gdbtypes.h (TYPE_SELF_TYPE): Renamed from TYPE_DOMAIN_TYPE.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 /* The routines that read and process a complete stabs for a C struct or
57 C++ class pass lists of data member fields and lists of member function
58 fields in an instance of a field_info structure, as defined below.
59 This is part of some reorganization of low level C++ support and is
60 expected to eventually go away... (FIXME) */
61
62 struct field_info
63 {
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 }
75 *list;
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 }
81 *fnlist;
82 };
83
84 static void
85 read_one_struct_field (struct field_info *, char **, char *,
86 struct type *, struct objfile *);
87
88 static struct type *dbx_alloc_type (int[2], struct objfile *);
89
90 static long read_huge_number (char **, int, int *, int);
91
92 static struct type *error_type (char **, struct objfile *);
93
94 static void
95 patch_block_stabs (struct pending *, struct pending_stabs *,
96 struct objfile *);
97
98 static void fix_common_block (struct symbol *, CORE_ADDR);
99
100 static int read_type_number (char **, int *);
101
102 static struct type *read_type (char **, struct objfile *);
103
104 static struct type *read_range_type (char **, int[2], int, struct objfile *);
105
106 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_floating_type (char **, int[2],
109 struct objfile *);
110
111 static struct type *read_enum_type (char **, struct type *, struct objfile *);
112
113 static struct type *rs6000_builtin_type (int, struct objfile *);
114
115 static int
116 read_member_functions (struct field_info *, char **, struct type *,
117 struct objfile *);
118
119 static int
120 read_struct_fields (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_baseclasses (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_tilde_fields (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int attach_fn_fields_to_type (struct field_info *, struct type *);
132
133 static int attach_fields_to_type (struct field_info *, struct type *,
134 struct objfile *);
135
136 static struct type *read_struct_type (char **, struct type *,
137 enum type_code,
138 struct objfile *);
139
140 static struct type *read_array_type (char **, struct type *,
141 struct objfile *);
142
143 static struct field *read_args (char **, int, struct objfile *, int *, int *);
144
145 static void add_undefined_type (struct type *, int[2]);
146
147 static int
148 read_cpp_abbrev (struct field_info *, char **, struct type *,
149 struct objfile *);
150
151 static char *find_name_end (char *name);
152
153 static int process_reference (char **string);
154
155 void stabsread_clear_cache (void);
156
157 static const char vptr_name[] = "_vptr$";
158 static const char vb_name[] = "_vb$";
159
160 static void
161 invalid_cpp_abbrev_complaint (const char *arg1)
162 {
163 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
164 }
165
166 static void
167 reg_value_complaint (int regnum, int num_regs, const char *sym)
168 {
169 complaint (&symfile_complaints,
170 _("register number %d too large (max %d) in symbol %s"),
171 regnum, num_regs - 1, sym);
172 }
173
174 static void
175 stabs_general_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, "%s", arg1);
178 }
179
180 /* Make a list of forward references which haven't been defined. */
181
182 static struct type **undef_types;
183 static int undef_types_allocated;
184 static int undef_types_length;
185 static struct symbol *current_symbol = NULL;
186
187 /* Make a list of nameless types that are undefined.
188 This happens when another type is referenced by its number
189 before this type is actually defined. For instance "t(0,1)=k(0,2)"
190 and type (0,2) is defined only later. */
191
192 struct nat
193 {
194 int typenums[2];
195 struct type *type;
196 };
197 static struct nat *noname_undefs;
198 static int noname_undefs_allocated;
199 static int noname_undefs_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207
208 /* Vector of types defined so far, indexed by their type numbers.
209 (In newer sun systems, dbx uses a pair of numbers in parens,
210 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
211 Then these numbers must be translated through the type_translations
212 hash table to get the index into the type vector.) */
213
214 static struct type **type_vector;
215
216 /* Number of elements allocated for type_vector currently. */
217
218 static int type_vector_length;
219
220 /* Initial size of type vector. Is realloc'd larger if needed, and
221 realloc'd down to the size actually used, when completed. */
222
223 #define INITIAL_TYPE_VECTOR_LENGTH 160
224 \f
225
226 /* Look up a dbx type-number pair. Return the address of the slot
227 where the type for that number-pair is stored.
228 The number-pair is in TYPENUMS.
229
230 This can be used for finding the type associated with that pair
231 or for associating a new type with the pair. */
232
233 static struct type **
234 dbx_lookup_type (int typenums[2], struct objfile *objfile)
235 {
236 int filenum = typenums[0];
237 int index = typenums[1];
238 unsigned old_len;
239 int real_filenum;
240 struct header_file *f;
241 int f_orig_length;
242
243 if (filenum == -1) /* -1,-1 is for temporary types. */
244 return 0;
245
246 if (filenum < 0 || filenum >= n_this_object_header_files)
247 {
248 complaint (&symfile_complaints,
249 _("Invalid symbol data: type number "
250 "(%d,%d) out of range at symtab pos %d."),
251 filenum, index, symnum);
252 goto error_return;
253 }
254
255 if (filenum == 0)
256 {
257 if (index < 0)
258 {
259 /* Caller wants address of address of type. We think
260 that negative (rs6k builtin) types will never appear as
261 "lvalues", (nor should they), so we stuff the real type
262 pointer into a temp, and return its address. If referenced,
263 this will do the right thing. */
264 static struct type *temp_type;
265
266 temp_type = rs6000_builtin_type (index, objfile);
267 return &temp_type;
268 }
269
270 /* Type is defined outside of header files.
271 Find it in this object file's type vector. */
272 if (index >= type_vector_length)
273 {
274 old_len = type_vector_length;
275 if (old_len == 0)
276 {
277 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
278 type_vector = (struct type **)
279 xmalloc (type_vector_length * sizeof (struct type *));
280 }
281 while (index >= type_vector_length)
282 {
283 type_vector_length *= 2;
284 }
285 type_vector = (struct type **)
286 xrealloc ((char *) type_vector,
287 (type_vector_length * sizeof (struct type *)));
288 memset (&type_vector[old_len], 0,
289 (type_vector_length - old_len) * sizeof (struct type *));
290 }
291 return (&type_vector[index]);
292 }
293 else
294 {
295 real_filenum = this_object_header_files[filenum];
296
297 if (real_filenum >= N_HEADER_FILES (objfile))
298 {
299 static struct type *temp_type;
300
301 warning (_("GDB internal error: bad real_filenum"));
302
303 error_return:
304 temp_type = objfile_type (objfile)->builtin_error;
305 return &temp_type;
306 }
307
308 f = HEADER_FILES (objfile) + real_filenum;
309
310 f_orig_length = f->length;
311 if (index >= f_orig_length)
312 {
313 while (index >= f->length)
314 {
315 f->length *= 2;
316 }
317 f->vector = (struct type **)
318 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
319 memset (&f->vector[f_orig_length], 0,
320 (f->length - f_orig_length) * sizeof (struct type *));
321 }
322 return (&f->vector[index]);
323 }
324 }
325
326 /* Make sure there is a type allocated for type numbers TYPENUMS
327 and return the type object.
328 This can create an empty (zeroed) type object.
329 TYPENUMS may be (-1, -1) to return a new type object that is not
330 put into the type vector, and so may not be referred to by number. */
331
332 static struct type *
333 dbx_alloc_type (int typenums[2], struct objfile *objfile)
334 {
335 struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums, objfile);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
360 struct objfile *objfile)
361 {
362 int ii;
363 char *name;
364 char *pp;
365 struct symbol *sym;
366
367 if (stabs)
368 {
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 gdb_assert (pp); /* Must find a ':' or game's over. */
377 while (pp[1] == ':')
378 {
379 pp += 2;
380 pp = (char *) strchr (pp, ':');
381 }
382 sym = find_symbol_in_list (symbols, name, pp - name);
383 if (!sym)
384 {
385 /* FIXME-maybe: it would be nice if we noticed whether
386 the variable was defined *anywhere*, not just whether
387 it is defined in this compilation unit. But neither
388 xlc or GCC seem to need such a definition, and until
389 we do psymtabs (so that the minimal symbols from all
390 compilation units are available now), I'm not sure
391 how to get the information. */
392
393 /* On xcoff, if a global is defined and never referenced,
394 ld will remove it from the executable. There is then
395 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
396 sym = allocate_symbol (objfile);
397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
398 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
399 SYMBOL_SET_LINKAGE_NAME
400 (sym, obstack_copy0 (&objfile->objfile_obstack,
401 name, pp - name));
402 pp += 2;
403 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
404 {
405 /* I don't think the linker does this with functions,
406 so as far as I know this is never executed.
407 But it doesn't hurt to check. */
408 SYMBOL_TYPE (sym) =
409 lookup_function_type (read_type (&pp, objfile));
410 }
411 else
412 {
413 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
414 }
415 add_symbol_to_list (sym, &global_symbols);
416 }
417 else
418 {
419 pp += 2;
420 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
421 {
422 SYMBOL_TYPE (sym) =
423 lookup_function_type (read_type (&pp, objfile));
424 }
425 else
426 {
427 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
428 }
429 }
430 }
431 }
432 }
433 \f
434
435 /* Read a number by which a type is referred to in dbx data,
436 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
437 Just a single number N is equivalent to (0,N).
438 Return the two numbers by storing them in the vector TYPENUMS.
439 TYPENUMS will then be used as an argument to dbx_lookup_type.
440
441 Returns 0 for success, -1 for error. */
442
443 static int
444 read_type_number (char **pp, int *typenums)
445 {
446 int nbits;
447
448 if (**pp == '(')
449 {
450 (*pp)++;
451 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
455 if (nbits != 0)
456 return -1;
457 }
458 else
459 {
460 typenums[0] = 0;
461 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
462 if (nbits != 0)
463 return -1;
464 }
465 return 0;
466 }
467 \f
468
469 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
470 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
471 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
472 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
473
474 /* Structure for storing pointers to reference definitions for fast lookup
475 during "process_later". */
476
477 struct ref_map
478 {
479 char *stabs;
480 CORE_ADDR value;
481 struct symbol *sym;
482 };
483
484 #define MAX_CHUNK_REFS 100
485 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
486 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
487
488 static struct ref_map *ref_map;
489
490 /* Ptr to free cell in chunk's linked list. */
491 static int ref_count = 0;
492
493 /* Number of chunks malloced. */
494 static int ref_chunk = 0;
495
496 /* This file maintains a cache of stabs aliases found in the symbol
497 table. If the symbol table changes, this cache must be cleared
498 or we are left holding onto data in invalid obstacks. */
499 void
500 stabsread_clear_cache (void)
501 {
502 ref_count = 0;
503 ref_chunk = 0;
504 }
505
506 /* Create array of pointers mapping refids to symbols and stab strings.
507 Add pointers to reference definition symbols and/or their values as we
508 find them, using their reference numbers as our index.
509 These will be used later when we resolve references. */
510 void
511 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
512 {
513 if (ref_count == 0)
514 ref_chunk = 0;
515 if (refnum >= ref_count)
516 ref_count = refnum + 1;
517 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
518 {
519 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
520 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
521
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
525 new_chunks * REF_CHUNK_SIZE);
526 ref_chunk += new_chunks;
527 }
528 ref_map[refnum].stabs = stabs;
529 ref_map[refnum].sym = sym;
530 ref_map[refnum].value = value;
531 }
532
533 /* Return defined sym for the reference REFNUM. */
534 struct symbol *
535 ref_search (int refnum)
536 {
537 if (refnum < 0 || refnum > ref_count)
538 return 0;
539 return ref_map[refnum].sym;
540 }
541
542 /* Parse a reference id in STRING and return the resulting
543 reference number. Move STRING beyond the reference id. */
544
545 static int
546 process_reference (char **string)
547 {
548 char *p;
549 int refnum = 0;
550
551 if (**string != '#')
552 return 0;
553
554 /* Advance beyond the initial '#'. */
555 p = *string + 1;
556
557 /* Read number as reference id. */
558 while (*p && isdigit (*p))
559 {
560 refnum = refnum * 10 + *p - '0';
561 p++;
562 }
563 *string = p;
564 return refnum;
565 }
566
567 /* If STRING defines a reference, store away a pointer to the reference
568 definition for later use. Return the reference number. */
569
570 int
571 symbol_reference_defined (char **string)
572 {
573 char *p = *string;
574 int refnum = 0;
575
576 refnum = process_reference (&p);
577
578 /* Defining symbols end in '='. */
579 if (*p == '=')
580 {
581 /* Symbol is being defined here. */
582 *string = p + 1;
583 return refnum;
584 }
585 else
586 {
587 /* Must be a reference. Either the symbol has already been defined,
588 or this is a forward reference to it. */
589 *string = p;
590 return -1;
591 }
592 }
593
594 static int
595 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
596 {
597 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
598
599 if (regno >= gdbarch_num_regs (gdbarch)
600 + gdbarch_num_pseudo_regs (gdbarch))
601 {
602 reg_value_complaint (regno,
603 gdbarch_num_regs (gdbarch)
604 + gdbarch_num_pseudo_regs (gdbarch),
605 SYMBOL_PRINT_NAME (sym));
606
607 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
608 }
609
610 return regno;
611 }
612
613 static const struct symbol_register_ops stab_register_funcs = {
614 stab_reg_to_regnum
615 };
616
617 /* The "aclass" indices for computed symbols. */
618
619 static int stab_register_index;
620 static int stab_regparm_index;
621
622 struct symbol *
623 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
624 struct objfile *objfile)
625 {
626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
627 struct symbol *sym;
628 char *p = (char *) find_name_end (string);
629 int deftype;
630 int synonym = 0;
631 int i;
632 char *new_name = NULL;
633
634 /* We would like to eliminate nameless symbols, but keep their types.
635 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
636 to type 2, but, should not create a symbol to address that type. Since
637 the symbol will be nameless, there is no way any user can refer to it. */
638
639 int nameless;
640
641 /* Ignore syms with empty names. */
642 if (string[0] == 0)
643 return 0;
644
645 /* Ignore old-style symbols from cc -go. */
646 if (p == 0)
647 return 0;
648
649 while (p[1] == ':')
650 {
651 p += 2;
652 p = strchr (p, ':');
653 if (p == NULL)
654 {
655 complaint (&symfile_complaints,
656 _("Bad stabs string '%s'"), string);
657 return NULL;
658 }
659 }
660
661 /* If a nameless stab entry, all we need is the type, not the symbol.
662 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
663 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
664
665 current_symbol = sym = allocate_symbol (objfile);
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
679 &objfile->objfile_obstack);
680
681 if (is_cplus_marker (string[0]))
682 {
683 /* Special GNU C++ names. */
684 switch (string[1])
685 {
686 case 't':
687 SYMBOL_SET_LINKAGE_NAME (sym, "this");
688 break;
689
690 case 'v': /* $vtbl_ptr_type */
691 goto normal;
692
693 case 'e':
694 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
695 break;
696
697 case '_':
698 /* This was an anonymous type that was never fixed up. */
699 goto normal;
700
701 case 'X':
702 /* SunPRO (3.0 at least) static variable encoding. */
703 if (gdbarch_static_transform_name_p (gdbarch))
704 goto normal;
705 /* ... fall through ... */
706
707 default:
708 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
709 string);
710 goto normal; /* Do *something* with it. */
711 }
712 }
713 else
714 {
715 normal:
716 if (SYMBOL_LANGUAGE (sym) == language_cplus)
717 {
718 char *name = alloca (p - string + 1);
719
720 memcpy (name, string, p - string);
721 name[p - string] = '\0';
722 new_name = cp_canonicalize_string (name);
723 }
724 if (new_name != NULL)
725 {
726 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
727 xfree (new_name);
728 }
729 else
730 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
731
732 if (SYMBOL_LANGUAGE (sym) == language_cplus)
733 cp_scan_for_anonymous_namespaces (sym, objfile);
734
735 }
736 p++;
737
738 /* Determine the type of name being defined. */
739 #if 0
740 /* Getting GDB to correctly skip the symbol on an undefined symbol
741 descriptor and not ever dump core is a very dodgy proposition if
742 we do things this way. I say the acorn RISC machine can just
743 fix their compiler. */
744 /* The Acorn RISC machine's compiler can put out locals that don't
745 start with "234=" or "(3,4)=", so assume anything other than the
746 deftypes we know how to handle is a local. */
747 if (!strchr ("cfFGpPrStTvVXCR", *p))
748 #else
749 if (isdigit (*p) || *p == '(' || *p == '-')
750 #endif
751 deftype = 'l';
752 else
753 deftype = *p++;
754
755 switch (deftype)
756 {
757 case 'c':
758 /* c is a special case, not followed by a type-number.
