gdb/
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 _("register number %d too large (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207 \f
208
209 /* Look up a dbx type-number pair. Return the address of the slot
210 where the type for that number-pair is stored.
211 The number-pair is in TYPENUMS.
212
213 This can be used for finding the type associated with that pair
214 or for associating a new type with the pair. */
215
216 static struct type **
217 dbx_lookup_type (int typenums[2])
218 {
219 int filenum = typenums[0];
220 int index = typenums[1];
221 unsigned old_len;
222 int real_filenum;
223 struct header_file *f;
224 int f_orig_length;
225
226 if (filenum == -1) /* -1,-1 is for temporary types. */
227 return 0;
228
229 if (filenum < 0 || filenum >= n_this_object_header_files)
230 {
231 complaint (&symfile_complaints,
232 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
233 filenum, index, symnum);
234 goto error_return;
235 }
236
237 if (filenum == 0)
238 {
239 if (index < 0)
240 {
241 /* Caller wants address of address of type. We think
242 that negative (rs6k builtin) types will never appear as
243 "lvalues", (nor should they), so we stuff the real type
244 pointer into a temp, and return its address. If referenced,
245 this will do the right thing. */
246 static struct type *temp_type;
247
248 temp_type = rs6000_builtin_type (index);
249 return &temp_type;
250 }
251
252 /* Type is defined outside of header files.
253 Find it in this object file's type vector. */
254 if (index >= type_vector_length)
255 {
256 old_len = type_vector_length;
257 if (old_len == 0)
258 {
259 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
260 type_vector = (struct type **)
261 xmalloc (type_vector_length * sizeof (struct type *));
262 }
263 while (index >= type_vector_length)
264 {
265 type_vector_length *= 2;
266 }
267 type_vector = (struct type **)
268 xrealloc ((char *) type_vector,
269 (type_vector_length * sizeof (struct type *)));
270 memset (&type_vector[old_len], 0,
271 (type_vector_length - old_len) * sizeof (struct type *));
272 }
273 return (&type_vector[index]);
274 }
275 else
276 {
277 real_filenum = this_object_header_files[filenum];
278
279 if (real_filenum >= N_HEADER_FILES (current_objfile))
280 {
281 struct type *temp_type;
282 struct type **temp_type_p;
283
284 warning (_("GDB internal error: bad real_filenum"));
285
286 error_return:
287 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
288 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
289 *temp_type_p = temp_type;
290 return temp_type_p;
291 }
292
293 f = HEADER_FILES (current_objfile) + real_filenum;
294
295 f_orig_length = f->length;
296 if (index >= f_orig_length)
297 {
298 while (index >= f->length)
299 {
300 f->length *= 2;
301 }
302 f->vector = (struct type **)
303 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
304 memset (&f->vector[f_orig_length], 0,
305 (f->length - f_orig_length) * sizeof (struct type *));
306 }
307 return (&f->vector[index]);
308 }
309 }
310
311 /* Make sure there is a type allocated for type numbers TYPENUMS
312 and return the type object.
313 This can create an empty (zeroed) type object.
314 TYPENUMS may be (-1, -1) to return a new type object that is not
315 put into the type vector, and so may not be referred to by number. */
316
317 static struct type *
318 dbx_alloc_type (int typenums[2], struct objfile *objfile)
319 {
320 struct type **type_addr;
321
322 if (typenums[0] == -1)
323 {
324 return (alloc_type (objfile));
325 }
326
327 type_addr = dbx_lookup_type (typenums);
328
329 /* If we are referring to a type not known at all yet,
330 allocate an empty type for it.
331 We will fill it in later if we find out how. */
332 if (*type_addr == 0)
333 {
334 *type_addr = alloc_type (objfile);
335 }
336
337 return (*type_addr);
338 }
339
340 /* for all the stabs in a given stab vector, build appropriate types
341 and fix their symbols in given symbol vector. */
342
343 static void
344 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
345 struct objfile *objfile)
346 {
347 int ii;
348 char *name;
349 char *pp;
350 struct symbol *sym;
351
352 if (stabs)
353 {
354
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 while (pp[1] == ':')
363 {
364 pp += 2;
365 pp = (char *) strchr (pp, ':');
366 }
367 sym = find_symbol_in_list (symbols, name, pp - name);
368 if (!sym)
369 {
370 /* FIXME-maybe: it would be nice if we noticed whether
371 the variable was defined *anywhere*, not just whether
372 it is defined in this compilation unit. But neither
373 xlc or GCC seem to need such a definition, and until
374 we do psymtabs (so that the minimal symbols from all
375 compilation units are available now), I'm not sure
376 how to get the information. */
377
378 /* On xcoff, if a global is defined and never referenced,
379 ld will remove it from the executable. There is then
380 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
381 sym = (struct symbol *)
382 obstack_alloc (&objfile->objfile_obstack,
383 sizeof (struct symbol));
384
385 memset (sym, 0, sizeof (struct symbol));
386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
387 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
388 DEPRECATED_SYMBOL_NAME (sym) =
389 obsavestring (name, pp - name, &objfile->objfile_obstack);
390 pp += 2;
391 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
392 {
393 /* I don't think the linker does this with functions,
394 so as far as I know this is never executed.
395 But it doesn't hurt to check. */
396 SYMBOL_TYPE (sym) =
397 lookup_function_type (read_type (&pp, objfile));
398 }
399 else
400 {
401 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
402 }
403 add_symbol_to_list (sym, &global_symbols);
404 }
405 else
406 {
407 pp += 2;
408 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
409 {
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 }
418 }
419 }
420 }
421 \f
422
423 /* Read a number by which a type is referred to in dbx data,
424 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
425 Just a single number N is equivalent to (0,N).
426 Return the two numbers by storing them in the vector TYPENUMS.
427 TYPENUMS will then be used as an argument to dbx_lookup_type.
428
429 Returns 0 for success, -1 for error. */
430
431 static int
432 read_type_number (char **pp, int *typenums)
433 {
434 int nbits;
435 if (**pp == '(')
436 {
437 (*pp)++;
438 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
439 if (nbits != 0)
440 return -1;
441 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 }
445 else
446 {
447 typenums[0] = 0;
448 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
449 if (nbits != 0)
450 return -1;
451 }
452 return 0;
453 }
454 \f
455
456 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
457 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
458 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
459 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
460
461 /* Structure for storing pointers to reference definitions for fast lookup
462 during "process_later". */
463
464 struct ref_map
465 {
466 char *stabs;
467 CORE_ADDR value;
468 struct symbol *sym;
469 };
470
471 #define MAX_CHUNK_REFS 100
472 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
473 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
474
475 static struct ref_map *ref_map;
476
477 /* Ptr to free cell in chunk's linked list. */
478 static int ref_count = 0;
479
480 /* Number of chunks malloced. */
481 static int ref_chunk = 0;
482
483 /* This file maintains a cache of stabs aliases found in the symbol
484 table. If the symbol table changes, this cache must be cleared
485 or we are left holding onto data in invalid obstacks. */
486 void
487 stabsread_clear_cache (void)
488 {
489 ref_count = 0;
490 ref_chunk = 0;
491 }
492
493 /* Create array of pointers mapping refids to symbols and stab strings.
