better find
1172 set the length of the structure correctly so we can
1173 set the length of the array. */
1174 for (ppt = file_symbols; ppt; ppt = ppt->next)
1175 for (i = 0; i < ppt->nsyms; i++)
1176 {
1177 struct symbol *sym = ppt->symbol[i];
1178
1179 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1180 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1181 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1182 && STREQ (SYMBOL_NAME (sym), type_name_only))
1183 {
1184 obstack_free (&objfile -> type_obstack, type_name);
1185 type = SYMBOL_TYPE (sym);
1186 return type;
1187 }
1188 }
1189
1190 /* Didn't find the type to which this refers, so we must
1191 be dealing with a forward reference. Allocate a type
1192 structure for it, and keep track of it so we can
1193 fill in the rest of the fields when we get the full
1194 type. */
1195 type = dbx_alloc_type (typenums, objfile);
1196 TYPE_CODE (type) = code;
1197 TYPE_NAME (type) = type_name;
1198 INIT_CPLUS_SPECIFIC(type);
1199 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1200
1201 add_undefined_type (type);
1202 return type;
1203 }
1204
1205 case '-': /* RS/6000 built-in type */
1206 case '0':
1207 case '1':
1208 case '2':
1209 case '3':
1210 case '4':
1211 case '5':
1212 case '6':
1213 case '7':
1214 case '8':
1215 case '9':
1216 case '(':
1217 (*pp)--;
1218 read_type_number (pp, xtypenums);
1219 type = *dbx_lookup_type (xtypenums);
1220 if (type == 0)
1221 type = lookup_fundamental_type (objfile, FT_VOID);
1222 if (typenums[0] != -1)
1223 *dbx_lookup_type (typenums) = type;
1224 break;
1225
1226 /* In the following types, we must be sure to overwrite any existing
1227 type that the typenums refer to, rather than allocating a new one
1228 and making the typenums point to the new one. This is because there
1229 may already be pointers to the existing type (if it had been
1230 forward-referenced), and we must change it to a pointer, function,
1231 reference, or whatever, *in-place*. */
1232
1233 case '*':
1234 type1 = read_type (pp, objfile);
1235 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1236 break;
1237
1238 case '&': /* Reference to another type */
1239 type1 = read_type (pp, objfile);
1240 type = make_reference_type (type1, dbx_lookup_type (typenums));
1241 break;
1242
1243 case 'f': /* Function returning another type */
1244 type1 = read_type (pp, objfile);
1245 type = make_function_type (type1, dbx_lookup_type (typenums));
1246 break;
1247
1248 case 'k': /* Const qualifier on some type (Sun) */
1249 type = read_type (pp, objfile);
1250 /* FIXME! For now, we ignore const and volatile qualifiers. */
1251 break;
1252
1253 case 'B': /* Volatile qual on some type (Sun) */
1254 type = read_type (pp, objfile);
1255 /* FIXME! For now, we ignore const and volatile qualifiers. */
1256 break;
1257
1258 /* FIXME -- we should be doing smash_to_XXX types here. */
1259 case '@': /* Member (class & variable) type */
1260 {
1261 struct type *domain = read_type (pp, objfile);
1262 struct type *memtype;
1263
1264 if (**pp != ',')
1265 /* Invalid member type data format. */
1266 return error_type (pp);
1267 ++*pp;
1268
1269 memtype = read_type (pp, objfile);
1270 type = dbx_alloc_type (typenums, objfile);
1271 smash_to_member_type (type, domain, memtype);
1272 }
1273 break;
1274
1275 case '#': /* Method (class & fn) type */
1276 if ((*pp)[0] == '#')
1277 {
1278 /* We'll get the parameter types from the name. */
1279 struct type *return_type;
1280
1281 (*pp)++;
1282 return_type = read_type (pp, objfile);
1283 if (*(*pp)++ != ';')
1284 complain (&invalid_member_complaint, symnum);
1285 type = allocate_stub_method (return_type);
1286 if (typenums[0] != -1)
1287 *dbx_lookup_type (typenums) = type;
1288 }
1289 else
1290 {
1291 struct type *domain = read_type (pp, objfile);
1292 struct type *return_type;
1293 struct type **args;
1294
1295 if (*(*pp)++ != ',')
1296 error ("invalid member type data format, at symtab pos %d.",
1297 symnum);
1298
1299 return_type = read_type (pp, objfile);
1300 args = read_args (pp, ';', objfile);
1301 type = dbx_alloc_type (typenums, objfile);
1302 smash_to_method_type (type, domain, return_type, args);
1303 }
1304 break;
1305
1306 case 'r': /* Range type */
1307 type = read_range_type (pp, typenums, objfile);
1308 if (typenums[0] != -1)
1309 *dbx_lookup_type (typenums) = type;
1310 break;
1311
1312 case 'b': /* Sun ACC builtin int type */
1313 type = read_sun_builtin_type (pp, typenums, objfile);
1314 if (typenums[0] != -1)
1315 *dbx_lookup_type (typenums) = type;
1316 break;
1317
1318 case 'R': /* Sun ACC builtin float type */
1319 type = read_sun_floating_type (pp, typenums, objfile);
1320 if (typenums[0] != -1)
1321 *dbx_lookup_type (typenums) = type;
1322 break;
1323
1324 case 'e': /* Enumeration type */
1325 type = dbx_alloc_type (typenums, objfile);
1326 type = read_enum_type (pp, type, objfile);
1327 *dbx_lookup_type (typenums) = type;
1328 break;
1329
1330 case 's': /* Struct type */
1331 case 'u': /* Union type */
1332 type = dbx_alloc_type (typenums, objfile);
1333 if (!TYPE_NAME (type))
1334 {
1335 TYPE_NAME (type) = type_synonym_name;
1336 }
1337 type_synonym_name = NULL;
1338 switch (type_descriptor)
1339 {
1340 case 's':
1341 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1342 break;
1343 case 'u':
1344 TYPE_CODE (type) = TYPE_CODE_UNION;
1345 break;
1346 }
1347 type = read_struct_type (pp, type, objfile);
1348 break;
1349
1350 case 'a': /* Array type */
1351 if (**pp != 'r')
1352 return error_type (pp);
1353 ++*pp;
1354
1355 type = dbx_alloc_type (typenums, objfile);
1356 type = read_array_type (pp, type, objfile);
1357 break;
1358
1359 default:
1360 --*pp; /* Go back to the symbol in error */
1361 /* Particularly important if it was \0! */
1362 return error_type (pp);
1363 }
1364
1365 if (type == 0)
1366 abort ();
1367
1368 return type;
1369 }
1370 \f
1371 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1372 Return the proper type node for a given builtin type number. */
1373
1374 static struct type *
1375 rs6000_builtin_type (typenum)
1376 int typenum;
1377 {
1378 /* default types are defined in dbxstclass.h. */
1379 switch (-typenum) {
1380 case 1:
1381 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1382 case 2:
1383 return lookup_fundamental_type (current_objfile, FT_CHAR);
1384 case 3:
1385 return lookup_fundamental_type (current_objfile, FT_SHORT);
1386 case 4:
1387 return lookup_fundamental_type (current_objfile, FT_LONG);
1388 case 5:
1389 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
1390 case 6:
1391 return lookup_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1392 case 7:
1393 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
1394 case 8:
1395 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1396 case 9:
1397 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1398 case 10:
1399 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
1400 case 11:
1401 return lookup_fundamental_type (current_objfile, FT_VOID);
1402 case 12:
1403 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1404 case 13:
1405 return lookup_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
1406 case 14:
1407 return lookup_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
1408 case 15:
1409 /* requires a builtin `integer' */
1410 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1411 case 16:
1412 return lookup_fundamental_type (current_objfile, FT_BOOLEAN);
1413 case 17:
1414 /* requires builtin `short real' */
1415 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1416 case 18:
1417 /* requires builtin `real' */
1418 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1419 default:
1420 complain (rs6000_builtin_complaint, typenum);
1421 return NULL;
1422 }
1423 }
1424 \f
1425 /* This page contains subroutines of read_type. */
1426
1427 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1428 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1429 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1430
1431 /* Read member function stabs info for C++ classes. The form of each member
1432 function data is:
1433
1434 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1435
1436 An example with two member functions is:
1437
1438 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1439
1440 For the case of overloaded operators, the format is op$::*.funcs, where
1441 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1442 name (such as `+=') and `.' marks the end of the operator name. */
1443
1444 static int
1445 read_member_functions (fip, pp, type, objfile)
1446 struct field_info *fip;
1447 char **pp;
1448 struct type *type;
1449 struct objfile *objfile;
1450 {
1451 int nfn_fields = 0;
1452 int length = 0;
1453 /* Total number of member functions defined in this class. If the class
1454 defines two `f' functions, and one `g' function, then this will have
1455 the value 3. */
1456 int total_length = 0;
1457 int i;
1458 struct next_fnfield
1459 {
1460 struct next_fnfield *next;
1461 struct fn_field fn_field;
1462 } *sublist;
1463 struct type *look_ahead_type;
1464 struct next_fnfieldlist *new_fnlist;
1465 struct next_fnfield *new_sublist;
1466 char *main_fn_name;
1467 register char *p;
1468
1469 /* Process each list until we find something that is not a member function
1470 or find the end of the functions. */
1471
1472 while (**pp != ';')
1473 {
1474 /* We should be positioned at the start of the function name.
