* gdb.base/maint.exp: Treat $EXEEXT as optional in output.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 extern void _initialize_stabsread (void);
57
58 /* The routines that read and process a complete stabs for a C struct or
59 C++ class pass lists of data member fields and lists of member function
60 fields in an instance of a field_info structure, as defined below.
61 This is part of some reorganization of low level C++ support and is
62 expected to eventually go away... (FIXME) */
63
64 struct field_info
65 {
66 struct nextfield
67 {
68 struct nextfield *next;
69
70 /* This is the raw visibility from the stab. It is not checked
71 for being one of the visibilities we recognize, so code which
72 examines this field better be able to deal. */
73 int visibility;
74
75 struct field field;
76 }
77 *list;
78 struct next_fnfieldlist
79 {
80 struct next_fnfieldlist *next;
81 struct fn_fieldlist fn_fieldlist;
82 }
83 *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static char *get_substring (char **, int);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_range_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int
136 attach_fields_to_type (struct field_info *, struct type *, struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 struct objfile *);
140
141 static struct type *read_array_type (char **, struct type *,
142 struct objfile *);
143
144 static struct type **read_args (char **, int, struct objfile *);
145
146 static int
147 read_cpp_abbrev (struct field_info *, char **, struct type *,
148 struct objfile *);
149
150 /* new functions added for cfront support */
151
152 static int
153 copy_cfront_struct_fields (struct field_info *, struct type *,
154 struct objfile *);
155
156 static char *get_cfront_method_physname (char *);
157
158 static int
159 read_cfront_baseclasses (struct field_info *, char **,
160 struct type *, struct objfile *);
161
162 static int
163 read_cfront_static_fields (struct field_info *, char **,
164 struct type *, struct objfile *);
165 static int
166 read_cfront_member_functions (struct field_info *, char **,
167 struct type *, struct objfile *);
168
169 /* end new functions added for cfront support */
170
171 static void
172 add_live_range (struct objfile *, struct symbol *, CORE_ADDR, CORE_ADDR);
173
174 static int resolve_live_range (struct objfile *, struct symbol *, char *);
175
176 static int process_reference (char **string);
177
178 static CORE_ADDR ref_search_value (int refnum);
179
180 static int
181 resolve_symbol_reference (struct objfile *, struct symbol *, char *);
182
183 void stabsread_clear_cache (void);
184
185 static const char vptr_name[] =
186 {'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
187 static const char vb_name[] =
188 {'_', 'v', 'b', CPLUS_MARKER, '\0'};
189
190 /* Define this as 1 if a pcc declaration of a char or short argument
191 gives the correct address. Otherwise assume pcc gives the
192 address of the corresponding int, which is not the same on a
193 big-endian machine. */
194
195 #if !defined (BELIEVE_PCC_PROMOTION)
196 #define BELIEVE_PCC_PROMOTION 0
197 #endif
198 #if !defined (BELIEVE_PCC_PROMOTION_TYPE)
199 #define BELIEVE_PCC_PROMOTION_TYPE 0
200 #endif
201
202 static struct complaint invalid_cpp_abbrev_complaint =
203 {"invalid C++ abbreviation `%s'", 0, 0};
204
205 static struct complaint invalid_cpp_type_complaint =
206 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
207
208 static struct complaint member_fn_complaint =
209 {"member function type missing, got '%c'", 0, 0};
210
211 static struct complaint const_vol_complaint =
212 {"const/volatile indicator missing, got '%c'", 0, 0};
213
214 static struct complaint error_type_complaint =
215 {"debug info mismatch between compiler and debugger", 0, 0};
216
217 static struct complaint invalid_member_complaint =
218 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
219
220 static struct complaint range_type_base_complaint =
221 {"base type %d of range type is not defined", 0, 0};
222
223 static struct complaint reg_value_complaint =
224 {"register number %d too large (max %d) in symbol %s", 0, 0};
225
226 static struct complaint vtbl_notfound_complaint =
227 {"virtual function table pointer not found when defining class `%s'", 0, 0};
228
229 static struct complaint unrecognized_cplus_name_complaint =
230 {"Unknown C++ symbol name `%s'", 0, 0};
231
232 static struct complaint rs6000_builtin_complaint =
233 {"Unknown builtin type %d", 0, 0};
234
235 static struct complaint unresolved_sym_chain_complaint =
236 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
237
238 static struct complaint stabs_general_complaint =
239 {"%s", 0, 0};
240
241 static struct complaint lrs_general_complaint =
242 {"%s", 0, 0};
243
244 /* Make a list of forward references which haven't been defined. */
245
246 static struct type **undef_types;
247 static int undef_types_allocated;
248 static int undef_types_length;
249 static struct symbol *current_symbol = NULL;
250
251 /* Check for and handle cretinous stabs symbol name continuation! */
252 #define STABS_CONTINUE(pp,objfile) \
253 do { \
254 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
255 *(pp) = next_symbol_text (objfile); \
256 } while (0)
257 \f
258 /* FIXME: These probably should be our own types (like rs6000_builtin_type
259 has its own types) rather than builtin_type_*. */
260 static struct type **os9k_type_vector[] =
261 {
262 0,
263 &builtin_type_int,
264 &builtin_type_char,
265 &builtin_type_long,
266 &builtin_type_short,
267 &builtin_type_unsigned_char,
268 &builtin_type_unsigned_short,
269 &builtin_type_unsigned_long,
270 &builtin_type_unsigned_int,
271 &builtin_type_float,
272 &builtin_type_double,
273 &builtin_type_void,
274 &builtin_type_long_double
275 };
276
277 static void os9k_init_type_vector (struct type **);
278
279 static void
280 os9k_init_type_vector (struct type **tv)
281 {
282 unsigned int i;
283 for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
284 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
285 }
286
287 /* Look up a dbx type-number pair. Return the address of the slot
288 where the type for that number-pair is stored.
289 The number-pair is in TYPENUMS.
290
291 This can be used for finding the type associated with that pair
292 or for associating a new type with the pair. */
293
294 struct type **
295 dbx_lookup_type (int typenums[2])
296 {
297 register int filenum = typenums[0];
298 register int index = typenums[1];
299 unsigned old_len;
300 register int real_filenum;
301 register struct header_file *f;
302 int f_orig_length;
303
304 if (filenum == -1) /* -1,-1 is for temporary types. */
305 return 0;
306
307 if (filenum < 0 || filenum >= n_this_object_header_files)
308 {
309 static struct complaint msg =
310 {"\
311 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
312 0, 0};
313 complain (&msg, filenum, index, symnum);
314 goto error_return;
315 }
316
317 if (filenum == 0)
318 {
319 if (index < 0)
320 {
321 /* Caller wants address of address of type. We think
322 that negative (rs6k builtin) types will never appear as
323 "lvalues", (nor should they), so we stuff the real type
324 pointer into a temp, and return its address. If referenced,
325 this will do the right thing. */
326 static struct type *temp_type;
327
328 temp_type = rs6000_builtin_type (index);
329 return &temp_type;
330 }
331
332 /* Type is defined outside of header files.
333 Find it in this object file's type vector. */
334 if (index >= type_vector_length)
335 {
336 old_len = type_vector_length;
337 if (old_len == 0)
338 {
339 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
340 type_vector = (struct type **)
341 xmalloc (type_vector_length * sizeof (struct type *));
342 }
343 while (index >= type_vector_length)
344 {
345 type_vector_length *= 2;
346 }
347 type_vector = (struct type **)
348 xrealloc ((char *) type_vector,
349 (type_vector_length * sizeof (struct type *)));
350 memset (&type_vector[old_len], 0,
351 (type_vector_length - old_len) * sizeof (struct type *));
352
353 if (os9k_stabs)
354 /* Deal with OS9000 fundamental types. */
355 os9k_init_type_vector (type_vector);
356 }
357 return (&type_vector[index]);
358 }
359 else
360 {
361 real_filenum = this_object_header_files[filenum];
362
363 if (real_filenum >= N_HEADER_FILES (current_objfile))
364 {
365 struct type *temp_type;
366 struct type **temp_type_p;
367
368 warning ("GDB internal error: bad real_filenum");
369
370 error_return:
371 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
372 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
373 *temp_type_p = temp_type;
374 return temp_type_p;
375 }
376
377 f = HEADER_FILES (current_objfile) + real_filenum;
378
379 f_orig_length = f->length;
380 if (index >= f_orig_length)
381 {
382 while (index >= f->length)
383 {
384 f->length *= 2;
385 }
386 f->vector = (struct type **)
387 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
388 memset (&f->vector[f_orig_length], 0,
389 (f->length - f_orig_length) * sizeof (struct type *));
390 }
391 return (&f->vector[index]);
392 }
393 }
394
395 /* Make sure there is a type allocated for type numbers TYPENUMS
396 and return the type object.
397 This can create an empty (zeroed) type object.
398 TYPENUMS may be (-1, -1) to return a new type object that is not
399 put into the type vector, and so may not be referred to by number. */
400
401 static struct type *
402 dbx_alloc_type (int typenums[2], struct objfile *objfile)
403 {
404 register struct type **type_addr;
405
406 if (typenums[0] == -1)
407 {
408 return (alloc_type (objfile));
409 }
410
411 type_addr = dbx_lookup_type (typenums);
412
413 /* If we are referring to a type not known at all yet,
414 allocate an empty type for it.
415 We will fill it in later if we find out how. */
416 if (*type_addr == 0)
417 {
418 *type_addr = alloc_type (objfile);
419 }
420
421 return (*type_addr);
422 }
423
424 /* for all the stabs in a given stab vector, build appropriate types
425 and fix their symbols in given symbol vector. */
426
427 static void
428 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
429 struct objfile *objfile)
430 {
431 int ii;
432 char *name;
433 char *pp;
434 struct symbol *sym;
435
436 if (stabs)
437 {
438
439 /* for all the stab entries, find their corresponding symbols and
440 patch their types! */
441
442 for (ii = 0; ii < stabs->count; ++ii)
443 {
444 name = stabs->stab[ii];
445 pp = (char *) strchr (name, ':');
446 while (pp[1] == ':')
447 {
448 pp += 2;
449 pp = (char *) strchr (pp, ':');
450 }
451 sym = find_symbol_in_list (symbols, name, pp - name);
452 if (!sym)
453 {
454 /* FIXME-maybe: it would be nice if we noticed whether
455 the variable was defined *anywhere*, not just whether
456 it is defined in this compilation unit. But neither
457 xlc or GCC seem to need such a definition, and until
458 we do psymtabs (so that the minimal symbols from all
459 compilation units are available now), I'm not sure
460 how to get the information. */
461
462 /* On xcoff, if a global is defined and never referenced,
463 ld will remove it from the executable. There is then
464 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
465 sym = (struct symbol *)
466 obstack_alloc (&objfile->symbol_obstack,
467 sizeof (struct symbol));
468
469 memset (sym, 0, sizeof (struct symbol));
470 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
471 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
472 SYMBOL_NAME (sym) =
473 obsavestring (name, pp - name, &objfile->symbol_obstack);
474 pp += 2;
475 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
476 {
477 /* I don't think the linker does this with functions,
478 so as far as I know this is never executed.
479 But it doesn't hurt to check. */
480 SYMBOL_TYPE (sym) =
481 lookup_function_type (read_type (&pp, objfile));
482 }
483 else
484 {
485 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
486 }
487 add_symbol_to_list (sym, &global_symbols);
488 }
489 else
490 {
491 pp += 2;
492 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
493 {
494 SYMBOL_TYPE (sym) =
495 lookup_function_type (read_type (&pp, objfile));
496 }
497 else
498 {
499 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
500 }
501 }
502 }
503 }
504 }
505 \f
506
507 /* Read a number by which a type is referred to in dbx data,
508 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
509 Just a single number N is equivalent to (0,N).
510 Return the two numbers by storing them in the vector TYPENUMS.
511 TYPENUMS will then be used as an argument to dbx_lookup_type.
512
513 Returns 0 for success, -1 for error. */
514
515 static int
516 read_type_number (register char **pp, register int *typenums)
517 {
518 int nbits;
519 if (**pp == '(')
520 {
521 (*pp)++;
522 typenums[0] = read_huge_number (pp, ',', &nbits);
523 if (nbits != 0)
524 return -1;
525 typenums[1] = read_huge_number (pp, ')', &nbits);
526 if (nbits != 0)
527 return -1;
528 }
529 else
530 {
531 typenums[0] = 0;
532 typenums[1] = read_huge_number (pp, 0, &nbits);
533 if (nbits != 0)
534 return -1;
535 }
536 return 0;
537 }
538 \f
539
540 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
541 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
542 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
543 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
544
545 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
546 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
547
548 /* This code added to support parsing of ARM/Cfront stabs strings */
549
550 /* Get substring from string up to char c, advance string pointer past
551 suibstring. */
552
553 static char *
554 get_substring (char **p, int c)
555 {
556 char *str;
557 str = *p;
558 *p = strchr (*p, c);
559 if (*p)
560 {
561 **p = 0;
562 (*p)++;
563 }
564 else
565 str = 0;
566 return str;
567 }
568
569 /* Physname gets strcat'd onto sname in order to recreate the mangled
570 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
571 the physname look like that of g++ - take out the initial mangling
572 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
573
574 static char *
575 get_cfront_method_physname (char *fname)
576 {
577 int len = 0;
578 /* FIXME would like to make this generic for g++ too, but
579 that is already handled in read_member_funcctions */
580 char *p = fname;
581
582 /* search ahead to find the start of the mangled suffix */
583 if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
584 p += 2;
585 while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
586 p = strchr (p, '_');
587 if (!(p && *p == '_' && *(p + 1) == '_'))
588 error ("Invalid mangled function name %s", fname);
589 p += 2; /* advance past '__' */
590
591 /* struct name length and name of type should come next; advance past it */
592 while (isdigit (*p))
593 {
594 len = len * 10 + (*p - '0');
595 p++;
596 }
597 p += len;
598
599 return p;
600 }
601
602 /* Read base classes within cfront class definition.
603 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
604 ^^^^^^^^^^^^^^^^^^
605
606 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
607 ^
608 */
609
610 static int
611 read_cfront_baseclasses (struct field_info *fip, char **pp, struct type *type,
612 struct objfile *objfile)
613 {
614 static struct complaint msg_unknown =
615 {"\
616 Unsupported token in stabs string %s.\n",
617 0, 0};
618 static struct complaint msg_notfound =
619 {"\
620 Unable to find base type for %s.\n",
621 0, 0};
622 int bnum = 0;
623 char *p;
624 int i;
625 struct nextfield *new;
626
627 if (**pp == ';') /* no base classes; return */
628 {
629 ++(*pp);
630 return 1;
631 }
632
633 /* first count base classes so we can allocate space before parsing */
634 for (p = *pp; p && *p && *p != ';'; p++)
635 {
636 if (*p == ' ')
637 bnum++;
638 }
639 bnum++; /* add one more for last one */
640
641 /* now parse the base classes until we get to the start of the methods
642 (code extracted and munged from read_baseclasses) */
643 ALLOCATE_CPLUS_STRUCT_TYPE (type);
644 TYPE_N_BASECLASSES (type) = bnum;
645
646 /* allocate space */
647 {
648 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
649 char *pointer;
650
651 pointer = (char *) TYPE_ALLOC (type, num_bytes);
652 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
653 }
654 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
655
656 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
657 {
658 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
659 make_cleanup (xfree, new);
660 memset (new, 0, sizeof (struct nextfield));
661 new->next = fip->list;
662 fip->list = new;
663 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
664
665 STABS_CONTINUE (pp, objfile);
666
667 /* virtual? eg: v2@Bvir */
668 if (**pp == 'v')
669 {
670 SET_TYPE_FIELD_VIRTUAL (type, i);
671 ++(*pp);
672 }
673
674 /* access? eg: 2@Bvir */
675 /* Note: protected inheritance not supported in cfront */
676 switch (*(*pp)++)
677 {
678 case CFRONT_VISIBILITY_PRIVATE:
679 new->visibility = VISIBILITY_PRIVATE;
680 break;
681 case CFRONT_VISIBILITY_PUBLIC:
682 new->visibility = VISIBILITY_PUBLIC;
683 break;
684 default:
685 /* Bad visibility format. Complain and treat it as
686 public. */
687 {
688 static struct complaint msg =
689 {
690 "Unknown visibility `%c' for baseclass", 0, 0};
691 complain (&msg, new->visibility);
692 new->visibility = VISIBILITY_PUBLIC;
693 }
694 }
695
696 /* "@" comes next - eg: @Bvir */
697 if (**pp != '@')
698 {
699 complain (&msg_unknown, *pp);
700 return 1;
701 }
702 ++(*pp);
703
704
705 /* Set the bit offset of the portion of the object corresponding
706 to this baseclass. Always zero in the absence of
707 multiple inheritance. */
708 /* Unable to read bit position from stabs;
709 Assuming no multiple inheritance for now FIXME! */
710 /* We may have read this in the structure definition;
711 now we should fixup the members to be the actual base classes */
712 FIELD_BITPOS (new->field) = 0;
713
714 /* Get the base class name and type */
715 {
716 char *bname; /* base class name */
717 struct symbol *bsym; /* base class */
718 char *p1, *p2;
719 p1 = strchr (*pp, ' ');
720 p2 = strchr (*pp, ';');
721 if (p1 < p2)
722 bname = get_substring (pp, ' ');
723 else
724 bname = get_substring (pp, ';');
725 if (!bname || !*bname)
726 {
727 complain (&msg_unknown, *pp);
728 return 1;
729 }
730 /* FIXME! attach base info to type */
731 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name */
732 if (bsym)
733 {
734 new->field.type = SYMBOL_TYPE (bsym);
735 new->field.name = type_name_no_tag (new->field.type);
736 }
737 else
738 {
739 complain (&msg_notfound, *pp);
740 return 1;
741 }
742 }
743
744 /* If more base classes to parse, loop again.
745 We ate the last ' ' or ';' in get_substring,
746 so on exit we will have skipped the trailing ';' */
747 /* if invalid, return 0; add code to detect - FIXME! */
748 }
749 return 1;
750 }
751
752 /* read cfront member functions.