759 SYMBOL:c=iVALUE for an integer constant symbol.
760 SYMBOL:c=rVALUE for a floating constant symbol.
761 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
762 e.g. "b:c=e6,0" for "const b = blob1"
763 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
764 if (*p != '=')
765 {
766 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
767 SYMBOL_TYPE (sym) = error_type (&p, objfile);
768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
769 add_symbol_to_list (sym, &file_symbols);
770 return sym;
771 }
772 ++p;
773 switch (*p++)
774 {
775 case 'r':
776 {
777 double d = atof (p);
778 gdb_byte *dbl_valu;
779 struct type *dbl_type;
780
781 /* FIXME-if-picky-about-floating-accuracy: Should be using
782 target arithmetic to get the value. real.c in GCC
783 probably has the necessary code. */
784
785 dbl_type = objfile_type (objfile)->builtin_double;
786 dbl_valu =
787 obstack_alloc (&objfile->objfile_obstack,
788 TYPE_LENGTH (dbl_type));
789 store_typed_floating (dbl_valu, dbl_type, d);
790
791 SYMBOL_TYPE (sym) = dbl_type;
792 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
793 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
794 }
795 break;
796 case 'i':
797 {
798 /* Defining integer constants this way is kind of silly,
799 since 'e' constants allows the compiler to give not
800 only the value, but the type as well. C has at least
801 int, long, unsigned int, and long long as constant
802 types; other languages probably should have at least
803 unsigned as well as signed constants. */
804
805 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
806 SYMBOL_VALUE (sym) = atoi (p);
807 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
808 }
809 break;
810
811 case 'c':
812 {
813 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
814 SYMBOL_VALUE (sym) = atoi (p);
815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
816 }
817 break;
818
819 case 's':
820 {
821 struct type *range_type;
822 int ind = 0;
823 char quote = *p++;
824 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
825 gdb_byte *string_value;
826
827 if (quote != '\'' && quote != '"')
828 {
829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
830 SYMBOL_TYPE (sym) = error_type (&p, objfile);
831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832 add_symbol_to_list (sym, &file_symbols);
833 return sym;
834 }
835
836 /* Find matching quote, rejecting escaped quotes. */
837 while (*p && *p != quote)
838 {
839 if (*p == '\\' && p[1] == quote)
840 {
841 string_local[ind] = (gdb_byte) quote;
842 ind++;
843 p += 2;
844 }
845 else if (*p)
846 {
847 string_local[ind] = (gdb_byte) (*p);
848 ind++;
849 p++;
850 }
851 }
852 if (*p != quote)
853 {
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, &file_symbols);
858 return sym;
859 }
860
861 /* NULL terminate the string. */
862 string_local[ind] = 0;
863 range_type
864 = create_static_range_type (NULL,
865 objfile_type (objfile)->builtin_int,
866 0, ind);
867 SYMBOL_TYPE (sym) = create_array_type (NULL,
868 objfile_type (objfile)->builtin_char,
869 range_type);
870 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
871 memcpy (string_value, string_local, ind + 1);
872 p++;
873
874 SYMBOL_VALUE_BYTES (sym) = string_value;
875 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
876 }
877 break;
878
879 case 'e':
880 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
881 can be represented as integral.
882 e.g. "b:c=e6,0" for "const b = blob1"
883 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
884 {
885 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
886 SYMBOL_TYPE (sym) = read_type (&p, objfile);
887
888 if (*p != ',')
889 {
890 SYMBOL_TYPE (sym) = error_type (&p, objfile);
891 break;
892 }
893 ++p;
894
895 /* If the value is too big to fit in an int (perhaps because
896 it is unsigned), or something like that, we silently get
897 a bogus value. The type and everything else about it is
898 correct. Ideally, we should be using whatever we have
899 available for parsing unsigned and long long values,
900 however. */
901 SYMBOL_VALUE (sym) = atoi (p);
902 }
903 break;
904 default:
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = error_type (&p, objfile);
908 }
909 }
910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
911 add_symbol_to_list (sym, &file_symbols);
912 return sym;
913
914 case 'C':
915 /* The name of a caught exception. */
916 SYMBOL_TYPE (sym) = read_type (&p, objfile);
917 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
918 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
919 SYMBOL_VALUE_ADDRESS (sym) = valu;
920 add_symbol_to_list (sym, &local_symbols);
921 break;
922
923 case 'f':
924 /* A static function definition. */
925 SYMBOL_TYPE (sym) = read_type (&p, objfile);
926 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
927 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
928 add_symbol_to_list (sym, &file_symbols);
929 /* fall into process_function_types. */
930
931 process_function_types:
932 /* Function result types are described as the result type in stabs.
933 We need to convert this to the function-returning-type-X type
934 in GDB. E.g. "int" is converted to "function returning int". */
935 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
936 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
937
938 /* All functions in C++ have prototypes. Stabs does not offer an
939 explicit way to identify prototyped or unprototyped functions,
940 but both GCC and Sun CC emit stabs for the "call-as" type rather
941 than the "declared-as" type for unprototyped functions, so
942 we treat all functions as if they were prototyped. This is used
943 primarily for promotion when calling the function from GDB. */
944 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
945
946 /* fall into process_prototype_types. */
947
948 process_prototype_types:
949 /* Sun acc puts declared types of arguments here. */
950 if (*p == ';')
951 {
952 struct type *ftype = SYMBOL_TYPE (sym);
953 int nsemi = 0;
954 int nparams = 0;
955 char *p1 = p;
956
957 /* Obtain a worst case guess for the number of arguments
958 by counting the semicolons. */
959 while (*p1)
960 {
961 if (*p1++ == ';')
962 nsemi++;
963 }
964
965 /* Allocate parameter information fields and fill them in. */
966 TYPE_FIELDS (ftype) = (struct field *)
967 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
968 while (*p++ == ';')
969 {
970 struct type *ptype;
971
972 /* A type number of zero indicates the start of varargs.
973 FIXME: GDB currently ignores vararg functions. */
974 if (p[0] == '0' && p[1] == '\0')
975 break;
976 ptype = read_type (&p, objfile);
977
978 /* The Sun compilers mark integer arguments, which should
979 be promoted to the width of the calling conventions, with
980 a type which references itself. This type is turned into
981 a TYPE_CODE_VOID type by read_type, and we have to turn
982 it back into builtin_int here.
983 FIXME: Do we need a new builtin_promoted_int_arg ? */
984 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
985 ptype = objfile_type (objfile)->builtin_int;
986 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
987 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
988 }
989 TYPE_NFIELDS (ftype) = nparams;
990 TYPE_PROTOTYPED (ftype) = 1;
991 }
992 break;
993
994 case 'F':
995 /* A global function definition. */
996 SYMBOL_TYPE (sym) = read_type (&p, objfile);
997 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
998 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
999 add_symbol_to_list (sym, &global_symbols);
1000 goto process_function_types;
1001
1002 case 'G':
1003 /* For a class G (global) symbol, it appears that the
1004 value is not correct. It is necessary to search for the
1005 corresponding linker definition to find the value.
1006 These definitions appear at the end of the namelist. */
1007 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1010 /* Don't add symbol references to global_sym_chain.
1011 Symbol references don't have valid names and wont't match up with
1012 minimal symbols when the global_sym_chain is relocated.
1013 We'll fixup symbol references when we fixup the defining symbol. */
1014 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1015 {
1016 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1017 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1018 global_sym_chain[i] = sym;
1019 }
1020 add_symbol_to_list (sym, &global_symbols);
1021 break;
1022
1023 /* This case is faked by a conditional above,
1024 when there is no code letter in the dbx data.
1025 Dbx data never actually contains 'l'. */
1026 case 's':
1027 case 'l':
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1030 SYMBOL_VALUE (sym) = valu;
1031 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1032 add_symbol_to_list (sym, &local_symbols);
1033 break;
1034
1035 case 'p':
1036 if (*p == 'F')
1037 /* pF is a two-letter code that means a function parameter in Fortran.
1038 The type-number specifies the type of the return value.
1039 Translate it into a pointer-to-function type. */
1040 {
1041 p++;
1042 SYMBOL_TYPE (sym)
1043 = lookup_pointer_type
1044 (lookup_function_type (read_type (&p, objfile)));
1045 }
1046 else
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048
1049 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1050 SYMBOL_VALUE (sym) = valu;
1051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1052 SYMBOL_IS_ARGUMENT (sym) = 1;
1053 add_symbol_to_list (sym, &local_symbols);
1054
1055 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1056 {
1057 /* On little-endian machines, this crud is never necessary,
1058 and, if the extra bytes contain garbage, is harmful. */
1059 break;
1060 }
1061
1062 /* If it's gcc-compiled, if it says `short', believe it. */
1063 if (processing_gcc_compilation
1064 || gdbarch_believe_pcc_promotion (gdbarch))
1065 break;
1066
1067 if (!gdbarch_believe_pcc_promotion (gdbarch))
1068 {
1069 /* If PCC says a parameter is a short or a char, it is
1070 really an int. */
1071 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1072 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1073 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1074 {
1075 SYMBOL_TYPE (sym) =
1076 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1077 ? objfile_type (objfile)->builtin_unsigned_int
1078 : objfile_type (objfile)->builtin_int;
1079 }
1080 break;
1081 }
1082
1083 case 'P':
1084 /* acc seems to use P to declare the prototypes of functions that
1085 are referenced by this file. gdb is not prepared to deal
1086 with this extra information. FIXME, it ought to. */
1087 if (type == N_FUN)
1088 {
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1090 goto process_prototype_types;
1091 }
1092 /*FALLTHROUGH */
1093
1094 case 'R':
1095 /* Parameter which is in a register. */
1096 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1097 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1098 SYMBOL_IS_ARGUMENT (sym) = 1;
1099 SYMBOL_VALUE (sym) = valu;
1100 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101 add_symbol_to_list (sym, &local_symbols);
1102 break;
1103
1104 case 'r':
1105 /* Register variable (either global or local). */
1106 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1108 SYMBOL_VALUE (sym) = valu;
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 if (within_function)
1111 {
1112 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 the same name to represent an argument passed in a
1114 register. GCC uses 'P' for the same case. So if we find
1115 such a symbol pair we combine it into one 'P' symbol.
1116 For Sun cc we need to do this regardless of
1117 stabs_argument_has_addr, because the compiler puts out
1118 the 'p' symbol even if it never saves the argument onto
1119 the stack.
1120
1121 On most machines, we want to preserve both symbols, so
1122 that we can still get information about what is going on
1123 with the stack (VAX for computing args_printed, using
1124 stack slots instead of saved registers in backtraces,
1125 etc.).
1126
1127 Note that this code illegally combines
1128 main(argc) struct foo argc; { register struct foo argc; }
1129 but this case is considered pathological and causes a warning
1130 from a decent compiler. */
1131
1132 if (local_symbols
1133 && local_symbols->nsyms > 0
1134 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 {
1136 struct symbol *prev_sym;
1137
1138 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 {
1144 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1145 /* Use the type from the LOC_REGISTER; that is the type
1146 that is actually in that register. */
1147 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1148 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1149 sym = prev_sym;
1150 break;
1151 }
1152 }
1153 add_symbol_to_list (sym, &local_symbols);
1154 }
1155 else
1156 add_symbol_to_list (sym, &file_symbols);
1157 break;
1158
1159 case 'S':
1160 /* Static symbol at top level of file. */
1161 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1162 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1163 SYMBOL_VALUE_ADDRESS (sym) = valu;
1164 if (gdbarch_static_transform_name_p (gdbarch)
1165 && gdbarch_static_transform_name (gdbarch,
1166 SYMBOL_LINKAGE_NAME (sym))
1167 != SYMBOL_LINKAGE_NAME (sym))
1168 {
1169 struct bound_minimal_symbol msym;
1170
1171 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1172 NULL, objfile);
1173 if (msym.minsym != NULL)
1174 {
1175 const char *new_name = gdbarch_static_transform_name
1176 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1177
1178 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1179 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1180 }
1181 }
1182 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1183 add_symbol_to_list (sym, &file_symbols);
1184 break;
1185
1186 case 't':
1187 /* In Ada, there is no distinction between typedef and non-typedef;
1188 any type declaration implicitly has the equivalent of a typedef,
1189 and thus 't' is in fact equivalent to 'Tt'.
1190
1191 Therefore, for Ada units, we check the character immediately
1192 before the 't', and if we do not find a 'T', then make sure to
1193 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1194 will be stored in the VAR_DOMAIN). If the symbol was indeed
1195 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1196 elsewhere, so we don't need to take care of that.
1197
1198 This is important to do, because of forward references:
1199 The cleanup of undefined types stored in undef_types only uses
1200 STRUCT_DOMAIN symbols to perform the replacement. */
1201 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1202
1203 /* Typedef */
1204 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1205
1206 /* For a nameless type, we don't want a create a symbol, thus we
1207 did not use `sym'. Return without further processing. */
1208 if (nameless)
1209 return NULL;
1210
1211 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1212 SYMBOL_VALUE (sym) = valu;
1213 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1214 /* C++ vagaries: we may have a type which is derived from
1215 a base type which did not have its name defined when the
1216 derived class was output. We fill in the derived class's
1217 base part member's name here in that case. */
1218 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1219 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1220 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1221 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1222 {
1223 int j;
1224
1225 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1226 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1227 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1228 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1229 }
1230
1231 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1232 {
1233 /* gcc-2.6 or later (when using -fvtable-thunks)
1234 emits a unique named type for a vtable entry.
1235 Some gdb code depends on that specific name. */
1236 extern const char vtbl_ptr_name[];
1237
1238 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1239 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1241 {
1242 /* If we are giving a name to a type such as "pointer to
1243 foo" or "function returning foo", we better not set
1244 the TYPE_NAME. If the program contains "typedef char
1245 *caddr_t;", we don't want all variables of type char
1246 * to print as caddr_t. This is not just a
1247 consequence of GDB's type management; PCC and GCC (at
1248 least through version 2.4) both output variables of
1249 either type char * or caddr_t with the type number
1250 defined in the 't' symbol for caddr_t. If a future
1251 compiler cleans this up it GDB is not ready for it
1252 yet, but if it becomes ready we somehow need to
1253 disable this check (without breaking the PCC/GCC2.4
1254 case).
1255
1256 Sigh.
1257
1258 Fortunately, this check seems not to be necessary
1259 for anything except pointers or functions. */
1260 /* ezannoni: 2000-10-26. This seems to apply for
1261 versions of gcc older than 2.8. This was the original
1262 problem: with the following code gdb would tell that
1263 the type for name1 is caddr_t, and func is char().
1264
1265 typedef char *caddr_t;
1266 char *name2;
1267 struct x
1268 {
1269 char *name1;
1270 } xx;
1271 char *func()
1272 {
1273 }
1274 main () {}
1275 */
1276
1277 /* Pascal accepts names for pointer types. */
1278 if (current_subfile->language == language_pascal)
1279 {
1280 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1281 }
1282 }
1283 else
1284 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1285 }
1286
1287 add_symbol_to_list (sym, &file_symbols);
1288
1289 if (synonym)
1290 {
1291 /* Create the STRUCT_DOMAIN clone. */
1292 struct symbol *struct_sym = allocate_symbol (objfile);
1293
1294 *struct_sym = *sym;
1295 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1296 SYMBOL_VALUE (struct_sym) = valu;
1297 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1298 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1299 TYPE_NAME (SYMBOL_TYPE (sym))
1300 = obconcat (&objfile->objfile_obstack,
1301 SYMBOL_LINKAGE_NAME (sym),
1302 (char *) NULL);
1303 add_symbol_to_list (struct_sym, &file_symbols);
1304 }
1305
1306 break;
1307
1308 case 'T':
1309 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1310 by 't' which means we are typedef'ing it as well. */
1311 synonym = *p == 't';
1312
1313 if (synonym)
1314 p++;
1315
1316 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1317
1318 /* For a nameless type, we don't want a create a symbol, thus we
1319 did not use `sym'. Return without further processing. */
1320 if (nameless)
1321 return NULL;
1322
1323 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (sym) = valu;
1325 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1326 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1330 (char *) NULL);
1331 add_symbol_to_list (sym, &file_symbols);
1332
1333 if (synonym)
1334 {
1335 /* Clone the sym and then modify it. */
1336 struct symbol *typedef_sym = allocate_symbol (objfile);
1337
1338 *typedef_sym = *sym;
1339 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1340 SYMBOL_VALUE (typedef_sym) = valu;
1341 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1342 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1343 TYPE_NAME (SYMBOL_TYPE (sym))
1344 = obconcat (&objfile->objfile_obstack,
1345 SYMBOL_LINKAGE_NAME (sym),
1346 (char *) NULL);
1347 add_symbol_to_list (typedef_sym, &file_symbols);
1348 }
1349 break;
1350
1351 case 'V':
1352 /* Static symbol of local scope. */
1353 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1354 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1355 SYMBOL_VALUE_ADDRESS (sym) = valu;
1356 if (gdbarch_static_transform_name_p (gdbarch)
1357 && gdbarch_static_transform_name (gdbarch,
1358 SYMBOL_LINKAGE_NAME (sym))
1359 != SYMBOL_LINKAGE_NAME (sym))
1360 {
1361 struct bound_minimal_symbol msym;
1362
1363 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1364 NULL, objfile);
1365 if (msym.minsym != NULL)
1366 {
1367 const char *new_name = gdbarch_static_transform_name
1368 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1369
1370 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1371 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1372 }
1373 }
1374 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1375 add_symbol_to_list (sym, &local_symbols);
1376 break;
1377
1378 case 'v':
1379 /* Reference parameter */
1380 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1381 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1382 SYMBOL_IS_ARGUMENT (sym) = 1;
1383 SYMBOL_VALUE (sym) = valu;
1384 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1385 add_symbol_to_list (sym, &local_symbols);
1386 break;
1387
1388 case 'a':
1389 /* Reference parameter which is in a register. */
1390 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1391 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1392 SYMBOL_IS_ARGUMENT (sym) = 1;
1393 SYMBOL_VALUE (sym) = valu;
1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'X':
1399 /* This is used by Sun FORTRAN for "function result value".