494 Add pointers to reference definition symbols and/or their values as we
495 find them, using their reference numbers as our index.
496 These will be used later when we resolve references. */
497 void
498 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
499 {
500 if (ref_count == 0)
501 ref_chunk = 0;
502 if (refnum >= ref_count)
503 ref_count = refnum + 1;
504 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
505 {
506 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
507 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
511 ref_chunk += new_chunks;
512 }
513 ref_map[refnum].stabs = stabs;
514 ref_map[refnum].sym = sym;
515 ref_map[refnum].value = value;
516 }
517
518 /* Return defined sym for the reference REFNUM. */
519 struct symbol *
520 ref_search (int refnum)
521 {
522 if (refnum < 0 || refnum > ref_count)
523 return 0;
524 return ref_map[refnum].sym;
525 }
526
527 /* Parse a reference id in STRING and return the resulting
528 reference number. Move STRING beyond the reference id. */
529
530 static int
531 process_reference (char **string)
532 {
533 char *p;
534 int refnum = 0;
535
536 if (**string != '#')
537 return 0;
538
539 /* Advance beyond the initial '#'. */
540 p = *string + 1;
541
542 /* Read number as reference id. */
543 while (*p && isdigit (*p))
544 {
545 refnum = refnum * 10 + *p - '0';
546 p++;
547 }
548 *string = p;
549 return refnum;
550 }
551
552 /* If STRING defines a reference, store away a pointer to the reference
553 definition for later use. Return the reference number. */
554
555 int
556 symbol_reference_defined (char **string)
557 {
558 char *p = *string;
559 int refnum = 0;
560
561 refnum = process_reference (&p);
562
563 /* Defining symbols end in '=' */
564 if (*p == '=')
565 {
566 /* Symbol is being defined here. */
567 *string = p + 1;
568 return refnum;
569 }
570 else
571 {
572 /* Must be a reference. Either the symbol has already been defined,
573 or this is a forward reference to it. */
574 *string = p;
575 return -1;
576 }
577 }
578
579 struct symbol *
580 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
581 struct objfile *objfile)
582 {
583 struct symbol *sym;
584 char *p = (char *) find_name_end (string);
585 int deftype;
586 int synonym = 0;
587 int i;
588
589 /* We would like to eliminate nameless symbols, but keep their types.
590 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
591 to type 2, but, should not create a symbol to address that type. Since
592 the symbol will be nameless, there is no way any user can refer to it. */
593
594 int nameless;
595
596 /* Ignore syms with empty names. */
597 if (string[0] == 0)
598 return 0;
599
600 /* Ignore old-style symbols from cc -go */
601 if (p == 0)
602 return 0;
603
604 while (p[1] == ':')
605 {
606 p += 2;
607 p = strchr (p, ':');
608 }
609
610 /* If a nameless stab entry, all we need is the type, not the symbol.
611 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
612 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
613
614 current_symbol = sym = (struct symbol *)
615 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
616 memset (sym, 0, sizeof (struct symbol));
617
618 switch (type & N_TYPE)
619 {
620 case N_TEXT:
621 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
622 break;
623 case N_DATA:
624 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
625 break;
626 case N_BSS:
627 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
628 break;
629 }
630
631 if (processing_gcc_compilation)
632 {
633 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
634 number of bytes occupied by a type or object, which we ignore. */
635 SYMBOL_LINE (sym) = desc;
636 }
637 else
638 {
639 SYMBOL_LINE (sym) = 0; /* unknown */
640 }
641
642 if (is_cplus_marker (string[0]))
643 {
644 /* Special GNU C++ names. */
645 switch (string[1])
646 {
647 case 't':
648 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
649 &objfile->objfile_obstack);
650 break;
651
652 case 'v': /* $vtbl_ptr_type */
653 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
654 goto normal;
655
656 case 'e':
657 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
658 &objfile->objfile_obstack);
659 break;
660
661 case '_':
662 /* This was an anonymous type that was never fixed up. */
663 goto normal;
664
665 #ifdef STATIC_TRANSFORM_NAME
666 case 'X':
667 /* SunPRO (3.0 at least) static variable encoding. */
668 goto normal;
669 #endif
670
671 default:
672 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
673 string);
674 goto normal; /* Do *something* with it */
675 }
676 }
677 else
678 {
679 normal:
680 SYMBOL_LANGUAGE (sym) = current_subfile->language;
681 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
682 }
683 p++;
684
685 /* Determine the type of name being defined. */
686 #if 0
687 /* Getting GDB to correctly skip the symbol on an undefined symbol
688 descriptor and not ever dump core is a very dodgy proposition if
689 we do things this way. I say the acorn RISC machine can just
690 fix their compiler. */
691 /* The Acorn RISC machine's compiler can put out locals that don't
692 start with "234=" or "(3,4)=", so assume anything other than the
693 deftypes we know how to handle is a local. */
694 if (!strchr ("cfFGpPrStTvVXCR", *p))
695 #else
696 if (isdigit (*p) || *p == '(' || *p == '-')
697 #endif
698 deftype = 'l';
699 else
700 deftype = *p++;
701
702 switch (deftype)
703 {
704 case 'c':
705 /* c is a special case, not followed by a type-number.
706 SYMBOL:c=iVALUE for an integer constant symbol.
707 SYMBOL:c=rVALUE for a floating constant symbol.
708 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
709 e.g. "b:c=e6,0" for "const b = blob1"
710 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
711 if (*p != '=')
712 {
713 SYMBOL_CLASS (sym) = LOC_CONST;
714 SYMBOL_TYPE (sym) = error_type (&p, objfile);
715 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
716 add_symbol_to_list (sym, &file_symbols);
717 return sym;
718 }
719 ++p;
720 switch (*p++)
721 {
722 case 'r':
723 {
724 double d = atof (p);
725 gdb_byte *dbl_valu;
726
727 /* FIXME-if-picky-about-floating-accuracy: Should be using
728 target arithmetic to get the value. real.c in GCC
729 probably has the necessary code. */
730
731 /* FIXME: lookup_fundamental_type is a hack. We should be
732 creating a type especially for the type of float constants.