753 pp points to string starting with list of functions
754 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
755 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
757 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
758 */
759
760 static int
761 read_cfront_member_functions (struct field_info *fip, char **pp,
762 struct type *type, struct objfile *objfile)
763 {
764 /* This code extracted from read_member_functions
765 so as to do the similar thing for our funcs */
766
767 int nfn_fields = 0;
768 int length = 0;
769 /* Total number of member functions defined in this class. If the class
770 defines two `f' functions, and one `g' function, then this will have
771 the value 3. */
772 int total_length = 0;
773 int i;
774 struct next_fnfield
775 {
776 struct next_fnfield *next;
777 struct fn_field fn_field;
778 }
779 *sublist;
780 struct type *look_ahead_type;
781 struct next_fnfieldlist *new_fnlist;
782 struct next_fnfield *new_sublist;
783 char *main_fn_name;
784 char *fname;
785 struct symbol *ref_func = 0;
786
787 /* Process each list until we find the end of the member functions.
788 eg: p = "__ct__1AFv foo__1AFv ;;;" */
789
790 STABS_CONTINUE (pp, objfile); /* handle \\ */
791
792 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
793 {
794 int is_static = 0;
795 int sublist_count = 0;
796 char *pname;
797 if (fname[0] == '*') /* static member */
798 {
799 is_static = 1;
800 sublist_count++;
801 fname++;
802 }
803 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
804 if (!ref_func)
805 {
806 static struct complaint msg =
807 {"\
808 Unable to find function symbol for %s\n",
809 0, 0};
810 complain (&msg, fname);
811 continue;
812 }
813 sublist = NULL;
814 look_ahead_type = NULL;
815 length = 0;
816
817 new_fnlist = (struct next_fnfieldlist *)
818 xmalloc (sizeof (struct next_fnfieldlist));
819 make_cleanup (xfree, new_fnlist);
820 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
821
822 /* The following is code to work around cfront generated stabs.
823 The stabs contains full mangled name for each field.
824 We try to demangle the name and extract the field name out of it. */
825 {
826 char *dem, *dem_p, *dem_args;
827 int dem_len;
828 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
829 if (dem != NULL)
830 {
831 dem_p = strrchr (dem, ':');
832 if (dem_p != 0 && *(dem_p - 1) == ':')
833 dem_p++;
834 /* get rid of args */
835 dem_args = strchr (dem_p, '(');
836 if (dem_args == NULL)
837 dem_len = strlen (dem_p);
838 else
839 dem_len = dem_args - dem_p;
840 main_fn_name =
841 obsavestring (dem_p, dem_len, &objfile->type_obstack);
842 }
843 else
844 {
845 main_fn_name =
846 obsavestring (fname, strlen (fname), &objfile->type_obstack);
847 }
848 } /* end of code for cfront work around */
849
850 new_fnlist->fn_fieldlist.name = main_fn_name;
851
852 /*-------------------------------------------------*/
853 /* Set up the sublists
854 Sublists are stuff like args, static, visibility, etc.
855 so in ARM, we have to set that info some other way.
856 Multiple sublists happen if overloading
857 eg: foo::26=##1;:;2A.;
858 In g++, we'd loop here thru all the sublists... */
859
860 new_sublist =
861 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
862 make_cleanup (xfree, new_sublist);
863 memset (new_sublist, 0, sizeof (struct next_fnfield));
864
865 /* eat 1; from :;2A.; */
866 new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
867 /* Make this type look like a method stub for gdb */
868 TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
869 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
870
871 /* If this is just a stub, then we don't have the real name here. */
872 if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
873 {
874 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
875 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
876 new_sublist->fn_field.is_stub = 1;
877 }
878
879 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
880 physname gets strcat'd in order to recreate the onto mangled name */
881 pname = get_cfront_method_physname (fname);
882 new_sublist->fn_field.physname = savestring (pname, strlen (pname));
883
884
885 /* Set this member function's visibility fields.
886 Unable to distinguish access from stabs definition!
887 Assuming public for now. FIXME!
888 (for private, set new_sublist->fn_field.is_private = 1,
889 for public, set new_sublist->fn_field.is_protected = 1) */
890
891 /* Unable to distinguish const/volatile from stabs definition!
892 Assuming normal for now. FIXME! */
893
894 new_sublist->fn_field.is_const = 0;
895 new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
896
897 /* Set virtual/static function info
898 How to get vtable offsets ?
899 Assuming normal for now FIXME!!
900 For vtables, figure out from whence this virtual function came.
901 It may belong to virtual function table of
902 one of its baseclasses.
903 set:
904 new_sublist -> fn_field.voffset = vtable offset,
905 new_sublist -> fn_field.fcontext = look_ahead_type;
906 where look_ahead_type is type of baseclass */
907 if (is_static)
908 new_sublist->fn_field.voffset = VOFFSET_STATIC;
909 else /* normal member function. */
910 new_sublist->fn_field.voffset = 0;
911 new_sublist->fn_field.fcontext = 0;
912
913
914 /* Prepare new sublist */
915 new_sublist->next = sublist;
916 sublist = new_sublist;
917 length++;
918
919 /* In g++, we loop thu sublists - now we set from functions. */
920 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
921 obstack_alloc (&objfile->type_obstack,
922 sizeof (struct fn_field) * length);
923 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
924 sizeof (struct fn_field) * length);
925 for (i = length; (i--, sublist); sublist = sublist->next)
926 {
927 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
928 }
929
930 new_fnlist->fn_fieldlist.length = length;
931 new_fnlist->next = fip->fnlist;
932 fip->fnlist = new_fnlist;
933 nfn_fields++;
934 total_length += length;
935 STABS_CONTINUE (pp, objfile); /* handle \\ */
936 } /* end of loop */
937
938 if (nfn_fields)
939 {
940 /* type should already have space */
941 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
942 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
943 memset (TYPE_FN_FIELDLISTS (type), 0,
944 sizeof (struct fn_fieldlist) * nfn_fields);
945 TYPE_NFN_FIELDS (type) = nfn_fields;
946 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
947 }
948
949 /* end of scope for reading member func */
950
951 /* eg: ";;" */
952
953 /* Skip trailing ';' and bump count of number of fields seen */
954 if (**pp == ';')
955 (*pp)++;
956 else
957 return 0;
958 return 1;
959 }
960
961 /* This routine fixes up partial cfront types that were created
962 while parsing the stabs. The main need for this function is
963 to add information such as methods to classes.
964 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
965 int
966 resolve_cfront_continuation (struct objfile *objfile, struct symbol *sym,
967 char *p)
968 {
969 struct symbol *ref_sym = 0;
970 char *sname;
971 /* snarfed from read_struct_type */
972 struct field_info fi;
973 struct type *type;
974 struct cleanup *back_to;
975
976 /* Need to make sure that fi isn't gunna conflict with struct
977 in case struct already had some fnfs */
978 fi.list = NULL;
979 fi.fnlist = NULL;
980 back_to = make_cleanup (null_cleanup, 0);
981
982 /* We only accept structs, classes and unions at the moment.
983 Other continuation types include t (typedef), r (long dbl), ...
984 We may want to add support for them as well;
985 right now they are handled by duplicating the symbol information
986 into the type information (see define_symbol) */
987 if (*p != 's' /* structs */
988 && *p != 'c' /* class */
989 && *p != 'u') /* union */
990 return 0; /* only handle C++ types */
991 p++;
992
993 /* Get symbol typs name and validate
994 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
995 sname = get_substring (&p, ';');
996 if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
997 error ("Internal error: base symbol type name does not match\n");
998
999 /* Find symbol's internal gdb reference using demangled_name.
1000 This is the real sym that we want;
1001 sym was a temp hack to make debugger happy */
1002 ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
1003 type = SYMBOL_TYPE (ref_sym);
1004
1005
1006 /* Now read the baseclasses, if any, read the regular C struct or C++
1007 class member fields, attach the fields to the type, read the C++
1008 member functions, attach them to the type, and then read any tilde
1009 field (baseclass specifier for the class holding the main vtable). */
1010
1011 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1012 /* g++ does this next, but cfront already did this:
1013 || !read_struct_fields (&fi, &p, type, objfile) */
1014 || !copy_cfront_struct_fields (&fi, type, objfile)
1015 || !read_cfront_member_functions (&fi, &p, type, objfile)
1016 || !read_cfront_static_fields (&fi, &p, type, objfile)
1017 || !attach_fields_to_type (&fi, type, objfile)
1018 || !attach_fn_fields_to_type (&fi, type)
1019 /* g++ does this next, but cfront doesn't seem to have this:
1020 || !read_tilde_fields (&fi, &p, type, objfile) */
1021 )
1022 {
1023 type = error_type (&p, objfile);
1024 }
1025
1026 do_cleanups (back_to);
1027 return 0;
1028 }
1029 /* End of code added to support parsing of ARM/Cfront stabs strings */
1030
1031
1032 /* This routine fixes up symbol references/aliases to point to the original
1033 symbol definition. Returns 0 on failure, non-zero on success. */
1034
1035 static int
1036 resolve_symbol_reference (struct objfile *objfile, struct symbol *sym, char *p)
1037 {
1038 int refnum;
1039 struct symbol *ref_sym = 0;
1040 struct alias_list *alias;
1041
1042 /* If this is not a symbol reference return now. */
1043 if (*p != '#')
1044 return 0;
1045
1046 /* Use "#<num>" as the name; we'll fix the name later.
1047 We stored the original symbol name as "#<id>=<name>"
1048 so we can now search for "#<id>" to resolving the reference.
1049 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1050
1051 /*---------------------------------------------------------*/
1052 /* Get the reference id number, and
1053 advance p past the names so we can parse the rest.
1054 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1055 /*---------------------------------------------------------*/
1056
1057 /* This gets reference name from string. sym may not have a name. */
1058
1059 /* Get the reference number associated with the reference id in the
1060 gdb stab string. From that reference number, get the main/primary
1061 symbol for this alias. */
1062 refnum = process_reference (&p);
1063 ref_sym = ref_search (refnum);
1064 if (!ref_sym)
1065 {
1066 complain (&lrs_general_complaint, "symbol for reference not found");
1067 return 0;
1068 }
1069
1070 /* Parse the stab of the referencing symbol
1071 now that we have the referenced symbol.
1072 Add it as a new symbol and a link back to the referenced symbol.
1073 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1074
1075
1076 /* If the stab symbol table and string contain:
1077 RSYM 0 5 00000000 868 #15=z:r(0,1)
1078 LBRAC 0 0 00000000 899 #5=
1079 SLINE 0 16 00000003 923 #6=
1080 Then the same symbols can be later referenced by:
1081 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1082 This is used in live range splitting to:
1083 1) specify that a symbol (#15) is actually just a new storage
1084 class for a symbol (#15=z) which was previously defined.
1085 2) specify that the beginning and ending ranges for a symbol
1086 (#15) are the values of the beginning (#5) and ending (#6)
1087 symbols. */
1088
1089 /* Read number as reference id.
1090 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1091 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1092 in case of "l(0,0)"? */
1093
1094 /*--------------------------------------------------*/
1095 /* Add this symbol to the reference list. */
1096 /*--------------------------------------------------*/
1097
1098 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1099 sizeof (struct alias_list));
1100 if (!alias)
1101 {
1102 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1103 return 0;
1104 }
1105
1106 alias->next = 0;
1107 alias->sym = sym;
1108
1109 if (!SYMBOL_ALIASES (ref_sym))
1110 {
1111 SYMBOL_ALIASES (ref_sym) = alias;
1112 }
1113 else
1114 {
1115 struct alias_list *temp;
1116
1117 /* Get to the end of the list. */
1118 for (temp = SYMBOL_ALIASES (ref_sym);
1119 temp->next;
1120 temp = temp->next)
1121 ;
1122 temp->next = alias;
1123 }
1124
1125 /* Want to fix up name so that other functions (eg. valops)
1126 will correctly print the name.
1127 Don't add_symbol_to_list so that lookup_symbol won't find it.
1128 nope... needed for fixups. */
1129 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1130
1131 /* Done! */
1132 return 1;
1133 }
1134
1135 /* Structure for storing pointers to reference definitions for fast lookup
1136 during "process_later". */
1137
1138 struct ref_map
1139 {
1140 char *stabs;
1141 CORE_ADDR value;
1142 struct symbol *sym;
1143 };
1144
1145 #define MAX_CHUNK_REFS 100
1146 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1147 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1148
1149 static struct ref_map *ref_map;
1150
1151 /* Ptr to free cell in chunk's linked list. */
1152 static int ref_count = 0;
1153
1154 /* Number of chunks malloced. */
1155 static int ref_chunk = 0;
1156
1157 /* This file maintains a cache of stabs aliases found in the symbol
1158 table. If the symbol table changes, this cache must be cleared
1159 or we are left holding onto data in invalid obstacks. */
1160 void
1161 stabsread_clear_cache (void)
1162 {
1163 ref_count = 0;
1164 ref_chunk = 0;
1165 }
1166
1167 /* Create array of pointers mapping refids to symbols and stab strings.
1168 Add pointers to reference definition symbols and/or their values as we
1169 find them, using their reference numbers as our index.
1170 These will be used later when we resolve references. */
1171 void
1172 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
1173 {
1174 if (ref_count == 0)
1175 ref_chunk = 0;
1176 if (refnum >= ref_count)
1177 ref_count = refnum + 1;
1178 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1179 {
1180 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1181 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1182 ref_map = (struct ref_map *)
1183 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1184 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1185 ref_chunk += new_chunks;
1186 }
1187 ref_map[refnum].stabs = stabs;
1188 ref_map[refnum].sym = sym;
1189 ref_map[refnum].value = value;
1190 }
1191
1192 /* Return defined sym for the reference REFNUM. */
1193 struct symbol *
1194 ref_search (int refnum)
1195 {
1196 if (refnum < 0 || refnum > ref_count)
1197 return 0;
1198 return ref_map[refnum].sym;
1199 }
1200
1201 /* Return value for the reference REFNUM. */
1202
1203 static CORE_ADDR
1204 ref_search_value (int refnum)
1205 {
1206 if (refnum < 0 || refnum > ref_count)
1207 return 0;
1208 return ref_map[refnum].value;
1209 }
1210
1211 /* Parse a reference id in STRING and return the resulting
1212 reference number. Move STRING beyond the reference id. */
1213
1214 static int
1215 process_reference (char **string)
1216 {
1217 char *p;
1218 int refnum = 0;
1219
1220 if (**string != '#')
1221 return 0;
1222
1223 /* Advance beyond the initial '#'. */
1224 p = *string + 1;
1225
1226 /* Read number as reference id. */
1227 while (*p && isdigit (*p))
1228 {
1229 refnum = refnum * 10 + *p - '0';
1230 p++;
1231 }
1232 *string = p;
1233 return refnum;
1234 }
1235
1236 /* If STRING defines a reference, store away a pointer to the reference
1237 definition for later use. Return the reference number. */
1238
1239 int
1240 symbol_reference_defined (char **string)
1241 {
1242 char *p = *string;
1243 int refnum = 0;
1244
1245 refnum = process_reference (&p);
1246
1247 /* Defining symbols end in '=' */
1248 if (*p == '=')
1249 {
1250 /* Symbol is being defined here. */
1251 *string = p + 1;
1252 return refnum;
1253 }
1254 else
1255 {
1256 /* Must be a reference. Either the symbol has already been defined,
1257 or this is a forward reference to it. */
1258 *string = p;
1259 return -1;
1260 }
1261 }
1262
1263 /* ARGSUSED */
1264 struct symbol *
1265 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
1266 struct objfile *objfile)
1267 {
1268 register struct symbol *sym;
1269 char *p = (char *) strchr (string, ':');
1270 int deftype;
1271 int synonym = 0;
1272 register int i;
1273
1274 /* We would like to eliminate nameless symbols, but keep their types.
1275 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1276 to type 2, but, should not create a symbol to address that type. Since
1277 the symbol will be nameless, there is no way any user can refer to it. */
1278
1279 int nameless;
1280
1281 /* Ignore syms with empty names. */
1282 if (string[0] == 0)
1283 return 0;
1284
1285 /* Ignore old-style symbols from cc -go */
1286 if (p == 0)
1287 return 0;
1288
1289 while (p[1] == ':')
1290 {
1291 p += 2;
1292 p = strchr (p, ':');
1293 }
1294
1295 /* If a nameless stab entry, all we need is the type, not the symbol.