1400 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1401 that Pascal uses it too, but when I tried it Pascal used
1402 "x:3" (local symbol) instead. */
1403 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1404 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &local_symbols);
1408 break;
1409
1410 default:
1411 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1413 SYMBOL_VALUE (sym) = 0;
1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1415 add_symbol_to_list (sym, &file_symbols);
1416 break;
1417 }
1418
1419 /* Some systems pass variables of certain types by reference instead
1420 of by value, i.e. they will pass the address of a structure (in a
1421 register or on the stack) instead of the structure itself. */
1422
1423 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1424 && SYMBOL_IS_ARGUMENT (sym))
1425 {
1426 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1427 variables passed in a register). */
1428 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1429 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1430 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1431 and subsequent arguments on SPARC, for example). */
1432 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1434 }
1435
1436 return sym;
1437 }
1438
1439 /* Skip rest of this symbol and return an error type.
1440
1441 General notes on error recovery: error_type always skips to the
1442 end of the symbol (modulo cretinous dbx symbol name continuation).
1443 Thus code like this:
1444
1445 if (*(*pp)++ != ';')
1446 return error_type (pp, objfile);
1447
1448 is wrong because if *pp starts out pointing at '\0' (typically as the
1449 result of an earlier error), it will be incremented to point to the
1450 start of the next symbol, which might produce strange results, at least
1451 if you run off the end of the string table. Instead use
1452
1453 if (**pp != ';')
1454 return error_type (pp, objfile);
1455 ++*pp;
1456
1457 or
1458
1459 if (**pp != ';')
1460 foo = error_type (pp, objfile);
1461 else
1462 ++*pp;
1463
1464 And in case it isn't obvious, the point of all this hair is so the compiler
1465 can define new types and new syntaxes, and old versions of the
1466 debugger will be able to read the new symbol tables. */
1467
1468 static struct type *
1469 error_type (char **pp, struct objfile *objfile)
1470 {
1471 complaint (&symfile_complaints,
1472 _("couldn't parse type; debugger out of date?"));
1473 while (1)
1474 {
1475 /* Skip to end of symbol. */
1476 while (**pp != '\0')
1477 {
1478 (*pp)++;
1479 }
1480
1481 /* Check for and handle cretinous dbx symbol name continuation! */
1482 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1483 {
1484 *pp = next_symbol_text (objfile);
1485 }
1486 else
1487 {
1488 break;
1489 }
1490 }
1491 return objfile_type (objfile)->builtin_error;
1492 }
1493 \f
1494
1495 /* Read type information or a type definition; return the type. Even
1496 though this routine accepts either type information or a type
1497 definition, the distinction is relevant--some parts of stabsread.c
1498 assume that type information starts with a digit, '-', or '(' in
1499 deciding whether to call read_type. */
1500
1501 static struct type *
1502 read_type (char **pp, struct objfile *objfile)
1503 {
1504 struct type *type = 0;
1505 struct type *type1;
1506 int typenums[2];
1507 char type_descriptor;
1508
1509 /* Size in bits of type if specified by a type attribute, or -1 if
1510 there is no size attribute. */
1511 int type_size = -1;
1512
1513 /* Used to distinguish string and bitstring from char-array and set. */
1514 int is_string = 0;
1515
1516 /* Used to distinguish vector from array. */
1517 int is_vector = 0;
1518
1519 /* Read type number if present. The type number may be omitted.
1520 for instance in a two-dimensional array declared with type
1521 "ar1;1;10;ar1;1;10;4". */
1522 if ((**pp >= '0' && **pp <= '9')
1523 || **pp == '('
1524 || **pp == '-')
1525 {
1526 if (read_type_number (pp, typenums) != 0)
1527 return error_type (pp, objfile);
1528
1529 if (**pp != '=')
1530 {
1531 /* Type is not being defined here. Either it already
1532 exists, or this is a forward reference to it.
1533 dbx_alloc_type handles both cases. */
1534 type = dbx_alloc_type (typenums, objfile);
1535
1536 /* If this is a forward reference, arrange to complain if it
1537 doesn't get patched up by the time we're done
1538 reading. */
1539 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1540 add_undefined_type (type, typenums);
1541
1542 return type;
1543 }
1544
1545 /* Type is being defined here. */
1546 /* Skip the '='.
1547 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1548 (*pp) += 2;
1549 }
1550 else
1551 {
1552 /* 'typenums=' not present, type is anonymous. Read and return
1553 the definition, but don't put it in the type vector. */
1554 typenums[0] = typenums[1] = -1;
1555 (*pp)++;
1556 }
1557
1558 again:
1559 type_descriptor = (*pp)[-1];
1560 switch (type_descriptor)
1561 {
1562 case 'x':
1563 {
1564 enum type_code code;
1565
1566 /* Used to index through file_symbols. */
1567 struct pending *ppt;
1568 int i;
1569
1570 /* Name including "struct", etc. */
1571 char *type_name;
1572
1573 {
1574 char *from, *to, *p, *q1, *q2;
1575
1576 /* Set the type code according to the following letter. */
1577 switch ((*pp)[0])
1578 {
1579 case 's':
1580 code = TYPE_CODE_STRUCT;
1581 break;
1582 case 'u':
1583 code = TYPE_CODE_UNION;
1584 break;
1585 case 'e':
1586 code = TYPE_CODE_ENUM;
1587 break;
1588 default:
1589 {
1590 /* Complain and keep going, so compilers can invent new
1591 cross-reference types. */
1592 complaint (&symfile_complaints,
1593 _("Unrecognized cross-reference type `%c'"),
1594 (*pp)[0]);
1595 code = TYPE_CODE_STRUCT;
1596 break;
1597 }
1598 }
1599
1600 q1 = strchr (*pp, '<');
1601 p = strchr (*pp, ':');
1602 if (p == NULL)
1603 return error_type (pp, objfile);
1604 if (q1 && p > q1 && p[1] == ':')
1605 {
1606 int nesting_level = 0;
1607
1608 for (q2 = q1; *q2; q2++)
1609 {
1610 if (*q2 == '<')
1611 nesting_level++;
1612 else if (*q2 == '>')
1613 nesting_level--;
1614 else if (*q2 == ':' && nesting_level == 0)
1615 break;
1616 }
1617 p = q2;
1618 if (*p != ':')
1619 return error_type (pp, objfile);
1620 }
1621 type_name = NULL;
1622 if (current_subfile->language == language_cplus)
1623 {
1624 char *new_name, *name = alloca (p - *pp + 1);
1625
1626 memcpy (name, *pp, p - *pp);
1627 name[p - *pp] = '\0';
1628 new_name = cp_canonicalize_string (name);
1629 if (new_name != NULL)
1630 {
1631 type_name = obstack_copy0 (&objfile->objfile_obstack,
1632 new_name, strlen (new_name));
1633 xfree (new_name);
1634 }
1635 }
1636 if (type_name == NULL)
1637 {
1638 to = type_name = (char *)
1639 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1640
1641 /* Copy the name. */
1642 from = *pp + 1;
1643 while (from < p)
1644 *to++ = *from++;
1645 *to = '\0';
1646 }
1647
1648 /* Set the pointer ahead of the name which we just read, and
1649 the colon. */
1650 *pp = p + 1;
1651 }
1652
1653 /* If this type has already been declared, then reuse the same
1654 type, rather than allocating a new one. This saves some
1655 memory. */
1656
1657 for (ppt = file_symbols; ppt; ppt = ppt->next)
1658 for (i = 0; i < ppt->nsyms; i++)
1659 {
1660 struct symbol *sym = ppt->symbol[i];
1661
1662 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1663 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1664 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1665 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1666 {
1667 obstack_free (&objfile->objfile_obstack, type_name);
1668 type = SYMBOL_TYPE (sym);
1669 if (typenums[0] != -1)
1670 *dbx_lookup_type (typenums, objfile) = type;
1671 return type;
1672 }
1673 }
1674
1675 /* Didn't find the type to which this refers, so we must
1676 be dealing with a forward reference. Allocate a type
1677 structure for it, and keep track of it so we can
1678 fill in the rest of the fields when we get the full
1679 type. */
1680 type = dbx_alloc_type (typenums, objfile);
1681 TYPE_CODE (type) = code;
1682 TYPE_TAG_NAME (type) = type_name;
1683 INIT_CPLUS_SPECIFIC (type);
1684 TYPE_STUB (type) = 1;
1685
1686 add_undefined_type (type, typenums);
1687 return type;
1688 }
1689
1690 case '-': /* RS/6000 built-in type */
1691 case '0':
1692 case '1':
1693 case '2':
1694 case '3':
1695 case '4':
1696 case '5':
1697 case '6':
1698 case '7':
1699 case '8':
1700 case '9':
1701 case '(':
1702 (*pp)--;
1703
1704 /* We deal with something like t(1,2)=(3,4)=... which
1705 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1706
1707 /* Allocate and enter the typedef type first.
1708 This handles recursive types. */
1709 type = dbx_alloc_type (typenums, objfile);
1710 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1711 {
1712 struct type *xtype = read_type (pp, objfile);
1713
1714 if (type == xtype)
1715 {
1716 /* It's being defined as itself. That means it is "void". */
1717 TYPE_CODE (type) = TYPE_CODE_VOID;
1718 TYPE_LENGTH (type) = 1;
1719 }
1720 else if (type_size >= 0 || is_string)
1721 {
1722 /* This is the absolute wrong way to construct types. Every
1723 other debug format has found a way around this problem and
1724 the related problems with unnecessarily stubbed types;
1725 someone motivated should attempt to clean up the issue
1726 here as well. Once a type pointed to has been created it
1727 should not be modified.
1728
1729 Well, it's not *absolutely* wrong. Constructing recursive
1730 types (trees, linked lists) necessarily entails modifying
1731 types after creating them. Constructing any loop structure
1732 entails side effects. The Dwarf 2 reader does handle this
1733 more gracefully (it never constructs more than once
1734 instance of a type object, so it doesn't have to copy type
1735 objects wholesale), but it still mutates type objects after
1736 other folks have references to them.
1737
1738 Keep in mind that this circularity/mutation issue shows up
1739 at the source language level, too: C's "incomplete types",
1740 for example. So the proper cleanup, I think, would be to
1741 limit GDB's type smashing to match exactly those required
1742 by the source language. So GDB could have a
1743 "complete_this_type" function, but never create unnecessary
1744 copies of a type otherwise. */
1745 replace_type (type, xtype);
1746 TYPE_NAME (type) = NULL;
1747 TYPE_TAG_NAME (type) = NULL;
1748 }
1749 else
1750 {
1751 TYPE_TARGET_STUB (type) = 1;
1752 TYPE_TARGET_TYPE (type) = xtype;
1753 }
1754 }
1755 break;
1756
1757 /* In the following types, we must be sure to overwrite any existing
1758 type that the typenums refer to, rather than allocating a new one
1759 and making the typenums point to the new one. This is because there
1760 may already be pointers to the existing type (if it had been
1761 forward-referenced), and we must change it to a pointer, function,
1762 reference, or whatever, *in-place*. */
1763
1764 case '*': /* Pointer to another type */
1765 type1 = read_type (pp, objfile);
1766 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1767 break;
1768
1769 case '&': /* Reference to another type */
1770 type1 = read_type (pp, objfile);
1771 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1772 break;
1773
1774 case 'f': /* Function returning another type */
1775 type1 = read_type (pp, objfile);
1776 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1777 break;
1778
1779 case 'g': /* Prototyped function. (Sun) */
1780 {
1781 /* Unresolved questions:
1782
1783 - According to Sun's ``STABS Interface Manual'', for 'f'
1784 and 'F' symbol descriptors, a `0' in the argument type list
1785 indicates a varargs function. But it doesn't say how 'g'
1786 type descriptors represent that info. Someone with access
1787 to Sun's toolchain should try it out.