733 Problem is, what type should it be?
734
735 Also, what should the name of this type be? Should we
736 be using 'S' constants (see stabs.texinfo) instead? */
737
738 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
739 FT_DBL_PREC_FLOAT);
740 dbl_valu =
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (SYMBOL_TYPE (sym)));
743 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
744 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
745 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
746 }
747 break;
748 case 'i':
749 {
750 /* Defining integer constants this way is kind of silly,
751 since 'e' constants allows the compiler to give not
752 only the value, but the type as well. C has at least
753 int, long, unsigned int, and long long as constant
754 types; other languages probably should have at least
755 unsigned as well as signed constants. */
756
757 /* We just need one int constant type for all objfiles.
758 It doesn't depend on languages or anything (arguably its
759 name should be a language-specific name for a type of
760 that size, but I'm inclined to say that if the compiler
761 wants a nice name for the type, it can use 'e'). */
762 static struct type *int_const_type;
763
764 /* Yes, this is as long as a *host* int. That is because we
765 use atoi. */
766 if (int_const_type == NULL)
767 int_const_type =
768 init_type (TYPE_CODE_INT,
769 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
770 "integer constant",
771 (struct objfile *) NULL);
772 SYMBOL_TYPE (sym) = int_const_type;
773 SYMBOL_VALUE (sym) = atoi (p);
774 SYMBOL_CLASS (sym) = LOC_CONST;
775 }
776 break;
777 case 'e':
778 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
779 can be represented as integral.
780 e.g. "b:c=e6,0" for "const b = blob1"
781 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
782 {
783 SYMBOL_CLASS (sym) = LOC_CONST;
784 SYMBOL_TYPE (sym) = read_type (&p, objfile);
785
786 if (*p != ',')
787 {
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 break;
790 }
791 ++p;
792
793 /* If the value is too big to fit in an int (perhaps because
794 it is unsigned), or something like that, we silently get
795 a bogus value. The type and everything else about it is
796 correct. Ideally, we should be using whatever we have
797 available for parsing unsigned and long long values,
798 however. */
799 SYMBOL_VALUE (sym) = atoi (p);
800 }
801 break;
802 default:
803 {
804 SYMBOL_CLASS (sym) = LOC_CONST;
805 SYMBOL_TYPE (sym) = error_type (&p, objfile);
806 }
807 }
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 return sym;
811
812 case 'C':
813 /* The name of a caught exception. */
814 SYMBOL_TYPE (sym) = read_type (&p, objfile);
815 SYMBOL_CLASS (sym) = LOC_LABEL;
816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
817 SYMBOL_VALUE_ADDRESS (sym) = valu;
818 add_symbol_to_list (sym, &local_symbols);
819 break;
820
821 case 'f':
822 /* A static function definition. */
823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
824 SYMBOL_CLASS (sym) = LOC_BLOCK;
825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
826 add_symbol_to_list (sym, &file_symbols);
827 /* fall into process_function_types. */
828
829 process_function_types:
830 /* Function result types are described as the result type in stabs.
831 We need to convert this to the function-returning-type-X type
832 in GDB. E.g. "int" is converted to "function returning int". */
833 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
834 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
835
836 /* All functions in C++ have prototypes. Stabs does not offer an
837 explicit way to identify prototyped or unprototyped functions,
838 but both GCC and Sun CC emit stabs for the "call-as" type rather
839 than the "declared-as" type for unprototyped functions, so
840 we treat all functions as if they were prototyped. This is used
841 primarily for promotion when calling the function from GDB. */
842 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
843
844 /* fall into process_prototype_types */
845
846 process_prototype_types:
847 /* Sun acc puts declared types of arguments here. */
848 if (*p == ';')
849 {
850 struct type *ftype = SYMBOL_TYPE (sym);
851 int nsemi = 0;
852 int nparams = 0;
853 char *p1 = p;
854
855 /* Obtain a worst case guess for the number of arguments
856 by counting the semicolons. */
857 while (*p1)
858 {
859 if (*p1++ == ';')
860 nsemi++;
861 }
862
863 /* Allocate parameter information fields and fill them in. */
864 TYPE_FIELDS (ftype) = (struct field *)
865 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
866 while (*p++ == ';')
867 {
868 struct type *ptype;
869
870 /* A type number of zero indicates the start of varargs.
871 FIXME: GDB currently ignores vararg functions. */
872 if (p[0] == '0' && p[1] == '\0')
873 break;
874 ptype = read_type (&p, objfile);
875
876 /* The Sun compilers mark integer arguments, which should
877 be promoted to the width of the calling conventions, with
878 a type which references itself. This type is turned into
879 a TYPE_CODE_VOID type by read_type, and we have to turn
880 it back into builtin_type_int here.
881 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
882 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
883 ptype = builtin_type_int;
884 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
885 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
886 }
887 TYPE_NFIELDS (ftype) = nparams;
888 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
889 }
890 break;
891
892 case 'F':
893 /* A global function definition. */
894 SYMBOL_TYPE (sym) = read_type (&p, objfile);
895 SYMBOL_CLASS (sym) = LOC_BLOCK;
896 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
897 add_symbol_to_list (sym, &global_symbols);
898 goto process_function_types;
899
900 case 'G':
901 /* For a class G (global) symbol, it appears that the
902 value is not correct. It is necessary to search for the
903 corresponding linker definition to find the value.
904 These definitions appear at the end of the namelist. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_STATIC;
907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
908 /* Don't add symbol references to global_sym_chain.
909 Symbol references don't have valid names and wont't match up with
910 minimal symbols when the global_sym_chain is relocated.
911 We'll fixup symbol references when we fixup the defining symbol. */
912 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
913 {
914 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
915 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
916 global_sym_chain[i] = sym;
917 }
918 add_symbol_to_list (sym, &global_symbols);
919 break;
920
921 /* This case is faked by a conditional above,
922 when there is no code letter in the dbx data.
923 Dbx data never actually contains 'l'. */
924 case 's':
925 case 'l':
926 SYMBOL_TYPE (sym) = read_type (&p, objfile);
927 SYMBOL_CLASS (sym) = LOC_LOCAL;
928 SYMBOL_VALUE (sym) = valu;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &local_symbols);
931 break;
932
933 case 'p':
934 if (*p == 'F')
935 /* pF is a two-letter code that means a function parameter in Fortran.
