2567b468ffe783e93f9e0936cf256c7c66c84d4a
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "gdb_obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47 #include "cp-abi.h"
48 #include "cp-support.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static char *get_substring (char **, int);
93
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
95
96 static long read_huge_number (char **, int, int *);
97
98 static struct type *error_type (char **, struct objfile *);
99
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
103
104 static void fix_common_block (struct symbol *, int);
105
106 static int read_type_number (char **, int *);
107
108 static struct type *read_type (char **, struct objfile *);
109
110 static struct type *read_range_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
113
114 static struct type *read_sun_floating_type (char **, int[2],
115 struct objfile *);
116
117 static struct type *read_enum_type (char **, struct type *, struct objfile *);
118
119 static struct type *rs6000_builtin_type (int);
120
121 static int
122 read_member_functions (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_struct_fields (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_baseclasses (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_tilde_fields (struct field_info *, char **, struct type *,
135 struct objfile *);
136
137 static int attach_fn_fields_to_type (struct field_info *, struct type *);
138
139 static int attach_fields_to_type (struct field_info *, struct type *,
140 struct objfile *);
141
142 static struct type *read_struct_type (char **, struct type *,
143 enum type_code,
144 struct objfile *);
145
146 static struct type *read_array_type (char **, struct type *,
147 struct objfile *);
148
149 static struct field *read_args (char **, int, struct objfile *, int *, int *);
150
151 static void add_undefined_type (struct type *);
152
153 static int
154 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 struct objfile *);
156
157 static char *find_name_end (char *name);
158
159 static int process_reference (char **string);
160
161 static CORE_ADDR ref_search_value (int refnum);
162
163 void stabsread_clear_cache (void);
164
165 static const char vptr_name[] = "_vptr$";
166 static const char vb_name[] = "_vb$";
167
168 /* Define this as 1 if a pcc declaration of a char or short argument
169 gives the correct address. Otherwise assume pcc gives the
170 address of the corresponding int, which is not the same on a
171 big-endian machine. */
172
173 #if !defined (BELIEVE_PCC_PROMOTION)
174 #define BELIEVE_PCC_PROMOTION 0
175 #endif
176
177 static void
178 invalid_cpp_abbrev_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
181 }
182
183 static void
184 reg_value_complaint (int arg1, int arg2, const char *arg3)
185 {
186 complaint (&symfile_complaints,
187 "register number %d too large (max %d) in symbol %s", arg1, arg2,
188 arg3);
189 }
190
191 static void
192 stabs_general_complaint (const char *arg1)
193 {
194 complaint (&symfile_complaints, "%s", arg1);
195 }
196
197 static void
198 lrs_general_complaint (const char *arg1)
199 {
200 complaint (&symfile_complaints, "%s", arg1);
201 }
202
203 /* Make a list of forward references which haven't been defined. */
204
205 static struct type **undef_types;
206 static int undef_types_allocated;
207 static int undef_types_length;
208 static struct symbol *current_symbol = NULL;
209
210 /* Check for and handle cretinous stabs symbol name continuation! */
211 #define STABS_CONTINUE(pp,objfile) \
212 do { \
213 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
214 *(pp) = next_symbol_text (objfile); \
215 } while (0)
216 \f
217
218 /* Look up a dbx type-number pair. Return the address of the slot
219 where the type for that number-pair is stored.
220 The number-pair is in TYPENUMS.
221
222 This can be used for finding the type associated with that pair
223 or for associating a new type with the pair. */
224
225 static struct type **
226 dbx_lookup_type (int typenums[2])
227 {
228 int filenum = typenums[0];
229 int index = typenums[1];
230 unsigned old_len;
231 int real_filenum;
232 struct header_file *f;
233 int f_orig_length;
234
235 if (filenum == -1) /* -1,-1 is for temporary types. */
236 return 0;
237
238 if (filenum < 0 || filenum >= n_this_object_header_files)
239 {
240 complaint (&symfile_complaints,
241 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
242 filenum, index, symnum);
243 goto error_return;
244 }
245
246 if (filenum == 0)
247 {
248 if (index < 0)
249 {
250 /* Caller wants address of address of type. We think
251 that negative (rs6k builtin) types will never appear as
252 "lvalues", (nor should they), so we stuff the real type
253 pointer into a temp, and return its address. If referenced,
254 this will do the right thing. */
255 static struct type *temp_type;
256
257 temp_type = rs6000_builtin_type (index);
258 return &temp_type;
259 }
260
261 /* Type is defined outside of header files.
262 Find it in this object file's type vector. */
263 if (index >= type_vector_length)
264 {
265 old_len = type_vector_length;
266 if (old_len == 0)
267 {
268 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
269 type_vector = (struct type **)
270 xmalloc (type_vector_length * sizeof (struct type *));
271 }
272 while (index >= type_vector_length)
273 {
274 type_vector_length *= 2;
275 }
276 type_vector = (struct type **)
277 xrealloc ((char *) type_vector,
278 (type_vector_length * sizeof (struct type *)));
279 memset (&type_vector[old_len], 0,
280 (type_vector_length - old_len) * sizeof (struct type *));
281 }
282 return (&type_vector[index]);
283 }
284 else
285 {
286 real_filenum = this_object_header_files[filenum];
287
288 if (real_filenum >= N_HEADER_FILES (current_objfile))
289 {
290 struct type *temp_type;
291 struct type **temp_type_p;
292
293 warning ("GDB internal error: bad real_filenum");
294
295 error_return:
296 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
297 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
298 *temp_type_p = temp_type;
299 return temp_type_p;
300 }
301
302 f = HEADER_FILES (current_objfile) + real_filenum;
303
304 f_orig_length = f->length;
305 if (index >= f_orig_length)
306 {
307 while (index >= f->length)
308 {
309 f->length *= 2;
310 }
311 f->vector = (struct type **)
312 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
313 memset (&f->vector[f_orig_length], 0,
314 (f->length - f_orig_length) * sizeof (struct type *));
315 }
316 return (&f->vector[index]);
317 }
318 }
319
320 /* Make sure there is a type allocated for type numbers TYPENUMS
321 and return the type object.
322 This can create an empty (zeroed) type object.
323 TYPENUMS may be (-1, -1) to return a new type object that is not
324 put into the type vector, and so may not be referred to by number. */
325
326 static struct type *
327 dbx_alloc_type (int typenums[2], struct objfile *objfile)
328 {
329 struct type **type_addr;
330
331 if (typenums[0] == -1)
332 {
333 return (alloc_type (objfile));
334 }
335
336 type_addr = dbx_lookup_type (typenums);
337
338 /* If we are referring to a type not known at all yet,
339 allocate an empty type for it.
340 We will fill it in later if we find out how. */
341 if (*type_addr == 0)
342 {
343 *type_addr = alloc_type (objfile);
344 }
345
346 return (*type_addr);
347 }
348
349 /* for all the stabs in a given stab vector, build appropriate types
350 and fix their symbols in given symbol vector. */
351
352 static void
353 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
354 struct objfile *objfile)
355 {
356 int ii;
357 char *name;
358 char *pp;
359 struct symbol *sym;
360
361 if (stabs)
362 {
363
364 /* for all the stab entries, find their corresponding symbols and
365 patch their types! */
366
367 for (ii = 0; ii < stabs->count; ++ii)
368 {
369 name = stabs->stab[ii];
370 pp = (char *) strchr (name, ':');
371 while (pp[1] == ':')
372 {
373 pp += 2;
374 pp = (char *) strchr (pp, ':');
375 }
376 sym = find_symbol_in_list (symbols, name, pp - name);
377 if (!sym)
378 {
379 /* FIXME-maybe: it would be nice if we noticed whether
380 the variable was defined *anywhere*, not just whether
381 it is defined in this compilation unit. But neither
382 xlc or GCC seem to need such a definition, and until
383 we do psymtabs (so that the minimal symbols from all
384 compilation units are available now), I'm not sure
385 how to get the information. */
386
387 /* On xcoff, if a global is defined and never referenced,
388 ld will remove it from the executable. There is then
389 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
390 sym = (struct symbol *)
391 obstack_alloc (&objfile->symbol_obstack,
392 sizeof (struct symbol));
393
394 memset (sym, 0, sizeof (struct symbol));
395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
396 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
397 DEPRECATED_SYMBOL_NAME (sym) =
398 obsavestring (name, pp - name, &objfile->symbol_obstack);
399 pp += 2;
400 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
401 {
402 /* I don't think the linker does this with functions,
403 so as far as I know this is never executed.
404 But it doesn't hurt to check. */
405 SYMBOL_TYPE (sym) =
406 lookup_function_type (read_type (&pp, objfile));
407 }
408 else
409 {
410 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
411 }
412 add_symbol_to_list (sym, &global_symbols);
413 }
414 else
415 {
416 pp += 2;
417 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
418 {
419 SYMBOL_TYPE (sym) =
420 lookup_function_type (read_type (&pp, objfile));
421 }
422 else
423 {
424 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
425 }
426 }
427 }
428 }
429 }
430 \f
431
432 /* Read a number by which a type is referred to in dbx data,
433 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
434 Just a single number N is equivalent to (0,N).
435 Return the two numbers by storing them in the vector TYPENUMS.
436 TYPENUMS will then be used as an argument to dbx_lookup_type.
437
438 Returns 0 for success, -1 for error. */
439
440 static int
441 read_type_number (char **pp, int *typenums)
442 {
443 int nbits;
444 if (**pp == '(')
445 {
446 (*pp)++;
447 typenums[0] = read_huge_number (pp, ',', &nbits);
448 if (nbits != 0)
449 return -1;
450 typenums[1] = read_huge_number (pp, ')', &nbits);
451 if (nbits != 0)
452 return -1;
453 }
454 else
455 {
456 typenums[0] = 0;
457 typenums[1] = read_huge_number (pp, 0, &nbits);
458 if (nbits != 0)
459 return -1;
460 }
461 return 0;
462 }
463 \f
464
465 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
466 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
467 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
468 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
469
470 /* Structure for storing pointers to reference definitions for fast lookup
471 during "process_later". */
472
473 struct ref_map
474 {
475 char *stabs;
476 CORE_ADDR value;
477 struct symbol *sym;
478 };
479
480 #define MAX_CHUNK_REFS 100
481 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
482 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
483
484 static struct ref_map *ref_map;
485
486 /* Ptr to free cell in chunk's linked list. */
487 static int ref_count = 0;
488
489 /* Number of chunks malloced. */
490 static int ref_chunk = 0;
491
492 /* This file maintains a cache of stabs aliases found in the symbol
493 table. If the symbol table changes, this cache must be cleared
494 or we are left holding onto data in invalid obstacks. */
495 void
496 stabsread_clear_cache (void)
497 {
498 ref_count = 0;
499 ref_chunk = 0;
500 }
501
502 /* Create array of pointers mapping refids to symbols and stab strings.
503 Add pointers to reference definition symbols and/or their values as we
504 find them, using their reference numbers as our index.
505 These will be used later when we resolve references. */
506 void
507 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
508 {
509 if (ref_count == 0)
510 ref_chunk = 0;
511 if (refnum >= ref_count)
512 ref_count = refnum + 1;
513 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
514 {
515 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
516 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
517 ref_map = (struct ref_map *)
518 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
519 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
520 ref_chunk += new_chunks;
521 }
522 ref_map[refnum].stabs = stabs;
523 ref_map[refnum].sym = sym;
524 ref_map[refnum].value = value;
525 }
526
527 /* Return defined sym for the reference REFNUM. */
528 struct symbol *
529 ref_search (int refnum)
530 {
531 if (refnum < 0 || refnum > ref_count)
532 return 0;
533 return ref_map[refnum].sym;
534 }
535
536 /* Return value for the reference REFNUM. */
537
538 static CORE_ADDR
539 ref_search_value (int refnum)
540 {
541 if (refnum < 0 || refnum > ref_count)
542 return 0;
543 return ref_map[refnum].value;
544 }
545
546 /* Parse a reference id in STRING and return the resulting
547 reference number. Move STRING beyond the reference id. */
548
549 static int
550 process_reference (char **string)
551 {
552 char *p;
553 int refnum = 0;
554
555 if (**string != '#')
556 return 0;
557
558 /* Advance beyond the initial '#'. */
559 p = *string + 1;
560
561 /* Read number as reference id. */
562 while (*p && isdigit (*p))
563 {
564 refnum = refnum * 10 + *p - '0';
565 p++;
566 }
567 *string = p;
568 return refnum;
569 }
570
571 /* If STRING defines a reference, store away a pointer to the reference
572 definition for later use. Return the reference number. */
573
574 int
575 symbol_reference_defined (char **string)
576 {
577 char *p = *string;
578 int refnum = 0;
579
580 refnum = process_reference (&p);
581
582 /* Defining symbols end in '=' */
583 if (*p == '=')
584 {
585 /* Symbol is being defined here. */
586 *string = p + 1;
587 return refnum;
588 }
589 else
590 {
591 /* Must be a reference. Either the symbol has already been defined,
592 or this is a forward reference to it. */
593 *string = p;
594 return -1;
595 }
596 }
597
598 struct symbol *
599 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
600 struct objfile *objfile)
601 {
602 struct symbol *sym;
603 char *p = (char *) find_name_end (string);
604 int deftype;
605 int synonym = 0;
606 int i;
607
608 /* We would like to eliminate nameless symbols, but keep their types.
609 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
610 to type 2, but, should not create a symbol to address that type. Since
611 the symbol will be nameless, there is no way any user can refer to it. */
612
613 int nameless;
614
615 /* Ignore syms with empty names. */
616 if (string[0] == 0)
617 return 0;
618
619 /* Ignore old-style symbols from cc -go */
620 if (p == 0)
621 return 0;
622
623 while (p[1] == ':')
624 {
625 p += 2;
626 p = strchr (p, ':');
627 }
628
629 /* If a nameless stab entry, all we need is the type, not the symbol.
630 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
631 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
632
633 current_symbol = sym = (struct symbol *)
634 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
635 memset (sym, 0, sizeof (struct symbol));
636
637 switch (type & N_TYPE)
638 {
639 case N_TEXT:
640 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
641 break;
642 case N_DATA:
643 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
644 break;
645 case N_BSS:
646 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
647 break;
648 }
649
650 if (processing_gcc_compilation)
651 {
652 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
653 number of bytes occupied by a type or object, which we ignore. */
654 SYMBOL_LINE (sym) = desc;
655 }
656 else
657 {
658 SYMBOL_LINE (sym) = 0; /* unknown */
659 }
660
661 if (is_cplus_marker (string[0]))
662 {
663 /* Special GNU C++ names. */
664 switch (string[1])
665 {
666 case 't':
667 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
668 &objfile->symbol_obstack);
669 break;
670
671 case 'v': /* $vtbl_ptr_type */
672 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
673 goto normal;
674
675 case 'e':
676 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
677 &objfile->symbol_obstack);
678 break;
679
680 case '_':
681 /* This was an anonymous type that was never fixed up. */
682 goto normal;
683
684 #ifdef STATIC_TRANSFORM_NAME
685 case 'X':
686 /* SunPRO (3.0 at least) static variable encoding. */
687 goto normal;
688 #endif
689
690 default:
691 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
692 string);
693 goto normal; /* Do *something* with it */
694 }
695 }
696 else
697 {
698 normal:
699 SYMBOL_LANGUAGE (sym) = current_subfile->language;
700 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
701 }
702 p++;
703
704 /* Determine the type of name being defined. */
705 #if 0
706 /* Getting GDB to correctly skip the symbol on an undefined symbol
707 descriptor and not ever dump core is a very dodgy proposition if
708 we do things this way. I say the acorn RISC machine can just
709 fix their compiler. */
710 /* The Acorn RISC machine's compiler can put out locals that don't
711 start with "234=" or "(3,4)=", so assume anything other than the
712 deftypes we know how to handle is a local. */
713 if (!strchr ("cfFGpPrStTvVXCR", *p))
714 #else
715 if (isdigit (*p) || *p == '(' || *p == '-')
716 #endif
717 deftype = 'l';
718 else
719 deftype = *p++;
720
721 switch (deftype)
722 {
723 case 'c':
724 /* c is a special case, not followed by a type-number.