1296 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1297 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1298
1299 current_symbol = sym = (struct symbol *)
1300 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1301 memset (sym, 0, sizeof (struct symbol));
1302
1303 switch (type & N_TYPE)
1304 {
1305 case N_TEXT:
1306 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
1307 break;
1308 case N_DATA:
1309 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
1310 break;
1311 case N_BSS:
1312 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
1313 break;
1314 }
1315
1316 if (processing_gcc_compilation)
1317 {
1318 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1319 number of bytes occupied by a type or object, which we ignore. */
1320 SYMBOL_LINE (sym) = desc;
1321 }
1322 else
1323 {
1324 SYMBOL_LINE (sym) = 0; /* unknown */
1325 }
1326
1327 if (is_cplus_marker (string[0]))
1328 {
1329 /* Special GNU C++ names. */
1330 switch (string[1])
1331 {
1332 case 't':
1333 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1334 &objfile->symbol_obstack);
1335 break;
1336
1337 case 'v': /* $vtbl_ptr_type */
1338 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1339 goto normal;
1340
1341 case 'e':
1342 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1343 &objfile->symbol_obstack);
1344 break;
1345
1346 case '_':
1347 /* This was an anonymous type that was never fixed up. */
1348 goto normal;
1349
1350 #ifdef STATIC_TRANSFORM_NAME
1351 case 'X':
1352 /* SunPRO (3.0 at least) static variable encoding. */
1353 goto normal;
1354 #endif
1355
1356 default:
1357 complain (&unrecognized_cplus_name_complaint, string);
1358 goto normal; /* Do *something* with it */
1359 }
1360 }
1361 else if (string[0] == '#')
1362 {
1363 /* Special GNU C extension for referencing symbols. */
1364 char *s;
1365 int refnum, nlen;
1366
1367 /* If STRING defines a new reference id, then add it to the
1368 reference map. Else it must be referring to a previously
1369 defined symbol, so add it to the alias list of the previously
1370 defined symbol. */
1371 s = string;
1372 refnum = symbol_reference_defined (&s);
1373 if (refnum >= 0)
1374 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1375 else if (!resolve_symbol_reference (objfile, sym, string))
1376 return NULL;
1377
1378 /* S..P contains the name of the symbol. We need to store
1379 the correct name into SYMBOL_NAME. */
1380 nlen = p - s;
1381 if (refnum >= 0)
1382 {
1383 if (nlen > 0)
1384 {
1385 SYMBOL_NAME (sym) = (char *)
1386 obstack_alloc (&objfile->symbol_obstack, nlen);
1387 strncpy (SYMBOL_NAME (sym), s, nlen);
1388 SYMBOL_NAME (sym)[nlen] = '\0';
1389 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1390 }
1391 else
1392 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1393 Get error if leave name 0. So give it something. */
1394 {
1395 nlen = p - string;
1396 SYMBOL_NAME (sym) = (char *)
1397 obstack_alloc (&objfile->symbol_obstack, nlen);
1398 strncpy (SYMBOL_NAME (sym), string, nlen);
1399 SYMBOL_NAME (sym)[nlen] = '\0';
1400 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1401 }
1402 }
1403 /* Advance STRING beyond the reference id. */
1404 string = s;
1405 }
1406 else
1407 {
1408 normal:
1409 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1410 SYMBOL_NAME (sym) = (char *)
1411 obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
1412 /* Open-coded memcpy--saves function call time. */
1413 /* FIXME: Does it really? Try replacing with simple strcpy and
1414 try it on an executable with a large symbol table. */
1415 /* FIXME: considering that gcc can open code memcpy anyway, I
1416 doubt it. xoxorich. */
1417 {
1418 register char *p1 = string;
1419 register char *p2 = SYMBOL_NAME (sym);
1420 while (p1 != p)
1421 {
1422 *p2++ = *p1++;
1423 }
1424 *p2++ = '\0';
1425 }
1426
1427 /* If this symbol is from a C++ compilation, then attempt to cache the
1428 demangled form for future reference. This is a typical time versus
1429 space tradeoff, that was decided in favor of time because it sped up
1430 C++ symbol lookups by a factor of about 20. */
1431
1432 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1433 }
1434 p++;
1435
1436 /* Determine the type of name being defined. */
1437 #if 0
1438 /* Getting GDB to correctly skip the symbol on an undefined symbol
1439 descriptor and not ever dump core is a very dodgy proposition if
1440 we do things this way. I say the acorn RISC machine can just
1441 fix their compiler. */
1442 /* The Acorn RISC machine's compiler can put out locals that don't
1443 start with "234=" or "(3,4)=", so assume anything other than the
1444 deftypes we know how to handle is a local. */
1445 if (!strchr ("cfFGpPrStTvVXCR", *p))
1446 #else
1447 if (isdigit (*p) || *p == '(' || *p == '-')
1448 #endif
1449 deftype = 'l';
1450 else
1451 deftype = *p++;
1452
1453 switch (deftype)
1454 {
1455 case 'c':
1456 /* c is a special case, not followed by a type-number.
1457 SYMBOL:c=iVALUE for an integer constant symbol.
1458 SYMBOL:c=rVALUE for a floating constant symbol.
1459 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1460 e.g. "b:c=e6,0" for "const b = blob1"
1461 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1462 if (*p != '=')
1463 {
1464 SYMBOL_CLASS (sym) = LOC_CONST;
1465 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1466 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1467 add_symbol_to_list (sym, &file_symbols);
1468 return sym;
1469 }
1470 ++p;
1471 switch (*p++)
1472 {
1473 case 'r':
1474 {
1475 double d = atof (p);
1476 char *dbl_valu;
1477
1478 /* FIXME-if-picky-about-floating-accuracy: Should be using
1479 target arithmetic to get the value. real.c in GCC
1480 probably has the necessary code. */
1481
1482 /* FIXME: lookup_fundamental_type is a hack. We should be
1483 creating a type especially for the type of float constants.
1484 Problem is, what type should it be?
1485
1486 Also, what should the name of this type be? Should we
1487 be using 'S' constants (see stabs.texinfo) instead? */
1488
1489 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1490 FT_DBL_PREC_FLOAT);
1491 dbl_valu = (char *)
1492 obstack_alloc (&objfile->symbol_obstack,
1493 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1494 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
1495 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1496 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1497 }
1498 break;
1499 case 'i':
1500 {
1501 /* Defining integer constants this way is kind of silly,
1502 since 'e' constants allows the compiler to give not
1503 only the value, but the type as well. C has at least
1504 int, long, unsigned int, and long long as constant
1505 types; other languages probably should have at least
1506 unsigned as well as signed constants. */
1507
1508 /* We just need one int constant type for all objfiles.
1509 It doesn't depend on languages or anything (arguably its
1510 name should be a language-specific name for a type of
1511 that size, but I'm inclined to say that if the compiler
1512 wants a nice name for the type, it can use 'e'). */
1513 static struct type *int_const_type;
1514
1515 /* Yes, this is as long as a *host* int. That is because we
1516 use atoi. */
1517 if (int_const_type == NULL)
1518 int_const_type =
1519 init_type (TYPE_CODE_INT,
1520 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1521 "integer constant",
1522 (struct objfile *) NULL);
1523 SYMBOL_TYPE (sym) = int_const_type;
1524 SYMBOL_VALUE (sym) = atoi (p);
1525 SYMBOL_CLASS (sym) = LOC_CONST;
1526 }
1527 break;
1528 case 'e':
1529 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1530 can be represented as integral.
1531 e.g. "b:c=e6,0" for "const b = blob1"
1532 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1533 {
1534 SYMBOL_CLASS (sym) = LOC_CONST;
1535 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1536
1537 if (*p != ',')
1538 {
1539 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1540 break;
1541 }
1542 ++p;
1543
1544 /* If the value is too big to fit in an int (perhaps because
1545 it is unsigned), or something like that, we silently get
1546 a bogus value. The type and everything else about it is
1547 correct. Ideally, we should be using whatever we have
1548 available for parsing unsigned and long long values,
1549 however. */
1550 SYMBOL_VALUE (sym) = atoi (p);
1551 }
1552 break;
1553 default:
1554 {
1555 SYMBOL_CLASS (sym) = LOC_CONST;
1556 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1557 }
1558 }
1559 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1560 add_symbol_to_list (sym, &file_symbols);
1561 return sym;
1562
1563 case 'C':
1564 /* The name of a caught exception. */
1565 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1566 SYMBOL_CLASS (sym) = LOC_LABEL;
1567 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1568 SYMBOL_VALUE_ADDRESS (sym) = valu;
1569 add_symbol_to_list (sym, &local_symbols);
1570 break;
1571
1572 case 'f':
1573 /* A static function definition. */
1574 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1575 SYMBOL_CLASS (sym) = LOC_BLOCK;
1576 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1577 add_symbol_to_list (sym, &file_symbols);
1578 /* fall into process_function_types. */
1579
1580 process_function_types:
1581 /* Function result types are described as the result type in stabs.
1582 We need to convert this to the function-returning-type-X type
1583 in GDB. E.g. "int" is converted to "function returning int". */
1584 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1585 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1586
1587 /* All functions in C++ have prototypes. */
1588 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1589 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1590
1591 /* fall into process_prototype_types */
1592
1593 process_prototype_types:
1594 /* Sun acc puts declared types of arguments here. */
1595 if (*p == ';')
1596 {
1597 struct type *ftype = SYMBOL_TYPE (sym);
1598 int nsemi = 0;
1599 int nparams = 0;
1600 char *p1 = p;
1601
1602 /* Obtain a worst case guess for the number of arguments
1603 by counting the semicolons. */
1604 while (*p1)
1605 {
1606 if (*p1++ == ';')
1607 nsemi++;
1608 }
1609
1610 /* Allocate parameter information fields and fill them in. */
1611 TYPE_FIELDS (ftype) = (struct field *)
1612 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1613 while (*p++ == ';')
1614 {
1615 struct type *ptype;
1616
1617 /* A type number of zero indicates the start of varargs.
1618 FIXME: GDB currently ignores vararg functions. */
1619 if (p[0] == '0' && p[1] == '\0')
1620 break;
1621 ptype = read_type (&p, objfile);
1622
1623 /* The Sun compilers mark integer arguments, which should
1624 be promoted to the width of the calling conventions, with
1625 a type which references itself. This type is turned into
1626 a TYPE_CODE_VOID type by read_type, and we have to turn
1627 it back into builtin_type_int here.
1628 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1629 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1630 ptype = builtin_type_int;
1631 TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
1632 }
1633 TYPE_NFIELDS (ftype) = nparams;
1634 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1635 }
1636 break;
1637
1638 case 'F':
1639 /* A global function definition. */
1640 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1641 SYMBOL_CLASS (sym) = LOC_BLOCK;
1642 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1643 add_symbol_to_list (sym, &global_symbols);
1644 goto process_function_types;
1645
1646 case 'G':
1647 /* For a class G (global) symbol, it appears that the
1648 value is not correct. It is necessary to search for the
1649 corresponding linker definition to find the value.
1650 These definitions appear at the end of the namelist. */
1651 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1652 SYMBOL_CLASS (sym) = LOC_STATIC;
1653 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1654 /* Don't add symbol references to global_sym_chain.
1655 Symbol references don't have valid names and wont't match up with
1656 minimal symbols when the global_sym_chain is relocated.
1657 We'll fixup symbol references when we fixup the defining symbol. */
1658 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1659 {
1660 i = hashname (SYMBOL_NAME (sym));
1661 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1662 global_sym_chain[i] = sym;
1663 }
1664 add_symbol_to_list (sym, &global_symbols);
1665 break;
1666
1667 /* This case is faked by a conditional above,
1668 when there is no code letter in the dbx data.
1669 Dbx data never actually contains 'l'. */
1670 case 's':
1671 case 'l':
1672 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1673 SYMBOL_CLASS (sym) = LOC_LOCAL;
1674 SYMBOL_VALUE (sym) = valu;
1675 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1676 add_symbol_to_list (sym, &local_symbols);
1677 break;
1678
1679 case 'p':
1680 if (*p == 'F')
1681 /* pF is a two-letter code that means a function parameter in Fortran.
1682 The type-number specifies the type of the return value.
1683 Translate it into a pointer-to-function type. */
1684 {
1685 p++;
1686 SYMBOL_TYPE (sym)
1687 = lookup_pointer_type
1688 (lookup_function_type (read_type (&p, objfile)));
1689 }
1690 else
1691 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1692
1693 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1694 can also be a LOC_LOCAL_ARG depending on symbol type. */
1695 #ifndef DBX_PARM_SYMBOL_CLASS
1696 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1697 #endif
1698
1699 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1700 SYMBOL_VALUE (sym) = valu;
1701 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1702 add_symbol_to_list (sym, &local_symbols);
1703
1704 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
1705 {
1706 /* On little-endian machines, this crud is never necessary,
1707 and, if the extra bytes contain garbage, is harmful. */
1708 break;
1709 }
1710
1711 /* If it's gcc-compiled, if it says `short', believe it. */
1712 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1713 break;
1714
1715 if (!BELIEVE_PCC_PROMOTION)
1716 {
1717 /* This is the signed type which arguments get promoted to. */
1718 static struct type *pcc_promotion_type;
1719 /* This is the unsigned type which arguments get promoted to. */
1720 static struct type *pcc_unsigned_promotion_type;
1721
1722 /* Call it "int" because this is mainly C lossage. */
1723 if (pcc_promotion_type == NULL)
1724 pcc_promotion_type =
1725 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1726 0, "int", NULL);
1727
1728 if (pcc_unsigned_promotion_type == NULL)
1729 pcc_unsigned_promotion_type =
1730 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1731 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1732
1733 if (BELIEVE_PCC_PROMOTION_TYPE)
1734 {
1735 /* This is defined on machines (e.g. sparc) where we
1736 should believe the type of a PCC 'short' argument,
1737 but shouldn't believe the address (the address is the
1738 address of the corresponding int).
1739
1740 My guess is that this correction, as opposed to
1741 changing the parameter to an 'int' (as done below,
1742 for PCC on most machines), is the right thing to do
1743 on all machines, but I don't want to risk breaking
1744 something that already works. On most PCC machines,
1745 the sparc problem doesn't come up because the calling
1746 function has to zero the top bytes (not knowing
1747 whether the called function wants an int or a short),
1748 so there is little practical difference between an
1749 int and a short (except perhaps what happens when the
1750 GDB user types "print short_arg = 0x10000;").
1751
1752 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1753 compiler actually produces the correct address (we
1754 don't need to fix it up). I made this code adapt so
1755 that it will offset the symbol if it was pointing at
1756 an int-aligned location and not otherwise. This way
1757 you can use the same gdb for 4.0.x and 4.1 systems.
1758
1759 If the parameter is shorter than an int, and is
1760 integral (e.g. char, short, or unsigned equivalent),
1761 and is claimed to be passed on an integer boundary,
1762 don't believe it! Offset the parameter's address to
1763 the tail-end of that integer. */
1764
1765 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1766 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1767 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1768 {
1769 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1770 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1771 }
1772 break;
1773 }
1774 else
1775 {
1776 /* If PCC says a parameter is a short or a char,
1777 it is really an int. */
1778 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1779 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1780 {
1781 SYMBOL_TYPE (sym) =
1782 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1783 ? pcc_unsigned_promotion_type
1784 : pcc_promotion_type;
1785 }
1786 break;
1787 }
1788 }
1789
1790 case 'P':
1791 /* acc seems to use P to declare the prototypes of functions that
1792 are referenced by this file. gdb is not prepared to deal
1793 with this extra information. FIXME, it ought to. */
1794 if (type == N_FUN)
1795 {
1796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1797 goto process_prototype_types;
1798 }
1799 /*FALLTHROUGH */
1800
1801 case 'R':
1802 /* Parameter which is in a register. */
1803 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1804 SYMBOL_CLASS (sym) = LOC_REGPARM;
1805 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1806 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1807 {
1808 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1809 NUM_REGS + NUM_PSEUDO_REGS,
1810 SYMBOL_SOURCE_NAME (sym));
1811 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1812 }
1813 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1814 add_symbol_to_list (sym, &local_symbols);
1815 break;
1816
1817 case 'r':
1818 /* Register variable (either global or local). */
1819 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1820 SYMBOL_CLASS (sym) = LOC_REGISTER;
1821 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1822 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1823 {
1824 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1825 NUM_REGS + NUM_PSEUDO_REGS,
1826 SYMBOL_SOURCE_NAME (sym));
1827 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1828 }
1829 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1830 if (within_function)
1831 {
1832 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1833 name to represent an argument passed in a register.
1834 GCC uses 'P' for the same case. So if we find such a symbol pair
1835 we combine it into one 'P' symbol. For Sun cc we need to do this
1836 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1837 the 'p' symbol even if it never saves the argument onto the stack.
1838
1839 On most machines, we want to preserve both symbols, so that
1840 we can still get information about what is going on with the
1841 stack (VAX for computing args_printed, using stack slots instead
1842 of saved registers in backtraces, etc.).
1843
1844 Note that this code illegally combines
1845 main(argc) struct foo argc; { register struct foo argc; }
1846 but this case is considered pathological and causes a warning
1847 from a decent compiler. */
1848
1849 if (local_symbols
1850 && local_symbols->nsyms > 0
1851 #ifndef USE_REGISTER_NOT_ARG
1852 && REG_STRUCT_HAS_ADDR_P ()
1853 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1854 SYMBOL_TYPE (sym))
1855 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1856 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1857 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1858 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1859 #endif
1860 )
1861 {
1862 struct symbol *prev_sym;
1863 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1864 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1865 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1866 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
1867 {
1868 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1869 /* Use the type from the LOC_REGISTER; that is the type
1870 that is actually in that register. */
1871 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1872 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1873 sym = prev_sym;
1874 break;
1875 }
1876 }
1877 add_symbol_to_list (sym, &local_symbols);
1878 }
1879 else
1880 add_symbol_to_list (sym, &file_symbols);
1881 break;
1882
1883 case 'S':
1884 /* Static symbol at top level of file */
1885 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1886 SYMBOL_CLASS (sym) = LOC_STATIC;
1887 SYMBOL_VALUE_ADDRESS (sym) = valu;
1888 #ifdef STATIC_TRANSFORM_NAME
1889 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1890 {
1891 struct minimal_symbol *msym;
1892 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1893 if (msym != NULL)
1894 {
1895 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1896 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1897 }
1898 }
1899 #endif
1900 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1901 add_symbol_to_list (sym, &file_symbols);
1902 break;
1903
1904 case 't':
1905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1906
1907 /* For a nameless type, we don't want a create a symbol, thus we
1908 did not use `sym'. Return without further processing. */
1909 if (nameless)
1910 return NULL;
1911
1912 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1913 SYMBOL_VALUE (sym) = valu;
1914 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1915 /* C++ vagaries: we may have a type which is derived from
1916 a base type which did not have its name defined when the
1917 derived class was output. We fill in the derived class's
1918 base part member's name here in that case. */
1919 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1920 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1921 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1922 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1923 {
1924 int j;
1925 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1926 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1927 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1928 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1929 }
1930
1931 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1932 {
1933 /* gcc-2.6 or later (when using -fvtable-thunks)
1934 emits a unique named type for a vtable entry.
1935 Some gdb code depends on that specific name. */
1936 extern const char vtbl_ptr_name[];
1937
1938 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1939 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1940 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1941 {
1942 /* If we are giving a name to a type such as "pointer to
1943 foo" or "function returning foo", we better not set
1944 the TYPE_NAME. If the program contains "typedef char
1945 *caddr_t;", we don't want all variables of type char
1946 * to print as caddr_t. This is not just a
1947 consequence of GDB's type management; PCC and GCC (at
1948 least through version 2.4) both output variables of
1949 either type char * or caddr_t with the type number
1950 defined in the 't' symbol for caddr_t. If a future
1951 compiler cleans this up it GDB is not ready for it
1952 yet, but if it becomes ready we somehow need to
1953 disable this check (without breaking the PCC/GCC2.4
1954 case).