936 The type-number specifies the type of the return value.
937 Translate it into a pointer-to-function type. */
938 {
939 p++;
940 SYMBOL_TYPE (sym)
941 = lookup_pointer_type
942 (lookup_function_type (read_type (&p, objfile)));
943 }
944 else
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946
947 SYMBOL_CLASS (sym) = LOC_ARG;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
950 add_symbol_to_list (sym, &local_symbols);
951
952 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
953 {
954 /* On little-endian machines, this crud is never necessary,
955 and, if the extra bytes contain garbage, is harmful. */
956 break;
957 }
958
959 /* If it's gcc-compiled, if it says `short', believe it. */
960 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
961 break;
962
963 if (!BELIEVE_PCC_PROMOTION)
964 {
965 /* This is the signed type which arguments get promoted to. */
966 static struct type *pcc_promotion_type;
967 /* This is the unsigned type which arguments get promoted to. */
968 static struct type *pcc_unsigned_promotion_type;
969
970 /* Call it "int" because this is mainly C lossage. */
971 if (pcc_promotion_type == NULL)
972 pcc_promotion_type =
973 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
974 0, "int", NULL);
975
976 if (pcc_unsigned_promotion_type == NULL)
977 pcc_unsigned_promotion_type =
978 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
979 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
980
981 /* If PCC says a parameter is a short or a char, it is
982 really an int. */
983 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
984 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
985 {
986 SYMBOL_TYPE (sym) =
987 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
988 ? pcc_unsigned_promotion_type
989 : pcc_promotion_type;
990 }
991 break;
992 }
993
994 case 'P':
995 /* acc seems to use P to declare the prototypes of functions that
996 are referenced by this file. gdb is not prepared to deal
997 with this extra information. FIXME, it ought to. */
998 if (type == N_FUN)
999 {
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 goto process_prototype_types;
1002 }
1003 /*FALLTHROUGH */
1004
1005 case 'R':
1006 /* Parameter which is in a register. */
1007 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008 SYMBOL_CLASS (sym) = LOC_REGPARM;
1009 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1010 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1011 {
1012 reg_value_complaint (SYMBOL_VALUE (sym),
1013 NUM_REGS + NUM_PSEUDO_REGS,
1014 SYMBOL_PRINT_NAME (sym));
1015 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1016 }
1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1018 add_symbol_to_list (sym, &local_symbols);
1019 break;
1020
1021 case 'r':
1022 /* Register variable (either global or local). */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_CLASS (sym) = LOC_REGISTER;
1025 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1026 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1027 {
1028 reg_value_complaint (SYMBOL_VALUE (sym),
1029 NUM_REGS + NUM_PSEUDO_REGS,
1030 SYMBOL_PRINT_NAME (sym));
1031 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1032 }
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 if (within_function)
1035 {
1036 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1037 the same name to represent an argument passed in a
1038 register. GCC uses 'P' for the same case. So if we find
1039 such a symbol pair we combine it into one 'P' symbol.
1040 For Sun cc we need to do this regardless of
1041 stabs_argument_has_addr, because the compiler puts out
1042 the 'p' symbol even if it never saves the argument onto
1043 the stack.
1044
1045 On most machines, we want to preserve both symbols, so
1046 that we can still get information about what is going on
1047 with the stack (VAX for computing args_printed, using
1048 stack slots instead of saved registers in backtraces,
1049 etc.).
1050
1051 Note that this code illegally combines
1052 main(argc) struct foo argc; { register struct foo argc; }
1053 but this case is considered pathological and causes a warning
1054 from a decent compiler. */
1055
1056 if (local_symbols
1057 && local_symbols->nsyms > 0
1058 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1059 SYMBOL_TYPE (sym)))
1060 {
1061 struct symbol *prev_sym;
1062 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1063 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1064 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1065 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1066 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1067 {
1068 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1069 /* Use the type from the LOC_REGISTER; that is the type
1070 that is actually in that register. */
1071 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1072 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1073 sym = prev_sym;
1074 break;
1075 }
1076 }
1077 add_symbol_to_list (sym, &local_symbols);
1078 }
1079 else
1080 add_symbol_to_list (sym, &file_symbols);
1081 break;
1082
1083 case 'S':
1084 /* Static symbol at top level of file */
1085 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1086 SYMBOL_CLASS (sym) = LOC_STATIC;
1087 SYMBOL_VALUE_ADDRESS (sym) = valu;
1088 #ifdef STATIC_TRANSFORM_NAME
1089 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1090 {
1091 struct minimal_symbol *msym;
1092 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1093 if (msym != NULL)
1094 {
1095 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1096 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1097 }
1098 }
1099 #endif
1100 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101 add_symbol_to_list (sym, &file_symbols);
1102 break;
1103
1104 case 't':
1105 /* Typedef */
1106 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107
1108 /* For a nameless type, we don't want a create a symbol, thus we
1109 did not use `sym'. Return without further processing. */
1110 if (nameless)
1111 return NULL;
1112
1113 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1114 SYMBOL_VALUE (sym) = valu;
1115 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1116 /* C++ vagaries: we may have a type which is derived from
1117 a base type which did not have its name defined when the
1118 derived class was output. We fill in the derived class's
1119 base part member's name here in that case. */
1120 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1121 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1122 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1123 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1124 {
1125 int j;
1126 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1127 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1128 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1129 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1130 }
1131
1132 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1133 {
1134 /* gcc-2.6 or later (when using -fvtable-thunks)
1135 emits a unique named type for a vtable entry.
1136 Some gdb code depends on that specific name. */
1137 extern const char vtbl_ptr_name[];
1138
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1140 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1141 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1142 {
1143 /* If we are giving a name to a type such as "pointer to
1144 foo" or "function returning foo", we better not set
1145 the TYPE_NAME. If the program contains "typedef char
1146 *caddr_t;", we don't want all variables of type char
1147 * to print as caddr_t. This is not just a
1148 consequence of GDB's type management; PCC and GCC (at
1149 least through version 2.4) both output variables of
1150 either type char * or caddr_t with the type number
1151 defined in the 't' symbol for caddr_t. If a future
1152 compiler cleans this up it GDB is not ready for it
1153 yet, but if it becomes ready we somehow need to
1154 disable this check (without breaking the PCC/GCC2.4
1155 case).
