Remove symfile_complaints
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (_("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (_("bad register number %d (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint ("%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210
211 /* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217 static struct type **type_vector;
218
219 /* Number of elements allocated for type_vector currently. */
220
221 static int type_vector_length;
222
223 /* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226 #define INITIAL_TYPE_VECTOR_LENGTH 160
227 \f
228
229 /* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
236 static struct type **
237 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 {
239 int filenum = typenums[0];
240 int index = typenums[1];
241 unsigned old_len;
242 int real_filenum;
243 struct header_file *f;
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
251 complaint (_("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* Allocate a floating-point type of size BITS. */
357
358 static struct type *
359 dbx_init_float_type (struct objfile *objfile, int bits)
360 {
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
369 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
370
371 return type;
372 }
373
374 /* for all the stabs in a given stab vector, build appropriate types
375 and fix their symbols in given symbol vector. */
376
377 static void
378 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
380 {
381 int ii;
382 char *name;
383 const char *pp;
384 struct symbol *sym;
385
386 if (stabs)
387 {
388 /* for all the stab entries, find their corresponding symbols and
389 patch their types! */
390
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
394 pp = (char *) strchr (name, ':');
395 gdb_assert (pp); /* Must find a ':' or game's over. */
396 while (pp[1] == ':')
397 {
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
400 }
401 sym = find_symbol_in_list (symbols, name, pp - name);
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
411
412 /* On xcoff, if a global is defined and never referenced,
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
415 sym = allocate_symbol (objfile);
416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
418 SYMBOL_SET_LINKAGE_NAME
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451 }
452 \f
453
454 /* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462 static int
463 read_type_number (const char **pp, int *typenums)
464 {
465 int nbits;
466
467 if (**pp == '(')
468 {
469 (*pp)++;
470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
471 if (nbits != 0)
472 return -1;
473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
474 if (nbits != 0)
475 return -1;
476 }
477 else
478 {
479 typenums[0] = 0;
480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 }
484 return 0;
485 }
486 \f
487
488 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
493 /* Structure for storing pointers to reference definitions for fast lookup
494 during "process_later". */
495
496 struct ref_map
497 {
498 const char *stabs;
499 CORE_ADDR value;
500 struct symbol *sym;
501 };
502
503 #define MAX_CHUNK_REFS 100
504 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
507 static struct ref_map *ref_map;
508
509 /* Ptr to free cell in chunk's linked list. */
510 static int ref_count = 0;
511
512 /* Number of chunks malloced. */
513 static int ref_chunk = 0;
514
515 /* This file maintains a cache of stabs aliases found in the symbol
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
518 void
519 stabsread_clear_cache (void)
520 {
521 ref_count = 0;
522 ref_chunk = 0;
523 }
524
525 /* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
529 void
530 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
531 {
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
540
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550 }
551
552 /* Return defined sym for the reference REFNUM. */
553 struct symbol *
554 ref_search (int refnum)
555 {
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559 }
560
561 /* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
564 static int
565 process_reference (const char **string)
566 {
567 const char *p;
568 int refnum = 0;
569
570 if (**string != '#')
571 return 0;
572
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
576 /* Read number as reference id. */
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584 }
585
586 /* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589 int
590 symbol_reference_defined (const char **string)
591 {
592 const char *p = *string;
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
597 /* Defining symbols end in '='. */
598 if (*p == '=')
599 {
600 /* Symbol is being defined here. */
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
606 /* Must be a reference. Either the symbol has already been defined,
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611 }
612
613 static int
614 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615 {
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
628 }
629
630 return regno;
631 }
632
633 static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635 };
636
637 /* The "aclass" indices for computed symbols. */
638
639 static int stab_register_index;
640 static int stab_regparm_index;
641
642 struct symbol *
643 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
644 struct objfile *objfile)
645 {
646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
647 struct symbol *sym;
648 const char *p = find_name_end (string);
649 int deftype;
650 int synonym = 0;
651 int i;
652
653 /* We would like to eliminate nameless symbols, but keep their types.
654 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
655 to type 2, but, should not create a symbol to address that type. Since
656 the symbol will be nameless, there is no way any user can refer to it. */
657
658 int nameless;
659
660 /* Ignore syms with empty names. */
661 if (string[0] == 0)
662 return 0;
663
664 /* Ignore old-style symbols from cc -go. */
665 if (p == 0)
666 return 0;
667
668 while (p[1] == ':')
669 {
670 p += 2;
671 p = strchr (p, ':');
672 if (p == NULL)
673 {
674 complaint (
675 _("Bad stabs string '%s'"), string);
676 return NULL;
677 }
678 }
679
680 /* If a nameless stab entry, all we need is the type, not the symbol.
681 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
682 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
683
684 current_symbol = sym = allocate_symbol (objfile);
685
686 if (processing_gcc_compilation)
687 {
688 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
689 number of bytes occupied by a type or object, which we ignore. */
690 SYMBOL_LINE (sym) = desc;
691 }
692 else
693 {
694 SYMBOL_LINE (sym) = 0; /* unknown */
695 }
696
697 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
698 &objfile->objfile_obstack);
699
700 if (is_cplus_marker (string[0]))
701 {
702 /* Special GNU C++ names. */
703 switch (string[1])
704 {
705 case 't':
706 SYMBOL_SET_LINKAGE_NAME (sym, "this");
707 break;
708
709 case 'v': /* $vtbl_ptr_type */
710 goto normal;
711
712 case 'e':
713 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
714 break;
715
716 case '_':
717 /* This was an anonymous type that was never fixed up. */
718 goto normal;
719
720 case 'X':
721 /* SunPRO (3.0 at least) static variable encoding. */
722 if (gdbarch_static_transform_name_p (gdbarch))
723 goto normal;
724 /* fall through */
725
726 default:
727 complaint (_("Unknown C++ symbol name `%s'"),
728 string);
729 goto normal; /* Do *something* with it. */
730 }
731 }
732 else
733 {
734 normal:
735 std::string new_name;
736
737 if (SYMBOL_LANGUAGE (sym) == language_cplus)
738 {
739 char *name = (char *) alloca (p - string + 1);
740
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
744 }
745 if (!new_name.empty ())
746 {
747 SYMBOL_SET_NAMES (sym,
748 new_name.c_str (), new_name.length (),
749 1, objfile);
750 }
751 else
752 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
753
754 if (SYMBOL_LANGUAGE (sym) == language_cplus)
755 cp_scan_for_anonymous_namespaces (sym, objfile);
756
757 }
758 p++;
759
760 /* Determine the type of name being defined. */
761 #if 0
762 /* Getting GDB to correctly skip the symbol on an undefined symbol
763 descriptor and not ever dump core is a very dodgy proposition if
764 we do things this way. I say the acorn RISC machine can just
765 fix their compiler. */
766 /* The Acorn RISC machine's compiler can put out locals that don't
767 start with "234=" or "(3,4)=", so assume anything other than the
768 deftypes we know how to handle is a local. */
769 if (!strchr ("cfFGpPrStTvVXCR", *p))
770 #else
771 if (isdigit (*p) || *p == '(' || *p == '-')
772 #endif
773 deftype = 'l';
774 else
775 deftype = *p++;
776
777 switch (deftype)
778 {
779 case 'c':
780 /* c is a special case, not followed by a type-number.
781 SYMBOL:c=iVALUE for an integer constant symbol.
782 SYMBOL:c=rVALUE for a floating constant symbol.
783 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 e.g. "b:c=e6,0" for "const b = blob1"
785 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
786 if (*p != '=')
787 {
788 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
789 SYMBOL_TYPE (sym) = error_type (&p, objfile);
790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793 }
794 ++p;
795 switch (*p++)
796 {
797 case 'r':
798 {
799 gdb_byte *dbl_valu;
800 struct type *dbl_type;
801
802 dbl_type = objfile_type (objfile)->builtin_double;
803 dbl_valu
804 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
805 TYPE_LENGTH (dbl_type));
806
807 target_float_from_string (dbl_valu, dbl_type, std::string (p));
808
809 SYMBOL_TYPE (sym) = dbl_type;
810 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
811 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
812 }
813 break;
814 case 'i':
815 {
816 /* Defining integer constants this way is kind of silly,
817 since 'e' constants allows the compiler to give not
818 only the value, but the type as well. C has at least
819 int, long, unsigned int, and long long as constant
820 types; other languages probably should have at least
821 unsigned as well as signed constants. */
822
823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
824 SYMBOL_VALUE (sym) = atoi (p);
825 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
826 }
827 break;
828
829 case 'c':
830 {
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
832 SYMBOL_VALUE (sym) = atoi (p);
833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
834 }
835 break;
836
837 case 's':
838 {
839 struct type *range_type;
840 int ind = 0;
841 char quote = *p++;
842 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
843 gdb_byte *string_value;
844
845 if (quote != '\'' && quote != '"')
846 {
847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* Find matching quote, rejecting escaped quotes. */
855 while (*p && *p != quote)
856 {
857 if (*p == '\\' && p[1] == quote)
858 {
859 string_local[ind] = (gdb_byte) quote;
860 ind++;
861 p += 2;
862 }
863 else if (*p)
864 {
865 string_local[ind] = (gdb_byte) (*p);
866 ind++;
867 p++;
868 }
869 }
870 if (*p != quote)
871 {
872 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
873 SYMBOL_TYPE (sym) = error_type (&p, objfile);
874 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875 add_symbol_to_list (sym, &file_symbols);
876 return sym;
877 }
878
879 /* NULL terminate the string. */
880 string_local[ind] = 0;
881 range_type
882 = create_static_range_type (NULL,
883 objfile_type (objfile)->builtin_int,
884 0, ind);
885 SYMBOL_TYPE (sym) = create_array_type (NULL,
886 objfile_type (objfile)->builtin_char,
887 range_type);
888 string_value
889 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
890 memcpy (string_value, string_local, ind + 1);
891 p++;
892
893 SYMBOL_VALUE_BYTES (sym) = string_value;
894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
895 }
896 break;
897
898 case 'e':
899 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
900 can be represented as integral.
901 e.g. "b:c=e6,0" for "const b = blob1"
902 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
903 {
904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906
907 if (*p != ',')
908 {
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 break;
911 }
912 ++p;
913
914 /* If the value is too big to fit in an int (perhaps because
915 it is unsigned), or something like that, we silently get
916 a bogus value. The type and everything else about it is
917 correct. Ideally, we should be using whatever we have
918 available for parsing unsigned and long long values,
919 however. */
920 SYMBOL_VALUE (sym) = atoi (p);
921 }
922 break;
923 default:
924 {
925 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
926 SYMBOL_TYPE (sym) = error_type (&p, objfile);
927 }
928 }
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &file_symbols);
931 return sym;
932
933 case 'C':
934 /* The name of a caught exception. */
935 SYMBOL_TYPE (sym) = read_type (&p, objfile);
936 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
938 SYMBOL_VALUE_ADDRESS (sym) = valu;
939 add_symbol_to_list (sym, &local_symbols);
940 break;
941
942 case 'f':
943 /* A static function definition. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
945 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
947 add_symbol_to_list (sym, &file_symbols);
948 /* fall into process_function_types. */
949
950 process_function_types:
951 /* Function result types are described as the result type in stabs.
952 We need to convert this to the function-returning-type-X type
953 in GDB. E.g. "int" is converted to "function returning int". */
954 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
956
957 /* All functions in C++ have prototypes. Stabs does not offer an
958 explicit way to identify prototyped or unprototyped functions,
959 but both GCC and Sun CC emit stabs for the "call-as" type rather
960 than the "declared-as" type for unprototyped functions, so
961 we treat all functions as if they were prototyped. This is used
962 primarily for promotion when calling the function from GDB. */
963 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
964
965 /* fall into process_prototype_types. */
966
967 process_prototype_types:
968 /* Sun acc puts declared types of arguments here. */
969 if (*p == ';')
970 {
971 struct type *ftype = SYMBOL_TYPE (sym);
972 int nsemi = 0;
973 int nparams = 0;
974 const char *p1 = p;
975
976 /* Obtain a worst case guess for the number of arguments
977 by counting the semicolons. */
978 while (*p1)
979 {
980 if (*p1++ == ';')
981 nsemi++;
982 }
983
984 /* Allocate parameter information fields and fill them in. */
985 TYPE_FIELDS (ftype) = (struct field *)
986 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
987 while (*p++ == ';')
988 {
989 struct type *ptype;
990
991 /* A type number of zero indicates the start of varargs.
992 FIXME: GDB currently ignores vararg functions. */
993 if (p[0] == '0' && p[1] == '\0')
994 break;
995 ptype = read_type (&p, objfile);
996
997 /* The Sun compilers mark integer arguments, which should
998 be promoted to the width of the calling conventions, with
999 a type which references itself. This type is turned into
1000 a TYPE_CODE_VOID type by read_type, and we have to turn
1001 it back into builtin_int here.
1002 FIXME: Do we need a new builtin_promoted_int_arg ? */
1003 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1004 ptype = objfile_type (objfile)->builtin_int;
1005 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1006 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1007 }
1008 TYPE_NFIELDS (ftype) = nparams;
1009 TYPE_PROTOTYPED (ftype) = 1;
1010 }
1011 break;
1012
1013 case 'F':
1014 /* A global function definition. */
1015 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1016 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &global_symbols);
1019 goto process_function_types;
1020
1021 case 'G':
1022 /* For a class G (global) symbol, it appears that the
1023 value is not correct. It is necessary to search for the
1024 corresponding linker definition to find the value.
1025 These definitions appear at the end of the namelist. */
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1028 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1029 /* Don't add symbol references to global_sym_chain.
1030 Symbol references don't have valid names and wont't match up with
1031 minimal symbols when the global_sym_chain is relocated.
1032 We'll fixup symbol references when we fixup the defining symbol. */
1033 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1034 {
1035 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1036 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1037 global_sym_chain[i] = sym;
1038 }
1039 add_symbol_to_list (sym, &global_symbols);
1040 break;
1041
1042 /* This case is faked by a conditional above,
1043 when there is no code letter in the dbx data.
1044 Dbx data never actually contains 'l'. */
1045 case 's':
1046 case 'l':
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1049 SYMBOL_VALUE (sym) = valu;
1050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1051 add_symbol_to_list (sym, &local_symbols);
1052 break;
1053
1054 case 'p':
1055 if (*p == 'F')
1056 /* pF is a two-letter code that means a function parameter in Fortran.