1955
1956 Sigh.
1957
1958 Fortunately, this check seems not to be necessary
1959 for anything except pointers or functions. */
1960 /* ezannoni: 2000-10-26. This seems to apply for
1961 versions of gcc older than 2.8. This was the original
1962 problem: with the following code gdb would tell that
1963 the type for name1 is caddr_t, and func is char()
1964 typedef char *caddr_t;
1965 char *name2;
1966 struct x
1967 {
1968 char *name1;
1969 } xx;
1970 char *func()
1971 {
1972 }
1973 main () {}
1974 */
1975
1976 /* Pascal accepts names for pointer types. */
1977 if (current_subfile->language == language_pascal)
1978 {
1979 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1980 }
1981 }
1982 else
1983 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1984 }
1985
1986 add_symbol_to_list (sym, &file_symbols);
1987 break;
1988
1989 case 'T':
1990 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1991 by 't' which means we are typedef'ing it as well. */
1992 synonym = *p == 't';
1993
1994 if (synonym)
1995 p++;
1996 /* The semantics of C++ state that "struct foo { ... }" also defines
1997 a typedef for "foo". Unfortunately, cfront never makes the typedef
1998 when translating C++ into C. We make the typedef here so that
1999 "ptype foo" works as expected for cfront translated code. */
2000 else if (current_subfile->language == language_cplus)
2001 synonym = 1;
2002
2003 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2004
2005 /* For a nameless type, we don't want a create a symbol, thus we
2006 did not use `sym'. Return without further processing. */
2007 if (nameless)
2008 return NULL;
2009
2010 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2011 SYMBOL_VALUE (sym) = valu;
2012 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2013 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2014 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2015 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2016 add_symbol_to_list (sym, &file_symbols);
2017
2018 if (synonym)
2019 {
2020 /* Clone the sym and then modify it. */
2021 register struct symbol *typedef_sym = (struct symbol *)
2022 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2023 *typedef_sym = *sym;
2024 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2025 SYMBOL_VALUE (typedef_sym) = valu;
2026 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2027 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2028 TYPE_NAME (SYMBOL_TYPE (sym))
2029 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2030 add_symbol_to_list (typedef_sym, &file_symbols);
2031 }
2032 break;
2033
2034 case 'V':
2035 /* Static symbol of local scope */
2036 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2037 SYMBOL_CLASS (sym) = LOC_STATIC;
2038 SYMBOL_VALUE_ADDRESS (sym) = valu;
2039 #ifdef STATIC_TRANSFORM_NAME
2040 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2041 {
2042 struct minimal_symbol *msym;
2043 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2044 if (msym != NULL)
2045 {
2046 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2047 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2048 }
2049 }
2050 #endif
2051 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2052 if (os9k_stabs)
2053 add_symbol_to_list (sym, &global_symbols);
2054 else
2055 add_symbol_to_list (sym, &local_symbols);
2056 break;
2057
2058 case 'v':
2059 /* Reference parameter */
2060 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2061 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2062 SYMBOL_VALUE (sym) = valu;
2063 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2064 add_symbol_to_list (sym, &local_symbols);
2065 break;
2066
2067 case 'a':
2068 /* Reference parameter which is in a register. */
2069 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2070 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2071 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2072 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
2073 {
2074 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
2075 NUM_REGS + NUM_PSEUDO_REGS,
2076 SYMBOL_SOURCE_NAME (sym));
2077 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2078 }
2079 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2080 add_symbol_to_list (sym, &local_symbols);
2081 break;
2082
2083 case 'X':
2084 /* This is used by Sun FORTRAN for "function result value".
2085 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2086 that Pascal uses it too, but when I tried it Pascal used
2087 "x:3" (local symbol) instead. */
2088 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2089 SYMBOL_CLASS (sym) = LOC_LOCAL;
2090 SYMBOL_VALUE (sym) = valu;
2091 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2092 add_symbol_to_list (sym, &local_symbols);
2093 break;
2094
2095 /* New code added to support cfront stabs strings.
2096 Note: case 'P' already handled above */
2097 case 'Z':
2098 /* Cfront type continuation coming up!
2099 Find the original definition and add to it.
2100 We'll have to do this for the typedef too,
2101 since we cloned the symbol to define a type in read_type.
2102 Stabs info examples:
2103 __1C :Ztl
2104 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2105 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2106 where C is the name of the class.
2107 Unfortunately, we can't lookup the original symbol yet 'cuz
2108 we haven't finished reading all the symbols.
2109 Instead, we save it for processing later */
2110 process_later (sym, p, resolve_cfront_continuation);
2111 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2112 SYMBOL_CLASS (sym) = LOC_CONST;
2113 SYMBOL_VALUE (sym) = 0;
2114 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2115 /* Don't add to list - we'll delete it later when
2116 we add the continuation to the real sym */
2117 return sym;
2118 /* End of new code added to support cfront stabs strings */
2119
2120 default:
2121 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2122 SYMBOL_CLASS (sym) = LOC_CONST;
2123 SYMBOL_VALUE (sym) = 0;
2124 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2125 add_symbol_to_list (sym, &file_symbols);
2126 break;
2127 }
2128
2129 /* When passing structures to a function, some systems sometimes pass
2130 the address in a register, not the structure itself. */
2131
2132 if (REG_STRUCT_HAS_ADDR_P ()
2133 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2134 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2135 {
2136 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2137
2138 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2139 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2140 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2141 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2142 {
2143 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2144 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2145 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2146 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2147 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2148 and subsequent arguments on the sparc, for example). */
2149 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2150 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2151 }
2152 }
2153
2154 /* Is there more to parse? For example LRS/alias information? */
2155 while (*p && *p == ';')
2156 {
2157 p++;
2158 if (*p && p[0] == 'l' && p[1] == '(')
2159 {
2160 /* GNU extensions for live range splitting may be appended to
2161 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2162
2163 /* Resolve the live range and add it to SYM's live range list. */
2164 if (!resolve_live_range (objfile, sym, p))
2165 return NULL;
2166
2167 /* Find end of live range info. */
2168 p = strchr (p, ')');
2169 if (!*p || *p != ')')
2170 {
2171 complain (&lrs_general_complaint, "live range format not recognized");
2172 return NULL;
2173 }
2174 p++;
2175 }
2176 }
2177 return sym;
2178 }
2179
2180 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2181 non-zero on success, zero otherwise. */
2182
2183 static int
2184 resolve_live_range (struct objfile *objfile, struct symbol *sym, char *p)
2185 {
2186 int refnum;
2187 CORE_ADDR start, end;
2188
2189 /* Sanity check the beginning of the stabs string. */
2190 if (!*p || *p != 'l')
2191 {
2192 complain (&lrs_general_complaint, "live range string 1");
2193 return 0;
2194 }
2195 p++;
2196
2197 if (!*p || *p != '(')
2198 {
2199 complain (&lrs_general_complaint, "live range string 2");
2200 return 0;
2201 }
2202 p++;
2203
2204 /* Get starting value of range and advance P past the reference id.
2205
2206 ?!? In theory, the process_reference should never fail, but we should
2207 catch that case just in case the compiler scrogged the stabs. */
2208 refnum = process_reference (&p);
2209 start = ref_search_value (refnum);
2210 if (!start)
2211 {
2212 complain (&lrs_general_complaint, "Live range symbol not found 1");
2213 return 0;
2214 }
2215
2216 if (!*p || *p != ',')
2217 {
2218 complain (&lrs_general_complaint, "live range string 3");
2219 return 0;
2220 }
2221 p++;
2222
2223 /* Get ending value of range and advance P past the reference id.
2224
2225 ?!? In theory, the process_reference should never fail, but we should
2226 catch that case just in case the compiler scrogged the stabs. */
2227 refnum = process_reference (&p);
2228 end = ref_search_value (refnum);
2229 if (!end)
2230 {
2231 complain (&lrs_general_complaint, "Live range symbol not found 2");
2232 return 0;
2233 }
2234
2235 if (!*p || *p != ')')
2236 {
2237 complain (&lrs_general_complaint, "live range string 4");
2238 return 0;
2239 }
2240
2241 /* Now that we know the bounds of the range, add it to the
2242 symbol. */
2243 add_live_range (objfile, sym, start, end);
2244
2245 return 1;
2246 }
2247
2248 /* Add a new live range defined by START and END to the symbol SYM
2249 in objfile OBJFILE. */
2250
2251 static void
2252 add_live_range (struct objfile *objfile, struct symbol *sym, CORE_ADDR start,
2253 CORE_ADDR end)
2254 {
2255 struct range_list *r, *rs;
2256
2257 if (start >= end)
2258 {
2259 complain (&lrs_general_complaint, "end of live range follows start");
2260 return;
2261 }
2262
2263 /* Alloc new live range structure. */
2264 r = (struct range_list *)
2265 obstack_alloc (&objfile->type_obstack,
2266 sizeof (struct range_list));
2267 r->start = start;
2268 r->end = end;
2269 r->next = 0;
2270
2271 /* Append this range to the symbol's range list. */
2272 if (!SYMBOL_RANGES (sym))
2273 SYMBOL_RANGES (sym) = r;
2274 else
2275 {
2276 /* Get the last range for the symbol. */
2277 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2278 ;
2279 rs->next = r;
2280 }
2281 }
2282 \f
2283
2284 /* Skip rest of this symbol and return an error type.
2285
2286 General notes on error recovery: error_type always skips to the
2287 end of the symbol (modulo cretinous dbx symbol name continuation).
2288 Thus code like this:
2289
2290 if (*(*pp)++ != ';')
2291 return error_type (pp, objfile);
2292
2293 is wrong because if *pp starts out pointing at '\0' (typically as the
2294 result of an earlier error), it will be incremented to point to the
2295 start of the next symbol, which might produce strange results, at least
2296 if you run off the end of the string table. Instead use
2297
2298 if (**pp != ';')
2299 return error_type (pp, objfile);
2300 ++*pp;
2301
2302 or
2303
2304 if (**pp != ';')
2305 foo = error_type (pp, objfile);
2306 else
2307 ++*pp;
2308
2309 And in case it isn't obvious, the point of all this hair is so the compiler
2310 can define new types and new syntaxes, and old versions of the
2311 debugger will be able to read the new symbol tables. */
2312
2313 static struct type *
2314 error_type (char **pp, struct objfile *objfile)
2315 {
2316 complain (&error_type_complaint);
2317 while (1)
2318 {
2319 /* Skip to end of symbol. */
2320 while (**pp != '\0')
2321 {
2322 (*pp)++;
2323 }
2324
2325 /* Check for and handle cretinous dbx symbol name continuation! */
2326 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2327 {
2328 *pp = next_symbol_text (objfile);
2329 }
2330 else
2331 {
2332 break;
2333 }
2334 }
2335 return (builtin_type_error);
2336 }
2337 \f
2338
2339 /* Read type information or a type definition; return the type. Even
2340 though this routine accepts either type information or a type
2341 definition, the distinction is relevant--some parts of stabsread.c
2342 assume that type information starts with a digit, '-', or '(' in
2343 deciding whether to call read_type. */
2344
2345 struct type *
2346 read_type (register char **pp, struct objfile *objfile)
2347 {
2348 register struct type *type = 0;
2349 struct type *type1;
2350 int typenums[2];
2351 char type_descriptor;
2352
2353 /* Size in bits of type if specified by a type attribute, or -1 if
2354 there is no size attribute. */
2355 int type_size = -1;
2356
2357 /* Used to distinguish string and bitstring from char-array and set. */
2358 int is_string = 0;
2359
2360 /* Read type number if present. The type number may be omitted.
2361 for instance in a two-dimensional array declared with type
2362 "ar1;1;10;ar1;1;10;4". */
2363 if ((**pp >= '0' && **pp <= '9')
2364 || **pp == '('
2365 || **pp == '-')
2366 {
2367 if (read_type_number (pp, typenums) != 0)
2368 return error_type (pp, objfile);
2369
2370 /* Type is not being defined here. Either it already exists,
2371 or this is a forward reference to it. dbx_alloc_type handles
2372 both cases. */
2373 if (**pp != '=')
2374 return dbx_alloc_type (typenums, objfile);
2375
2376 /* Type is being defined here. */
2377 /* Skip the '='.
2378 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2379 (*pp) += 2;
2380 }
2381 else
2382 {
2383 /* 'typenums=' not present, type is anonymous. Read and return
2384 the definition, but don't put it in the type vector. */
2385 typenums[0] = typenums[1] = -1;
2386 (*pp)++;
2387 }
2388
2389 again:
2390 type_descriptor = (*pp)[-1];
2391 switch (type_descriptor)
2392 {
2393 case 'x':
2394 {
2395 enum type_code code;
2396
2397 /* Used to index through file_symbols. */
2398 struct pending *ppt;
2399 int i;
2400
2401 /* Name including "struct", etc. */
2402 char *type_name;
2403
2404 {
2405 char *from, *to, *p, *q1, *q2;
2406
2407 /* Set the type code according to the following letter. */
2408 switch ((*pp)[0])
2409 {
2410 case 's':
2411 code = TYPE_CODE_STRUCT;
2412 break;
2413 case 'u':
2414 code = TYPE_CODE_UNION;
2415 break;
2416 case 'e':
2417 code = TYPE_CODE_ENUM;
2418 break;
2419 default:
2420 {
2421 /* Complain and keep going, so compilers can invent new
2422 cross-reference types. */
2423 static struct complaint msg =
2424 {"Unrecognized cross-reference type `%c'", 0, 0};
2425 complain (&msg, (*pp)[0]);
2426 code = TYPE_CODE_STRUCT;
2427 break;
2428 }
2429 }
2430
2431 q1 = strchr (*pp, '<');
2432 p = strchr (*pp, ':');
2433 if (p == NULL)
2434 return error_type (pp, objfile);
2435 if (q1 && p > q1 && p[1] == ':')
2436 {
2437 int nesting_level = 0;
2438 for (q2 = q1; *q2; q2++)
2439 {
2440 if (*q2 == '<')
2441 nesting_level++;
2442 else if (*q2 == '>')
2443 nesting_level--;
2444 else if (*q2 == ':' && nesting_level == 0)
2445 break;
2446 }
2447 p = q2;
2448 if (*p != ':')
2449 return error_type (pp, objfile);
2450 }
2451 to = type_name =
2452 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2453
2454 /* Copy the name. */
2455 from = *pp + 1;
2456 while (from < p)
2457 *to++ = *from++;
2458 *to = '\0';
2459
2460 /* Set the pointer ahead of the name which we just read, and
2461 the colon. */
2462 *pp = from + 1;
2463 }
2464
2465 /* Now check to see whether the type has already been
2466 declared. This was written for arrays of cross-referenced
2467 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2468 sure it is not necessary anymore. But it might be a good
2469 idea, to save a little memory. */
2470
2471 for (ppt = file_symbols; ppt; ppt = ppt->next)
2472 for (i = 0; i < ppt->nsyms; i++)
2473 {
2474 struct symbol *sym = ppt->symbol[i];
2475
2476 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2477 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2478 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2479 && STREQ (SYMBOL_NAME (sym), type_name))
2480 {
2481 obstack_free (&objfile->type_obstack, type_name);
2482 type = SYMBOL_TYPE (sym);
2483 return type;
2484 }
2485 }
2486
2487 /* Didn't find the type to which this refers, so we must
2488 be dealing with a forward reference. Allocate a type
2489 structure for it, and keep track of it so we can
2490 fill in the rest of the fields when we get the full
2491 type. */
2492 type = dbx_alloc_type (typenums, objfile);
2493 TYPE_CODE (type) = code;
2494 TYPE_TAG_NAME (type) = type_name;
2495 INIT_CPLUS_SPECIFIC (type);
2496 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2497
2498 add_undefined_type (type);
2499 return type;
2500 }
2501
2502 case '-': /* RS/6000 built-in type */
2503 case '0':
2504 case '1':
2505 case '2':
2506 case '3':
2507 case '4':
2508 case '5':
2509 case '6':
2510 case '7':
2511 case '8':
2512 case '9':
2513 case '(':
2514 (*pp)--;
2515
2516 /* We deal with something like t(1,2)=(3,4)=... which
2517 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2518
2519 /* Allocate and enter the typedef type first.
2520 This handles recursive types. */
2521 type = dbx_alloc_type (typenums, objfile);
2522 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2523 {
2524 struct type *xtype = read_type (pp, objfile);
2525 if (type == xtype)
2526 {
2527 /* It's being defined as itself. That means it is "void". */
2528 TYPE_CODE (type) = TYPE_CODE_VOID;
2529 TYPE_LENGTH (type) = 1;
2530 }
2531 else if (type_size >= 0 || is_string)
2532 {
2533 *type = *xtype;
2534 TYPE_NAME (type) = NULL;
2535 TYPE_TAG_NAME (type) = NULL;
2536 }
2537 else
2538 {
2539 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2540 TYPE_TARGET_TYPE (type) = xtype;
2541 }
2542 }
2543 break;
2544
2545 /* In the following types, we must be sure to overwrite any existing
2546 type that the typenums refer to, rather than allocating a new one
2547 and making the typenums point to the new one. This is because there
2548 may already be pointers to the existing type (if it had been
2549 forward-referenced), and we must change it to a pointer, function,
2550 reference, or whatever, *in-place*. */
2551
2552 case '*':
2553 type1 = read_type (pp, objfile);
2554 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2555 break;
2556
2557 case '&': /* Reference to another type */
2558 type1 = read_type (pp, objfile);
2559 type = make_reference_type (type1, dbx_lookup_type (typenums));
2560 break;
2561
2562 case 'f': /* Function returning another type */
2563 if (os9k_stabs && **pp == '(')
2564 {
2565 /* Function prototype; parse it.