725 SYMBOL:c=iVALUE for an integer constant symbol.
726 SYMBOL:c=rVALUE for a floating constant symbol.
727 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
728 e.g. "b:c=e6,0" for "const b = blob1"
729 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
730 if (*p != '=')
731 {
732 SYMBOL_CLASS (sym) = LOC_CONST;
733 SYMBOL_TYPE (sym) = error_type (&p, objfile);
734 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
735 add_symbol_to_list (sym, &file_symbols);
736 return sym;
737 }
738 ++p;
739 switch (*p++)
740 {
741 case 'r':
742 {
743 double d = atof (p);
744 char *dbl_valu;
745
746 /* FIXME-if-picky-about-floating-accuracy: Should be using
747 target arithmetic to get the value. real.c in GCC
748 probably has the necessary code. */
749
750 /* FIXME: lookup_fundamental_type is a hack. We should be
751 creating a type especially for the type of float constants.
752 Problem is, what type should it be?
753
754 Also, what should the name of this type be? Should we
755 be using 'S' constants (see stabs.texinfo) instead? */
756
757 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
758 FT_DBL_PREC_FLOAT);
759 dbl_valu = (char *)
760 obstack_alloc (&objfile->symbol_obstack,
761 TYPE_LENGTH (SYMBOL_TYPE (sym)));
762 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
763 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
764 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
765 }
766 break;
767 case 'i':
768 {
769 /* Defining integer constants this way is kind of silly,
770 since 'e' constants allows the compiler to give not
771 only the value, but the type as well. C has at least
772 int, long, unsigned int, and long long as constant
773 types; other languages probably should have at least
774 unsigned as well as signed constants. */
775
776 /* We just need one int constant type for all objfiles.
777 It doesn't depend on languages or anything (arguably its
778 name should be a language-specific name for a type of
779 that size, but I'm inclined to say that if the compiler
780 wants a nice name for the type, it can use 'e'). */
781 static struct type *int_const_type;
782
783 /* Yes, this is as long as a *host* int. That is because we
784 use atoi. */
785 if (int_const_type == NULL)
786 int_const_type =
787 init_type (TYPE_CODE_INT,
788 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
789 "integer constant",
790 (struct objfile *) NULL);
791 SYMBOL_TYPE (sym) = int_const_type;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796 case 'e':
797 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
798 can be represented as integral.
799 e.g. "b:c=e6,0" for "const b = blob1"
800 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
801 {
802 SYMBOL_CLASS (sym) = LOC_CONST;
803 SYMBOL_TYPE (sym) = read_type (&p, objfile);
804
805 if (*p != ',')
806 {
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
808 break;
809 }
810 ++p;
811
812 /* If the value is too big to fit in an int (perhaps because
813 it is unsigned), or something like that, we silently get
814 a bogus value. The type and everything else about it is
815 correct. Ideally, we should be using whatever we have
816 available for parsing unsigned and long long values,
817 however. */
818 SYMBOL_VALUE (sym) = atoi (p);
819 }
820 break;
821 default:
822 {
823 SYMBOL_CLASS (sym) = LOC_CONST;
824 SYMBOL_TYPE (sym) = error_type (&p, objfile);
825 }
826 }
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 return sym;
830
831 case 'C':
832 /* The name of a caught exception. */
833 SYMBOL_TYPE (sym) = read_type (&p, objfile);
834 SYMBOL_CLASS (sym) = LOC_LABEL;
835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
836 SYMBOL_VALUE_ADDRESS (sym) = valu;
837 add_symbol_to_list (sym, &local_symbols);
838 break;
839
840 case 'f':
841 /* A static function definition. */
842 SYMBOL_TYPE (sym) = read_type (&p, objfile);
843 SYMBOL_CLASS (sym) = LOC_BLOCK;
844 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
845 add_symbol_to_list (sym, &file_symbols);
846 /* fall into process_function_types. */
847
848 process_function_types:
849 /* Function result types are described as the result type in stabs.
850 We need to convert this to the function-returning-type-X type
851 in GDB. E.g. "int" is converted to "function returning int". */
852 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
853 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
854
855 /* All functions in C++ have prototypes. Stabs does not offer an
856 explicit way to identify prototyped or unprototyped functions,
857 but both GCC and Sun CC emit stabs for the "call-as" type rather
858 than the "declared-as" type for unprototyped functions, so
859 we treat all functions as if they were prototyped. This is used
860 primarily for promotion when calling the function from GDB. */
861 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
862
863 /* fall into process_prototype_types */
864
865 process_prototype_types:
866 /* Sun acc puts declared types of arguments here. */
867 if (*p == ';')
868 {
869 struct type *ftype = SYMBOL_TYPE (sym);
870 int nsemi = 0;
871 int nparams = 0;
872 char *p1 = p;
873
874 /* Obtain a worst case guess for the number of arguments
875 by counting the semicolons. */
876 while (*p1)
877 {
878 if (*p1++ == ';')
879 nsemi++;
880 }
881
882 /* Allocate parameter information fields and fill them in. */
883 TYPE_FIELDS (ftype) = (struct field *)
884 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
885 while (*p++ == ';')
886 {
887 struct type *ptype;
888
889 /* A type number of zero indicates the start of varargs.
890 FIXME: GDB currently ignores vararg functions. */
891 if (p[0] == '0' && p[1] == '\0')
892 break;
893 ptype = read_type (&p, objfile);
894
895 /* The Sun compilers mark integer arguments, which should
896 be promoted to the width of the calling conventions, with
897 a type which references itself. This type is turned into
898 a TYPE_CODE_VOID type by read_type, and we have to turn
899 it back into builtin_type_int here.
900 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
901 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
902 ptype = builtin_type_int;
903 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
904 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
905 }
906 TYPE_NFIELDS (ftype) = nparams;
907 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
908 }
909 break;
910
911 case 'F':
912 /* A global function definition. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_BLOCK;
915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916 add_symbol_to_list (sym, &global_symbols);
917 goto process_function_types;
918
919 case 'G':
920 /* For a class G (global) symbol, it appears that the
921 value is not correct. It is necessary to search for the
922 corresponding linker definition to find the value.
923 These definitions appear at the end of the namelist. */
924 SYMBOL_TYPE (sym) = read_type (&p, objfile);
925 SYMBOL_CLASS (sym) = LOC_STATIC;
926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927 /* Don't add symbol references to global_sym_chain.
928 Symbol references don't have valid names and wont't match up with
929 minimal symbols when the global_sym_chain is relocated.
930 We'll fixup symbol references when we fixup the defining symbol. */
931 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
932 {
933 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
934 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
935 global_sym_chain[i] = sym;
936 }
937 add_symbol_to_list (sym, &global_symbols);
938 break;
939
940 /* This case is faked by a conditional above,
941 when there is no code letter in the dbx data.
942 Dbx data never actually contains 'l'. */
943 case 's':
944 case 'l':
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_CLASS (sym) = LOC_LOCAL;
947 SYMBOL_VALUE (sym) = valu;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &local_symbols);
950 break;
951
952 case 'p':
953 if (*p == 'F')
954 /* pF is a two-letter code that means a function parameter in Fortran.
955 The type-number specifies the type of the return value.
956 Translate it into a pointer-to-function type. */
957 {
958 p++;
959 SYMBOL_TYPE (sym)
960 = lookup_pointer_type
961 (lookup_function_type (read_type (&p, objfile)));
962 }
963 else
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965
966 SYMBOL_CLASS (sym) = LOC_ARG;
967 SYMBOL_VALUE (sym) = valu;
968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
969 add_symbol_to_list (sym, &local_symbols);
970
971 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
972 {
973 /* On little-endian machines, this crud is never necessary,
974 and, if the extra bytes contain garbage, is harmful. */
975 break;
976 }
977
978 /* If it's gcc-compiled, if it says `short', believe it. */
979 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
980 break;
981
982 if (!BELIEVE_PCC_PROMOTION)
983 {
984 /* This is the signed type which arguments get promoted to. */
985 static struct type *pcc_promotion_type;
986 /* This is the unsigned type which arguments get promoted to. */
987 static struct type *pcc_unsigned_promotion_type;
988
989 /* Call it "int" because this is mainly C lossage. */
990 if (pcc_promotion_type == NULL)
991 pcc_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 0, "int", NULL);
994
995 if (pcc_unsigned_promotion_type == NULL)
996 pcc_unsigned_promotion_type =
997 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
998 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
999
1000 if (BELIEVE_PCC_PROMOTION_TYPE)
1001 {
1002 /* This is defined on machines (e.g. sparc) where we
1003 should believe the type of a PCC 'short' argument,
1004 but shouldn't believe the address (the address is the
1005 address of the corresponding int).
1006
1007 My guess is that this correction, as opposed to
1008 changing the parameter to an 'int' (as done below,
1009 for PCC on most machines), is the right thing to do
1010 on all machines, but I don't want to risk breaking
1011 something that already works. On most PCC machines,
1012 the sparc problem doesn't come up because the calling
1013 function has to zero the top bytes (not knowing
1014 whether the called function wants an int or a short),
1015 so there is little practical difference between an
1016 int and a short (except perhaps what happens when the
1017 GDB user types "print short_arg = 0x10000;").
1018
1019 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1020 compiler actually produces the correct address (we
1021 don't need to fix it up). I made this code adapt so
1022 that it will offset the symbol if it was pointing at
1023 an int-aligned location and not otherwise. This way
1024 you can use the same gdb for 4.0.x and 4.1 systems.
1025
1026 If the parameter is shorter than an int, and is
1027 integral (e.g. char, short, or unsigned equivalent),
1028 and is claimed to be passed on an integer boundary,
1029 don't believe it! Offset the parameter's address to
1030 the tail-end of that integer. */
1031
1032 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1033 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1034 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1035 {
1036 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1037 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1038 }
1039 break;
1040 }
1041 else
1042 {
1043 /* If PCC says a parameter is a short or a char,
1044 it is really an int. */
1045 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1046 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1047 {
1048 SYMBOL_TYPE (sym) =
1049 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1050 ? pcc_unsigned_promotion_type
1051 : pcc_promotion_type;
1052 }
1053 break;
1054 }
1055 }
1056
1057 case 'P':
1058 /* acc seems to use P to declare the prototypes of functions that
1059 are referenced by this file. gdb is not prepared to deal
1060 with this extra information. FIXME, it ought to. */
1061 if (type == N_FUN)
1062 {
1063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1064 goto process_prototype_types;
1065 }
1066 /*FALLTHROUGH */
1067
1068 case 'R':
1069 /* Parameter which is in a register. */
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071 SYMBOL_CLASS (sym) = LOC_REGPARM;
1072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1074 {
1075 reg_value_complaint (SYMBOL_VALUE (sym),
1076 NUM_REGS + NUM_PSEUDO_REGS,
1077 SYMBOL_PRINT_NAME (sym));
1078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1079 }
1080 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1081 add_symbol_to_list (sym, &local_symbols);
1082 break;
1083
1084 case 'r':
1085 /* Register variable (either global or local). */
1086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1087 SYMBOL_CLASS (sym) = LOC_REGISTER;
1088 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1089 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1090 {
1091 reg_value_complaint (SYMBOL_VALUE (sym),
1092 NUM_REGS + NUM_PSEUDO_REGS,
1093 SYMBOL_PRINT_NAME (sym));
1094 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1095 }
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1098 {
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
1113
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
1121 #ifndef DEPRECATED_USE_REGISTER_NOT_ARG
1122 /* DEPRECATED_USE_REGISTER_NOT_ARG is only defined by
1123 the SPARC. */
1124 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1125 SYMBOL_TYPE (sym))
1126 #endif
1127 )
1128 {
1129 struct symbol *prev_sym;
1130 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1131 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1132 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1133 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1134 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1135 {
1136 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1137 /* Use the type from the LOC_REGISTER; that is the type
1138 that is actually in that register. */
1139 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1140 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1141 sym = prev_sym;
1142 break;
1143 }
1144 }
1145 add_symbol_to_list (sym, &local_symbols);
1146 }
1147 else
1148 add_symbol_to_list (sym, &file_symbols);
1149 break;
1150
1151 case 'S':
1152 /* Static symbol at top level of file */
1153 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1154 SYMBOL_CLASS (sym) = LOC_STATIC;
1155 SYMBOL_VALUE_ADDRESS (sym) = valu;
1156 #ifdef STATIC_TRANSFORM_NAME
1157 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1158 {
1159 struct minimal_symbol *msym;
1160 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1161 if (msym != NULL)
1162 {
1163 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1164 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1165 }
1166 }
1167 #endif
1168 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1169 add_symbol_to_list (sym, &file_symbols);
1170 break;
1171
1172 case 't':
1173 /* Typedef */
1174 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1175
1176 /* For a nameless type, we don't want a create a symbol, thus we
1177 did not use `sym'. Return without further processing. */
1178 if (nameless)
1179 return NULL;
1180
1181 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1182 SYMBOL_VALUE (sym) = valu;
1183 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184 /* C++ vagaries: we may have a type which is derived from
1185 a base type which did not have its name defined when the
1186 derived class was output. We fill in the derived class's
1187 base part member's name here in that case. */
1188 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1189 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1190 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1191 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1192 {
1193 int j;
1194 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1195 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1196 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1197 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1198 }
1199
1200 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1201 {
1202 /* gcc-2.6 or later (when using -fvtable-thunks)
1203 emits a unique named type for a vtable entry.
1204 Some gdb code depends on that specific name. */
1205 extern const char vtbl_ptr_name[];
1206
1207 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1208 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1209 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1210 {
1211 /* If we are giving a name to a type such as "pointer to
1212 foo" or "function returning foo", we better not set
1213 the TYPE_NAME. If the program contains "typedef char
1214 *caddr_t;", we don't want all variables of type char
1215 * to print as caddr_t. This is not just a
1216 consequence of GDB's type management; PCC and GCC (at
1217 least through version 2.4) both output variables of
1218 either type char * or caddr_t with the type number
1219 defined in the 't' symbol for caddr_t. If a future
1220 compiler cleans this up it GDB is not ready for it
1221 yet, but if it becomes ready we somehow need to
1222 disable this check (without breaking the PCC/GCC2.4
1223 case).