1156
1157 Sigh.
1158
1159 Fortunately, this check seems not to be necessary
1160 for anything except pointers or functions. */
1161 /* ezannoni: 2000-10-26. This seems to apply for
1162 versions of gcc older than 2.8. This was the original
1163 problem: with the following code gdb would tell that
1164 the type for name1 is caddr_t, and func is char()
1165 typedef char *caddr_t;
1166 char *name2;
1167 struct x
1168 {
1169 char *name1;
1170 } xx;
1171 char *func()
1172 {
1173 }
1174 main () {}
1175 */
1176
1177 /* Pascal accepts names for pointer types. */
1178 if (current_subfile->language == language_pascal)
1179 {
1180 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1181 }
1182 }
1183 else
1184 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1185 }
1186
1187 add_symbol_to_list (sym, &file_symbols);
1188 break;
1189
1190 case 'T':
1191 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1192 by 't' which means we are typedef'ing it as well. */
1193 synonym = *p == 't';
1194
1195 if (synonym)
1196 p++;
1197
1198 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1199
1200 /* For a nameless type, we don't want a create a symbol, thus we
1201 did not use `sym'. Return without further processing. */
1202 if (nameless)
1203 return NULL;
1204
1205 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1206 SYMBOL_VALUE (sym) = valu;
1207 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1208 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1209 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1210 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1211 add_symbol_to_list (sym, &file_symbols);
1212
1213 if (synonym)
1214 {
1215 /* Clone the sym and then modify it. */
1216 struct symbol *typedef_sym = (struct symbol *)
1217 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1218 *typedef_sym = *sym;
1219 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1220 SYMBOL_VALUE (typedef_sym) = valu;
1221 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1222 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1223 TYPE_NAME (SYMBOL_TYPE (sym))
1224 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1225 add_symbol_to_list (typedef_sym, &file_symbols);
1226 }
1227 break;
1228
1229 case 'V':
1230 /* Static symbol of local scope */
1231 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1232 SYMBOL_CLASS (sym) = LOC_STATIC;
1233 SYMBOL_VALUE_ADDRESS (sym) = valu;
1234 #ifdef STATIC_TRANSFORM_NAME
1235 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1236 {
1237 struct minimal_symbol *msym;
1238 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1239 if (msym != NULL)
1240 {
1241 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1242 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1243 }
1244 }
1245 #endif
1246 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1247 add_symbol_to_list (sym, &local_symbols);
1248 break;
1249
1250 case 'v':
1251 /* Reference parameter */
1252 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1253 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1254 SYMBOL_VALUE (sym) = valu;
1255 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1256 add_symbol_to_list (sym, &local_symbols);
1257 break;
1258
1259 case 'a':
1260 /* Reference parameter which is in a register. */
1261 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1262 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1263 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1264 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1265 {
1266 reg_value_complaint (SYMBOL_VALUE (sym),
1267 NUM_REGS + NUM_PSEUDO_REGS,
1268 SYMBOL_PRINT_NAME (sym));
1269 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1270 }
1271 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1272 add_symbol_to_list (sym, &local_symbols);
1273 break;
1274
1275 case 'X':
1276 /* This is used by Sun FORTRAN for "function result value".
1277 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1278 that Pascal uses it too, but when I tried it Pascal used
1279 "x:3" (local symbol) instead. */
1280 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1281 SYMBOL_CLASS (sym) = LOC_LOCAL;
1282 SYMBOL_VALUE (sym) = valu;
1283 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1284 add_symbol_to_list (sym, &local_symbols);
1285 break;
1286
1287 default:
1288 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1289 SYMBOL_CLASS (sym) = LOC_CONST;
1290 SYMBOL_VALUE (sym) = 0;
1291 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1292 add_symbol_to_list (sym, &file_symbols);
1293 break;
1294 }
1295
1296 /* Some systems pass variables of certain types by reference instead
1297 of by value, i.e. they will pass the address of a structure (in a
1298 register or on the stack) instead of the structure itself. */
1299
1300 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1301 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1302 {
1303 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1304 variables passed in a register). */
1305 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1306 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1307 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1308 and subsequent arguments on SPARC, for example). */
1309 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1310 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1311 }
1312
1313 return sym;
1314 }
1315
1316 /* Skip rest of this symbol and return an error type.
1317
1318 General notes on error recovery: error_type always skips to the
1319 end of the symbol (modulo cretinous dbx symbol name continuation).
1320 Thus code like this:
1321
1322 if (*(*pp)++ != ';')
1323 return error_type (pp, objfile);
1324
1325 is wrong because if *pp starts out pointing at '\0' (typically as the
1326 result of an earlier error), it will be incremented to point to the
1327 start of the next symbol, which might produce strange results, at least
1328 if you run off the end of the string table. Instead use
1329
1330 if (**pp != ';')
1331 return error_type (pp, objfile);
1332 ++*pp;
1333
1334 or
1335
1336 if (**pp != ';')
1337 foo = error_type (pp, objfile);
1338 else
1339 ++*pp;
1340
1341 And in case it isn't obvious, the point of all this hair is so the compiler
1342 can define new types and new syntaxes, and old versions of the
1343 debugger will be able to read the new symbol tables. */
1344
1345 static struct type *
1346 error_type (char **pp, struct objfile *objfile)
1347 {
1348 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1349 while (1)
1350 {
1351 /* Skip to end of symbol. */
1352 while (**pp != '\0')
1353 {
1354 (*pp)++;
1355 }
1356
1357 /* Check for and handle cretinous dbx symbol name continuation! */
1358 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1359 {
1360 *pp = next_symbol_text (objfile);
1361 }
1362 else
1363 {
1364 break;
1365 }
1366 }
1367 return (builtin_type_error);
1368 }
1369 \f
1370
1371 /* Read type information or a type definition; return the type. Even
1372 though this routine accepts either type information or a type
1373 definition, the distinction is relevant--some parts of stabsread.c
1374 assume that type information starts with a digit, '-', or '(' in
1375 deciding whether to call read_type. */
1376
1377 static struct type *
1378 read_type (char **pp, struct objfile *objfile)
1379 {
1380 struct type *type = 0;
1381 struct type *type1;
1382 int typenums[2];
1383 char type_descriptor;
1384
1385 /* Size in bits of type if specified by a type attribute, or -1 if
1386 there is no size attribute. */
1387 int type_size = -1;
1388
1389 /* Used to distinguish string and bitstring from char-array and set. */
1390 int is_string = 0;
1391
1392 /* Used to distinguish vector from array. */
1393 int is_vector = 0;
1394
1395 /* Read type number if present. The type number may be omitted.
1396 for instance in a two-dimensional array declared with type
1397 "ar1;1;10;ar1;1;10;4". */
1398 if ((**pp >= '0' && **pp <= '9')
1399 || **pp == '('
1400 || **pp == '-')
1401 {
1402 if (read_type_number (pp, typenums) != 0)
1403 return error_type (pp, objfile);
1404
1405 if (**pp != '=')
1406 {
1407 /* Type is not being defined here. Either it already
1408 exists, or this is a forward reference to it.
1409 dbx_alloc_type handles both cases. */
1410 type = dbx_alloc_type (typenums, objfile);
1411
1412 /* If this is a forward reference, arrange to complain if it
1413 doesn't get patched up by the time we're done
1414 reading. */
1415 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1416 add_undefined_type (type);
1417
1418 return type;
1419 }
1420
1421 /* Type is being defined here. */
1422 /* Skip the '='.