1057 The type-number specifies the type of the return value.
1058 Translate it into a pointer-to-function type. */
1059 {
1060 p++;
1061 SYMBOL_TYPE (sym)
1062 = lookup_pointer_type
1063 (lookup_function_type (read_type (&p, objfile)));
1064 }
1065 else
1066 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1067
1068 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1069 SYMBOL_VALUE (sym) = valu;
1070 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1071 SYMBOL_IS_ARGUMENT (sym) = 1;
1072 add_symbol_to_list (sym, &local_symbols);
1073
1074 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1075 {
1076 /* On little-endian machines, this crud is never necessary,
1077 and, if the extra bytes contain garbage, is harmful. */
1078 break;
1079 }
1080
1081 /* If it's gcc-compiled, if it says `short', believe it. */
1082 if (processing_gcc_compilation
1083 || gdbarch_believe_pcc_promotion (gdbarch))
1084 break;
1085
1086 if (!gdbarch_believe_pcc_promotion (gdbarch))
1087 {
1088 /* If PCC says a parameter is a short or a char, it is
1089 really an int. */
1090 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1091 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1092 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1093 {
1094 SYMBOL_TYPE (sym) =
1095 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1096 ? objfile_type (objfile)->builtin_unsigned_int
1097 : objfile_type (objfile)->builtin_int;
1098 }
1099 break;
1100 }
1101 /* Fall through. */
1102
1103 case 'P':
1104 /* acc seems to use P to declare the prototypes of functions that
1105 are referenced by this file. gdb is not prepared to deal
1106 with this extra information. FIXME, it ought to. */
1107 if (type == N_FUN)
1108 {
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 goto process_prototype_types;
1111 }
1112 /*FALLTHROUGH */
1113
1114 case 'R':
1115 /* Parameter which is in a register. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1118 SYMBOL_IS_ARGUMENT (sym) = 1;
1119 SYMBOL_VALUE (sym) = valu;
1120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1121 add_symbol_to_list (sym, &local_symbols);
1122 break;
1123
1124 case 'r':
1125 /* Register variable (either global or local). */
1126 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1127 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1128 SYMBOL_VALUE (sym) = valu;
1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1130 if (within_function)
1131 {
1132 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1133 the same name to represent an argument passed in a
1134 register. GCC uses 'P' for the same case. So if we find
1135 such a symbol pair we combine it into one 'P' symbol.
1136 For Sun cc we need to do this regardless of
1137 stabs_argument_has_addr, because the compiler puts out
1138 the 'p' symbol even if it never saves the argument onto
1139 the stack.
1140
1141 On most machines, we want to preserve both symbols, so
1142 that we can still get information about what is going on
1143 with the stack (VAX for computing args_printed, using
1144 stack slots instead of saved registers in backtraces,
1145 etc.).
1146
1147 Note that this code illegally combines
1148 main(argc) struct foo argc; { register struct foo argc; }
1149 but this case is considered pathological and causes a warning
1150 from a decent compiler. */
1151
1152 if (local_symbols
1153 && local_symbols->nsyms > 0
1154 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1155 {
1156 struct symbol *prev_sym;
1157
1158 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1159 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1160 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1161 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1162 SYMBOL_LINKAGE_NAME (sym)) == 0)
1163 {
1164 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1165 /* Use the type from the LOC_REGISTER; that is the type
1166 that is actually in that register. */
1167 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1168 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1169 sym = prev_sym;
1170 break;
1171 }
1172 }
1173 add_symbol_to_list (sym, &local_symbols);
1174 }
1175 else
1176 add_symbol_to_list (sym, &file_symbols);
1177 break;
1178
1179 case 'S':
1180 /* Static symbol at top level of file. */
1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1182 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1183 SYMBOL_VALUE_ADDRESS (sym) = valu;
1184 if (gdbarch_static_transform_name_p (gdbarch)
1185 && gdbarch_static_transform_name (gdbarch,
1186 SYMBOL_LINKAGE_NAME (sym))
1187 != SYMBOL_LINKAGE_NAME (sym))
1188 {
1189 struct bound_minimal_symbol msym;
1190
1191 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1192 NULL, objfile);
1193 if (msym.minsym != NULL)
1194 {
1195 const char *new_name = gdbarch_static_transform_name
1196 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1197
1198 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1199 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1200 }
1201 }
1202 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1203 add_symbol_to_list (sym, &file_symbols);
1204 break;
1205
1206 case 't':
1207 /* In Ada, there is no distinction between typedef and non-typedef;
1208 any type declaration implicitly has the equivalent of a typedef,
1209 and thus 't' is in fact equivalent to 'Tt'.
1210
1211 Therefore, for Ada units, we check the character immediately
1212 before the 't', and if we do not find a 'T', then make sure to
1213 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1214 will be stored in the VAR_DOMAIN). If the symbol was indeed
1215 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1216 elsewhere, so we don't need to take care of that.
1217
1218 This is important to do, because of forward references:
1219 The cleanup of undefined types stored in undef_types only uses
1220 STRUCT_DOMAIN symbols to perform the replacement. */
1221 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1222
1223 /* Typedef */
1224 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1225
1226 /* For a nameless type, we don't want a create a symbol, thus we
1227 did not use `sym'. Return without further processing. */
1228 if (nameless)
1229 return NULL;
1230
1231 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1232 SYMBOL_VALUE (sym) = valu;
1233 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1234 /* C++ vagaries: we may have a type which is derived from
1235 a base type which did not have its name defined when the
1236 derived class was output. We fill in the derived class's
1237 base part member's name here in that case. */
1238 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1241 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1242 {
1243 int j;
1244
1245 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1246 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1247 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1248 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1249 }
1250
1251 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1252 {
1253 /* gcc-2.6 or later (when using -fvtable-thunks)
1254 emits a unique named type for a vtable entry.
1255 Some gdb code depends on that specific name. */
1256 extern const char vtbl_ptr_name[];
1257
1258 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1259 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1260 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1261 {
1262 /* If we are giving a name to a type such as "pointer to
1263 foo" or "function returning foo", we better not set
1264 the TYPE_NAME. If the program contains "typedef char
1265 *caddr_t;", we don't want all variables of type char
1266 * to print as caddr_t. This is not just a
1267 consequence of GDB's type management; PCC and GCC (at
1268 least through version 2.4) both output variables of
1269 either type char * or caddr_t with the type number
1270 defined in the 't' symbol for caddr_t. If a future
1271 compiler cleans this up it GDB is not ready for it
1272 yet, but if it becomes ready we somehow need to
1273 disable this check (without breaking the PCC/GCC2.4
1274 case).
1275
1276 Sigh.
1277
1278 Fortunately, this check seems not to be necessary
1279 for anything except pointers or functions. */
1280 /* ezannoni: 2000-10-26. This seems to apply for
1281 versions of gcc older than 2.8. This was the original
1282 problem: with the following code gdb would tell that
1283 the type for name1 is caddr_t, and func is char().
1284
1285 typedef char *caddr_t;
1286 char *name2;
1287 struct x
1288 {
1289 char *name1;
1290 } xx;
1291 char *func()
1292 {
1293 }
1294 main () {}
1295 */
1296
1297 /* Pascal accepts names for pointer types. */
1298 if (current_subfile->language == language_pascal)
1299 {
1300 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1301 }
1302 }
1303 else
1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1305 }
1306
1307 add_symbol_to_list (sym, &file_symbols);
1308
1309 if (synonym)
1310 {
1311 /* Create the STRUCT_DOMAIN clone. */
1312 struct symbol *struct_sym = allocate_symbol (objfile);
1313
1314 *struct_sym = *sym;
1315 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1316 SYMBOL_VALUE (struct_sym) = valu;
1317 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1318 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1319 TYPE_NAME (SYMBOL_TYPE (sym))
1320 = obconcat (&objfile->objfile_obstack,
1321 SYMBOL_LINKAGE_NAME (sym),
1322 (char *) NULL);
1323 add_symbol_to_list (struct_sym, &file_symbols);
1324 }
1325
1326 break;
1327
1328 case 'T':
1329 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1330 by 't' which means we are typedef'ing it as well. */
1331 synonym = *p == 't';
1332
1333 if (synonym)
1334 p++;
1335
1336 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1337
1338 /* For a nameless type, we don't want a create a symbol, thus we
1339 did not use `sym'. Return without further processing. */
1340 if (nameless)
1341 return NULL;
1342
1343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1344 SYMBOL_VALUE (sym) = valu;
1345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1346 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1347 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1348 = obconcat (&objfile->objfile_obstack,
1349 SYMBOL_LINKAGE_NAME (sym),
1350 (char *) NULL);
1351 add_symbol_to_list (sym, &file_symbols);
1352
1353 if (synonym)
1354 {
1355 /* Clone the sym and then modify it. */
1356 struct symbol *typedef_sym = allocate_symbol (objfile);
1357
1358 *typedef_sym = *sym;
1359 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1360 SYMBOL_VALUE (typedef_sym) = valu;
1361 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1362 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1363 TYPE_NAME (SYMBOL_TYPE (sym))
1364 = obconcat (&objfile->objfile_obstack,
1365 SYMBOL_LINKAGE_NAME (sym),
1366 (char *) NULL);
1367 add_symbol_to_list (typedef_sym, &file_symbols);
1368 }
1369 break;
1370
1371 case 'V':
1372 /* Static symbol of local scope. */
1373 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1374 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1375 SYMBOL_VALUE_ADDRESS (sym) = valu;
1376 if (gdbarch_static_transform_name_p (gdbarch)
1377 && gdbarch_static_transform_name (gdbarch,
1378 SYMBOL_LINKAGE_NAME (sym))
1379 != SYMBOL_LINKAGE_NAME (sym))
1380 {
1381 struct bound_minimal_symbol msym;
1382
1383 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1384 NULL, objfile);
1385 if (msym.minsym != NULL)
1386 {
1387 const char *new_name = gdbarch_static_transform_name
1388 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1389
1390 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1391 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1392 }
1393 }
1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'v':
1399 /* Reference parameter */
1400 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1401 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1402 SYMBOL_IS_ARGUMENT (sym) = 1;
1403 SYMBOL_VALUE (sym) = valu;
1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
1407
1408 case 'a':
1409 /* Reference parameter which is in a register. */
1410 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1411 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1412 SYMBOL_IS_ARGUMENT (sym) = 1;
1413 SYMBOL_VALUE (sym) = valu;
1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1415 add_symbol_to_list (sym, &local_symbols);
1416 break;
1417
1418 case 'X':
1419 /* This is used by Sun FORTRAN for "function result value".
1420 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1421 that Pascal uses it too, but when I tried it Pascal used
1422 "x:3" (local symbol) instead. */
1423 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1424 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1425 SYMBOL_VALUE (sym) = valu;
1426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1427 add_symbol_to_list (sym, &local_symbols);
1428 break;
1429
1430 default:
1431 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1433 SYMBOL_VALUE (sym) = 0;
1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1435 add_symbol_to_list (sym, &file_symbols);
1436 break;
1437 }
1438
1439 /* Some systems pass variables of certain types by reference instead
1440 of by value, i.e. they will pass the address of a structure (in a
1441 register or on the stack) instead of the structure itself. */
1442
1443 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1444 && SYMBOL_IS_ARGUMENT (sym))
1445 {
1446 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1447 variables passed in a register). */
1448 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1449 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1450 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1451 and subsequent arguments on SPARC, for example). */
1452 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1454 }
1455
1456 return sym;
1457 }
1458
1459 /* Skip rest of this symbol and return an error type.
1460
1461 General notes on error recovery: error_type always skips to the
1462 end of the symbol (modulo cretinous dbx symbol name continuation).
1463 Thus code like this:
1464
1465 if (*(*pp)++ != ';')
1466 return error_type (pp, objfile);
1467
1468 is wrong because if *pp starts out pointing at '\0' (typically as the
1469 result of an earlier error), it will be incremented to point to the
1470 start of the next symbol, which might produce strange results, at least
1471 if you run off the end of the string table. Instead use
1472
1473 if (**pp != ';')
1474 return error_type (pp, objfile);
1475 ++*pp;
1476
1477 or
1478
1479 if (**pp != ';')
1480 foo = error_type (pp, objfile);
1481 else
1482 ++*pp;
1483
1484 And in case it isn't obvious, the point of all this hair is so the compiler
1485 can define new types and new syntaxes, and old versions of the
1486 debugger will be able to read the new symbol tables. */
1487
1488 static struct type *
1489 error_type (const char **pp, struct objfile *objfile)
1490 {
1491 complaint (_("couldn't parse type; debugger out of date?"));
1492 while (1)
1493 {
1494 /* Skip to end of symbol. */
1495 while (**pp != '\0')
1496 {
1497 (*pp)++;
1498 }
1499
1500 /* Check for and handle cretinous dbx symbol name continuation! */
1501 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1502 {
1503 *pp = next_symbol_text (objfile);
1504 }
1505 else
1506 {
1507 break;
1508 }
1509 }
1510 return objfile_type (objfile)->builtin_error;
1511 }
1512 \f
1513
1514 /* Read type information or a type definition; return the type. Even
1515 though this routine accepts either type information or a type
1516 definition, the distinction is relevant--some parts of stabsread.c
1517 assume that type information starts with a digit, '-', or '(' in
1518 deciding whether to call read_type. */
1519
1520 static struct type *
1521 read_type (const char **pp, struct objfile *objfile)
1522 {
1523 struct type *type = 0;
1524 struct type *type1;
1525 int typenums[2];
1526 char type_descriptor;
1527
1528 /* Size in bits of type if specified by a type attribute, or -1 if
1529 there is no size attribute. */
1530 int type_size = -1;
1531
1532 /* Used to distinguish string and bitstring from char-array and set. */
1533 int is_string = 0;
1534
1535 /* Used to distinguish vector from array. */
1536 int is_vector = 0;
1537
1538 /* Read type number if present. The type number may be omitted.
1539 for instance in a two-dimensional array declared with type
1540 "ar1;1;10;ar1;1;10;4". */
1541 if ((**pp >= '0' && **pp <= '9')
1542 || **pp == '('
1543 || **pp == '-')
1544 {
1545 if (read_type_number (pp, typenums) != 0)
1546 return error_type (pp, objfile);
1547
1548 if (**pp != '=')
1549 {
1550 /* Type is not being defined here. Either it already
1551 exists, or this is a forward reference to it.
1552 dbx_alloc_type handles both cases. */
1553 type = dbx_alloc_type (typenums, objfile);
1554
1555 /* If this is a forward reference, arrange to complain if it
1556 doesn't get patched up by the time we're done
1557 reading. */
1558 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1559 add_undefined_type (type, typenums);
1560
1561 return type;
1562 }
1563
1564 /* Type is being defined here. */
1565 /* Skip the '='.