1224
1225 Sigh.
1226
1227 Fortunately, this check seems not to be necessary
1228 for anything except pointers or functions. */
1229 /* ezannoni: 2000-10-26. This seems to apply for
1230 versions of gcc older than 2.8. This was the original
1231 problem: with the following code gdb would tell that
1232 the type for name1 is caddr_t, and func is char()
1233 typedef char *caddr_t;
1234 char *name2;
1235 struct x
1236 {
1237 char *name1;
1238 } xx;
1239 char *func()
1240 {
1241 }
1242 main () {}
1243 */
1244
1245 /* Pascal accepts names for pointer types. */
1246 if (current_subfile->language == language_pascal)
1247 {
1248 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1249 }
1250 }
1251 else
1252 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1253 }
1254
1255 add_symbol_to_list (sym, &file_symbols);
1256 break;
1257
1258 case 'T':
1259 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1260 by 't' which means we are typedef'ing it as well. */
1261 synonym = *p == 't';
1262
1263 if (synonym)
1264 p++;
1265
1266 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1267
1268 /* For a nameless type, we don't want a create a symbol, thus we
1269 did not use `sym'. Return without further processing. */
1270 if (nameless)
1271 return NULL;
1272
1273 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1274 SYMBOL_VALUE (sym) = valu;
1275 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1276 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1277 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1278 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1279 add_symbol_to_list (sym, &file_symbols);
1280
1281 if (synonym)
1282 {
1283 /* Clone the sym and then modify it. */
1284 struct symbol *typedef_sym = (struct symbol *)
1285 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1286 *typedef_sym = *sym;
1287 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1288 SYMBOL_VALUE (typedef_sym) = valu;
1289 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1290 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1291 TYPE_NAME (SYMBOL_TYPE (sym))
1292 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1293 add_symbol_to_list (typedef_sym, &file_symbols);
1294 }
1295 break;
1296
1297 case 'V':
1298 /* Static symbol of local scope */
1299 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1300 SYMBOL_CLASS (sym) = LOC_STATIC;
1301 SYMBOL_VALUE_ADDRESS (sym) = valu;
1302 #ifdef STATIC_TRANSFORM_NAME
1303 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1304 {
1305 struct minimal_symbol *msym;
1306 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1307 if (msym != NULL)
1308 {
1309 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1310 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1311 }
1312 }
1313 #endif
1314 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1315 add_symbol_to_list (sym, &local_symbols);
1316 break;
1317
1318 case 'v':
1319 /* Reference parameter */
1320 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1321 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1322 SYMBOL_VALUE (sym) = valu;
1323 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1324 add_symbol_to_list (sym, &local_symbols);
1325 break;
1326
1327 case 'a':
1328 /* Reference parameter which is in a register. */
1329 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1330 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1331 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1332 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1333 {
1334 reg_value_complaint (SYMBOL_VALUE (sym),
1335 NUM_REGS + NUM_PSEUDO_REGS,
1336 SYMBOL_PRINT_NAME (sym));
1337 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1338 }
1339 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1340 add_symbol_to_list (sym, &local_symbols);
1341 break;
1342
1343 case 'X':
1344 /* This is used by Sun FORTRAN for "function result value".
1345 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1346 that Pascal uses it too, but when I tried it Pascal used
1347 "x:3" (local symbol) instead. */
1348 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1349 SYMBOL_CLASS (sym) = LOC_LOCAL;
1350 SYMBOL_VALUE (sym) = valu;
1351 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1352 add_symbol_to_list (sym, &local_symbols);
1353 break;
1354
1355 default:
1356 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1357 SYMBOL_CLASS (sym) = LOC_CONST;
1358 SYMBOL_VALUE (sym) = 0;
1359 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1360 add_symbol_to_list (sym, &file_symbols);
1361 break;
1362 }
1363
1364 /* Some systems pass variables of certain types by reference instead
1365 of by value, i.e. they will pass the address of a structure (in a
1366 register or on the stack) instead of the structure itself. */
1367
1368 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1369 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1370 {
1371 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1372 variables passed in a register). */
1373 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1374 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1375 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1376 and subsequent arguments on SPARC, for example). */
1377 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1378 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1379 }
1380
1381 return sym;
1382 }
1383
1384 /* Skip rest of this symbol and return an error type.
1385
1386 General notes on error recovery: error_type always skips to the
1387 end of the symbol (modulo cretinous dbx symbol name continuation).
1388 Thus code like this:
1389
1390 if (*(*pp)++ != ';')
1391 return error_type (pp, objfile);
1392
1393 is wrong because if *pp starts out pointing at '\0' (typically as the
1394 result of an earlier error), it will be incremented to point to the
1395 start of the next symbol, which might produce strange results, at least
1396 if you run off the end of the string table. Instead use
1397
1398 if (**pp != ';')
1399 return error_type (pp, objfile);
1400 ++*pp;
1401
1402 or
1403
1404 if (**pp != ';')
1405 foo = error_type (pp, objfile);
1406 else
1407 ++*pp;
1408
1409 And in case it isn't obvious, the point of all this hair is so the compiler
1410 can define new types and new syntaxes, and old versions of the
1411 debugger will be able to read the new symbol tables. */
1412
1413 static struct type *
1414 error_type (char **pp, struct objfile *objfile)
1415 {
1416 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1417 while (1)
1418 {
1419 /* Skip to end of symbol. */
1420 while (**pp != '\0')
1421 {
1422 (*pp)++;
1423 }
1424
1425 /* Check for and handle cretinous dbx symbol name continuation! */
1426 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1427 {
1428 *pp = next_symbol_text (objfile);
1429 }
1430 else
1431 {
1432 break;
1433 }
1434 }
1435 return (builtin_type_error);
1436 }
1437 \f
1438
1439 /* Read type information or a type definition; return the type. Even
1440 though this routine accepts either type information or a type
1441 definition, the distinction is relevant--some parts of stabsread.c
1442 assume that type information starts with a digit, '-', or '(' in
1443 deciding whether to call read_type. */
1444
1445 static struct type *
1446 read_type (char **pp, struct objfile *objfile)
1447 {
1448 struct type *type = 0;
1449 struct type *type1;
1450 int typenums[2];
1451 char type_descriptor;
1452
1453 /* Size in bits of type if specified by a type attribute, or -1 if
1454 there is no size attribute. */
1455 int type_size = -1;
1456
1457 /* Used to distinguish string and bitstring from char-array and set. */
1458 int is_string = 0;
1459
1460 /* Used to distinguish vector from array. */
1461 int is_vector = 0;
1462
1463 /* Read type number if present. The type number may be omitted.
1464 for instance in a two-dimensional array declared with type
1465 "ar1;1;10;ar1;1;10;4". */
1466 if ((**pp >= '0' && **pp <= '9')
1467 || **pp == '('
1468 || **pp == '-')
1469 {
1470 if (read_type_number (pp, typenums) != 0)
1471 return error_type (pp, objfile);
1472
1473 /* Type is not being defined here. Either it already exists,
1474 or this is a forward reference to it. dbx_alloc_type handles
1475 both cases. */
1476 if (**pp != '=')
1477 return dbx_alloc_type (typenums, objfile);
1478
1479 /* Type is being defined here. */
1480 /* Skip the '='.
1481 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1482 (*pp) += 2;
1483 }
1484 else
1485 {
1486 /* 'typenums=' not present, type is anonymous. Read and return
1487 the definition, but don't put it in the type vector. */
1488 typenums[0] = typenums[1] = -1;
1489 (*pp)++;
1490 }
1491
1492 again:
1493 type_descriptor = (*pp)[-1];
1494 switch (type_descriptor)
1495 {
1496 case 'x':
1497 {
1498 enum type_code code;
1499
1500 /* Used to index through file_symbols. */
1501 struct pending *ppt;
1502 int i;
1503
1504 /* Name including "struct", etc. */
1505 char *type_name;
1506
1507 {
1508 char *from, *to, *p, *q1, *q2;
1509
1510 /* Set the type code according to the following letter. */
1511 switch ((*pp)[0])
1512 {
1513 case 's':
1514 code = TYPE_CODE_STRUCT;
1515 break;
1516 case 'u':
1517 code = TYPE_CODE_UNION;
1518 break;
1519 case 'e':
1520 code = TYPE_CODE_ENUM;
1521 break;
1522 default:
1523 {
1524 /* Complain and keep going, so compilers can invent new
1525 cross-reference types. */
1526 complaint (&symfile_complaints,
1527 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1528 code = TYPE_CODE_STRUCT;
1529 break;
1530 }
1531 }
1532
1533 q1 = strchr (*pp, '<');
1534 p = strchr (*pp, ':');
1535 if (p == NULL)
1536 return error_type (pp, objfile);
1537 if (q1 && p > q1 && p[1] == ':')
1538 {
1539 int nesting_level = 0;
1540 for (q2 = q1; *q2; q2++)
1541 {
1542 if (*q2 == '<')
1543 nesting_level++;
1544 else if (*q2 == '>')
1545 nesting_level--;
1546 else if (*q2 == ':' && nesting_level == 0)
1547 break;
1548 }
1549 p = q2;
1550 if (*p != ':')
1551 return error_type (pp, objfile);
1552 }
1553 to = type_name =
1554 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1555
1556 /* Copy the name. */
1557 from = *pp + 1;
1558 while (from < p)
1559 *to++ = *from++;
1560 *to = '\0';
1561
1562 /* Set the pointer ahead of the name which we just read, and
1563 the colon. */
1564 *pp = from + 1;
1565 }
1566
1567 /* If this type has already been declared, then reuse the same
1568 type, rather than allocating a new one. This saves some
1569 memory. */
1570
1571 for (ppt = file_symbols; ppt; ppt = ppt->next)
1572 for (i = 0; i < ppt->nsyms; i++)
1573 {
1574 struct symbol *sym = ppt->symbol[i];
1575
1576 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1577 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1578 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1579 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1580 {
1581 obstack_free (&objfile->type_obstack, type_name);
1582 type = SYMBOL_TYPE (sym);
1583 if (typenums[0] != -1)
1584 *dbx_lookup_type (typenums) = type;
1585 return type;
1586 }
1587 }
1588
1589 /* Didn't find the type to which this refers, so we must
1590 be dealing with a forward reference. Allocate a type
1591 structure for it, and keep track of it so we can
1592 fill in the rest of the fields when we get the full
1593 type. */
1594 type = dbx_alloc_type (typenums, objfile);
1595 TYPE_CODE (type) = code;
1596 TYPE_TAG_NAME (type) = type_name;
1597 INIT_CPLUS_SPECIFIC (type);
1598 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1599
1600 add_undefined_type (type);
1601 return type;
1602 }
1603
1604 case '-': /* RS/6000 built-in type */
1605 case '0':
1606 case '1':
1607 case '2':
1608 case '3':
1609 case '4':
1610 case '5':
1611 case '6':
1612 case '7':
1613 case '8':
1614 case '9':
1615 case '(':
1616 (*pp)--;
1617
1618 /* We deal with something like t(1,2)=(3,4)=... which
1619 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1620
1621 /* Allocate and enter the typedef type first.
1622 This handles recursive types. */
1623 type = dbx_alloc_type (typenums, objfile);
1624 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1625 {
1626 struct type *xtype = read_type (pp, objfile);
1627 if (type == xtype)
1628 {
1629 /* It's being defined as itself. That means it is "void". */
1630 TYPE_CODE (type) = TYPE_CODE_VOID;
1631 TYPE_LENGTH (type) = 1;
1632 }
1633 else if (type_size >= 0 || is_string)
1634 {
1635 /* This is the absolute wrong way to construct types. Every
1636 other debug format has found a way around this problem and
1637 the related problems with unnecessarily stubbed types;
1638 someone motivated should attempt to clean up the issue
1639 here as well. Once a type pointed to has been created it
1640 should not be modified.
1641
1642 Well, it's not *absolutely* wrong. Constructing recursive
1643 types (trees, linked lists) necessarily entails modifying
1644 types after creating them. Constructing any loop structure
1645 entails side effects. The Dwarf 2 reader does handle this
1646 more gracefully (it never constructs more than once
1647 instance of a type object, so it doesn't have to copy type
1648 objects wholesale), but it still mutates type objects after
1649 other folks have references to them.
1650
1651 Keep in mind that this circularity/mutation issue shows up
1652 at the source language level, too: C's "incomplete types",
1653 for example. So the proper cleanup, I think, would be to
1654 limit GDB's type smashing to match exactly those required
1655 by the source language. So GDB could have a
1656 "complete_this_type" function, but never create unnecessary
1657 copies of a type otherwise. */
1658 replace_type (type, xtype);
1659 TYPE_NAME (type) = NULL;
1660 TYPE_TAG_NAME (type) = NULL;
1661 }
1662 else
1663 {
1664 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1665 TYPE_TARGET_TYPE (type) = xtype;
1666 }
1667 }
1668 break;
1669
1670 /* In the following types, we must be sure to overwrite any existing
1671 type that the typenums refer to, rather than allocating a new one
1672 and making the typenums point to the new one. This is because there
1673 may already be pointers to the existing type (if it had been
1674 forward-referenced), and we must change it to a pointer, function,
1675 reference, or whatever, *in-place*. */
1676
1677 case '*': /* Pointer to another type */
1678 type1 = read_type (pp, objfile);
1679 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1680 break;
1681
1682 case '&': /* Reference to another type */
1683 type1 = read_type (pp, objfile);
1684 type = make_reference_type (type1, dbx_lookup_type (typenums));
1685 break;
1686
1687 case 'f': /* Function returning another type */
1688 type1 = read_type (pp, objfile);
1689 type = make_function_type (type1, dbx_lookup_type (typenums));
1690 break;
1691
1692 case 'g': /* Prototyped function. (Sun) */
1693 {
1694 /* Unresolved questions:
1695
1696 - According to Sun's ``STABS Interface Manual'', for 'f'
1697 and 'F' symbol descriptors, a `0' in the argument type list
1698 indicates a varargs function. But it doesn't say how 'g'
1699 type descriptors represent that info. Someone with access
1700 to Sun's toolchain should try it out.
