2a5b972377b8b05ff1f509fd4eddedba59df06f3
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
223
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
226
227 struct type **
228 dbx_lookup_type (typenums)
229 int typenums[2];
230 {
231 register int filenum = typenums[0];
232 register int index = typenums[1];
233 unsigned old_len;
234 register int real_filenum;
235 register struct header_file *f;
236 int f_orig_length;
237
238 if (filenum == -1) /* -1,-1 is for temporary types. */
239 return 0;
240
241 if (filenum < 0 || filenum >= n_this_object_header_files)
242 {
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
245 0, 0};
246 complain (&msg, filenum, index, symnum);
247 goto error_return;
248 }
249
250 if (filenum == 0)
251 {
252 if (index < 0)
253 {
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
260
261 temp_type = rs6000_builtin_type(index);
262 return &temp_type;
263 }
264
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
268 {
269 old_len = type_vector_length;
270 if (old_len == 0)
271 {
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
275 }
276 while (index >= type_vector_length)
277 {
278 type_vector_length *= 2;
279 }
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
285 }
286 return (&type_vector[index]);
287 }
288 else
289 {
290 real_filenum = this_object_header_files[filenum];
291
292 if (real_filenum >= n_header_files)
293 {
294 struct type *temp_type;
295 struct type **temp_type_p;
296
297 warning ("GDB internal error: bad real_filenum");
298
299 error_return:
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
303 return temp_type_p;
304 }
305
306 f = &header_files[real_filenum];
307
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
310 {
311 while (index >= f->length)
312 {
313 f->length *= 2;
314 }
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
319 }
320 return (&f->vector[index]);
321 }
322 }
323
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
329
330 static struct type *
331 dbx_alloc_type (typenums, objfile)
332 int typenums[2];
333 struct objfile *objfile;
334 {
335 register struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
380 if (!sym)
381 {
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
388
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
392 SYMBOL_NAME (sym) =
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
394 pp += 2;
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
396 {
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 add_symbol_to_list (sym, &global_symbols);
408 }
409 else
410 {
411 pp += 2;
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
413 {
414 SYMBOL_TYPE (sym) =
415 lookup_function_type (read_type (&pp, objfile));
416 }
417 else
418 {
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
420 }
421 }
422 }
423 }
424 }
425
426 \f
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
432
433 Returns 0 for success, -1 for error. */
434
435 static int
436 read_type_number (pp, typenums)
437 register char **pp;
438 register int *typenums;
439 {
440 int nbits;
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
454 }
455 return 0;
456 }
457
458 \f
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
463 get this name). */
464
465 static char *type_synonym_name;
466
467 /* ARGSUSED */
468 struct symbol *
469 define_symbol (valu, string, desc, type, objfile)
470 unsigned int valu;
471 char *string;
472 int desc;
473 int type;
474 struct objfile *objfile;
475 {
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
478 int deftype;
479 int synonym = 0;
480 register int i;
481
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
486
487 int nameless;
488
489 /* Ignore syms with empty names. */
490 if (string[0] == 0)
491 return 0;
492
493 /* Ignore old-style symbols from cc -go */
494 if (p == 0)
495 return 0;
496
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
500
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
504
505 if (processing_gcc_compilation)
506 {
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
510 }
511 else
512 {
513 SYMBOL_LINE(sym) = 0; /* unknown */
514 }
515
516 if (string[0] == CPLUS_MARKER)
517 {
518 /* Special GNU C++ names. */
519 switch (string[1])
520 {
521 case 't':
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
524 break;
525
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
528 goto normal;
529
530 case 'e':
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
533 break;
534
535 case '_':
536 /* This was an anonymous type that was never fixed up. */
537 goto normal;
538
539 default:
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
542 }
543 }
544 else
545 {
546 normal:
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded memcpy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
553 /* FIXME: considering that gcc can open code memcpy anyway, I
554 doubt it. xoxorich. */
555 {
556 register char *p1 = string;
557 register char *p2 = SYMBOL_NAME (sym);
558 while (p1 != p)
559 {
560 *p2++ = *p1++;
561 }
562 *p2++ = '\0';
563 }
564
565 /* If this symbol is from a C++ compilation, then attempt to cache the
566 demangled form for future reference. This is a typical time versus
567 space tradeoff, that was decided in favor of time because it sped up
568 C++ symbol lookups by a factor of about 20. */
569
570 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
571 }
572 p++;
573
574 /* Determine the type of name being defined. */
575 #if 0
576 /* Getting GDB to correctly skip the symbol on an undefined symbol
577 descriptor and not ever dump core is a very dodgy proposition if
578 we do things this way. I say the acorn RISC machine can just
579 fix their compiler. */
580 /* The Acorn RISC machine's compiler can put out locals that don't
581 start with "234=" or "(3,4)=", so assume anything other than the
582 deftypes we know how to handle is a local. */
583 if (!strchr ("cfFGpPrStTvVXCR", *p))
584 #else
585 if (isdigit (*p) || *p == '(' || *p == '-')
586 #endif
587 deftype = 'l';
588 else
589 deftype = *p++;
590
591 switch (deftype)
592 {
593 case 'c':
594 /* c is a special case, not followed by a type-number.
595 SYMBOL:c=iVALUE for an integer constant symbol.
596 SYMBOL:c=rVALUE for a floating constant symbol.
597 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
598 e.g. "b:c=e6,0" for "const b = blob1"
599 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 if (*p != '=')
601 {
602 SYMBOL_CLASS (sym) = LOC_CONST;
603 SYMBOL_TYPE (sym) = error_type (&p);
604 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
605 add_symbol_to_list (sym, &file_symbols);
606 return sym;
607 }
608 ++p;
609 switch (*p++)
610 {
611 case 'r':
612 {
613 double d = atof (p);
614 char *dbl_valu;
615
616 /* FIXME: lookup_fundamental_type is a hack. We should be
617 creating a type especially for the type of float constants.
618 Problem is, what type should it be? We currently have to
619 read this in host floating point format, but what type
620 represents a host format "double"?
621
622 Also, what should the name of this type be? Should we
623 be using 'S' constants (see stabs.texinfo) instead? */
624
625 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
626 FT_DBL_PREC_FLOAT);
627 dbl_valu = (char *)
628 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
629 memcpy (dbl_valu, &d, sizeof (double));
630 /* Put it in target byte order, but it's still in host
631 floating point format. */
632 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
633 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
634 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
635 }
636 break;
637 case 'i':
638 {
639 /* Defining integer constants this way is kind of silly,
640 since 'e' constants allows the compiler to give not
641 only the value, but the type as well. C has at least
642 int, long, unsigned int, and long long as constant
643 types; other languages probably should have at least
644 unsigned as well as signed constants. */
645
646 /* We just need one int constant type for all objfiles.
647 It doesn't depend on languages or anything (arguably its
648 name should be a language-specific name for a type of
649 that size, but I'm inclined to say that if the compiler
650 wants a nice name for the type, it can use 'e'). */
651 static struct type *int_const_type;
652
653 /* Yes, this is as long as a *host* int. That is because we
654 use atoi. */
655 if (int_const_type == NULL)
656 int_const_type =
657 init_type (TYPE_CODE_INT,
658 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
659 "integer constant",
660 (struct objfile *)NULL);
661 SYMBOL_TYPE (sym) = int_const_type;
662 SYMBOL_VALUE (sym) = atoi (p);
663 SYMBOL_CLASS (sym) = LOC_CONST;
664 }
665 break;
666 case 'e':
667 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
668 can be represented as integral.
669 e.g. "b:c=e6,0" for "const b = blob1"
670 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
671 {
672 SYMBOL_CLASS (sym) = LOC_CONST;
673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
674
675 if (*p != ',')
676 {
677 SYMBOL_TYPE (sym) = error_type (&p);
678 break;
679 }
680 ++p;
681
682 /* If the value is too big to fit in an int (perhaps because
683 it is unsigned), or something like that, we silently get
684 a bogus value. The type and everything else about it is
685 correct. Ideally, we should be using whatever we have
686 available for parsing unsigned and long long values,
687 however. */
688 SYMBOL_VALUE (sym) = atoi (p);
689 }
690 break;
691 default:
692 {
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 SYMBOL_TYPE (sym) = error_type (&p);
695 }
696 }
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 add_symbol_to_list (sym, &file_symbols);
699 return sym;
700
701 case 'C':
702 /* The name of a caught exception. */
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704 SYMBOL_CLASS (sym) = LOC_LABEL;
705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
706 SYMBOL_VALUE_ADDRESS (sym) = valu;
707 add_symbol_to_list (sym, &local_symbols);
708 break;
709
710 case 'f':
711 /* A static function definition. */
712 SYMBOL_TYPE (sym) = read_type (&p, objfile);
713 SYMBOL_CLASS (sym) = LOC_BLOCK;
714 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
715 add_symbol_to_list (sym, &file_symbols);
716 /* fall into process_function_types. */
717
718 process_function_types:
719 /* Function result types are described as the result type in stabs.
720 We need to convert this to the function-returning-type-X type
721 in GDB. E.g. "int" is converted to "function returning int". */
722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 {
724 #if 0
725 /* This code doesn't work -- it needs to realloc and can't. */
726 /* Attempt to set up to record a function prototype... */
727 struct type *new = alloc_type (objfile);
728
729 /* Generate a template for the type of this function. The
730 types of the arguments will be added as we read the symbol
731 table. */
732 *new = *lookup_function_type (SYMBOL_TYPE(sym));
733 SYMBOL_TYPE(sym) = new;
734 TYPE_OBJFILE (new) = objfile;
735 in_function_type = new;
736 #else
737 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 #endif
739 }
740 /* fall into process_prototype_types */
741
742 process_prototype_types:
743 /* Sun acc puts declared types of arguments here. We don't care
744 about their actual types (FIXME -- we should remember the whole
745 function prototype), but the list may define some new types
746 that we have to remember, so we must scan it now. */
747 while (*p == ';') {
748 p++;
749 read_type (&p, objfile);
750 }
751 break;
752
753 case 'F':
754 /* A global function definition. */
755 SYMBOL_TYPE (sym) = read_type (&p, objfile);
756 SYMBOL_CLASS (sym) = LOC_BLOCK;
757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
758 add_symbol_to_list (sym, &global_symbols);
759 goto process_function_types;
760
761 case 'G':
762 /* For a class G (global) symbol, it appears that the
763 value is not correct. It is necessary to search for the
764 corresponding linker definition to find the value.
765 These definitions appear at the end of the namelist. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 i = hashname (SYMBOL_NAME (sym));
768 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
769 global_sym_chain[i] = sym;
770 SYMBOL_CLASS (sym) = LOC_STATIC;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &global_symbols);
773 break;
774
775 /* This case is faked by a conditional above,
776 when there is no code letter in the dbx data.
777 Dbx data never actually contains 'l'. */
778 case 'l':
779 SYMBOL_TYPE (sym) = read_type (&p, objfile);
780 SYMBOL_CLASS (sym) = LOC_LOCAL;
781 SYMBOL_VALUE (sym) = valu;
782 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
783 add_symbol_to_list (sym, &local_symbols);
784 break;
785
786 case 'p':
787 if (*p == 'F')
788 /* pF is a two-letter code that means a function parameter in Fortran.