1423 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1424 (*pp) += 2;
1425 }
1426 else
1427 {
1428 /* 'typenums=' not present, type is anonymous. Read and return
1429 the definition, but don't put it in the type vector. */
1430 typenums[0] = typenums[1] = -1;
1431 (*pp)++;
1432 }
1433
1434 again:
1435 type_descriptor = (*pp)[-1];
1436 switch (type_descriptor)
1437 {
1438 case 'x':
1439 {
1440 enum type_code code;
1441
1442 /* Used to index through file_symbols. */
1443 struct pending *ppt;
1444 int i;
1445
1446 /* Name including "struct", etc. */
1447 char *type_name;
1448
1449 {
1450 char *from, *to, *p, *q1, *q2;
1451
1452 /* Set the type code according to the following letter. */
1453 switch ((*pp)[0])
1454 {
1455 case 's':
1456 code = TYPE_CODE_STRUCT;
1457 break;
1458 case 'u':
1459 code = TYPE_CODE_UNION;
1460 break;
1461 case 'e':
1462 code = TYPE_CODE_ENUM;
1463 break;
1464 default:
1465 {
1466 /* Complain and keep going, so compilers can invent new
1467 cross-reference types. */
1468 complaint (&symfile_complaints,
1469 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1470 code = TYPE_CODE_STRUCT;
1471 break;
1472 }
1473 }
1474
1475 q1 = strchr (*pp, '<');
1476 p = strchr (*pp, ':');
1477 if (p == NULL)
1478 return error_type (pp, objfile);
1479 if (q1 && p > q1 && p[1] == ':')
1480 {
1481 int nesting_level = 0;
1482 for (q2 = q1; *q2; q2++)
1483 {
1484 if (*q2 == '<')
1485 nesting_level++;
1486 else if (*q2 == '>')
1487 nesting_level--;
1488 else if (*q2 == ':' && nesting_level == 0)
1489 break;
1490 }
1491 p = q2;
1492 if (*p != ':')
1493 return error_type (pp, objfile);
1494 }
1495 to = type_name =
1496 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1497
1498 /* Copy the name. */
1499 from = *pp + 1;
1500 while (from < p)
1501 *to++ = *from++;
1502 *to = '\0';
1503
1504 /* Set the pointer ahead of the name which we just read, and
1505 the colon. */
1506 *pp = from + 1;
1507 }
1508
1509 /* If this type has already been declared, then reuse the same
1510 type, rather than allocating a new one. This saves some
1511 memory. */
1512
1513 for (ppt = file_symbols; ppt; ppt = ppt->next)
1514 for (i = 0; i < ppt->nsyms; i++)
1515 {
1516 struct symbol *sym = ppt->symbol[i];
1517
1518 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1519 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1520 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1521 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1522 {
1523 obstack_free (&objfile->objfile_obstack, type_name);
1524 type = SYMBOL_TYPE (sym);
1525 if (typenums[0] != -1)
1526 *dbx_lookup_type (typenums) = type;
1527 return type;
1528 }
1529 }
1530
1531 /* Didn't find the type to which this refers, so we must
1532 be dealing with a forward reference. Allocate a type
1533 structure for it, and keep track of it so we can
1534 fill in the rest of the fields when we get the full
1535 type. */
1536 type = dbx_alloc_type (typenums, objfile);
1537 TYPE_CODE (type) = code;
1538 TYPE_TAG_NAME (type) = type_name;
1539 INIT_CPLUS_SPECIFIC (type);
1540 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1541
1542 add_undefined_type (type);
1543 return type;
1544 }
1545
1546 case '-': /* RS/6000 built-in type */
1547 case '0':
1548 case '1':
1549 case '2':
1550 case '3':
1551 case '4':
1552 case '5':
1553 case '6':
1554 case '7':
1555 case '8':
1556 case '9':
1557 case '(':
1558 (*pp)--;
1559
1560 /* We deal with something like t(1,2)=(3,4)=... which
1561 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1562
1563 /* Allocate and enter the typedef type first.
1564 This handles recursive types. */
1565 type = dbx_alloc_type (typenums, objfile);
1566 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1567 {
1568 struct type *xtype = read_type (pp, objfile);
1569 if (type == xtype)
1570 {
1571 /* It's being defined as itself. That means it is "void". */
1572 TYPE_CODE (type) = TYPE_CODE_VOID;
1573 TYPE_LENGTH (type) = 1;
1574 }
1575 else if (type_size >= 0 || is_string)
1576 {
1577 /* This is the absolute wrong way to construct types. Every
1578 other debug format has found a way around this problem and
1579 the related problems with unnecessarily stubbed types;
1580 someone motivated should attempt to clean up the issue
1581 here as well. Once a type pointed to has been created it
1582 should not be modified.
1583
1584 Well, it's not *absolutely* wrong. Constructing recursive
1585 types (trees, linked lists) necessarily entails modifying
1586 types after creating them. Constructing any loop structure
1587 entails side effects. The Dwarf 2 reader does handle this
1588 more gracefully (it never constructs more than once
1589 instance of a type object, so it doesn't have to copy type
1590 objects wholesale), but it still mutates type objects after
1591 other folks have references to them.
1592
1593 Keep in mind that this circularity/mutation issue shows up
1594 at the source language level, too: C's "incomplete types",
1595 for example. So the proper cleanup, I think, would be to
1596 limit GDB's type smashing to match exactly those required
1597 by the source language. So GDB could have a
1598 "complete_this_type" function, but never create unnecessary
1599 copies of a type otherwise. */
1600 replace_type (type, xtype);
1601 TYPE_NAME (type) = NULL;
1602 TYPE_TAG_NAME (type) = NULL;
1603 }
1604 else
1605 {
1606 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1607 TYPE_TARGET_TYPE (type) = xtype;
1608 }
1609 }
1610 break;
1611
1612 /* In the following types, we must be sure to overwrite any existing
1613 type that the typenums refer to, rather than allocating a new one
1614 and making the typenums point to the new one. This is because there
1615 may already be pointers to the existing type (if it had been
1616 forward-referenced), and we must change it to a pointer, function,
1617 reference, or whatever, *in-place*. */
1618
1619 case '*': /* Pointer to another type */
1620 type1 = read_type (pp, objfile);
1621 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1622 break;
1623
1624 case '&': /* Reference to another type */
1625 type1 = read_type (pp, objfile);
1626 type = make_reference_type (type1, dbx_lookup_type (typenums));
1627 break;
1628
1629 case 'f': /* Function returning another type */
1630 type1 = read_type (pp, objfile);
1631 type = make_function_type (type1, dbx_lookup_type (typenums));
1632 break;
1633
1634 case 'g': /* Prototyped function. (Sun) */
1635 {
1636 /* Unresolved questions:
1637
1638 - According to Sun's ``STABS Interface Manual'', for 'f'
1639 and 'F' symbol descriptors, a `0' in the argument type list
1640 indicates a varargs function. But it doesn't say how 'g'
1641 type descriptors represent that info. Someone with access
1642 to Sun's toolchain should try it out.