1701
1702 - According to the comment in define_symbol (search for
1703 `process_prototype_types:'), Sun emits integer arguments as
1704 types which ref themselves --- like `void' types. Do we
1705 have to deal with that here, too? Again, someone with
1706 access to Sun's toolchain should try it out and let us
1707 know. */
1708
1709 const char *type_start = (*pp) - 1;
1710 struct type *return_type = read_type (pp, objfile);
1711 struct type *func_type
1712 = make_function_type (return_type, dbx_lookup_type (typenums));
1713 struct type_list {
1714 struct type *type;
1715 struct type_list *next;
1716 } *arg_types = 0;
1717 int num_args = 0;
1718
1719 while (**pp && **pp != '#')
1720 {
1721 struct type *arg_type = read_type (pp, objfile);
1722 struct type_list *new = alloca (sizeof (*new));
1723 new->type = arg_type;
1724 new->next = arg_types;
1725 arg_types = new;
1726 num_args++;
1727 }
1728 if (**pp == '#')
1729 ++*pp;
1730 else
1731 {
1732 complaint (&symfile_complaints,
1733 "Prototyped function type didn't end arguments with `#':\n%s",
1734 type_start);
1735 }
1736
1737 /* If there is just one argument whose type is `void', then
1738 that's just an empty argument list. */
1739 if (arg_types
1740 && ! arg_types->next
1741 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1742 num_args = 0;
1743
1744 TYPE_FIELDS (func_type)
1745 = (struct field *) TYPE_ALLOC (func_type,
1746 num_args * sizeof (struct field));
1747 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1748 {
1749 int i;
1750 struct type_list *t;
1751
1752 /* We stuck each argument type onto the front of the list
1753 when we read it, so the list is reversed. Build the
1754 fields array right-to-left. */
1755 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1756 TYPE_FIELD_TYPE (func_type, i) = t->type;
1757 }
1758 TYPE_NFIELDS (func_type) = num_args;
1759 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1760
1761 type = func_type;
1762 break;
1763 }
1764
1765 case 'k': /* Const qualifier on some type (Sun) */
1766 type = read_type (pp, objfile);
1767 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1768 dbx_lookup_type (typenums));
1769 break;
1770
1771 case 'B': /* Volatile qual on some type (Sun) */
1772 type = read_type (pp, objfile);
1773 type = make_cv_type (TYPE_CONST (type), 1, type,
1774 dbx_lookup_type (typenums));
1775 break;
1776
1777 case '@':
1778 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1779 { /* Member (class & variable) type */
1780 /* FIXME -- we should be doing smash_to_XXX types here. */
1781
1782 struct type *domain = read_type (pp, objfile);
1783 struct type *memtype;
1784
1785 if (**pp != ',')
1786 /* Invalid member type data format. */
1787 return error_type (pp, objfile);
1788 ++*pp;
1789
1790 memtype = read_type (pp, objfile);
1791 type = dbx_alloc_type (typenums, objfile);
1792 smash_to_member_type (type, domain, memtype);
1793 }
1794 else
1795 /* type attribute */
1796 {
1797 char *attr = *pp;
1798 /* Skip to the semicolon. */
1799 while (**pp != ';' && **pp != '\0')
1800 ++(*pp);
1801 if (**pp == '\0')
1802 return error_type (pp, objfile);
1803 else
1804 ++ * pp; /* Skip the semicolon. */
1805
1806 switch (*attr)
1807 {
1808 case 's': /* Size attribute */
1809 type_size = atoi (attr + 1);
1810 if (type_size <= 0)
1811 type_size = -1;
1812 break;
1813
1814 case 'S': /* String attribute */
1815 /* FIXME: check to see if following type is array? */
1816 is_string = 1;
1817 break;
1818
1819 case 'V': /* Vector attribute */
1820 /* FIXME: check to see if following type is array? */
1821 is_vector = 1;
1822 break;
1823
1824 default:
1825 /* Ignore unrecognized type attributes, so future compilers
1826 can invent new ones. */
1827 break;
1828 }
1829 ++*pp;
1830 goto again;
1831 }
1832 break;
1833
1834 case '#': /* Method (class & fn) type */
1835 if ((*pp)[0] == '#')
1836 {
1837 /* We'll get the parameter types from the name. */
1838 struct type *return_type;
1839
1840 (*pp)++;
1841 return_type = read_type (pp, objfile);
1842 if (*(*pp)++ != ';')
1843 complaint (&symfile_complaints,
1844 "invalid (minimal) member type data format at symtab pos %d.",
1845 symnum);
1846 type = allocate_stub_method (return_type);
1847 if (typenums[0] != -1)
1848 *dbx_lookup_type (typenums) = type;
1849 }
1850 else
1851 {
1852 struct type *domain = read_type (pp, objfile);
1853 struct type *return_type;
1854 struct field *args;
1855 int nargs, varargs;
1856
1857 if (**pp != ',')
1858 /* Invalid member type data format. */
1859 return error_type (pp, objfile);
1860 else
1861 ++(*pp);
1862
1863 return_type = read_type (pp, objfile);
1864 args = read_args (pp, ';', objfile, &nargs, &varargs);
1865 type = dbx_alloc_type (typenums, objfile);
1866 smash_to_method_type (type, domain, return_type, args,
1867 nargs, varargs);
1868 }
1869 break;
1870
1871 case 'r': /* Range type */
1872 type = read_range_type (pp, typenums, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1875 break;
1876
1877 case 'b':
1878 {
1879 /* Sun ACC builtin int type */
1880 type = read_sun_builtin_type (pp, typenums, objfile);
1881 if (typenums[0] != -1)
1882 *dbx_lookup_type (typenums) = type;
1883 }
1884 break;
1885
1886 case 'R': /* Sun ACC builtin float type */
1887 type = read_sun_floating_type (pp, typenums, objfile);
1888 if (typenums[0] != -1)
1889 *dbx_lookup_type (typenums) = type;
1890 break;
1891
1892 case 'e': /* Enumeration type */
1893 type = dbx_alloc_type (typenums, objfile);
1894 type = read_enum_type (pp, type, objfile);
1895 if (typenums[0] != -1)
1896 *dbx_lookup_type (typenums) = type;
1897 break;
1898
1899 case 's': /* Struct type */
1900 case 'u': /* Union type */
1901 {
1902 enum type_code type_code = TYPE_CODE_UNDEF;
1903 type = dbx_alloc_type (typenums, objfile);
1904 switch (type_descriptor)
1905 {
1906 case 's':
1907 type_code = TYPE_CODE_STRUCT;
1908 break;
1909 case 'u':
1910 type_code = TYPE_CODE_UNION;
1911 break;
1912 }
1913 type = read_struct_type (pp, type, type_code, objfile);
1914 break;
1915 }
1916
1917 case 'a': /* Array type */
1918 if (**pp != 'r')
1919 return error_type (pp, objfile);
1920 ++*pp;
1921
1922 type = dbx_alloc_type (typenums, objfile);
1923 type = read_array_type (pp, type, objfile);
1924 if (is_string)
1925 TYPE_CODE (type) = TYPE_CODE_STRING;
1926 if (is_vector)
1927 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1928 break;
1929
1930 case 'S': /* Set or bitstring type */
1931 type1 = read_type (pp, objfile);
1932 type = create_set_type ((struct type *) NULL, type1);
1933 if (is_string)
1934 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1935 if (typenums[0] != -1)
1936 *dbx_lookup_type (typenums) = type;
1937 break;
1938
1939 default:
1940 --*pp; /* Go back to the symbol in error */
1941 /* Particularly important if it was \0! */
1942 return error_type (pp, objfile);
1943 }
1944
1945 if (type == 0)
1946 {
1947 warning ("GDB internal error, type is NULL in stabsread.c\n");
1948 return error_type (pp, objfile);
1949 }
1950
1951 /* Size specified in a type attribute overrides any other size. */
1952 if (type_size != -1)
1953 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1954
1955 return type;
1956 }
1957 \f
1958 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1959 Return the proper type node for a given builtin type number. */
1960
1961 static struct type *
1962 rs6000_builtin_type (int typenum)
1963 {
1964 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1965 #define NUMBER_RECOGNIZED 34
1966 /* This includes an empty slot for type number -0. */
1967 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1968 struct type *rettype = NULL;
1969
1970 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1971 {
1972 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1973 return builtin_type_error;
1974 }
1975 if (negative_types[-typenum] != NULL)
1976 return negative_types[-typenum];
1977
1978 #if TARGET_CHAR_BIT != 8
1979 #error This code wrong for TARGET_CHAR_BIT not 8
1980 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1981 that if that ever becomes not true, the correct fix will be to
1982 make the size in the struct type to be in bits, not in units of
1983 TARGET_CHAR_BIT. */
1984 #endif
1985
1986 switch (-typenum)
1987 {
1988 case 1:
1989 /* The size of this and all the other types are fixed, defined
1990 by the debugging format. If there is a type called "int" which
1991 is other than 32 bits, then it should use a new negative type
1992 number (or avoid negative type numbers for that case).
1993 See stabs.texinfo. */
1994 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1995 break;
1996 case 2:
1997 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1998 break;
1999 case 3:
2000 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2001 break;
2002 case 4:
2003 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2004 break;
2005 case 5:
2006 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2007 "unsigned char", NULL);
2008 break;
2009 case 6:
2010 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2011 break;
2012 case 7:
2013 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2014 "unsigned short", NULL);
2015 break;
2016 case 8:
2017 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2018 "unsigned int", NULL);
2019 break;
2020 case 9:
2021 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2022 "unsigned", NULL);
2023 case 10:
2024 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2025 "unsigned long", NULL);
2026 break;
2027 case 11:
2028 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2029 break;
2030 case 12:
2031 /* IEEE single precision (32 bit). */
2032 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2033 break;
2034 case 13:
2035 /* IEEE double precision (64 bit). */
2036 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2037 break;
2038 case 14:
2039 /* This is an IEEE double on the RS/6000, and different machines with
2040 different sizes for "long double" should use different negative
2041 type numbers. See stabs.texinfo. */
2042 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2043 break;
2044 case 15:
2045 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2046 break;
2047 case 16:
2048 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2049 "boolean", NULL);
2050 break;
2051 case 17:
2052 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2053 break;
2054 case 18:
2055 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2056 break;
2057 case 19:
2058 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2059 break;
2060 case 20:
2061 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2062 "character", NULL);
2063 break;
2064 case 21:
2065 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2066 "logical*1", NULL);
2067 break;
2068 case 22:
2069 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2070 "logical*2", NULL);
2071 break;
2072 case 23:
2073 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2074 "logical*4", NULL);
2075 break;
2076 case 24:
2077 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2078 "logical", NULL);
2079 break;
2080 case 25:
2081 /* Complex type consisting of two IEEE single precision values. */
2082 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2083 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2084 NULL);
2085 break;
2086 case 26:
2087 /* Complex type consisting of two IEEE double precision values. */
2088 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2089 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2090 NULL);
2091 break;
2092 case 27:
2093 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2094 break;
2095 case 28:
2096 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2097 break;
2098 case 29:
2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2100 break;
2101 case 30:
2102 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2103 break;
2104 case 31:
2105 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2106 break;
2107 case 32:
2108 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2109 "unsigned long long", NULL);
2110 break;
2111 case 33:
2112 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2113 "logical*8", NULL);
2114 break;
2115 case 34:
2116 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2117 break;
2118 }
2119 negative_types[-typenum] = rettype;
2120 return rettype;
2121 }
2122 \f
2123 /* This page contains subroutines of read_type. */
2124
2125 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2126
2127 static void
2128 update_method_name_from_physname (char **old_name, char *physname)
2129 {
2130 char *method_name;
2131
2132 method_name = method_name_from_physname (physname);
2133
2134 if (method_name == NULL)
2135 {
2136 complaint (&symfile_complaints,
2137 "Method has bad physname %s\n", physname);
2138 return;
2139 }
2140
2141 if (strcmp (*old_name, method_name) != 0)
2142 {
2143 xfree (*old_name);
2144 *old_name = method_name;
2145 }
2146 else
2147 xfree (method_name);
2148 }
2149
2150 /* Read member function stabs info for C++ classes. The form of each member
2151 function data is:
2152
2153 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2154
2155 An example with two member functions is:
2156
2157 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2158
2159 For the case of overloaded operators, the format is op$::*.funcs, where
2160 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2161 name (such as `+=') and `.' marks the end of the operator name.
2162
2163 Returns 1 for success, 0 for failure. */
2164
2165 static int
2166 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2167 struct objfile *objfile)
2168 {
2169 int nfn_fields = 0;
2170 int length = 0;
2171 /* Total number of member functions defined in this class. If the class
2172 defines two `f' functions, and one `g' function, then this will have
2173 the value 3. */
2174 int total_length = 0;
2175 int i;
2176 struct next_fnfield
2177 {
2178 struct next_fnfield *next;
2179 struct fn_field fn_field;
2180 }
2181 *sublist;
2182 struct type *look_ahead_type;
2183 struct next_fnfieldlist *new_fnlist;
2184 struct next_fnfield *new_sublist;
2185 char *main_fn_name;
2186 char *p;
2187
2188 /* Process each list until we find something that is not a member function
2189 or find the end of the functions. */
2190
2191 while (**pp != ';')
2192 {
2193 /* We should be positioned at the start of the function name.
2194 Scan forward to find the first ':' and if it is not the
2195 first of a "::" delimiter, then this is not a member function. */
2196 p = *pp;
2197 while (*p != ':')
2198 {
2199 p++;
2200 }
2201 if (p[1] != ':')
2202 {
2203 break;
2204 }
2205
2206 sublist = NULL;
2207 look_ahead_type = NULL;
2208 length = 0;
2209
2210 new_fnlist = (struct next_fnfieldlist *)
2211 xmalloc (sizeof (struct next_fnfieldlist));
2212 make_cleanup (xfree, new_fnlist);
2213 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2214
2215 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2216 {
2217 /* This is a completely wierd case. In order to stuff in the
2218 names that might contain colons (the usual name delimiter),
2219 Mike Tiemann defined a different name format which is
2220 signalled if the identifier is "op$". In that case, the
2221 format is "op$::XXXX." where XXXX is the name. This is
2222 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2223 /* This lets the user type "break operator+".
2224 We could just put in "+" as the name, but that wouldn't
2225 work for "*". */
2226 static char opname[32] = "op$";
2227 char *o = opname + 3;
2228
2229 /* Skip past '::'. */
2230 *pp = p + 2;
2231
2232 STABS_CONTINUE (pp, objfile);
2233 p = *pp;
2234 while (*p != '.')
2235 {
2236 *o++ = *p++;
2237 }
2238 main_fn_name = savestring (opname, o - opname);
2239 /* Skip past '.' */
2240 *pp = p + 1;
2241 }
2242 else
2243 {
2244 main_fn_name = savestring (*pp, p - *pp);
2245 /* Skip past '::'. */
2246 *pp = p + 2;
2247 }
2248 new_fnlist->fn_fieldlist.name = main_fn_name;
2249
2250 do
2251 {
2252 new_sublist =
2253 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2254 make_cleanup (xfree, new_sublist);
2255 memset (new_sublist, 0, sizeof (struct next_fnfield));
2256
2257 /* Check for and handle cretinous dbx symbol name continuation! */
2258 if (look_ahead_type == NULL)
2259 {
2260 /* Normal case. */
2261 STABS_CONTINUE (pp, objfile);
2262
2263 new_sublist->fn_field.type = read_type (pp, objfile);
2264 if (**pp != ':')
2265 {
2266 /* Invalid symtab info for member function. */
2267 return 0;
2268 }
2269 }
2270 else
2271 {
2272 /* g++ version 1 kludge */
2273 new_sublist->fn_field.type = look_ahead_type;
2274 look_ahead_type = NULL;
2275 }
2276
2277 (*pp)++;
2278 p = *pp;
2279 while (*p != ';')
2280 {
2281 p++;
2282 }
2283
2284 /* If this is just a stub, then we don't have the real name here. */
2285
2286 if (TYPE_STUB (new_sublist->fn_field.type))
2287 {
2288 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2289 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2290 new_sublist->fn_field.is_stub = 1;
2291 }
2292 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2293 *pp = p + 1;
2294
2295 /* Set this member function's visibility fields. */
2296 switch (*(*pp)++)
2297 {
2298 case VISIBILITY_PRIVATE:
2299 new_sublist->fn_field.is_private = 1;
2300 break;
2301 case VISIBILITY_PROTECTED:
2302 new_sublist->fn_field.is_protected = 1;
2303 break;
2304 }
2305
2306 STABS_CONTINUE (pp, objfile);
2307 switch (**pp)
2308 {
2309 case 'A': /* Normal functions. */
2310 new_sublist->fn_field.is_const = 0;
2311 new_sublist->fn_field.is_volatile = 0;
2312 (*pp)++;
2313 break;
2314 case 'B': /* `const' member functions. */
2315 new_sublist->fn_field.is_const = 1;
2316 new_sublist->fn_field.is_volatile = 0;
2317 (*pp)++;
2318 break;
2319 case 'C': /* `volatile' member function. */
2320 new_sublist->fn_field.is_const = 0;
2321 new_sublist->fn_field.is_volatile = 1;
2322 (*pp)++;
2323 break;
2324 case 'D': /* `const volatile' member function. */
2325 new_sublist->fn_field.is_const = 1;
2326 new_sublist->fn_field.is_volatile = 1;
2327 (*pp)++;
2328 break;
2329 case '*': /* File compiled with g++ version 1 -- no info */
2330 case '?':
2331 case '.':
2332 break;
2333 default:
2334 complaint (&symfile_complaints,
2335 "const/volatile indicator missing, got '%c'", **pp);
2336 break;
2337 }
2338
2339 switch (*(*pp)++)
2340 {
2341 case '*':
2342 {
2343 int nbits;
2344 /* virtual member function, followed by index.