2566 We must conditionalize this on os9k_stabs because otherwise
2567 it could be confused with a Sun-style (1,3) typenumber
2568 (I think). */
2569 struct type *t;
2570 ++*pp;
2571 while (**pp != ')')
2572 {
2573 t = read_type (pp, objfile);
2574 if (**pp == ',')
2575 ++ * pp;
2576 }
2577 }
2578 type1 = read_type (pp, objfile);
2579 type = make_function_type (type1, dbx_lookup_type (typenums));
2580 break;
2581
2582 case 'k': /* Const qualifier on some type (Sun) */
2583 case 'c': /* Const qualifier on some type (OS9000) */
2584 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2585 only accept 'c' in the os9k_stabs case. */
2586 if (type_descriptor == 'c' && !os9k_stabs)
2587 return error_type (pp, objfile);
2588 type = read_type (pp, objfile);
2589 type = make_cv_type (1, TYPE_VOLATILE (type), type, 0);
2590 break;
2591
2592 case 'B': /* Volatile qual on some type (Sun) */
2593 case 'i': /* Volatile qual on some type (OS9000) */
2594 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2595 only accept 'i' in the os9k_stabs case. */
2596 if (type_descriptor == 'i' && !os9k_stabs)
2597 return error_type (pp, objfile);
2598 type = read_type (pp, objfile);
2599 type = make_cv_type (TYPE_CONST (type), 1, type, 0);
2600 break;
2601
2602 case '@':
2603 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2604 { /* Member (class & variable) type */
2605 /* FIXME -- we should be doing smash_to_XXX types here. */
2606
2607 struct type *domain = read_type (pp, objfile);
2608 struct type *memtype;
2609
2610 if (**pp != ',')
2611 /* Invalid member type data format. */
2612 return error_type (pp, objfile);
2613 ++*pp;
2614
2615 memtype = read_type (pp, objfile);
2616 type = dbx_alloc_type (typenums, objfile);
2617 smash_to_member_type (type, domain, memtype);
2618 }
2619 else
2620 /* type attribute */
2621 {
2622 char *attr = *pp;
2623 /* Skip to the semicolon. */
2624 while (**pp != ';' && **pp != '\0')
2625 ++(*pp);
2626 if (**pp == '\0')
2627 return error_type (pp, objfile);
2628 else
2629 ++ * pp; /* Skip the semicolon. */
2630
2631 switch (*attr)
2632 {
2633 case 's':
2634 type_size = atoi (attr + 1);
2635 if (type_size <= 0)
2636 type_size = -1;
2637 break;
2638
2639 case 'S':
2640 is_string = 1;
2641 break;
2642
2643 default:
2644 /* Ignore unrecognized type attributes, so future compilers
2645 can invent new ones. */
2646 break;
2647 }
2648 ++*pp;
2649 goto again;
2650 }
2651 break;
2652
2653 case '#': /* Method (class & fn) type */
2654 if ((*pp)[0] == '#')
2655 {
2656 /* We'll get the parameter types from the name. */
2657 struct type *return_type;
2658
2659 (*pp)++;
2660 return_type = read_type (pp, objfile);
2661 if (*(*pp)++ != ';')
2662 complain (&invalid_member_complaint, symnum);
2663 type = allocate_stub_method (return_type);
2664 if (typenums[0] != -1)
2665 *dbx_lookup_type (typenums) = type;
2666 }
2667 else
2668 {
2669 struct type *domain = read_type (pp, objfile);
2670 struct type *return_type;
2671 struct type **args;
2672
2673 if (**pp != ',')
2674 /* Invalid member type data format. */
2675 return error_type (pp, objfile);
2676 else
2677 ++(*pp);
2678
2679 return_type = read_type (pp, objfile);
2680 args = read_args (pp, ';', objfile);
2681 type = dbx_alloc_type (typenums, objfile);
2682 smash_to_method_type (type, domain, return_type, args);
2683 }
2684 break;
2685
2686 case 'r': /* Range type */
2687 type = read_range_type (pp, typenums, objfile);
2688 if (typenums[0] != -1)
2689 *dbx_lookup_type (typenums) = type;
2690 break;
2691
2692 case 'b':
2693 if (os9k_stabs)
2694 /* Const and volatile qualified type. */
2695 type = read_type (pp, objfile);
2696 else
2697 {
2698 /* Sun ACC builtin int type */
2699 type = read_sun_builtin_type (pp, typenums, objfile);
2700 if (typenums[0] != -1)
2701 *dbx_lookup_type (typenums) = type;
2702 }
2703 break;
2704
2705 case 'R': /* Sun ACC builtin float type */
2706 type = read_sun_floating_type (pp, typenums, objfile);
2707 if (typenums[0] != -1)
2708 *dbx_lookup_type (typenums) = type;
2709 break;
2710
2711 case 'e': /* Enumeration type */
2712 type = dbx_alloc_type (typenums, objfile);
2713 type = read_enum_type (pp, type, objfile);
2714 if (typenums[0] != -1)
2715 *dbx_lookup_type (typenums) = type;
2716 break;
2717
2718 case 's': /* Struct type */
2719 case 'u': /* Union type */
2720 type = dbx_alloc_type (typenums, objfile);
2721 switch (type_descriptor)
2722 {
2723 case 's':
2724 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2725 break;
2726 case 'u':
2727 TYPE_CODE (type) = TYPE_CODE_UNION;
2728 break;
2729 }
2730 type = read_struct_type (pp, type, objfile);
2731 break;
2732
2733 case 'a': /* Array type */
2734 if (**pp != 'r')
2735 return error_type (pp, objfile);
2736 ++*pp;
2737
2738 type = dbx_alloc_type (typenums, objfile);
2739 type = read_array_type (pp, type, objfile);
2740 if (is_string)
2741 TYPE_CODE (type) = TYPE_CODE_STRING;
2742 break;
2743
2744 case 'S':
2745 type1 = read_type (pp, objfile);
2746 type = create_set_type ((struct type *) NULL, type1);
2747 if (is_string)
2748 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2749 if (typenums[0] != -1)
2750 *dbx_lookup_type (typenums) = type;
2751 break;
2752
2753 default:
2754 --*pp; /* Go back to the symbol in error */
2755 /* Particularly important if it was \0! */
2756 return error_type (pp, objfile);
2757 }
2758
2759 if (type == 0)
2760 {
2761 warning ("GDB internal error, type is NULL in stabsread.c\n");
2762 return error_type (pp, objfile);
2763 }
2764
2765 /* Size specified in a type attribute overrides any other size. */
2766 if (type_size != -1)
2767 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2768
2769 return type;
2770 }
2771 \f
2772 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2773 Return the proper type node for a given builtin type number. */
2774
2775 static struct type *
2776 rs6000_builtin_type (int typenum)
2777 {
2778 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2779 #define NUMBER_RECOGNIZED 34
2780 /* This includes an empty slot for type number -0. */
2781 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2782 struct type *rettype = NULL;
2783
2784 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2785 {
2786 complain (&rs6000_builtin_complaint, typenum);
2787 return builtin_type_error;
2788 }
2789 if (negative_types[-typenum] != NULL)
2790 return negative_types[-typenum];
2791
2792 #if TARGET_CHAR_BIT != 8
2793 #error This code wrong for TARGET_CHAR_BIT not 8
2794 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2795 that if that ever becomes not true, the correct fix will be to
2796 make the size in the struct type to be in bits, not in units of
2797 TARGET_CHAR_BIT. */
2798 #endif
2799
2800 switch (-typenum)
2801 {
2802 case 1:
2803 /* The size of this and all the other types are fixed, defined
2804 by the debugging format. If there is a type called "int" which
2805 is other than 32 bits, then it should use a new negative type
2806 number (or avoid negative type numbers for that case).
2807 See stabs.texinfo. */
2808 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2809 break;
2810 case 2:
2811 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2812 break;
2813 case 3:
2814 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2815 break;
2816 case 4:
2817 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2818 break;
2819 case 5:
2820 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2821 "unsigned char", NULL);
2822 break;
2823 case 6:
2824 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2825 break;
2826 case 7:
2827 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2828 "unsigned short", NULL);
2829 break;
2830 case 8:
2831 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2832 "unsigned int", NULL);
2833 break;
2834 case 9:
2835 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2836 "unsigned", NULL);
2837 case 10:
2838 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2839 "unsigned long", NULL);
2840 break;
2841 case 11:
2842 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2843 break;
2844 case 12:
2845 /* IEEE single precision (32 bit). */
2846 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2847 break;
2848 case 13:
2849 /* IEEE double precision (64 bit). */
2850 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2851 break;
2852 case 14:
2853 /* This is an IEEE double on the RS/6000, and different machines with
2854 different sizes for "long double" should use different negative
2855 type numbers. See stabs.texinfo. */
2856 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2857 break;
2858 case 15:
2859 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2860 break;
2861 case 16:
2862 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2863 "boolean", NULL);
2864 break;
2865 case 17:
2866 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2867 break;
2868 case 18:
2869 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2870 break;
2871 case 19:
2872 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2873 break;
2874 case 20:
2875 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2876 "character", NULL);
2877 break;
2878 case 21:
2879 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2880 "logical*1", NULL);
2881 break;
2882 case 22:
2883 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2884 "logical*2", NULL);
2885 break;
2886 case 23:
2887 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2888 "logical*4", NULL);
2889 break;
2890 case 24:
2891 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2892 "logical", NULL);
2893 break;
2894 case 25:
2895 /* Complex type consisting of two IEEE single precision values. */
2896 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2897 break;
2898 case 26:
2899 /* Complex type consisting of two IEEE double precision values. */
2900 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2901 break;
2902 case 27:
2903 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2904 break;
2905 case 28:
2906 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2907 break;
2908 case 29:
2909 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2910 break;
2911 case 30:
2912 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2913 break;
2914 case 31:
2915 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2916 break;
2917 case 32:
2918 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2919 "unsigned long long", NULL);
2920 break;
2921 case 33:
2922 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2923 "logical*8", NULL);
2924 break;
2925 case 34:
2926 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2927 break;
2928 }
2929 negative_types[-typenum] = rettype;
2930 return rettype;
2931 }
2932 \f
2933 /* This page contains subroutines of read_type. */
2934
2935 /* Read member function stabs info for C++ classes. The form of each member
2936 function data is:
2937
2938 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2939
2940 An example with two member functions is:
2941
2942 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2943
2944 For the case of overloaded operators, the format is op$::*.funcs, where
2945 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2946 name (such as `+=') and `.' marks the end of the operator name.
2947
2948 Returns 1 for success, 0 for failure. */
2949
2950 static int
2951 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2952 struct objfile *objfile)
2953 {
2954 int nfn_fields = 0;
2955 int length = 0;
2956 /* Total number of member functions defined in this class. If the class
2957 defines two `f' functions, and one `g' function, then this will have
2958 the value 3. */
2959 int total_length = 0;
2960 int i;
2961 struct next_fnfield
2962 {
2963 struct next_fnfield *next;
2964 struct fn_field fn_field;
2965 }
2966 *sublist;
2967 struct type *look_ahead_type;
2968 struct next_fnfieldlist *new_fnlist;
2969 struct next_fnfield *new_sublist;
2970 char *main_fn_name;
2971 register char *p;
2972
2973 /* Process each list until we find something that is not a member function
2974 or find the end of the functions. */
2975
2976 while (**pp != ';')
2977 {
2978 /* We should be positioned at the start of the function name.
2979 Scan forward to find the first ':' and if it is not the
2980 first of a "::" delimiter, then this is not a member function. */
2981 p = *pp;
2982 while (*p != ':')
2983 {
2984 p++;
2985 }
2986 if (p[1] != ':')
2987 {
2988 break;
2989 }
2990
2991 sublist = NULL;
2992 look_ahead_type = NULL;
2993 length = 0;
2994
2995 new_fnlist = (struct next_fnfieldlist *)
2996 xmalloc (sizeof (struct next_fnfieldlist));
2997 make_cleanup (xfree, new_fnlist);
2998 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2999
3000 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3001 {
3002 /* This is a completely wierd case. In order to stuff in the
3003 names that might contain colons (the usual name delimiter),
3004 Mike Tiemann defined a different name format which is
3005 signalled if the identifier is "op$". In that case, the
3006 format is "op$::XXXX." where XXXX is the name. This is
3007 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3008 /* This lets the user type "break operator+".
3009 We could just put in "+" as the name, but that wouldn't
3010 work for "*". */
3011 static char opname[32] =
3012 {'o', 'p', CPLUS_MARKER};
3013 char *o = opname + 3;
3014
3015 /* Skip past '::'. */
3016 *pp = p + 2;
3017
3018 STABS_CONTINUE (pp, objfile);
3019 p = *pp;
3020 while (*p != '.')
3021 {
3022 *o++ = *p++;
3023 }
3024 main_fn_name = savestring (opname, o - opname);
3025 /* Skip past '.' */
3026 *pp = p + 1;
3027 }
3028 else
3029 {
3030 main_fn_name = savestring (*pp, p - *pp);
3031 /* Skip past '::'. */
3032 *pp = p + 2;
3033 }
3034 new_fnlist->fn_fieldlist.name = main_fn_name;
3035
3036 do
3037 {
3038 new_sublist =
3039 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3040 make_cleanup (xfree, new_sublist);
3041 memset (new_sublist, 0, sizeof (struct next_fnfield));
3042
3043 /* Check for and handle cretinous dbx symbol name continuation! */
3044 if (look_ahead_type == NULL)
3045 {
3046 /* Normal case. */
3047 STABS_CONTINUE (pp, objfile);
3048
3049 new_sublist->fn_field.type = read_type (pp, objfile);
3050 if (**pp != ':')
3051 {
3052 /* Invalid symtab info for member function. */
3053 return 0;
3054 }
3055 }
3056 else
3057 {
3058 /* g++ version 1 kludge */
3059 new_sublist->fn_field.type = look_ahead_type;
3060 look_ahead_type = NULL;
3061 }
3062
3063 (*pp)++;
3064 p = *pp;
3065 while (*p != ';')
3066 {
3067 p++;
3068 }
3069
3070 /* If this is just a stub, then we don't have the real name here. */
3071
3072 if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
3073 {
3074 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3075 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3076 new_sublist->fn_field.is_stub = 1;
3077 }
3078 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3079 *pp = p + 1;
3080
3081 /* Set this member function's visibility fields. */
3082 switch (*(*pp)++)
3083 {
3084 case VISIBILITY_PRIVATE:
3085 new_sublist->fn_field.is_private = 1;
3086 break;
3087 case VISIBILITY_PROTECTED:
3088 new_sublist->fn_field.is_protected = 1;
3089 break;
3090 }
3091
3092 STABS_CONTINUE (pp, objfile);
3093 switch (**pp)
3094 {
3095 case 'A': /* Normal functions. */
3096 new_sublist->fn_field.is_const = 0;
3097 new_sublist->fn_field.is_volatile = 0;
3098 (*pp)++;
3099 break;
3100 case 'B': /* `const' member functions. */
3101 new_sublist->fn_field.is_const = 1;
3102 new_sublist->fn_field.is_volatile = 0;
3103 (*pp)++;
3104 break;
3105 case 'C': /* `volatile' member function. */
3106 new_sublist->fn_field.is_const = 0;
3107 new_sublist->fn_field.is_volatile = 1;
3108 (*pp)++;
3109 break;
3110 case 'D': /* `const volatile' member function. */
3111 new_sublist->fn_field.is_const = 1;
3112 new_sublist->fn_field.is_volatile = 1;
3113 (*pp)++;
3114 break;
3115 case '*': /* File compiled with g++ version 1 -- no info */
3116 case '?':
3117 case '.':
3118 break;
3119 default:
3120 complain (&const_vol_complaint, **pp);
3121 break;
3122 }
3123
3124 switch (*(*pp)++)
3125 {
3126 case '*':
3127 {
3128 int nbits;
3129 /* virtual member function, followed by index.
3130 The sign bit is set to distinguish pointers-to-methods
3131 from virtual function indicies. Since the array is
3132 in words, the quantity must be shifted left by 1
3133 on 16 bit machine, and by 2 on 32 bit machine, forcing
3134 the sign bit out, and usable as a valid index into
3135 the array. Remove the sign bit here. */
3136 new_sublist->fn_field.voffset =
3137 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3138 if (nbits != 0)
3139 return 0;
3140
3141 STABS_CONTINUE (pp, objfile);
3142 if (**pp == ';' || **pp == '\0')
3143 {
3144 /* Must be g++ version 1. */
3145 new_sublist->fn_field.fcontext = 0;
3146 }
3147 else
3148 {
3149 /* Figure out from whence this virtual function came.
3150 It may belong to virtual function table of
3151 one of its baseclasses. */
3152 look_ahead_type = read_type (pp, objfile);
3153 if (**pp == ':')
3154 {
3155 /* g++ version 1 overloaded methods. */
3156 }
3157 else
3158 {
3159 new_sublist->fn_field.fcontext = look_ahead_type;
3160 if (**pp != ';')
3161 {
3162 return 0;
3163 }
3164 else
3165 {
3166 ++*pp;
3167 }
3168 look_ahead_type = NULL;
3169 }
3170 }
3171 break;
3172 }
3173 case '?':
3174 /* static member function. */
3175 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3176 if (strncmp (new_sublist->fn_field.physname,
3177 main_fn_name, strlen (main_fn_name)))
3178 {
3179 new_sublist->fn_field.is_stub = 1;
3180 }
3181 break;
3182
3183 default:
3184 /* error */
3185 complain (&member_fn_complaint, (*pp)[-1]);
3186 /* Fall through into normal member function. */
3187
3188 case '.':
3189 /* normal member function. */
3190 new_sublist->fn_field.voffset = 0;
3191 new_sublist->fn_field.fcontext = 0;
3192 break;
3193 }
3194
3195 new_sublist->next = sublist;
3196 sublist = new_sublist;
3197 length++;
3198 STABS_CONTINUE (pp, objfile);
3199 }
3200 while (**pp != ';' && **pp != '\0');
3201
3202 (*pp)++;
3203
3204 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3205 obstack_alloc (&objfile->type_obstack,
3206 sizeof (struct fn_field) * length);
3207 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3208 sizeof (struct fn_field) * length);
3209 for (i = length; (i--, sublist); sublist = sublist->next)
3210 {
3211 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3212 }
3213
3214 new_fnlist->fn_fieldlist.length = length;
3215 new_fnlist->next = fip->fnlist;
3216 fip->fnlist = new_fnlist;
3217 nfn_fields++;
3218 total_length += length;
3219 STABS_CONTINUE (pp, objfile);
3220 }
3221
3222 if (nfn_fields)
3223 {
3224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3225 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3226 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3227 memset (TYPE_FN_FIELDLISTS (type), 0,
3228 sizeof (struct fn_fieldlist) * nfn_fields);
3229 TYPE_NFN_FIELDS (type) = nfn_fields;
3230 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3231 }
3232
3233 return 1;
3234 }
3235
3236 /* Special GNU C++ name.