789 The type-number specifies the type of the return value.
790 Translate it into a pointer-to-function type. */
791 {
792 p++;
793 SYMBOL_TYPE (sym)
794 = lookup_pointer_type
795 (lookup_function_type (read_type (&p, objfile)));
796 }
797 else
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 /* Normally this is a parameter, a LOC_ARG. On the i960, it
801 can also be a LOC_LOCAL_ARG depending on symbol type. */
802 #ifndef DBX_PARM_SYMBOL_CLASS
803 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 #endif
805
806 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
807 SYMBOL_VALUE (sym) = valu;
808 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
809 #if 0
810 /* This doesn't work yet. */
811 add_param_to_type (&in_function_type, sym);
812 #endif
813 add_symbol_to_list (sym, &local_symbols);
814
815 /* If it's gcc-compiled, if it says `short', believe it. */
816 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
817 break;
818
819 #if !BELIEVE_PCC_PROMOTION
820 {
821 /* This is the signed type which arguments get promoted to. */
822 static struct type *pcc_promotion_type;
823 /* This is the unsigned type which arguments get promoted to. */
824 static struct type *pcc_unsigned_promotion_type;
825
826 /* Call it "int" because this is mainly C lossage. */
827 if (pcc_promotion_type == NULL)
828 pcc_promotion_type =
829 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
830 0, "int", NULL);
831
832 if (pcc_unsigned_promotion_type == NULL)
833 pcc_unsigned_promotion_type =
834 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
835 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
836
837 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
838 /* This macro is defined on machines (e.g. sparc) where
839 we should believe the type of a PCC 'short' argument,
840 but shouldn't believe the address (the address is
841 the address of the corresponding int). Note that
842 this is only different from the BELIEVE_PCC_PROMOTION
843 case on big-endian machines.
844
845 My guess is that this correction, as opposed to changing
846 the parameter to an 'int' (as done below, for PCC
847 on most machines), is the right thing to do
848 on all machines, but I don't want to risk breaking
849 something that already works. On most PCC machines,
850 the sparc problem doesn't come up because the calling
851 function has to zero the top bytes (not knowing whether
852 the called function wants an int or a short), so there
853 is no practical difference between an int and a short
854 (except perhaps what happens when the GDB user types
855 "print short_arg = 0x10000;").
856
857 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
858 actually produces the correct address (we don't need to fix it
859 up). I made this code adapt so that it will offset the symbol
860 if it was pointing at an int-aligned location and not
861 otherwise. This way you can use the same gdb for 4.0.x and
862 4.1 systems.
863
864 If the parameter is shorter than an int, and is integral
865 (e.g. char, short, or unsigned equivalent), and is claimed to
866 be passed on an integer boundary, don't believe it! Offset the
867 parameter's address to the tail-end of that integer. */
868
869 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
870 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
871 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
872 {
873 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
874 - TYPE_LENGTH (SYMBOL_TYPE (sym));
875 }
876 break;
877
878 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
879
880 /* If PCC says a parameter is a short or a char,
881 it is really an int. */
882 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
883 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
884 {
885 SYMBOL_TYPE (sym) =
886 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
887 ? pcc_unsigned_promotion_type
888 : pcc_promotion_type;
889 }
890 break;
891
892 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
893 }
894 #endif /* !BELIEVE_PCC_PROMOTION. */
895
896 case 'P':
897 /* acc seems to use P to delare the prototypes of functions that
898 are referenced by this file. gdb is not prepared to deal
899 with this extra information. FIXME, it ought to. */
900 if (type == N_FUN)
901 {
902 read_type (&p, objfile);
903 goto process_prototype_types;
904 }
905 /*FALLTHROUGH*/
906
907 case 'R':
908 /* Parameter which is in a register. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_REGPARM;
911 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
912 if (SYMBOL_VALUE (sym) >= NUM_REGS)
913 {
914 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
915 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
916 }
917 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'r':
922 /* Register variable (either global or local). */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_REGISTER;
925 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
926 if (SYMBOL_VALUE (sym) >= NUM_REGS)
927 {
928 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
929 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
930 }
931 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
932 if (within_function)
933 {
934 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
935 name to represent an argument passed in a register.
936 GCC uses 'P' for the same case. So if we find such a symbol pair
937 we combine it into one 'P' symbol.
938 Note that this code illegally combines
939 main(argc) int argc; { register int argc = 1; }
940 but this case is considered pathological and causes a warning
941 from a decent compiler. */
942 if (local_symbols
943 && local_symbols->nsyms > 0)
944 {
945 struct symbol *prev_sym;
946 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
947 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
948 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
949 {
950 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
951 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
952 sym = prev_sym;
953 break;
954 }
955 }
956 add_symbol_to_list (sym, &local_symbols);
957 }
958 else
959 add_symbol_to_list (sym, &file_symbols);
960 break;
961
962 case 'S':
963 /* Static symbol at top level of file */
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965 SYMBOL_CLASS (sym) = LOC_STATIC;
966 SYMBOL_VALUE_ADDRESS (sym) = valu;
967 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
968 add_symbol_to_list (sym, &file_symbols);
969 break;
970
971 case 't':
972 #if 0
973 /* See comment where long_kludge_name is declared. */
974 /* Here we save the name of the symbol for read_range_type, which
975 ends up reading in the basic types. In stabs, unfortunately there
976 is no distinction between "int" and "long" types except their
977 names. Until we work out a saner type policy (eliminating most
978 builtin types and using the names specified in the files), we
979 save away the name so that far away from here in read_range_type,
980 we can examine it to decide between "int" and "long". FIXME. */
981 long_kludge_name = SYMBOL_NAME (sym);
982 #endif
983 SYMBOL_TYPE (sym) = read_type (&p, objfile);
984
985 /* For a nameless type, we don't want a create a symbol, thus we
986 did not use `sym'. Return without further processing. */
987 if (nameless) return NULL;
988
989 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
990 SYMBOL_VALUE (sym) = valu;
991 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
992 /* C++ vagaries: we may have a type which is derived from
993 a base type which did not have its name defined when the
994 derived class was output. We fill in the derived class's
995 base part member's name here in that case. */
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
997 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
998 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
999 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1000 {
1001 int j;
1002 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1003 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1004 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1005 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1006 }
1007
1008 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1009 {
1010 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1011 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1012 {
1013 /* If we are giving a name to a type such as "pointer to
1014 foo" or "function returning foo", we better not set
1015 the TYPE_NAME. If the program contains "typedef char
1016 *caddr_t;", we don't want all variables of type char
1017 * to print as caddr_t. This is not just a
1018 consequence of GDB's type management; PCC and GCC (at
1019 least through version 2.4) both output variables of
1020 either type char * or caddr_t with the type number
1021 defined in the 't' symbol for caddr_t. If a future
1022 compiler cleans this up it GDB is not ready for it
1023 yet, but if it becomes ready we somehow need to
1024 disable this check (without breaking the PCC/GCC2.4
1025 case).
1026
1027 Sigh.
1028
1029 Fortunately, this check seems not to be necessary
1030 for anything except pointers or functions. */
1031 }
1032 else
1033 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1034 }
1035
1036 add_symbol_to_list (sym, &file_symbols);
1037 break;
1038
1039 case 'T':
1040 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1041 by 't' which means we are typedef'ing it as well. */
1042 synonym = *p == 't';
1043
1044 if (synonym)
1045 {
1046 p++;
1047 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1048 strlen (SYMBOL_NAME (sym)),
1049 &objfile -> symbol_obstack);
1050 }
1051
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1061 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1062 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1063 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1064 add_symbol_to_list (sym, &file_symbols);
1065
1066 if (synonym)
1067 {
1068 /* Clone the sym and then modify it. */
1069 register struct symbol *typedef_sym = (struct symbol *)
1070 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1071 *typedef_sym = *sym;
1072 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1073 SYMBOL_VALUE (typedef_sym) = valu;
1074 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1075 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1076 TYPE_NAME (SYMBOL_TYPE (sym))
1077 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1078 add_symbol_to_list (typedef_sym, &file_symbols);
1079 }
1080 break;
1081
1082 case 'V':
1083 /* Static symbol of local scope */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1088 add_symbol_to_list (sym, &local_symbols);
1089 break;
1090
1091 case 'v':
1092 /* Reference parameter */
1093 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1094 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1095 SYMBOL_VALUE (sym) = valu;
1096 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1097 add_symbol_to_list (sym, &local_symbols);
1098 break;
1099
1100 case 'X':
1101 /* This is used by Sun FORTRAN for "function result value".
1102 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1103 that Pascal uses it too, but when I tried it Pascal used
1104 "x:3" (local symbol) instead. */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_LOCAL;
1107 SYMBOL_VALUE (sym) = valu;
1108 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1109 add_symbol_to_list (sym, &local_symbols);
1110 break;
1111
1112 default:
1113 SYMBOL_TYPE (sym) = error_type (&p);
1114 SYMBOL_CLASS (sym) = LOC_CONST;
1115 SYMBOL_VALUE (sym) = 0;
1116 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1117 add_symbol_to_list (sym, &file_symbols);
1118 break;
1119 }
1120
1121 /* When passing structures to a function, some systems sometimes pass
1122 the address in a register, not the structure itself.
1123
1124 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1125 to LOC_REGPARM_ADDR for structures and unions. */
1126
1127 #if !defined (REG_STRUCT_HAS_ADDR)
1128 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1129 #endif
1130
1131 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1132 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1133 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1134 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1135 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1136
1137 return sym;
1138 }
1139
1140 \f
1141 /* Skip rest of this symbol and return an error type.
1142
1143 General notes on error recovery: error_type always skips to the
1144 end of the symbol (modulo cretinous dbx symbol name continuation).
1145 Thus code like this:
1146
1147 if (*(*pp)++ != ';')
1148 return error_type (pp);
1149
1150 is wrong because if *pp starts out pointing at '\0' (typically as the
1151 result of an earlier error), it will be incremented to point to the
1152 start of the next symbol, which might produce strange results, at least
1153 if you run off the end of the string table. Instead use
1154
1155 if (**pp != ';')
1156 return error_type (pp);
1157 ++*pp;
1158
1159 or
1160
1161 if (**pp != ';')
1162 foo = error_type (pp);
1163 else
1164 ++*pp;
1165
1166 And in case it isn't obvious, the point of all this hair is so the compiler
1167 can define new types and new syntaxes, and old versions of the
1168 debugger will be able to read the new symbol tables. */
1169
1170 static struct type *
1171 error_type (pp)
1172 char **pp;
1173 {
1174 complain (&error_type_complaint);
1175 while (1)
1176 {
1177 /* Skip to end of symbol. */
1178 while (**pp != '\0')
1179 {
1180 (*pp)++;
1181 }
1182
1183 /* Check for and handle cretinous dbx symbol name continuation! */
1184 if ((*pp)[-1] == '\\')
1185 {
1186 *pp = next_symbol_text ();
1187 }
1188 else
1189 {
1190 break;
1191 }
1192 }
1193 return (builtin_type_error);
1194 }
1195
1196 \f
1197 /* Read type information or a type definition; return the type. Even
1198 though this routine accepts either type information or a type
1199 definition, the distinction is relevant--some parts of stabsread.c
1200 assume that type information starts with a digit, '-', or '(' in
1201 deciding whether to call read_type. */
1202
1203 struct type *
1204 read_type (pp, objfile)
1205 register char **pp;
1206 struct objfile *objfile;
1207 {
1208 register struct type *type = 0;
1209 struct type *type1;
1210 int typenums[2];
1211 int xtypenums[2];
1212 char type_descriptor;
1213
1214 /* Read type number if present. The type number may be omitted.