1643
1644 - According to the comment in define_symbol (search for
1645 `process_prototype_types:'), Sun emits integer arguments as
1646 types which ref themselves --- like `void' types. Do we
1647 have to deal with that here, too? Again, someone with
1648 access to Sun's toolchain should try it out and let us
1649 know. */
1650
1651 const char *type_start = (*pp) - 1;
1652 struct type *return_type = read_type (pp, objfile);
1653 struct type *func_type
1654 = make_function_type (return_type, dbx_lookup_type (typenums));
1655 struct type_list {
1656 struct type *type;
1657 struct type_list *next;
1658 } *arg_types = 0;
1659 int num_args = 0;
1660
1661 while (**pp && **pp != '#')
1662 {
1663 struct type *arg_type = read_type (pp, objfile);
1664 struct type_list *new = alloca (sizeof (*new));
1665 new->type = arg_type;
1666 new->next = arg_types;
1667 arg_types = new;
1668 num_args++;
1669 }
1670 if (**pp == '#')
1671 ++*pp;
1672 else
1673 {
1674 complaint (&symfile_complaints,
1675 _("Prototyped function type didn't end arguments with `#':\n%s"),
1676 type_start);
1677 }
1678
1679 /* If there is just one argument whose type is `void', then
1680 that's just an empty argument list. */
1681 if (arg_types
1682 && ! arg_types->next
1683 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1684 num_args = 0;
1685
1686 TYPE_FIELDS (func_type)
1687 = (struct field *) TYPE_ALLOC (func_type,
1688 num_args * sizeof (struct field));
1689 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1690 {
1691 int i;
1692 struct type_list *t;
1693
1694 /* We stuck each argument type onto the front of the list
1695 when we read it, so the list is reversed. Build the
1696 fields array right-to-left. */
1697 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1698 TYPE_FIELD_TYPE (func_type, i) = t->type;
1699 }
1700 TYPE_NFIELDS (func_type) = num_args;
1701 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1702
1703 type = func_type;
1704 break;
1705 }
1706
1707 case 'k': /* Const qualifier on some type (Sun) */
1708 type = read_type (pp, objfile);
1709 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1710 dbx_lookup_type (typenums));
1711 break;
1712
1713 case 'B': /* Volatile qual on some type (Sun) */
1714 type = read_type (pp, objfile);
1715 type = make_cv_type (TYPE_CONST (type), 1, type,
1716 dbx_lookup_type (typenums));
1717 break;
1718
1719 case '@':
1720 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1721 { /* Member (class & variable) type */
1722 /* FIXME -- we should be doing smash_to_XXX types here. */
1723
1724 struct type *domain = read_type (pp, objfile);
1725 struct type *memtype;
1726
1727 if (**pp != ',')
1728 /* Invalid member type data format. */
1729 return error_type (pp, objfile);
1730 ++*pp;
1731
1732 memtype = read_type (pp, objfile);
1733 type = dbx_alloc_type (typenums, objfile);
1734 smash_to_member_type (type, domain, memtype);
1735 }
1736 else
1737 /* type attribute */
1738 {
1739 char *attr = *pp;
1740 /* Skip to the semicolon. */
1741 while (**pp != ';' && **pp != '\0')
1742 ++(*pp);
1743 if (**pp == '\0')
1744 return error_type (pp, objfile);
1745 else
1746 ++ * pp; /* Skip the semicolon. */
1747
1748 switch (*attr)
1749 {
1750 case 's': /* Size attribute */
1751 type_size = atoi (attr + 1);
1752 if (type_size <= 0)
1753 type_size = -1;
1754 break;
1755
1756 case 'S': /* String attribute */
1757 /* FIXME: check to see if following type is array? */
1758 is_string = 1;
1759 break;
1760
1761 case 'V': /* Vector attribute */
1762 /* FIXME: check to see if following type is array? */
1763 is_vector = 1;
1764 break;
1765
1766 default:
1767 /* Ignore unrecognized type attributes, so future compilers
1768 can invent new ones. */
1769 break;
1770 }
1771 ++*pp;
1772 goto again;
1773 }
1774 break;
1775
1776 case '#': /* Method (class & fn) type */
1777 if ((*pp)[0] == '#')
1778 {
1779 /* We'll get the parameter types from the name. */
1780 struct type *return_type;
1781
1782 (*pp)++;
1783 return_type = read_type (pp, objfile);
1784 if (*(*pp)++ != ';')
1785 complaint (&symfile_complaints,
1786 _("invalid (minimal) member type data format at symtab pos %d."),
1787 symnum);
1788 type = allocate_stub_method (return_type);
1789 if (typenums[0] != -1)
1790 *dbx_lookup_type (typenums) = type;
1791 }
1792 else
1793 {
1794 struct type *domain = read_type (pp, objfile);
1795 struct type *return_type;
1796 struct field *args;
1797 int nargs, varargs;
1798
1799 if (**pp != ',')
1800 /* Invalid member type data format. */
1801 return error_type (pp, objfile);
1802 else
1803 ++(*pp);
1804
1805 return_type = read_type (pp, objfile);
1806 args = read_args (pp, ';', objfile, &nargs, &varargs);
1807 if (args == NULL)
1808 return error_type (pp, objfile);
1809 type = dbx_alloc_type (typenums, objfile);
1810 smash_to_method_type (type, domain, return_type, args,
1811 nargs, varargs);
1812 }
1813 break;
1814
1815 case 'r': /* Range type */
1816 type = read_range_type (pp, typenums, type_size, objfile);
1817 if (typenums[0] != -1)
1818 *dbx_lookup_type (typenums) = type;
1819 break;
1820
1821 case 'b':
1822 {
1823 /* Sun ACC builtin int type */
1824 type = read_sun_builtin_type (pp, typenums, objfile);
1825 if (typenums[0] != -1)
1826 *dbx_lookup_type (typenums) = type;
1827 }
1828 break;
1829
1830 case 'R': /* Sun ACC builtin float type */
1831 type = read_sun_floating_type (pp, typenums, objfile);
1832 if (typenums[0] != -1)
1833 *dbx_lookup_type (typenums) = type;
1834 break;
1835
1836 case 'e': /* Enumeration type */
1837 type = dbx_alloc_type (typenums, objfile);
1838 type = read_enum_type (pp, type, objfile);
1839 if (typenums[0] != -1)
1840 *dbx_lookup_type (typenums) = type;
1841 break;
1842
1843 case 's': /* Struct type */
1844 case 'u': /* Union type */
1845 {
1846 enum type_code type_code = TYPE_CODE_UNDEF;
1847 type = dbx_alloc_type (typenums, objfile);
1848 switch (type_descriptor)
1849 {
1850 case 's':
1851 type_code = TYPE_CODE_STRUCT;
1852 break;
1853 case 'u':
1854 type_code = TYPE_CODE_UNION;
1855 break;
1856 }
1857 type = read_struct_type (pp, type, type_code, objfile);
1858 break;
1859 }
1860
1861 case 'a': /* Array type */
1862 if (**pp != 'r')
1863 return error_type (pp, objfile);
1864 ++*pp;
1865
1866 type = dbx_alloc_type (typenums, objfile);
1867 type = read_array_type (pp, type, objfile);
1868 if (is_string)
1869 TYPE_CODE (type) = TYPE_CODE_STRING;
1870 if (is_vector)
1871 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1872 break;
1873
1874 case 'S': /* Set or bitstring type */
1875 type1 = read_type (pp, objfile);
1876 type = create_set_type ((struct type *) NULL, type1);
1877 if (is_string)
1878 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1879 if (typenums[0] != -1)
1880 *dbx_lookup_type (typenums) = type;
1881 break;
1882
1883 default:
1884 --*pp; /* Go back to the symbol in error */
1885 /* Particularly important if it was \0! */