1475 Scan forward to find the first ':' and if it is not the
1476 first of a "::" delimiter, then this is not a member function. */
1477 p = *pp;
1478 while (*p != ':')
1479 {
1480 p++;
1481 }
1482 if (p[1] != ':')
1483 {
1484 break;
1485 }
1486
1487 sublist = NULL;
1488 look_ahead_type = NULL;
1489 length = 0;
1490
1491 new_fnlist = (struct next_fnfieldlist *)
1492 xmalloc (sizeof (struct next_fnfieldlist));
1493 make_cleanup (free, new_fnlist);
1494 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1495
1496 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1497 {
1498 /* This is a completely wierd case. In order to stuff in the
1499 names that might contain colons (the usual name delimiter),
1500 Mike Tiemann defined a different name format which is
1501 signalled if the identifier is "op$". In that case, the
1502 format is "op$::XXXX." where XXXX is the name. This is
1503 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1504 /* This lets the user type "break operator+".
1505 We could just put in "+" as the name, but that wouldn't
1506 work for "*". */
1507 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1508 char *o = opname + 3;
1509
1510 /* Skip past '::'. */
1511 *pp = p + 2;
1512
1513 STABS_CONTINUE (pp);
1514 p = *pp;
1515 while (*p != '.')
1516 {
1517 *o++ = *p++;
1518 }
1519 main_fn_name = savestring (opname, o - opname);
1520 /* Skip past '.' */
1521 *pp = p + 1;
1522 }
1523 else
1524 {
1525 main_fn_name = savestring (*pp, p - *pp);
1526 /* Skip past '::'. */
1527 *pp = p + 2;
1528 }
1529 new_fnlist -> fn_fieldlist.name = main_fn_name;
1530
1531 do
1532 {
1533 new_sublist =
1534 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1535 make_cleanup (free, new_sublist);
1536 memset (new_sublist, 0, sizeof (struct next_fnfield));
1537
1538 /* Check for and handle cretinous dbx symbol name continuation! */
1539 if (look_ahead_type == NULL)
1540 {
1541 /* Normal case. */
1542 STABS_CONTINUE (pp);
1543
1544 new_sublist -> fn_field.type = read_type (pp, objfile);
1545 if (**pp != ':')
1546 {
1547 /* Invalid symtab info for member function. */
1548 return 0;
1549 }
1550 }
1551 else
1552 {
1553 /* g++ version 1 kludge */
1554 new_sublist -> fn_field.type = look_ahead_type;
1555 look_ahead_type = NULL;
1556 }
1557
1558 (*pp)++;
1559 p = *pp;
1560 while (*p != ';')
1561 {
1562 p++;
1563 }
1564
1565 /* If this is just a stub, then we don't have the real name here. */
1566
1567 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1568 {
1569 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1570 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1571 new_sublist -> fn_field.is_stub = 1;
1572 }
1573 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1574 *pp = p + 1;
1575
1576 /* Set this member function's visibility fields. */
1577 switch (*(*pp)++)
1578 {
1579 case VISIBILITY_PRIVATE:
1580 new_sublist -> fn_field.is_private = 1;
1581 break;
1582 case VISIBILITY_PROTECTED:
1583 new_sublist -> fn_field.is_protected = 1;
1584 break;
1585 }
1586
1587 STABS_CONTINUE (pp);
1588 switch (**pp)
1589 {
1590 case 'A': /* Normal functions. */
1591 new_sublist -> fn_field.is_const = 0;
1592 new_sublist -> fn_field.is_volatile = 0;
1593 (*pp)++;
1594 break;
1595 case 'B': /* `const' member functions. */
1596 new_sublist -> fn_field.is_const = 1;
1597 new_sublist -> fn_field.is_volatile = 0;
1598 (*pp)++;
1599 break;
1600 case 'C': /* `volatile' member function. */
1601 new_sublist -> fn_field.is_const = 0;
1602 new_sublist -> fn_field.is_volatile = 1;
1603 (*pp)++;
1604 break;
1605 case 'D': /* `const volatile' member function. */
1606 new_sublist -> fn_field.is_const = 1;
1607 new_sublist -> fn_field.is_volatile = 1;
1608 (*pp)++;
1609 break;
1610 case '*': /* File compiled with g++ version 1 -- no info */
1611 case '?':
1612 case '.':
1613 break;
1614 default:
1615 complain (&const_vol_complaint, **pp);
1616 break;
1617 }
1618
1619 switch (*(*pp)++)
1620 {
1621 case '*':
1622 /* virtual member function, followed by index.
1623 The sign bit is set to distinguish pointers-to-methods
1624 from virtual function indicies. Since the array is
1625 in words, the quantity must be shifted left by 1
1626 on 16 bit machine, and by 2 on 32 bit machine, forcing
1627 the sign bit out, and usable as a valid index into
1628 the array. Remove the sign bit here. */
1629 new_sublist -> fn_field.voffset =
1630 (0x7fffffff & read_number (pp, ';')) + 2;
1631
1632 STABS_CONTINUE (pp);
1633 if (**pp == ';' || **pp == '\0')
1634 {
1635 /* Must be g++ version 1. */
1636 new_sublist -> fn_field.fcontext = 0;
1637 }
1638 else
1639 {
1640 /* Figure out from whence this virtual function came.
1641 It may belong to virtual function table of
1642 one of its baseclasses. */
1643 look_ahead_type = read_type (pp, objfile);
1644 if (**pp == ':')
1645 {
1646 /* g++ version 1 overloaded methods. */
1647 }
1648 else
1649 {
1650 new_sublist -> fn_field.fcontext = look_ahead_type;
1651 if (**pp != ';')
1652 {
1653 return 0;
1654 }
1655 else
1656 {
1657 ++*pp;
1658 }
1659 look_ahead_type = NULL;
1660 }
1661 }
1662 break;
1663
1664 case '?':
1665 /* static member function. */
1666 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1667 if (strncmp (new_sublist -> fn_field.physname,
1668 main_fn_name, strlen (main_fn_name)))
1669 {
1670 new_sublist -> fn_field.is_stub = 1;
1671 }
1672 break;
1673
1674 default:
1675 /* error */
1676 complain (&member_fn_complaint, (*pp)[-1]);
1677 /* Fall through into normal member function. */
1678
1679 case '.':
1680 /* normal member function. */
1681 new_sublist -> fn_field.voffset = 0;
1682 new_sublist -> fn_field.fcontext = 0;
1683 break;
1684 }
1685
1686 new_sublist -> next = sublist;
1687 sublist = new_sublist;
1688 length++;
1689 STABS_CONTINUE (pp);
1690 }
1691 while (**pp != ';' && **pp != '\0');
1692
1693 (*pp)++;
1694
1695 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1696 obstack_alloc (&objfile -> type_obstack,
1697 sizeof (struct fn_field) * length);
1698 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1699 sizeof (struct fn_field) * length);
1700 for (i = length; (i--, sublist); sublist = sublist -> next)
1701 {
1702 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1703 }
1704
1705 new_fnlist -> fn_fieldlist.length = length;
1706 new_fnlist -> next = fip -> fnlist;
1707 fip -> fnlist = new_fnlist;
1708 nfn_fields++;
1709 total_length += length;
1710 STABS_CONTINUE (pp);
1711 }
1712
1713 if (nfn_fields)
1714 {
1715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1716 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1717 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1718 memset (TYPE_FN_FIELDLISTS (type), 0,
1719 sizeof (struct fn_fieldlist) * nfn_fields);
1720 TYPE_NFN_FIELDS (type) = nfn_fields;
1721 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1722 }
1723
1724 return 1;
1725 }
1726
1727 /* Special GNU C++ name.