2345 The sign bit is set to distinguish pointers-to-methods
2346 from virtual function indicies. Since the array is
2347 in words, the quantity must be shifted left by 1
2348 on 16 bit machine, and by 2 on 32 bit machine, forcing
2349 the sign bit out, and usable as a valid index into
2350 the array. Remove the sign bit here. */
2351 new_sublist->fn_field.voffset =
2352 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2353 if (nbits != 0)
2354 return 0;
2355
2356 STABS_CONTINUE (pp, objfile);
2357 if (**pp == ';' || **pp == '\0')
2358 {
2359 /* Must be g++ version 1. */
2360 new_sublist->fn_field.fcontext = 0;
2361 }
2362 else
2363 {
2364 /* Figure out from whence this virtual function came.
2365 It may belong to virtual function table of
2366 one of its baseclasses. */
2367 look_ahead_type = read_type (pp, objfile);
2368 if (**pp == ':')
2369 {
2370 /* g++ version 1 overloaded methods. */
2371 }
2372 else
2373 {
2374 new_sublist->fn_field.fcontext = look_ahead_type;
2375 if (**pp != ';')
2376 {
2377 return 0;
2378 }
2379 else
2380 {
2381 ++*pp;
2382 }
2383 look_ahead_type = NULL;
2384 }
2385 }
2386 break;
2387 }
2388 case '?':
2389 /* static member function. */
2390 {
2391 int slen = strlen (main_fn_name);
2392
2393 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2394
2395 /* For static member functions, we can't tell if they
2396 are stubbed, as they are put out as functions, and not as
2397 methods.
2398 GCC v2 emits the fully mangled name if
2399 dbxout.c:flag_minimal_debug is not set, so we have to
2400 detect a fully mangled physname here and set is_stub
2401 accordingly. Fully mangled physnames in v2 start with
2402 the member function name, followed by two underscores.
2403 GCC v3 currently always emits stubbed member functions,
2404 but with fully mangled physnames, which start with _Z. */
2405 if (!(strncmp (new_sublist->fn_field.physname,
2406 main_fn_name, slen) == 0
2407 && new_sublist->fn_field.physname[slen] == '_'
2408 && new_sublist->fn_field.physname[slen + 1] == '_'))
2409 {
2410 new_sublist->fn_field.is_stub = 1;
2411 }
2412 break;
2413 }
2414
2415 default:
2416 /* error */
2417 complaint (&symfile_complaints,
2418 "member function type missing, got '%c'", (*pp)[-1]);
2419 /* Fall through into normal member function. */
2420
2421 case '.':
2422 /* normal member function. */
2423 new_sublist->fn_field.voffset = 0;
2424 new_sublist->fn_field.fcontext = 0;
2425 break;
2426 }
2427
2428 new_sublist->next = sublist;
2429 sublist = new_sublist;
2430 length++;
2431 STABS_CONTINUE (pp, objfile);
2432 }
2433 while (**pp != ';' && **pp != '\0');
2434
2435 (*pp)++;
2436 STABS_CONTINUE (pp, objfile);
2437
2438 /* Skip GCC 3.X member functions which are duplicates of the callable
2439 constructor/destructor. */
2440 if (strcmp (main_fn_name, "__base_ctor") == 0
2441 || strcmp (main_fn_name, "__base_dtor") == 0
2442 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2443 {
2444 xfree (main_fn_name);
2445 }
2446 else
2447 {
2448 int has_stub = 0;
2449 int has_destructor = 0, has_other = 0;
2450 int is_v3 = 0;
2451 struct next_fnfield *tmp_sublist;
2452
2453 /* Various versions of GCC emit various mostly-useless
2454 strings in the name field for special member functions.
2455
2456 For stub methods, we need to defer correcting the name
2457 until we are ready to unstub the method, because the current
2458 name string is used by gdb_mangle_name. The only stub methods
2459 of concern here are GNU v2 operators; other methods have their
2460 names correct (see caveat below).
2461
2462 For non-stub methods, in GNU v3, we have a complete physname.
2463 Therefore we can safely correct the name now. This primarily
2464 affects constructors and destructors, whose name will be
2465 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2466 operators will also have incorrect names; for instance,
2467 "operator int" will be named "operator i" (i.e. the type is
2468 mangled).
2469
2470 For non-stub methods in GNU v2, we have no easy way to
2471 know if we have a complete physname or not. For most
2472 methods the result depends on the platform (if CPLUS_MARKER
2473 can be `$' or `.', it will use minimal debug information, or
2474 otherwise the full physname will be included).
2475
2476 Rather than dealing with this, we take a different approach.
2477 For v3 mangled names, we can use the full physname; for v2,
2478 we use cplus_demangle_opname (which is actually v2 specific),
2479 because the only interesting names are all operators - once again
2480 barring the caveat below. Skip this process if any method in the
2481 group is a stub, to prevent our fouling up the workings of
2482 gdb_mangle_name.
2483
2484 The caveat: GCC 2.95.x (and earlier?) put constructors and
2485 destructors in the same method group. We need to split this
2486 into two groups, because they should have different names.
2487 So for each method group we check whether it contains both
2488 routines whose physname appears to be a destructor (the physnames
2489 for and destructors are always provided, due to quirks in v2
2490 mangling) and routines whose physname does not appear to be a
2491 destructor. If so then we break up the list into two halves.
2492 Even if the constructors and destructors aren't in the same group
2493 the destructor will still lack the leading tilde, so that also
2494 needs to be fixed.
2495
2496 So, to summarize what we expect and handle here:
2497
2498 Given Given Real Real Action
2499 method name physname physname method name
2500
2501 __opi [none] __opi__3Foo operator int opname
2502 [now or later]
2503 Foo _._3Foo _._3Foo ~Foo separate and
2504 rename
2505 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2506 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2507 */
2508
2509 tmp_sublist = sublist;
2510 while (tmp_sublist != NULL)
2511 {
2512 if (tmp_sublist->fn_field.is_stub)
2513 has_stub = 1;
2514 if (tmp_sublist->fn_field.physname[0] == '_'
2515 && tmp_sublist->fn_field.physname[1] == 'Z')
2516 is_v3 = 1;
2517
2518 if (is_destructor_name (tmp_sublist->fn_field.physname))
2519 has_destructor++;
2520 else
2521 has_other++;
2522
2523 tmp_sublist = tmp_sublist->next;
2524 }
2525
2526 if (has_destructor && has_other)
2527 {
2528 struct next_fnfieldlist *destr_fnlist;
2529 struct next_fnfield *last_sublist;
2530
2531 /* Create a new fn_fieldlist for the destructors. */
2532
2533 destr_fnlist = (struct next_fnfieldlist *)
2534 xmalloc (sizeof (struct next_fnfieldlist));
2535 make_cleanup (xfree, destr_fnlist);
2536 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2537 destr_fnlist->fn_fieldlist.name
2538 = obconcat (&objfile->type_obstack, "", "~",
2539 new_fnlist->fn_fieldlist.name);
2540
2541 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2542 obstack_alloc (&objfile->type_obstack,
2543 sizeof (struct fn_field) * has_destructor);
2544 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2545 sizeof (struct fn_field) * has_destructor);
2546 tmp_sublist = sublist;
2547 last_sublist = NULL;
2548 i = 0;
2549 while (tmp_sublist != NULL)
2550 {
2551 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2552 {
2553 tmp_sublist = tmp_sublist->next;
2554 continue;
2555 }
2556
2557 destr_fnlist->fn_fieldlist.fn_fields[i++]
2558 = tmp_sublist->fn_field;
2559 if (last_sublist)
2560 last_sublist->next = tmp_sublist->next;
2561 else
2562 sublist = tmp_sublist->next;
2563 last_sublist = tmp_sublist;
2564 tmp_sublist = tmp_sublist->next;
2565 }
2566
2567 destr_fnlist->fn_fieldlist.length = has_destructor;
2568 destr_fnlist->next = fip->fnlist;
2569 fip->fnlist = destr_fnlist;
2570 nfn_fields++;
2571 total_length += has_destructor;
2572 length -= has_destructor;
2573 }
2574 else if (is_v3)
2575 {
2576 /* v3 mangling prevents the use of abbreviated physnames,
2577 so we can do this here. There are stubbed methods in v3
2578 only:
2579 - in -gstabs instead of -gstabs+
2580 - or for static methods, which are output as a function type
2581 instead of a method type. */
2582
2583 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2584 sublist->fn_field.physname);
2585 }
2586 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2587 {
2588 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2589 xfree (main_fn_name);
2590 }
2591 else if (!has_stub)
2592 {
2593 char dem_opname[256];
2594 int ret;
2595 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2596 dem_opname, DMGL_ANSI);
2597 if (!ret)
2598 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2599 dem_opname, 0);
2600 if (ret)
2601 new_fnlist->fn_fieldlist.name
2602 = obsavestring (dem_opname, strlen (dem_opname),
2603 &objfile->type_obstack);
2604 }
2605
2606 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2607 obstack_alloc (&objfile->type_obstack,
2608 sizeof (struct fn_field) * length);
2609 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2610 sizeof (struct fn_field) * length);
2611 for (i = length; (i--, sublist); sublist = sublist->next)
2612 {
2613 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2614 }
2615
2616 new_fnlist->fn_fieldlist.length = length;
2617 new_fnlist->next = fip->fnlist;
2618 fip->fnlist = new_fnlist;
2619 nfn_fields++;
2620 total_length += length;
2621 }
2622 }
2623
2624 if (nfn_fields)
2625 {
2626 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2627 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2628 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2629 memset (TYPE_FN_FIELDLISTS (type), 0,
2630 sizeof (struct fn_fieldlist) * nfn_fields);
2631 TYPE_NFN_FIELDS (type) = nfn_fields;
2632 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2633 }
2634
2635 return 1;
2636 }
2637
2638 /* Special GNU C++ name.
2639
2640 Returns 1 for success, 0 for failure. "failure" means that we can't
2641 keep parsing and it's time for error_type(). */
2642
2643 static int
2644 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2645 struct objfile *objfile)
2646 {
2647 char *p;
2648 char *name;
2649 char cpp_abbrev;
2650 struct type *context;
2651
2652 p = *pp;
2653 if (*++p == 'v')
2654 {
2655 name = NULL;
2656 cpp_abbrev = *++p;
2657
2658 *pp = p + 1;
2659
2660 /* At this point, *pp points to something like "22:23=*22...",
2661 where the type number before the ':' is the "context" and
2662 everything after is a regular type definition. Lookup the
2663 type, find it's name, and construct the field name. */
2664
2665 context = read_type (pp, objfile);
2666
2667 switch (cpp_abbrev)
2668 {
2669 case 'f': /* $vf -- a virtual function table pointer */
2670 name = type_name_no_tag (context);
2671 if (name == NULL)
2672 {
2673 name = "";
2674 }
2675 fip->list->field.name =
2676 obconcat (&objfile->type_obstack, vptr_name, name, "");
2677 break;
2678
2679 case 'b': /* $vb -- a virtual bsomethingorother */
2680 name = type_name_no_tag (context);
2681 if (name == NULL)
2682 {
2683 complaint (&symfile_complaints,
2684 "C++ abbreviated type name unknown at symtab pos %d",
2685 symnum);
2686 name = "FOO";
2687 }
2688 fip->list->field.name =
2689 obconcat (&objfile->type_obstack, vb_name, name, "");
2690 break;
2691
2692 default:
2693 invalid_cpp_abbrev_complaint (*pp);
2694 fip->list->field.name =
2695 obconcat (&objfile->type_obstack,
2696 "INVALID_CPLUSPLUS_ABBREV", "", "");
2697 break;
2698 }
2699
2700 /* At this point, *pp points to the ':'. Skip it and read the
2701 field type. */
2702
2703 p = ++(*pp);
2704 if (p[-1] != ':')
2705 {
2706 invalid_cpp_abbrev_complaint (*pp);
2707 return 0;
2708 }
2709 fip->list->field.type = read_type (pp, objfile);
2710 if (**pp == ',')
2711 (*pp)++; /* Skip the comma. */
2712 else
2713 return 0;
2714
2715 {
2716 int nbits;
2717 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2718 if (nbits != 0)
2719 return 0;
2720 }
2721 /* This field is unpacked. */
2722 FIELD_BITSIZE (fip->list->field) = 0;
2723 fip->list->visibility = VISIBILITY_PRIVATE;
2724 }
2725 else
2726 {
2727 invalid_cpp_abbrev_complaint (*pp);
2728 /* We have no idea what syntax an unrecognized abbrev would have, so
2729 better return 0. If we returned 1, we would need to at least advance
2730 *pp to avoid an infinite loop. */
2731 return 0;
2732 }
2733 return 1;
2734 }
2735
2736 static void
2737 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2738 struct type *type, struct objfile *objfile)
2739 {
2740 fip->list->field.name =
2741 obsavestring (*pp, p - *pp, &objfile->type_obstack);
2742 *pp = p + 1;
2743
2744 /* This means we have a visibility for a field coming. */
2745 if (**pp == '/')
2746 {
2747 (*pp)++;
2748 fip->list->visibility = *(*pp)++;
2749 }
2750 else
2751 {
2752 /* normal dbx-style format, no explicit visibility */
2753 fip->list->visibility = VISIBILITY_PUBLIC;
2754 }
2755
2756 fip->list->field.type = read_type (pp, objfile);
2757 if (**pp == ':')
2758 {
2759 p = ++(*pp);
2760 #if 0
2761 /* Possible future hook for nested types. */
2762 if (**pp == '!')
2763 {
2764 fip->list->field.bitpos = (long) -2; /* nested type */
2765 p = ++(*pp);
2766 }
2767 else
2768 ...;
2769 #endif
2770 while (*p != ';')
2771 {
2772 p++;
2773 }
2774 /* Static class member. */
2775 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2776 *pp = p + 1;
2777 return;
2778 }
2779 else if (**pp != ',')
2780 {
2781 /* Bad structure-type format. */
2782 stabs_general_complaint ("bad structure-type format");
2783 return;
2784 }
2785
2786 (*pp)++; /* Skip the comma. */
2787
2788 {
2789 int nbits;
2790 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2791 if (nbits != 0)
2792 {
2793 stabs_general_complaint ("bad structure-type format");
2794 return;
2795 }
2796 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2797 if (nbits != 0)
2798 {
2799 stabs_general_complaint ("bad structure-type format");
2800 return;
2801 }
2802 }
2803
2804 if (FIELD_BITPOS (fip->list->field) == 0
2805 && FIELD_BITSIZE (fip->list->field) == 0)
2806 {
2807 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2808 it is a field which has been optimized out. The correct stab for
2809 this case is to use VISIBILITY_IGNORE, but that is a recent
2810 invention. (2) It is a 0-size array. For example
2811 union { int num; char str[0]; } foo. Printing "<no value>" for
2812 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2813 will continue to work, and a 0-size array as a whole doesn't
2814 have any contents to print.
2815
2816 I suspect this probably could also happen with gcc -gstabs (not
2817 -gstabs+) for static fields, and perhaps other C++ extensions.
2818 Hopefully few people use -gstabs with gdb, since it is intended
2819 for dbx compatibility. */
2820
2821 /* Ignore this field. */
2822 fip->list->visibility = VISIBILITY_IGNORE;
2823 }
2824 else
2825 {
2826 /* Detect an unpacked field and mark it as such.
2827 dbx gives a bit size for all fields.