1566 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1567 (*pp) += 2;
1568 }
1569 else
1570 {
1571 /* 'typenums=' not present, type is anonymous. Read and return
1572 the definition, but don't put it in the type vector. */
1573 typenums[0] = typenums[1] = -1;
1574 (*pp)++;
1575 }
1576
1577 again:
1578 type_descriptor = (*pp)[-1];
1579 switch (type_descriptor)
1580 {
1581 case 'x':
1582 {
1583 enum type_code code;
1584
1585 /* Used to index through file_symbols. */
1586 struct pending *ppt;
1587 int i;
1588
1589 /* Name including "struct", etc. */
1590 char *type_name;
1591
1592 {
1593 const char *from, *p, *q1, *q2;
1594
1595 /* Set the type code according to the following letter. */
1596 switch ((*pp)[0])
1597 {
1598 case 's':
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 case 'u':
1602 code = TYPE_CODE_UNION;
1603 break;
1604 case 'e':
1605 code = TYPE_CODE_ENUM;
1606 break;
1607 default:
1608 {
1609 /* Complain and keep going, so compilers can invent new
1610 cross-reference types. */
1611 complaint (_("Unrecognized cross-reference type `%c'"),
1612 (*pp)[0]);
1613 code = TYPE_CODE_STRUCT;
1614 break;
1615 }
1616 }
1617
1618 q1 = strchr (*pp, '<');
1619 p = strchr (*pp, ':');
1620 if (p == NULL)
1621 return error_type (pp, objfile);
1622 if (q1 && p > q1 && p[1] == ':')
1623 {
1624 int nesting_level = 0;
1625
1626 for (q2 = q1; *q2; q2++)
1627 {
1628 if (*q2 == '<')
1629 nesting_level++;
1630 else if (*q2 == '>')
1631 nesting_level--;
1632 else if (*q2 == ':' && nesting_level == 0)
1633 break;
1634 }
1635 p = q2;
1636 if (*p != ':')
1637 return error_type (pp, objfile);
1638 }
1639 type_name = NULL;
1640 if (current_subfile->language == language_cplus)
1641 {
1642 char *name = (char *) alloca (p - *pp + 1);
1643
1644 memcpy (name, *pp, p - *pp);
1645 name[p - *pp] = '\0';
1646
1647 std::string new_name = cp_canonicalize_string (name);
1648 if (!new_name.empty ())
1649 {
1650 type_name
1651 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1652 new_name.c_str (),
1653 new_name.length ());
1654 }
1655 }
1656 if (type_name == NULL)
1657 {
1658 char *to = type_name = (char *)
1659 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1660
1661 /* Copy the name. */
1662 from = *pp + 1;
1663 while (from < p)
1664 *to++ = *from++;
1665 *to = '\0';
1666 }
1667
1668 /* Set the pointer ahead of the name which we just read, and
1669 the colon. */
1670 *pp = p + 1;
1671 }
1672
1673 /* If this type has already been declared, then reuse the same
1674 type, rather than allocating a new one. This saves some
1675 memory. */
1676
1677 for (ppt = file_symbols; ppt; ppt = ppt->next)
1678 for (i = 0; i < ppt->nsyms; i++)
1679 {
1680 struct symbol *sym = ppt->symbol[i];
1681
1682 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1683 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1684 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1685 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1686 {
1687 obstack_free (&objfile->objfile_obstack, type_name);
1688 type = SYMBOL_TYPE (sym);
1689 if (typenums[0] != -1)
1690 *dbx_lookup_type (typenums, objfile) = type;
1691 return type;
1692 }
1693 }
1694
1695 /* Didn't find the type to which this refers, so we must
1696 be dealing with a forward reference. Allocate a type
1697 structure for it, and keep track of it so we can
1698 fill in the rest of the fields when we get the full
1699 type. */
1700 type = dbx_alloc_type (typenums, objfile);
1701 TYPE_CODE (type) = code;
1702 TYPE_TAG_NAME (type) = type_name;
1703 INIT_CPLUS_SPECIFIC (type);
1704 TYPE_STUB (type) = 1;
1705
1706 add_undefined_type (type, typenums);
1707 return type;
1708 }
1709
1710 case '-': /* RS/6000 built-in type */
1711 case '0':
1712 case '1':
1713 case '2':
1714 case '3':
1715 case '4':
1716 case '5':
1717 case '6':
1718 case '7':
1719 case '8':
1720 case '9':
1721 case '(':
1722 (*pp)--;
1723
1724 /* We deal with something like t(1,2)=(3,4)=... which
1725 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1726
1727 /* Allocate and enter the typedef type first.
1728 This handles recursive types. */
1729 type = dbx_alloc_type (typenums, objfile);
1730 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1731 {
1732 struct type *xtype = read_type (pp, objfile);
1733
1734 if (type == xtype)
1735 {
1736 /* It's being defined as itself. That means it is "void". */
1737 TYPE_CODE (type) = TYPE_CODE_VOID;
1738 TYPE_LENGTH (type) = 1;
1739 }
1740 else if (type_size >= 0 || is_string)
1741 {
1742 /* This is the absolute wrong way to construct types. Every
1743 other debug format has found a way around this problem and
1744 the related problems with unnecessarily stubbed types;
1745 someone motivated should attempt to clean up the issue
1746 here as well. Once a type pointed to has been created it
1747 should not be modified.
1748
1749 Well, it's not *absolutely* wrong. Constructing recursive
1750 types (trees, linked lists) necessarily entails modifying
1751 types after creating them. Constructing any loop structure
1752 entails side effects. The Dwarf 2 reader does handle this
1753 more gracefully (it never constructs more than once
1754 instance of a type object, so it doesn't have to copy type
1755 objects wholesale), but it still mutates type objects after
1756 other folks have references to them.
1757
1758 Keep in mind that this circularity/mutation issue shows up
1759 at the source language level, too: C's "incomplete types",
1760 for example. So the proper cleanup, I think, would be to
1761 limit GDB's type smashing to match exactly those required
1762 by the source language. So GDB could have a
1763 "complete_this_type" function, but never create unnecessary
1764 copies of a type otherwise. */
1765 replace_type (type, xtype);
1766 TYPE_NAME (type) = NULL;
1767 TYPE_TAG_NAME (type) = NULL;
1768 }
1769 else
1770 {
1771 TYPE_TARGET_STUB (type) = 1;
1772 TYPE_TARGET_TYPE (type) = xtype;
1773 }
1774 }
1775 break;
1776
1777 /* In the following types, we must be sure to overwrite any existing
1778 type that the typenums refer to, rather than allocating a new one
1779 and making the typenums point to the new one. This is because there
1780 may already be pointers to the existing type (if it had been
1781 forward-referenced), and we must change it to a pointer, function,
1782 reference, or whatever, *in-place*. */
1783
1784 case '*': /* Pointer to another type */
1785 type1 = read_type (pp, objfile);
1786 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1787 break;
1788
1789 case '&': /* Reference to another type */
1790 type1 = read_type (pp, objfile);
1791 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1792 TYPE_CODE_REF);
1793 break;
1794
1795 case 'f': /* Function returning another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1798 break;
1799
1800 case 'g': /* Prototyped function. (Sun) */
1801 {
1802 /* Unresolved questions:
1803
1804 - According to Sun's ``STABS Interface Manual'', for 'f'
1805 and 'F' symbol descriptors, a `0' in the argument type list
1806 indicates a varargs function. But it doesn't say how 'g'
1807 type descriptors represent that info. Someone with access
1808 to Sun's toolchain should try it out.
1809
1810 - According to the comment in define_symbol (search for
1811 `process_prototype_types:'), Sun emits integer arguments as
1812 types which ref themselves --- like `void' types. Do we
1813 have to deal with that here, too? Again, someone with
1814 access to Sun's toolchain should try it out and let us
1815 know. */
1816
1817 const char *type_start = (*pp) - 1;
1818 struct type *return_type = read_type (pp, objfile);
1819 struct type *func_type
1820 = make_function_type (return_type,
1821 dbx_lookup_type (typenums, objfile));
1822 struct type_list {
1823 struct type *type;
1824 struct type_list *next;
1825 } *arg_types = 0;
1826 int num_args = 0;
1827
1828 while (**pp && **pp != '#')
1829 {
1830 struct type *arg_type = read_type (pp, objfile);
1831 struct type_list *newobj = XALLOCA (struct type_list);
1832 newobj->type = arg_type;
1833 newobj->next = arg_types;
1834 arg_types = newobj;
1835 num_args++;
1836 }
1837 if (**pp == '#')
1838 ++*pp;
1839 else
1840 {
1841 complaint (_("Prototyped function type didn't "
1842 "end arguments with `#':\n%s"),
1843 type_start);
1844 }
1845
1846 /* If there is just one argument whose type is `void', then
1847 that's just an empty argument list. */
1848 if (arg_types
1849 && ! arg_types->next
1850 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1851 num_args = 0;
1852
1853 TYPE_FIELDS (func_type)
1854 = (struct field *) TYPE_ALLOC (func_type,
1855 num_args * sizeof (struct field));
1856 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1857 {
1858 int i;
1859 struct type_list *t;
1860
1861 /* We stuck each argument type onto the front of the list
1862 when we read it, so the list is reversed. Build the
1863 fields array right-to-left. */
1864 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1865 TYPE_FIELD_TYPE (func_type, i) = t->type;
1866 }
1867 TYPE_NFIELDS (func_type) = num_args;
1868 TYPE_PROTOTYPED (func_type) = 1;
1869
1870 type = func_type;
1871 break;
1872 }
1873
1874 case 'k': /* Const qualifier on some type (Sun) */
1875 type = read_type (pp, objfile);
1876 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1877 dbx_lookup_type (typenums, objfile));
1878 break;
1879
1880 case 'B': /* Volatile qual on some type (Sun) */
1881 type = read_type (pp, objfile);
1882 type = make_cv_type (TYPE_CONST (type), 1, type,
1883 dbx_lookup_type (typenums, objfile));
1884 break;
1885
1886 case '@':
1887 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1888 { /* Member (class & variable) type */
1889 /* FIXME -- we should be doing smash_to_XXX types here. */
1890
1891 struct type *domain = read_type (pp, objfile);
1892 struct type *memtype;
1893
1894 if (**pp != ',')
1895 /* Invalid member type data format. */
1896 return error_type (pp, objfile);
1897 ++*pp;
1898
1899 memtype = read_type (pp, objfile);
1900 type = dbx_alloc_type (typenums, objfile);
1901 smash_to_memberptr_type (type, domain, memtype);
1902 }
1903 else
1904 /* type attribute */
1905 {
1906 const char *attr = *pp;
1907
1908 /* Skip to the semicolon. */
1909 while (**pp != ';' && **pp != '\0')
1910 ++(*pp);
1911 if (**pp == '\0')
1912 return error_type (pp, objfile);
1913 else
1914 ++ * pp; /* Skip the semicolon. */
1915
1916 switch (*attr)
1917 {
1918 case 's': /* Size attribute */
1919 type_size = atoi (attr + 1);
1920 if (type_size <= 0)
1921 type_size = -1;
1922 break;
1923
1924 case 'S': /* String attribute */
1925 /* FIXME: check to see if following type is array? */
1926 is_string = 1;
1927 break;
1928
1929 case 'V': /* Vector attribute */
1930 /* FIXME: check to see if following type is array? */
1931 is_vector = 1;
1932 break;
1933
1934 default:
1935 /* Ignore unrecognized type attributes, so future compilers
1936 can invent new ones. */
1937 break;
1938 }
1939 ++*pp;
1940 goto again;
1941 }
1942 break;
1943
1944 case '#': /* Method (class & fn) type */
1945 if ((*pp)[0] == '#')
1946 {
1947 /* We'll get the parameter types from the name. */
1948 struct type *return_type;
1949
1950 (*pp)++;
1951 return_type = read_type (pp, objfile);
1952 if (*(*pp)++ != ';')
1953 complaint (_("invalid (minimal) member type "
1954 "data format at symtab pos %d."),
1955 symnum);
1956 type = allocate_stub_method (return_type);
1957 if (typenums[0] != -1)
1958 *dbx_lookup_type (typenums, objfile) = type;
1959 }
1960 else
1961 {
1962 struct type *domain = read_type (pp, objfile);
1963 struct type *return_type;
1964 struct field *args;
1965 int nargs, varargs;
1966
1967 if (**pp != ',')
1968 /* Invalid member type data format. */
1969 return error_type (pp, objfile);
1970 else
1971 ++(*pp);
1972
1973 return_type = read_type (pp, objfile);
1974 args = read_args (pp, ';', objfile, &nargs, &varargs);
1975 if (args == NULL)
1976 return error_type (pp, objfile);
1977 type = dbx_alloc_type (typenums, objfile);
1978 smash_to_method_type (type, domain, return_type, args,
1979 nargs, varargs);
1980 }
1981 break;
1982
1983 case 'r': /* Range type */
1984 type = read_range_type (pp, typenums, type_size, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'b':
1990 {
1991 /* Sun ACC builtin int type */
1992 type = read_sun_builtin_type (pp, typenums, objfile);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 }
1996 break;
1997
1998 case 'R': /* Sun ACC builtin float type */
1999 type = read_sun_floating_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2002 break;
2003
2004 case 'e': /* Enumeration type */
2005 type = dbx_alloc_type (typenums, objfile);
2006 type = read_enum_type (pp, type, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2009 break;
2010
2011 case 's': /* Struct type */
2012 case 'u': /* Union type */
2013 {
2014 enum type_code type_code = TYPE_CODE_UNDEF;
2015 type = dbx_alloc_type (typenums, objfile);
2016 switch (type_descriptor)
2017 {
2018 case 's':
2019 type_code = TYPE_CODE_STRUCT;
2020 break;
2021 case 'u':
2022 type_code = TYPE_CODE_UNION;
2023 break;
2024 }
2025 type = read_struct_type (pp, type, type_code, objfile);
2026 break;
2027 }
2028
2029 case 'a': /* Array type */
2030 if (**pp != 'r')
2031 return error_type (pp, objfile);
2032 ++*pp;
2033
2034 type = dbx_alloc_type (typenums, objfile);
2035 type = read_array_type (pp, type, objfile);
2036 if (is_string)
2037 TYPE_CODE (type) = TYPE_CODE_STRING;
2038 if (is_vector)
2039 make_vector_type (type);
2040 break;
2041
2042 case 'S': /* Set type */
2043 type1 = read_type (pp, objfile);
2044 type = create_set_type ((struct type *) NULL, type1);
2045 if (typenums[0] != -1)
2046 *dbx_lookup_type (typenums, objfile) = type;
2047 break;
2048
2049 default:
2050 --*pp; /* Go back to the symbol in error. */
2051 /* Particularly important if it was \0! */
2052 return error_type (pp, objfile);
2053 }
2054
2055 if (type == 0)
2056 {
2057 warning (_("GDB internal error, type is NULL in stabsread.c."));
2058 return error_type (pp, objfile);
2059 }
2060
2061 /* Size specified in a type attribute overrides any other size. */
2062 if (type_size != -1)
2063 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2064
2065 return type;
2066 }
2067 \f
2068 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2069 Return the proper type node for a given builtin type number. */
2070
2071 static const struct objfile_data *rs6000_builtin_type_data;
2072
2073 static struct type *
2074 rs6000_builtin_type (int typenum, struct objfile *objfile)
2075 {
2076 struct type **negative_types
2077 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2078
2079 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2080 #define NUMBER_RECOGNIZED 34
2081 struct type *rettype = NULL;
2082
2083 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2084 {
2085 complaint (_("Unknown builtin type %d"), typenum);
2086 return objfile_type (objfile)->builtin_error;
2087 }
2088
2089 if (!negative_types)
2090 {
2091 /* This includes an empty slot for type number -0. */
2092 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2093 NUMBER_RECOGNIZED + 1, struct type *);
2094 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2095 }
2096
2097 if (negative_types[-typenum] != NULL)
2098 return negative_types[-typenum];
2099
2100 #if TARGET_CHAR_BIT != 8
2101 #error This code wrong for TARGET_CHAR_BIT not 8
2102 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2103 that if that ever becomes not true, the correct fix will be to
2104 make the size in the struct type to be in bits, not in units of
2105 TARGET_CHAR_BIT. */
2106 #endif
2107
2108 switch (-typenum)
2109 {
2110 case 1:
2111 /* The size of this and all the other types are fixed, defined
2112 by the debugging format. If there is a type called "int" which
2113 is other than 32 bits, then it should use a new negative type
2114 number (or avoid negative type numbers for that case).