1215 for instance in a two-dimensional array declared with type
1216 "ar1;1;10;ar1;1;10;4". */
1217 if ((**pp >= '0' && **pp <= '9')
1218 || **pp == '(')
1219 {
1220 if (read_type_number (pp, typenums) != 0)
1221 return error_type (pp);
1222
1223 /* Type is not being defined here. Either it already exists,
1224 or this is a forward reference to it. dbx_alloc_type handles
1225 both cases. */
1226 if (**pp != '=')
1227 return dbx_alloc_type (typenums, objfile);
1228
1229 /* Type is being defined here. */
1230 /* Skip the '='. */
1231 ++(*pp);
1232
1233 while (**pp == '@')
1234 {
1235 char *p = *pp + 1;
1236 /* It might be a type attribute or a member type. */
1237 if (isdigit (*p) || *p == '(' || *p == '-')
1238 /* Member type. */
1239 break;
1240 else
1241 {
1242 /* Type attributes; skip to the semicolon. */
1243 while (*p != ';' && *p != '\0')
1244 ++p;
1245 *pp = p;
1246 if (*p == '\0')
1247 return error_type (pp);
1248 else
1249 /* Skip the semicolon. */
1250 ++*pp;
1251 }
1252 }
1253 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1254 ++(*pp);
1255 }
1256 else
1257 {
1258 /* 'typenums=' not present, type is anonymous. Read and return
1259 the definition, but don't put it in the type vector. */
1260 typenums[0] = typenums[1] = -1;
1261 (*pp)++;
1262 }
1263
1264 type_descriptor = (*pp)[-1];
1265 switch (type_descriptor)
1266 {
1267 case 'x':
1268 {
1269 enum type_code code;
1270
1271 /* Used to index through file_symbols. */
1272 struct pending *ppt;
1273 int i;
1274
1275 /* Name including "struct", etc. */
1276 char *type_name;
1277
1278 /* Name without "struct", etc. */
1279 char *type_name_only;
1280
1281 {
1282 char *prefix;
1283 char *from, *to;
1284
1285 /* Set the type code according to the following letter. */
1286 switch ((*pp)[0])
1287 {
1288 case 's':
1289 code = TYPE_CODE_STRUCT;
1290 break;
1291 case 'u':
1292 code = TYPE_CODE_UNION;
1293 break;
1294 case 'e':
1295 code = TYPE_CODE_ENUM;
1296 break;
1297 default:
1298 return error_type (pp);
1299 }
1300
1301 to = type_name = (char *)
1302 obstack_alloc (&objfile -> type_obstack,
1303 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1304
1305 /* Copy the name. */
1306 from = *pp + 1;
1307 while ((*to++ = *from++) != ':')
1308 ;
1309 *--to = '\0';
1310
1311 /* Set the pointer ahead of the name which we just read. */
1312 *pp = from;
1313 }
1314
1315 /* Now check to see whether the type has already been declared. */
1316 /* This is necessary at least in the case where the
1317 program says something like
1318 struct foo bar[5];
1319 The compiler puts out a cross-reference; we better find
1320 set the length of the structure correctly so we can
1321 set the length of the array. */
1322 for (ppt = file_symbols; ppt; ppt = ppt->next)
1323 for (i = 0; i < ppt->nsyms; i++)
1324 {
1325 struct symbol *sym = ppt->symbol[i];
1326
1327 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1328 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1329 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1330 && STREQ (SYMBOL_NAME (sym), type_name))
1331 {
1332 obstack_free (&objfile -> type_obstack, type_name);
1333 type = SYMBOL_TYPE (sym);
1334 return type;
1335 }
1336 }
1337
1338 /* Didn't find the type to which this refers, so we must
1339 be dealing with a forward reference. Allocate a type
1340 structure for it, and keep track of it so we can
1341 fill in the rest of the fields when we get the full
1342 type. */
1343 type = dbx_alloc_type (typenums, objfile);
1344 TYPE_CODE (type) = code;
1345 TYPE_TAG_NAME (type) = type_name;
1346 INIT_CPLUS_SPECIFIC(type);
1347 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1348
1349 add_undefined_type (type);
1350 return type;
1351 }
1352
1353 case '-': /* RS/6000 built-in type */
1354 case '0':
1355 case '1':
1356 case '2':
1357 case '3':
1358 case '4':
1359 case '5':
1360 case '6':
1361 case '7':
1362 case '8':
1363 case '9':
1364 case '(':
1365
1366 /* The type is being defined to another type. When we support
1367 Ada (and arguably for C, so "whatis foo" can give "size_t",
1368 "wchar_t", or whatever it was declared as) we'll need to
1369 allocate a distinct type here rather than returning the
1370 existing one. GCC is currently (deliberately) incapable of
1371 putting out the debugging information to do that, however. */
1372
1373 (*pp)--;
1374 if (read_type_number (pp, xtypenums) != 0)
1375 return error_type (pp);
1376 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1377 /* It's being defined as itself. That means it is "void". */
1378 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1379 else
1380 type = *dbx_lookup_type (xtypenums);
1381 if (typenums[0] != -1)
1382 *dbx_lookup_type (typenums) = type;
1383 /* This can happen if we had '-' followed by a garbage character,
1384 for example. */
1385 if (type == NULL)
1386 return error_type (pp);
1387 break;
1388
1389 /* In the following types, we must be sure to overwrite any existing
1390 type that the typenums refer to, rather than allocating a new one
1391 and making the typenums point to the new one. This is because there
1392 may already be pointers to the existing type (if it had been
1393 forward-referenced), and we must change it to a pointer, function,
1394 reference, or whatever, *in-place*. */
1395
1396 case '*':
1397 type1 = read_type (pp, objfile);
1398 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1399 break;
1400
1401 case '&': /* Reference to another type */
1402 type1 = read_type (pp, objfile);
1403 type = make_reference_type (type1, dbx_lookup_type (typenums));
1404 break;
1405
1406 case 'f': /* Function returning another type */
1407 type1 = read_type (pp, objfile);
1408 type = make_function_type (type1, dbx_lookup_type (typenums));
1409 break;
1410
1411 case 'k': /* Const qualifier on some type (Sun) */
1412 type = read_type (pp, objfile);
1413 /* FIXME! For now, we ignore const and volatile qualifiers. */
1414 break;
1415
1416 case 'B': /* Volatile qual on some type (Sun) */
1417 type = read_type (pp, objfile);
1418 /* FIXME! For now, we ignore const and volatile qualifiers. */
1419 break;
1420
1421 /* FIXME -- we should be doing smash_to_XXX types here. */
1422 case '@': /* Member (class & variable) type */
1423 {
1424 struct type *domain = read_type (pp, objfile);
1425 struct type *memtype;
1426
1427 if (**pp != ',')
1428 /* Invalid member type data format. */
1429 return error_type (pp);
1430 ++*pp;
1431
1432 memtype = read_type (pp, objfile);
1433 type = dbx_alloc_type (typenums, objfile);
1434 smash_to_member_type (type, domain, memtype);
1435 }
1436 break;
1437
1438 case '#': /* Method (class & fn) type */
1439 if ((*pp)[0] == '#')
1440 {
1441 /* We'll get the parameter types from the name. */
1442 struct type *return_type;
1443
1444 (*pp)++;
1445 return_type = read_type (pp, objfile);
1446 if (*(*pp)++ != ';')
1447 complain (&invalid_member_complaint, symnum);
1448 type = allocate_stub_method (return_type);
1449 if (typenums[0] != -1)
1450 *dbx_lookup_type (typenums) = type;
1451 }
1452 else
1453 {
1454 struct type *domain = read_type (pp, objfile);
1455 struct type *return_type;
1456 struct type **args;
1457
1458 if (**pp != ',')
1459 /* Invalid member type data format. */
1460 return error_type (pp);
1461 else
1462 ++(*pp);
1463
1464 return_type = read_type (pp, objfile);
1465 args = read_args (pp, ';', objfile);
1466 type = dbx_alloc_type (typenums, objfile);
1467 smash_to_method_type (type, domain, return_type, args);
1468 }
1469 break;
1470
1471 case 'r': /* Range type */
1472 type = read_range_type (pp, typenums, objfile);
1473 if (typenums[0] != -1)
1474 *dbx_lookup_type (typenums) = type;
1475 break;
1476
1477 case 'b': /* Sun ACC builtin int type */
1478 type = read_sun_builtin_type (pp, typenums, objfile);
1479 if (typenums[0] != -1)
1480 *dbx_lookup_type (typenums) = type;
1481 break;
1482
1483 case 'R': /* Sun ACC builtin float type */
1484 type = read_sun_floating_type (pp, typenums, objfile);
1485 if (typenums[0] != -1)
1486 *dbx_lookup_type (typenums) = type;
1487 break;
1488
1489 case 'e': /* Enumeration type */
1490 type = dbx_alloc_type (typenums, objfile);
1491 type = read_enum_type (pp, type, objfile);
1492 if (typenums[0] != -1)
1493 *dbx_lookup_type (typenums) = type;
1494 break;
1495
1496 case 's': /* Struct type */
1497 case 'u': /* Union type */
1498 type = dbx_alloc_type (typenums, objfile);
1499 if (!TYPE_NAME (type))
1500 {
1501 TYPE_NAME (type) = type_synonym_name;
1502 }
1503 type_synonym_name = NULL;
1504 switch (type_descriptor)
1505 {
1506 case 's':
1507 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1508 break;
1509 case 'u':
1510 TYPE_CODE (type) = TYPE_CODE_UNION;
1511 break;
1512 }
1513 type = read_struct_type (pp, type, objfile);
1514 break;
1515
1516 case 'a': /* Array type */
1517 if (**pp != 'r')
1518 return error_type (pp);
1519 ++*pp;
1520
1521 type = dbx_alloc_type (typenums, objfile);
1522 type = read_array_type (pp, type, objfile);
1523 break;
1524
1525 default:
1526 --*pp; /* Go back to the symbol in error */
1527 /* Particularly important if it was \0! */
1528 return error_type (pp);
1529 }
1530
1531 if (type == 0)
1532 {
1533 warning ("GDB internal error, type is NULL in stabsread.c\n");
1534 return error_type (pp);
1535 }
1536
1537 return type;
1538 }
1539 \f
1540 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1541 Return the proper type node for a given builtin type number. */
1542
1543 static struct type *
1544 rs6000_builtin_type (typenum)
1545 int typenum;
1546 {
1547 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1548 #define NUMBER_RECOGNIZED 30
1549 /* This includes an empty slot for type number -0. */
1550 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1551 struct type *rettype;
1552
1553 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1554 {
1555 complain (&rs6000_builtin_complaint, typenum);
1556 return builtin_type_error;
1557 }
1558 if (negative_types[-typenum] != NULL)
1559 return negative_types[-typenum];
1560
1561 #if TARGET_CHAR_BIT != 8
1562 #error This code wrong for TARGET_CHAR_BIT not 8
1563 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1564 that if that ever becomes not true, the correct fix will be to
1565 make the size in the struct type to be in bits, not in units of
1566 TARGET_CHAR_BIT. */
1567 #endif
1568
1569 switch (-typenum)
1570 {
1571 case 1:
1572 /* The size of this and all the other types are fixed, defined
1573 by the debugging format. If there is a type called "int" which
1574 is other than 32 bits, then it should use a new negative type
1575 number (or avoid negative type numbers for that case).