1728 FIXME: Still need to properly handle parse error conditions. */
1729
1730 static void
1731 read_cpp_abbrev (fip, pp, type, objfile)
1732 struct field_info *fip;
1733 char **pp;
1734 struct type *type;
1735 struct objfile *objfile;
1736 {
1737 register char *p;
1738 const char *prefix;
1739 char *name;
1740 char cpp_abbrev;
1741 struct type *context;
1742
1743 p = *pp;
1744 if (*++p == 'v')
1745 {
1746 name = NULL;
1747 cpp_abbrev = *++p;
1748
1749 *pp = p + 1;
1750
1751 /* At this point, *pp points to something like "22:23=*22...",
1752 where the type number before the ':' is the "context" and
1753 everything after is a regular type definition. Lookup the
1754 type, find it's name, and construct the field name. */
1755
1756 context = read_type (pp, objfile);
1757
1758 switch (cpp_abbrev)
1759 {
1760 case 'f': /* $vf -- a virtual function table pointer */
1761 fip->list->field.name =
1762 obconcat (&objfile->type_obstack, vptr_name, "", "");
1763 break;
1764
1765 case 'b': /* $vb -- a virtual bsomethingorother */
1766 name = type_name_no_tag (context);
1767 if (name == NULL)
1768 {
1769 complain (&invalid_cpp_type_complaint, symnum);
1770 name = "FOO";
1771 }
1772 fip->list->field.name =
1773 obconcat (&objfile->type_obstack, vb_name, name, "");
1774 break;
1775
1776 default:
1777 complain (&invalid_cpp_abbrev_complaint, *pp);
1778 fip->list->field.name =
1779 obconcat (&objfile->type_obstack,
1780 "INVALID_CPLUSPLUS_ABBREV", "", "");
1781 break;
1782 }
1783
1784 /* At this point, *pp points to the ':'. Skip it and read the
1785 field type. */
1786
1787 p = ++(*pp);
1788 if (p[-1] != ':')
1789 {
1790 complain (&invalid_cpp_abbrev_complaint, *pp);
1791 }
1792 fip->list->field.type = read_type (pp, objfile);
1793 (*pp)++; /* Skip the comma. */
1794 fip->list->field.bitpos = read_number (pp, ';');
1795 /* This field is unpacked. */
1796 fip->list->field.bitsize = 0;
1797 fip->list->visibility = VISIBILITY_PRIVATE;
1798 }
1799 else if (*p == '_')
1800 {
1801 /* GNU C++ anonymous type. */
1802 complain (&stabs_general_complaint, "g++ anonymous type $_ not handled");
1803 }
1804 else
1805 {
1806 complain (&invalid_cpp_abbrev_complaint, *pp);
1807 }
1808 }
1809
1810 static void
1811 read_one_struct_field (fip, pp, p, type, objfile)
1812 struct field_info *fip;
1813 char **pp;
1814 char *p;
1815 struct type *type;
1816 struct objfile *objfile;
1817 {
1818 fip -> list -> field.name =
1819 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
1820 *pp = p + 1;
1821
1822 /* This means we have a visibility for a field coming. */
1823 if (**pp == '/')
1824 {
1825 (*pp)++;
1826 fip -> list -> visibility = *(*pp)++;
1827 switch (fip -> list -> visibility)
1828 {
1829 case VISIBILITY_PRIVATE:
1830 case VISIBILITY_PROTECTED:
1831 break;
1832
1833 case VISIBILITY_PUBLIC:
1834 /* Nothing to do */
1835 break;
1836
1837 default:
1838 /* Unknown visibility specifier. */
1839 complain (&stabs_general_complaint,
1840 "unknown visibility specifier");
1841 return;
1842 break;
1843 }
1844 }
1845 else
1846 {
1847 /* normal dbx-style format, no explicit visibility */
1848 fip -> list -> visibility = VISIBILITY_PUBLIC;
1849 }
1850
1851 fip -> list -> field.type = read_type (pp, objfile);
1852 if (**pp == ':')
1853 {
1854 p = ++(*pp);
1855 #if 0
1856 /* Possible future hook for nested types. */
1857 if (**pp == '!')
1858 {
1859 fip -> list -> field.bitpos = (long)-2; /* nested type */
1860 p = ++(*pp);
1861 }
1862 else
1863 #endif
1864 {
1865 /* Static class member. */
1866 fip -> list -> field.bitpos = (long) -1;
1867 }
1868 while (*p != ';')
1869 {
1870 p++;
1871 }
1872 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
1873 *pp = p + 1;
1874 return;
1875 }
1876 else if (**pp != ',')
1877 {
1878 /* Bad structure-type format. */
1879 complain (&stabs_general_complaint, "bad structure-type format");
1880 return;
1881 }
1882
1883 (*pp)++; /* Skip the comma. */
1884 fip -> list -> field.bitpos = read_number (pp, ',');
1885 fip -> list -> field.bitsize = read_number (pp, ';');
1886
1887 #if 0
1888 /* FIXME-tiemann: Can't the compiler put out something which
1889 lets us distinguish these? (or maybe just not put out anything
1890 for the field). What is the story here? What does the compiler
1891 really do? Also, patch gdb.texinfo for this case; I document
1892 it as a possible problem there. Search for "DBX-style". */
1893
1894 /* This is wrong because this is identical to the symbols
1895 produced for GCC 0-size arrays. For example:
1896 typedef union {
1897 int num;
1898 char str[0];
1899 } foo;
1900 The code which dumped core in such circumstances should be
1901 fixed not to dump core. */
1902
1903 /* g++ -g0 can put out bitpos & bitsize zero for a static
1904 field. This does not give us any way of getting its
1905 class, so we can't know its name. But we can just
1906 ignore the field so we don't dump core and other nasty
1907 stuff. */
1908 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
1909 {
1910 complain (&dbx_class_complaint);
1911 /* Ignore this field. */
1912 fip -> list = fip -> list -> next;
1913 }
1914 else
1915 #endif /* 0 */
1916 {
1917 /* Detect an unpacked field and mark it as such.
1918 dbx gives a bit size for all fields.
1919 Note that forward refs cannot be packed,
1920 and treat enums as if they had the width of ints. */
1921
1922 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
1923 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
1924 {
1925 fip -> list -> field.bitsize = 0;
1926 }
1927 if ((fip -> list -> field.bitsize
1928 == 8 * TYPE_LENGTH (fip -> list -> field.type)
1929 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
1930 && (fip -> list -> field.bitsize
1931 == 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
1932 )
1933 )
1934 &&
1935 fip -> list -> field.bitpos % 8 == 0)
1936 {
1937 fip -> list -> field.bitsize = 0;
1938 }
1939 }
1940 }
1941
1942
1943 /* Read struct or class data fields. They have the form:
1944
1945 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
1946
1947 At the end, we see a semicolon instead of a field.
1948
1949 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
1950 a static field.