1788
1789 - According to the comment in define_symbol (search for
1790 `process_prototype_types:'), Sun emits integer arguments as
1791 types which ref themselves --- like `void' types. Do we
1792 have to deal with that here, too? Again, someone with
1793 access to Sun's toolchain should try it out and let us
1794 know. */
1795
1796 const char *type_start = (*pp) - 1;
1797 struct type *return_type = read_type (pp, objfile);
1798 struct type *func_type
1799 = make_function_type (return_type,
1800 dbx_lookup_type (typenums, objfile));
1801 struct type_list {
1802 struct type *type;
1803 struct type_list *next;
1804 } *arg_types = 0;
1805 int num_args = 0;
1806
1807 while (**pp && **pp != '#')
1808 {
1809 struct type *arg_type = read_type (pp, objfile);
1810 struct type_list *new = alloca (sizeof (*new));
1811 new->type = arg_type;
1812 new->next = arg_types;
1813 arg_types = new;
1814 num_args++;
1815 }
1816 if (**pp == '#')
1817 ++*pp;
1818 else
1819 {
1820 complaint (&symfile_complaints,
1821 _("Prototyped function type didn't "
1822 "end arguments with `#':\n%s"),
1823 type_start);
1824 }
1825
1826 /* If there is just one argument whose type is `void', then
1827 that's just an empty argument list. */
1828 if (arg_types
1829 && ! arg_types->next
1830 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1831 num_args = 0;
1832
1833 TYPE_FIELDS (func_type)
1834 = (struct field *) TYPE_ALLOC (func_type,
1835 num_args * sizeof (struct field));
1836 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1837 {
1838 int i;
1839 struct type_list *t;
1840
1841 /* We stuck each argument type onto the front of the list
1842 when we read it, so the list is reversed. Build the
1843 fields array right-to-left. */
1844 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1845 TYPE_FIELD_TYPE (func_type, i) = t->type;
1846 }
1847 TYPE_NFIELDS (func_type) = num_args;
1848 TYPE_PROTOTYPED (func_type) = 1;
1849
1850 type = func_type;
1851 break;
1852 }
1853
1854 case 'k': /* Const qualifier on some type (Sun) */
1855 type = read_type (pp, objfile);
1856 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1857 dbx_lookup_type (typenums, objfile));
1858 break;
1859
1860 case 'B': /* Volatile qual on some type (Sun) */
1861 type = read_type (pp, objfile);
1862 type = make_cv_type (TYPE_CONST (type), 1, type,
1863 dbx_lookup_type (typenums, objfile));
1864 break;
1865
1866 case '@':
1867 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1868 { /* Member (class & variable) type */
1869 /* FIXME -- we should be doing smash_to_XXX types here. */
1870
1871 struct type *domain = read_type (pp, objfile);
1872 struct type *memtype;
1873
1874 if (**pp != ',')
1875 /* Invalid member type data format. */
1876 return error_type (pp, objfile);
1877 ++*pp;
1878
1879 memtype = read_type (pp, objfile);
1880 type = dbx_alloc_type (typenums, objfile);
1881 smash_to_memberptr_type (type, domain, memtype);
1882 }
1883 else
1884 /* type attribute */
1885 {
1886 char *attr = *pp;
1887
1888 /* Skip to the semicolon. */
1889 while (**pp != ';' && **pp != '\0')
1890 ++(*pp);
1891 if (**pp == '\0')
1892 return error_type (pp, objfile);
1893 else
1894 ++ * pp; /* Skip the semicolon. */
1895
1896 switch (*attr)
1897 {
1898 case 's': /* Size attribute */
1899 type_size = atoi (attr + 1);
1900 if (type_size <= 0)
1901 type_size = -1;
1902 break;
1903
1904 case 'S': /* String attribute */
1905 /* FIXME: check to see if following type is array? */
1906 is_string = 1;
1907 break;
1908
1909 case 'V': /* Vector attribute */
1910 /* FIXME: check to see if following type is array? */
1911 is_vector = 1;
1912 break;
1913
1914 default:
1915 /* Ignore unrecognized type attributes, so future compilers
1916 can invent new ones. */
1917 break;
1918 }
1919 ++*pp;
1920 goto again;
1921 }
1922 break;
1923
1924 case '#': /* Method (class & fn) type */
1925 if ((*pp)[0] == '#')
1926 {
1927 /* We'll get the parameter types from the name. */
1928 struct type *return_type;
1929
1930 (*pp)++;
1931 return_type = read_type (pp, objfile);
1932 if (*(*pp)++ != ';')
1933 complaint (&symfile_complaints,
1934 _("invalid (minimal) member type "
1935 "data format at symtab pos %d."),
1936 symnum);
1937 type = allocate_stub_method (return_type);
1938 if (typenums[0] != -1)
1939 *dbx_lookup_type (typenums, objfile) = type;
1940 }
1941 else
1942 {
1943 struct type *domain = read_type (pp, objfile);
1944 struct type *return_type;
1945 struct field *args;
1946 int nargs, varargs;
1947
1948 if (**pp != ',')
1949 /* Invalid member type data format. */
1950 return error_type (pp, objfile);
1951 else
1952 ++(*pp);
1953
1954 return_type = read_type (pp, objfile);
1955 args = read_args (pp, ';', objfile, &nargs, &varargs);
1956 if (args == NULL)
1957 return error_type (pp, objfile);
1958 type = dbx_alloc_type (typenums, objfile);
1959 smash_to_method_type (type, domain, return_type, args,
1960 nargs, varargs);
1961 }
1962 break;
1963
1964 case 'r': /* Range type */
1965 type = read_range_type (pp, typenums, type_size, objfile);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1968 break;
1969
1970 case 'b':
1971 {
1972 /* Sun ACC builtin int type */
1973 type = read_sun_builtin_type (pp, typenums, objfile);
1974 if (typenums[0] != -1)
1975 *dbx_lookup_type (typenums, objfile) = type;
1976 }
1977 break;
1978
1979 case 'R': /* Sun ACC builtin float type */
1980 type = read_sun_floating_type (pp, typenums, objfile);
1981 if (typenums[0] != -1)
1982 *dbx_lookup_type (typenums, objfile) = type;
1983 break;
1984
1985 case 'e': /* Enumeration type */
1986 type = dbx_alloc_type (typenums, objfile);
1987 type = read_enum_type (pp, type, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1990 break;
1991
1992 case 's': /* Struct type */
1993 case 'u': /* Union type */
1994 {
1995 enum type_code type_code = TYPE_CODE_UNDEF;
1996 type = dbx_alloc_type (typenums, objfile);
1997 switch (type_descriptor)
1998 {
1999 case 's':
2000 type_code = TYPE_CODE_STRUCT;
2001 break;
2002 case 'u':
2003 type_code = TYPE_CODE_UNION;
2004 break;
2005 }
2006 type = read_struct_type (pp, type, type_code, objfile);
2007 break;
2008 }
2009
2010 case 'a': /* Array type */
2011 if (**pp != 'r')
2012 return error_type (pp, objfile);
2013 ++*pp;
2014
2015 type = dbx_alloc_type (typenums, objfile);
2016 type = read_array_type (pp, type, objfile);
2017 if (is_string)
2018 TYPE_CODE (type) = TYPE_CODE_STRING;
2019 if (is_vector)
2020 make_vector_type (type);
2021 break;
2022
2023 case 'S': /* Set type */
2024 type1 = read_type (pp, objfile);
2025 type = create_set_type ((struct type *) NULL, type1);
2026 if (typenums[0] != -1)
2027 *dbx_lookup_type (typenums, objfile) = type;
2028 break;
2029
2030 default:
2031 --*pp; /* Go back to the symbol in error. */
2032 /* Particularly important if it was \0! */
2033 return error_type (pp, objfile);
2034 }
2035
2036 if (type == 0)
2037 {
2038 warning (_("GDB internal error, type is NULL in stabsread.c."));
2039 return error_type (pp, objfile);
2040 }
2041
2042 /* Size specified in a type attribute overrides any other size. */
2043 if (type_size != -1)
2044 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2045
2046 return type;
2047 }
2048 \f
2049 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2050 Return the proper type node for a given builtin type number. */
2051
2052 static const struct objfile_data *rs6000_builtin_type_data;
2053
2054 static struct type *
2055 rs6000_builtin_type (int typenum, struct objfile *objfile)
2056 {
2057 struct type **negative_types = objfile_data (objfile,
2058 rs6000_builtin_type_data);
2059
2060 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2061 #define NUMBER_RECOGNIZED 34
2062 struct type *rettype = NULL;
2063
2064 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2065 {
2066 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2067 return objfile_type (objfile)->builtin_error;
2068 }
2069
2070 if (!negative_types)
2071 {
2072 /* This includes an empty slot for type number -0. */
2073 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2074 NUMBER_RECOGNIZED + 1, struct type *);
2075 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2076 }
2077
2078 if (negative_types[-typenum] != NULL)
2079 return negative_types[-typenum];
2080
2081 #if TARGET_CHAR_BIT != 8
2082 #error This code wrong for TARGET_CHAR_BIT not 8
2083 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2084 that if that ever becomes not true, the correct fix will be to
2085 make the size in the struct type to be in bits, not in units of
2086 TARGET_CHAR_BIT. */
2087 #endif
2088
2089 switch (-typenum)
2090 {
2091 case 1:
2092 /* The size of this and all the other types are fixed, defined
2093 by the debugging format. If there is a type called "int" which
2094 is other than 32 bits, then it should use a new negative type
2095 number (or avoid negative type numbers for that case).
2096 See stabs.texinfo. */
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2098 break;
2099 case 2:
2100 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2101 break;
2102 case 3:
2103 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2104 break;
2105 case 4:
2106 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2107 break;
2108 case 5:
2109 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2110 "unsigned char", objfile);
2111 break;
2112 case 6:
2113 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2114 break;
2115 case 7:
2116 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2117 "unsigned short", objfile);
2118 break;
2119 case 8:
2120 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2121 "unsigned int", objfile);
2122 break;
2123 case 9:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 "unsigned", objfile);
2126 break;
2127 case 10:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 "unsigned long", objfile);
2130 break;
2131 case 11:
2132 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
2136 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2137 break;
2138 case 13:
2139 /* IEEE double precision (64 bit). */
2140 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2141 break;
2142 case 14:
2143 /* This is an IEEE double on the RS/6000, and different machines with
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
2146 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2147 break;
2148 case 15:
2149 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2150 break;
2151 case 16:
2152 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2153 "boolean", objfile);
2154 break;
2155 case 17:
2156 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2157 break;
2158 case 18:
2159 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2160 break;
2161 case 19:
2162 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2163 break;
2164 case 20:
2165 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2166 "character", objfile);
2167 break;
2168 case 21:
2169 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2170 "logical*1", objfile);
2171 break;
2172 case 22:
2173 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2174 "logical*2", objfile);
2175 break;
2176 case 23:
2177 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2178 "logical*4", objfile);
2179 break;
2180 case 24:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 "logical", objfile);
2183 break;
2184 case 25:
2185 /* Complex type consisting of two IEEE single precision values. */
2186 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2187 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2188 objfile);
2189 break;
2190 case 26:
2191 /* Complex type consisting of two IEEE double precision values. */
2192 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2193 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2194 objfile);
2195 break;
2196 case 27:
2197 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2198 break;
2199 case 28:
2200 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2201 break;
2202 case 29:
2203 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2204 break;
2205 case 30:
2206 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2207 break;
2208 case 31:
2209 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2210 break;
2211 case 32:
2212 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2213 "unsigned long long", objfile);
2214 break;
2215 case 33:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 "logical*8", objfile);
2218 break;
2219 case 34:
2220 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2221 break;
2222 }
2223 negative_types[-typenum] = rettype;
2224 return rettype;
2225 }
2226 \f
2227 /* This page contains subroutines of read_type. */
2228
2229 /* Wrapper around method_name_from_physname to flag a complaint
2230 if there is an error. */
2231
2232 static char *
2233 stabs_method_name_from_physname (const char *physname)
2234 {
2235 char *method_name;
2236
2237 method_name = method_name_from_physname (physname);
2238
2239 if (method_name == NULL)
2240 {
2241 complaint (&symfile_complaints,
2242 _("Method has bad physname %s\n"), physname);
2243 return NULL;
2244 }
2245
2246 return method_name;
2247 }
2248
2249 /* Read member function stabs info for C++ classes. The form of each member
2250 function data is:
2251
2252 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2253
2254 An example with two member functions is:
2255
2256 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2257
2258 For the case of overloaded operators, the format is op$::*.funcs, where
2259 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2260 name (such as `+=') and `.' marks the end of the operator name.
2261
2262 Returns 1 for success, 0 for failure. */
2263
2264 static int
2265 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2266 struct objfile *objfile)
2267 {
2268 int nfn_fields = 0;
2269 int length = 0;
2270 int i;
2271 struct next_fnfield
2272 {
2273 struct next_fnfield *next;
2274 struct fn_field fn_field;
2275 }
2276 *sublist;
2277 struct type *look_ahead_type;
2278 struct next_fnfieldlist *new_fnlist;
2279 struct next_fnfield *new_sublist;
2280 char *main_fn_name;
2281 char *p;
2282
2283 /* Process each list until we find something that is not a member function
2284 or find the end of the functions. */
2285
2286 while (**pp != ';')
2287 {
2288 /* We should be positioned at the start of the function name.
2289 Scan forward to find the first ':' and if it is not the
2290 first of a "::" delimiter, then this is not a member function. */
2291 p = *pp;
2292 while (*p != ':')
2293 {
2294 p++;
2295 }
2296 if (p[1] != ':')
2297 {
2298 break;
2299 }
2300
2301 sublist = NULL;
2302 look_ahead_type = NULL;
2303 length = 0;
2304
2305 new_fnlist = (struct next_fnfieldlist *)
2306 xmalloc (sizeof (struct next_fnfieldlist));
2307 make_cleanup (xfree, new_fnlist);
2308 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2309
2310 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2311 {
2312 /* This is a completely wierd case. In order to stuff in the
2313 names that might contain colons (the usual name delimiter),
2314 Mike Tiemann defined a different name format which is
2315 signalled if the identifier is "op$". In that case, the
2316 format is "op$::XXXX." where XXXX is the name. This is
2317 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2318 /* This lets the user type "break operator+".
2319 We could just put in "+" as the name, but that wouldn't
2320 work for "*". */
2321 static char opname[32] = "op$";
2322 char *o = opname + 3;
2323
2324 /* Skip past '::'. */
2325 *pp = p + 2;
2326
2327 STABS_CONTINUE (pp, objfile);
2328 p = *pp;
2329 while (*p != '.')
2330 {
2331 *o++ = *p++;
2332 }
2333 main_fn_name = savestring (opname, o - opname);
2334 /* Skip past '.' */
2335 *pp = p + 1;
2336 }
2337 else
2338 {
2339 main_fn_name = savestring (*pp, p - *pp);
2340 /* Skip past '::'. */
2341 *pp = p + 2;
2342 }
2343 new_fnlist->fn_fieldlist.name = main_fn_name;
2344
2345 do
2346 {
2347 new_sublist =
2348 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2349 make_cleanup (xfree, new_sublist);
2350 memset (new_sublist, 0, sizeof (struct next_fnfield));
2351
2352 /* Check for and handle cretinous dbx symbol name continuation! */
2353 if (look_ahead_type == NULL)
2354 {
2355 /* Normal case. */
2356 STABS_CONTINUE (pp, objfile);
2357
2358 new_sublist->fn_field.type = read_type (pp, objfile);
2359 if (**pp != ':')
2360 {
2361 /* Invalid symtab info for member function. */
2362 return 0;
2363 }
2364 }
2365 else
2366 {
2367 /* g++ version 1 kludge */
2368 new_sublist->fn_field.type = look_ahead_type;
2369 look_ahead_type = NULL;
2370 }
2371
2372 (*pp)++;
2373 p = *pp;
2374 while (*p != ';')
2375 {
2376 p++;
2377 }
2378
2379 /* If this is just a stub, then we don't have the real name here. */
2380
2381 if (TYPE_STUB (new_sublist->fn_field.type))
2382 {
2383 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2384 TYPE_SELF_TYPE (new_sublist->fn_field.type) = type;
2385 new_sublist->fn_field.is_stub = 1;
2386 }
2387 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2388 *pp = p + 1;
2389
2390 /* Set this member function's visibility fields. */
2391 switch (*(*pp)++)
2392 {
2393 case VISIBILITY_PRIVATE:
2394 new_sublist->fn_field.is_private = 1;
2395 break;
2396 case VISIBILITY_PROTECTED:
2397 new_sublist->fn_field.is_protected = 1;
2398 break;
2399 }
2400
2401 STABS_CONTINUE (pp, objfile);
2402 switch (**pp)
2403 {
2404 case 'A': /* Normal functions. */
2405 new_sublist->fn_field.is_const = 0;
2406 new_sublist->fn_field.is_volatile = 0;
2407 (*pp)++;
2408 break;
2409 case 'B': /* `const' member functions. */
2410 new_sublist->fn_field.is_const = 1;
2411 new_sublist->fn_field.is_volatile = 0;
2412 (*pp)++;
2413 break;
2414 case 'C': /* `volatile' member function. */
2415 new_sublist->fn_field.is_const = 0;
2416 new_sublist->fn_field.is_volatile = 1;
2417 (*pp)++;
2418 break;
2419 case 'D': /* `const volatile' member function. */
2420 new_sublist->fn_field.is_const = 1;
2421 new_sublist->fn_field.is_volatile = 1;
2422 (*pp)++;
2423 break;
2424 case '*': /* File compiled with g++ version 1 --
2425 no info. */
2426 case '?':
2427 case '.':
2428 break;
2429 default:
2430 complaint (&symfile_complaints,
2431 _("const/volatile indicator missing, got '%c'"),
2432 **pp);
2433 break;
2434 }
2435
2436 switch (*(*pp)++)
2437 {
2438 case '*':
2439 {
2440 int nbits;
2441 /* virtual member function, followed by index.
2442 The sign bit is set to distinguish pointers-to-methods
2443 from virtual function indicies. Since the array is
2444 in words, the quantity must be shifted left by 1
2445 on 16 bit machine, and by 2 on 32 bit machine, forcing
2446 the sign bit out, and usable as a valid index into
2447 the array. Remove the sign bit here. */
2448 new_sublist->fn_field.voffset =
2449 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2450 if (nbits != 0)
2451 return 0;
2452
2453 STABS_CONTINUE (pp, objfile);
2454 if (**pp == ';' || **pp == '\0')
2455 {
2456 /* Must be g++ version 1. */
2457 new_sublist->fn_field.fcontext = 0;
2458 }
2459 else
2460 {
2461 /* Figure out from whence this virtual function came.
2462 It may belong to virtual function table of
2463 one of its baseclasses. */
2464 look_ahead_type = read_type (pp, objfile);
2465 if (**pp == ':')
2466 {
2467 /* g++ version 1 overloaded methods. */
2468 }
2469 else
2470 {
2471 new_sublist->fn_field.fcontext = look_ahead_type;
2472 if (**pp != ';')
2473 {
2474 return 0;
2475 }
2476 else
2477 {
2478 ++*pp;
2479 }
2480 look_ahead_type = NULL;
2481 }
2482 }
2483 break;
2484 }
2485 case '?':
2486 /* static member function. */
2487 {
2488 int slen = strlen (main_fn_name);
2489
2490 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2491
2492 /* For static member functions, we can't tell if they
2493 are stubbed, as they are put out as functions, and not as
2494 methods.
2495 GCC v2 emits the fully mangled name if
2496 dbxout.c:flag_minimal_debug is not set, so we have to
2497 detect a fully mangled physname here and set is_stub
2498 accordingly. Fully mangled physnames in v2 start with
2499 the member function name, followed by two underscores.
2500 GCC v3 currently always emits stubbed member functions,
2501 but with fully mangled physnames, which start with _Z. */
2502 if (!(strncmp (new_sublist->fn_field.physname,
2503 main_fn_name, slen) == 0
2504 && new_sublist->fn_field.physname[slen] == '_'
2505 && new_sublist->fn_field.physname[slen + 1] == '_'))
2506 {
2507 new_sublist->fn_field.is_stub = 1;
2508 }
2509 break;
2510 }
2511
2512 default:
2513 /* error */
2514 complaint (&symfile_complaints,
2515 _("member function type missing, got '%c'"),
2516 (*pp)[-1]);
2517 /* Fall through into normal member function. */
2518
2519 case '.':
2520 /* normal member function. */
2521 new_sublist->fn_field.voffset = 0;
2522 new_sublist->fn_field.fcontext = 0;
2523 break;
2524 }
2525
2526 new_sublist->next = sublist;
2527 sublist = new_sublist;
2528 length++;
2529 STABS_CONTINUE (pp, objfile);
2530 }
2531 while (**pp != ';' && **pp != '\0');
2532
2533 (*pp)++;
2534 STABS_CONTINUE (pp, objfile);
2535
2536 /* Skip GCC 3.X member functions which are duplicates of the callable
2537 constructor/destructor. */
2538 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2539 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2540 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2541 {
2542 xfree (main_fn_name);
2543 }
2544 else
2545 {
2546 int has_stub = 0;
2547 int has_destructor = 0, has_other = 0;
2548 int is_v3 = 0;
2549 struct next_fnfield *tmp_sublist;
2550
2551 /* Various versions of GCC emit various mostly-useless
2552 strings in the name field for special member functions.