1576 See stabs.texinfo. */
1577 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1578 break;
1579 case 2:
1580 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1581 break;
1582 case 3:
1583 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1584 break;
1585 case 4:
1586 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1587 break;
1588 case 5:
1589 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1590 "unsigned char", NULL);
1591 break;
1592 case 6:
1593 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1594 break;
1595 case 7:
1596 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1597 "unsigned short", NULL);
1598 break;
1599 case 8:
1600 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1601 "unsigned int", NULL);
1602 break;
1603 case 9:
1604 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1605 "unsigned", NULL);
1606 case 10:
1607 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1608 "unsigned long", NULL);
1609 break;
1610 case 11:
1611 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1612 break;
1613 case 12:
1614 /* IEEE single precision (32 bit). */
1615 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1616 break;
1617 case 13:
1618 /* IEEE double precision (64 bit). */
1619 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1620 break;
1621 case 14:
1622 /* This is an IEEE double on the RS/6000, and different machines with
1623 different sizes for "long double" should use different negative
1624 type numbers. See stabs.texinfo. */
1625 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1626 break;
1627 case 15:
1628 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1629 break;
1630 case 16:
1631 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1632 break;
1633 case 17:
1634 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1635 break;
1636 case 18:
1637 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1638 break;
1639 case 19:
1640 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1641 break;
1642 case 20:
1643 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1644 "character", NULL);
1645 break;
1646 case 21:
1647 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1648 "logical*1", NULL);
1649 break;
1650 case 22:
1651 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1652 "logical*2", NULL);
1653 break;
1654 case 23:
1655 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1656 "logical*4", NULL);
1657 break;
1658 case 24:
1659 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1660 "logical", NULL);
1661 break;
1662 case 25:
1663 /* Complex type consisting of two IEEE single precision values. */
1664 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1665 break;
1666 case 26:
1667 /* Complex type consisting of two IEEE double precision values. */
1668 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1669 break;
1670 case 27:
1671 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1672 break;
1673 case 28:
1674 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1675 break;
1676 case 29:
1677 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1678 break;
1679 case 30:
1680 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1681 break;
1682 }
1683 negative_types[-typenum] = rettype;
1684 return rettype;
1685 }
1686 \f
1687 /* This page contains subroutines of read_type. */
1688
1689 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1690 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1691 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1692
1693 /* Read member function stabs info for C++ classes. The form of each member
1694 function data is:
1695
1696 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1697
1698 An example with two member functions is:
1699
1700 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1701
1702 For the case of overloaded operators, the format is op$::*.funcs, where
1703 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1704 name (such as `+=') and `.' marks the end of the operator name.
1705
1706 Returns 1 for success, 0 for failure. */
1707
1708 static int
1709 read_member_functions (fip, pp, type, objfile)
1710 struct field_info *fip;
1711 char **pp;
1712 struct type *type;
1713 struct objfile *objfile;
1714 {
1715 int nfn_fields = 0;
1716 int length = 0;
1717 /* Total number of member functions defined in this class. If the class
1718 defines two `f' functions, and one `g' function, then this will have
1719 the value 3. */
1720 int total_length = 0;
1721 int i;
1722 struct next_fnfield
1723 {
1724 struct next_fnfield *next;
1725 struct fn_field fn_field;
1726 } *sublist;
1727 struct type *look_ahead_type;
1728 struct next_fnfieldlist *new_fnlist;
1729 struct next_fnfield *new_sublist;
1730 char *main_fn_name;
1731 register char *p;
1732
1733 /* Process each list until we find something that is not a member function
1734 or find the end of the functions. */
1735
1736 while (**pp != ';')
1737 {
1738 /* We should be positioned at the start of the function name.
1739 Scan forward to find the first ':' and if it is not the
1740 first of a "::" delimiter, then this is not a member function. */
1741 p = *pp;
1742 while (*p != ':')
1743 {
1744 p++;
1745 }
1746 if (p[1] != ':')
1747 {
1748 break;
1749 }
1750
1751 sublist = NULL;
1752 look_ahead_type = NULL;
1753 length = 0;
1754
1755 new_fnlist = (struct next_fnfieldlist *)
1756 xmalloc (sizeof (struct next_fnfieldlist));
1757 make_cleanup (free, new_fnlist);
1758 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1759
1760 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1761 {
1762 /* This is a completely wierd case. In order to stuff in the
1763 names that might contain colons (the usual name delimiter),
1764 Mike Tiemann defined a different name format which is
1765 signalled if the identifier is "op$". In that case, the
1766 format is "op$::XXXX." where XXXX is the name. This is
1767 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1768 /* This lets the user type "break operator+".
1769 We could just put in "+" as the name, but that wouldn't
1770 work for "*". */
1771 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1772 char *o = opname + 3;
1773
1774 /* Skip past '::'. */
1775 *pp = p + 2;
1776
1777 STABS_CONTINUE (pp);
1778 p = *pp;
1779 while (*p != '.')
1780 {
1781 *o++ = *p++;
1782 }
1783 main_fn_name = savestring (opname, o - opname);
1784 /* Skip past '.' */
1785 *pp = p + 1;
1786 }
1787 else
1788 {
1789 main_fn_name = savestring (*pp, p - *pp);
1790 /* Skip past '::'. */
1791 *pp = p + 2;
1792 }
1793 new_fnlist -> fn_fieldlist.name = main_fn_name;
1794
1795 do
1796 {
1797 new_sublist =
1798 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1799 make_cleanup (free, new_sublist);
1800 memset (new_sublist, 0, sizeof (struct next_fnfield));
1801
1802 /* Check for and handle cretinous dbx symbol name continuation! */
1803 if (look_ahead_type == NULL)
1804 {
1805 /* Normal case. */
1806 STABS_CONTINUE (pp);
1807
1808 new_sublist -> fn_field.type = read_type (pp, objfile);
1809 if (**pp != ':')
1810 {
1811 /* Invalid symtab info for member function. */
1812 return 0;
1813 }
1814 }
1815 else
1816 {
1817 /* g++ version 1 kludge */
1818 new_sublist -> fn_field.type = look_ahead_type;
1819 look_ahead_type = NULL;
1820 }
1821
1822 (*pp)++;
1823 p = *pp;
1824 while (*p != ';')
1825 {
1826 p++;
1827 }
1828
1829 /* If this is just a stub, then we don't have the real name here. */
1830
1831 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1832 {
1833 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1834 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1835 new_sublist -> fn_field.is_stub = 1;
1836 }
1837 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1838 *pp = p + 1;
1839
1840 /* Set this member function's visibility fields. */
1841 switch (*(*pp)++)
1842 {
1843 case VISIBILITY_PRIVATE:
1844 new_sublist -> fn_field.is_private = 1;
1845 break;
1846 case VISIBILITY_PROTECTED:
1847 new_sublist -> fn_field.is_protected = 1;
1848 break;
1849 }
1850
1851 STABS_CONTINUE (pp);
1852 switch (**pp)
1853 {
1854 case 'A': /* Normal functions. */
1855 new_sublist -> fn_field.is_const = 0;
1856 new_sublist -> fn_field.is_volatile = 0;
1857 (*pp)++;
1858 break;
1859 case 'B': /* `const' member functions. */
1860 new_sublist -> fn_field.is_const = 1;
1861 new_sublist -> fn_field.is_volatile = 0;
1862 (*pp)++;
1863 break;
1864 case 'C': /* `volatile' member function. */
1865 new_sublist -> fn_field.is_const = 0;
1866 new_sublist -> fn_field.is_volatile = 1;
1867 (*pp)++;
1868 break;
1869 case 'D': /* `const volatile' member function. */
1870 new_sublist -> fn_field.is_const = 1;
1871 new_sublist -> fn_field.is_volatile = 1;
1872 (*pp)++;
1873 break;
1874 case '*': /* File compiled with g++ version 1 -- no info */
1875 case '?':
1876 case '.':
1877 break;
1878 default:
1879 complain (&const_vol_complaint, **pp);
1880 break;
1881 }
1882
1883 switch (*(*pp)++)
1884 {
1885 case '*':
1886 {
1887 int nbits;
1888 /* virtual member function, followed by index.
1889 The sign bit is set to distinguish pointers-to-methods
1890 from virtual function indicies. Since the array is
1891 in words, the quantity must be shifted left by 1
1892 on 16 bit machine, and by 2 on 32 bit machine, forcing
1893 the sign bit out, and usable as a valid index into
1894 the array. Remove the sign bit here. */
1895 new_sublist -> fn_field.voffset =
1896 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1897 if (nbits != 0)
1898 return 0;
1899
1900 STABS_CONTINUE (pp);
1901 if (**pp == ';' || **pp == '\0')
1902 {
1903 /* Must be g++ version 1. */
1904 new_sublist -> fn_field.fcontext = 0;
1905 }
1906 else
1907 {
1908 /* Figure out from whence this virtual function came.
1909 It may belong to virtual function table of
1910 one of its baseclasses. */
1911 look_ahead_type = read_type (pp, objfile);
1912 if (**pp == ':')
1913 {
1914 /* g++ version 1 overloaded methods. */
1915 }
1916 else
1917 {
1918 new_sublist -> fn_field.fcontext = look_ahead_type;
1919 if (**pp != ';')
1920 {
1921 return 0;
1922 }
1923 else
1924 {
1925 ++*pp;
1926 }
1927 look_ahead_type = NULL;
1928 }
1929 }
1930 break;
1931 }
1932 case '?':
1933 /* static member function. */
1934 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1935 if (strncmp (new_sublist -> fn_field.physname,
1936 main_fn_name, strlen (main_fn_name)))
1937 {
1938 new_sublist -> fn_field.is_stub = 1;
1939 }
1940 break;
1941
1942 default:
1943 /* error */
1944 complain (&member_fn_complaint, (*pp)[-1]);
1945 /* Fall through into normal member function. */
1946
1947 case '.':
1948 /* normal member function. */
1949 new_sublist -> fn_field.voffset = 0;
1950 new_sublist -> fn_field.fcontext = 0;
1951 break;
1952 }
1953
1954 new_sublist -> next = sublist;
1955 sublist = new_sublist;
1956 length++;
1957 STABS_CONTINUE (pp);
1958 }
1959 while (**pp != ';' && **pp != '\0');
1960
1961 (*pp)++;
1962
1963 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1964 obstack_alloc (&objfile -> type_obstack,
1965 sizeof (struct fn_field) * length);
1966 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1967 sizeof (struct fn_field) * length);
1968 for (i = length; (i--, sublist); sublist = sublist -> next)
1969 {
1970 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1971 }
1972
1973 new_fnlist -> fn_fieldlist.length = length;
1974 new_fnlist -> next = fip -> fnlist;
1975 fip -> fnlist = new_fnlist;
1976 nfn_fields++;
1977 total_length += length;
1978 STABS_CONTINUE (pp);
1979 }
1980
1981 if (nfn_fields)
1982 {
1983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1984 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1985 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1986 memset (TYPE_FN_FIELDLISTS (type), 0,
1987 sizeof (struct fn_fieldlist) * nfn_fields);
1988 TYPE_NFN_FIELDS (type) = nfn_fields;
1989 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1990 }
1991
1992 return 1;
1993 }
1994
1995 /* Special GNU C++ name.