1951
1952 The optional VISIBILITY is one of:
1953
1954 '/0' (VISIBILITY_PRIVATE)
1955 '/1' (VISIBILITY_PROTECTED)
1956 '/2' (VISIBILITY_PUBLIC)
1957
1958 or nothing, for C style fields with public visibility. */
1959
1960 static int
1961 read_struct_fields (fip, pp, type, objfile)
1962 struct field_info *fip;
1963 char **pp;
1964 struct type *type;
1965 struct objfile *objfile;
1966 {
1967 register char *p;
1968 struct nextfield *new;
1969
1970 /* We better set p right now, in case there are no fields at all... */
1971
1972 p = *pp;
1973
1974 /* Read each data member type until we find the terminating ';' at the end of
1975 the data member list, or break for some other reason such as finding the
1976 start of the member function list. */
1977
1978 while (**pp != ';')
1979 {
1980 STABS_CONTINUE (pp);
1981 /* Get space to record the next field's data. */
1982 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
1983 make_cleanup (free, new);
1984 memset (new, 0, sizeof (struct nextfield));
1985 new -> next = fip -> list;
1986 fip -> list = new;
1987
1988 /* Get the field name. */
1989 p = *pp;
1990 if (*p == CPLUS_MARKER)
1991 {
1992 read_cpp_abbrev (fip, pp, type, objfile);
1993 continue;
1994 }
1995
1996 /* Look for the ':' that separates the field name from the field
1997 values. Data members are delimited by a single ':', while member
1998 functions are delimited by a pair of ':'s. When we hit the member
1999 functions (if any), terminate scan loop and return. */
2000
2001 while (*p != ':')
2002 {
2003 p++;
2004 }
2005
2006 /* Check to see if we have hit the member functions yet. */
2007 if (p[1] == ':')
2008 {
2009 break;
2010 }
2011 read_one_struct_field (fip, pp, p, type, objfile);
2012 }
2013 if (p[1] == ':')
2014 {
2015 /* chill the list of fields: the last entry (at the head) is a
2016 partially constructed entry which we now scrub. */
2017 fip -> list = fip -> list -> next;
2018 }
2019 return 1;
2020 }
2021
2022 /* The stabs for C++ derived classes contain baseclass information which
2023 is marked by a '!' character after the total size. This function is
2024 called when we encounter the baseclass marker, and slurps up all the
2025 baseclass information.
2026
2027 Immediately following the '!' marker is the number of base classes that
2028 the class is derived from, followed by information for each base class.
2029 For each base class, there are two visibility specifiers, a bit offset
2030 to the base class information within the derived class, a reference to
2031 the type for the base class, and a terminating semicolon.
2032
2033 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2034 ^^ ^ ^ ^ ^ ^ ^
2035 Baseclass information marker __________________|| | | | | | |
2036 Number of baseclasses __________________________| | | | | | |
2037 Visibility specifiers (2) ________________________| | | | | |
2038 Offset in bits from start of class _________________| | | | |
2039 Type number for base class ___________________________| | | |
2040 Visibility specifiers (2) _______________________________| | |
2041 Offset in bits from start of class ________________________| |
2042 Type number of base class ____________________________________|
2043 */
2044
2045 static int
2046 read_baseclasses (fip, pp, type, objfile)
2047 struct field_info *fip;
2048 char **pp;
2049 struct type *type;
2050 struct objfile *objfile;
2051 {
2052 int i;
2053 struct nextfield *new;
2054
2055 if (**pp != '!')
2056 {
2057 return 1;
2058 }
2059 else
2060 {
2061 /* Skip the '!' baseclass information marker. */
2062 (*pp)++;
2063 }
2064
2065 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2066 TYPE_N_BASECLASSES (type) = read_number (pp, ',');
2067
2068 #if 0
2069 /* Some stupid compilers have trouble with the following, so break
2070 it up into simpler expressions. */
2071 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2072 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2073 #else
2074 {
2075 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2076 char *pointer;
2077
2078 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2079 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2080 }
2081 #endif /* 0 */
2082
2083 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2084
2085 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2086 {
2087 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2088 make_cleanup (free, new);
2089 memset (new, 0, sizeof (struct nextfield));
2090 new -> next = fip -> list;
2091 fip -> list = new;
2092 new -> field.bitsize = 0; /* this should be an unpacked field! */
2093
2094 STABS_CONTINUE (pp);
2095 switch (*(*pp)++)
2096 {
2097 case '0':
2098 /* Nothing to do. */
2099 break;
2100 case '1':
2101 SET_TYPE_FIELD_VIRTUAL (type, i);
2102 break;
2103 default:
2104 /* Bad visibility format. */
2105 return 0;
2106 }
2107
2108 new -> visibility = *(*pp)++;
2109 switch (new -> visibility)
2110 {
2111 case VISIBILITY_PRIVATE:
2112 case VISIBILITY_PROTECTED:
2113 case VISIBILITY_PUBLIC:
2114 break;
2115 default:
2116 /* Bad visibility format. */
2117 return 0;
2118 }
2119
2120 /* The remaining value is the bit offset of the portion of the object
2121 corresponding to this baseclass. Always zero in the absence of
2122 multiple inheritance. */
2123
2124 new -> field.bitpos = read_number (pp, ',');
2125
2126 /* The last piece of baseclass information is the type of the base
2127 class. Read it, and remember it's type name as this field's name. */
2128
2129 new -> field.type = read_type (pp, objfile);
2130 new -> field.name = type_name_no_tag (new -> field.type);
2131
2132 /* skip trailing ';' and bump count of number of fields seen */
2133 (*pp)++;
2134 }
2135 return 1;
2136 }
2137
2138 /* The tail end of stabs for C++ classes that contain a virtual function
2139 pointer contains a tilde, a %, and a type number.
2140 The type number refers to the base class (possibly this class itself) which
2141 contains the vtable pointer for the current class.
2142
2143 This function is called when we have parsed all the method declarations,
2144 so we can look for the vptr base class info. */
2145
2146 static int
2147 read_tilde_fields (fip, pp, type, objfile)
2148 struct field_info *fip;
2149 char **pp;
2150 struct type *type;
2151 struct objfile *objfile;
2152 {
2153 register char *p;
2154
2155 STABS_CONTINUE (pp);
2156
2157 /* If we are positioned at a ';', then skip it. */
2158 if (**pp == ';')
2159 {
2160 (*pp)++;
2161 }
2162
2163 if (**pp == '~')
2164 {
2165 (*pp)++;
2166
2167 if (**pp == '=' || **pp == '+' || **pp == '-')
2168 {
2169 /* Obsolete flags that used to indicate the presence
2170 of constructors and/or destructors. */
2171 (*pp)++;
2172 }
2173
2174 /* Read either a '%' or the final ';'. */
2175 if (*(*pp)++ == '%')
2176 {
2177 /* The next number is the type number of the base class
2178 (possibly our own class) which supplies the vtable for
2179 this class. Parse it out, and search that class to find
2180 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2181 and TYPE_VPTR_FIELDNO. */
2182
2183 struct type *t;
2184 int i;
2185
2186 t = read_type (pp, objfile);
2187 p = (*pp)++;
2188 while (*p != '\0' && *p != ';')
2189 {
2190 p++;
2191 }
2192 if (*p == '\0')
2193 {
2194 /* Premature end of symbol. */
2195 return 0;
2196 }
2197
2198 TYPE_VPTR_BASETYPE (type) = t;
2199 if (type == t) /* Our own class provides vtbl ptr */
2200 {
2201 for (i = TYPE_NFIELDS (t) - 1;
2202 i >= TYPE_N_BASECLASSES (t);
2203 --i)
2204 {
2205 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2206 sizeof (vptr_name) - 1))
2207 {
2208 TYPE_VPTR_FIELDNO (type) = i;
2209 goto gotit;
2210 }
2211 }
2212 /* Virtual function table field not found. */
2213 complain (vtbl_notfound_complaint, TYPE_NAME (type));
2214 return 0;
2215 }
2216 else
2217 {
2218 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2219 }
2220
2221 gotit:
2222 *pp = p + 1;
2223 }
2224 }
2225 return 1;
2226 }
2227
2228 static int
2229 attach_fn_fields_to_type (fip, type)
2230 struct field_info *fip;
2231 register struct type *type;
2232 {
2233 register int n;
2234
2235 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2236 {
2237 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2238 {
2239 /* @@ Memory leak on objfile -> type_obstack? */
2240 return 0;
2241 }
2242 TYPE_NFN_FIELDS_TOTAL (type) +=
2243 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2244 }
2245
2246 for (n = TYPE_NFN_FIELDS (type);
2247 fip -> fnlist != NULL;
2248 fip -> fnlist = fip -> fnlist -> next)
2249 {
2250 --n; /* Circumvent Sun3 compiler bug */
2251 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2252 }
2253 return 1;
2254 }
2255
2256 /* Create the vector of fields, and record how big it is.