2553
2554 For stub methods, we need to defer correcting the name
2555 until we are ready to unstub the method, because the current
2556 name string is used by gdb_mangle_name. The only stub methods
2557 of concern here are GNU v2 operators; other methods have their
2558 names correct (see caveat below).
2559
2560 For non-stub methods, in GNU v3, we have a complete physname.
2561 Therefore we can safely correct the name now. This primarily
2562 affects constructors and destructors, whose name will be
2563 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2564 operators will also have incorrect names; for instance,
2565 "operator int" will be named "operator i" (i.e. the type is
2566 mangled).
2567
2568 For non-stub methods in GNU v2, we have no easy way to
2569 know if we have a complete physname or not. For most
2570 methods the result depends on the platform (if CPLUS_MARKER
2571 can be `$' or `.', it will use minimal debug information, or
2572 otherwise the full physname will be included).
2573
2574 Rather than dealing with this, we take a different approach.
2575 For v3 mangled names, we can use the full physname; for v2,
2576 we use cplus_demangle_opname (which is actually v2 specific),
2577 because the only interesting names are all operators - once again
2578 barring the caveat below. Skip this process if any method in the
2579 group is a stub, to prevent our fouling up the workings of
2580 gdb_mangle_name.
2581
2582 The caveat: GCC 2.95.x (and earlier?) put constructors and
2583 destructors in the same method group. We need to split this
2584 into two groups, because they should have different names.
2585 So for each method group we check whether it contains both
2586 routines whose physname appears to be a destructor (the physnames
2587 for and destructors are always provided, due to quirks in v2
2588 mangling) and routines whose physname does not appear to be a
2589 destructor. If so then we break up the list into two halves.
2590 Even if the constructors and destructors aren't in the same group
2591 the destructor will still lack the leading tilde, so that also
2592 needs to be fixed.
2593
2594 So, to summarize what we expect and handle here:
2595
2596 Given Given Real Real Action
2597 method name physname physname method name
2598
2599 __opi [none] __opi__3Foo operator int opname
2600 [now or later]
2601 Foo _._3Foo _._3Foo ~Foo separate and
2602 rename
2603 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2604 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2605 */
2606
2607 tmp_sublist = sublist;
2608 while (tmp_sublist != NULL)
2609 {
2610 if (tmp_sublist->fn_field.is_stub)
2611 has_stub = 1;
2612 if (tmp_sublist->fn_field.physname[0] == '_'
2613 && tmp_sublist->fn_field.physname[1] == 'Z')
2614 is_v3 = 1;
2615
2616 if (is_destructor_name (tmp_sublist->fn_field.physname))
2617 has_destructor++;
2618 else
2619 has_other++;
2620
2621 tmp_sublist = tmp_sublist->next;
2622 }
2623
2624 if (has_destructor && has_other)
2625 {
2626 struct next_fnfieldlist *destr_fnlist;
2627 struct next_fnfield *last_sublist;
2628
2629 /* Create a new fn_fieldlist for the destructors. */
2630
2631 destr_fnlist = (struct next_fnfieldlist *)
2632 xmalloc (sizeof (struct next_fnfieldlist));
2633 make_cleanup (xfree, destr_fnlist);
2634 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2635 destr_fnlist->fn_fieldlist.name
2636 = obconcat (&objfile->objfile_obstack, "~",
2637 new_fnlist->fn_fieldlist.name, (char *) NULL);
2638
2639 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2640 obstack_alloc (&objfile->objfile_obstack,
2641 sizeof (struct fn_field) * has_destructor);
2642 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2643 sizeof (struct fn_field) * has_destructor);
2644 tmp_sublist = sublist;
2645 last_sublist = NULL;
2646 i = 0;
2647 while (tmp_sublist != NULL)
2648 {
2649 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2650 {
2651 tmp_sublist = tmp_sublist->next;
2652 continue;
2653 }
2654
2655 destr_fnlist->fn_fieldlist.fn_fields[i++]
2656 = tmp_sublist->fn_field;
2657 if (last_sublist)
2658 last_sublist->next = tmp_sublist->next;
2659 else
2660 sublist = tmp_sublist->next;
2661 last_sublist = tmp_sublist;
2662 tmp_sublist = tmp_sublist->next;
2663 }
2664
2665 destr_fnlist->fn_fieldlist.length = has_destructor;
2666 destr_fnlist->next = fip->fnlist;
2667 fip->fnlist = destr_fnlist;
2668 nfn_fields++;
2669 length -= has_destructor;
2670 }
2671 else if (is_v3)
2672 {
2673 /* v3 mangling prevents the use of abbreviated physnames,
2674 so we can do this here. There are stubbed methods in v3
2675 only:
2676 - in -gstabs instead of -gstabs+
2677 - or for static methods, which are output as a function type
2678 instead of a method type. */
2679 char *new_method_name =
2680 stabs_method_name_from_physname (sublist->fn_field.physname);
2681
2682 if (new_method_name != NULL
2683 && strcmp (new_method_name,
2684 new_fnlist->fn_fieldlist.name) != 0)
2685 {
2686 new_fnlist->fn_fieldlist.name = new_method_name;
2687 xfree (main_fn_name);
2688 }
2689 else
2690 xfree (new_method_name);
2691 }
2692 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2693 {
2694 new_fnlist->fn_fieldlist.name =
2695 obconcat (&objfile->objfile_obstack,
2696 "~", main_fn_name, (char *)NULL);
2697 xfree (main_fn_name);
2698 }
2699 else if (!has_stub)
2700 {
2701 char dem_opname[256];
2702 int ret;
2703
2704 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2705 dem_opname, DMGL_ANSI);
2706 if (!ret)
2707 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2708 dem_opname, 0);
2709 if (ret)
2710 new_fnlist->fn_fieldlist.name
2711 = obstack_copy0 (&objfile->objfile_obstack,
2712 dem_opname, strlen (dem_opname));
2713 xfree (main_fn_name);
2714 }
2715
2716 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2717 obstack_alloc (&objfile->objfile_obstack,
2718 sizeof (struct fn_field) * length);
2719 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2720 sizeof (struct fn_field) * length);
2721 for (i = length; (i--, sublist); sublist = sublist->next)
2722 {
2723 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2724 }
2725
2726 new_fnlist->fn_fieldlist.length = length;
2727 new_fnlist->next = fip->fnlist;
2728 fip->fnlist = new_fnlist;
2729 nfn_fields++;
2730 }
2731 }
2732
2733 if (nfn_fields)
2734 {
2735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2736 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2737 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2738 memset (TYPE_FN_FIELDLISTS (type), 0,
2739 sizeof (struct fn_fieldlist) * nfn_fields);
2740 TYPE_NFN_FIELDS (type) = nfn_fields;
2741 }
2742
2743 return 1;
2744 }
2745
2746 /* Special GNU C++ name.
2747
2748 Returns 1 for success, 0 for failure. "failure" means that we can't
2749 keep parsing and it's time for error_type(). */
2750
2751 static int
2752 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2753 struct objfile *objfile)
2754 {
2755 char *p;
2756 const char *name;
2757 char cpp_abbrev;
2758 struct type *context;
2759
2760 p = *pp;
2761 if (*++p == 'v')
2762 {
2763 name = NULL;
2764 cpp_abbrev = *++p;
2765
2766 *pp = p + 1;
2767
2768 /* At this point, *pp points to something like "22:23=*22...",
2769 where the type number before the ':' is the "context" and
2770 everything after is a regular type definition. Lookup the
2771 type, find it's name, and construct the field name. */
2772
2773 context = read_type (pp, objfile);
2774
2775 switch (cpp_abbrev)
2776 {
2777 case 'f': /* $vf -- a virtual function table pointer */
2778 name = type_name_no_tag (context);
2779 if (name == NULL)
2780 {
2781 name = "";
2782 }
2783 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2784 vptr_name, name, (char *) NULL);
2785 break;
2786
2787 case 'b': /* $vb -- a virtual bsomethingorother */
2788 name = type_name_no_tag (context);
2789 if (name == NULL)
2790 {
2791 complaint (&symfile_complaints,
2792 _("C++ abbreviated type name "
2793 "unknown at symtab pos %d"),
2794 symnum);
2795 name = "FOO";
2796 }
2797 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2798 name, (char *) NULL);
2799 break;
2800
2801 default:
2802 invalid_cpp_abbrev_complaint (*pp);
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 "INVALID_CPLUSPLUS_ABBREV",
2805 (char *) NULL);
2806 break;
2807 }
2808
2809 /* At this point, *pp points to the ':'. Skip it and read the
2810 field type. */
2811
2812 p = ++(*pp);
2813 if (p[-1] != ':')
2814 {
2815 invalid_cpp_abbrev_complaint (*pp);
2816 return 0;
2817 }
2818 fip->list->field.type = read_type (pp, objfile);
2819 if (**pp == ',')
2820 (*pp)++; /* Skip the comma. */
2821 else
2822 return 0;
2823
2824 {
2825 int nbits;
2826
2827 SET_FIELD_BITPOS (fip->list->field,
2828 read_huge_number (pp, ';', &nbits, 0));
2829 if (nbits != 0)
2830 return 0;
2831 }
2832 /* This field is unpacked. */
2833 FIELD_BITSIZE (fip->list->field) = 0;
2834 fip->list->visibility = VISIBILITY_PRIVATE;
2835 }
2836 else
2837 {
2838 invalid_cpp_abbrev_complaint (*pp);
2839 /* We have no idea what syntax an unrecognized abbrev would have, so
2840 better return 0. If we returned 1, we would need to at least advance
2841 *pp to avoid an infinite loop. */
2842 return 0;
2843 }
2844 return 1;
2845 }
2846
2847 static void
2848 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2849 struct type *type, struct objfile *objfile)
2850 {
2851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2852
2853 fip->list->field.name =
2854 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2855 *pp = p + 1;
2856
2857 /* This means we have a visibility for a field coming. */
2858 if (**pp == '/')
2859 {
2860 (*pp)++;
2861 fip->list->visibility = *(*pp)++;
2862 }
2863 else
2864 {
2865 /* normal dbx-style format, no explicit visibility */
2866 fip->list->visibility = VISIBILITY_PUBLIC;
2867 }
2868
2869 fip->list->field.type = read_type (pp, objfile);
2870 if (**pp == ':')
2871 {
2872 p = ++(*pp);
2873 #if 0
2874 /* Possible future hook for nested types. */
2875 if (**pp == '!')
2876 {
2877 fip->list->field.bitpos = (long) -2; /* nested type */
2878 p = ++(*pp);
2879 }
2880 else
2881 ...;
2882 #endif
2883 while (*p != ';')
2884 {
2885 p++;
2886 }
2887 /* Static class member. */
2888 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2889 *pp = p + 1;
2890 return;
2891 }
2892 else if (**pp != ',')
2893 {
2894 /* Bad structure-type format. */
2895 stabs_general_complaint ("bad structure-type format");
2896 return;
2897 }
2898
2899 (*pp)++; /* Skip the comma. */
2900
2901 {
2902 int nbits;
2903
2904 SET_FIELD_BITPOS (fip->list->field,
2905 read_huge_number (pp, ',', &nbits, 0));
2906 if (nbits != 0)
2907 {
2908 stabs_general_complaint ("bad structure-type format");
2909 return;
2910 }
2911 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2912 if (nbits != 0)
2913 {
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917 }
2918
2919 if (FIELD_BITPOS (fip->list->field) == 0
2920 && FIELD_BITSIZE (fip->list->field) == 0)
2921 {
2922 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2923 it is a field which has been optimized out. The correct stab for
2924 this case is to use VISIBILITY_IGNORE, but that is a recent
2925 invention. (2) It is a 0-size array. For example
2926 union { int num; char str[0]; } foo. Printing _("<no value>" for
2927 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2928 will continue to work, and a 0-size array as a whole doesn't
2929 have any contents to print.
2930
2931 I suspect this probably could also happen with gcc -gstabs (not
2932 -gstabs+) for static fields, and perhaps other C++ extensions.
2933 Hopefully few people use -gstabs with gdb, since it is intended
2934 for dbx compatibility. */
2935
2936 /* Ignore this field. */
2937 fip->list->visibility = VISIBILITY_IGNORE;
2938 }
2939 else
2940 {
2941 /* Detect an unpacked field and mark it as such.
2942 dbx gives a bit size for all fields.
2943 Note that forward refs cannot be packed,
2944 and treat enums as if they had the width of ints. */
2945
2946 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2947
2948 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2949 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2950 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2951 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2952 {
2953 FIELD_BITSIZE (fip->list->field) = 0;
2954 }
2955 if ((FIELD_BITSIZE (fip->list->field)
2956 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2957 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2958 && FIELD_BITSIZE (fip->list->field)
2959 == gdbarch_int_bit (gdbarch))
2960 )
2961 &&
2962 FIELD_BITPOS (fip->list->field) % 8 == 0)
2963 {
2964 FIELD_BITSIZE (fip->list->field) = 0;
2965 }
2966 }
2967 }
2968
2969
2970 /* Read struct or class data fields. They have the form:
2971
2972 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2973
2974 At the end, we see a semicolon instead of a field.
2975
2976 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2977 a static field.
2978
2979 The optional VISIBILITY is one of:
2980
2981 '/0' (VISIBILITY_PRIVATE)
2982 '/1' (VISIBILITY_PROTECTED)
2983 '/2' (VISIBILITY_PUBLIC)
2984 '/9' (VISIBILITY_IGNORE)
2985
2986 or nothing, for C style fields with public visibility.
2987
2988 Returns 1 for success, 0 for failure. */
2989
2990 static int
2991 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2992 struct objfile *objfile)
2993 {
2994 char *p;
2995 struct nextfield *new;
2996
2997 /* We better set p right now, in case there are no fields at all... */
2998
2999 p = *pp;
3000
3001 /* Read each data member type until we find the terminating ';' at the end of
3002 the data member list, or break for some other reason such as finding the
3003 start of the member function list. */
3004 /* Stab string for structure/union does not end with two ';' in
3005 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3006
3007 while (**pp != ';' && **pp != '\0')
3008 {
3009 STABS_CONTINUE (pp, objfile);
3010 /* Get space to record the next field's data. */
3011 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3012 make_cleanup (xfree, new);
3013 memset (new, 0, sizeof (struct nextfield));
3014 new->next = fip->list;
3015 fip->list = new;
3016
3017 /* Get the field name. */
3018 p = *pp;
3019
3020 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3021 unless the CPLUS_MARKER is followed by an underscore, in
3022 which case it is just the name of an anonymous type, which we
3023 should handle like any other type name. */
3024
3025 if (is_cplus_marker (p[0]) && p[1] != '_')
3026 {
3027 if (!read_cpp_abbrev (fip, pp, type, objfile))
3028 return 0;
3029 continue;
3030 }
3031
3032 /* Look for the ':' that separates the field name from the field
3033 values. Data members are delimited by a single ':', while member
3034 functions are delimited by a pair of ':'s. When we hit the member
3035 functions (if any), terminate scan loop and return. */
3036
3037 while (*p != ':' && *p != '\0')
3038 {
3039 p++;
3040 }
3041 if (*p == '\0')
3042 return 0;
3043
3044 /* Check to see if we have hit the member functions yet. */
3045 if (p[1] == ':')
3046 {
3047 break;
3048 }
3049 read_one_struct_field (fip, pp, p, type, objfile);
3050 }
3051 if (p[0] == ':' && p[1] == ':')
3052 {
3053 /* (the deleted) chill the list of fields: the last entry (at
3054 the head) is a partially constructed entry which we now
3055 scrub. */
3056 fip->list = fip->list->next;
3057 }
3058 return 1;
3059 }
3060 /* *INDENT-OFF* */
3061 /* The stabs for C++ derived classes contain baseclass information which
3062 is marked by a '!' character after the total size. This function is
3063 called when we encounter the baseclass marker, and slurps up all the
3064 baseclass information.
3065
3066 Immediately following the '!' marker is the number of base classes that
3067 the class is derived from, followed by information for each base class.
3068 For each base class, there are two visibility specifiers, a bit offset
3069 to the base class information within the derived class, a reference to
3070 the type for the base class, and a terminating semicolon.