1996
1997 Returns 1 for success, 0 for failure. "failure" means that we can't
1998 keep parsing and it's time for error_type(). */
1999
2000 static int
2001 read_cpp_abbrev (fip, pp, type, objfile)
2002 struct field_info *fip;
2003 char **pp;
2004 struct type *type;
2005 struct objfile *objfile;
2006 {
2007 register char *p;
2008 const char *prefix;
2009 char *name;
2010 char cpp_abbrev;
2011 struct type *context;
2012
2013 p = *pp;
2014 if (*++p == 'v')
2015 {
2016 name = NULL;
2017 cpp_abbrev = *++p;
2018
2019 *pp = p + 1;
2020
2021 /* At this point, *pp points to something like "22:23=*22...",
2022 where the type number before the ':' is the "context" and
2023 everything after is a regular type definition. Lookup the
2024 type, find it's name, and construct the field name. */
2025
2026 context = read_type (pp, objfile);
2027
2028 switch (cpp_abbrev)
2029 {
2030 case 'f': /* $vf -- a virtual function table pointer */
2031 fip->list->field.name =
2032 obconcat (&objfile->type_obstack, vptr_name, "", "");
2033 break;
2034
2035 case 'b': /* $vb -- a virtual bsomethingorother */
2036 name = type_name_no_tag (context);
2037 if (name == NULL)
2038 {
2039 complain (&invalid_cpp_type_complaint, symnum);
2040 name = "FOO";
2041 }
2042 fip->list->field.name =
2043 obconcat (&objfile->type_obstack, vb_name, name, "");
2044 break;
2045
2046 default:
2047 complain (&invalid_cpp_abbrev_complaint, *pp);
2048 fip->list->field.name =
2049 obconcat (&objfile->type_obstack,
2050 "INVALID_CPLUSPLUS_ABBREV", "", "");
2051 break;
2052 }
2053
2054 /* At this point, *pp points to the ':'. Skip it and read the
2055 field type. */
2056
2057 p = ++(*pp);
2058 if (p[-1] != ':')
2059 {
2060 complain (&invalid_cpp_abbrev_complaint, *pp);
2061 return 0;
2062 }
2063 fip->list->field.type = read_type (pp, objfile);
2064 if (**pp == ',')
2065 (*pp)++; /* Skip the comma. */
2066 else
2067 return 0;
2068
2069 {
2070 int nbits;
2071 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2072 if (nbits != 0)
2073 return 0;
2074 }
2075 /* This field is unpacked. */
2076 fip->list->field.bitsize = 0;
2077 fip->list->visibility = VISIBILITY_PRIVATE;
2078 }
2079 else
2080 {
2081 complain (&invalid_cpp_abbrev_complaint, *pp);
2082 /* We have no idea what syntax an unrecognized abbrev would have, so
2083 better return 0. If we returned 1, we would need to at least advance
2084 *pp to avoid an infinite loop. */
2085 return 0;
2086 }
2087 return 1;
2088 }
2089
2090 static void
2091 read_one_struct_field (fip, pp, p, type, objfile)
2092 struct field_info *fip;
2093 char **pp;
2094 char *p;
2095 struct type *type;
2096 struct objfile *objfile;
2097 {
2098 fip -> list -> field.name =
2099 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2100 *pp = p + 1;
2101
2102 /* This means we have a visibility for a field coming. */
2103 if (**pp == '/')
2104 {
2105 (*pp)++;
2106 fip -> list -> visibility = *(*pp)++;
2107 switch (fip -> list -> visibility)
2108 {
2109 case VISIBILITY_PRIVATE:
2110 case VISIBILITY_PROTECTED:
2111 break;
2112
2113 case VISIBILITY_PUBLIC:
2114 /* Nothing to do */
2115 break;
2116
2117 default:
2118 /* Unknown visibility specifier. */
2119 complain (&stabs_general_complaint,
2120 "unknown visibility specifier");
2121 return;
2122 break;
2123 }
2124 }
2125 else
2126 {
2127 /* normal dbx-style format, no explicit visibility */
2128 fip -> list -> visibility = VISIBILITY_PUBLIC;
2129 }
2130
2131 fip -> list -> field.type = read_type (pp, objfile);
2132 if (**pp == ':')
2133 {
2134 p = ++(*pp);
2135 #if 0
2136 /* Possible future hook for nested types. */
2137 if (**pp == '!')
2138 {
2139 fip -> list -> field.bitpos = (long)-2; /* nested type */
2140 p = ++(*pp);
2141 }
2142 else
2143 #endif
2144 {
2145 /* Static class member. */
2146 fip -> list -> field.bitpos = (long) -1;
2147 }
2148 while (*p != ';')
2149 {
2150 p++;
2151 }
2152 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2153 *pp = p + 1;
2154 return;
2155 }
2156 else if (**pp != ',')
2157 {
2158 /* Bad structure-type format. */
2159 complain (&stabs_general_complaint, "bad structure-type format");
2160 return;
2161 }
2162
2163 (*pp)++; /* Skip the comma. */
2164
2165 {
2166 int nbits;
2167 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2168 if (nbits != 0)
2169 {
2170 complain (&stabs_general_complaint, "bad structure-type format");
2171 return;
2172 }
2173 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2174 if (nbits != 0)
2175 {
2176 complain (&stabs_general_complaint, "bad structure-type format");
2177 return;
2178 }
2179 }
2180 #if 0
2181 /* FIXME-tiemann: Can't the compiler put out something which
2182 lets us distinguish these? (or maybe just not put out anything
2183 for the field). What is the story here? What does the compiler
2184 really do? Also, patch gdb.texinfo for this case; I document
2185 it as a possible problem there. Search for "DBX-style". */
2186
2187 /* This is wrong because this is identical to the symbols
2188 produced for GCC 0-size arrays. For example:
2189 typedef union {
2190 int num;
2191 char str[0];
2192 } foo;
2193 The code which dumped core in such circumstances should be
2194 fixed not to dump core. */
2195
2196 /* g++ -g0 can put out bitpos & bitsize zero for a static
2197 field. This does not give us any way of getting its
2198 class, so we can't know its name. But we can just
2199 ignore the field so we don't dump core and other nasty
2200 stuff. */
2201 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2202 {
2203 complain (&dbx_class_complaint);
2204 /* Ignore this field. */
2205 fip -> list = fip -> list -> next;
2206 }
2207 else
2208 #endif /* 0 */
2209 {
2210 /* Detect an unpacked field and mark it as such.
2211 dbx gives a bit size for all fields.
2212 Note that forward refs cannot be packed,
2213 and treat enums as if they had the width of ints. */
2214
2215 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2216 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2217 {
2218 fip -> list -> field.bitsize = 0;
2219 }
2220 if ((fip -> list -> field.bitsize
2221 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2222 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2223 && (fip -> list -> field.bitsize
2224 == TARGET_INT_BIT)
2225 )
2226 )
2227 &&
2228 fip -> list -> field.bitpos % 8 == 0)
2229 {
2230 fip -> list -> field.bitsize = 0;
2231 }
2232 }
2233 }
2234
2235
2236 /* Read struct or class data fields. They have the form:
2237
2238 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2239
2240 At the end, we see a semicolon instead of a field.
2241
2242 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2243 a static field.
2244
2245 The optional VISIBILITY is one of:
2246
2247 '/0' (VISIBILITY_PRIVATE)
2248 '/1' (VISIBILITY_PROTECTED)
2249 '/2' (VISIBILITY_PUBLIC)
2250
2251 or nothing, for C style fields with public visibility.
2252
2253 Returns 1 for success, 0 for failure. */
2254
2255 static int
2256 read_struct_fields (fip, pp, type, objfile)
2257 struct field_info *fip;
2258 char **pp;
2259 struct type *type;
2260 struct objfile *objfile;
2261 {
2262 register char *p;
2263 struct nextfield *new;
2264
2265 /* We better set p right now, in case there are no fields at all... */
2266
2267 p = *pp;
2268
2269 /* Read each data member type until we find the terminating ';' at the end of
2270 the data member list, or break for some other reason such as finding the
2271 start of the member function list. */
2272
2273 while (**pp != ';')
2274 {
2275 STABS_CONTINUE (pp);
2276 /* Get space to record the next field's data. */
2277 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2278 make_cleanup (free, new);
2279 memset (new, 0, sizeof (struct nextfield));
2280 new -> next = fip -> list;
2281 fip -> list = new;
2282
2283 /* Get the field name. */
2284 p = *pp;
2285 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2286 the CPLUS_MARKER is followed by an underscore, in which case it is
2287 just the name of an anonymous type, which we should handle like any
2288 other type name. */
2289 if (*p == CPLUS_MARKER && p[1] != '_')
2290 {
2291 if (!read_cpp_abbrev (fip, pp, type, objfile))
2292 return 0;
2293 continue;
2294 }
2295
2296 /* Look for the ':' that separates the field name from the field
2297 values. Data members are delimited by a single ':', while member
2298 functions are delimited by a pair of ':'s. When we hit the member
2299 functions (if any), terminate scan loop and return. */
2300
2301 while (*p != ':' && *p != '\0')
2302 {
2303 p++;
2304 }
2305 if (*p == '\0')
2306 return 0;
2307
2308 /* Check to see if we have hit the member functions yet. */
2309 if (p[1] == ':')
2310 {
2311 break;
2312 }
2313 read_one_struct_field (fip, pp, p, type, objfile);
2314 }
2315 if (p[1] == ':')
2316 {
2317 /* chill the list of fields: the last entry (at the head) is a
2318 partially constructed entry which we now scrub. */
2319 fip -> list = fip -> list -> next;
2320 }
2321 return 1;
2322 }
2323
2324 /* The stabs for C++ derived classes contain baseclass information which
2325 is marked by a '!' character after the total size. This function is
2326 called when we encounter the baseclass marker, and slurps up all the
2327 baseclass information.
2328
2329 Immediately following the '!' marker is the number of base classes that
2330 the class is derived from, followed by information for each base class.
2331 For each base class, there are two visibility specifiers, a bit offset
2332 to the base class information within the derived class, a reference to
2333 the type for the base class, and a terminating semicolon.
2334
2335 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2336 ^^ ^ ^ ^ ^ ^ ^
2337 Baseclass information marker __________________|| | | | | | |
2338 Number of baseclasses __________________________| | | | | | |
2339 Visibility specifiers (2) ________________________| | | | | |
2340 Offset in bits from start of class _________________| | | | |
2341 Type number for base class ___________________________| | | |
2342 Visibility specifiers (2) _______________________________| | |
2343 Offset in bits from start of class ________________________| |
2344 Type number of base class ____________________________________|
2345
2346 Return 1 for success, 0 for (error-type-inducing) failure. */
2347
2348 static int
2349 read_baseclasses (fip, pp, type, objfile)
2350 struct field_info *fip;
2351 char **pp;
2352 struct type *type;
2353 struct objfile *objfile;
2354 {
2355 int i;
2356 struct nextfield *new;
2357
2358 if (**pp != '!')