2115 See stabs.texinfo. */
2116 rettype = init_integer_type (objfile, 32, 0, "int");
2117 break;
2118 case 2:
2119 rettype = init_integer_type (objfile, 8, 0, "char");
2120 TYPE_NOSIGN (rettype) = 1;
2121 break;
2122 case 3:
2123 rettype = init_integer_type (objfile, 16, 0, "short");
2124 break;
2125 case 4:
2126 rettype = init_integer_type (objfile, 32, 0, "long");
2127 break;
2128 case 5:
2129 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2130 break;
2131 case 6:
2132 rettype = init_integer_type (objfile, 8, 0, "signed char");
2133 break;
2134 case 7:
2135 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2136 break;
2137 case 8:
2138 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2139 break;
2140 case 9:
2141 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2142 break;
2143 case 10:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2145 break;
2146 case 11:
2147 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2148 break;
2149 case 12:
2150 /* IEEE single precision (32 bit). */
2151 rettype = init_float_type (objfile, 32, "float",
2152 floatformats_ieee_single);
2153 break;
2154 case 13:
2155 /* IEEE double precision (64 bit). */
2156 rettype = init_float_type (objfile, 64, "double",
2157 floatformats_ieee_double);
2158 break;
2159 case 14:
2160 /* This is an IEEE double on the RS/6000, and different machines with
2161 different sizes for "long double" should use different negative
2162 type numbers. See stabs.texinfo. */
2163 rettype = init_float_type (objfile, 64, "long double",
2164 floatformats_ieee_double);
2165 break;
2166 case 15:
2167 rettype = init_integer_type (objfile, 32, 0, "integer");
2168 break;
2169 case 16:
2170 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2171 break;
2172 case 17:
2173 rettype = init_float_type (objfile, 32, "short real",
2174 floatformats_ieee_single);
2175 break;
2176 case 18:
2177 rettype = init_float_type (objfile, 64, "real",
2178 floatformats_ieee_double);
2179 break;
2180 case 19:
2181 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2182 break;
2183 case 20:
2184 rettype = init_character_type (objfile, 8, 1, "character");
2185 break;
2186 case 21:
2187 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2188 break;
2189 case 22:
2190 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2191 break;
2192 case 23:
2193 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2194 break;
2195 case 24:
2196 rettype = init_boolean_type (objfile, 32, 1, "logical");
2197 break;
2198 case 25:
2199 /* Complex type consisting of two IEEE single precision values. */
2200 rettype = init_complex_type (objfile, "complex",
2201 rs6000_builtin_type (12, objfile));
2202 break;
2203 case 26:
2204 /* Complex type consisting of two IEEE double precision values. */
2205 rettype = init_complex_type (objfile, "double complex",
2206 rs6000_builtin_type (13, objfile));
2207 break;
2208 case 27:
2209 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2210 break;
2211 case 28:
2212 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2213 break;
2214 case 29:
2215 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2216 break;
2217 case 30:
2218 rettype = init_character_type (objfile, 16, 0, "wchar");
2219 break;
2220 case 31:
2221 rettype = init_integer_type (objfile, 64, 0, "long long");
2222 break;
2223 case 32:
2224 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2225 break;
2226 case 33:
2227 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2228 break;
2229 case 34:
2230 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2231 break;
2232 }
2233 negative_types[-typenum] = rettype;
2234 return rettype;
2235 }
2236 \f
2237 /* This page contains subroutines of read_type. */
2238
2239 /* Wrapper around method_name_from_physname to flag a complaint
2240 if there is an error. */
2241
2242 static char *
2243 stabs_method_name_from_physname (const char *physname)
2244 {
2245 char *method_name;
2246
2247 method_name = method_name_from_physname (physname);
2248
2249 if (method_name == NULL)
2250 {
2251 complaint (_("Method has bad physname %s\n"), physname);
2252 return NULL;
2253 }
2254
2255 return method_name;
2256 }
2257
2258 /* Read member function stabs info for C++ classes. The form of each member
2259 function data is:
2260
2261 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2262
2263 An example with two member functions is:
2264
2265 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2266
2267 For the case of overloaded operators, the format is op$::*.funcs, where
2268 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2269 name (such as `+=') and `.' marks the end of the operator name.
2270
2271 Returns 1 for success, 0 for failure. */
2272
2273 static int
2274 read_member_functions (struct field_info *fip, const char **pp,
2275 struct type *type, struct objfile *objfile)
2276 {
2277 int nfn_fields = 0;
2278 int length = 0;
2279 int i;
2280 struct next_fnfield
2281 {
2282 struct next_fnfield *next;
2283 struct fn_field fn_field;
2284 }
2285 *sublist;
2286 struct type *look_ahead_type;
2287 struct next_fnfieldlist *new_fnlist;
2288 struct next_fnfield *new_sublist;
2289 char *main_fn_name;
2290 const char *p;
2291
2292 /* Process each list until we find something that is not a member function
2293 or find the end of the functions. */
2294
2295 while (**pp != ';')
2296 {
2297 /* We should be positioned at the start of the function name.
2298 Scan forward to find the first ':' and if it is not the
2299 first of a "::" delimiter, then this is not a member function. */
2300 p = *pp;
2301 while (*p != ':')
2302 {
2303 p++;
2304 }
2305 if (p[1] != ':')
2306 {
2307 break;
2308 }
2309
2310 sublist = NULL;
2311 look_ahead_type = NULL;
2312 length = 0;
2313
2314 new_fnlist = XCNEW (struct next_fnfieldlist);
2315 make_cleanup (xfree, new_fnlist);
2316
2317 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2318 {
2319 /* This is a completely wierd case. In order to stuff in the
2320 names that might contain colons (the usual name delimiter),
2321 Mike Tiemann defined a different name format which is
2322 signalled if the identifier is "op$". In that case, the
2323 format is "op$::XXXX." where XXXX is the name. This is
2324 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2325 /* This lets the user type "break operator+".
2326 We could just put in "+" as the name, but that wouldn't
2327 work for "*". */
2328 static char opname[32] = "op$";
2329 char *o = opname + 3;
2330
2331 /* Skip past '::'. */
2332 *pp = p + 2;
2333
2334 STABS_CONTINUE (pp, objfile);
2335 p = *pp;
2336 while (*p != '.')
2337 {
2338 *o++ = *p++;
2339 }
2340 main_fn_name = savestring (opname, o - opname);
2341 /* Skip past '.' */
2342 *pp = p + 1;
2343 }
2344 else
2345 {
2346 main_fn_name = savestring (*pp, p - *pp);
2347 /* Skip past '::'. */
2348 *pp = p + 2;
2349 }
2350 new_fnlist->fn_fieldlist.name = main_fn_name;
2351
2352 do
2353 {
2354 new_sublist = XCNEW (struct next_fnfield);
2355 make_cleanup (xfree, new_sublist);
2356
2357 /* Check for and handle cretinous dbx symbol name continuation! */
2358 if (look_ahead_type == NULL)
2359 {
2360 /* Normal case. */
2361 STABS_CONTINUE (pp, objfile);
2362
2363 new_sublist->fn_field.type = read_type (pp, objfile);
2364 if (**pp != ':')
2365 {
2366 /* Invalid symtab info for member function. */
2367 return 0;
2368 }
2369 }
2370 else
2371 {
2372 /* g++ version 1 kludge */
2373 new_sublist->fn_field.type = look_ahead_type;
2374 look_ahead_type = NULL;
2375 }
2376
2377 (*pp)++;
2378 p = *pp;
2379 while (*p != ';')
2380 {
2381 p++;
2382 }
2383
2384 /* These are methods, not functions. */
2385 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2386 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2387 else
2388 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2389 == TYPE_CODE_METHOD);
2390
2391 /* If this is just a stub, then we don't have the real name here. */
2392 if (TYPE_STUB (new_sublist->fn_field.type))
2393 {
2394 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2395 set_type_self_type (new_sublist->fn_field.type, type);
2396 new_sublist->fn_field.is_stub = 1;
2397 }
2398
2399 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2400 *pp = p + 1;
2401
2402 /* Set this member function's visibility fields. */
2403 switch (*(*pp)++)
2404 {
2405 case VISIBILITY_PRIVATE:
2406 new_sublist->fn_field.is_private = 1;
2407 break;
2408 case VISIBILITY_PROTECTED:
2409 new_sublist->fn_field.is_protected = 1;
2410 break;
2411 }
2412
2413 STABS_CONTINUE (pp, objfile);
2414 switch (**pp)
2415 {
2416 case 'A': /* Normal functions. */
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
2421 case 'B': /* `const' member functions. */
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 0;
2424 (*pp)++;
2425 break;
2426 case 'C': /* `volatile' member function. */
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
2431 case 'D': /* `const volatile' member function. */
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 1;
2434 (*pp)++;
2435 break;
2436 case '*': /* File compiled with g++ version 1 --
2437 no info. */
2438 case '?':
2439 case '.':
2440 break;
2441 default:
2442 complaint (_("const/volatile indicator missing, got '%c'"),
2443 **pp);
2444 break;
2445 }
2446
2447 switch (*(*pp)++)
2448 {
2449 case '*':
2450 {
2451 int nbits;
2452 /* virtual member function, followed by index.
2453 The sign bit is set to distinguish pointers-to-methods
2454 from virtual function indicies. Since the array is
2455 in words, the quantity must be shifted left by 1
2456 on 16 bit machine, and by 2 on 32 bit machine, forcing
2457 the sign bit out, and usable as a valid index into
2458 the array. Remove the sign bit here. */
2459 new_sublist->fn_field.voffset =
2460 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2461 if (nbits != 0)
2462 return 0;
2463
2464 STABS_CONTINUE (pp, objfile);
2465 if (**pp == ';' || **pp == '\0')
2466 {
2467 /* Must be g++ version 1. */
2468 new_sublist->fn_field.fcontext = 0;
2469 }
2470 else
2471 {
2472 /* Figure out from whence this virtual function came.
2473 It may belong to virtual function table of
2474 one of its baseclasses. */
2475 look_ahead_type = read_type (pp, objfile);
2476 if (**pp == ':')
2477 {
2478 /* g++ version 1 overloaded methods. */
2479 }
2480 else
2481 {
2482 new_sublist->fn_field.fcontext = look_ahead_type;
2483 if (**pp != ';')
2484 {
2485 return 0;
2486 }
2487 else
2488 {
2489 ++*pp;
2490 }
2491 look_ahead_type = NULL;
2492 }
2493 }
2494 break;
2495 }
2496 case '?':
2497 /* static member function. */
2498 {
2499 int slen = strlen (main_fn_name);
2500
2501 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2502
2503 /* For static member functions, we can't tell if they
2504 are stubbed, as they are put out as functions, and not as
2505 methods.
2506 GCC v2 emits the fully mangled name if
2507 dbxout.c:flag_minimal_debug is not set, so we have to
2508 detect a fully mangled physname here and set is_stub
2509 accordingly. Fully mangled physnames in v2 start with
2510 the member function name, followed by two underscores.
2511 GCC v3 currently always emits stubbed member functions,
2512 but with fully mangled physnames, which start with _Z. */
2513 if (!(strncmp (new_sublist->fn_field.physname,
2514 main_fn_name, slen) == 0
2515 && new_sublist->fn_field.physname[slen] == '_'
2516 && new_sublist->fn_field.physname[slen + 1] == '_'))
2517 {
2518 new_sublist->fn_field.is_stub = 1;
2519 }
2520 break;
2521 }
2522
2523 default:
2524 /* error */
2525 complaint (_("member function type missing, got '%c'"),
2526 (*pp)[-1]);
2527 /* Normal member function. */
2528 /* Fall through. */
2529
2530 case '.':
2531 /* normal member function. */
2532 new_sublist->fn_field.voffset = 0;
2533 new_sublist->fn_field.fcontext = 0;
2534 break;
2535 }
2536
2537 new_sublist->next = sublist;
2538 sublist = new_sublist;
2539 length++;
2540 STABS_CONTINUE (pp, objfile);
2541 }
2542 while (**pp != ';' && **pp != '\0');
2543
2544 (*pp)++;
2545 STABS_CONTINUE (pp, objfile);
2546
2547 /* Skip GCC 3.X member functions which are duplicates of the callable
2548 constructor/destructor. */
2549 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2550 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2551 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2552 {
2553 xfree (main_fn_name);
2554 }
2555 else
2556 {
2557 int has_stub = 0;
2558 int has_destructor = 0, has_other = 0;
2559 int is_v3 = 0;
2560 struct next_fnfield *tmp_sublist;
2561
2562 /* Various versions of GCC emit various mostly-useless
2563 strings in the name field for special member functions.
2564
2565 For stub methods, we need to defer correcting the name
2566 until we are ready to unstub the method, because the current
2567 name string is used by gdb_mangle_name. The only stub methods
2568 of concern here are GNU v2 operators; other methods have their
2569 names correct (see caveat below).