2257 We need this info to record proper virtual function table information
2258 for this class's virtual functions. */
2259
2260 static int
2261 attach_fields_to_type (fip, type, objfile)
2262 struct field_info *fip;
2263 register struct type *type;
2264 struct objfile *objfile;
2265 {
2266 register int nfields = 0;
2267 register int non_public_fields = 0;
2268 register struct nextfield *scan;
2269
2270 /* Count up the number of fields that we have, as well as taking note of
2271 whether or not there are any non-public fields, which requires us to
2272 allocate and build the private_field_bits and protected_field_bits
2273 bitfields. */
2274
2275 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2276 {
2277 nfields++;
2278 if (scan -> visibility != VISIBILITY_PUBLIC)
2279 {
2280 non_public_fields++;
2281 }
2282 }
2283
2284 /* Now we know how many fields there are, and whether or not there are any
2285 non-public fields. Record the field count, allocate space for the
2286 array of fields, and create blank visibility bitfields if necessary. */
2287
2288 TYPE_NFIELDS (type) = nfields;
2289 TYPE_FIELDS (type) = (struct field *)
2290 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2291 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2292
2293 if (non_public_fields)
2294 {
2295 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2296
2297 TYPE_FIELD_PRIVATE_BITS (type) =
2298 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2299 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2300
2301 TYPE_FIELD_PROTECTED_BITS (type) =
2302 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2303 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2304 }
2305
2306 /* Copy the saved-up fields into the field vector. Start from the head
2307 of the list, adding to the tail of the field array, so that they end
2308 up in the same order in the array in which they were added to the list. */
2309
2310 while (nfields-- > 0)
2311 {
2312 TYPE_FIELD (type, nfields) = fip -> list -> field;
2313 switch (fip -> list -> visibility)
2314 {
2315 case VISIBILITY_PRIVATE:
2316 SET_TYPE_FIELD_PRIVATE (type, nfields);
2317 break;
2318
2319 case VISIBILITY_PROTECTED:
2320 SET_TYPE_FIELD_PROTECTED (type, nfields);
2321 break;
2322
2323 case VISIBILITY_PUBLIC:
2324 break;
2325
2326 default:
2327 /* Should warn about this unknown visibility? */
2328 break;
2329 }
2330 fip -> list = fip -> list -> next;
2331 }
2332 return 1;
2333 }
2334
2335 /* Read the description of a structure (or union type) and return an object
2336 describing the type.
2337
2338 PP points to a character pointer that points to the next unconsumed token
2339 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2340 *PP will point to "4a:1,0,32;;".
2341
2342 TYPE points to an incomplete type that needs to be filled in.
2343
2344 OBJFILE points to the current objfile from which the stabs information is
2345 being read. (Note that it is redundant in that TYPE also contains a pointer
2346 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2347 */
2348
2349 static struct type *
2350 read_struct_type (pp, type, objfile)
2351 char **pp;
2352 struct type *type;
2353 struct objfile *objfile;
2354 {
2355 struct cleanup *back_to;
2356 struct field_info fi;
2357
2358 fi.list = NULL;
2359 fi.fnlist = NULL;
2360
2361 back_to = make_cleanup (null_cleanup, 0);
2362
2363 INIT_CPLUS_SPECIFIC (type);
2364 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2365
2366 /* First comes the total size in bytes. */
2367
2368 TYPE_LENGTH (type) = read_number (pp, 0);
2369
2370 /* Now read the baseclasses, if any, read the regular C struct or C++
2371 class member fields, attach the fields to the type, read the C++
2372 member functions, attach them to the type, and then read any tilde
2373 field (baseclass specifier for the class holding the main vtable). */
2374
2375 if (!read_baseclasses (&fi, pp, type, objfile)
2376 || !read_struct_fields (&fi, pp, type, objfile)
2377 || !attach_fields_to_type (&fi, type, objfile)
2378 || !read_member_functions (&fi, pp, type, objfile)
2379 || !attach_fn_fields_to_type (&fi, type)
2380 || !read_tilde_fields (&fi, pp, type, objfile))
2381 {
2382 do_cleanups (back_to);
2383 return (error_type (pp));
2384 }
2385
2386 do_cleanups (back_to);
2387 return (type);
2388 }
2389
2390 /* Read a definition of an array type,
2391 and create and return a suitable type object.
2392 Also creates a range type which represents the bounds of that
2393 array. */
2394
2395 static struct type *
2396 read_array_type (pp, type, objfile)
2397 register char **pp;
2398 register struct type *type;
2399 struct objfile *objfile;
2400 {
2401 struct type *index_type, *element_type, *range_type;
2402 int lower, upper;
2403 int adjustable = 0;
2404
2405 /* Format of an array type:
2406 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2407 to handle this.
2408
2409 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2410 for these, produce a type like float[][]. */
2411
2412 index_type = read_type (pp, objfile);
2413 if (**pp != ';')
2414 /* Improper format of array type decl. */
2415 return error_type (pp);
2416 ++*pp;
2417
2418 if (!(**pp >= '0' && **pp <= '9'))
2419 {
2420 (*pp)++;
2421 adjustable = 1;
2422 }
2423 lower = read_number (pp, ';');
2424
2425 if (!(**pp >= '0' && **pp <= '9'))
2426 {
2427 (*pp)++;
2428 adjustable = 1;
2429 }
2430 upper = read_number (pp, ';');
2431
2432 element_type = read_type (pp, objfile);
2433
2434 if (adjustable)
2435 {
2436 lower = 0;
2437 upper = -1;
2438 }
2439
2440 range_type =
2441 create_range_type ((struct type *) NULL, index_type, lower, upper);
2442 type = create_array_type (type, element_type, range_type);
2443
2444 /* If we have an array whose element type is not yet known, but whose
2445 bounds *are* known, record it to be adjusted at the end of the file. */
2446
2447 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2448 {
2449 add_undefined_type (type);
2450 }
2451
2452 return type;
2453 }
2454
2455
2456 /* Read a definition of an enumeration type,
2457 and create and return a suitable type object.
2458 Also defines the symbols that represent the values of the type. */
2459
2460 static struct type *
2461 read_enum_type (pp, type, objfile)
2462 register char **pp;
2463 register struct type *type;
2464 struct objfile *objfile;
2465 {
2466 register char *p;
2467 char *name;
2468 register long n;
2469 register struct symbol *sym;
2470 int nsyms = 0;
2471 struct pending **symlist;
2472 struct pending *osyms, *syms;
2473 int o_nsyms;
2474
2475 #if 0
2476 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2477 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2478 to do? For now, force all enum values to file scope. */
2479 if (within_function)
2480 symlist = &local_symbols;
2481 else
2482 #endif
2483 symlist = &file_symbols;
2484 osyms = *symlist;
2485 o_nsyms = osyms ? osyms->nsyms : 0;
2486
2487 /* Read the value-names and their values.