2359 {
2360 return 1;
2361 }
2362 else
2363 {
2364 /* Skip the '!' baseclass information marker. */
2365 (*pp)++;
2366 }
2367
2368 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2369 {
2370 int nbits;
2371 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2372 if (nbits != 0)
2373 return 0;
2374 }
2375
2376 #if 0
2377 /* Some stupid compilers have trouble with the following, so break
2378 it up into simpler expressions. */
2379 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2380 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2381 #else
2382 {
2383 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2384 char *pointer;
2385
2386 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2387 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2388 }
2389 #endif /* 0 */
2390
2391 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2392
2393 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2394 {
2395 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2396 make_cleanup (free, new);
2397 memset (new, 0, sizeof (struct nextfield));
2398 new -> next = fip -> list;
2399 fip -> list = new;
2400 new -> field.bitsize = 0; /* this should be an unpacked field! */
2401
2402 STABS_CONTINUE (pp);
2403 switch (*(*pp)++)
2404 {
2405 case '0':
2406 /* Nothing to do. */
2407 break;
2408 case '1':
2409 SET_TYPE_FIELD_VIRTUAL (type, i);
2410 break;
2411 default:
2412 /* Bad visibility format. */
2413 return 0;
2414 }
2415
2416 new -> visibility = *(*pp)++;
2417 switch (new -> visibility)
2418 {
2419 case VISIBILITY_PRIVATE:
2420 case VISIBILITY_PROTECTED:
2421 case VISIBILITY_PUBLIC:
2422 break;
2423 default:
2424 /* Bad visibility format. */
2425 return 0;
2426 }
2427
2428 {
2429 int nbits;
2430
2431 /* The remaining value is the bit offset of the portion of the object
2432 corresponding to this baseclass. Always zero in the absence of
2433 multiple inheritance. */
2434
2435 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2436 if (nbits != 0)
2437 return 0;
2438 }
2439
2440 /* The last piece of baseclass information is the type of the
2441 base class. Read it, and remember it's type name as this
2442 field's name. */
2443
2444 new -> field.type = read_type (pp, objfile);
2445 new -> field.name = type_name_no_tag (new -> field.type);
2446
2447 /* skip trailing ';' and bump count of number of fields seen */
2448 if (**pp == ';')
2449 (*pp)++;
2450 else
2451 return 0;
2452 }
2453 return 1;
2454 }
2455
2456 /* The tail end of stabs for C++ classes that contain a virtual function
2457 pointer contains a tilde, a %, and a type number.
2458 The type number refers to the base class (possibly this class itself) which
2459 contains the vtable pointer for the current class.
2460
2461 This function is called when we have parsed all the method declarations,
2462 so we can look for the vptr base class info. */
2463
2464 static int
2465 read_tilde_fields (fip, pp, type, objfile)
2466 struct field_info *fip;
2467 char **pp;
2468 struct type *type;
2469 struct objfile *objfile;
2470 {
2471 register char *p;
2472
2473 STABS_CONTINUE (pp);
2474
2475 /* If we are positioned at a ';', then skip it. */
2476 if (**pp == ';')
2477 {
2478 (*pp)++;
2479 }
2480
2481 if (**pp == '~')
2482 {
2483 (*pp)++;
2484
2485 if (**pp == '=' || **pp == '+' || **pp == '-')
2486 {
2487 /* Obsolete flags that used to indicate the presence
2488 of constructors and/or destructors. */
2489 (*pp)++;
2490 }
2491
2492 /* Read either a '%' or the final ';'. */
2493 if (*(*pp)++ == '%')
2494 {
2495 /* The next number is the type number of the base class
2496 (possibly our own class) which supplies the vtable for
2497 this class. Parse it out, and search that class to find
2498 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2499 and TYPE_VPTR_FIELDNO. */
2500
2501 struct type *t;
2502 int i;
2503
2504 t = read_type (pp, objfile);
2505 p = (*pp)++;
2506 while (*p != '\0' && *p != ';')
2507 {
2508 p++;
2509 }
2510 if (*p == '\0')
2511 {
2512 /* Premature end of symbol. */
2513 return 0;
2514 }
2515
2516 TYPE_VPTR_BASETYPE (type) = t;
2517 if (type == t) /* Our own class provides vtbl ptr */
2518 {
2519 for (i = TYPE_NFIELDS (t) - 1;
2520 i >= TYPE_N_BASECLASSES (t);
2521 --i)
2522 {
2523 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2524 sizeof (vptr_name) - 1))
2525 {
2526 TYPE_VPTR_FIELDNO (type) = i;
2527 goto gotit;
2528 }
2529 }
2530 /* Virtual function table field not found. */
2531 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2532 return 0;
2533 }
2534 else
2535 {
2536 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2537 }
2538
2539 gotit:
2540 *pp = p + 1;
2541 }
2542 }
2543 return 1;
2544 }
2545
2546 static int
2547 attach_fn_fields_to_type (fip, type)
2548 struct field_info *fip;
2549 register struct type *type;
2550 {
2551 register int n;
2552
2553 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2554 {
2555 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2556 {
2557 /* @@ Memory leak on objfile -> type_obstack? */
2558 return 0;
2559 }
2560 TYPE_NFN_FIELDS_TOTAL (type) +=
2561 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2562 }
2563
2564 for (n = TYPE_NFN_FIELDS (type);
2565 fip -> fnlist != NULL;
2566 fip -> fnlist = fip -> fnlist -> next)
2567 {
2568 --n; /* Circumvent Sun3 compiler bug */
2569 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2570 }
2571 return 1;
2572 }
2573
2574 /* Create the vector of fields, and record how big it is.
2575 We need this info to record proper virtual function table information
2576 for this class's virtual functions. */
2577
2578 static int
2579 attach_fields_to_type (fip, type, objfile)
2580 struct field_info *fip;
2581 register struct type *type;
2582 struct objfile *objfile;
2583 {
2584 register int nfields = 0;
2585 register int non_public_fields = 0;
2586 register struct nextfield *scan;
2587
2588 /* Count up the number of fields that we have, as well as taking note of
2589 whether or not there are any non-public fields, which requires us to
2590 allocate and build the private_field_bits and protected_field_bits
2591 bitfields. */
2592
2593 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2594 {
2595 nfields++;
2596 if (scan -> visibility != VISIBILITY_PUBLIC)
2597 {
2598 non_public_fields++;
2599 }
2600 }
2601
2602 /* Now we know how many fields there are, and whether or not there are any
2603 non-public fields. Record the field count, allocate space for the
2604 array of fields, and create blank visibility bitfields if necessary. */
2605
2606 TYPE_NFIELDS (type) = nfields;
2607 TYPE_FIELDS (type) = (struct field *)
2608 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2609 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2610
2611 if (non_public_fields)
2612 {
2613 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2614
2615 TYPE_FIELD_PRIVATE_BITS (type) =
2616 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2617 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2618
2619 TYPE_FIELD_PROTECTED_BITS (type) =
2620 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2621 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2622 }
2623
2624 /* Copy the saved-up fields into the field vector. Start from the head
2625 of the list, adding to the tail of the field array, so that they end
2626 up in the same order in the array in which they were added to the list. */
2627
2628 while (nfields-- > 0)
2629 {
2630 TYPE_FIELD (type, nfields) = fip -> list -> field;
2631 switch (fip -> list -> visibility)
2632 {
2633 case VISIBILITY_PRIVATE:
2634 SET_TYPE_FIELD_PRIVATE (type, nfields);
2635 break;
2636
2637 case VISIBILITY_PROTECTED:
2638 SET_TYPE_FIELD_PROTECTED (type, nfields);
2639 break;
2640
2641 case VISIBILITY_PUBLIC:
2642 break;
2643
2644 default:
2645 /* Should warn about this unknown visibility? */
2646 break;
2647 }
2648 fip -> list = fip -> list -> next;
2649 }
2650 return 1;
2651 }
2652
2653 /* Read the description of a structure (or union type) and return an object
2654 describing the type.
2655
2656 PP points to a character pointer that points to the next unconsumed token
2657 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2658 *PP will point to "4a:1,0,32;;".
2659
2660 TYPE points to an incomplete type that needs to be filled in.
2661
2662 OBJFILE points to the current objfile from which the stabs information is
2663 being read. (Note that it is redundant in that TYPE also contains a pointer
2664 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2665 */
2666
2667 static struct type *
2668 read_struct_type (pp, type, objfile)
2669 char **pp;
2670 struct type *type;
2671 struct objfile *objfile;
2672 {
2673 struct cleanup *back_to;
2674 struct field_info fi;
2675
2676 fi.list = NULL;
2677 fi.fnlist = NULL;
2678
2679 back_to = make_cleanup (null_cleanup, 0);
2680
2681 INIT_CPLUS_SPECIFIC (type);
2682 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2683
2684 /* First comes the total size in bytes. */
2685
2686 {
2687 int nbits;
2688 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2689 if (nbits != 0)
2690 return error_type (pp);
2691 }
2692
2693 /* Now read the baseclasses, if any, read the regular C struct or C++
2694 class member fields, attach the fields to the type, read the C++
2695 member functions, attach them to the type, and then read any tilde
2696 field (baseclass specifier for the class holding the main vtable). */
2697
2698 if (!read_baseclasses (&fi, pp, type, objfile)
2699 || !read_struct_fields (&fi, pp, type, objfile)
2700 || !attach_fields_to_type (&fi, type, objfile)
2701 || !read_member_functions (&fi, pp, type, objfile)
2702 || !attach_fn_fields_to_type (&fi, type)
2703 || !read_tilde_fields (&fi, pp, type, objfile))
2704 {
2705 do_cleanups (back_to);
2706 return (error_type (pp));
2707 }
2708
2709 do_cleanups (back_to);
2710 return (type);
2711 }
2712
2713 /* Read a definition of an array type,
2714 and create and return a suitable type object.
2715 Also creates a range type which represents the bounds of that
2716 array. */
2717
2718 static struct type *
2719 read_array_type (pp, type, objfile)
2720 register char **pp;
2721 register struct type *type;
2722 struct objfile *objfile;
2723 {
2724 struct type *index_type, *element_type, *range_type;
2725 int lower, upper;
2726 int adjustable = 0;
2727 int nbits;
2728
2729 /* Format of an array type:
2730 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2731 to handle this.
2732
2733 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2734 for these, produce a type like float[][]. */
2735
2736 index_type = read_type (pp, objfile);
2737 if (**pp != ';')
2738 /* Improper format of array type decl. */
2739 return error_type (pp);
2740 ++*pp;
2741
2742 if (!(**pp >= '0' && **pp <= '9'))
2743 {
2744 (*pp)++;
2745 adjustable = 1;
2746 }
2747 lower = read_huge_number (pp, ';', &nbits);
2748 if (nbits != 0)
2749 return error_type (pp);
2750
2751 if (!(**pp >= '0' && **pp <= '9'))
2752 {
2753 (*pp)++;
2754 adjustable = 1;
2755 }
2756 upper = read_huge_number (pp, ';', &nbits);
2757 if (nbits != 0)
2758 return error_type (pp);
2759
2760 element_type = read_type (pp, objfile);
2761
2762 if (adjustable)
2763 {
2764 lower = 0;
2765 upper = -1;
2766 }
2767
2768 range_type =
2769 create_range_type ((struct type *) NULL, index_type, lower, upper);
2770 type = create_array_type (type, element_type, range_type);
2771
2772 /* If we have an array whose element type is not yet known, but whose
2773 bounds *are* known, record it to be adjusted at the end of the file. */
2774
2775 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2776 {
2777 add_undefined_type (type);
2778 }
2779
2780 return type;
2781 }
2782
2783
2784 /* Read a definition of an enumeration type,
2785 and create and return a suitable type object.
2786 Also defines the symbols that represent the values of the type. */
2787
2788 static struct type *
2789 read_enum_type (pp, type, objfile)
2790 register char **pp;
2791 register struct type *type;
2792 struct objfile *objfile;
2793 {
2794 register char *p;
2795 char *name;
2796 register long n;
2797 register struct symbol *sym;
2798 int nsyms = 0;
2799 struct pending **symlist;
2800 struct pending *osyms, *syms;
2801 int o_nsyms;
2802
2803 #if 0
2804 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2805 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2806 to do? For now, force all enum values to file scope. */
2807 if (within_function)
2808 symlist = &local_symbols;
2809 else
2810 #endif
2811 symlist = &file_symbols;
2812 osyms = *symlist;
2813 o_nsyms = osyms ? osyms->nsyms : 0;
2814
2815 /* Read the value-names and their values.