2570
2571 For non-stub methods, in GNU v3, we have a complete physname.
2572 Therefore we can safely correct the name now. This primarily
2573 affects constructors and destructors, whose name will be
2574 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2575 operators will also have incorrect names; for instance,
2576 "operator int" will be named "operator i" (i.e. the type is
2577 mangled).
2578
2579 For non-stub methods in GNU v2, we have no easy way to
2580 know if we have a complete physname or not. For most
2581 methods the result depends on the platform (if CPLUS_MARKER
2582 can be `$' or `.', it will use minimal debug information, or
2583 otherwise the full physname will be included).
2584
2585 Rather than dealing with this, we take a different approach.
2586 For v3 mangled names, we can use the full physname; for v2,
2587 we use cplus_demangle_opname (which is actually v2 specific),
2588 because the only interesting names are all operators - once again
2589 barring the caveat below. Skip this process if any method in the
2590 group is a stub, to prevent our fouling up the workings of
2591 gdb_mangle_name.
2592
2593 The caveat: GCC 2.95.x (and earlier?) put constructors and
2594 destructors in the same method group. We need to split this
2595 into two groups, because they should have different names.
2596 So for each method group we check whether it contains both
2597 routines whose physname appears to be a destructor (the physnames
2598 for and destructors are always provided, due to quirks in v2
2599 mangling) and routines whose physname does not appear to be a
2600 destructor. If so then we break up the list into two halves.
2601 Even if the constructors and destructors aren't in the same group
2602 the destructor will still lack the leading tilde, so that also
2603 needs to be fixed.
2604
2605 So, to summarize what we expect and handle here:
2606
2607 Given Given Real Real Action
2608 method name physname physname method name
2609
2610 __opi [none] __opi__3Foo operator int opname
2611 [now or later]
2612 Foo _._3Foo _._3Foo ~Foo separate and
2613 rename
2614 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2615 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2616 */
2617
2618 tmp_sublist = sublist;
2619 while (tmp_sublist != NULL)
2620 {
2621 if (tmp_sublist->fn_field.is_stub)
2622 has_stub = 1;
2623 if (tmp_sublist->fn_field.physname[0] == '_'
2624 && tmp_sublist->fn_field.physname[1] == 'Z')
2625 is_v3 = 1;
2626
2627 if (is_destructor_name (tmp_sublist->fn_field.physname))
2628 has_destructor++;
2629 else
2630 has_other++;
2631
2632 tmp_sublist = tmp_sublist->next;
2633 }
2634
2635 if (has_destructor && has_other)
2636 {
2637 struct next_fnfieldlist *destr_fnlist;
2638 struct next_fnfield *last_sublist;
2639
2640 /* Create a new fn_fieldlist for the destructors. */
2641
2642 destr_fnlist = XCNEW (struct next_fnfieldlist);
2643 make_cleanup (xfree, destr_fnlist);
2644
2645 destr_fnlist->fn_fieldlist.name
2646 = obconcat (&objfile->objfile_obstack, "~",
2647 new_fnlist->fn_fieldlist.name, (char *) NULL);
2648
2649 destr_fnlist->fn_fieldlist.fn_fields =
2650 XOBNEWVEC (&objfile->objfile_obstack,
2651 struct fn_field, has_destructor);
2652 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2653 sizeof (struct fn_field) * has_destructor);
2654 tmp_sublist = sublist;
2655 last_sublist = NULL;
2656 i = 0;
2657 while (tmp_sublist != NULL)
2658 {
2659 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2660 {
2661 tmp_sublist = tmp_sublist->next;
2662 continue;
2663 }
2664
2665 destr_fnlist->fn_fieldlist.fn_fields[i++]
2666 = tmp_sublist->fn_field;
2667 if (last_sublist)
2668 last_sublist->next = tmp_sublist->next;
2669 else
2670 sublist = tmp_sublist->next;
2671 last_sublist = tmp_sublist;
2672 tmp_sublist = tmp_sublist->next;
2673 }
2674
2675 destr_fnlist->fn_fieldlist.length = has_destructor;
2676 destr_fnlist->next = fip->fnlist;
2677 fip->fnlist = destr_fnlist;
2678 nfn_fields++;
2679 length -= has_destructor;
2680 }
2681 else if (is_v3)
2682 {
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2685 only:
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
2689 char *new_method_name =
2690 stabs_method_name_from_physname (sublist->fn_field.physname);
2691
2692 if (new_method_name != NULL
2693 && strcmp (new_method_name,
2694 new_fnlist->fn_fieldlist.name) != 0)
2695 {
2696 new_fnlist->fn_fieldlist.name = new_method_name;
2697 xfree (main_fn_name);
2698 }
2699 else
2700 xfree (new_method_name);
2701 }
2702 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2703 {
2704 new_fnlist->fn_fieldlist.name =
2705 obconcat (&objfile->objfile_obstack,
2706 "~", main_fn_name, (char *)NULL);
2707 xfree (main_fn_name);
2708 }
2709 else if (!has_stub)
2710 {
2711 char dem_opname[256];
2712 int ret;
2713
2714 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2715 dem_opname, DMGL_ANSI);
2716 if (!ret)
2717 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2718 dem_opname, 0);
2719 if (ret)
2720 new_fnlist->fn_fieldlist.name
2721 = ((const char *)
2722 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2723 strlen (dem_opname)));
2724 xfree (main_fn_name);
2725 }
2726
2727 new_fnlist->fn_fieldlist.fn_fields
2728 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2729 for (i = length; (i--, sublist); sublist = sublist->next)
2730 {
2731 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2732 }
2733
2734 new_fnlist->fn_fieldlist.length = length;
2735 new_fnlist->next = fip->fnlist;
2736 fip->fnlist = new_fnlist;
2737 nfn_fields++;
2738 }
2739 }
2740
2741 if (nfn_fields)
2742 {
2743 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2744 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2745 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2746 memset (TYPE_FN_FIELDLISTS (type), 0,
2747 sizeof (struct fn_fieldlist) * nfn_fields);
2748 TYPE_NFN_FIELDS (type) = nfn_fields;
2749 }
2750
2751 return 1;
2752 }
2753
2754 /* Special GNU C++ name.
2755
2756 Returns 1 for success, 0 for failure. "failure" means that we can't
2757 keep parsing and it's time for error_type(). */
2758
2759 static int
2760 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2761 struct objfile *objfile)
2762 {
2763 const char *p;
2764 const char *name;
2765 char cpp_abbrev;
2766 struct type *context;
2767
2768 p = *pp;
2769 if (*++p == 'v')
2770 {
2771 name = NULL;
2772 cpp_abbrev = *++p;
2773
2774 *pp = p + 1;
2775
2776 /* At this point, *pp points to something like "22:23=*22...",
2777 where the type number before the ':' is the "context" and
2778 everything after is a regular type definition. Lookup the
2779 type, find it's name, and construct the field name. */
2780
2781 context = read_type (pp, objfile);
2782
2783 switch (cpp_abbrev)
2784 {
2785 case 'f': /* $vf -- a virtual function table pointer */
2786 name = type_name_no_tag (context);
2787 if (name == NULL)
2788 {
2789 name = "";
2790 }
2791 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2792 vptr_name, name, (char *) NULL);
2793 break;
2794
2795 case 'b': /* $vb -- a virtual bsomethingorother */
2796 name = type_name_no_tag (context);
2797 if (name == NULL)
2798 {
2799 complaint (_("C++ abbreviated type name "
2800 "unknown at symtab pos %d"),
2801 symnum);
2802 name = "FOO";
2803 }
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
2806 break;
2807
2808 default:
2809 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2812 (char *) NULL);
2813 break;
2814 }
2815
2816 /* At this point, *pp points to the ':'. Skip it and read the
2817 field type. */
2818
2819 p = ++(*pp);
2820 if (p[-1] != ':')
2821 {
2822 invalid_cpp_abbrev_complaint (*pp);
2823 return 0;
2824 }
2825 fip->list->field.type = read_type (pp, objfile);
2826 if (**pp == ',')
2827 (*pp)++; /* Skip the comma. */
2828 else
2829 return 0;
2830
2831 {
2832 int nbits;
2833
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
2836 if (nbits != 0)
2837 return 0;
2838 }
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2842 }
2843 else
2844 {
2845 invalid_cpp_abbrev_complaint (*pp);
2846 /* We have no idea what syntax an unrecognized abbrev would have, so
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
2849 return 0;
2850 }
2851 return 1;
2852 }
2853
2854 static void
2855 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2856 struct type *type, struct objfile *objfile)
2857 {
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859
2860 fip->list->field.name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2862 *pp = p + 1;
2863
2864 /* This means we have a visibility for a field coming. */
2865 if (**pp == '/')
2866 {
2867 (*pp)++;
2868 fip->list->visibility = *(*pp)++;
2869 }
2870 else
2871 {
2872 /* normal dbx-style format, no explicit visibility */
2873 fip->list->visibility = VISIBILITY_PUBLIC;
2874 }
2875
2876 fip->list->field.type = read_type (pp, objfile);
2877 if (**pp == ':')
2878 {
2879 p = ++(*pp);
2880 #if 0
2881 /* Possible future hook for nested types. */
2882 if (**pp == '!')
2883 {
2884 fip->list->field.bitpos = (long) -2; /* nested type */
2885 p = ++(*pp);
2886 }
2887 else
2888 ...;
2889 #endif
2890 while (*p != ';')
2891 {
2892 p++;
2893 }
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896 *pp = p + 1;
2897 return;
2898 }
2899 else if (**pp != ',')
2900 {
2901 /* Bad structure-type format. */
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905
2906 (*pp)++; /* Skip the comma. */
2907
2908 {
2909 int nbits;
2910
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
2913 if (nbits != 0)
2914 {
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2919 if (nbits != 0)
2920 {
2921 stabs_general_complaint ("bad structure-type format");
2922 return;
2923 }
2924 }
2925
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2928 {
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2937
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
2942
2943 /* Ignore this field. */
2944 fip->list->visibility = VISIBILITY_IGNORE;
2945 }
2946 else
2947 {
2948 /* Detect an unpacked field and mark it as such.
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
2952
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 {
2960 FIELD_BITSIZE (fip->list->field) = 0;
2961 }
2962 if ((FIELD_BITSIZE (fip->list->field)
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2965 && FIELD_BITSIZE (fip->list->field)
2966 == gdbarch_int_bit (gdbarch))
2967 )
2968 &&
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 }
2974 }
2975
2976
2977 /* Read struct or class data fields. They have the form:
2978
2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2980
2981 At the end, we see a semicolon instead of a field.
2982
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 a static field.
2985
2986 The optional VISIBILITY is one of:
2987
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
2992
2993 or nothing, for C style fields with public visibility.
2994
2995 Returns 1 for success, 0 for failure. */
2996
2997 static int
2998 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2999 struct objfile *objfile)
3000 {
3001 const char *p;
3002 struct nextfield *newobj;
3003
3004 /* We better set p right now, in case there are no fields at all... */
3005
3006 p = *pp;
3007
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
3010 start of the member function list. */
3011 /* Stab string for structure/union does not end with two ';' in
3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3013
3014 while (**pp != ';' && **pp != '\0')
3015 {
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
3018 newobj = XCNEW (struct nextfield);
3019 make_cleanup (xfree, newobj);
3020
3021 newobj->next = fip->list;
3022 fip->list = newobj;
3023
3024 /* Get the field name. */
3025 p = *pp;
3026
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
3031
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3033 {
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 return 0;
3036 continue;
3037 }
3038
3039 /* Look for the ':' that separates the field name from the field
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
3042 functions (if any), terminate scan loop and return. */
3043
3044 while (*p != ':' && *p != '\0')
3045 {
3046 p++;
3047 }
3048 if (*p == '\0')
3049 return 0;
3050
3051 /* Check to see if we have hit the member functions yet. */
3052 if (p[1] == ':')
3053 {
3054 break;
3055 }
3056 read_one_struct_field (fip, pp, p, type, objfile);
3057 }
3058 if (p[0] == ':' && p[1] == ':')
3059 {
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
3062 scrub. */
3063 fip->list = fip->list->next;
3064 }
3065 return 1;
3066 }
3067 /* *INDENT-OFF* */
3068 /* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3072
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3078
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080 ^^ ^ ^ ^ ^ ^ ^
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3089
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
3091 /* *INDENT-ON* */
3092
3093
3094
3095 static int
3096 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3097 struct objfile *objfile)
3098 {
3099 int i;
3100 struct nextfield *newobj;
3101
3102 if (**pp != '!')
3103 {
3104 return 1;
3105 }
3106 else
3107 {
3108 /* Skip the '!' baseclass information marker. */
3109 (*pp)++;
3110 }
3111
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113 {
3114 int nbits;
3115
3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121 #if 0
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126 #else
3127 {
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 char *pointer;
3130
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133 }
3134 #endif /* 0 */
3135
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139 {
3140 newobj = XCNEW (struct nextfield);
3141 make_cleanup (xfree, newobj);
3142
3143 newobj->next = fip->list;
3144 fip->list = newobj;
3145 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3146 field! */
3147
3148 STABS_CONTINUE (pp, objfile);
3149 switch (**pp)
3150 {
3151 case '0':
3152 /* Nothing to do. */
3153 break;
3154 case '1':
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 break;
3157 default:
3158 /* Unknown character. Complain and treat it as non-virtual. */
3159 {
3160 complaint (_("Unknown virtual character `%c' for baseclass"),
3161 **pp);
3162 }
3163 }
3164 ++(*pp);
3165
3166 newobj->visibility = *(*pp)++;
3167 switch (newobj->visibility)
3168 {
3169 case VISIBILITY_PRIVATE:
3170 case VISIBILITY_PROTECTED:
3171 case VISIBILITY_PUBLIC:
3172 break;
3173 default:
3174 /* Bad visibility format. Complain and treat it as
3175 public. */
3176 {
3177 complaint (_("Unknown visibility `%c' for baseclass"),
3178 newobj->visibility);
3179 newobj->visibility = VISIBILITY_PUBLIC;
3180 }
3181 }
3182
3183 {
3184 int nbits;
3185
3186 /* The remaining value is the bit offset of the portion of the object
3187 corresponding to this baseclass. Always zero in the absence of
3188 multiple inheritance. */
3189
3190 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3191 if (nbits != 0)
3192 return 0;
3193 }
3194
3195 /* The last piece of baseclass information is the type of the
3196 base class. Read it, and remember it's type name as this
3197 field's name. */
3198
3199 newobj->field.type = read_type (pp, objfile);
3200 newobj->field.name = type_name_no_tag (newobj->field.type);
3201
3202 /* Skip trailing ';' and bump count of number of fields seen. */
3203 if (**pp == ';')
3204 (*pp)++;
3205 else
3206 return 0;
3207 }
3208 return 1;
3209 }
3210
3211 /* The tail end of stabs for C++ classes that contain a virtual function
3212 pointer contains a tilde, a %, and a type number.