3071
3072 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3073 ^^ ^ ^ ^ ^ ^ ^
3074 Baseclass information marker __________________|| | | | | | |
3075 Number of baseclasses __________________________| | | | | | |
3076 Visibility specifiers (2) ________________________| | | | | |
3077 Offset in bits from start of class _________________| | | | |
3078 Type number for base class ___________________________| | | |
3079 Visibility specifiers (2) _______________________________| | |
3080 Offset in bits from start of class ________________________| |
3081 Type number of base class ____________________________________|
3082
3083 Return 1 for success, 0 for (error-type-inducing) failure. */
3084 /* *INDENT-ON* */
3085
3086
3087
3088 static int
3089 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3090 struct objfile *objfile)
3091 {
3092 int i;
3093 struct nextfield *new;
3094
3095 if (**pp != '!')
3096 {
3097 return 1;
3098 }
3099 else
3100 {
3101 /* Skip the '!' baseclass information marker. */
3102 (*pp)++;
3103 }
3104
3105 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3106 {
3107 int nbits;
3108
3109 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3110 if (nbits != 0)
3111 return 0;
3112 }
3113
3114 #if 0
3115 /* Some stupid compilers have trouble with the following, so break
3116 it up into simpler expressions. */
3117 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3118 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3119 #else
3120 {
3121 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3122 char *pointer;
3123
3124 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3125 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3126 }
3127 #endif /* 0 */
3128
3129 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3130
3131 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3132 {
3133 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3134 make_cleanup (xfree, new);
3135 memset (new, 0, sizeof (struct nextfield));
3136 new->next = fip->list;
3137 fip->list = new;
3138 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3139 field! */
3140
3141 STABS_CONTINUE (pp, objfile);
3142 switch (**pp)
3143 {
3144 case '0':
3145 /* Nothing to do. */
3146 break;
3147 case '1':
3148 SET_TYPE_FIELD_VIRTUAL (type, i);
3149 break;
3150 default:
3151 /* Unknown character. Complain and treat it as non-virtual. */
3152 {
3153 complaint (&symfile_complaints,
3154 _("Unknown virtual character `%c' for baseclass"),
3155 **pp);
3156 }
3157 }
3158 ++(*pp);
3159
3160 new->visibility = *(*pp)++;
3161 switch (new->visibility)
3162 {
3163 case VISIBILITY_PRIVATE:
3164 case VISIBILITY_PROTECTED:
3165 case VISIBILITY_PUBLIC:
3166 break;
3167 default:
3168 /* Bad visibility format. Complain and treat it as
3169 public. */
3170 {
3171 complaint (&symfile_complaints,
3172 _("Unknown visibility `%c' for baseclass"),
3173 new->visibility);
3174 new->visibility = VISIBILITY_PUBLIC;
3175 }
3176 }
3177
3178 {
3179 int nbits;
3180
3181 /* The remaining value is the bit offset of the portion of the object
3182 corresponding to this baseclass. Always zero in the absence of
3183 multiple inheritance. */
3184
3185 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3186 if (nbits != 0)
3187 return 0;
3188 }
3189
3190 /* The last piece of baseclass information is the type of the
3191 base class. Read it, and remember it's type name as this
3192 field's name. */
3193
3194 new->field.type = read_type (pp, objfile);
3195 new->field.name = type_name_no_tag (new->field.type);
3196
3197 /* Skip trailing ';' and bump count of number of fields seen. */
3198 if (**pp == ';')
3199 (*pp)++;
3200 else
3201 return 0;
3202 }
3203 return 1;
3204 }
3205
3206 /* The tail end of stabs for C++ classes that contain a virtual function
3207 pointer contains a tilde, a %, and a type number.
3208 The type number refers to the base class (possibly this class itself) which
3209 contains the vtable pointer for the current class.
3210
3211 This function is called when we have parsed all the method declarations,
3212 so we can look for the vptr base class info. */
3213
3214 static int
3215 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3216 struct objfile *objfile)
3217 {
3218 char *p;
3219
3220 STABS_CONTINUE (pp, objfile);
3221
3222 /* If we are positioned at a ';', then skip it. */
3223 if (**pp == ';')
3224 {
3225 (*pp)++;
3226 }
3227
3228 if (**pp == '~')
3229 {
3230 (*pp)++;
3231
3232 if (**pp == '=' || **pp == '+' || **pp == '-')
3233 {
3234 /* Obsolete flags that used to indicate the presence
3235 of constructors and/or destructors. */
3236 (*pp)++;
3237 }
3238
3239 /* Read either a '%' or the final ';'. */
3240 if (*(*pp)++ == '%')
3241 {
3242 /* The next number is the type number of the base class
3243 (possibly our own class) which supplies the vtable for
3244 this class. Parse it out, and search that class to find
3245 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3246 and TYPE_VPTR_FIELDNO. */
3247
3248 struct type *t;
3249 int i;
3250
3251 t = read_type (pp, objfile);
3252 p = (*pp)++;
3253 while (*p != '\0' && *p != ';')
3254 {
3255 p++;
3256 }
3257 if (*p == '\0')
3258 {
3259 /* Premature end of symbol. */
3260 return 0;
3261 }
3262
3263 TYPE_VPTR_BASETYPE (type) = t;
3264 if (type == t) /* Our own class provides vtbl ptr. */
3265 {
3266 for (i = TYPE_NFIELDS (t) - 1;
3267 i >= TYPE_N_BASECLASSES (t);
3268 --i)
3269 {
3270 const char *name = TYPE_FIELD_NAME (t, i);
3271
3272 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3273 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3274 {
3275 TYPE_VPTR_FIELDNO (type) = i;
3276 goto gotit;
3277 }
3278 }
3279 /* Virtual function table field not found. */
3280 complaint (&symfile_complaints,
3281 _("virtual function table pointer "
3282 "not found when defining class `%s'"),
3283 TYPE_NAME (type));
3284 return 0;
3285 }
3286 else
3287 {
3288 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3289 }
3290
3291 gotit:
3292 *pp = p + 1;
3293 }
3294 }
3295 return 1;
3296 }
3297
3298 static int
3299 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3300 {
3301 int n;
3302
3303 for (n = TYPE_NFN_FIELDS (type);
3304 fip->fnlist != NULL;
3305 fip->fnlist = fip->fnlist->next)
3306 {
3307 --n; /* Circumvent Sun3 compiler bug. */
3308 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3309 }
3310 return 1;
3311 }
3312
3313 /* Create the vector of fields, and record how big it is.
3314 We need this info to record proper virtual function table information
3315 for this class's virtual functions. */
3316
3317 static int
3318 attach_fields_to_type (struct field_info *fip, struct type *type,
3319 struct objfile *objfile)
3320 {
3321 int nfields = 0;
3322 int non_public_fields = 0;
3323 struct nextfield *scan;
3324
3325 /* Count up the number of fields that we have, as well as taking note of
3326 whether or not there are any non-public fields, which requires us to
3327 allocate and build the private_field_bits and protected_field_bits
3328 bitfields. */
3329
3330 for (scan = fip->list; scan != NULL; scan = scan->next)
3331 {
3332 nfields++;
3333 if (scan->visibility != VISIBILITY_PUBLIC)
3334 {
3335 non_public_fields++;
3336 }
3337 }
3338
3339 /* Now we know how many fields there are, and whether or not there are any
3340 non-public fields. Record the field count, allocate space for the
3341 array of fields, and create blank visibility bitfields if necessary. */
3342
3343 TYPE_NFIELDS (type) = nfields;
3344 TYPE_FIELDS (type) = (struct field *)
3345 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3346 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3347
3348 if (non_public_fields)
3349 {
3350 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3351
3352 TYPE_FIELD_PRIVATE_BITS (type) =
3353 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3354 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3355
3356 TYPE_FIELD_PROTECTED_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3359
3360 TYPE_FIELD_IGNORE_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3363 }
3364
3365 /* Copy the saved-up fields into the field vector. Start from the
3366 head of the list, adding to the tail of the field array, so that
3367 they end up in the same order in the array in which they were
3368 added to the list. */
3369
3370 while (nfields-- > 0)
3371 {
3372 TYPE_FIELD (type, nfields) = fip->list->field;
3373 switch (fip->list->visibility)
3374 {
3375 case VISIBILITY_PRIVATE:
3376 SET_TYPE_FIELD_PRIVATE (type, nfields);
3377 break;
3378
3379 case VISIBILITY_PROTECTED:
3380 SET_TYPE_FIELD_PROTECTED (type, nfields);
3381 break;
3382
3383 case VISIBILITY_IGNORE:
3384 SET_TYPE_FIELD_IGNORE (type, nfields);
3385 break;
3386
3387 case VISIBILITY_PUBLIC:
3388 break;
3389
3390 default:
3391 /* Unknown visibility. Complain and treat it as public. */
3392 {
3393 complaint (&symfile_complaints,
3394 _("Unknown visibility `%c' for field"),
3395 fip->list->visibility);
3396 }
3397 break;
3398 }
3399 fip->list = fip->list->next;
3400 }
3401 return 1;
3402 }
3403
3404
3405 /* Complain that the compiler has emitted more than one definition for the
3406 structure type TYPE. */
3407 static void
3408 complain_about_struct_wipeout (struct type *type)
3409 {
3410 const char *name = "";
3411 const char *kind = "";
3412
3413 if (TYPE_TAG_NAME (type))
3414 {
3415 name = TYPE_TAG_NAME (type);
3416 switch (TYPE_CODE (type))
3417 {
3418 case TYPE_CODE_STRUCT: kind = "struct "; break;
3419 case TYPE_CODE_UNION: kind = "union "; break;
3420 case TYPE_CODE_ENUM: kind = "enum "; break;
3421 default: kind = "";
3422 }
3423 }
3424 else if (TYPE_NAME (type))
3425 {
3426 name = TYPE_NAME (type);
3427 kind = "";
3428 }
3429 else
3430 {
3431 name = "<unknown>";
3432 kind = "";
3433 }
3434
3435 complaint (&symfile_complaints,
3436 _("struct/union type gets multiply defined: %s%s"), kind, name);
3437 }
3438
3439 /* Set the length for all variants of a same main_type, which are
3440 connected in the closed chain.
3441
3442 This is something that needs to be done when a type is defined *after*
3443 some cross references to this type have already been read. Consider
3444 for instance the following scenario where we have the following two
3445 stabs entries:
3446
3447 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3448 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3449
3450 A stubbed version of type dummy is created while processing the first
3451 stabs entry. The length of that type is initially set to zero, since
3452 it is unknown at this point. Also, a "constant" variation of type
3453 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3454 the stabs line).
3455
3456 The second stabs entry allows us to replace the stubbed definition
3457 with the real definition. However, we still need to adjust the length
3458 of the "constant" variation of that type, as its length was left
3459 untouched during the main type replacement... */
3460
3461 static void
3462 set_length_in_type_chain (struct type *type)
3463 {
3464 struct type *ntype = TYPE_CHAIN (type);
3465
3466 while (ntype != type)
3467 {
3468 if (TYPE_LENGTH(ntype) == 0)
3469 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3470 else
3471 complain_about_struct_wipeout (ntype);
3472 ntype = TYPE_CHAIN (ntype);
3473 }
3474 }
3475
3476 /* Read the description of a structure (or union type) and return an object
3477 describing the type.
3478
3479 PP points to a character pointer that points to the next unconsumed token
3480 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3481 *PP will point to "4a:1,0,32;;".
3482
3483 TYPE points to an incomplete type that needs to be filled in.
3484
3485 OBJFILE points to the current objfile from which the stabs information is
3486 being read. (Note that it is redundant in that TYPE also contains a pointer
3487 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3488 */
3489
3490 static struct type *
3491 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3492 struct objfile *objfile)
3493 {
3494 struct cleanup *back_to;
3495 struct field_info fi;
3496
3497 fi.list = NULL;
3498 fi.fnlist = NULL;
3499
3500 /* When describing struct/union/class types in stabs, G++ always drops
3501 all qualifications from the name. So if you've got:
3502 struct A { ... struct B { ... }; ... };
3503 then G++ will emit stabs for `struct A::B' that call it simply
3504 `struct B'. Obviously, if you've got a real top-level definition for
3505 `struct B', or other nested definitions, this is going to cause
3506 problems.
3507
3508 Obviously, GDB can't fix this by itself, but it can at least avoid
3509 scribbling on existing structure type objects when new definitions
3510 appear. */
3511 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3512 || TYPE_STUB (type)))
3513 {
3514 complain_about_struct_wipeout (type);
3515
3516 /* It's probably best to return the type unchanged. */
3517 return type;
3518 }
3519
3520 back_to = make_cleanup (null_cleanup, 0);
3521
3522 INIT_CPLUS_SPECIFIC (type);
3523 TYPE_CODE (type) = type_code;
3524 TYPE_STUB (type) = 0;
3525
3526 /* First comes the total size in bytes. */
3527
3528 {
3529 int nbits;
3530
3531 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3532 if (nbits != 0)
3533 {
3534 do_cleanups (back_to);
3535 return error_type (pp, objfile);
3536 }
3537 set_length_in_type_chain (type);
3538 }
3539
3540 /* Now read the baseclasses, if any, read the regular C struct or C++
3541 class member fields, attach the fields to the type, read the C++
3542 member functions, attach them to the type, and then read any tilde
3543 field (baseclass specifier for the class holding the main vtable). */
3544
3545 if (!read_baseclasses (&fi, pp, type, objfile)
3546 || !read_struct_fields (&fi, pp, type, objfile)
3547 || !attach_fields_to_type (&fi, type, objfile)
3548 || !read_member_functions (&fi, pp, type, objfile)
3549 || !attach_fn_fields_to_type (&fi, type)
3550 || !read_tilde_fields (&fi, pp, type, objfile))
3551 {
3552 type = error_type (pp, objfile);
3553 }
3554
3555 do_cleanups (back_to);
3556 return (type);
3557 }
3558
3559 /* Read a definition of an array type,
3560 and create and return a suitable type object.
3561 Also creates a range type which represents the bounds of that
3562 array. */
3563
3564 static struct type *
3565 read_array_type (char **pp, struct type *type,
3566 struct objfile *objfile)
3567 {
3568 struct type *index_type, *element_type, *range_type;
3569 int lower, upper;
3570 int adjustable = 0;
3571 int nbits;
3572
3573 /* Format of an array type:
3574 "ar<index type>;lower;upper;<array_contents_type>".
3575 OS9000: "arlower,upper;<array_contents_type>".
3576
3577 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3578 for these, produce a type like float[][]. */
3579
3580 {
3581 index_type = read_type (pp, objfile);
3582 if (**pp != ';')
3583 /* Improper format of array type decl. */
3584 return error_type (pp, objfile);
3585 ++*pp;
3586 }
3587
3588 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3589 {
3590 (*pp)++;
3591 adjustable = 1;
3592 }
3593 lower = read_huge_number (pp, ';', &nbits, 0);
3594
3595 if (nbits != 0)
3596 return error_type (pp, objfile);
3597
3598 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3599 {
3600 (*pp)++;
3601 adjustable = 1;
3602 }
3603 upper = read_huge_number (pp, ';', &nbits, 0);
3604 if (nbits != 0)
3605 return error_type (pp, objfile);
3606
3607 element_type = read_type (pp, objfile);
3608
3609 if (adjustable)
3610 {
3611 lower = 0;
3612 upper = -1;
3613 }
3614
3615 range_type =
3616 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3617 type = create_array_type (type, element_type, range_type);
3618
3619 return type;
3620 }
3621
3622
3623 /* Read a definition of an enumeration type,
3624 and create and return a suitable type object.
3625 Also defines the symbols that represent the values of the type. */
3626
3627 static struct type *
3628 read_enum_type (char **pp, struct type *type,
3629 struct objfile *objfile)
3630 {
3631 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3632 char *p;
3633 char *name;
3634 long n;
3635 struct symbol *sym;
3636 int nsyms = 0;
3637 struct pending **symlist;
3638 struct pending *osyms, *syms;
3639 int o_nsyms;
3640 int nbits;
3641 int unsigned_enum = 1;
3642
3643 #if 0
3644 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3645 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3646 to do? For now, force all enum values to file scope. */
3647 if (within_function)
3648 symlist = &local_symbols;
3649 else
3650 #endif
3651 symlist = &file_symbols;
3652 osyms = *symlist;
3653 o_nsyms = osyms ? osyms->nsyms : 0;
3654
3655 /* The aix4 compiler emits an extra field before the enum members;
3656 my guess is it's a type of some sort. Just ignore it. */
3657 if (**pp == '-')
3658 {
3659 /* Skip over the type. */
3660 while (**pp != ':')
3661 (*pp)++;
3662
3663 /* Skip over the colon. */
3664 (*pp)++;
3665 }
3666
3667 /* Read the value-names and their values.