2828 Note that forward refs cannot be packed,
2829 and treat enums as if they had the width of ints. */
2830
2831 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2832
2833 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2834 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2835 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2836 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2837 {
2838 FIELD_BITSIZE (fip->list->field) = 0;
2839 }
2840 if ((FIELD_BITSIZE (fip->list->field)
2841 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2842 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2843 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2844 )
2845 &&
2846 FIELD_BITPOS (fip->list->field) % 8 == 0)
2847 {
2848 FIELD_BITSIZE (fip->list->field) = 0;
2849 }
2850 }
2851 }
2852
2853
2854 /* Read struct or class data fields. They have the form:
2855
2856 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2857
2858 At the end, we see a semicolon instead of a field.
2859
2860 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2861 a static field.
2862
2863 The optional VISIBILITY is one of:
2864
2865 '/0' (VISIBILITY_PRIVATE)
2866 '/1' (VISIBILITY_PROTECTED)
2867 '/2' (VISIBILITY_PUBLIC)
2868 '/9' (VISIBILITY_IGNORE)
2869
2870 or nothing, for C style fields with public visibility.
2871
2872 Returns 1 for success, 0 for failure. */
2873
2874 static int
2875 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2876 struct objfile *objfile)
2877 {
2878 char *p;
2879 struct nextfield *new;
2880
2881 /* We better set p right now, in case there are no fields at all... */
2882
2883 p = *pp;
2884
2885 /* Read each data member type until we find the terminating ';' at the end of
2886 the data member list, or break for some other reason such as finding the
2887 start of the member function list. */
2888 /* Stab string for structure/union does not end with two ';' in
2889 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2890
2891 while (**pp != ';' && **pp != '\0')
2892 {
2893 STABS_CONTINUE (pp, objfile);
2894 /* Get space to record the next field's data. */
2895 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2896 make_cleanup (xfree, new);
2897 memset (new, 0, sizeof (struct nextfield));
2898 new->next = fip->list;
2899 fip->list = new;
2900
2901 /* Get the field name. */
2902 p = *pp;
2903
2904 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2905 unless the CPLUS_MARKER is followed by an underscore, in
2906 which case it is just the name of an anonymous type, which we
2907 should handle like any other type name. */
2908
2909 if (is_cplus_marker (p[0]) && p[1] != '_')
2910 {
2911 if (!read_cpp_abbrev (fip, pp, type, objfile))
2912 return 0;
2913 continue;
2914 }
2915
2916 /* Look for the ':' that separates the field name from the field
2917 values. Data members are delimited by a single ':', while member
2918 functions are delimited by a pair of ':'s. When we hit the member
2919 functions (if any), terminate scan loop and return. */
2920
2921 while (*p != ':' && *p != '\0')
2922 {
2923 p++;
2924 }
2925 if (*p == '\0')
2926 return 0;
2927
2928 /* Check to see if we have hit the member functions yet. */
2929 if (p[1] == ':')
2930 {
2931 break;
2932 }
2933 read_one_struct_field (fip, pp, p, type, objfile);
2934 }
2935 if (p[0] == ':' && p[1] == ':')
2936 {
2937 /* (the deleted) chill the list of fields: the last entry (at
2938 the head) is a partially constructed entry which we now
2939 scrub. */
2940 fip->list = fip->list->next;
2941 }
2942 return 1;
2943 }
2944 /* *INDENT-OFF* */
2945 /* The stabs for C++ derived classes contain baseclass information which
2946 is marked by a '!' character after the total size. This function is
2947 called when we encounter the baseclass marker, and slurps up all the
2948 baseclass information.
2949
2950 Immediately following the '!' marker is the number of base classes that
2951 the class is derived from, followed by information for each base class.
2952 For each base class, there are two visibility specifiers, a bit offset
2953 to the base class information within the derived class, a reference to
2954 the type for the base class, and a terminating semicolon.
2955
2956 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2957 ^^ ^ ^ ^ ^ ^ ^
2958 Baseclass information marker __________________|| | | | | | |
2959 Number of baseclasses __________________________| | | | | | |
2960 Visibility specifiers (2) ________________________| | | | | |
2961 Offset in bits from start of class _________________| | | | |
2962 Type number for base class ___________________________| | | |
2963 Visibility specifiers (2) _______________________________| | |
2964 Offset in bits from start of class ________________________| |
2965 Type number of base class ____________________________________|
2966
2967 Return 1 for success, 0 for (error-type-inducing) failure. */
2968 /* *INDENT-ON* */
2969
2970
2971
2972 static int
2973 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2974 struct objfile *objfile)
2975 {
2976 int i;
2977 struct nextfield *new;
2978
2979 if (**pp != '!')
2980 {
2981 return 1;
2982 }
2983 else
2984 {
2985 /* Skip the '!' baseclass information marker. */
2986 (*pp)++;
2987 }
2988
2989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2990 {
2991 int nbits;
2992 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2993 if (nbits != 0)
2994 return 0;
2995 }
2996
2997 #if 0
2998 /* Some stupid compilers have trouble with the following, so break
2999 it up into simpler expressions. */
3000 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3001 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3002 #else
3003 {
3004 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3005 char *pointer;
3006
3007 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3008 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3009 }
3010 #endif /* 0 */
3011
3012 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3013
3014 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3015 {
3016 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3017 make_cleanup (xfree, new);
3018 memset (new, 0, sizeof (struct nextfield));
3019 new->next = fip->list;
3020 fip->list = new;
3021 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3022
3023 STABS_CONTINUE (pp, objfile);
3024 switch (**pp)
3025 {
3026 case '0':
3027 /* Nothing to do. */
3028 break;
3029 case '1':
3030 SET_TYPE_FIELD_VIRTUAL (type, i);
3031 break;
3032 default:
3033 /* Unknown character. Complain and treat it as non-virtual. */
3034 {
3035 complaint (&symfile_complaints,
3036 "Unknown virtual character `%c' for baseclass", **pp);
3037 }
3038 }
3039 ++(*pp);
3040
3041 new->visibility = *(*pp)++;
3042 switch (new->visibility)
3043 {
3044 case VISIBILITY_PRIVATE:
3045 case VISIBILITY_PROTECTED:
3046 case VISIBILITY_PUBLIC:
3047 break;
3048 default:
3049 /* Bad visibility format. Complain and treat it as
3050 public. */
3051 {
3052 complaint (&symfile_complaints,
3053 "Unknown visibility `%c' for baseclass",
3054 new->visibility);
3055 new->visibility = VISIBILITY_PUBLIC;
3056 }
3057 }
3058
3059 {
3060 int nbits;
3061
3062 /* The remaining value is the bit offset of the portion of the object
3063 corresponding to this baseclass. Always zero in the absence of
3064 multiple inheritance. */
3065
3066 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3067 if (nbits != 0)
3068 return 0;
3069 }
3070
3071 /* The last piece of baseclass information is the type of the
3072 base class. Read it, and remember it's type name as this
3073 field's name. */
3074
3075 new->field.type = read_type (pp, objfile);
3076 new->field.name = type_name_no_tag (new->field.type);
3077
3078 /* skip trailing ';' and bump count of number of fields seen */
3079 if (**pp == ';')
3080 (*pp)++;
3081 else
3082 return 0;
3083 }
3084 return 1;
3085 }
3086
3087 /* The tail end of stabs for C++ classes that contain a virtual function
3088 pointer contains a tilde, a %, and a type number.
3089 The type number refers to the base class (possibly this class itself) which
3090 contains the vtable pointer for the current class.
3091
3092 This function is called when we have parsed all the method declarations,
3093 so we can look for the vptr base class info. */
3094
3095 static int
3096 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3097 struct objfile *objfile)
3098 {
3099 char *p;
3100
3101 STABS_CONTINUE (pp, objfile);
3102
3103 /* If we are positioned at a ';', then skip it. */
3104 if (**pp == ';')
3105 {
3106 (*pp)++;
3107 }
3108
3109 if (**pp == '~')
3110 {
3111 (*pp)++;
3112
3113 if (**pp == '=' || **pp == '+' || **pp == '-')
3114 {
3115 /* Obsolete flags that used to indicate the presence
3116 of constructors and/or destructors. */
3117 (*pp)++;
3118 }
3119
3120 /* Read either a '%' or the final ';'. */
3121 if (*(*pp)++ == '%')
3122 {
3123 /* The next number is the type number of the base class
3124 (possibly our own class) which supplies the vtable for
3125 this class. Parse it out, and search that class to find
3126 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3127 and TYPE_VPTR_FIELDNO. */
3128
3129 struct type *t;
3130 int i;
3131
3132 t = read_type (pp, objfile);
3133 p = (*pp)++;
3134 while (*p != '\0' && *p != ';')
3135 {
3136 p++;
3137 }
3138 if (*p == '\0')
3139 {
3140 /* Premature end of symbol. */
3141 return 0;
3142 }
3143
3144 TYPE_VPTR_BASETYPE (type) = t;
3145 if (type == t) /* Our own class provides vtbl ptr */
3146 {
3147 for (i = TYPE_NFIELDS (t) - 1;
3148 i >= TYPE_N_BASECLASSES (t);
3149 --i)
3150 {
3151 char *name = TYPE_FIELD_NAME (t, i);
3152 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3153 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3154 {
3155 TYPE_VPTR_FIELDNO (type) = i;
3156 goto gotit;
3157 }
3158 }
3159 /* Virtual function table field not found. */
3160 complaint (&symfile_complaints,
3161 "virtual function table pointer not found when defining class `%s'",
3162 TYPE_NAME (type));
3163 return 0;
3164 }
3165 else
3166 {
3167 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3168 }
3169
3170 gotit:
3171 *pp = p + 1;
3172 }
3173 }
3174 return 1;
3175 }
3176
3177 static int
3178 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3179 {
3180 int n;
3181
3182 for (n = TYPE_NFN_FIELDS (type);
3183 fip->fnlist != NULL;
3184 fip->fnlist = fip->fnlist->next)
3185 {
3186 --n; /* Circumvent Sun3 compiler bug */
3187 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3188 }
3189 return 1;
3190 }
3191
3192 /* Create the vector of fields, and record how big it is.
3193 We need this info to record proper virtual function table information
3194 for this class's virtual functions. */
3195
3196 static int
3197 attach_fields_to_type (struct field_info *fip, struct type *type,
3198 struct objfile *objfile)
3199 {
3200 int nfields = 0;
3201 int non_public_fields = 0;
3202 struct nextfield *scan;
3203
3204 /* Count up the number of fields that we have, as well as taking note of
3205 whether or not there are any non-public fields, which requires us to
3206 allocate and build the private_field_bits and protected_field_bits
3207 bitfields. */
3208
3209 for (scan = fip->list; scan != NULL; scan = scan->next)
3210 {
3211 nfields++;
3212 if (scan->visibility != VISIBILITY_PUBLIC)
3213 {
3214 non_public_fields++;
3215 }
3216 }
3217
3218 /* Now we know how many fields there are, and whether or not there are any
3219 non-public fields. Record the field count, allocate space for the
3220 array of fields, and create blank visibility bitfields if necessary. */
3221
3222 TYPE_NFIELDS (type) = nfields;
3223 TYPE_FIELDS (type) = (struct field *)
3224 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3225 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3226
3227 if (non_public_fields)
3228 {
3229 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3230
3231 TYPE_FIELD_PRIVATE_BITS (type) =
3232 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3233 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3234
3235 TYPE_FIELD_PROTECTED_BITS (type) =
3236 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3237 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3238
3239 TYPE_FIELD_IGNORE_BITS (type) =
3240 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3241 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3242 }
3243
3244 /* Copy the saved-up fields into the field vector. Start from the head
3245 of the list, adding to the tail of the field array, so that they end
3246 up in the same order in the array in which they were added to the list. */
3247
3248 while (nfields-- > 0)
3249 {
3250 TYPE_FIELD (type, nfields) = fip->list->field;
3251 switch (fip->list->visibility)
3252 {
3253 case VISIBILITY_PRIVATE:
3254 SET_TYPE_FIELD_PRIVATE (type, nfields);
3255 break;
3256
3257 case VISIBILITY_PROTECTED:
3258 SET_TYPE_FIELD_PROTECTED (type, nfields);
3259 break;
3260
3261 case VISIBILITY_IGNORE:
3262 SET_TYPE_FIELD_IGNORE (type, nfields);
3263 break;
3264
3265 case VISIBILITY_PUBLIC:
3266 break;
3267
3268 default:
3269 /* Unknown visibility. Complain and treat it as public. */
3270 {
3271 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3272 fip->list->visibility);
3273 }
3274 break;
3275 }
3276 fip->list = fip->list->next;
3277 }
3278 return 1;
3279 }
3280
3281
3282 /* Complain that the compiler has emitted more than one definition for the
3283 structure type TYPE. */
3284 static void
3285 complain_about_struct_wipeout (struct type *type)
3286 {
3287 char *name = "";
3288 char *kind = "";
3289
3290 if (TYPE_TAG_NAME (type))
3291 {
3292 name = TYPE_TAG_NAME (type);
3293 switch (TYPE_CODE (type))
3294 {
3295 case TYPE_CODE_STRUCT: kind = "struct "; break;
3296 case TYPE_CODE_UNION: kind = "union "; break;
3297 case TYPE_CODE_ENUM: kind = "enum "; break;
3298 default: kind = "";
3299 }
3300 }
3301 else if (TYPE_NAME (type))
3302 {
3303 name = TYPE_NAME (type);
3304 kind = "";
3305 }
3306 else
3307 {
3308 name = "<unknown>";
3309 kind = "";
3310 }
3311
3312 complaint (&symfile_complaints,
3313 "struct/union type gets multiply defined: %s%s", kind, name);
3314 }
3315
3316
3317 /* Read the description of a structure (or union type) and return an object
3318 describing the type.
3319
3320 PP points to a character pointer that points to the next unconsumed token
3321 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3322 *PP will point to "4a:1,0,32;;".
3323
3324 TYPE points to an incomplete type that needs to be filled in.
3325
3326 OBJFILE points to the current objfile from which the stabs information is
3327 being read. (Note that it is redundant in that TYPE also contains a pointer
3328 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3329 */
3330
3331 static struct type *
3332 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3333 struct objfile *objfile)
3334 {
3335 struct cleanup *back_to;
3336 struct field_info fi;
3337
3338 fi.list = NULL;
3339 fi.fnlist = NULL;
3340
3341 /* When describing struct/union/class types in stabs, G++ always drops
3342 all qualifications from the name. So if you've got:
3343 struct A { ... struct B { ... }; ... };
3344 then G++ will emit stabs for `struct A::B' that call it simply
3345 `struct B'. Obviously, if you've got a real top-level definition for
3346 `struct B', or other nested definitions, this is going to cause
3347 problems.
3348
3349 Obviously, GDB can't fix this by itself, but it can at least avoid
3350 scribbling on existing structure type objects when new definitions
3351 appear. */
3352 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3353 || TYPE_STUB (type)))
3354 {
3355 complain_about_struct_wipeout (type);
3356
3357 /* It's probably best to return the type unchanged. */
3358 return type;
3359 }
3360
3361 back_to = make_cleanup (null_cleanup, 0);
3362
3363 INIT_CPLUS_SPECIFIC (type);
3364 TYPE_CODE (type) = type_code;
3365 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3366
3367 /* First comes the total size in bytes. */
3368
3369 {
3370 int nbits;
3371 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3372 if (nbits != 0)
3373 return error_type (pp, objfile);
3374 }
3375
3376 /* Now read the baseclasses, if any, read the regular C struct or C++
3377 class member fields, attach the fields to the type, read the C++
3378 member functions, attach them to the type, and then read any tilde
3379 field (baseclass specifier for the class holding the main vtable). */
3380
3381 if (!read_baseclasses (&fi, pp, type, objfile)
3382 || !read_struct_fields (&fi, pp, type, objfile)
3383 || !attach_fields_to_type (&fi, type, objfile)
3384 || !read_member_functions (&fi, pp, type, objfile)
3385 || !attach_fn_fields_to_type (&fi, type)
3386 || !read_tilde_fields (&fi, pp, type, objfile))
3387 {
3388 type = error_type (pp, objfile);
3389 }
3390
3391 do_cleanups (back_to);
3392 return (type);
3393 }
3394
3395 /* Read a definition of an array type,
3396 and create and return a suitable type object.