3213 The type number refers to the base class (possibly this class itself) which
3214 contains the vtable pointer for the current class.
3215
3216 This function is called when we have parsed all the method declarations,
3217 so we can look for the vptr base class info. */
3218
3219 static int
3220 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3221 struct objfile *objfile)
3222 {
3223 const char *p;
3224
3225 STABS_CONTINUE (pp, objfile);
3226
3227 /* If we are positioned at a ';', then skip it. */
3228 if (**pp == ';')
3229 {
3230 (*pp)++;
3231 }
3232
3233 if (**pp == '~')
3234 {
3235 (*pp)++;
3236
3237 if (**pp == '=' || **pp == '+' || **pp == '-')
3238 {
3239 /* Obsolete flags that used to indicate the presence
3240 of constructors and/or destructors. */
3241 (*pp)++;
3242 }
3243
3244 /* Read either a '%' or the final ';'. */
3245 if (*(*pp)++ == '%')
3246 {
3247 /* The next number is the type number of the base class
3248 (possibly our own class) which supplies the vtable for
3249 this class. Parse it out, and search that class to find
3250 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3251 and TYPE_VPTR_FIELDNO. */
3252
3253 struct type *t;
3254 int i;
3255
3256 t = read_type (pp, objfile);
3257 p = (*pp)++;
3258 while (*p != '\0' && *p != ';')
3259 {
3260 p++;
3261 }
3262 if (*p == '\0')
3263 {
3264 /* Premature end of symbol. */
3265 return 0;
3266 }
3267
3268 set_type_vptr_basetype (type, t);
3269 if (type == t) /* Our own class provides vtbl ptr. */
3270 {
3271 for (i = TYPE_NFIELDS (t) - 1;
3272 i >= TYPE_N_BASECLASSES (t);
3273 --i)
3274 {
3275 const char *name = TYPE_FIELD_NAME (t, i);
3276
3277 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3278 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3279 {
3280 set_type_vptr_fieldno (type, i);
3281 goto gotit;
3282 }
3283 }
3284 /* Virtual function table field not found. */
3285 complaint (_("virtual function table pointer "
3286 "not found when defining class `%s'"),
3287 TYPE_NAME (type));
3288 return 0;
3289 }
3290 else
3291 {
3292 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3293 }
3294
3295 gotit:
3296 *pp = p + 1;
3297 }
3298 }
3299 return 1;
3300 }
3301
3302 static int
3303 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3304 {
3305 int n;
3306
3307 for (n = TYPE_NFN_FIELDS (type);
3308 fip->fnlist != NULL;
3309 fip->fnlist = fip->fnlist->next)
3310 {
3311 --n; /* Circumvent Sun3 compiler bug. */
3312 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3313 }
3314 return 1;
3315 }
3316
3317 /* Create the vector of fields, and record how big it is.
3318 We need this info to record proper virtual function table information
3319 for this class's virtual functions. */
3320
3321 static int
3322 attach_fields_to_type (struct field_info *fip, struct type *type,
3323 struct objfile *objfile)
3324 {
3325 int nfields = 0;
3326 int non_public_fields = 0;
3327 struct nextfield *scan;
3328
3329 /* Count up the number of fields that we have, as well as taking note of
3330 whether or not there are any non-public fields, which requires us to
3331 allocate and build the private_field_bits and protected_field_bits
3332 bitfields. */
3333
3334 for (scan = fip->list; scan != NULL; scan = scan->next)
3335 {
3336 nfields++;
3337 if (scan->visibility != VISIBILITY_PUBLIC)
3338 {
3339 non_public_fields++;
3340 }
3341 }
3342
3343 /* Now we know how many fields there are, and whether or not there are any
3344 non-public fields. Record the field count, allocate space for the
3345 array of fields, and create blank visibility bitfields if necessary. */
3346
3347 TYPE_NFIELDS (type) = nfields;
3348 TYPE_FIELDS (type) = (struct field *)
3349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3351
3352 if (non_public_fields)
3353 {
3354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3355
3356 TYPE_FIELD_PRIVATE_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3359
3360 TYPE_FIELD_PROTECTED_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3363
3364 TYPE_FIELD_IGNORE_BITS (type) =
3365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3367 }
3368
3369 /* Copy the saved-up fields into the field vector. Start from the
3370 head of the list, adding to the tail of the field array, so that
3371 they end up in the same order in the array in which they were
3372 added to the list. */
3373
3374 while (nfields-- > 0)
3375 {
3376 TYPE_FIELD (type, nfields) = fip->list->field;
3377 switch (fip->list->visibility)
3378 {
3379 case VISIBILITY_PRIVATE:
3380 SET_TYPE_FIELD_PRIVATE (type, nfields);
3381 break;
3382
3383 case VISIBILITY_PROTECTED:
3384 SET_TYPE_FIELD_PROTECTED (type, nfields);
3385 break;
3386
3387 case VISIBILITY_IGNORE:
3388 SET_TYPE_FIELD_IGNORE (type, nfields);
3389 break;
3390
3391 case VISIBILITY_PUBLIC:
3392 break;
3393
3394 default:
3395 /* Unknown visibility. Complain and treat it as public. */
3396 {
3397 complaint (_("Unknown visibility `%c' for field"),
3398 fip->list->visibility);
3399 }
3400 break;
3401 }
3402 fip->list = fip->list->next;
3403 }
3404 return 1;
3405 }
3406
3407
3408 /* Complain that the compiler has emitted more than one definition for the
3409 structure type TYPE. */
3410 static void
3411 complain_about_struct_wipeout (struct type *type)
3412 {
3413 const char *name = "";
3414 const char *kind = "";
3415
3416 if (TYPE_TAG_NAME (type))
3417 {
3418 name = TYPE_TAG_NAME (type);
3419 switch (TYPE_CODE (type))
3420 {
3421 case TYPE_CODE_STRUCT: kind = "struct "; break;
3422 case TYPE_CODE_UNION: kind = "union "; break;
3423 case TYPE_CODE_ENUM: kind = "enum "; break;
3424 default: kind = "";
3425 }
3426 }
3427 else if (TYPE_NAME (type))
3428 {
3429 name = TYPE_NAME (type);
3430 kind = "";
3431 }
3432 else
3433 {
3434 name = "<unknown>";
3435 kind = "";
3436 }
3437
3438 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3439 }
3440
3441 /* Set the length for all variants of a same main_type, which are
3442 connected in the closed chain.
3443
3444 This is something that needs to be done when a type is defined *after*
3445 some cross references to this type have already been read. Consider
3446 for instance the following scenario where we have the following two
3447 stabs entries:
3448
3449 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3450 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3451
3452 A stubbed version of type dummy is created while processing the first
3453 stabs entry. The length of that type is initially set to zero, since
3454 it is unknown at this point. Also, a "constant" variation of type
3455 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3456 the stabs line).
3457
3458 The second stabs entry allows us to replace the stubbed definition
3459 with the real definition. However, we still need to adjust the length
3460 of the "constant" variation of that type, as its length was left
3461 untouched during the main type replacement... */
3462
3463 static void
3464 set_length_in_type_chain (struct type *type)
3465 {
3466 struct type *ntype = TYPE_CHAIN (type);
3467
3468 while (ntype != type)
3469 {
3470 if (TYPE_LENGTH(ntype) == 0)
3471 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3472 else
3473 complain_about_struct_wipeout (ntype);
3474 ntype = TYPE_CHAIN (ntype);
3475 }
3476 }
3477
3478 /* Read the description of a structure (or union type) and return an object
3479 describing the type.
3480
3481 PP points to a character pointer that points to the next unconsumed token
3482 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3483 *PP will point to "4a:1,0,32;;".
3484
3485 TYPE points to an incomplete type that needs to be filled in.
3486
3487 OBJFILE points to the current objfile from which the stabs information is
3488 being read. (Note that it is redundant in that TYPE also contains a pointer
3489 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3490 */
3491
3492 static struct type *
3493 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3494 struct objfile *objfile)
3495 {
3496 struct cleanup *back_to;
3497 struct field_info fi;
3498
3499 fi.list = NULL;
3500 fi.fnlist = NULL;
3501
3502 /* When describing struct/union/class types in stabs, G++ always drops
3503 all qualifications from the name. So if you've got:
3504 struct A { ... struct B { ... }; ... };
3505 then G++ will emit stabs for `struct A::B' that call it simply
3506 `struct B'. Obviously, if you've got a real top-level definition for
3507 `struct B', or other nested definitions, this is going to cause
3508 problems.
3509
3510 Obviously, GDB can't fix this by itself, but it can at least avoid
3511 scribbling on existing structure type objects when new definitions
3512 appear. */
3513 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3514 || TYPE_STUB (type)))
3515 {
3516 complain_about_struct_wipeout (type);
3517
3518 /* It's probably best to return the type unchanged. */
3519 return type;
3520 }
3521
3522 back_to = make_cleanup (null_cleanup, 0);
3523
3524 INIT_CPLUS_SPECIFIC (type);
3525 TYPE_CODE (type) = type_code;
3526 TYPE_STUB (type) = 0;
3527
3528 /* First comes the total size in bytes. */
3529
3530 {
3531 int nbits;
3532
3533 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3534 if (nbits != 0)
3535 {
3536 do_cleanups (back_to);
3537 return error_type (pp, objfile);
3538 }
3539 set_length_in_type_chain (type);
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3545 field (baseclass specifier for the class holding the main vtable). */
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559 }
3560
3561 /* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566 static struct type *
3567 read_array_type (const char **pp, struct type *type,
3568 struct objfile *objfile)
3569 {
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
3595 lower = read_huge_number (pp, ';', &nbits, 0);
3596
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
3605 upper = read_huge_number (pp, ';', &nbits, 0);
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
3608
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
3618 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622 }
3623
3624
3625 /* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629 static struct type *
3630 read_enum_type (const char **pp, struct type *type,
3631 struct objfile *objfile)
3632 {
3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3634 const char *p;
3635 char *name;
3636 long n;
3637 struct symbol *sym;
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645 #if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652 #endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
3663 (*pp)++;
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
3676 while (*p != ':')
3677 p++;
3678 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3679 *pp = p + 1;
3680 n = read_huge_number (pp, ',', &nbits, 0);
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
3684 sym = allocate_symbol (objfile);
3685 SYMBOL_SET_LINKAGE_NAME (sym, name);
3686 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3687 &objfile->objfile_obstack);
3688 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3690 SYMBOL_VALUE (sym) = n;
3691 if (n < 0)
3692 unsigned_enum = 0;
3693 add_symbol_to_list (sym, symlist);
3694 nsyms++;
3695 }
3696
3697 if (**pp == ';')
3698 (*pp)++; /* Skip the semicolon. */
3699
3700 /* Now fill in the fields of the type-structure. */
3701
3702 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3703 set_length_in_type_chain (type);
3704 TYPE_CODE (type) = TYPE_CODE_ENUM;
3705 TYPE_STUB (type) = 0;
3706 if (unsigned_enum)
3707 TYPE_UNSIGNED (type) = 1;
3708 TYPE_NFIELDS (type) = nsyms;
3709 TYPE_FIELDS (type) = (struct field *)
3710 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712
3713 /* Find the symbols for the values and put them into the type.
3714 The symbols can be found in the symlist that we put them on
3715 to cause them to be defined. osyms contains the old value
3716 of that symlist; everything up to there was defined by us. */
3717 /* Note that we preserve the order of the enum constants, so
3718 that in something like "enum {FOO, LAST_THING=FOO}" we print
3719 FOO, not LAST_THING. */
3720
3721 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722 {
3723 int last = syms == osyms ? o_nsyms : 0;
3724 int j = syms->nsyms;
3725
3726 for (; --j >= last; --n)
3727 {
3728 struct symbol *xsym = syms->symbol[j];
3729
3730 SYMBOL_TYPE (xsym) = type;
3731 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3732 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3733 TYPE_FIELD_BITSIZE (type, n) = 0;
3734 }
3735 if (syms == osyms)
3736 break;
3737 }
3738
3739 return type;
3740 }
3741
3742 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3743 typedefs in every file (for int, long, etc):
3744
3745 type = b <signed> <width> <format type>; <offset>; <nbits>
3746 signed = u or s.
3747 optional format type = c or b for char or boolean.
3748 offset = offset from high order bit to start bit of type.
3749 width is # bytes in object of this type, nbits is # bits in type.
3750
3751 The width/offset stuff appears to be for small objects stored in
3752 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3753 FIXME. */
3754
3755 static struct type *
3756 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3757 {
3758 int type_bits;
3759 int nbits;
3760 int unsigned_type;
3761 int boolean_type = 0;
3762
3763 switch (**pp)
3764 {
3765 case 's':
3766 unsigned_type = 0;
3767 break;
3768 case 'u':
3769 unsigned_type = 1;
3770 break;
3771 default:
3772 return error_type (pp, objfile);
3773 }
3774 (*pp)++;
3775
3776 /* For some odd reason, all forms of char put a c here. This is strange
3777 because no other type has this honor. We can safely ignore this because
3778 we actually determine 'char'acterness by the number of bits specified in
3779 the descriptor.
3780 Boolean forms, e.g Fortran logical*X, put a b here. */
3781
3782 if (**pp == 'c')
3783 (*pp)++;
3784 else if (**pp == 'b')
3785 {
3786 boolean_type = 1;
3787 (*pp)++;
3788 }
3789
3790 /* The first number appears to be the number of bytes occupied
3791 by this type, except that unsigned short is 4 instead of 2.