2816 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2817 A semicolon or comma instead of a NAME means the end. */
2818 while (**pp && **pp != ';' && **pp != ',')
2819 {
2820 int nbits;
2821 STABS_CONTINUE (pp);
2822 p = *pp;
2823 while (*p != ':') p++;
2824 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2825 *pp = p + 1;
2826 n = read_huge_number (pp, ',', &nbits);
2827 if (nbits != 0)
2828 return error_type (pp);
2829
2830 sym = (struct symbol *)
2831 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2832 memset (sym, 0, sizeof (struct symbol));
2833 SYMBOL_NAME (sym) = name;
2834 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2835 SYMBOL_CLASS (sym) = LOC_CONST;
2836 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2837 SYMBOL_VALUE (sym) = n;
2838 add_symbol_to_list (sym, symlist);
2839 nsyms++;
2840 }
2841
2842 if (**pp == ';')
2843 (*pp)++; /* Skip the semicolon. */
2844
2845 /* Now fill in the fields of the type-structure. */
2846
2847 TYPE_LENGTH (type) = sizeof (int);
2848 TYPE_CODE (type) = TYPE_CODE_ENUM;
2849 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2850 TYPE_NFIELDS (type) = nsyms;
2851 TYPE_FIELDS (type) = (struct field *)
2852 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2853 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2854
2855 /* Find the symbols for the values and put them into the type.
2856 The symbols can be found in the symlist that we put them on
2857 to cause them to be defined. osyms contains the old value
2858 of that symlist; everything up to there was defined by us. */
2859 /* Note that we preserve the order of the enum constants, so
2860 that in something like "enum {FOO, LAST_THING=FOO}" we print
2861 FOO, not LAST_THING. */
2862
2863 for (syms = *symlist, n = 0; syms; syms = syms->next)
2864 {
2865 int j = 0;
2866 if (syms == osyms)
2867 j = o_nsyms;
2868 for (; j < syms->nsyms; j++,n++)
2869 {
2870 struct symbol *xsym = syms->symbol[j];
2871 SYMBOL_TYPE (xsym) = type;
2872 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2873 TYPE_FIELD_VALUE (type, n) = 0;
2874 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2875 TYPE_FIELD_BITSIZE (type, n) = 0;
2876 }
2877 if (syms == osyms)
2878 break;
2879 }
2880
2881 #if 0
2882 /* This screws up perfectly good C programs with enums. FIXME. */
2883 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2884 if(TYPE_NFIELDS(type) == 2 &&
2885 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2886 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2887 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2888 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2889 TYPE_CODE(type) = TYPE_CODE_BOOL;
2890 #endif
2891
2892 return type;
2893 }
2894
2895 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2896 typedefs in every file (for int, long, etc):
2897
2898 type = b <signed> <width>; <offset>; <nbits>
2899 signed = u or s. Possible c in addition to u or s (for char?).
2900 offset = offset from high order bit to start bit of type.
2901 width is # bytes in object of this type, nbits is # bits in type.
2902
2903 The width/offset stuff appears to be for small objects stored in
2904 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2905 FIXME. */
2906
2907 static struct type *
2908 read_sun_builtin_type (pp, typenums, objfile)
2909 char **pp;
2910 int typenums[2];
2911 struct objfile *objfile;
2912 {
2913 int type_bits;
2914 int nbits;
2915 int signed_type;
2916
2917 switch (**pp)
2918 {
2919 case 's':
2920 signed_type = 1;
2921 break;
2922 case 'u':
2923 signed_type = 0;
2924 break;
2925 default:
2926 return error_type (pp);
2927 }
2928 (*pp)++;
2929
2930 /* For some odd reason, all forms of char put a c here. This is strange
2931 because no other type has this honor. We can safely ignore this because
2932 we actually determine 'char'acterness by the number of bits specified in
2933 the descriptor. */
2934
2935 if (**pp == 'c')
2936 (*pp)++;
2937
2938 /* The first number appears to be the number of bytes occupied
2939 by this type, except that unsigned short is 4 instead of 2.
2940 Since this information is redundant with the third number,
2941 we will ignore it. */
2942 read_huge_number (pp, ';', &nbits);
2943 if (nbits != 0)
2944 return error_type (pp);
2945
2946 /* The second number is always 0, so ignore it too. */
2947 read_huge_number (pp, ';', &nbits);
2948 if (nbits != 0)
2949 return error_type (pp);
2950
2951 /* The third number is the number of bits for this type. */
2952 type_bits = read_huge_number (pp, 0, &nbits);
2953 if (nbits != 0)
2954 return error_type (pp);
2955
2956 #if 0
2957 /* FIXME. Here we should just be able to make a type of the right
2958 number of bits and signedness. FIXME. */
2959
2960 if (type_bits == TARGET_LONG_LONG_BIT)
2961 return (lookup_fundamental_type (objfile,
2962 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2963
2964 if (type_bits == TARGET_INT_BIT)
2965 {
2966 /* FIXME -- the only way to distinguish `int' from `long'
2967 is to look at its name! */
2968 if (signed_type)
2969 {
2970 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2971 return lookup_fundamental_type (objfile, FT_LONG);
2972 else
2973 return lookup_fundamental_type (objfile, FT_INTEGER);
2974 }
2975 else
2976 {
2977 if (long_kludge_name
2978 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2979 long_kludge_name[9] == 'l' /* long */)
2980 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2981 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2982 else
2983 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2984 }
2985 }
2986
2987 if (type_bits == TARGET_SHORT_BIT)
2988 return (lookup_fundamental_type (objfile,
2989 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2990
2991 if (type_bits == TARGET_CHAR_BIT)
2992 return (lookup_fundamental_type (objfile,
2993 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2994
2995 if (type_bits == 0)
2996 return lookup_fundamental_type (objfile, FT_VOID);
2997
2998 return error_type (pp);
2999 #else
3000 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3001 type_bits / TARGET_CHAR_BIT,
3002 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3003 objfile);
3004 #endif
3005 }
3006
3007 static struct type *
3008 read_sun_floating_type (pp, typenums, objfile)
3009 char **pp;
3010 int typenums[2];
3011 struct objfile *objfile;
3012 {
3013 int nbits;
3014 int details;
3015 int nbytes;
3016
3017 /* The first number has more details about the type, for example
3018 FN_COMPLEX. */
3019 details = read_huge_number (pp, ';', &nbits);
3020 if (nbits != 0)
3021 return error_type (pp);
3022
3023 /* The second number is the number of bytes occupied by this type */
3024 nbytes = read_huge_number (pp, ';', &nbits);
3025 if (nbits != 0)
3026 return error_type (pp);
3027
3028 if (details == NF_COMPLEX || details == NF_COMPLEX16
3029 || details == NF_COMPLEX32)
3030 /* This is a type we can't handle, but we do know the size.
3031 We also will be able to give it a name. */
3032 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3033
3034 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3035 }
3036
3037 /* Read a number from the string pointed to by *PP.
3038 The value of *PP is advanced over the number.
3039 If END is nonzero, the character that ends the
3040 number must match END, or an error happens;
3041 and that character is skipped if it does match.
3042 If END is zero, *PP is left pointing to that character.
3043
3044 If the number fits in a long, set *BITS to 0 and return the value.
3045 If not, set *BITS to be the number of bits in the number and return 0.
3046
3047 If encounter garbage, set *BITS to -1 and return 0. */
3048
3049 static long
3050 read_huge_number (pp, end, bits)
3051 char **pp;
3052 int end;
3053 int *bits;
3054 {
3055 char *p = *pp;
3056 int sign = 1;
3057 long n = 0;
3058 int radix = 10;
3059 char overflow = 0;
3060 int nbits = 0;
3061 int c;
3062 long upper_limit;
3063
3064 if (*p == '-')
3065 {
3066 sign = -1;
3067 p++;
3068 }
3069
3070 /* Leading zero means octal. GCC uses this to output values larger
3071 than an int (because that would be hard in decimal). */
3072 if (*p == '0')
3073 {
3074 radix = 8;
3075 p++;
3076 }
3077
3078 upper_limit = LONG_MAX / radix;
3079 while ((c = *p++) >= '0' && c < ('0' + radix))
3080 {
3081 if (n <= upper_limit)
3082 {
3083 n *= radix;
3084 n += c - '0'; /* FIXME this overflows anyway */
3085 }
3086 else
3087 overflow = 1;
3088
3089 /* This depends on large values being output in octal, which is
3090 what GCC does. */
3091 if (radix == 8)
3092 {
3093 if (nbits == 0)
3094 {
3095 if (c == '0')
3096 /* Ignore leading zeroes. */
3097 ;
3098 else if (c == '1')
3099 nbits = 1;
3100 else if (c == '2' || c == '3')
3101 nbits = 2;
3102 else
3103 nbits = 3;
3104 }
3105 else
3106 nbits += 3;
3107 }
3108 }
3109 if (end)
3110 {
3111 if (c && c != end)
3112 {
3113 if (bits != NULL)
3114 *bits = -1;
3115 return;
3116 }
3117 }
3118 else
3119 --p;
3120
3121 *pp = p;
3122 if (overflow)
3123 {
3124 if (nbits == 0)
3125 {
3126 /* Large decimal constants are an error (because it is hard to
3127 count how many bits are in them). */
3128 if (bits != NULL)
3129 *bits = -1;
3130 return;
3131 }
3132
3133 /* -0x7f is the same as 0x80. So deal with it by adding one to
3134 the number of bits. */
3135 if (sign == -1)
3136 ++nbits;
3137 if (bits)
3138 *bits = nbits;
3139 }
3140 else
3141 {
3142 if (bits)
3143 *bits = 0;
3144 return n * sign;
3145 }
3146 /* It's *BITS which has the interesting information. */
3147 return 0;
3148 }
3149
3150 static struct type *
3151 read_range_type (pp, typenums, objfile)
3152 char **pp;
3153 int typenums[2];
3154 struct objfile *objfile;
3155 {
3156 int rangenums[2];
3157 long n2, n3;
3158 int n2bits, n3bits;
3159 int self_subrange;
3160 struct type *result_type;
3161 struct type *index_type;
3162
3163 /* First comes a type we are a subrange of.
3164 In C it is usually 0, 1 or the type being defined. */
3165 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3166 not just a type number. */
3167 if (read_type_number (pp, rangenums) != 0)
3168 return error_type (pp);
3169 self_subrange = (rangenums[0] == typenums[0] &&
3170 rangenums[1] == typenums[1]);
3171
3172 /* A semicolon should now follow; skip it. */
3173 if (**pp == ';')
3174 (*pp)++;
3175
3176 /* The remaining two operands are usually lower and upper bounds
3177 of the range. But in some special cases they mean something else. */
3178 n2 = read_huge_number (pp, ';', &n2bits);
3179 n3 = read_huge_number (pp, ';', &n3bits);
3180
3181 if (n2bits == -1 || n3bits == -1)
3182 return error_type (pp);
3183
3184 /* If limits are huge, must be large integral type. */
3185 if (n2bits != 0 || n3bits != 0)
3186 {
3187 char got_signed = 0;
3188 char got_unsigned = 0;
3189 /* Number of bits in the type. */
3190 int nbits;
3191
3192 /* Range from 0 to <large number> is an unsigned large integral type. */
3193 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3194 {
3195 got_unsigned = 1;
3196 nbits = n3bits;
3197 }
3198 /* Range from <large number> to <large number>-1 is a large signed
3199 integral type. */
3200 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3201 {
3202 got_signed = 1;
3203 nbits = n2bits;
3204 }
3205
3206 if (got_signed || got_unsigned)
3207 {
3208 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3209 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3210 objfile);
3211 }
3212 else
3213 return error_type (pp);
3214 }
3215
3216 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3217 if (self_subrange && n2 == 0 && n3 == 0)
3218 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3219
3220 /* If n3 is zero and n2 is not, we want a floating type,
3221 and n2 is the width in bytes.