3397 Also creates a range type which represents the bounds of that
3398 array. */
3399
3400 static struct type *
3401 read_array_type (char **pp, struct type *type,
3402 struct objfile *objfile)
3403 {
3404 struct type *index_type, *element_type, *range_type;
3405 int lower, upper;
3406 int adjustable = 0;
3407 int nbits;
3408
3409 /* Format of an array type:
3410 "ar<index type>;lower;upper;<array_contents_type>".
3411 OS9000: "arlower,upper;<array_contents_type>".
3412
3413 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3414 for these, produce a type like float[][]. */
3415
3416 {
3417 index_type = read_type (pp, objfile);
3418 if (**pp != ';')
3419 /* Improper format of array type decl. */
3420 return error_type (pp, objfile);
3421 ++*pp;
3422 }
3423
3424 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3425 {
3426 (*pp)++;
3427 adjustable = 1;
3428 }
3429 lower = read_huge_number (pp, ';', &nbits);
3430
3431 if (nbits != 0)
3432 return error_type (pp, objfile);
3433
3434 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3435 {
3436 (*pp)++;
3437 adjustable = 1;
3438 }
3439 upper = read_huge_number (pp, ';', &nbits);
3440 if (nbits != 0)
3441 return error_type (pp, objfile);
3442
3443 element_type = read_type (pp, objfile);
3444
3445 if (adjustable)
3446 {
3447 lower = 0;
3448 upper = -1;
3449 }
3450
3451 range_type =
3452 create_range_type ((struct type *) NULL, index_type, lower, upper);
3453 type = create_array_type (type, element_type, range_type);
3454
3455 return type;
3456 }
3457
3458
3459 /* Read a definition of an enumeration type,
3460 and create and return a suitable type object.
3461 Also defines the symbols that represent the values of the type. */
3462
3463 static struct type *
3464 read_enum_type (char **pp, struct type *type,
3465 struct objfile *objfile)
3466 {
3467 char *p;
3468 char *name;
3469 long n;
3470 struct symbol *sym;
3471 int nsyms = 0;
3472 struct pending **symlist;
3473 struct pending *osyms, *syms;
3474 int o_nsyms;
3475 int nbits;
3476 int unsigned_enum = 1;
3477
3478 #if 0
3479 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3480 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3481 to do? For now, force all enum values to file scope. */
3482 if (within_function)
3483 symlist = &local_symbols;
3484 else
3485 #endif
3486 symlist = &file_symbols;
3487 osyms = *symlist;
3488 o_nsyms = osyms ? osyms->nsyms : 0;
3489
3490 /* The aix4 compiler emits an extra field before the enum members;
3491 my guess is it's a type of some sort. Just ignore it. */
3492 if (**pp == '-')
3493 {
3494 /* Skip over the type. */
3495 while (**pp != ':')
3496 (*pp)++;
3497
3498 /* Skip over the colon. */
3499 (*pp)++;
3500 }
3501
3502 /* Read the value-names and their values.
3503 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3504 A semicolon or comma instead of a NAME means the end. */
3505 while (**pp && **pp != ';' && **pp != ',')
3506 {
3507 STABS_CONTINUE (pp, objfile);
3508 p = *pp;
3509 while (*p != ':')
3510 p++;
3511 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
3512 *pp = p + 1;
3513 n = read_huge_number (pp, ',', &nbits);
3514 if (nbits != 0)
3515 return error_type (pp, objfile);
3516
3517 sym = (struct symbol *)
3518 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3519 memset (sym, 0, sizeof (struct symbol));
3520 DEPRECATED_SYMBOL_NAME (sym) = name;
3521 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3522 SYMBOL_CLASS (sym) = LOC_CONST;
3523 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3524 SYMBOL_VALUE (sym) = n;
3525 if (n < 0)
3526 unsigned_enum = 0;
3527 add_symbol_to_list (sym, symlist);
3528 nsyms++;
3529 }
3530
3531 if (**pp == ';')
3532 (*pp)++; /* Skip the semicolon. */
3533
3534 /* Now fill in the fields of the type-structure. */
3535
3536 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3537 TYPE_CODE (type) = TYPE_CODE_ENUM;
3538 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3539 if (unsigned_enum)
3540 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3541 TYPE_NFIELDS (type) = nsyms;
3542 TYPE_FIELDS (type) = (struct field *)
3543 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3544 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3545
3546 /* Find the symbols for the values and put them into the type.
3547 The symbols can be found in the symlist that we put them on
3548 to cause them to be defined. osyms contains the old value
3549 of that symlist; everything up to there was defined by us. */
3550 /* Note that we preserve the order of the enum constants, so
3551 that in something like "enum {FOO, LAST_THING=FOO}" we print
3552 FOO, not LAST_THING. */
3553
3554 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3555 {
3556 int last = syms == osyms ? o_nsyms : 0;
3557 int j = syms->nsyms;
3558 for (; --j >= last; --n)
3559 {
3560 struct symbol *xsym = syms->symbol[j];
3561 SYMBOL_TYPE (xsym) = type;
3562 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3563 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3564 TYPE_FIELD_BITSIZE (type, n) = 0;
3565 }
3566 if (syms == osyms)
3567 break;
3568 }
3569
3570 return type;
3571 }
3572
3573 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3574 typedefs in every file (for int, long, etc):
3575
3576 type = b <signed> <width> <format type>; <offset>; <nbits>
3577 signed = u or s.
3578 optional format type = c or b for char or boolean.
3579 offset = offset from high order bit to start bit of type.
3580 width is # bytes in object of this type, nbits is # bits in type.
3581
3582 The width/offset stuff appears to be for small objects stored in
3583 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3584 FIXME. */
3585
3586 static struct type *
3587 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3588 {
3589 int type_bits;
3590 int nbits;
3591 int signed_type;
3592 enum type_code code = TYPE_CODE_INT;
3593
3594 switch (**pp)
3595 {
3596 case 's':
3597 signed_type = 1;
3598 break;
3599 case 'u':
3600 signed_type = 0;
3601 break;
3602 default:
3603 return error_type (pp, objfile);
3604 }
3605 (*pp)++;
3606
3607 /* For some odd reason, all forms of char put a c here. This is strange
3608 because no other type has this honor. We can safely ignore this because
3609 we actually determine 'char'acterness by the number of bits specified in
3610 the descriptor.
3611 Boolean forms, e.g Fortran logical*X, put a b here. */
3612
3613 if (**pp == 'c')
3614 (*pp)++;
3615 else if (**pp == 'b')
3616 {
3617 code = TYPE_CODE_BOOL;
3618 (*pp)++;
3619 }
3620
3621 /* The first number appears to be the number of bytes occupied
3622 by this type, except that unsigned short is 4 instead of 2.
3623 Since this information is redundant with the third number,
3624 we will ignore it. */
3625 read_huge_number (pp, ';', &nbits);
3626 if (nbits != 0)
3627 return error_type (pp, objfile);
3628
3629 /* The second number is always 0, so ignore it too. */
3630 read_huge_number (pp, ';', &nbits);
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633
3634 /* The third number is the number of bits for this type. */
3635 type_bits = read_huge_number (pp, 0, &nbits);
3636 if (nbits != 0)
3637 return error_type (pp, objfile);
3638 /* The type *should* end with a semicolon. If it are embedded
3639 in a larger type the semicolon may be the only way to know where
3640 the type ends. If this type is at the end of the stabstring we
3641 can deal with the omitted semicolon (but we don't have to like
3642 it). Don't bother to complain(), Sun's compiler omits the semicolon
3643 for "void". */
3644 if (**pp == ';')
3645 ++(*pp);
3646
3647 if (type_bits == 0)
3648 return init_type (TYPE_CODE_VOID, 1,
3649 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3650 objfile);
3651 else
3652 return init_type (code,
3653 type_bits / TARGET_CHAR_BIT,
3654 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3655 objfile);
3656 }
3657
3658 static struct type *
3659 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3660 {
3661 int nbits;
3662 int details;
3663 int nbytes;
3664 struct type *rettype;
3665
3666 /* The first number has more details about the type, for example
3667 FN_COMPLEX. */
3668 details = read_huge_number (pp, ';', &nbits);
3669 if (nbits != 0)
3670 return error_type (pp, objfile);
3671
3672 /* The second number is the number of bytes occupied by this type */
3673 nbytes = read_huge_number (pp, ';', &nbits);
3674 if (nbits != 0)
3675 return error_type (pp, objfile);
3676
3677 if (details == NF_COMPLEX || details == NF_COMPLEX16
3678 || details == NF_COMPLEX32)
3679 {
3680 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3681 TYPE_TARGET_TYPE (rettype)
3682 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3683 return rettype;
3684 }
3685
3686 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3687 }
3688
3689 /* Read a number from the string pointed to by *PP.
3690 The value of *PP is advanced over the number.
3691 If END is nonzero, the character that ends the
3692 number must match END, or an error happens;
3693 and that character is skipped if it does match.
3694 If END is zero, *PP is left pointing to that character.
3695
3696 If the number fits in a long, set *BITS to 0 and return the value.
3697 If not, set *BITS to be the number of bits in the number and return 0.
3698
3699 If encounter garbage, set *BITS to -1 and return 0. */
3700
3701 static long
3702 read_huge_number (char **pp, int end, int *bits)
3703 {
3704 char *p = *pp;
3705 int sign = 1;
3706 long n = 0;
3707 int radix = 10;
3708 char overflow = 0;
3709 int nbits = 0;
3710 int c;
3711 long upper_limit;
3712
3713 if (*p == '-')
3714 {
3715 sign = -1;
3716 p++;
3717 }
3718
3719 /* Leading zero means octal. GCC uses this to output values larger
3720 than an int (because that would be hard in decimal). */
3721 if (*p == '0')
3722 {
3723 radix = 8;
3724 p++;
3725 }
3726
3727 upper_limit = LONG_MAX / radix;
3728
3729 while ((c = *p++) >= '0' && c < ('0' + radix))
3730 {
3731 if (n <= upper_limit)
3732 {
3733 n *= radix;
3734 n += c - '0'; /* FIXME this overflows anyway */
3735 }
3736 else
3737 overflow = 1;
3738
3739 /* This depends on large values being output in octal, which is
3740 what GCC does. */
3741 if (radix == 8)
3742 {
3743 if (nbits == 0)
3744 {
3745 if (c == '0')
3746 /* Ignore leading zeroes. */
3747 ;
3748 else if (c == '1')
3749 nbits = 1;
3750 else if (c == '2' || c == '3')
3751 nbits = 2;
3752 else
3753 nbits = 3;
3754 }
3755 else
3756 nbits += 3;
3757 }
3758 }
3759 if (end)
3760 {
3761 if (c && c != end)
3762 {
3763 if (bits != NULL)
3764 *bits = -1;
3765 return 0;
3766 }
3767 }
3768 else
3769 --p;
3770
3771 *pp = p;
3772 if (overflow)
3773 {
3774 if (nbits == 0)
3775 {
3776 /* Large decimal constants are an error (because it is hard to
3777 count how many bits are in them). */
3778 if (bits != NULL)
3779 *bits = -1;
3780 return 0;
3781 }
3782
3783 /* -0x7f is the same as 0x80. So deal with it by adding one to
3784 the number of bits. */
3785 if (sign == -1)
3786 ++nbits;
3787 if (bits)
3788 *bits = nbits;
3789 }
3790 else
3791 {
3792 if (bits)
3793 *bits = 0;
3794 return n * sign;
3795 }
3796 /* It's *BITS which has the interesting information. */
3797 return 0;
3798 }
3799
3800 static struct type *
3801 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3802 {
3803 char *orig_pp = *pp;
3804 int rangenums[2];
3805 long n2, n3;
3806 int n2bits, n3bits;
3807 int self_subrange;
3808 struct type *result_type;
3809 struct type *index_type = NULL;
3810
3811 /* First comes a type we are a subrange of.
3812 In C it is usually 0, 1 or the type being defined. */
3813 if (read_type_number (pp, rangenums) != 0)
3814 return error_type (pp, objfile);
3815 self_subrange = (rangenums[0] == typenums[0] &&
3816 rangenums[1] == typenums[1]);
3817
3818 if (**pp == '=')
3819 {
3820 *pp = orig_pp;
3821 index_type = read_type (pp, objfile);
3822 }
3823
3824 /* A semicolon should now follow; skip it. */
3825 if (**pp == ';')
3826 (*pp)++;
3827
3828 /* The remaining two operands are usually lower and upper bounds
3829 of the range. But in some special cases they mean something else. */
3830 n2 = read_huge_number (pp, ';', &n2bits);
3831 n3 = read_huge_number (pp, ';', &n3bits);
3832
3833 if (n2bits == -1 || n3bits == -1)
3834 return error_type (pp, objfile);
3835
3836 if (index_type)
3837 goto handle_true_range;
3838
3839 /* If limits are huge, must be large integral type. */
3840 if (n2bits != 0 || n3bits != 0)
3841 {
3842 char got_signed = 0;
3843 char got_unsigned = 0;
3844 /* Number of bits in the type. */
3845 int nbits = 0;
3846
3847 /* Range from 0 to <large number> is an unsigned large integral type. */
3848 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3849 {
3850 got_unsigned = 1;
3851 nbits = n3bits;
3852 }
3853 /* Range from <large number> to <large number>-1 is a large signed
3854 integral type. Take care of the case where <large number> doesn't
3855 fit in a long but <large number>-1 does. */
3856 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3857 || (n2bits != 0 && n3bits == 0
3858 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3859 && n3 == LONG_MAX))
3860 {
3861 got_signed = 1;
3862 nbits = n2bits;
3863 }
3864
3865 if (got_signed || got_unsigned)
3866 {
3867 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3868 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3869 objfile);
3870 }
3871 else
3872 return error_type (pp, objfile);
3873 }
3874
3875 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3876 if (self_subrange && n2 == 0 && n3 == 0)
3877 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3878
3879 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3880 is the width in bytes.
3881
3882 Fortran programs appear to use this for complex types also. To
3883 distinguish between floats and complex, g77 (and others?) seem
3884 to use self-subranges for the complexes, and subranges of int for
3885 the floats.