3792 Since this information is redundant with the third number,
3793 we will ignore it. */
3794 read_huge_number (pp, ';', &nbits, 0);
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
3798 /* The second number is always 0, so ignore it too. */
3799 read_huge_number (pp, ';', &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
3803 /* The third number is the number of bits for this type. */
3804 type_bits = read_huge_number (pp, 0, &nbits, 0);
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807 /* The type *should* end with a semicolon. If it are embedded
3808 in a larger type the semicolon may be the only way to know where
3809 the type ends. If this type is at the end of the stabstring we
3810 can deal with the omitted semicolon (but we don't have to like
3811 it). Don't bother to complain(), Sun's compiler omits the semicolon
3812 for "void". */
3813 if (**pp == ';')
3814 ++(*pp);
3815
3816 if (type_bits == 0)
3817 {
3818 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3819 TARGET_CHAR_BIT, NULL);
3820 if (unsigned_type)
3821 TYPE_UNSIGNED (type) = 1;
3822 return type;
3823 }
3824
3825 if (boolean_type)
3826 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3827 else
3828 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3829 }
3830
3831 static struct type *
3832 read_sun_floating_type (const char **pp, int typenums[2],
3833 struct objfile *objfile)
3834 {
3835 int nbits;
3836 int details;
3837 int nbytes;
3838 struct type *rettype;
3839
3840 /* The first number has more details about the type, for example
3841 FN_COMPLEX. */
3842 details = read_huge_number (pp, ';', &nbits, 0);
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 /* The second number is the number of bytes occupied by this type. */
3847 nbytes = read_huge_number (pp, ';', &nbits, 0);
3848 if (nbits != 0)
3849 return error_type (pp, objfile);
3850
3851 nbits = nbytes * TARGET_CHAR_BIT;
3852
3853 if (details == NF_COMPLEX || details == NF_COMPLEX16
3854 || details == NF_COMPLEX32)
3855 {
3856 rettype = dbx_init_float_type (objfile, nbits / 2);
3857 return init_complex_type (objfile, NULL, rettype);
3858 }
3859
3860 return dbx_init_float_type (objfile, nbits);
3861 }
3862
3863 /* Read a number from the string pointed to by *PP.
3864 The value of *PP is advanced over the number.
3865 If END is nonzero, the character that ends the
3866 number must match END, or an error happens;
3867 and that character is skipped if it does match.
3868 If END is zero, *PP is left pointing to that character.
3869
3870 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3871 the number is represented in an octal representation, assume that
3872 it is represented in a 2's complement representation with a size of
3873 TWOS_COMPLEMENT_BITS.
3874
3875 If the number fits in a long, set *BITS to 0 and return the value.
3876 If not, set *BITS to be the number of bits in the number and return 0.
3877
3878 If encounter garbage, set *BITS to -1 and return 0. */
3879
3880 static long
3881 read_huge_number (const char **pp, int end, int *bits,
3882 int twos_complement_bits)
3883 {
3884 const char *p = *pp;
3885 int sign = 1;
3886 int sign_bit = 0;
3887 long n = 0;
3888 int radix = 10;
3889 char overflow = 0;
3890 int nbits = 0;
3891 int c;
3892 long upper_limit;
3893 int twos_complement_representation = 0;
3894
3895 if (*p == '-')
3896 {
3897 sign = -1;
3898 p++;
3899 }
3900
3901 /* Leading zero means octal. GCC uses this to output values larger
3902 than an int (because that would be hard in decimal). */
3903 if (*p == '0')
3904 {
3905 radix = 8;
3906 p++;
3907 }
3908
3909 /* Skip extra zeros. */
3910 while (*p == '0')
3911 p++;
3912
3913 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3914 {
3915 /* Octal, possibly signed. Check if we have enough chars for a
3916 negative number. */
3917
3918 size_t len;
3919 const char *p1 = p;
3920
3921 while ((c = *p1) >= '0' && c < '8')
3922 p1++;
3923
3924 len = p1 - p;
3925 if (len > twos_complement_bits / 3
3926 || (twos_complement_bits % 3 == 0
3927 && len == twos_complement_bits / 3))
3928 {
3929 /* Ok, we have enough characters for a signed value, check
3930 for signness by testing if the sign bit is set. */
3931 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3932 c = *p - '0';
3933 if (c & (1 << sign_bit))
3934 {
3935 /* Definitely signed. */
3936 twos_complement_representation = 1;
3937 sign = -1;
3938 }
3939 }
3940 }
3941
3942 upper_limit = LONG_MAX / radix;
3943
3944 while ((c = *p++) >= '0' && c < ('0' + radix))
3945 {
3946 if (n <= upper_limit)
3947 {
3948 if (twos_complement_representation)
3949 {
3950 /* Octal, signed, twos complement representation. In
3951 this case, n is the corresponding absolute value. */
3952 if (n == 0)
3953 {
3954 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3955
3956 n = -sn;
3957 }
3958 else
3959 {
3960 n *= radix;
3961 n -= c - '0';
3962 }
3963 }
3964 else
3965 {
3966 /* unsigned representation */
3967 n *= radix;
3968 n += c - '0'; /* FIXME this overflows anyway. */
3969 }
3970 }
3971 else
3972 overflow = 1;
3973
3974 /* This depends on large values being output in octal, which is
3975 what GCC does. */
3976 if (radix == 8)
3977 {
3978 if (nbits == 0)
3979 {
3980 if (c == '0')
3981 /* Ignore leading zeroes. */
3982 ;
3983 else if (c == '1')
3984 nbits = 1;
3985 else if (c == '2' || c == '3')
3986 nbits = 2;
3987 else
3988 nbits = 3;
3989 }
3990 else
3991 nbits += 3;
3992 }
3993 }
3994 if (end)
3995 {
3996 if (c && c != end)
3997 {
3998 if (bits != NULL)
3999 *bits = -1;
4000 return 0;
4001 }
4002 }
4003 else
4004 --p;
4005
4006 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4007 {
4008 /* We were supposed to parse a number with maximum
4009 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4010 if (bits != NULL)
4011 *bits = -1;
4012 return 0;
4013 }
4014
4015 *pp = p;
4016 if (overflow)
4017 {
4018 if (nbits == 0)
4019 {
4020 /* Large decimal constants are an error (because it is hard to
4021 count how many bits are in them). */
4022 if (bits != NULL)
4023 *bits = -1;
4024 return 0;
4025 }
4026
4027 /* -0x7f is the same as 0x80. So deal with it by adding one to
4028 the number of bits. Two's complement represention octals
4029 can't have a '-' in front. */
4030 if (sign == -1 && !twos_complement_representation)
4031 ++nbits;
4032 if (bits)
4033 *bits = nbits;
4034 }
4035 else
4036 {
4037 if (bits)
4038 *bits = 0;
4039 return n * sign;
4040 }
4041 /* It's *BITS which has the interesting information. */
4042 return 0;
4043 }
4044
4045 static struct type *
4046 read_range_type (const char **pp, int typenums[2], int type_size,
4047 struct objfile *objfile)
4048 {
4049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4050 const char *orig_pp = *pp;
4051 int rangenums[2];
4052 long n2, n3;
4053 int n2bits, n3bits;
4054 int self_subrange;
4055 struct type *result_type;
4056 struct type *index_type = NULL;
4057
4058 /* First comes a type we are a subrange of.
4059 In C it is usually 0, 1 or the type being defined. */
4060 if (read_type_number (pp, rangenums) != 0)
4061 return error_type (pp, objfile);
4062 self_subrange = (rangenums[0] == typenums[0] &&
4063 rangenums[1] == typenums[1]);
4064
4065 if (**pp == '=')
4066 {
4067 *pp = orig_pp;
4068 index_type = read_type (pp, objfile);
4069 }
4070
4071 /* A semicolon should now follow; skip it. */
4072 if (**pp == ';')
4073 (*pp)++;
4074
4075 /* The remaining two operands are usually lower and upper bounds
4076 of the range. But in some special cases they mean something else. */
4077 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4078 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4079
4080 if (n2bits == -1 || n3bits == -1)
4081 return error_type (pp, objfile);
4082
4083 if (index_type)
4084 goto handle_true_range;
4085
4086 /* If limits are huge, must be large integral type. */
4087 if (n2bits != 0 || n3bits != 0)
4088 {
4089 char got_signed = 0;
4090 char got_unsigned = 0;
4091 /* Number of bits in the type. */
4092 int nbits = 0;
4093
4094 /* If a type size attribute has been specified, the bounds of
4095 the range should fit in this size. If the lower bounds needs
4096 more bits than the upper bound, then the type is signed. */
4097 if (n2bits <= type_size && n3bits <= type_size)
4098 {
4099 if (n2bits == type_size && n2bits > n3bits)
4100 got_signed = 1;
4101 else
4102 got_unsigned = 1;
4103 nbits = type_size;
4104 }
4105 /* Range from 0 to <large number> is an unsigned large integral type. */
4106 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4107 {
4108 got_unsigned = 1;
4109 nbits = n3bits;
4110 }
4111 /* Range from <large number> to <large number>-1 is a large signed
4112 integral type. Take care of the case where <large number> doesn't
4113 fit in a long but <large number>-1 does. */
4114 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4115 || (n2bits != 0 && n3bits == 0
4116 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4117 && n3 == LONG_MAX))
4118 {
4119 got_signed = 1;
4120 nbits = n2bits;
4121 }
4122
4123 if (got_signed || got_unsigned)
4124 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4125 else
4126 return error_type (pp, objfile);
4127 }
4128
4129 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4130 if (self_subrange && n2 == 0 && n3 == 0)
4131 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4132
4133 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4134 is the width in bytes.
4135
4136 Fortran programs appear to use this for complex types also. To
4137 distinguish between floats and complex, g77 (and others?) seem
4138 to use self-subranges for the complexes, and subranges of int for
4139 the floats.
4140
4141 Also note that for complexes, g77 sets n2 to the size of one of
4142 the member floats, not the whole complex beast. My guess is that
4143 this was to work well with pre-COMPLEX versions of gdb. */
4144
4145 if (n3 == 0 && n2 > 0)
4146 {
4147 struct type *float_type
4148 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4149
4150 if (self_subrange)
4151 return init_complex_type (objfile, NULL, float_type);
4152 else
4153 return float_type;
4154 }
4155
4156 /* If the upper bound is -1, it must really be an unsigned integral. */
4157
4158 else if (n2 == 0 && n3 == -1)
4159 {
4160 int bits = type_size;
4161
4162 if (bits <= 0)
4163 {
4164 /* We don't know its size. It is unsigned int or unsigned
4165 long. GCC 2.3.3 uses this for long long too, but that is
4166 just a GDB 3.5 compatibility hack. */
4167 bits = gdbarch_int_bit (gdbarch);
4168 }
4169
4170 return init_integer_type (objfile, bits, 1, NULL);
4171 }
4172
4173 /* Special case: char is defined (Who knows why) as a subrange of
4174 itself with range 0-127. */
4175 else if (self_subrange && n2 == 0 && n3 == 127)
4176 {
4177 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4178 0, NULL);
4179 TYPE_NOSIGN (type) = 1;
4180 return type;
4181 }
4182 /* We used to do this only for subrange of self or subrange of int. */
4183 else if (n2 == 0)
4184 {
4185 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4186 "unsigned long", and we already checked for that,
4187 so don't need to test for it here. */
4188
4189 if (n3 < 0)
4190 /* n3 actually gives the size. */
4191 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4192
4193 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4194 unsigned n-byte integer. But do require n to be a power of
4195 two; we don't want 3- and 5-byte integers flying around. */
4196 {
4197 int bytes;
4198 unsigned long bits;
4199
4200 bits = n3;
4201 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4202 bits >>= 8;
4203 if (bits == 0
4204 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4205 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4206 }
4207 }
4208 /* I think this is for Convex "long long". Since I don't know whether
4209 Convex sets self_subrange, I also accept that particular size regardless
4210 of self_subrange. */
4211 else if (n3 == 0 && n2 < 0
4212 && (self_subrange
4213 || n2 == -gdbarch_long_long_bit
4214 (gdbarch) / TARGET_CHAR_BIT))
4215 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4216 else if (n2 == -n3 - 1)
4217 {
4218 if (n3 == 0x7f)
4219 return init_integer_type (objfile, 8, 0, NULL);
4220 if (n3 == 0x7fff)
4221 return init_integer_type (objfile, 16, 0, NULL);
4222 if (n3 == 0x7fffffff)
4223 return init_integer_type (objfile, 32, 0, NULL);
4224 }
4225
4226 /* We have a real range type on our hands. Allocate space and
4227 return a real pointer. */
4228 handle_true_range:
4229
4230 if (self_subrange)
4231 index_type = objfile_type (objfile)->builtin_int;
4232 else
4233 index_type = *dbx_lookup_type (rangenums, objfile);
4234 if (index_type == NULL)
4235 {
4236 /* Does this actually ever happen? Is that why we are worrying
4237 about dealing with it rather than just calling error_type? */
4238
4239 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4240
4241 index_type = objfile_type (objfile)->builtin_int;
4242 }
4243
4244 result_type
4245 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4246 return (result_type);
4247 }
4248
4249 /* Read in an argument list. This is a list of types, separated by commas
4250 and terminated with END. Return the list of types read in, or NULL
4251 if there is an error. */
4252
4253 static struct field *
4254 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4255 int *varargsp)
4256 {
4257 /* FIXME! Remove this arbitrary limit! */
4258 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4259 int n = 0, i;
4260 struct field *rval;
4261
4262 while (**pp != end)
4263 {
4264 if (**pp != ',')
4265 /* Invalid argument list: no ','. */
4266 return NULL;
4267 (*pp)++;
4268 STABS_CONTINUE (pp, objfile);
4269 types[n++] = read_type (pp, objfile);
4270 }
4271 (*pp)++; /* get past `end' (the ':' character). */
4272
4273 if (n == 0)
4274 {
4275 /* We should read at least the THIS parameter here. Some broken stabs
4276 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4277 have been present ";-16,(0,43)" reference instead. This way the
4278 excessive ";" marker prematurely stops the parameters parsing. */
4279
4280 complaint (_("Invalid (empty) method arguments"));
4281 *varargsp = 0;
4282 }
4283 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4284 *varargsp = 1;
4285 else
4286 {
4287 n--;
4288 *varargsp = 0;
4289 }
4290
4291 rval = XCNEWVEC (struct field, n);
4292 for (i = 0; i < n; i++)
4293 rval[i].type = types[i];
4294 *nargsp = n;
4295 return rval;
4296 }
4297 \f
4298 /* Common block handling. */
4299
4300 /* List of symbols declared since the last BCOMM. This list is a tail
4301 of local_symbols. When ECOMM is seen, the symbols on the list
4302 are noted so their proper addresses can be filled in later,
4303 using the common block base address gotten from the assembler
4304 stabs. */
4305
4306 static struct pending *common_block;
4307 static int common_block_i;
4308
4309 /* Name of the current common block. We get it from the BCOMM instead of the
4310 ECOMM to match IBM documentation (even though IBM puts the name both places
4311 like everyone else). */
4312 static char *common_block_name;
4313
4314 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4315 to remain after this function returns. */
4316
4317 void
4318 common_block_start (const char *name, struct objfile *objfile)
4319 {
4320 if (common_block_name != NULL)
4321 {
4322 complaint (_("Invalid symbol data: common block within common block"));
4323 }
4324 common_block = local_symbols;
4325 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4326 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4327 strlen (name));
4328 }
4329
4330 /* Process a N_ECOMM symbol. */
4331
4332 void
4333 common_block_end (struct objfile *objfile)
4334 {
4335 /* Symbols declared since the BCOMM are to have the common block
4336 start address added in when we know it. common_block and
4337 common_block_i point to the first symbol after the BCOMM in
4338 the local_symbols list; copy the list and hang it off the
4339 symbol for the common block name for later fixup. */
4340 int i;
4341 struct symbol *sym;
4342 struct pending *newobj = 0;
4343 struct pending *next;
4344 int j;
4345
4346 if (common_block_name == NULL)
4347 {
4348 complaint (_("ECOMM symbol unmatched by BCOMM"));
4349 return;
4350 }
4351
4352 sym = allocate_symbol (objfile);
4353 /* Note: common_block_name already saved on objfile_obstack. */
4354 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4355 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4356
4357 /* Now we copy all the symbols which have been defined since the BCOMM. */
4358
4359 /* Copy all the struct pendings before common_block. */
4360 for (next = local_symbols;
4361 next != NULL && next != common_block;
4362 next = next->next)
4363 {
4364 for (j = 0; j < next->nsyms; j++)
4365 add_symbol_to_list (next->symbol[j], &newobj);
4366 }
4367
4368 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4369 NULL, it means copy all the local symbols (which we already did
4370 above). */
4371
4372 if (common_block != NULL)
4373 for (j = common_block_i; j < common_block->nsyms; j++)
4374 add_symbol_to_list (common_block->symbol[j], &newobj);
4375
4376 SYMBOL_TYPE (sym) = (struct type *) newobj;
4377
4378 /* Should we be putting local_symbols back to what it was?