3668 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3669 A semicolon or comma instead of a NAME means the end. */
3670 while (**pp && **pp != ';' && **pp != ',')
3671 {
3672 STABS_CONTINUE (pp, objfile);
3673 p = *pp;
3674 while (*p != ':')
3675 p++;
3676 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3677 *pp = p + 1;
3678 n = read_huge_number (pp, ',', &nbits, 0);
3679 if (nbits != 0)
3680 return error_type (pp, objfile);
3681
3682 sym = allocate_symbol (objfile);
3683 SYMBOL_SET_LINKAGE_NAME (sym, name);
3684 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3685 &objfile->objfile_obstack);
3686 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3687 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3688 SYMBOL_VALUE (sym) = n;
3689 if (n < 0)
3690 unsigned_enum = 0;
3691 add_symbol_to_list (sym, symlist);
3692 nsyms++;
3693 }
3694
3695 if (**pp == ';')
3696 (*pp)++; /* Skip the semicolon. */
3697
3698 /* Now fill in the fields of the type-structure. */
3699
3700 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3701 set_length_in_type_chain (type);
3702 TYPE_CODE (type) = TYPE_CODE_ENUM;
3703 TYPE_STUB (type) = 0;
3704 if (unsigned_enum)
3705 TYPE_UNSIGNED (type) = 1;
3706 TYPE_NFIELDS (type) = nsyms;
3707 TYPE_FIELDS (type) = (struct field *)
3708 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3709 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3710
3711 /* Find the symbols for the values and put them into the type.
3712 The symbols can be found in the symlist that we put them on
3713 to cause them to be defined. osyms contains the old value
3714 of that symlist; everything up to there was defined by us. */
3715 /* Note that we preserve the order of the enum constants, so
3716 that in something like "enum {FOO, LAST_THING=FOO}" we print
3717 FOO, not LAST_THING. */
3718
3719 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3720 {
3721 int last = syms == osyms ? o_nsyms : 0;
3722 int j = syms->nsyms;
3723
3724 for (; --j >= last; --n)
3725 {
3726 struct symbol *xsym = syms->symbol[j];
3727
3728 SYMBOL_TYPE (xsym) = type;
3729 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3730 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3731 TYPE_FIELD_BITSIZE (type, n) = 0;
3732 }
3733 if (syms == osyms)
3734 break;
3735 }
3736
3737 return type;
3738 }
3739
3740 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3741 typedefs in every file (for int, long, etc):
3742
3743 type = b <signed> <width> <format type>; <offset>; <nbits>
3744 signed = u or s.
3745 optional format type = c or b for char or boolean.
3746 offset = offset from high order bit to start bit of type.
3747 width is # bytes in object of this type, nbits is # bits in type.
3748
3749 The width/offset stuff appears to be for small objects stored in
3750 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3751 FIXME. */
3752
3753 static struct type *
3754 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3755 {
3756 int type_bits;
3757 int nbits;
3758 int signed_type;
3759 enum type_code code = TYPE_CODE_INT;
3760
3761 switch (**pp)
3762 {
3763 case 's':
3764 signed_type = 1;
3765 break;
3766 case 'u':
3767 signed_type = 0;
3768 break;
3769 default:
3770 return error_type (pp, objfile);
3771 }
3772 (*pp)++;
3773
3774 /* For some odd reason, all forms of char put a c here. This is strange
3775 because no other type has this honor. We can safely ignore this because
3776 we actually determine 'char'acterness by the number of bits specified in
3777 the descriptor.
3778 Boolean forms, e.g Fortran logical*X, put a b here. */
3779
3780 if (**pp == 'c')
3781 (*pp)++;
3782 else if (**pp == 'b')
3783 {
3784 code = TYPE_CODE_BOOL;
3785 (*pp)++;
3786 }
3787
3788 /* The first number appears to be the number of bytes occupied
3789 by this type, except that unsigned short is 4 instead of 2.
3790 Since this information is redundant with the third number,
3791 we will ignore it. */
3792 read_huge_number (pp, ';', &nbits, 0);
3793 if (nbits != 0)
3794 return error_type (pp, objfile);
3795
3796 /* The second number is always 0, so ignore it too. */
3797 read_huge_number (pp, ';', &nbits, 0);
3798 if (nbits != 0)
3799 return error_type (pp, objfile);
3800
3801 /* The third number is the number of bits for this type. */
3802 type_bits = read_huge_number (pp, 0, &nbits, 0);
3803 if (nbits != 0)
3804 return error_type (pp, objfile);
3805 /* The type *should* end with a semicolon. If it are embedded
3806 in a larger type the semicolon may be the only way to know where
3807 the type ends. If this type is at the end of the stabstring we
3808 can deal with the omitted semicolon (but we don't have to like
3809 it). Don't bother to complain(), Sun's compiler omits the semicolon
3810 for "void". */
3811 if (**pp == ';')
3812 ++(*pp);
3813
3814 if (type_bits == 0)
3815 return init_type (TYPE_CODE_VOID, 1,
3816 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3817 objfile);
3818 else
3819 return init_type (code,
3820 type_bits / TARGET_CHAR_BIT,
3821 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3822 objfile);
3823 }
3824
3825 static struct type *
3826 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3827 {
3828 int nbits;
3829 int details;
3830 int nbytes;
3831 struct type *rettype;
3832
3833 /* The first number has more details about the type, for example
3834 FN_COMPLEX. */
3835 details = read_huge_number (pp, ';', &nbits, 0);
3836 if (nbits != 0)
3837 return error_type (pp, objfile);
3838
3839 /* The second number is the number of bytes occupied by this type. */
3840 nbytes = read_huge_number (pp, ';', &nbits, 0);
3841 if (nbits != 0)
3842 return error_type (pp, objfile);
3843
3844 if (details == NF_COMPLEX || details == NF_COMPLEX16
3845 || details == NF_COMPLEX32)
3846 {
3847 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3848 TYPE_TARGET_TYPE (rettype)
3849 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3850 return rettype;
3851 }
3852
3853 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3854 }
3855
3856 /* Read a number from the string pointed to by *PP.
3857 The value of *PP is advanced over the number.
3858 If END is nonzero, the character that ends the
3859 number must match END, or an error happens;
3860 and that character is skipped if it does match.
3861 If END is zero, *PP is left pointing to that character.
3862
3863 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3864 the number is represented in an octal representation, assume that
3865 it is represented in a 2's complement representation with a size of
3866 TWOS_COMPLEMENT_BITS.
3867
3868 If the number fits in a long, set *BITS to 0 and return the value.
3869 If not, set *BITS to be the number of bits in the number and return 0.
3870
3871 If encounter garbage, set *BITS to -1 and return 0. */
3872
3873 static long
3874 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3875 {
3876 char *p = *pp;
3877 int sign = 1;
3878 int sign_bit = 0;
3879 long n = 0;
3880 int radix = 10;
3881 char overflow = 0;
3882 int nbits = 0;
3883 int c;
3884 long upper_limit;
3885 int twos_complement_representation = 0;
3886
3887 if (*p == '-')
3888 {
3889 sign = -1;
3890 p++;
3891 }
3892
3893 /* Leading zero means octal. GCC uses this to output values larger
3894 than an int (because that would be hard in decimal). */
3895 if (*p == '0')
3896 {
3897 radix = 8;
3898 p++;
3899 }
3900
3901 /* Skip extra zeros. */
3902 while (*p == '0')
3903 p++;
3904
3905 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3906 {
3907 /* Octal, possibly signed. Check if we have enough chars for a
3908 negative number. */
3909
3910 size_t len;
3911 char *p1 = p;
3912
3913 while ((c = *p1) >= '0' && c < '8')
3914 p1++;
3915
3916 len = p1 - p;
3917 if (len > twos_complement_bits / 3
3918 || (twos_complement_bits % 3 == 0
3919 && len == twos_complement_bits / 3))
3920 {
3921 /* Ok, we have enough characters for a signed value, check
3922 for signness by testing if the sign bit is set. */
3923 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3924 c = *p - '0';
3925 if (c & (1 << sign_bit))
3926 {
3927 /* Definitely signed. */
3928 twos_complement_representation = 1;
3929 sign = -1;
3930 }
3931 }
3932 }
3933
3934 upper_limit = LONG_MAX / radix;
3935
3936 while ((c = *p++) >= '0' && c < ('0' + radix))
3937 {
3938 if (n <= upper_limit)
3939 {
3940 if (twos_complement_representation)
3941 {
3942 /* Octal, signed, twos complement representation. In
3943 this case, n is the corresponding absolute value. */
3944 if (n == 0)
3945 {
3946 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3947
3948 n = -sn;
3949 }
3950 else
3951 {
3952 n *= radix;
3953 n -= c - '0';
3954 }
3955 }
3956 else
3957 {
3958 /* unsigned representation */
3959 n *= radix;
3960 n += c - '0'; /* FIXME this overflows anyway. */
3961 }
3962 }
3963 else
3964 overflow = 1;
3965
3966 /* This depends on large values being output in octal, which is
3967 what GCC does. */
3968 if (radix == 8)
3969 {
3970 if (nbits == 0)
3971 {
3972 if (c == '0')
3973 /* Ignore leading zeroes. */
3974 ;
3975 else if (c == '1')
3976 nbits = 1;
3977 else if (c == '2' || c == '3')
3978 nbits = 2;
3979 else
3980 nbits = 3;
3981 }
3982 else
3983 nbits += 3;
3984 }
3985 }
3986 if (end)
3987 {
3988 if (c && c != end)
3989 {
3990 if (bits != NULL)
3991 *bits = -1;
3992 return 0;
3993 }
3994 }
3995 else
3996 --p;
3997
3998 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3999 {
4000 /* We were supposed to parse a number with maximum
4001 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4002 if (bits != NULL)
4003 *bits = -1;
4004 return 0;
4005 }
4006
4007 *pp = p;
4008 if (overflow)
4009 {
4010 if (nbits == 0)
4011 {
4012 /* Large decimal constants are an error (because it is hard to
4013 count how many bits are in them). */
4014 if (bits != NULL)
4015 *bits = -1;
4016 return 0;
4017 }
4018
4019 /* -0x7f is the same as 0x80. So deal with it by adding one to
4020 the number of bits. Two's complement represention octals
4021 can't have a '-' in front. */
4022 if (sign == -1 && !twos_complement_representation)
4023 ++nbits;
4024 if (bits)
4025 *bits = nbits;
4026 }
4027 else
4028 {
4029 if (bits)
4030 *bits = 0;
4031 return n * sign;
4032 }
4033 /* It's *BITS which has the interesting information. */
4034 return 0;
4035 }
4036
4037 static struct type *
4038 read_range_type (char **pp, int typenums[2], int type_size,
4039 struct objfile *objfile)
4040 {
4041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4042 char *orig_pp = *pp;
4043 int rangenums[2];
4044 long n2, n3;
4045 int n2bits, n3bits;
4046 int self_subrange;
4047 struct type *result_type;
4048 struct type *index_type = NULL;
4049
4050 /* First comes a type we are a subrange of.
4051 In C it is usually 0, 1 or the type being defined. */
4052 if (read_type_number (pp, rangenums) != 0)
4053 return error_type (pp, objfile);
4054 self_subrange = (rangenums[0] == typenums[0] &&
4055 rangenums[1] == typenums[1]);
4056
4057 if (**pp == '=')
4058 {
4059 *pp = orig_pp;
4060 index_type = read_type (pp, objfile);
4061 }
4062
4063 /* A semicolon should now follow; skip it. */
4064 if (**pp == ';')
4065 (*pp)++;
4066
4067 /* The remaining two operands are usually lower and upper bounds
4068 of the range. But in some special cases they mean something else. */
4069 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4070 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4071
4072 if (n2bits == -1 || n3bits == -1)
4073 return error_type (pp, objfile);
4074
4075 if (index_type)
4076 goto handle_true_range;
4077
4078 /* If limits are huge, must be large integral type. */
4079 if (n2bits != 0 || n3bits != 0)
4080 {
4081 char got_signed = 0;
4082 char got_unsigned = 0;
4083 /* Number of bits in the type. */
4084 int nbits = 0;
4085
4086 /* If a type size attribute has been specified, the bounds of
4087 the range should fit in this size. If the lower bounds needs
4088 more bits than the upper bound, then the type is signed. */
4089 if (n2bits <= type_size && n3bits <= type_size)
4090 {
4091 if (n2bits == type_size && n2bits > n3bits)
4092 got_signed = 1;
4093 else
4094 got_unsigned = 1;
4095 nbits = type_size;
4096 }
4097 /* Range from 0 to <large number> is an unsigned large integral type. */
4098 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4099 {
4100 got_unsigned = 1;
4101 nbits = n3bits;
4102 }
4103 /* Range from <large number> to <large number>-1 is a large signed
4104 integral type. Take care of the case where <large number> doesn't
4105 fit in a long but <large number>-1 does. */
4106 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4107 || (n2bits != 0 && n3bits == 0
4108 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4109 && n3 == LONG_MAX))
4110 {
4111 got_signed = 1;
4112 nbits = n2bits;
4113 }
4114
4115 if (got_signed || got_unsigned)
4116 {
4117 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4118 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4119 objfile);
4120 }
4121 else
4122 return error_type (pp, objfile);
4123 }
4124
4125 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4126 if (self_subrange && n2 == 0 && n3 == 0)
4127 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4128
4129 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4130 is the width in bytes.
4131
4132 Fortran programs appear to use this for complex types also. To
4133 distinguish between floats and complex, g77 (and others?) seem
4134 to use self-subranges for the complexes, and subranges of int for
4135 the floats.