3237
3238 Returns 1 for success, 0 for failure. "failure" means that we can't
3239 keep parsing and it's time for error_type(). */
3240
3241 static int
3242 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
3243 struct objfile *objfile)
3244 {
3245 register char *p;
3246 char *name;
3247 char cpp_abbrev;
3248 struct type *context;
3249
3250 p = *pp;
3251 if (*++p == 'v')
3252 {
3253 name = NULL;
3254 cpp_abbrev = *++p;
3255
3256 *pp = p + 1;
3257
3258 /* At this point, *pp points to something like "22:23=*22...",
3259 where the type number before the ':' is the "context" and
3260 everything after is a regular type definition. Lookup the
3261 type, find it's name, and construct the field name. */
3262
3263 context = read_type (pp, objfile);
3264
3265 switch (cpp_abbrev)
3266 {
3267 case 'f': /* $vf -- a virtual function table pointer */
3268 name = type_name_no_tag (context);
3269 if (name == NULL)
3270 {
3271 name = "";
3272 }
3273 fip->list->field.name =
3274 obconcat (&objfile->type_obstack, vptr_name, name, "");
3275 break;
3276
3277 case 'b': /* $vb -- a virtual bsomethingorother */
3278 name = type_name_no_tag (context);
3279 if (name == NULL)
3280 {
3281 complain (&invalid_cpp_type_complaint, symnum);
3282 name = "FOO";
3283 }
3284 fip->list->field.name =
3285 obconcat (&objfile->type_obstack, vb_name, name, "");
3286 break;
3287
3288 default:
3289 complain (&invalid_cpp_abbrev_complaint, *pp);
3290 fip->list->field.name =
3291 obconcat (&objfile->type_obstack,
3292 "INVALID_CPLUSPLUS_ABBREV", "", "");
3293 break;
3294 }
3295
3296 /* At this point, *pp points to the ':'. Skip it and read the
3297 field type. */
3298
3299 p = ++(*pp);
3300 if (p[-1] != ':')
3301 {
3302 complain (&invalid_cpp_abbrev_complaint, *pp);
3303 return 0;
3304 }
3305 fip->list->field.type = read_type (pp, objfile);
3306 if (**pp == ',')
3307 (*pp)++; /* Skip the comma. */
3308 else
3309 return 0;
3310
3311 {
3312 int nbits;
3313 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3314 if (nbits != 0)
3315 return 0;
3316 }
3317 /* This field is unpacked. */
3318 FIELD_BITSIZE (fip->list->field) = 0;
3319 fip->list->visibility = VISIBILITY_PRIVATE;
3320 }
3321 else
3322 {
3323 complain (&invalid_cpp_abbrev_complaint, *pp);
3324 /* We have no idea what syntax an unrecognized abbrev would have, so
3325 better return 0. If we returned 1, we would need to at least advance
3326 *pp to avoid an infinite loop. */
3327 return 0;
3328 }
3329 return 1;
3330 }
3331
3332 static void
3333 read_one_struct_field (struct field_info *fip, char **pp, char *p,
3334 struct type *type, struct objfile *objfile)
3335 {
3336 /* The following is code to work around cfront generated stabs.
3337 The stabs contains full mangled name for each field.
3338 We try to demangle the name and extract the field name out of it.
3339 */
3340 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3341 {
3342 char save_p;
3343 char *dem, *dem_p;
3344 save_p = *p;
3345 *p = '\0';
3346 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3347 if (dem != NULL)
3348 {
3349 dem_p = strrchr (dem, ':');
3350 if (dem_p != 0 && *(dem_p - 1) == ':')
3351 dem_p++;
3352 FIELD_NAME (fip->list->field) =
3353 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3354 }
3355 else
3356 {
3357 FIELD_NAME (fip->list->field) =
3358 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3359 }
3360 *p = save_p;
3361 }
3362 /* end of code for cfront work around */
3363
3364 else
3365 fip->list->field.name =
3366 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3367 *pp = p + 1;
3368
3369 /* This means we have a visibility for a field coming. */
3370 if (**pp == '/')
3371 {
3372 (*pp)++;
3373 fip->list->visibility = *(*pp)++;
3374 }
3375 else
3376 {
3377 /* normal dbx-style format, no explicit visibility */
3378 fip->list->visibility = VISIBILITY_PUBLIC;
3379 }
3380
3381 fip->list->field.type = read_type (pp, objfile);
3382 if (**pp == ':')
3383 {
3384 p = ++(*pp);
3385 #if 0
3386 /* Possible future hook for nested types. */
3387 if (**pp == '!')
3388 {
3389 fip->list->field.bitpos = (long) -2; /* nested type */
3390 p = ++(*pp);
3391 }
3392 else
3393 ...;
3394 #endif
3395 while (*p != ';')
3396 {
3397 p++;
3398 }
3399 /* Static class member. */
3400 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3401 *pp = p + 1;
3402 return;
3403 }
3404 else if (**pp != ',')
3405 {
3406 /* Bad structure-type format. */
3407 complain (&stabs_general_complaint, "bad structure-type format");
3408 return;
3409 }
3410
3411 (*pp)++; /* Skip the comma. */
3412
3413 {
3414 int nbits;
3415 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3416 if (nbits != 0)
3417 {
3418 complain (&stabs_general_complaint, "bad structure-type format");
3419 return;
3420 }
3421 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3422 if (nbits != 0)
3423 {
3424 complain (&stabs_general_complaint, "bad structure-type format");
3425 return;
3426 }
3427 }
3428
3429 if (FIELD_BITPOS (fip->list->field) == 0
3430 && FIELD_BITSIZE (fip->list->field) == 0)
3431 {
3432 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3433 it is a field which has been optimized out. The correct stab for
3434 this case is to use VISIBILITY_IGNORE, but that is a recent
3435 invention. (2) It is a 0-size array. For example
3436 union { int num; char str[0]; } foo. Printing "<no value>" for
3437 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3438 will continue to work, and a 0-size array as a whole doesn't
3439 have any contents to print.
3440
3441 I suspect this probably could also happen with gcc -gstabs (not
3442 -gstabs+) for static fields, and perhaps other C++ extensions.
3443 Hopefully few people use -gstabs with gdb, since it is intended
3444 for dbx compatibility. */
3445
3446 /* Ignore this field. */
3447 fip->list->visibility = VISIBILITY_IGNORE;
3448 }
3449 else
3450 {
3451 /* Detect an unpacked field and mark it as such.
3452 dbx gives a bit size for all fields.
3453 Note that forward refs cannot be packed,
3454 and treat enums as if they had the width of ints. */
3455
3456 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3457
3458 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3459 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3460 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3461 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3462 {
3463 FIELD_BITSIZE (fip->list->field) = 0;
3464 }
3465 if ((FIELD_BITSIZE (fip->list->field)
3466 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3467 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3468 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3469 )
3470 &&
3471 FIELD_BITPOS (fip->list->field) % 8 == 0)
3472 {
3473 FIELD_BITSIZE (fip->list->field) = 0;
3474 }
3475 }
3476 }
3477
3478
3479 /* Read struct or class data fields. They have the form:
3480
3481 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3482
3483 At the end, we see a semicolon instead of a field.
3484
3485 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3486 a static field.
3487
3488 The optional VISIBILITY is one of:
3489
3490 '/0' (VISIBILITY_PRIVATE)
3491 '/1' (VISIBILITY_PROTECTED)
3492 '/2' (VISIBILITY_PUBLIC)
3493 '/9' (VISIBILITY_IGNORE)
3494
3495 or nothing, for C style fields with public visibility.
3496
3497 Returns 1 for success, 0 for failure. */
3498
3499 static int
3500 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3501 struct objfile *objfile)
3502 {
3503 register char *p;
3504 struct nextfield *new;
3505
3506 /* We better set p right now, in case there are no fields at all... */
3507
3508 p = *pp;
3509
3510 /* Read each data member type until we find the terminating ';' at the end of
3511 the data member list, or break for some other reason such as finding the
3512 start of the member function list. */
3513
3514 while (**pp != ';')
3515 {
3516 if (os9k_stabs && **pp == ',')
3517 break;
3518 STABS_CONTINUE (pp, objfile);
3519 /* Get space to record the next field's data. */
3520 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3521 make_cleanup (xfree, new);
3522 memset (new, 0, sizeof (struct nextfield));
3523 new->next = fip->list;
3524 fip->list = new;
3525
3526 /* Get the field name. */
3527 p = *pp;
3528
3529 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3530 unless the CPLUS_MARKER is followed by an underscore, in
3531 which case it is just the name of an anonymous type, which we
3532 should handle like any other type name. */
3533
3534 if (is_cplus_marker (p[0]) && p[1] != '_')
3535 {
3536 if (!read_cpp_abbrev (fip, pp, type, objfile))
3537 return 0;
3538 continue;
3539 }
3540
3541 /* Look for the ':' that separates the field name from the field
3542 values. Data members are delimited by a single ':', while member
3543 functions are delimited by a pair of ':'s. When we hit the member
3544 functions (if any), terminate scan loop and return. */
3545
3546 while (*p != ':' && *p != '\0')
3547 {
3548 p++;
3549 }
3550 if (*p == '\0')
3551 return 0;
3552
3553 /* Check to see if we have hit the member functions yet. */
3554 if (p[1] == ':')
3555 {
3556 break;
3557 }
3558 read_one_struct_field (fip, pp, p, type, objfile);
3559 }
3560 if (p[0] == ':' && p[1] == ':')
3561 {
3562 /* chill the list of fields: the last entry (at the head) is a
3563 partially constructed entry which we now scrub. */
3564 fip->list = fip->list->next;
3565 }
3566 return 1;
3567 }
3568 /* *INDENT-OFF* */
3569 /* The stabs for C++ derived classes contain baseclass information which
3570 is marked by a '!' character after the total size. This function is
3571 called when we encounter the baseclass marker, and slurps up all the
3572 baseclass information.
3573
3574 Immediately following the '!' marker is the number of base classes that
3575 the class is derived from, followed by information for each base class.
3576 For each base class, there are two visibility specifiers, a bit offset
3577 to the base class information within the derived class, a reference to
3578 the type for the base class, and a terminating semicolon.
3579
3580 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3581 ^^ ^ ^ ^ ^ ^ ^
3582 Baseclass information marker __________________|| | | | | | |
3583 Number of baseclasses __________________________| | | | | | |
3584 Visibility specifiers (2) ________________________| | | | | |
3585 Offset in bits from start of class _________________| | | | |
3586 Type number for base class ___________________________| | | |
3587 Visibility specifiers (2) _______________________________| | |
3588 Offset in bits from start of class ________________________| |
3589 Type number of base class ____________________________________|
3590
3591 Return 1 for success, 0 for (error-type-inducing) failure. */
3592 /* *INDENT-ON* */
3593
3594
3595
3596 static int
3597 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3598 struct objfile *objfile)
3599 {
3600 int i;
3601 struct nextfield *new;
3602
3603 if (**pp != '!')
3604 {
3605 return 1;
3606 }
3607 else
3608 {
3609 /* Skip the '!' baseclass information marker. */
3610 (*pp)++;
3611 }
3612
3613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3614 {
3615 int nbits;
3616 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3617 if (nbits != 0)
3618 return 0;
3619 }
3620
3621 #if 0
3622 /* Some stupid compilers have trouble with the following, so break
3623 it up into simpler expressions. */
3624 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3625 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3626 #else
3627 {
3628 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3629 char *pointer;
3630
3631 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3632 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3633 }
3634 #endif /* 0 */
3635
3636 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3637
3638 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3639 {
3640 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3641 make_cleanup (xfree, new);
3642 memset (new, 0, sizeof (struct nextfield));
3643 new->next = fip->list;
3644 fip->list = new;
3645 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3646
3647 STABS_CONTINUE (pp, objfile);
3648 switch (**pp)
3649 {
3650 case '0':
3651 /* Nothing to do. */
3652 break;
3653 case '1':
3654 SET_TYPE_FIELD_VIRTUAL (type, i);
3655 break;
3656 default:
3657 /* Unknown character. Complain and treat it as non-virtual. */
3658 {
3659 static struct complaint msg =
3660 {
3661 "Unknown virtual character `%c' for baseclass", 0, 0};
3662 complain (&msg, **pp);
3663 }
3664 }
3665 ++(*pp);
3666
3667 new->visibility = *(*pp)++;
3668 switch (new->visibility)
3669 {
3670 case VISIBILITY_PRIVATE:
3671 case VISIBILITY_PROTECTED:
3672 case VISIBILITY_PUBLIC:
3673 break;
3674 default:
3675 /* Bad visibility format. Complain and treat it as
3676 public. */
3677 {
3678 static struct complaint msg =
3679 {
3680 "Unknown visibility `%c' for baseclass", 0, 0
3681 };
3682 complain (&msg, new->visibility);
3683 new->visibility = VISIBILITY_PUBLIC;
3684 }
3685 }
3686
3687 {
3688 int nbits;
3689
3690 /* The remaining value is the bit offset of the portion of the object
3691 corresponding to this baseclass. Always zero in the absence of
3692 multiple inheritance. */
3693
3694 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3695 if (nbits != 0)
3696 return 0;
3697 }
3698
3699 /* The last piece of baseclass information is the type of the
3700 base class. Read it, and remember it's type name as this
3701 field's name. */
3702
3703 new->field.type = read_type (pp, objfile);
3704 new->field.name = type_name_no_tag (new->field.type);
3705
3706 /* skip trailing ';' and bump count of number of fields seen */
3707 if (**pp == ';')
3708 (*pp)++;
3709 else
3710 return 0;
3711 }
3712 return 1;
3713 }
3714
3715 /* The tail end of stabs for C++ classes that contain a virtual function
3716 pointer contains a tilde, a %, and a type number.
3717 The type number refers to the base class (possibly this class itself) which
3718 contains the vtable pointer for the current class.
3719
3720 This function is called when we have parsed all the method declarations,
3721 so we can look for the vptr base class info. */
3722
3723 static int
3724 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3725 struct objfile *objfile)
3726 {
3727 register char *p;
3728
3729 STABS_CONTINUE (pp, objfile);
3730
3731 /* If we are positioned at a ';', then skip it. */
3732 if (**pp == ';')
3733 {
3734 (*pp)++;
3735 }
3736
3737 if (**pp == '~')
3738 {
3739 (*pp)++;
3740
3741 if (**pp == '=' || **pp == '+' || **pp == '-')
3742 {
3743 /* Obsolete flags that used to indicate the presence
3744 of constructors and/or destructors. */
3745 (*pp)++;
3746 }
3747
3748 /* Read either a '%' or the final ';'. */
3749 if (*(*pp)++ == '%')
3750 {
3751 /* The next number is the type number of the base class
3752 (possibly our own class) which supplies the vtable for
3753 this class. Parse it out, and search that class to find
3754 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3755 and TYPE_VPTR_FIELDNO. */
3756
3757 struct type *t;
3758 int i;
3759
3760 t = read_type (pp, objfile);
3761 p = (*pp)++;
3762 while (*p != '\0' && *p != ';')
3763 {
3764 p++;
3765 }
3766 if (*p == '\0')
3767 {
3768 /* Premature end of symbol. */
3769 return 0;
3770 }
3771
3772 TYPE_VPTR_BASETYPE (type) = t;
3773 if (type == t) /* Our own class provides vtbl ptr */
3774 {
3775 for (i = TYPE_NFIELDS (t) - 1;
3776 i >= TYPE_N_BASECLASSES (t);
3777 --i)
3778 {
3779 if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3780 sizeof (vptr_name) - 1))
3781 {
3782 TYPE_VPTR_FIELDNO (type) = i;
3783 goto gotit;
3784 }
3785 }
3786 /* Virtual function table field not found. */
3787 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3788 return 0;
3789 }
3790 else
3791 {
3792 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3793 }
3794
3795 gotit:
3796 *pp = p + 1;
3797 }
3798 }
3799 return 1;
3800 }
3801
3802 static int
3803 attach_fn_fields_to_type (struct field_info *fip, register struct type *type)
3804 {
3805 register int n;
3806
3807 for (n = TYPE_NFN_FIELDS (type);
3808 fip->fnlist != NULL;
3809 fip->fnlist = fip->fnlist->next)
3810 {
3811 --n; /* Circumvent Sun3 compiler bug */
3812 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3813 }
3814 return 1;
3815 }
3816
3817 /* read cfront class static data.
3818 pp points to string starting with the list of static data
3819 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3820 ^^^^^^^^
3821
3822 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3823 ^
3824 */
3825
3826 static int
3827 read_cfront_static_fields (struct field_info *fip, char **pp, struct type *type,
3828 struct objfile *objfile)
3829 {
3830 struct nextfield *new;
3831 struct type *stype;
3832 char *sname;
3833 struct symbol *ref_static = 0;
3834
3835 if (**pp == ';') /* no static data; return */
3836 {
3837 ++(*pp);
3838 return 1;
3839 }
3840
3841 /* Process each field in the list until we find the terminating ";" */
3842
3843 /* eg: p = "as__1A ;;;" */
3844 STABS_CONTINUE (pp, objfile); /* handle \\ */
3845 while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
3846 {
3847 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name */
3848 if (!ref_static)
3849 {
3850 static struct complaint msg =
3851 {"\
3852 Unable to find symbol for static data field %s\n",
3853 0, 0};
3854 complain (&msg, sname);
3855 continue;
3856 }
3857 stype = SYMBOL_TYPE (ref_static);
3858
3859 /* allocate a new fip */
3860 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3861 make_cleanup (xfree, new);
3862 memset (new, 0, sizeof (struct nextfield));
3863 new->next = fip->list;
3864 fip->list = new;
3865
3866 /* set visibility */
3867 /* FIXME! no way to tell visibility from stabs??? */
3868 new->visibility = VISIBILITY_PUBLIC;
3869
3870 /* set field info into fip */
3871 fip->list->field.type = stype;
3872
3873 /* set bitpos & bitsize */
3874 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3875
3876 /* set name field */
3877 /* The following is code to work around cfront generated stabs.
3878 The stabs contains full mangled name for each field.
3879 We try to demangle the name and extract the field name out of it.
3880 */
3881 if (ARM_DEMANGLING)
3882 {
3883 char *dem, *dem_p;
3884 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3885 if (dem != NULL)
3886 {
3887 dem_p = strrchr (dem, ':');
3888 if (dem_p != 0 && *(dem_p - 1) == ':')
3889 dem_p++;
3890 fip->list->field.name =
3891 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3892 }
3893 else
3894 {
3895 fip->list->field.name =
3896 obsavestring (sname, strlen (sname), &objfile->type_obstack);
3897 }
3898 } /* end of code for cfront work around */
3899 } /* loop again for next static field */
3900 return 1;
3901 }
3902
3903 /* Copy structure fields to fip so attach_fields_to_type will work.
3904 type has already been created with the initial instance data fields.