4379 Does it matter? */
4380
4381 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4382 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4383 global_sym_chain[i] = sym;
4384 common_block_name = NULL;
4385 }
4386
4387 /* Add a common block's start address to the offset of each symbol
4388 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4389 the common block name). */
4390
4391 static void
4392 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4393 {
4394 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4395
4396 for (; next; next = next->next)
4397 {
4398 int j;
4399
4400 for (j = next->nsyms - 1; j >= 0; j--)
4401 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4402 }
4403 }
4404 \f
4405
4406
4407 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4408 See add_undefined_type for more details. */
4409
4410 static void
4411 add_undefined_type_noname (struct type *type, int typenums[2])
4412 {
4413 struct nat nat;
4414
4415 nat.typenums[0] = typenums [0];
4416 nat.typenums[1] = typenums [1];
4417 nat.type = type;
4418
4419 if (noname_undefs_length == noname_undefs_allocated)
4420 {
4421 noname_undefs_allocated *= 2;
4422 noname_undefs = (struct nat *)
4423 xrealloc ((char *) noname_undefs,
4424 noname_undefs_allocated * sizeof (struct nat));
4425 }
4426 noname_undefs[noname_undefs_length++] = nat;
4427 }
4428
4429 /* Add TYPE to the UNDEF_TYPES vector.
4430 See add_undefined_type for more details. */
4431
4432 static void
4433 add_undefined_type_1 (struct type *type)
4434 {
4435 if (undef_types_length == undef_types_allocated)
4436 {
4437 undef_types_allocated *= 2;
4438 undef_types = (struct type **)
4439 xrealloc ((char *) undef_types,
4440 undef_types_allocated * sizeof (struct type *));
4441 }
4442 undef_types[undef_types_length++] = type;
4443 }
4444
4445 /* What about types defined as forward references inside of a small lexical
4446 scope? */
4447 /* Add a type to the list of undefined types to be checked through
4448 once this file has been read in.
4449
4450 In practice, we actually maintain two such lists: The first list
4451 (UNDEF_TYPES) is used for types whose name has been provided, and
4452 concerns forward references (eg 'xs' or 'xu' forward references);
4453 the second list (NONAME_UNDEFS) is used for types whose name is
4454 unknown at creation time, because they were referenced through
4455 their type number before the actual type was declared.
4456 This function actually adds the given type to the proper list. */
4457
4458 static void
4459 add_undefined_type (struct type *type, int typenums[2])
4460 {
4461 if (TYPE_TAG_NAME (type) == NULL)
4462 add_undefined_type_noname (type, typenums);
4463 else
4464 add_undefined_type_1 (type);
4465 }
4466
4467 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4468
4469 static void
4470 cleanup_undefined_types_noname (struct objfile *objfile)
4471 {
4472 int i;
4473
4474 for (i = 0; i < noname_undefs_length; i++)
4475 {
4476 struct nat nat = noname_undefs[i];
4477 struct type **type;
4478
4479 type = dbx_lookup_type (nat.typenums, objfile);
4480 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4481 {
4482 /* The instance flags of the undefined type are still unset,
4483 and needs to be copied over from the reference type.
4484 Since replace_type expects them to be identical, we need
4485 to set these flags manually before hand. */
4486 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4487 replace_type (nat.type, *type);
4488 }
4489 }
4490
4491 noname_undefs_length = 0;
4492 }
4493
4494 /* Go through each undefined type, see if it's still undefined, and fix it
4495 up if possible. We have two kinds of undefined types:
4496
4497 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4498 Fix: update array length using the element bounds
4499 and the target type's length.
4500 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4501 yet defined at the time a pointer to it was made.
4502 Fix: Do a full lookup on the struct/union tag. */
4503
4504 static void
4505 cleanup_undefined_types_1 (void)
4506 {
4507 struct type **type;
4508
4509 /* Iterate over every undefined type, and look for a symbol whose type
4510 matches our undefined type. The symbol matches if:
4511 1. It is a typedef in the STRUCT domain;
4512 2. It has the same name, and same type code;
4513 3. The instance flags are identical.
4514
4515 It is important to check the instance flags, because we have seen
4516 examples where the debug info contained definitions such as:
4517
4518 "foo_t:t30=B31=xefoo_t:"
4519
4520 In this case, we have created an undefined type named "foo_t" whose
4521 instance flags is null (when processing "xefoo_t"), and then created
4522 another type with the same name, but with different instance flags
4523 ('B' means volatile). I think that the definition above is wrong,
4524 since the same type cannot be volatile and non-volatile at the same
4525 time, but we need to be able to cope with it when it happens. The
4526 approach taken here is to treat these two types as different. */
4527
4528 for (type = undef_types; type < undef_types + undef_types_length; type++)
4529 {
4530 switch (TYPE_CODE (*type))
4531 {
4532
4533 case TYPE_CODE_STRUCT:
4534 case TYPE_CODE_UNION:
4535 case TYPE_CODE_ENUM:
4536 {
4537 /* Check if it has been defined since. Need to do this here
4538 as well as in check_typedef to deal with the (legitimate in
4539 C though not C++) case of several types with the same name
4540 in different source files. */
4541 if (TYPE_STUB (*type))
4542 {
4543 struct pending *ppt;
4544 int i;
4545 /* Name of the type, without "struct" or "union". */
4546 const char *type_name = TYPE_TAG_NAME (*type);
4547
4548 if (type_name == NULL)
4549 {
4550 complaint (_("need a type name"));
4551 break;
4552 }
4553 for (ppt = file_symbols; ppt; ppt = ppt->next)
4554 {
4555 for (i = 0; i < ppt->nsyms; i++)
4556 {
4557 struct symbol *sym = ppt->symbol[i];
4558
4559 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4560 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4561 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4562 TYPE_CODE (*type))
4563 && (TYPE_INSTANCE_FLAGS (*type) ==
4564 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4565 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4566 type_name) == 0)
4567 replace_type (*type, SYMBOL_TYPE (sym));
4568 }
4569 }
4570 }
4571 }
4572 break;
4573
4574 default:
4575 {
4576 complaint (_("forward-referenced types left unresolved, "
4577 "type code %d."),
4578 TYPE_CODE (*type));
4579 }
4580 break;
4581 }
4582 }
4583
4584 undef_types_length = 0;
4585 }
4586
4587 /* Try to fix all the undefined types we ecountered while processing
4588 this unit. */
4589
4590 void
4591 cleanup_undefined_stabs_types (struct objfile *objfile)
4592 {
4593 cleanup_undefined_types_1 ();
4594 cleanup_undefined_types_noname (objfile);
4595 }
4596
4597 /* Scan through all of the global symbols defined in the object file,
4598 assigning values to the debugging symbols that need to be assigned
4599 to. Get these symbols from the minimal symbol table. */
4600
4601 void
4602 scan_file_globals (struct objfile *objfile)
4603 {
4604 int hash;
4605 struct minimal_symbol *msymbol;
4606 struct symbol *sym, *prev;
4607 struct objfile *resolve_objfile;
4608
4609 /* SVR4 based linkers copy referenced global symbols from shared
4610 libraries to the main executable.
4611 If we are scanning the symbols for a shared library, try to resolve
4612 them from the minimal symbols of the main executable first. */
4613
4614 if (symfile_objfile && objfile != symfile_objfile)
4615 resolve_objfile = symfile_objfile;
4616 else
4617 resolve_objfile = objfile;
4618
4619 while (1)
4620 {
4621 /* Avoid expensive loop through all minimal symbols if there are
4622 no unresolved symbols. */
4623 for (hash = 0; hash < HASHSIZE; hash++)
4624 {
4625 if (global_sym_chain[hash])
4626 break;
4627 }
4628 if (hash >= HASHSIZE)
4629 return;
4630
4631 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4632 {
4633 QUIT;
4634
4635 /* Skip static symbols. */
4636 switch (MSYMBOL_TYPE (msymbol))
4637 {
4638 case mst_file_text:
4639 case mst_file_data:
4640 case mst_file_bss:
4641 continue;
4642 default:
4643 break;
4644 }
4645
4646 prev = NULL;
4647
4648 /* Get the hash index and check all the symbols
4649 under that hash index. */
4650
4651 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4652
4653 for (sym = global_sym_chain[hash]; sym;)
4654 {
4655 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4656 SYMBOL_LINKAGE_NAME (sym)) == 0)
4657 {
4658 /* Splice this symbol out of the hash chain and
4659 assign the value we have to it. */
4660 if (prev)
4661 {
4662 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4663 }
4664 else
4665 {
4666 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4667 }
4668
4669 /* Check to see whether we need to fix up a common block. */
4670 /* Note: this code might be executed several times for
4671 the same symbol if there are multiple references. */
4672 if (sym)
4673 {
4674 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4675 {
4676 fix_common_block (sym,
4677 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4678 msymbol));
4679 }
4680 else
4681 {
4682 SYMBOL_VALUE_ADDRESS (sym)
4683 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4684 }
4685 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4686 }
4687
4688 if (prev)
4689 {
4690 sym = SYMBOL_VALUE_CHAIN (prev);
4691 }
4692 else
4693 {
4694 sym = global_sym_chain[hash];
4695 }
4696 }
4697 else
4698 {
4699 prev = sym;
4700 sym = SYMBOL_VALUE_CHAIN (sym);
4701 }
4702 }
4703 }
4704 if (resolve_objfile == objfile)
4705 break;
4706 resolve_objfile = objfile;
4707 }
4708
4709 /* Change the storage class of any remaining unresolved globals to
4710 LOC_UNRESOLVED and remove them from the chain. */
4711 for (hash = 0; hash < HASHSIZE; hash++)
4712 {
4713 sym = global_sym_chain[hash];
4714 while (sym)
4715 {
4716 prev = sym;
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4718
4719 /* Change the symbol address from the misleading chain value
4720 to address zero. */
4721 SYMBOL_VALUE_ADDRESS (prev) = 0;
4722
4723 /* Complain about unresolved common block symbols. */
4724 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4725 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4726 else
4727 complaint (_("%s: common block `%s' from "
4728 "global_sym_chain unresolved"),
4729 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4730 }
4731 }
4732 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4733 }
4734
4735 /* Initialize anything that needs initializing when starting to read
4736 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4737 to a psymtab. */
4738
4739 void
4740 stabsread_init (void)
4741 {
4742 }
4743
4744 /* Initialize anything that needs initializing when a completely new
4745 symbol file is specified (not just adding some symbols from another
4746 file, e.g. a shared library). */
4747
4748 void
4749 stabsread_new_init (void)
4750 {
4751 /* Empty the hash table of global syms looking for values. */
4752 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4753 }
4754
4755 /* Initialize anything that needs initializing at the same time as
4756 start_symtab() is called. */
4757
4758 void
4759 start_stabs (void)
4760 {
4761 global_stabs = NULL; /* AIX COFF */
4762 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4763 n_this_object_header_files = 1;
4764 type_vector_length = 0;
4765 type_vector = (struct type **) 0;
4766
4767 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4768 common_block_name = NULL;
4769 }
4770
4771 /* Call after end_symtab(). */
4772
4773 void
4774 end_stabs (void)
4775 {
4776 if (type_vector)
4777 {
4778 xfree (type_vector);
4779 }
4780 type_vector = 0;
4781 type_vector_length = 0;
4782 previous_stab_code = 0;
4783 }
4784
4785 void
4786 finish_global_stabs (struct objfile *objfile)
4787 {
4788 if (global_stabs)
4789 {
4790 patch_block_stabs (global_symbols, global_stabs, objfile);
4791 xfree (global_stabs);
4792 global_stabs = NULL;
4793 }
4794 }
4795
4796 /* Find the end of the name, delimited by a ':', but don't match
4797 ObjC symbols which look like -[Foo bar::]:bla. */
4798 static const char *
4799 find_name_end (const char *name)
4800 {
4801 const char *s = name;
4802
4803 if (s[0] == '-' || *s == '+')
4804 {
4805 /* Must be an ObjC method symbol. */
4806 if (s[1] != '[')
4807 {
4808 error (_("invalid symbol name \"%s\""), name);
4809 }
4810 s = strchr (s, ']');
4811 if (s == NULL)
4812 {
4813 error (_("invalid symbol name \"%s\""), name);
4814 }
4815 return strchr (s, ':');
4816 }
4817 else
4818 {
4819 return strchr (s, ':');
4820 }
4821 }
4822
4823 /* Initializer for this module. */
4824
4825 void
4826 _initialize_stabsread (void)
4827 {
4828 rs6000_builtin_type_data = register_objfile_data ();
4829
4830 undef_types_allocated = 20;
4831 undef_types_length = 0;
4832 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4833
4834 noname_undefs_allocated = 20;
4835 noname_undefs_length = 0;
4836 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4837
4838 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4839 &stab_register_funcs);
4840 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4841 &stab_register_funcs);
4842 }
This page took 0.25478 seconds and 4 git commands to generate.