3222
3223 Fortran programs appear to use this for complex types also,
3224 and they give no way to distinguish between double and single-complex!
3225
3226 GDB does not have complex types.
3227
3228 Just return the complex as a float of that size. It won't work right
3229 for the complex values, but at least it makes the file loadable.
3230
3231 FIXME, we may be able to distinguish these by their names. FIXME. */
3232
3233 if (n3 == 0 && n2 > 0)
3234 {
3235 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3236 }
3237
3238 /* If the upper bound is -1, it must really be an unsigned int. */
3239
3240 else if (n2 == 0 && n3 == -1)
3241 {
3242 /* It is unsigned int or unsigned long. */
3243 /* GCC sometimes uses this for long long too. We could
3244 distinguish it by the name, but we don't. */
3245 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3246 TYPE_FLAG_UNSIGNED, NULL, objfile);
3247 }
3248
3249 /* Special case: char is defined (Who knows why) as a subrange of
3250 itself with range 0-127. */
3251 else if (self_subrange && n2 == 0 && n3 == 127)
3252 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3253
3254 /* We used to do this only for subrange of self or subrange of int. */
3255 else if (n2 == 0)
3256 {
3257 if (n3 < 0)
3258 /* n3 actually gives the size. */
3259 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3260 NULL, objfile);
3261 if (n3 == 0xff)
3262 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3263 if (n3 == 0xffff)
3264 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3265
3266 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3267 "unsigned long", and we already checked for that,
3268 so don't need to test for it here. */
3269 }
3270 /* I think this is for Convex "long long". Since I don't know whether
3271 Convex sets self_subrange, I also accept that particular size regardless
3272 of self_subrange. */
3273 else if (n3 == 0 && n2 < 0
3274 && (self_subrange
3275 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3276 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3277 else if (n2 == -n3 -1)
3278 {
3279 if (n3 == 0x7f)
3280 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3281 if (n3 == 0x7fff)
3282 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3283 if (n3 == 0x7fffffff)
3284 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3285 }
3286
3287 /* We have a real range type on our hands. Allocate space and
3288 return a real pointer. */
3289
3290 /* At this point I don't have the faintest idea how to deal with
3291 a self_subrange type; I'm going to assume that this is used
3292 as an idiom, and that all of them are special cases. So . . . */
3293 if (self_subrange)
3294 return error_type (pp);
3295
3296 index_type = *dbx_lookup_type (rangenums);
3297 if (index_type == NULL)
3298 {
3299 /* Does this actually ever happen? Is that why we are worrying
3300 about dealing with it rather than just calling error_type? */
3301
3302 static struct type *range_type_index;
3303
3304 complain (&range_type_base_complaint, rangenums[1]);
3305 if (range_type_index == NULL)
3306 range_type_index =
3307 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3308 0, "range type index type", NULL);
3309 index_type = range_type_index;
3310 }
3311
3312 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3313 return (result_type);
3314 }
3315
3316 /* Read in an argument list. This is a list of types, separated by commas
3317 and terminated with END. Return the list of types read in, or (struct type
3318 **)-1 if there is an error. */
3319
3320 static struct type **
3321 read_args (pp, end, objfile)
3322 char **pp;
3323 int end;
3324 struct objfile *objfile;
3325 {
3326 /* FIXME! Remove this arbitrary limit! */
3327 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3328 int n = 0;
3329
3330 while (**pp != end)
3331 {
3332 if (**pp != ',')
3333 /* Invalid argument list: no ','. */
3334 return (struct type **)-1;
3335 (*pp)++;
3336 STABS_CONTINUE (pp);
3337 types[n++] = read_type (pp, objfile);
3338 }
3339 (*pp)++; /* get past `end' (the ':' character) */
3340
3341 if (n == 1)
3342 {
3343 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3344 }
3345 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3346 {
3347 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3348 memset (rval + n, 0, sizeof (struct type *));
3349 }
3350 else
3351 {
3352 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3353 }
3354 memcpy (rval, types, n * sizeof (struct type *));
3355 return rval;
3356 }
3357
3358 /* Add a common block's start address to the offset of each symbol
3359 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3360 the common block name). */
3361
3362 static void
3363 fix_common_block (sym, valu)
3364 struct symbol *sym;
3365 int valu;
3366 {
3367 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3368 for ( ; next; next = next->next)
3369 {
3370 register int j;
3371 for (j = next->nsyms - 1; j >= 0; j--)
3372 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3373 }
3374 }
3375
3376
3377 \f
3378 /* What about types defined as forward references inside of a small lexical
3379 scope? */
3380 /* Add a type to the list of undefined types to be checked through
3381 once this file has been read in. */
3382
3383 void
3384 add_undefined_type (type)
3385 struct type *type;
3386 {
3387 if (undef_types_length == undef_types_allocated)
3388 {
3389 undef_types_allocated *= 2;
3390 undef_types = (struct type **)
3391 xrealloc ((char *) undef_types,
3392 undef_types_allocated * sizeof (struct type *));
3393 }
3394 undef_types[undef_types_length++] = type;
3395 }
3396
3397 /* Go through each undefined type, see if it's still undefined, and fix it
3398 up if possible. We have two kinds of undefined types:
3399
3400 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3401 Fix: update array length using the element bounds
3402 and the target type's length.
3403 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3404 yet defined at the time a pointer to it was made.
3405 Fix: Do a full lookup on the struct/union tag. */
3406 void
3407 cleanup_undefined_types ()
3408 {
3409 struct type **type;
3410
3411 for (type = undef_types; type < undef_types + undef_types_length; type++)
3412 {
3413 switch (TYPE_CODE (*type))
3414 {
3415
3416 case TYPE_CODE_STRUCT:
3417 case TYPE_CODE_UNION:
3418 case TYPE_CODE_ENUM:
3419 {
3420 /* Check if it has been defined since. */
3421 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3422 {
3423 struct pending *ppt;
3424 int i;
3425 /* Name of the type, without "struct" or "union" */
3426 char *typename = TYPE_TAG_NAME (*type);
3427
3428 if (typename == NULL)
3429 {
3430 static struct complaint msg = {"need a type name", 0, 0};
3431 complain (&msg);
3432 break;
3433 }
3434 for (ppt = file_symbols; ppt; ppt = ppt->next)
3435 {
3436 for (i = 0; i < ppt->nsyms; i++)
3437 {
3438 struct symbol *sym = ppt->symbol[i];
3439
3440 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3441 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3442 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3443 TYPE_CODE (*type))
3444 && STREQ (SYMBOL_NAME (sym), typename))
3445 {
3446 memcpy (*type, SYMBOL_TYPE (sym),
3447 sizeof (struct type));
3448 }
3449 }
3450 }
3451 }
3452 }
3453 break;
3454
3455 case TYPE_CODE_ARRAY:
3456 {
3457 struct type *range_type;
3458 int lower, upper;
3459
3460 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3461 goto badtype;
3462 if (TYPE_NFIELDS (*type) != 1)
3463 goto badtype;
3464 range_type = TYPE_FIELD_TYPE (*type, 0);
3465 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3466 goto badtype;
3467
3468 /* Now recompute the length of the array type, based on its
3469 number of elements and the target type's length. */
3470 lower = TYPE_FIELD_BITPOS (range_type, 0);
3471 upper = TYPE_FIELD_BITPOS (range_type, 1);
3472 TYPE_LENGTH (*type) = (upper - lower + 1)
3473 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3474 }
3475 break;
3476
3477 default:
3478 badtype:
3479 {
3480 static struct complaint msg = {"\
3481 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3482 complain (&msg, TYPE_CODE (*type));
3483 }
3484 break;
3485 }
3486 }
3487 undef_types_length = 0;
3488 }
3489
3490 /* Scan through all of the global symbols defined in the object file,
3491 assigning values to the debugging symbols that need to be assigned
3492 to. Get these symbols from the minimal symbol table. */
3493
3494 void
3495 scan_file_globals (objfile)
3496 struct objfile *objfile;
3497 {
3498 int hash;
3499 struct minimal_symbol *msymbol;
3500 struct symbol *sym, *prev;
3501
3502 if (objfile->msymbols == 0) /* Beware the null file. */
3503 return;
3504
3505 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3506 {
3507 QUIT;
3508
3509 prev = NULL;
3510
3511 /* Get the hash index and check all the symbols
3512 under that hash index. */
3513
3514 hash = hashname (SYMBOL_NAME (msymbol));
3515
3516 for (sym = global_sym_chain[hash]; sym;)
3517 {
3518 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3519 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3520 {
3521 /* Splice this symbol out of the hash chain and
3522 assign the value we have to it. */
3523 if (prev)
3524 {
3525 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3526 }
3527 else
3528 {
3529 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3530 }
3531
3532 /* Check to see whether we need to fix up a common block. */
3533 /* Note: this code might be executed several times for
3534 the same symbol if there are multiple references. */
3535
3536 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3537 {
3538 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3539 }
3540 else
3541 {
3542 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3543 }
3544
3545 if (prev)
3546 {
3547 sym = SYMBOL_VALUE_CHAIN (prev);
3548 }
3549 else
3550 {
3551 sym = global_sym_chain[hash];
3552 }
3553 }
3554 else
3555 {
3556 prev = sym;
3557 sym = SYMBOL_VALUE_CHAIN (sym);
3558 }
3559 }
3560 }
3561 }
3562
3563 /* Initialize anything that needs initializing when starting to read
3564 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3565 to a psymtab. */
3566
3567 void
3568 stabsread_init ()
3569 {
3570 }
3571
3572 /* Initialize anything that needs initializing when a completely new
3573 symbol file is specified (not just adding some symbols from another
3574 file, e.g. a shared library). */
3575
3576 void
3577 stabsread_new_init ()
3578 {
3579 /* Empty the hash table of global syms looking for values. */
3580 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3581 }
3582
3583 /* Initialize anything that needs initializing at the same time as
3584 start_symtab() is called. */
3585
3586 void start_stabs ()
3587 {
3588 global_stabs = NULL; /* AIX COFF */
3589 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3590 n_this_object_header_files = 1;
3591 type_vector_length = 0;
3592 type_vector = (struct type **) 0;
3593 }
3594
3595 /* Call after end_symtab() */
3596
3597 void end_stabs ()
3598 {
3599 if (type_vector)
3600 {
3601 free ((char *) type_vector);
3602 }
3603 type_vector = 0;
3604 type_vector_length = 0;
3605 previous_stab_code = 0;
3606 }
3607
3608 void
3609 finish_global_stabs (objfile)
3610 struct objfile *objfile;
3611 {
3612 if (global_stabs)
3613 {
3614 patch_block_stabs (global_symbols, global_stabs, objfile);
3615 free ((PTR) global_stabs);
3616 global_stabs = NULL;
3617 }
3618 }
3619
3620 /* Initializer for this module */
3621
3622 void
3623 _initialize_stabsread ()
3624 {
3625 undef_types_allocated = 20;
3626 undef_types_length = 0;
3627 undef_types = (struct type **)
3628 xmalloc (undef_types_allocated * sizeof (struct type *));
3629 }
This page took 0.101098 seconds and 3 git commands to generate.