4136
4137 Also note that for complexes, g77 sets n2 to the size of one of
4138 the member floats, not the whole complex beast. My guess is that
4139 this was to work well with pre-COMPLEX versions of gdb. */
4140
4141 if (n3 == 0 && n2 > 0)
4142 {
4143 struct type *float_type
4144 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4145
4146 if (self_subrange)
4147 {
4148 struct type *complex_type =
4149 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4150
4151 TYPE_TARGET_TYPE (complex_type) = float_type;
4152 return complex_type;
4153 }
4154 else
4155 return float_type;
4156 }
4157
4158 /* If the upper bound is -1, it must really be an unsigned integral. */
4159
4160 else if (n2 == 0 && n3 == -1)
4161 {
4162 int bits = type_size;
4163
4164 if (bits <= 0)
4165 {
4166 /* We don't know its size. It is unsigned int or unsigned
4167 long. GCC 2.3.3 uses this for long long too, but that is
4168 just a GDB 3.5 compatibility hack. */
4169 bits = gdbarch_int_bit (gdbarch);
4170 }
4171
4172 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4173 TYPE_FLAG_UNSIGNED, NULL, objfile);
4174 }
4175
4176 /* Special case: char is defined (Who knows why) as a subrange of
4177 itself with range 0-127. */
4178 else if (self_subrange && n2 == 0 && n3 == 127)
4179 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4180
4181 /* We used to do this only for subrange of self or subrange of int. */
4182 else if (n2 == 0)
4183 {
4184 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4185 "unsigned long", and we already checked for that,
4186 so don't need to test for it here. */
4187
4188 if (n3 < 0)
4189 /* n3 actually gives the size. */
4190 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4191 NULL, objfile);
4192
4193 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4194 unsigned n-byte integer. But do require n to be a power of
4195 two; we don't want 3- and 5-byte integers flying around. */
4196 {
4197 int bytes;
4198 unsigned long bits;
4199
4200 bits = n3;
4201 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4202 bits >>= 8;
4203 if (bits == 0
4204 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4205 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4206 objfile);
4207 }
4208 }
4209 /* I think this is for Convex "long long". Since I don't know whether
4210 Convex sets self_subrange, I also accept that particular size regardless
4211 of self_subrange. */
4212 else if (n3 == 0 && n2 < 0
4213 && (self_subrange
4214 || n2 == -gdbarch_long_long_bit
4215 (gdbarch) / TARGET_CHAR_BIT))
4216 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4217 else if (n2 == -n3 - 1)
4218 {
4219 if (n3 == 0x7f)
4220 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4221 if (n3 == 0x7fff)
4222 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4223 if (n3 == 0x7fffffff)
4224 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4225 }
4226
4227 /* We have a real range type on our hands. Allocate space and
4228 return a real pointer. */
4229 handle_true_range:
4230
4231 if (self_subrange)
4232 index_type = objfile_type (objfile)->builtin_int;
4233 else
4234 index_type = *dbx_lookup_type (rangenums, objfile);
4235 if (index_type == NULL)
4236 {
4237 /* Does this actually ever happen? Is that why we are worrying
4238 about dealing with it rather than just calling error_type? */
4239
4240 complaint (&symfile_complaints,
4241 _("base type %d of range type is not defined"), rangenums[1]);
4242
4243 index_type = objfile_type (objfile)->builtin_int;
4244 }
4245
4246 result_type
4247 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4248 return (result_type);
4249 }
4250
4251 /* Read in an argument list. This is a list of types, separated by commas
4252 and terminated with END. Return the list of types read in, or NULL
4253 if there is an error. */
4254
4255 static struct field *
4256 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4257 int *varargsp)
4258 {
4259 /* FIXME! Remove this arbitrary limit! */
4260 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4261 int n = 0, i;
4262 struct field *rval;
4263
4264 while (**pp != end)
4265 {
4266 if (**pp != ',')
4267 /* Invalid argument list: no ','. */
4268 return NULL;
4269 (*pp)++;
4270 STABS_CONTINUE (pp, objfile);
4271 types[n++] = read_type (pp, objfile);
4272 }
4273 (*pp)++; /* get past `end' (the ':' character). */
4274
4275 if (n == 0)
4276 {
4277 /* We should read at least the THIS parameter here. Some broken stabs
4278 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4279 have been present ";-16,(0,43)" reference instead. This way the
4280 excessive ";" marker prematurely stops the parameters parsing. */
4281
4282 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4283 *varargsp = 0;
4284 }
4285 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4286 *varargsp = 1;
4287 else
4288 {
4289 n--;
4290 *varargsp = 0;
4291 }
4292
4293 rval = (struct field *) xmalloc (n * sizeof (struct field));
4294 memset (rval, 0, n * sizeof (struct field));
4295 for (i = 0; i < n; i++)
4296 rval[i].type = types[i];
4297 *nargsp = n;
4298 return rval;
4299 }
4300 \f
4301 /* Common block handling. */
4302
4303 /* List of symbols declared since the last BCOMM. This list is a tail
4304 of local_symbols. When ECOMM is seen, the symbols on the list
4305 are noted so their proper addresses can be filled in later,
4306 using the common block base address gotten from the assembler
4307 stabs. */
4308
4309 static struct pending *common_block;
4310 static int common_block_i;
4311
4312 /* Name of the current common block. We get it from the BCOMM instead of the
4313 ECOMM to match IBM documentation (even though IBM puts the name both places
4314 like everyone else). */
4315 static char *common_block_name;
4316
4317 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4318 to remain after this function returns. */
4319
4320 void
4321 common_block_start (char *name, struct objfile *objfile)
4322 {
4323 if (common_block_name != NULL)
4324 {
4325 complaint (&symfile_complaints,
4326 _("Invalid symbol data: common block within common block"));
4327 }
4328 common_block = local_symbols;
4329 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4330 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4331 name, strlen (name));
4332 }
4333
4334 /* Process a N_ECOMM symbol. */
4335
4336 void
4337 common_block_end (struct objfile *objfile)
4338 {
4339 /* Symbols declared since the BCOMM are to have the common block
4340 start address added in when we know it. common_block and
4341 common_block_i point to the first symbol after the BCOMM in
4342 the local_symbols list; copy the list and hang it off the
4343 symbol for the common block name for later fixup. */
4344 int i;
4345 struct symbol *sym;
4346 struct pending *new = 0;
4347 struct pending *next;
4348 int j;
4349
4350 if (common_block_name == NULL)
4351 {
4352 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4353 return;
4354 }
4355
4356 sym = allocate_symbol (objfile);
4357 /* Note: common_block_name already saved on objfile_obstack. */
4358 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4359 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4360
4361 /* Now we copy all the symbols which have been defined since the BCOMM. */
4362
4363 /* Copy all the struct pendings before common_block. */
4364 for (next = local_symbols;
4365 next != NULL && next != common_block;
4366 next = next->next)
4367 {
4368 for (j = 0; j < next->nsyms; j++)
4369 add_symbol_to_list (next->symbol[j], &new);
4370 }
4371
4372 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4373 NULL, it means copy all the local symbols (which we already did
4374 above). */
4375
4376 if (common_block != NULL)
4377 for (j = common_block_i; j < common_block->nsyms; j++)
4378 add_symbol_to_list (common_block->symbol[j], &new);
4379
4380 SYMBOL_TYPE (sym) = (struct type *) new;
4381
4382 /* Should we be putting local_symbols back to what it was?
4383 Does it matter? */
4384
4385 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4386 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4387 global_sym_chain[i] = sym;
4388 common_block_name = NULL;
4389 }
4390
4391 /* Add a common block's start address to the offset of each symbol
4392 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4393 the common block name). */
4394
4395 static void
4396 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4397 {
4398 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4399
4400 for (; next; next = next->next)
4401 {
4402 int j;
4403
4404 for (j = next->nsyms - 1; j >= 0; j--)
4405 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4406 }
4407 }
4408 \f
4409
4410
4411 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4412 See add_undefined_type for more details. */
4413
4414 static void
4415 add_undefined_type_noname (struct type *type, int typenums[2])
4416 {
4417 struct nat nat;
4418
4419 nat.typenums[0] = typenums [0];
4420 nat.typenums[1] = typenums [1];
4421 nat.type = type;
4422
4423 if (noname_undefs_length == noname_undefs_allocated)
4424 {
4425 noname_undefs_allocated *= 2;
4426 noname_undefs = (struct nat *)
4427 xrealloc ((char *) noname_undefs,
4428 noname_undefs_allocated * sizeof (struct nat));
4429 }
4430 noname_undefs[noname_undefs_length++] = nat;
4431 }
4432
4433 /* Add TYPE to the UNDEF_TYPES vector.
4434 See add_undefined_type for more details. */
4435
4436 static void
4437 add_undefined_type_1 (struct type *type)
4438 {
4439 if (undef_types_length == undef_types_allocated)
4440 {
4441 undef_types_allocated *= 2;
4442 undef_types = (struct type **)
4443 xrealloc ((char *) undef_types,
4444 undef_types_allocated * sizeof (struct type *));
4445 }
4446 undef_types[undef_types_length++] = type;
4447 }
4448
4449 /* What about types defined as forward references inside of a small lexical
4450 scope? */
4451 /* Add a type to the list of undefined types to be checked through
4452 once this file has been read in.
4453
4454 In practice, we actually maintain two such lists: The first list
4455 (UNDEF_TYPES) is used for types whose name has been provided, and
4456 concerns forward references (eg 'xs' or 'xu' forward references);
4457 the second list (NONAME_UNDEFS) is used for types whose name is
4458 unknown at creation time, because they were referenced through
4459 their type number before the actual type was declared.
4460 This function actually adds the given type to the proper list. */
4461
4462 static void
4463 add_undefined_type (struct type *type, int typenums[2])
4464 {
4465 if (TYPE_TAG_NAME (type) == NULL)
4466 add_undefined_type_noname (type, typenums);
4467 else
4468 add_undefined_type_1 (type);
4469 }
4470
4471 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4472
4473 static void
4474 cleanup_undefined_types_noname (struct objfile *objfile)
4475 {
4476 int i;
4477
4478 for (i = 0; i < noname_undefs_length; i++)
4479 {
4480 struct nat nat = noname_undefs[i];
4481 struct type **type;
4482
4483 type = dbx_lookup_type (nat.typenums, objfile);
4484 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4485 {
4486 /* The instance flags of the undefined type are still unset,
4487 and needs to be copied over from the reference type.
4488 Since replace_type expects them to be identical, we need
4489 to set these flags manually before hand. */
4490 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4491 replace_type (nat.type, *type);
4492 }
4493 }
4494
4495 noname_undefs_length = 0;
4496 }
4497
4498 /* Go through each undefined type, see if it's still undefined, and fix it
4499 up if possible. We have two kinds of undefined types:
4500
4501 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4502 Fix: update array length using the element bounds
4503 and the target type's length.
4504 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4505 yet defined at the time a pointer to it was made.
4506 Fix: Do a full lookup on the struct/union tag. */
4507
4508 static void
4509 cleanup_undefined_types_1 (void)
4510 {
4511 struct type **type;
4512
4513 /* Iterate over every undefined type, and look for a symbol whose type
4514 matches our undefined type. The symbol matches if:
4515 1. It is a typedef in the STRUCT domain;
4516 2. It has the same name, and same type code;
4517 3. The instance flags are identical.
4518
4519 It is important to check the instance flags, because we have seen
4520 examples where the debug info contained definitions such as:
4521
4522 "foo_t:t30=B31=xefoo_t:"
4523
4524 In this case, we have created an undefined type named "foo_t" whose
4525 instance flags is null (when processing "xefoo_t"), and then created
4526 another type with the same name, but with different instance flags
4527 ('B' means volatile). I think that the definition above is wrong,
4528 since the same type cannot be volatile and non-volatile at the same
4529 time, but we need to be able to cope with it when it happens. The
4530 approach taken here is to treat these two types as different. */
4531
4532 for (type = undef_types; type < undef_types + undef_types_length; type++)
4533 {
4534 switch (TYPE_CODE (*type))
4535 {
4536
4537 case TYPE_CODE_STRUCT:
4538 case TYPE_CODE_UNION:
4539 case TYPE_CODE_ENUM:
4540 {
4541 /* Check if it has been defined since. Need to do this here
4542 as well as in check_typedef to deal with the (legitimate in
4543 C though not C++) case of several types with the same name
4544 in different source files. */
4545 if (TYPE_STUB (*type))
4546 {
4547 struct pending *ppt;
4548 int i;
4549 /* Name of the type, without "struct" or "union". */
4550 const char *typename = TYPE_TAG_NAME (*type);
4551
4552 if (typename == NULL)
4553 {
4554 complaint (&symfile_complaints, _("need a type name"));
4555 break;
4556 }
4557 for (ppt = file_symbols; ppt; ppt = ppt->next)
4558 {
4559 for (i = 0; i < ppt->nsyms; i++)
4560 {
4561 struct symbol *sym = ppt->symbol[i];
4562
4563 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4564 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4565 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4566 TYPE_CODE (*type))
4567 && (TYPE_INSTANCE_FLAGS (*type) ==
4568 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4569 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4570 typename) == 0)
4571 replace_type (*type, SYMBOL_TYPE (sym));
4572 }
4573 }
4574 }
4575 }
4576 break;
4577
4578 default:
4579 {
4580 complaint (&symfile_complaints,
4581 _("forward-referenced types left unresolved, "
4582 "type code %d."),
4583 TYPE_CODE (*type));
4584 }
4585 break;
4586 }
4587 }
4588
4589 undef_types_length = 0;
4590 }
4591
4592 /* Try to fix all the undefined types we ecountered while processing
4593 this unit. */
4594
4595 void
4596 cleanup_undefined_stabs_types (struct objfile *objfile)
4597 {
4598 cleanup_undefined_types_1 ();
4599 cleanup_undefined_types_noname (objfile);
4600 }
4601
4602 /* Scan through all of the global symbols defined in the object file,
4603 assigning values to the debugging symbols that need to be assigned
4604 to. Get these symbols from the minimal symbol table. */
4605
4606 void
4607 scan_file_globals (struct objfile *objfile)
4608 {
4609 int hash;
4610 struct minimal_symbol *msymbol;
4611 struct symbol *sym, *prev;
4612 struct objfile *resolve_objfile;
4613
4614 /* SVR4 based linkers copy referenced global symbols from shared
4615 libraries to the main executable.
4616 If we are scanning the symbols for a shared library, try to resolve
4617 them from the minimal symbols of the main executable first. */
4618
4619 if (symfile_objfile && objfile != symfile_objfile)
4620 resolve_objfile = symfile_objfile;
4621 else
4622 resolve_objfile = objfile;
4623
4624 while (1)
4625 {
4626 /* Avoid expensive loop through all minimal symbols if there are
4627 no unresolved symbols. */
4628 for (hash = 0; hash < HASHSIZE; hash++)
4629 {
4630 if (global_sym_chain[hash])
4631 break;
4632 }
4633 if (hash >= HASHSIZE)
4634 return;
4635
4636 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4637 {
4638 QUIT;
4639
4640 /* Skip static symbols. */
4641 switch (MSYMBOL_TYPE (msymbol))
4642 {
4643 case mst_file_text:
4644 case mst_file_data:
4645 case mst_file_bss:
4646 continue;
4647 default:
4648 break;
4649 }
4650
4651 prev = NULL;
4652
4653 /* Get the hash index and check all the symbols
4654 under that hash index. */
4655
4656 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4657
4658 for (sym = global_sym_chain[hash]; sym;)
4659 {
4660 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4661 SYMBOL_LINKAGE_NAME (sym)) == 0)
4662 {
4663 /* Splice this symbol out of the hash chain and
4664 assign the value we have to it. */
4665 if (prev)
4666 {
4667 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4668 }
4669 else
4670 {
4671 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4672 }
4673
4674 /* Check to see whether we need to fix up a common block. */
4675 /* Note: this code might be executed several times for
4676 the same symbol if there are multiple references. */
4677 if (sym)
4678 {
4679 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4680 {
4681 fix_common_block (sym,
4682 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4683 msymbol));
4684 }
4685 else
4686 {
4687 SYMBOL_VALUE_ADDRESS (sym)
4688 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4689 }
4690 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4691 }
4692
4693 if (prev)
4694 {
4695 sym = SYMBOL_VALUE_CHAIN (prev);
4696 }
4697 else
4698 {
4699 sym = global_sym_chain[hash];
4700 }
4701 }
4702 else
4703 {
4704 prev = sym;
4705 sym = SYMBOL_VALUE_CHAIN (sym);
4706 }
4707 }
4708 }
4709 if (resolve_objfile == objfile)
4710 break;
4711 resolve_objfile = objfile;
4712 }
4713
4714 /* Change the storage class of any remaining unresolved globals to
4715 LOC_UNRESOLVED and remove them from the chain. */
4716 for (hash = 0; hash < HASHSIZE; hash++)
4717 {
4718 sym = global_sym_chain[hash];
4719 while (sym)
4720 {
4721 prev = sym;
4722 sym = SYMBOL_VALUE_CHAIN (sym);
4723
4724 /* Change the symbol address from the misleading chain value
4725 to address zero. */
4726 SYMBOL_VALUE_ADDRESS (prev) = 0;
4727
4728 /* Complain about unresolved common block symbols. */
4729 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4730 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4731 else
4732 complaint (&symfile_complaints,
4733 _("%s: common block `%s' from "
4734 "global_sym_chain unresolved"),
4735 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4736 }
4737 }
4738 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4739 }
4740
4741 /* Initialize anything that needs initializing when starting to read
4742 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4743 to a psymtab. */
4744
4745 void
4746 stabsread_init (void)
4747 {
4748 }
4749
4750 /* Initialize anything that needs initializing when a completely new
4751 symbol file is specified (not just adding some symbols from another
4752 file, e.g. a shared library). */
4753
4754 void
4755 stabsread_new_init (void)
4756 {
4757 /* Empty the hash table of global syms looking for values. */
4758 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4759 }
4760
4761 /* Initialize anything that needs initializing at the same time as
4762 start_symtab() is called. */
4763
4764 void
4765 start_stabs (void)
4766 {
4767 global_stabs = NULL; /* AIX COFF */
4768 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4769 n_this_object_header_files = 1;
4770 type_vector_length = 0;
4771 type_vector = (struct type **) 0;
4772
4773 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4774 common_block_name = NULL;
4775 }
4776
4777 /* Call after end_symtab(). */
4778
4779 void
4780 end_stabs (void)
4781 {
4782 if (type_vector)
4783 {
4784 xfree (type_vector);
4785 }
4786 type_vector = 0;
4787 type_vector_length = 0;
4788 previous_stab_code = 0;
4789 }
4790
4791 void
4792 finish_global_stabs (struct objfile *objfile)
4793 {
4794 if (global_stabs)
4795 {
4796 patch_block_stabs (global_symbols, global_stabs, objfile);
4797 xfree (global_stabs);
4798 global_stabs = NULL;
4799 }
4800 }
4801
4802 /* Find the end of the name, delimited by a ':', but don't match
4803 ObjC symbols which look like -[Foo bar::]:bla. */
4804 static char *
4805 find_name_end (char *name)
4806 {
4807 char *s = name;
4808
4809 if (s[0] == '-' || *s == '+')
4810 {
4811 /* Must be an ObjC method symbol. */
4812 if (s[1] != '[')
4813 {
4814 error (_("invalid symbol name \"%s\""), name);
4815 }
4816 s = strchr (s, ']');
4817 if (s == NULL)
4818 {
4819 error (_("invalid symbol name \"%s\""), name);
4820 }
4821 return strchr (s, ':');
4822 }
4823 else
4824 {
4825 return strchr (s, ':');
4826 }
4827 }
4828
4829 /* Initializer for this module. */
4830
4831 void
4832 _initialize_stabsread (void)
4833 {
4834 rs6000_builtin_type_data = register_objfile_data ();
4835
4836 undef_types_allocated = 20;
4837 undef_types_length = 0;
4838 undef_types = (struct type **)
4839 xmalloc (undef_types_allocated * sizeof (struct type *));
4840
4841 noname_undefs_allocated = 20;
4842 noname_undefs_length = 0;
4843 noname_undefs = (struct nat *)
4844 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4845
4846 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4847 &stab_register_funcs);
4848 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4849 &stab_register_funcs);
4850 }
This page took 0.263471 seconds and 4 git commands to generate.