3905 Now we want to be able to add the other members to the class,
3906 so we want to add them back to the fip and reattach them again
3907 once we have collected all the class members. */
3908
3909 static int
3910 copy_cfront_struct_fields (struct field_info *fip, struct type *type,
3911 struct objfile *objfile)
3912 {
3913 int nfields = TYPE_NFIELDS (type);
3914 int i;
3915 struct nextfield *new;
3916
3917 /* Copy the fields into the list of fips and reset the types
3918 to remove the old fields */
3919
3920 for (i = 0; i < nfields; i++)
3921 {
3922 /* allocate a new fip */
3923 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3924 make_cleanup (xfree, new);
3925 memset (new, 0, sizeof (struct nextfield));
3926 new->next = fip->list;
3927 fip->list = new;
3928
3929 /* copy field info into fip */
3930 new->field = TYPE_FIELD (type, i);
3931 /* set visibility */
3932 if (TYPE_FIELD_PROTECTED (type, i))
3933 new->visibility = VISIBILITY_PROTECTED;
3934 else if (TYPE_FIELD_PRIVATE (type, i))
3935 new->visibility = VISIBILITY_PRIVATE;
3936 else
3937 new->visibility = VISIBILITY_PUBLIC;
3938 }
3939 /* Now delete the fields from the type since we will be
3940 allocing new space once we get the rest of the fields
3941 in attach_fields_to_type.
3942 The pointer TYPE_FIELDS(type) is left dangling but should
3943 be freed later by objstack_free */
3944 TYPE_FIELDS (type) = 0;
3945 TYPE_NFIELDS (type) = 0;
3946
3947 return 1;
3948 }
3949
3950 /* Create the vector of fields, and record how big it is.
3951 We need this info to record proper virtual function table information
3952 for this class's virtual functions. */
3953
3954 static int
3955 attach_fields_to_type (struct field_info *fip, register struct type *type,
3956 struct objfile *objfile)
3957 {
3958 register int nfields = 0;
3959 register int non_public_fields = 0;
3960 register struct nextfield *scan;
3961
3962 /* Count up the number of fields that we have, as well as taking note of
3963 whether or not there are any non-public fields, which requires us to
3964 allocate and build the private_field_bits and protected_field_bits
3965 bitfields. */
3966
3967 for (scan = fip->list; scan != NULL; scan = scan->next)
3968 {
3969 nfields++;
3970 if (scan->visibility != VISIBILITY_PUBLIC)
3971 {
3972 non_public_fields++;
3973 }
3974 }
3975
3976 /* Now we know how many fields there are, and whether or not there are any
3977 non-public fields. Record the field count, allocate space for the
3978 array of fields, and create blank visibility bitfields if necessary. */
3979
3980 TYPE_NFIELDS (type) = nfields;
3981 TYPE_FIELDS (type) = (struct field *)
3982 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3983 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3984
3985 if (non_public_fields)
3986 {
3987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3988
3989 TYPE_FIELD_PRIVATE_BITS (type) =
3990 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3991 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3992
3993 TYPE_FIELD_PROTECTED_BITS (type) =
3994 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3995 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3996
3997 TYPE_FIELD_IGNORE_BITS (type) =
3998 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3999 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4000 }
4001
4002 /* Copy the saved-up fields into the field vector. Start from the head
4003 of the list, adding to the tail of the field array, so that they end
4004 up in the same order in the array in which they were added to the list. */
4005
4006 while (nfields-- > 0)
4007 {
4008 TYPE_FIELD (type, nfields) = fip->list->field;
4009 switch (fip->list->visibility)
4010 {
4011 case VISIBILITY_PRIVATE:
4012 SET_TYPE_FIELD_PRIVATE (type, nfields);
4013 break;
4014
4015 case VISIBILITY_PROTECTED:
4016 SET_TYPE_FIELD_PROTECTED (type, nfields);
4017 break;
4018
4019 case VISIBILITY_IGNORE:
4020 SET_TYPE_FIELD_IGNORE (type, nfields);
4021 break;
4022
4023 case VISIBILITY_PUBLIC:
4024 break;
4025
4026 default:
4027 /* Unknown visibility. Complain and treat it as public. */
4028 {
4029 static struct complaint msg =
4030 {
4031 "Unknown visibility `%c' for field", 0, 0};
4032 complain (&msg, fip->list->visibility);
4033 }
4034 break;
4035 }
4036 fip->list = fip->list->next;
4037 }
4038 return 1;
4039 }
4040
4041 /* Read the description of a structure (or union type) and return an object
4042 describing the type.
4043
4044 PP points to a character pointer that points to the next unconsumed token
4045 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4046 *PP will point to "4a:1,0,32;;".
4047
4048 TYPE points to an incomplete type that needs to be filled in.
4049
4050 OBJFILE points to the current objfile from which the stabs information is
4051 being read. (Note that it is redundant in that TYPE also contains a pointer
4052 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4053 */
4054
4055 static struct type *
4056 read_struct_type (char **pp, struct type *type, struct objfile *objfile)
4057 {
4058 struct cleanup *back_to;
4059 struct field_info fi;
4060
4061 fi.list = NULL;
4062 fi.fnlist = NULL;
4063
4064 back_to = make_cleanup (null_cleanup, 0);
4065
4066 INIT_CPLUS_SPECIFIC (type);
4067 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4068
4069 /* First comes the total size in bytes. */
4070
4071 {
4072 int nbits;
4073 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4074 if (nbits != 0)
4075 return error_type (pp, objfile);
4076 }
4077
4078 /* Now read the baseclasses, if any, read the regular C struct or C++
4079 class member fields, attach the fields to the type, read the C++
4080 member functions, attach them to the type, and then read any tilde
4081 field (baseclass specifier for the class holding the main vtable). */
4082
4083 if (!read_baseclasses (&fi, pp, type, objfile)
4084 || !read_struct_fields (&fi, pp, type, objfile)
4085 || !attach_fields_to_type (&fi, type, objfile)
4086 || !read_member_functions (&fi, pp, type, objfile)
4087 || !attach_fn_fields_to_type (&fi, type)
4088 || !read_tilde_fields (&fi, pp, type, objfile))
4089 {
4090 type = error_type (pp, objfile);
4091 }
4092
4093 do_cleanups (back_to);
4094 return (type);
4095 }
4096
4097 /* Read a definition of an array type,
4098 and create and return a suitable type object.
4099 Also creates a range type which represents the bounds of that
4100 array. */
4101
4102 static struct type *
4103 read_array_type (register char **pp, register struct type *type,
4104 struct objfile *objfile)
4105 {
4106 struct type *index_type, *element_type, *range_type;
4107 int lower, upper;
4108 int adjustable = 0;
4109 int nbits;
4110
4111 /* Format of an array type:
4112 "ar<index type>;lower;upper;<array_contents_type>".
4113 OS9000: "arlower,upper;<array_contents_type>".
4114
4115 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4116 for these, produce a type like float[][]. */
4117
4118 if (os9k_stabs)
4119 index_type = builtin_type_int;
4120 else
4121 {
4122 index_type = read_type (pp, objfile);
4123 if (**pp != ';')
4124 /* Improper format of array type decl. */
4125 return error_type (pp, objfile);
4126 ++*pp;
4127 }
4128
4129 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4130 {
4131 (*pp)++;
4132 adjustable = 1;
4133 }
4134 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4135 if (nbits != 0)
4136 return error_type (pp, objfile);
4137
4138 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4139 {
4140 (*pp)++;
4141 adjustable = 1;
4142 }
4143 upper = read_huge_number (pp, ';', &nbits);
4144 if (nbits != 0)
4145 return error_type (pp, objfile);
4146
4147 element_type = read_type (pp, objfile);
4148
4149 if (adjustable)
4150 {
4151 lower = 0;
4152 upper = -1;
4153 }
4154
4155 range_type =
4156 create_range_type ((struct type *) NULL, index_type, lower, upper);
4157 type = create_array_type (type, element_type, range_type);
4158
4159 return type;
4160 }
4161
4162
4163 /* Read a definition of an enumeration type,
4164 and create and return a suitable type object.
4165 Also defines the symbols that represent the values of the type. */
4166
4167 static struct type *
4168 read_enum_type (register char **pp, register struct type *type,
4169 struct objfile *objfile)
4170 {
4171 register char *p;
4172 char *name;
4173 register long n;
4174 register struct symbol *sym;
4175 int nsyms = 0;
4176 struct pending **symlist;
4177 struct pending *osyms, *syms;
4178 int o_nsyms;
4179 int nbits;
4180 int unsigned_enum = 1;
4181
4182 #if 0
4183 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4184 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4185 to do? For now, force all enum values to file scope. */
4186 if (within_function)
4187 symlist = &local_symbols;
4188 else
4189 #endif
4190 symlist = &file_symbols;
4191 osyms = *symlist;
4192 o_nsyms = osyms ? osyms->nsyms : 0;
4193
4194 if (os9k_stabs)
4195 {
4196 /* Size. Perhaps this does not have to be conditionalized on
4197 os9k_stabs (assuming the name of an enum constant can't start
4198 with a digit). */
4199 read_huge_number (pp, 0, &nbits);
4200 if (nbits != 0)
4201 return error_type (pp, objfile);
4202 }
4203
4204 /* The aix4 compiler emits an extra field before the enum members;
4205 my guess is it's a type of some sort. Just ignore it. */
4206 if (**pp == '-')
4207 {
4208 /* Skip over the type. */
4209 while (**pp != ':')
4210 (*pp)++;
4211
4212 /* Skip over the colon. */
4213 (*pp)++;
4214 }
4215
4216 /* Read the value-names and their values.
4217 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4218 A semicolon or comma instead of a NAME means the end. */
4219 while (**pp && **pp != ';' && **pp != ',')
4220 {
4221 STABS_CONTINUE (pp, objfile);
4222 p = *pp;
4223 while (*p != ':')
4224 p++;
4225 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4226 *pp = p + 1;
4227 n = read_huge_number (pp, ',', &nbits);
4228 if (nbits != 0)
4229 return error_type (pp, objfile);
4230
4231 sym = (struct symbol *)
4232 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4233 memset (sym, 0, sizeof (struct symbol));
4234 SYMBOL_NAME (sym) = name;
4235 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4236 SYMBOL_CLASS (sym) = LOC_CONST;
4237 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4238 SYMBOL_VALUE (sym) = n;
4239 if (n < 0)
4240 unsigned_enum = 0;
4241 add_symbol_to_list (sym, symlist);
4242 nsyms++;
4243 }
4244
4245 if (**pp == ';')
4246 (*pp)++; /* Skip the semicolon. */
4247
4248 /* Now fill in the fields of the type-structure. */
4249
4250 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4251 TYPE_CODE (type) = TYPE_CODE_ENUM;
4252 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4253 if (unsigned_enum)
4254 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4255 TYPE_NFIELDS (type) = nsyms;
4256 TYPE_FIELDS (type) = (struct field *)
4257 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4258 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4259
4260 /* Find the symbols for the values and put them into the type.
4261 The symbols can be found in the symlist that we put them on
4262 to cause them to be defined. osyms contains the old value
4263 of that symlist; everything up to there was defined by us. */
4264 /* Note that we preserve the order of the enum constants, so
4265 that in something like "enum {FOO, LAST_THING=FOO}" we print
4266 FOO, not LAST_THING. */
4267
4268 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4269 {
4270 int last = syms == osyms ? o_nsyms : 0;
4271 int j = syms->nsyms;
4272 for (; --j >= last; --n)
4273 {
4274 struct symbol *xsym = syms->symbol[j];
4275 SYMBOL_TYPE (xsym) = type;
4276 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4277 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4278 TYPE_FIELD_BITSIZE (type, n) = 0;
4279 }
4280 if (syms == osyms)
4281 break;
4282 }
4283
4284 return type;
4285 }
4286
4287 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4288 typedefs in every file (for int, long, etc):
4289
4290 type = b <signed> <width> <format type>; <offset>; <nbits>
4291 signed = u or s.
4292 optional format type = c or b for char or boolean.
4293 offset = offset from high order bit to start bit of type.
4294 width is # bytes in object of this type, nbits is # bits in type.
4295
4296 The width/offset stuff appears to be for small objects stored in
4297 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4298 FIXME. */
4299
4300 static struct type *
4301 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
4302 {
4303 int type_bits;
4304 int nbits;
4305 int signed_type;
4306 enum type_code code = TYPE_CODE_INT;
4307
4308 switch (**pp)
4309 {
4310 case 's':
4311 signed_type = 1;
4312 break;
4313 case 'u':
4314 signed_type = 0;
4315 break;
4316 default:
4317 return error_type (pp, objfile);
4318 }
4319 (*pp)++;
4320
4321 /* For some odd reason, all forms of char put a c here. This is strange
4322 because no other type has this honor. We can safely ignore this because
4323 we actually determine 'char'acterness by the number of bits specified in
4324 the descriptor.
4325 Boolean forms, e.g Fortran logical*X, put a b here. */
4326
4327 if (**pp == 'c')
4328 (*pp)++;
4329 else if (**pp == 'b')
4330 {
4331 code = TYPE_CODE_BOOL;
4332 (*pp)++;
4333 }
4334
4335 /* The first number appears to be the number of bytes occupied
4336 by this type, except that unsigned short is 4 instead of 2.
4337 Since this information is redundant with the third number,
4338 we will ignore it. */
4339 read_huge_number (pp, ';', &nbits);
4340 if (nbits != 0)
4341 return error_type (pp, objfile);
4342
4343 /* The second number is always 0, so ignore it too. */
4344 read_huge_number (pp, ';', &nbits);
4345 if (nbits != 0)
4346 return error_type (pp, objfile);
4347
4348 /* The third number is the number of bits for this type. */
4349 type_bits = read_huge_number (pp, 0, &nbits);
4350 if (nbits != 0)
4351 return error_type (pp, objfile);
4352 /* The type *should* end with a semicolon. If it are embedded
4353 in a larger type the semicolon may be the only way to know where
4354 the type ends. If this type is at the end of the stabstring we
4355 can deal with the omitted semicolon (but we don't have to like
4356 it). Don't bother to complain(), Sun's compiler omits the semicolon
4357 for "void". */
4358 if (**pp == ';')
4359 ++(*pp);
4360
4361 if (type_bits == 0)
4362 return init_type (TYPE_CODE_VOID, 1,
4363 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4364 objfile);
4365 else
4366 return init_type (code,
4367 type_bits / TARGET_CHAR_BIT,
4368 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4369 objfile);
4370 }
4371
4372 static struct type *
4373 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
4374 {
4375 int nbits;
4376 int details;
4377 int nbytes;
4378
4379 /* The first number has more details about the type, for example
4380 FN_COMPLEX. */
4381 details = read_huge_number (pp, ';', &nbits);
4382 if (nbits != 0)
4383 return error_type (pp, objfile);
4384
4385 /* The second number is the number of bytes occupied by this type */
4386 nbytes = read_huge_number (pp, ';', &nbits);
4387 if (nbits != 0)
4388 return error_type (pp, objfile);
4389
4390 if (details == NF_COMPLEX || details == NF_COMPLEX16
4391 || details == NF_COMPLEX32)
4392 /* This is a type we can't handle, but we do know the size.
4393 We also will be able to give it a name. */
4394 return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4395
4396 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4397 }
4398
4399 /* Read a number from the string pointed to by *PP.
4400 The value of *PP is advanced over the number.
4401 If END is nonzero, the character that ends the
4402 number must match END, or an error happens;
4403 and that character is skipped if it does match.
4404 If END is zero, *PP is left pointing to that character.
4405
4406 If the number fits in a long, set *BITS to 0 and return the value.
4407 If not, set *BITS to be the number of bits in the number and return 0.
4408
4409 If encounter garbage, set *BITS to -1 and return 0. */
4410
4411 static long
4412 read_huge_number (char **pp, int end, int *bits)
4413 {
4414 char *p = *pp;
4415 int sign = 1;
4416 long n = 0;
4417 int radix = 10;
4418 char overflow = 0;
4419 int nbits = 0;
4420 int c;
4421 long upper_limit;
4422
4423 if (*p == '-')
4424 {
4425 sign = -1;
4426 p++;
4427 }
4428
4429 /* Leading zero means octal. GCC uses this to output values larger
4430 than an int (because that would be hard in decimal). */
4431 if (*p == '0')
4432 {
4433 radix = 8;
4434 p++;
4435 }
4436
4437 if (os9k_stabs)
4438 upper_limit = ULONG_MAX / radix;
4439 else
4440 upper_limit = LONG_MAX / radix;
4441
4442 while ((c = *p++) >= '0' && c < ('0' + radix))
4443 {
4444 if (n <= upper_limit)
4445 {
4446 n *= radix;
4447 n += c - '0'; /* FIXME this overflows anyway */
4448 }
4449 else
4450 overflow = 1;
4451
4452 /* This depends on large values being output in octal, which is
4453 what GCC does. */
4454 if (radix == 8)
4455 {
4456 if (nbits == 0)
4457 {
4458 if (c == '0')
4459 /* Ignore leading zeroes. */
4460 ;
4461 else if (c == '1')
4462 nbits = 1;
4463 else if (c == '2' || c == '3')
4464 nbits = 2;
4465 else
4466 nbits = 3;
4467 }
4468 else
4469 nbits += 3;
4470 }
4471 }
4472 if (end)
4473 {
4474 if (c && c != end)
4475 {
4476 if (bits != NULL)
4477 *bits = -1;
4478 return 0;
4479 }
4480 }
4481 else
4482 --p;
4483
4484 *pp = p;
4485 if (overflow)
4486 {
4487 if (nbits == 0)
4488 {
4489 /* Large decimal constants are an error (because it is hard to
4490 count how many bits are in them). */
4491 if (bits != NULL)
4492 *bits = -1;
4493 return 0;
4494 }
4495
4496 /* -0x7f is the same as 0x80. So deal with it by adding one to
4497 the number of bits. */
4498 if (sign == -1)
4499 ++nbits;
4500 if (bits)
4501 *bits = nbits;
4502 }
4503 else
4504 {
4505 if (bits)
4506 *bits = 0;
4507 return n * sign;
4508 }
4509 /* It's *BITS which has the interesting information. */
4510 return 0;
4511 }
4512
4513 static struct type *
4514 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
4515 {
4516 char *orig_pp = *pp;
4517 int rangenums[2];
4518 long n2, n3;
4519 int n2bits, n3bits;
4520 int self_subrange;
4521 struct type *result_type;
4522 struct type *index_type = NULL;
4523
4524 /* First comes a type we are a subrange of.