3886
3887 Also note that for complexes, g77 sets n2 to the size of one of
3888 the member floats, not the whole complex beast. My guess is that
3889 this was to work well with pre-COMPLEX versions of gdb. */
3890
3891 if (n3 == 0 && n2 > 0)
3892 {
3893 struct type *float_type
3894 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3895
3896 if (self_subrange)
3897 {
3898 struct type *complex_type =
3899 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3900 TYPE_TARGET_TYPE (complex_type) = float_type;
3901 return complex_type;
3902 }
3903 else
3904 return float_type;
3905 }
3906
3907 /* If the upper bound is -1, it must really be an unsigned int. */
3908
3909 else if (n2 == 0 && n3 == -1)
3910 {
3911 /* It is unsigned int or unsigned long. */
3912 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3913 compatibility hack. */
3914 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3915 TYPE_FLAG_UNSIGNED, NULL, objfile);
3916 }
3917
3918 /* Special case: char is defined (Who knows why) as a subrange of
3919 itself with range 0-127. */
3920 else if (self_subrange && n2 == 0 && n3 == 127)
3921 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3922
3923 /* We used to do this only for subrange of self or subrange of int. */
3924 else if (n2 == 0)
3925 {
3926 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3927 "unsigned long", and we already checked for that,
3928 so don't need to test for it here. */
3929
3930 if (n3 < 0)
3931 /* n3 actually gives the size. */
3932 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3933 NULL, objfile);
3934
3935 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3936 unsigned n-byte integer. But do require n to be a power of
3937 two; we don't want 3- and 5-byte integers flying around. */
3938 {
3939 int bytes;
3940 unsigned long bits;
3941
3942 bits = n3;
3943 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3944 bits >>= 8;
3945 if (bits == 0
3946 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3947 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3948 objfile);
3949 }
3950 }
3951 /* I think this is for Convex "long long". Since I don't know whether
3952 Convex sets self_subrange, I also accept that particular size regardless
3953 of self_subrange. */
3954 else if (n3 == 0 && n2 < 0
3955 && (self_subrange
3956 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3957 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3958 else if (n2 == -n3 - 1)
3959 {
3960 if (n3 == 0x7f)
3961 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3962 if (n3 == 0x7fff)
3963 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3964 if (n3 == 0x7fffffff)
3965 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3966 }
3967
3968 /* We have a real range type on our hands. Allocate space and
3969 return a real pointer. */
3970 handle_true_range:
3971
3972 if (self_subrange)
3973 index_type = builtin_type_int;
3974 else
3975 index_type = *dbx_lookup_type (rangenums);
3976 if (index_type == NULL)
3977 {
3978 /* Does this actually ever happen? Is that why we are worrying
3979 about dealing with it rather than just calling error_type? */
3980
3981 static struct type *range_type_index;
3982
3983 complaint (&symfile_complaints,
3984 "base type %d of range type is not defined", rangenums[1]);
3985 if (range_type_index == NULL)
3986 range_type_index =
3987 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3988 0, "range type index type", NULL);
3989 index_type = range_type_index;
3990 }
3991
3992 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3993 return (result_type);
3994 }
3995
3996 /* Read in an argument list. This is a list of types, separated by commas
3997 and terminated with END. Return the list of types read in, or (struct type
3998 **)-1 if there is an error. */
3999
4000 static struct field *
4001 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4002 int *varargsp)
4003 {
4004 /* FIXME! Remove this arbitrary limit! */
4005 struct type *types[1024]; /* allow for fns of 1023 parameters */
4006 int n = 0, i;
4007 struct field *rval;
4008
4009 while (**pp != end)
4010 {
4011 if (**pp != ',')
4012 /* Invalid argument list: no ','. */
4013 return (struct field *) -1;
4014 (*pp)++;
4015 STABS_CONTINUE (pp, objfile);
4016 types[n++] = read_type (pp, objfile);
4017 }
4018 (*pp)++; /* get past `end' (the ':' character) */
4019
4020 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4021 *varargsp = 1;
4022 else
4023 {
4024 n--;
4025 *varargsp = 0;
4026 }
4027
4028 rval = (struct field *) xmalloc (n * sizeof (struct field));
4029 memset (rval, 0, n * sizeof (struct field));
4030 for (i = 0; i < n; i++)
4031 rval[i].type = types[i];
4032 *nargsp = n;
4033 return rval;
4034 }
4035 \f
4036 /* Common block handling. */
4037
4038 /* List of symbols declared since the last BCOMM. This list is a tail
4039 of local_symbols. When ECOMM is seen, the symbols on the list
4040 are noted so their proper addresses can be filled in later,
4041 using the common block base address gotten from the assembler
4042 stabs. */
4043
4044 static struct pending *common_block;
4045 static int common_block_i;
4046
4047 /* Name of the current common block. We get it from the BCOMM instead of the
4048 ECOMM to match IBM documentation (even though IBM puts the name both places
4049 like everyone else). */
4050 static char *common_block_name;
4051
4052 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4053 to remain after this function returns. */
4054
4055 void
4056 common_block_start (char *name, struct objfile *objfile)
4057 {
4058 if (common_block_name != NULL)
4059 {
4060 complaint (&symfile_complaints,
4061 "Invalid symbol data: common block within common block");
4062 }
4063 common_block = local_symbols;
4064 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4065 common_block_name = obsavestring (name, strlen (name),
4066 &objfile->symbol_obstack);
4067 }
4068
4069 /* Process a N_ECOMM symbol. */
4070
4071 void
4072 common_block_end (struct objfile *objfile)
4073 {
4074 /* Symbols declared since the BCOMM are to have the common block
4075 start address added in when we know it. common_block and
4076 common_block_i point to the first symbol after the BCOMM in
4077 the local_symbols list; copy the list and hang it off the
4078 symbol for the common block name for later fixup. */
4079 int i;
4080 struct symbol *sym;
4081 struct pending *new = 0;
4082 struct pending *next;
4083 int j;
4084
4085 if (common_block_name == NULL)
4086 {
4087 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4088 return;
4089 }
4090
4091 sym = (struct symbol *)
4092 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4093 memset (sym, 0, sizeof (struct symbol));
4094 /* Note: common_block_name already saved on symbol_obstack */
4095 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4096 SYMBOL_CLASS (sym) = LOC_BLOCK;
4097
4098 /* Now we copy all the symbols which have been defined since the BCOMM. */
4099
4100 /* Copy all the struct pendings before common_block. */
4101 for (next = local_symbols;
4102 next != NULL && next != common_block;
4103 next = next->next)
4104 {
4105 for (j = 0; j < next->nsyms; j++)
4106 add_symbol_to_list (next->symbol[j], &new);
4107 }
4108
4109 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4110 NULL, it means copy all the local symbols (which we already did
4111 above). */
4112
4113 if (common_block != NULL)
4114 for (j = common_block_i; j < common_block->nsyms; j++)
4115 add_symbol_to_list (common_block->symbol[j], &new);
4116
4117 SYMBOL_TYPE (sym) = (struct type *) new;
4118
4119 /* Should we be putting local_symbols back to what it was?
4120 Does it matter? */
4121
4122 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4123 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4124 global_sym_chain[i] = sym;
4125 common_block_name = NULL;
4126 }
4127
4128 /* Add a common block's start address to the offset of each symbol
4129 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4130 the common block name). */
4131
4132 static void
4133 fix_common_block (struct symbol *sym, int valu)
4134 {
4135 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4136 for (; next; next = next->next)
4137 {
4138 int j;
4139 for (j = next->nsyms - 1; j >= 0; j--)
4140 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4141 }
4142 }
4143 \f
4144
4145
4146 /* What about types defined as forward references inside of a small lexical
4147 scope? */
4148 /* Add a type to the list of undefined types to be checked through
4149 once this file has been read in. */
4150
4151 static void
4152 add_undefined_type (struct type *type)
4153 {
4154 if (undef_types_length == undef_types_allocated)
4155 {
4156 undef_types_allocated *= 2;
4157 undef_types = (struct type **)
4158 xrealloc ((char *) undef_types,
4159 undef_types_allocated * sizeof (struct type *));
4160 }
4161 undef_types[undef_types_length++] = type;
4162 }
4163
4164 /* Go through each undefined type, see if it's still undefined, and fix it
4165 up if possible. We have two kinds of undefined types:
4166
4167 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4168 Fix: update array length using the element bounds
4169 and the target type's length.
4170 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4171 yet defined at the time a pointer to it was made.
4172 Fix: Do a full lookup on the struct/union tag. */
4173 void
4174 cleanup_undefined_types (void)
4175 {
4176 struct type **type;
4177
4178 for (type = undef_types; type < undef_types + undef_types_length; type++)
4179 {
4180 switch (TYPE_CODE (*type))
4181 {
4182
4183 case TYPE_CODE_STRUCT:
4184 case TYPE_CODE_UNION:
4185 case TYPE_CODE_ENUM:
4186 {
4187 /* Check if it has been defined since. Need to do this here
4188 as well as in check_typedef to deal with the (legitimate in
4189 C though not C++) case of several types with the same name
4190 in different source files. */
4191 if (TYPE_STUB (*type))
4192 {
4193 struct pending *ppt;
4194 int i;
4195 /* Name of the type, without "struct" or "union" */
4196 char *typename = TYPE_TAG_NAME (*type);
4197
4198 if (typename == NULL)
4199 {
4200 complaint (&symfile_complaints, "need a type name");
4201 break;
4202 }
4203 for (ppt = file_symbols; ppt; ppt = ppt->next)
4204 {
4205 for (i = 0; i < ppt->nsyms; i++)
4206 {
4207 struct symbol *sym = ppt->symbol[i];
4208
4209 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4210 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4211 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4212 TYPE_CODE (*type))
4213 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4214 replace_type (*type, SYMBOL_TYPE (sym));
4215 }
4216 }
4217 }
4218 }
4219 break;
4220
4221 default:
4222 {
4223 complaint (&symfile_complaints,
4224 "GDB internal error. cleanup_undefined_types with bad type %d.",
4225 TYPE_CODE (*type));
4226 }
4227 break;
4228 }
4229 }
4230
4231 undef_types_length = 0;
4232 }
4233
4234 /* Scan through all of the global symbols defined in the object file,
4235 assigning values to the debugging symbols that need to be assigned
4236 to. Get these symbols from the minimal symbol table. */
4237
4238 void
4239 scan_file_globals (struct objfile *objfile)
4240 {
4241 int hash;
4242 struct minimal_symbol *msymbol;
4243 struct symbol *sym, *prev;
4244 struct objfile *resolve_objfile;
4245
4246 /* SVR4 based linkers copy referenced global symbols from shared
4247 libraries to the main executable.
4248 If we are scanning the symbols for a shared library, try to resolve
4249 them from the minimal symbols of the main executable first. */
4250
4251 if (symfile_objfile && objfile != symfile_objfile)
4252 resolve_objfile = symfile_objfile;
4253 else
4254 resolve_objfile = objfile;
4255
4256 while (1)
4257 {
4258 /* Avoid expensive loop through all minimal symbols if there are
4259 no unresolved symbols. */
4260 for (hash = 0; hash < HASHSIZE; hash++)
4261 {
4262 if (global_sym_chain[hash])
4263 break;
4264 }
4265 if (hash >= HASHSIZE)
4266 return;
4267
4268 for (msymbol = resolve_objfile->msymbols;
4269 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4270 msymbol++)
4271 {
4272 QUIT;
4273
4274 /* Skip static symbols. */
4275 switch (MSYMBOL_TYPE (msymbol))
4276 {
4277 case mst_file_text:
4278 case mst_file_data:
4279 case mst_file_bss:
4280 continue;
4281 default:
4282 break;
4283 }
4284
4285 prev = NULL;
4286
4287 /* Get the hash index and check all the symbols
4288 under that hash index. */
4289
4290 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4291
4292 for (sym = global_sym_chain[hash]; sym;)
4293 {
4294 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4295 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4296 {
4297 /* Splice this symbol out of the hash chain and
4298 assign the value we have to it. */
4299 if (prev)
4300 {
4301 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4302 }
4303 else
4304 {
4305 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4306 }
4307
4308 /* Check to see whether we need to fix up a common block. */
4309 /* Note: this code might be executed several times for
4310 the same symbol if there are multiple references. */
4311 if (sym)
4312 {
4313 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4314 {
4315 fix_common_block (sym,
4316 SYMBOL_VALUE_ADDRESS (msymbol));
4317 }
4318 else
4319 {
4320 SYMBOL_VALUE_ADDRESS (sym)
4321 = SYMBOL_VALUE_ADDRESS (msymbol);
4322 }
4323 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4324 }
4325
4326 if (prev)
4327 {
4328 sym = SYMBOL_VALUE_CHAIN (prev);
4329 }
4330 else
4331 {
4332 sym = global_sym_chain[hash];
4333 }
4334 }
4335 else
4336 {
4337 prev = sym;
4338 sym = SYMBOL_VALUE_CHAIN (sym);
4339 }
4340 }
4341 }
4342 if (resolve_objfile == objfile)
4343 break;
4344 resolve_objfile = objfile;
4345 }
4346
4347 /* Change the storage class of any remaining unresolved globals to
4348 LOC_UNRESOLVED and remove them from the chain. */
4349 for (hash = 0; hash < HASHSIZE; hash++)
4350 {
4351 sym = global_sym_chain[hash];
4352 while (sym)
4353 {
4354 prev = sym;
4355 sym = SYMBOL_VALUE_CHAIN (sym);
4356
4357 /* Change the symbol address from the misleading chain value
4358 to address zero. */
4359 SYMBOL_VALUE_ADDRESS (prev) = 0;
4360
4361 /* Complain about unresolved common block symbols. */
4362 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4363 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4364 else
4365 complaint (&symfile_complaints,
4366 "%s: common block `%s' from global_sym_chain unresolved",
4367 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4368 }
4369 }
4370 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4371 }
4372
4373 /* Initialize anything that needs initializing when starting to read
4374 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4375 to a psymtab. */
4376
4377 void
4378 stabsread_init (void)
4379 {
4380 }
4381
4382 /* Initialize anything that needs initializing when a completely new
4383 symbol file is specified (not just adding some symbols from another
4384 file, e.g. a shared library). */
4385
4386 void
4387 stabsread_new_init (void)
4388 {
4389 /* Empty the hash table of global syms looking for values. */
4390 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4391 }
4392
4393 /* Initialize anything that needs initializing at the same time as
4394 start_symtab() is called. */
4395
4396 void
4397 start_stabs (void)
4398 {
4399 global_stabs = NULL; /* AIX COFF */
4400 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4401 n_this_object_header_files = 1;
4402 type_vector_length = 0;
4403 type_vector = (struct type **) 0;
4404
4405 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4406 common_block_name = NULL;
4407 }
4408
4409 /* Call after end_symtab() */
4410
4411 void
4412 end_stabs (void)
4413 {
4414 if (type_vector)
4415 {
4416 xfree (type_vector);
4417 }
4418 type_vector = 0;
4419 type_vector_length = 0;
4420 previous_stab_code = 0;
4421 }
4422
4423 void
4424 finish_global_stabs (struct objfile *objfile)
4425 {
4426 if (global_stabs)
4427 {
4428 patch_block_stabs (global_symbols, global_stabs, objfile);
4429 xfree (global_stabs);
4430 global_stabs = NULL;
4431 }
4432 }
4433
4434 /* Find the end of the name, delimited by a ':', but don't match
4435 ObjC symbols which look like -[Foo bar::]:bla. */
4436 static char *
4437 find_name_end (char *name)
4438 {
4439 char *s = name;
4440 if (s[0] == '-' || *s == '+')
4441 {
4442 /* Must be an ObjC method symbol. */
4443 if (s[1] != '[')
4444 {
4445 error ("invalid symbol name \"%s\"", name);
4446 }
4447 s = strchr (s, ']');
4448 if (s == NULL)
4449 {
4450 error ("invalid symbol name \"%s\"", name);
4451 }
4452 return strchr (s, ':');
4453 }
4454 else
4455 {
4456 return strchr (s, ':');
4457 }
4458 }
4459
4460 /* Initializer for this module */
4461
4462 void
4463 _initialize_stabsread (void)
4464 {
4465 undef_types_allocated = 20;
4466 undef_types_length = 0;
4467 undef_types = (struct type **)
4468 xmalloc (undef_types_allocated * sizeof (struct type *));
4469 }
This page took 0.130553 seconds and 4 git commands to generate.