2488 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2489 A semicolon or comma instead of a NAME means the end. */
2490 while (**pp && **pp != ';' && **pp != ',')
2491 {
2492 STABS_CONTINUE (pp);
2493 p = *pp;
2494 while (*p != ':') p++;
2495 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2496 *pp = p + 1;
2497 n = read_number (pp, ',');
2498
2499 sym = (struct symbol *)
2500 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2501 memset (sym, 0, sizeof (struct symbol));
2502 SYMBOL_NAME (sym) = name;
2503 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2504 SYMBOL_CLASS (sym) = LOC_CONST;
2505 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2506 SYMBOL_VALUE (sym) = n;
2507 add_symbol_to_list (sym, symlist);
2508 nsyms++;
2509 }
2510
2511 if (**pp == ';')
2512 (*pp)++; /* Skip the semicolon. */
2513
2514 /* Now fill in the fields of the type-structure. */
2515
2516 TYPE_LENGTH (type) = sizeof (int);
2517 TYPE_CODE (type) = TYPE_CODE_ENUM;
2518 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2519 TYPE_NFIELDS (type) = nsyms;
2520 TYPE_FIELDS (type) = (struct field *)
2521 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2522 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2523
2524 /* Find the symbols for the values and put them into the type.
2525 The symbols can be found in the symlist that we put them on
2526 to cause them to be defined. osyms contains the old value
2527 of that symlist; everything up to there was defined by us. */
2528 /* Note that we preserve the order of the enum constants, so
2529 that in something like "enum {FOO, LAST_THING=FOO}" we print
2530 FOO, not LAST_THING. */
2531
2532 for (syms = *symlist, n = 0; syms; syms = syms->next)
2533 {
2534 int j = 0;
2535 if (syms == osyms)
2536 j = o_nsyms;
2537 for (; j < syms->nsyms; j++,n++)
2538 {
2539 struct symbol *xsym = syms->symbol[j];
2540 SYMBOL_TYPE (xsym) = type;
2541 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2542 TYPE_FIELD_VALUE (type, n) = 0;
2543 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2544 TYPE_FIELD_BITSIZE (type, n) = 0;
2545 }
2546 if (syms == osyms)
2547 break;
2548 }
2549
2550 #if 0
2551 /* This screws up perfectly good C programs with enums. FIXME. */
2552 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2553 if(TYPE_NFIELDS(type) == 2 &&
2554 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2555 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2556 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2557 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2558 TYPE_CODE(type) = TYPE_CODE_BOOL;
2559 #endif
2560
2561 return type;
2562 }
2563
2564 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2565 typedefs in every file (for int, long, etc):
2566
2567 type = b <signed> <width>; <offset>; <nbits>
2568 signed = u or s. Possible c in addition to u or s (for char?).
2569 offset = offset from high order bit to start bit of type.
2570 width is # bytes in object of this type, nbits is # bits in type.
2571
2572 The width/offset stuff appears to be for small objects stored in
2573 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2574 FIXME. */
2575
2576 static struct type *
2577 read_sun_builtin_type (pp, typenums, objfile)
2578 char **pp;
2579 int typenums[2];
2580 struct objfile *objfile;
2581 {
2582 int nbits;
2583 int signed_type;
2584
2585 switch (**pp)
2586 {
2587 case 's':
2588 signed_type = 1;
2589 break;
2590 case 'u':
2591 signed_type = 0;
2592 break;
2593 default:
2594 return error_type (pp);
2595 }
2596 (*pp)++;
2597
2598 /* For some odd reason, all forms of char put a c here. This is strange
2599 because no other type has this honor. We can safely ignore this because
2600 we actually determine 'char'acterness by the number of bits specified in
2601 the descriptor. */
2602
2603 if (**pp == 'c')
2604 (*pp)++;
2605
2606 /* The first number appears to be the number of bytes occupied
2607 by this type, except that unsigned short is 4 instead of 2.
2608 Since this information is redundant with the third number,
2609 we will ignore it. */
2610 read_number (pp, ';');
2611
2612 /* The second number is always 0, so ignore it too. */
2613 read_number (pp, ';');
2614
2615 /* The third number is the number of bits for this type. */
2616 nbits = read_number (pp, 0);
2617
2618 /* FIXME. Here we should just be able to make a type of the right
2619 number of bits and signedness. FIXME. */
2620
2621 if (nbits == TARGET_LONG_LONG_BIT)
2622 return (lookup_fundamental_type (objfile,
2623 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2624
2625 if (nbits == TARGET_INT_BIT)
2626 {
2627 /* FIXME -- the only way to distinguish `int' from `long'
2628 is to look at its name! */
2629 if (signed_type)
2630 {
2631 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2632 return lookup_fundamental_type (objfile, FT_LONG);
2633 else
2634 return lookup_fundamental_type (objfile, FT_INTEGER);
2635 }
2636 else
2637 {
2638 if (long_kludge_name
2639 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2640 long_kludge_name[9] == 'l' /* long */)
2641 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2642 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2643 else
2644 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2645 }
2646 }
2647
2648 if (nbits == TARGET_SHORT_BIT)
2649 return (lookup_fundamental_type (objfile,
2650 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2651
2652 if (nbits == TARGET_CHAR_BIT)
2653 return (lookup_fundamental_type (objfile,
2654 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2655
2656 if (nbits == 0)
2657 return lookup_fundamental_type (objfile, FT_VOID);
2658
2659 return error_type (pp);
2660 }
2661
2662 static struct type *
2663 read_sun_floating_type (pp, typenums, objfile)
2664 char **pp;
2665 int typenums[2];
2666 struct objfile *objfile;
2667 {
2668 int nbytes;
2669
2670 /* The first number has more details about the type, for example
2671 FN_COMPLEX. See the sun stab.h. */
2672 read_number (pp, ';');
2673
2674 /* The second number is the number of bytes occupied by this type */
2675 nbytes = read_number (pp, ';');
2676
2677 if (**pp != 0)
2678 return error_type (pp);
2679
2680 if (nbytes == TARGET_FLOAT_BIT / TARGET_CHAR_BIT)
2681 return lookup_fundamental_type (objfile, FT_FLOAT);
2682
2683 if (nbytes == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT)
2684 return lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
2685
2686 if (nbytes == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
2687 return lookup_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
2688
2689 return error_type (pp);
2690 }
2691
2692 /* Read a number from the string pointed to by *PP.
2693 The value of *PP is advanced over the number.
2694 If END is nonzero, the character that ends the
2695 number must match END, or an error happens;
2696 and that character is skipped if it does match.
2697 If END is zero, *PP is left pointing to that character.
2698
2699 If the number fits in a long, set *VALUE and set *BITS to 0.
2700 If not, set *BITS to be the number of bits in the number.
2701
2702 If encounter garbage, set *BITS to -1. */
2703
2704 static void
2705 read_huge_number (pp, end, valu, bits)
2706 char **pp;
2707 int end;
2708 long *valu;
2709 int *bits;
2710 {
2711 char *p = *pp;
2712 int sign = 1;
2713 long n = 0;
2714 int radix = 10;
2715 char overflow = 0;
2716 int nbits = 0;
2717 int c;
2718 long upper_limit;
2719
2720 if (*p == '-')
2721 {
2722 sign = -1;
2723 p++;
2724 }
2725
2726 /* Leading zero means octal. GCC uses this to output values larger
2727 than an int (because that would be hard in decimal). */
2728 if (*p == '0')
2729 {
2730 radix = 8;
2731 p++;
2732 }
2733
2734 upper_limit = LONG_MAX / radix;
2735 while ((c = *p++) >= '0' && c <= ('0' + radix))
2736 {
2737 if (n <= upper_limit)
2738 {
2739 n *= radix;
2740 n += c - '0'; /* FIXME this overflows anyway */
2741 }
2742 else
2743 overflow = 1;
2744
2745 /* This depends on large values being output in octal, which is
2746 what GCC does. */
2747 if (radix == 8)
2748 {
2749 if (nbits == 0)
2750 {
2751 if (c == '0')
2752 /* Ignore leading zeroes. */
2753 ;
2754 else if (c == '1')
2755 nbits = 1;
2756 else if (c == '2' || c == '3')
2757 nbits = 2;
2758 else
2759 nbits = 3;
2760 }
2761 else
2762 nbits += 3;
2763 }
2764 }
2765 if (end)
2766 {
2767 if (c && c != end)
2768 {
2769 if (bits != NULL)
2770 *bits = -1;
2771 return;
2772 }
2773 }
2774 else
2775 --p;
2776
2777 *pp = p;
2778 if (overflow)
2779 {
2780 if (nbits == 0)
2781 {
2782 /* Large decimal constants are an error (because it is hard to
2783 count how many bits are in them). */
2784 if (bits != NULL)
2785 *bits = -1;
2786 return;
2787 }
2788
2789 /* -0x7f is the same as 0x80. So deal with it by adding one to
2790 the number of bits. */
2791 if (sign == -1)
2792 ++nbits;
2793 if (bits)
2794 *bits = nbits;
2795 }
2796 else
2797 {
2798 if (valu)
2799 *valu = n * sign;
2800 if (bits)
2801 *bits = 0;
2802 }
2803 }
2804
2805 static struct type *
2806 read_range_type (pp, typenums, objfile)
2807 char **pp;
2808 int typenums[2];
2809 struct objfile *objfile;
2810 {
2811 int rangenums[2];
2812 long n2, n3;
2813 int n2bits, n3bits;
2814 int self_subrange;
2815 struct type *result_type;
2816 struct type *index_type;
2817
2818 /* First comes a type we are a subrange of.