4525 In C it is usually 0, 1 or the type being defined. */
4526 if (read_type_number (pp, rangenums) != 0)
4527 return error_type (pp, objfile);
4528 self_subrange = (rangenums[0] == typenums[0] &&
4529 rangenums[1] == typenums[1]);
4530
4531 if (**pp == '=')
4532 {
4533 *pp = orig_pp;
4534 index_type = read_type (pp, objfile);
4535 }
4536
4537 /* A semicolon should now follow; skip it. */
4538 if (**pp == ';')
4539 (*pp)++;
4540
4541 /* The remaining two operands are usually lower and upper bounds
4542 of the range. But in some special cases they mean something else. */
4543 n2 = read_huge_number (pp, ';', &n2bits);
4544 n3 = read_huge_number (pp, ';', &n3bits);
4545
4546 if (n2bits == -1 || n3bits == -1)
4547 return error_type (pp, objfile);
4548
4549 if (index_type)
4550 goto handle_true_range;
4551
4552 /* If limits are huge, must be large integral type. */
4553 if (n2bits != 0 || n3bits != 0)
4554 {
4555 char got_signed = 0;
4556 char got_unsigned = 0;
4557 /* Number of bits in the type. */
4558 int nbits = 0;
4559
4560 /* Range from 0 to <large number> is an unsigned large integral type. */
4561 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4562 {
4563 got_unsigned = 1;
4564 nbits = n3bits;
4565 }
4566 /* Range from <large number> to <large number>-1 is a large signed
4567 integral type. Take care of the case where <large number> doesn't
4568 fit in a long but <large number>-1 does. */
4569 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4570 || (n2bits != 0 && n3bits == 0
4571 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4572 && n3 == LONG_MAX))
4573 {
4574 got_signed = 1;
4575 nbits = n2bits;
4576 }
4577
4578 if (got_signed || got_unsigned)
4579 {
4580 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4581 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4582 objfile);
4583 }
4584 else
4585 return error_type (pp, objfile);
4586 }
4587
4588 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4589 if (self_subrange && n2 == 0 && n3 == 0)
4590 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4591
4592 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4593 is the width in bytes.
4594
4595 Fortran programs appear to use this for complex types also. To
4596 distinguish between floats and complex, g77 (and others?) seem
4597 to use self-subranges for the complexes, and subranges of int for
4598 the floats.
4599
4600 Also note that for complexes, g77 sets n2 to the size of one of
4601 the member floats, not the whole complex beast. My guess is that
4602 this was to work well with pre-COMPLEX versions of gdb. */
4603
4604 if (n3 == 0 && n2 > 0)
4605 {
4606 struct type *float_type
4607 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4608
4609 if (self_subrange)
4610 {
4611 struct type *complex_type =
4612 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4613 TYPE_TARGET_TYPE (complex_type) = float_type;
4614 return complex_type;
4615 }
4616 else
4617 return float_type;
4618 }
4619
4620 /* If the upper bound is -1, it must really be an unsigned int. */
4621
4622 else if (n2 == 0 && n3 == -1)
4623 {
4624 /* It is unsigned int or unsigned long. */
4625 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4626 compatibility hack. */
4627 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4628 TYPE_FLAG_UNSIGNED, NULL, objfile);
4629 }
4630
4631 /* Special case: char is defined (Who knows why) as a subrange of
4632 itself with range 0-127. */
4633 else if (self_subrange && n2 == 0 && n3 == 127)
4634 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4635
4636 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4637 && !self_subrange)
4638 goto handle_true_range;
4639
4640 /* We used to do this only for subrange of self or subrange of int. */
4641 else if (n2 == 0)
4642 {
4643 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4644 "unsigned long", and we already checked for that,
4645 so don't need to test for it here. */
4646
4647 if (n3 < 0)
4648 /* n3 actually gives the size. */
4649 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4650 NULL, objfile);
4651
4652 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4653 unsigned n-byte integer. But do require n to be a power of
4654 two; we don't want 3- and 5-byte integers flying around. */
4655 {
4656 int bytes;
4657 unsigned long bits;
4658
4659 bits = n3;
4660 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4661 bits >>= 8;
4662 if (bits == 0
4663 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4664 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4665 objfile);
4666 }
4667 }
4668 /* I think this is for Convex "long long". Since I don't know whether
4669 Convex sets self_subrange, I also accept that particular size regardless
4670 of self_subrange. */
4671 else if (n3 == 0 && n2 < 0
4672 && (self_subrange
4673 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4674 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4675 else if (n2 == -n3 - 1)
4676 {
4677 if (n3 == 0x7f)
4678 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4679 if (n3 == 0x7fff)
4680 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4681 if (n3 == 0x7fffffff)
4682 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4683 }
4684
4685 /* We have a real range type on our hands. Allocate space and
4686 return a real pointer. */
4687 handle_true_range:
4688
4689 if (self_subrange)
4690 index_type = builtin_type_int;
4691 else
4692 index_type = *dbx_lookup_type (rangenums);
4693 if (index_type == NULL)
4694 {
4695 /* Does this actually ever happen? Is that why we are worrying
4696 about dealing with it rather than just calling error_type? */
4697
4698 static struct type *range_type_index;
4699
4700 complain (&range_type_base_complaint, rangenums[1]);
4701 if (range_type_index == NULL)
4702 range_type_index =
4703 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4704 0, "range type index type", NULL);
4705 index_type = range_type_index;
4706 }
4707
4708 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4709 return (result_type);
4710 }
4711
4712 /* Read in an argument list. This is a list of types, separated by commas
4713 and terminated with END. Return the list of types read in, or (struct type
4714 **)-1 if there is an error. */
4715
4716 static struct type **
4717 read_args (char **pp, int end, struct objfile *objfile)
4718 {
4719 /* FIXME! Remove this arbitrary limit! */
4720 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4721 int n = 0;
4722
4723 while (**pp != end)
4724 {
4725 if (**pp != ',')
4726 /* Invalid argument list: no ','. */
4727 return (struct type **) -1;
4728 (*pp)++;
4729 STABS_CONTINUE (pp, objfile);
4730 types[n++] = read_type (pp, objfile);
4731 }
4732 (*pp)++; /* get past `end' (the ':' character) */
4733
4734 if (n == 1)
4735 {
4736 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4737 }
4738 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4739 {
4740 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4741 memset (rval + n, 0, sizeof (struct type *));
4742 }
4743 else
4744 {
4745 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4746 }
4747 memcpy (rval, types, n * sizeof (struct type *));
4748 return rval;
4749 }
4750 \f
4751 /* Common block handling. */
4752
4753 /* List of symbols declared since the last BCOMM. This list is a tail
4754 of local_symbols. When ECOMM is seen, the symbols on the list
4755 are noted so their proper addresses can be filled in later,
4756 using the common block base address gotten from the assembler
4757 stabs. */
4758
4759 static struct pending *common_block;
4760 static int common_block_i;
4761
4762 /* Name of the current common block. We get it from the BCOMM instead of the
4763 ECOMM to match IBM documentation (even though IBM puts the name both places
4764 like everyone else). */
4765 static char *common_block_name;
4766
4767 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4768 to remain after this function returns. */
4769
4770 void
4771 common_block_start (char *name, struct objfile *objfile)
4772 {
4773 if (common_block_name != NULL)
4774 {
4775 static struct complaint msg =
4776 {
4777 "Invalid symbol data: common block within common block",
4778 0, 0};
4779 complain (&msg);
4780 }
4781 common_block = local_symbols;
4782 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4783 common_block_name = obsavestring (name, strlen (name),
4784 &objfile->symbol_obstack);
4785 }
4786
4787 /* Process a N_ECOMM symbol. */
4788
4789 void
4790 common_block_end (struct objfile *objfile)
4791 {
4792 /* Symbols declared since the BCOMM are to have the common block
4793 start address added in when we know it. common_block and
4794 common_block_i point to the first symbol after the BCOMM in
4795 the local_symbols list; copy the list and hang it off the
4796 symbol for the common block name for later fixup. */
4797 int i;
4798 struct symbol *sym;
4799 struct pending *new = 0;
4800 struct pending *next;
4801 int j;
4802
4803 if (common_block_name == NULL)
4804 {
4805 static struct complaint msg =
4806 {"ECOMM symbol unmatched by BCOMM", 0, 0};
4807 complain (&msg);
4808 return;
4809 }
4810
4811 sym = (struct symbol *)
4812 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4813 memset (sym, 0, sizeof (struct symbol));
4814 /* Note: common_block_name already saved on symbol_obstack */
4815 SYMBOL_NAME (sym) = common_block_name;
4816 SYMBOL_CLASS (sym) = LOC_BLOCK;
4817
4818 /* Now we copy all the symbols which have been defined since the BCOMM. */
4819
4820 /* Copy all the struct pendings before common_block. */
4821 for (next = local_symbols;
4822 next != NULL && next != common_block;
4823 next = next->next)
4824 {
4825 for (j = 0; j < next->nsyms; j++)
4826 add_symbol_to_list (next->symbol[j], &new);
4827 }
4828
4829 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4830 NULL, it means copy all the local symbols (which we already did
4831 above). */
4832
4833 if (common_block != NULL)
4834 for (j = common_block_i; j < common_block->nsyms; j++)
4835 add_symbol_to_list (common_block->symbol[j], &new);
4836
4837 SYMBOL_TYPE (sym) = (struct type *) new;
4838
4839 /* Should we be putting local_symbols back to what it was?
4840 Does it matter? */
4841
4842 i = hashname (SYMBOL_NAME (sym));
4843 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4844 global_sym_chain[i] = sym;
4845 common_block_name = NULL;
4846 }
4847
4848 /* Add a common block's start address to the offset of each symbol
4849 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4850 the common block name). */
4851
4852 static void
4853 fix_common_block (struct symbol *sym, int valu)
4854 {
4855 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4856 for (; next; next = next->next)
4857 {
4858 register int j;
4859 for (j = next->nsyms - 1; j >= 0; j--)
4860 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4861 }
4862 }
4863 \f
4864
4865
4866 /* What about types defined as forward references inside of a small lexical
4867 scope? */
4868 /* Add a type to the list of undefined types to be checked through
4869 once this file has been read in. */
4870
4871 void
4872 add_undefined_type (struct type *type)
4873 {
4874 if (undef_types_length == undef_types_allocated)
4875 {
4876 undef_types_allocated *= 2;
4877 undef_types = (struct type **)
4878 xrealloc ((char *) undef_types,
4879 undef_types_allocated * sizeof (struct type *));
4880 }
4881 undef_types[undef_types_length++] = type;
4882 }
4883
4884 /* Go through each undefined type, see if it's still undefined, and fix it
4885 up if possible. We have two kinds of undefined types:
4886
4887 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4888 Fix: update array length using the element bounds
4889 and the target type's length.
4890 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4891 yet defined at the time a pointer to it was made.
4892 Fix: Do a full lookup on the struct/union tag. */
4893 void
4894 cleanup_undefined_types (void)
4895 {
4896 struct type **type;
4897
4898 for (type = undef_types; type < undef_types + undef_types_length; type++)
4899 {
4900 switch (TYPE_CODE (*type))
4901 {
4902
4903 case TYPE_CODE_STRUCT:
4904 case TYPE_CODE_UNION:
4905 case TYPE_CODE_ENUM:
4906 {
4907 /* Check if it has been defined since. Need to do this here
4908 as well as in check_typedef to deal with the (legitimate in
4909 C though not C++) case of several types with the same name
4910 in different source files. */
4911 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
4912 {
4913 struct pending *ppt;
4914 int i;
4915 /* Name of the type, without "struct" or "union" */
4916 char *typename = TYPE_TAG_NAME (*type);
4917
4918 if (typename == NULL)
4919 {
4920 static struct complaint msg =
4921 {"need a type name", 0, 0};
4922 complain (&msg);
4923 break;
4924 }
4925 for (ppt = file_symbols; ppt; ppt = ppt->next)
4926 {
4927 for (i = 0; i < ppt->nsyms; i++)
4928 {
4929 struct symbol *sym = ppt->symbol[i];
4930
4931 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4932 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
4933 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4934 TYPE_CODE (*type))
4935 && STREQ (SYMBOL_NAME (sym), typename))
4936 {
4937 memcpy (*type, SYMBOL_TYPE (sym),
4938 sizeof (struct type));
4939 }
4940 }
4941 }
4942 }
4943 }
4944 break;
4945
4946 default:
4947 {
4948 static struct complaint msg =
4949 {"\
4950 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
4951 complain (&msg, TYPE_CODE (*type));
4952 }
4953 break;
4954 }
4955 }
4956
4957 undef_types_length = 0;
4958 }
4959
4960 /* Scan through all of the global symbols defined in the object file,
4961 assigning values to the debugging symbols that need to be assigned
4962 to. Get these symbols from the minimal symbol table. */
4963
4964 void
4965 scan_file_globals (struct objfile *objfile)
4966 {
4967 int hash;
4968 struct minimal_symbol *msymbol;
4969 struct symbol *sym, *prev, *rsym;
4970 struct objfile *resolve_objfile;
4971
4972 /* SVR4 based linkers copy referenced global symbols from shared
4973 libraries to the main executable.
4974 If we are scanning the symbols for a shared library, try to resolve
4975 them from the minimal symbols of the main executable first. */
4976
4977 if (symfile_objfile && objfile != symfile_objfile)
4978 resolve_objfile = symfile_objfile;
4979 else
4980 resolve_objfile = objfile;
4981
4982 while (1)
4983 {
4984 /* Avoid expensive loop through all minimal symbols if there are
4985 no unresolved symbols. */
4986 for (hash = 0; hash < HASHSIZE; hash++)
4987 {
4988 if (global_sym_chain[hash])
4989 break;
4990 }
4991 if (hash >= HASHSIZE)
4992 return;
4993
4994 for (msymbol = resolve_objfile->msymbols;
4995 msymbol && SYMBOL_NAME (msymbol) != NULL;
4996 msymbol++)
4997 {
4998 QUIT;
4999
5000 /* Skip static symbols. */
5001 switch (MSYMBOL_TYPE (msymbol))
5002 {
5003 case mst_file_text:
5004 case mst_file_data:
5005 case mst_file_bss:
5006 continue;
5007 default:
5008 break;
5009 }
5010
5011 prev = NULL;
5012
5013 /* Get the hash index and check all the symbols
5014 under that hash index. */
5015
5016 hash = hashname (SYMBOL_NAME (msymbol));
5017
5018 for (sym = global_sym_chain[hash]; sym;)
5019 {
5020 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5021 STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5022 {
5023
5024 struct alias_list *aliases;
5025
5026 /* Splice this symbol out of the hash chain and
5027 assign the value we have to it. */
5028 if (prev)
5029 {
5030 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5031 }
5032 else
5033 {
5034 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5035 }
5036
5037 /* Check to see whether we need to fix up a common block. */
5038 /* Note: this code might be executed several times for
5039 the same symbol if there are multiple references. */
5040
5041 /* If symbol has aliases, do minimal symbol fixups for each.
5042 These live aliases/references weren't added to
5043 global_sym_chain hash but may also need to be fixed up. */
5044 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5045 symbols? Still, we wouldn't want to add_to_list. */
5046 /* Now do the same for each alias of this symbol */
5047 rsym = sym;
5048 aliases = SYMBOL_ALIASES (sym);
5049 while (rsym)
5050 {
5051 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5052 {
5053 fix_common_block (rsym,
5054 SYMBOL_VALUE_ADDRESS (msymbol));
5055 }
5056 else
5057 {
5058 SYMBOL_VALUE_ADDRESS (rsym)
5059 = SYMBOL_VALUE_ADDRESS (msymbol);
5060 }
5061 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5062 if (aliases)
5063 {
5064 rsym = aliases->sym;
5065 aliases = aliases->next;
5066 }
5067 else
5068 rsym = NULL;
5069 }
5070
5071
5072 if (prev)
5073 {
5074 sym = SYMBOL_VALUE_CHAIN (prev);
5075 }
5076 else
5077 {
5078 sym = global_sym_chain[hash];
5079 }
5080 }
5081 else
5082 {
5083 prev = sym;
5084 sym = SYMBOL_VALUE_CHAIN (sym);
5085 }
5086 }
5087 }
5088 if (resolve_objfile == objfile)
5089 break;
5090 resolve_objfile = objfile;
5091 }
5092
5093 /* Change the storage class of any remaining unresolved globals to
5094 LOC_UNRESOLVED and remove them from the chain. */
5095 for (hash = 0; hash < HASHSIZE; hash++)
5096 {
5097 sym = global_sym_chain[hash];
5098 while (sym)
5099 {
5100 prev = sym;
5101 sym = SYMBOL_VALUE_CHAIN (sym);
5102
5103 /* Change the symbol address from the misleading chain value
5104 to address zero. */
5105 SYMBOL_VALUE_ADDRESS (prev) = 0;
5106
5107 /* Complain about unresolved common block symbols. */
5108 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5109 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5110 else
5111 complain (&unresolved_sym_chain_complaint,
5112 objfile->name, SYMBOL_NAME (prev));
5113 }
5114 }
5115 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5116 }
5117
5118 /* Initialize anything that needs initializing when starting to read
5119 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5120 to a psymtab. */
5121
5122 void
5123 stabsread_init (void)
5124 {
5125 }
5126
5127 /* Initialize anything that needs initializing when a completely new
5128 symbol file is specified (not just adding some symbols from another
5129 file, e.g. a shared library). */
5130
5131 void
5132 stabsread_new_init (void)
5133 {
5134 /* Empty the hash table of global syms looking for values. */
5135 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5136 }
5137
5138 /* Initialize anything that needs initializing at the same time as
5139 start_symtab() is called. */
5140
5141 void
5142 start_stabs (void)
5143 {
5144 global_stabs = NULL; /* AIX COFF */
5145 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5146 n_this_object_header_files = 1;
5147 type_vector_length = 0;
5148 type_vector = (struct type **) 0;
5149
5150 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5151 common_block_name = NULL;
5152
5153 os9k_stabs = 0;
5154 }
5155
5156 /* Call after end_symtab() */
5157
5158 void
5159 end_stabs (void)
5160 {
5161 if (type_vector)
5162 {
5163 xfree (type_vector);
5164 }
5165 type_vector = 0;
5166 type_vector_length = 0;
5167 previous_stab_code = 0;
5168 }
5169
5170 void
5171 finish_global_stabs (struct objfile *objfile)
5172 {
5173 if (global_stabs)
5174 {
5175 patch_block_stabs (global_symbols, global_stabs, objfile);
5176 xfree (global_stabs);
5177 global_stabs = NULL;
5178 }
5179 }
5180
5181 /* Initializer for this module */
5182
5183 void
5184 _initialize_stabsread (void)
5185 {
5186 undef_types_allocated = 20;
5187 undef_types_length = 0;
5188 undef_types = (struct type **)
5189 xmalloc (undef_types_allocated * sizeof (struct type *));
5190 }
This page took 0.148453 seconds and 4 git commands to generate.