2819 In C it is usually 0, 1 or the type being defined. */
2820 read_type_number (pp, rangenums);
2821 self_subrange = (rangenums[0] == typenums[0] &&
2822 rangenums[1] == typenums[1]);
2823
2824 /* A semicolon should now follow; skip it. */
2825 if (**pp == ';')
2826 (*pp)++;
2827
2828 /* The remaining two operands are usually lower and upper bounds
2829 of the range. But in some special cases they mean something else. */
2830 read_huge_number (pp, ';', &n2, &n2bits);
2831 read_huge_number (pp, ';', &n3, &n3bits);
2832
2833 if (n2bits == -1 || n3bits == -1)
2834 return error_type (pp);
2835
2836 /* If limits are huge, must be large integral type. */
2837 if (n2bits != 0 || n3bits != 0)
2838 {
2839 char got_signed = 0;
2840 char got_unsigned = 0;
2841 /* Number of bits in the type. */
2842 int nbits;
2843
2844 /* Range from 0 to <large number> is an unsigned large integral type. */
2845 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
2846 {
2847 got_unsigned = 1;
2848 nbits = n3bits;
2849 }
2850 /* Range from <large number> to <large number>-1 is a large signed
2851 integral type. */
2852 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
2853 {
2854 got_signed = 1;
2855 nbits = n2bits;
2856 }
2857
2858 /* Check for "long long". */
2859 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
2860 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
2861 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
2862 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2863
2864 if (got_signed || got_unsigned)
2865 {
2866 result_type = alloc_type (objfile);
2867 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
2868 TYPE_CODE (result_type) = TYPE_CODE_INT;
2869 if (got_unsigned)
2870 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
2871 return result_type;
2872 }
2873 else
2874 return error_type (pp);
2875 }
2876
2877 /* A type defined as a subrange of itself, with bounds both 0, is void. */
2878 if (self_subrange && n2 == 0 && n3 == 0)
2879 return (lookup_fundamental_type (objfile, FT_VOID));
2880
2881 /* If n3 is zero and n2 is not, we want a floating type,
2882 and n2 is the width in bytes.
2883
2884 Fortran programs appear to use this for complex types also,
2885 and they give no way to distinguish between double and single-complex!
2886 We don't have complex types, so we would lose on all fortran files!
2887 So return type `double' for all of those. It won't work right
2888 for the complex values, but at least it makes the file loadable.
2889
2890 FIXME, we may be able to distinguish these by their names. FIXME. */
2891
2892 if (n3 == 0 && n2 > 0)
2893 {
2894 if (n2 == sizeof (float))
2895 return (lookup_fundamental_type (objfile, FT_FLOAT));
2896 return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
2897 }
2898
2899 /* If the upper bound is -1, it must really be an unsigned int. */
2900
2901 else if (n2 == 0 && n3 == -1)
2902 {
2903 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2904 long' is to look at its name! */
2905 if (
2906 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2907 long_kludge_name[9] == 'l' /* long */)
2908 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2909 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2910 else
2911 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2912 }
2913
2914 /* Special case: char is defined (Who knows why) as a subrange of
2915 itself with range 0-127. */
2916 else if (self_subrange && n2 == 0 && n3 == 127)
2917 return (lookup_fundamental_type (objfile, FT_CHAR));
2918
2919 /* Assumptions made here: Subrange of self is equivalent to subrange
2920 of int. FIXME: Host and target type-sizes assumed the same. */
2921 /* FIXME: This is the *only* place in GDB that depends on comparing
2922 some type to a builtin type with ==. Fix it! */
2923 else if (n2 == 0
2924 && (self_subrange ||
2925 *dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
2926 {
2927 /* an unsigned type */
2928 #ifdef LONG_LONG
2929 if (n3 == - sizeof (long long))
2930 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2931 #endif
2932 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2933 long' is to look at its name! */
2934 if (n3 == (unsigned long)~0L &&
2935 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2936 long_kludge_name[9] == 'l' /* long */)
2937 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2938 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2939 if (n3 == (unsigned int)~0L)
2940 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2941 if (n3 == (unsigned short)~0L)
2942 return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
2943 if (n3 == (unsigned char)~0L)
2944 return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
2945 }
2946 #ifdef LONG_LONG
2947 else if (n3 == 0 && n2 == -sizeof (long long))
2948 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
2949 #endif
2950 else if (n2 == -n3 -1)
2951 {
2952 /* a signed type */
2953 /* FIXME -- the only way to distinguish `int' from `long' is to look
2954 at its name! */
2955 if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
2956 long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2957 return (lookup_fundamental_type (objfile, FT_LONG));
2958 if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
2959 return (lookup_fundamental_type (objfile, FT_INTEGER));
2960 if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
2961 return (lookup_fundamental_type (objfile, FT_SHORT));
2962 if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
2963 return (lookup_fundamental_type (objfile, FT_SIGNED_CHAR));
2964 }
2965
2966 /* We have a real range type on our hands. Allocate space and
2967 return a real pointer. */
2968
2969 /* At this point I don't have the faintest idea how to deal with
2970 a self_subrange type; I'm going to assume that this is used
2971 as an idiom, and that all of them are special cases. So . . . */
2972 if (self_subrange)
2973 return error_type (pp);
2974
2975 index_type = *dbx_lookup_type (rangenums);
2976 if (index_type == NULL)
2977 {
2978 complain (&range_type_base_complaint, rangenums[1]);
2979 index_type = lookup_fundamental_type (objfile, FT_INTEGER);
2980 }
2981
2982 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
2983 return (result_type);
2984 }
2985
2986 /* Read a number from the string pointed to by *PP.
2987 The value of *PP is advanced over the number.
2988 If END is nonzero, the character that ends the
2989 number must match END, or an error happens;
2990 and that character is skipped if it does match.
2991 If END is zero, *PP is left pointing to that character. */
2992
2993 long
2994 read_number (pp, end)
2995 char **pp;
2996 int end;
2997 {
2998 register char *p = *pp;
2999 register long n = 0;
3000 register int c;
3001 int sign = 1;
3002
3003 /* Handle an optional leading minus sign. */
3004
3005 if (*p == '-')
3006 {
3007 sign = -1;
3008 p++;
3009 }
3010
3011 /* Read the digits, as far as they go. */
3012
3013 while ((c = *p++) >= '0' && c <= '9')
3014 {
3015 n *= 10;
3016 n += c - '0';
3017 }
3018 if (end)
3019 {
3020 if (c && c != end)
3021 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
3022 }
3023 else
3024 --p;
3025
3026 *pp = p;
3027 return n * sign;
3028 }
3029
3030 /* Read in an argument list. This is a list of types, separated by commas
3031 and terminated with END. Return the list of types read in, or (struct type
3032 **)-1 if there is an error. */
3033
3034 static struct type **
3035 read_args (pp, end, objfile)
3036 char **pp;
3037 int end;
3038 struct objfile *objfile;
3039 {
3040 /* FIXME! Remove this arbitrary limit! */
3041 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3042 int n = 0;
3043
3044 while (**pp != end)
3045 {
3046 if (**pp != ',')
3047 /* Invalid argument list: no ','. */
3048 return (struct type **)-1;
3049 (*pp)++;
3050 STABS_CONTINUE (pp);
3051 types[n++] = read_type (pp, objfile);
3052 }
3053 (*pp)++; /* get past `end' (the ':' character) */
3054
3055 if (n == 1)
3056 {
3057 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3058 }
3059 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3060 {
3061 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3062 memset (rval + n, 0, sizeof (struct type *));
3063 }
3064 else
3065 {
3066 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3067 }
3068 memcpy (rval, types, n * sizeof (struct type *));
3069 return rval;
3070 }
3071
3072 /* Add a common block's start address to the offset of each symbol
3073 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3074 the common block name). */
3075
3076 static void
3077 fix_common_block (sym, valu)
3078 struct symbol *sym;
3079 int valu;
3080 {
3081 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3082 for ( ; next; next = next->next)
3083 {
3084 register int j;
3085 for (j = next->nsyms - 1; j >= 0; j--)
3086 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3087 }
3088 }
3089
3090
3091 \f
3092 /* What about types defined as forward references inside of a small lexical
3093 scope? */
3094 /* Add a type to the list of undefined types to be checked through
3095 once this file has been read in. */
3096
3097 void
3098 add_undefined_type (type)
3099 struct type *type;
3100 {
3101 if (undef_types_length == undef_types_allocated)
3102 {
3103 undef_types_allocated *= 2;
3104 undef_types = (struct type **)
3105 xrealloc ((char *) undef_types,
3106 undef_types_allocated * sizeof (struct type *));
3107 }
3108 undef_types[undef_types_length++] = type;
3109 }
3110
3111 /* Go through each undefined type, see if it's still undefined, and fix it
3112 up if possible. We have two kinds of undefined types:
3113
3114 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3115 Fix: update array length using the element bounds
3116 and the target type's length.
3117 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3118 yet defined at the time a pointer to it was made.
3119 Fix: Do a full lookup on the struct/union tag. */
3120 void
3121 cleanup_undefined_types ()
3122 {
3123 struct type **type;
3124
3125 for (type = undef_types; type < undef_types + undef_types_length; type++)
3126 {
3127 switch (TYPE_CODE (*type))
3128 {
3129
3130 case TYPE_CODE_STRUCT:
3131 case TYPE_CODE_UNION:
3132 case TYPE_CODE_ENUM:
3133 {
3134 /* Check if it has been defined since. */
3135 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3136 {
3137 struct pending *ppt;
3138 int i;
3139 /* Name of the type, without "struct" or "union" */
3140 char *typename = TYPE_NAME (*type);
3141
3142 if (!strncmp (typename, "struct ", 7))
3143 typename += 7;
3144 if (!strncmp (typename, "union ", 6))
3145 typename += 6;
3146 if (!strncmp (typename, "enum ", 5))
3147 typename += 5;
3148
3149 for (ppt = file_symbols; ppt; ppt = ppt->next)
3150 {
3151 for (i = 0; i < ppt->nsyms; i++)
3152 {
3153 struct symbol *sym = ppt->symbol[i];
3154
3155 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3156 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3157 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3158 TYPE_CODE (*type))
3159 && STREQ (SYMBOL_NAME (sym), typename))
3160 {
3161 memcpy (*type, SYMBOL_TYPE (sym),
3162 sizeof (struct type));
3163 }
3164 }
3165 }
3166 }
3167 }
3168 break;
3169
3170 case TYPE_CODE_ARRAY:
3171 {
3172 struct type *range_type;
3173 int lower, upper;
3174
3175 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3176 goto badtype;
3177 if (TYPE_NFIELDS (*type) != 1)
3178 goto badtype;
3179 range_type = TYPE_FIELD_TYPE (*type, 0);
3180 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3181 goto badtype;
3182
3183 /* Now recompute the length of the array type, based on its
3184 number of elements and the target type's length. */
3185 lower = TYPE_FIELD_BITPOS (range_type, 0);
3186 upper = TYPE_FIELD_BITPOS (range_type, 1);
3187 TYPE_LENGTH (*type) = (upper - lower + 1)
3188 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3189 }
3190 break;
3191
3192 default:
3193 badtype:
3194 error ("GDB internal error. cleanup_undefined_types with bad type %d.", TYPE_CODE (*type));
3195 break;
3196 }
3197 }
3198 undef_types_length = 0;
3199 }
3200
3201 /* Scan through all of the global symbols defined in the object file,
3202 assigning values to the debugging symbols that need to be assigned
3203 to. Get these symbols from the minimal symbol table. */
3204
3205 void
3206 scan_file_globals (objfile)
3207 struct objfile *objfile;
3208 {
3209 int hash;
3210 struct minimal_symbol *msymbol;
3211 struct symbol *sym, *prev;
3212
3213 if (objfile->msymbols == 0) /* Beware the null file. */
3214 return;
3215
3216 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3217 {
3218 QUIT;
3219
3220 prev = NULL;
3221
3222 /* Get the hash index and check all the symbols
3223 under that hash index. */
3224
3225 hash = hashname (SYMBOL_NAME (msymbol));
3226
3227 for (sym = global_sym_chain[hash]; sym;)
3228 {
3229 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3230 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3231 {
3232 /* Splice this symbol out of the hash chain and
3233 assign the value we have to it. */
3234 if (prev)
3235 {
3236 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3237 }
3238 else
3239 {
3240 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3241 }
3242
3243 /* Check to see whether we need to fix up a common block. */
3244 /* Note: this code might be executed several times for
3245 the same symbol if there are multiple references. */
3246
3247 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3248 {
3249 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3250 }
3251 else
3252 {
3253 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3254 }
3255
3256 if (prev)
3257 {
3258 sym = SYMBOL_VALUE_CHAIN (prev);
3259 }
3260 else
3261 {
3262 sym = global_sym_chain[hash];
3263 }
3264 }
3265 else
3266 {
3267 prev = sym;
3268 sym = SYMBOL_VALUE_CHAIN (sym);
3269 }
3270 }
3271 }
3272 }
3273
3274 /* Initialize anything that needs initializing when starting to read
3275 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3276 to a psymtab. */
3277
3278 void
3279 stabsread_init ()
3280 {
3281 }
3282
3283 /* Initialize anything that needs initializing when a completely new
3284 symbol file is specified (not just adding some symbols from another
3285 file, e.g. a shared library). */
3286
3287 void
3288 stabsread_new_init ()
3289 {
3290 /* Empty the hash table of global syms looking for values. */
3291 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3292 }
3293
3294 /* Initialize anything that needs initializing at the same time as
3295 start_symtab() is called. */
3296
3297 void start_stabs ()
3298 {
3299 global_stabs = NULL; /* AIX COFF */
3300 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3301 n_this_object_header_files = 1;
3302 type_vector_length = 0;
3303 type_vector = (struct type **) 0;
3304 }
3305
3306 /* Call after end_symtab() */
3307
3308 void end_stabs ()
3309 {
3310 if (type_vector)
3311 {
3312 free ((char *) type_vector);
3313 }
3314 type_vector = 0;
3315 type_vector_length = 0;
3316 previous_stab_code = 0;
3317 }
3318
3319 void
3320 finish_global_stabs (objfile)
3321 struct objfile *objfile;
3322 {
3323 if (global_stabs)
3324 {
3325 patch_block_stabs (global_symbols, global_stabs, objfile);
3326 free ((PTR) global_stabs);
3327 global_stabs = NULL;
3328 }
3329 }
3330
3331 /* Initializer for this module */
3332
3333 void
3334 _initialize_stabsread ()
3335 {
3336 undef_types_allocated = 20;
3337 undef_types_length = 0;
3338 undef_types = (struct type **)
3339 xmalloc (undef_types_allocated * sizeof (struct type *));
3340 }
This page took 0.124811 seconds and 3 git commands to generate.