1886 return error_type (pp, objfile);
1887 }
1888
1889 if (type == 0)
1890 {
1891 warning (_("GDB internal error, type is NULL in stabsread.c."));
1892 return error_type (pp, objfile);
1893 }
1894
1895 /* Size specified in a type attribute overrides any other size. */
1896 if (type_size != -1)
1897 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1898
1899 return type;
1900 }
1901 \f
1902 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1903 Return the proper type node for a given builtin type number. */
1904
1905 static struct type *
1906 rs6000_builtin_type (int typenum)
1907 {
1908 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1909 #define NUMBER_RECOGNIZED 34
1910 /* This includes an empty slot for type number -0. */
1911 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1912 struct type *rettype = NULL;
1913
1914 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1915 {
1916 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1917 return builtin_type_error;
1918 }
1919 if (negative_types[-typenum] != NULL)
1920 return negative_types[-typenum];
1921
1922 #if TARGET_CHAR_BIT != 8
1923 #error This code wrong for TARGET_CHAR_BIT not 8
1924 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1925 that if that ever becomes not true, the correct fix will be to
1926 make the size in the struct type to be in bits, not in units of
1927 TARGET_CHAR_BIT. */
1928 #endif
1929
1930 switch (-typenum)
1931 {
1932 case 1:
1933 /* The size of this and all the other types are fixed, defined
1934 by the debugging format. If there is a type called "int" which
1935 is other than 32 bits, then it should use a new negative type
1936 number (or avoid negative type numbers for that case).
1937 See stabs.texinfo. */
1938 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1939 break;
1940 case 2:
1941 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1942 break;
1943 case 3:
1944 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1945 break;
1946 case 4:
1947 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1948 break;
1949 case 5:
1950 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1951 "unsigned char", NULL);
1952 break;
1953 case 6:
1954 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1955 break;
1956 case 7:
1957 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1958 "unsigned short", NULL);
1959 break;
1960 case 8:
1961 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1962 "unsigned int", NULL);
1963 break;
1964 case 9:
1965 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1966 "unsigned", NULL);
1967 case 10:
1968 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1969 "unsigned long", NULL);
1970 break;
1971 case 11:
1972 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1973 break;
1974 case 12:
1975 /* IEEE single precision (32 bit). */
1976 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1977 break;
1978 case 13:
1979 /* IEEE double precision (64 bit). */
1980 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1981 break;
1982 case 14:
1983 /* This is an IEEE double on the RS/6000, and different machines with
1984 different sizes for "long double" should use different negative
1985 type numbers. See stabs.texinfo. */
1986 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1987 break;
1988 case 15:
1989 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1990 break;
1991 case 16:
1992 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1993 "boolean", NULL);
1994 break;
1995 case 17:
1996 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1997 break;
1998 case 18:
1999 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2000 break;
2001 case 19:
2002 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2003 break;
2004 case 20:
2005 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2006 "character", NULL);
2007 break;
2008 case 21:
2009 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2010 "logical*1", NULL);
2011 break;
2012 case 22:
2013 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2014 "logical*2", NULL);
2015 break;
2016 case 23:
2017 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2018 "logical*4", NULL);
2019 break;
2020 case 24:
2021 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2022 "logical", NULL);
2023 break;
2024 case 25:
2025 /* Complex type consisting of two IEEE single precision values. */
2026 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2027 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2028 NULL);
2029 break;
2030 case 26:
2031 /* Complex type consisting of two IEEE double precision values. */
2032 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2033 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2034 NULL);
2035 break;
2036 case 27:
2037 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2038 break;
2039 case 28:
2040 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2041 break;
2042 case 29:
2043 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2044 break;
2045 case 30:
2046 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2047 break;
2048 case 31:
2049 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2050 break;
2051 case 32:
2052 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2053 "unsigned long long", NULL);
2054 break;
2055 case 33:
2056 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2057 "logical*8", NULL);
2058 break;
2059 case 34:
2060 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2061 break;
2062 }
2063 negative_types[-typenum] = rettype;
2064 return rettype;
2065 }
2066 \f
2067 /* This page contains subroutines of read_type. */
2068
2069 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2070
2071 static void
2072 update_method_name_from_physname (char **old_name, char *physname)
2073 {
2074 char *method_name;
2075
2076 method_name = method_name_from_physname (physname);
2077
2078 if (method_name == NULL)
2079 {
2080 complaint (&symfile_complaints,
2081 _("Method has bad physname %s\n"), physname);
2082 return;
2083 }
2084
2085 if (strcmp (*old_name, method_name) != 0)
2086 {
2087 xfree (*old_name);
2088 *old_name = method_name;
2089 }
2090 else
2091 xfree (method_name);
2092 }
2093
2094 /* Read member function stabs info for C++ classes. The form of each member
2095 function data is:
2096
2097 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2098
2099 An example with two member functions is:
2100
2101 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2102
2103 For the case of overloaded operators, the format is op$::*.funcs, where
2104 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2105 name (such as `+=') and `.' marks the end of the operator name.
2106
2107 Returns 1 for success, 0 for failure. */
2108
2109 static int
2110 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2111 struct objfile *objfile)
2112 {
2113 int nfn_fields = 0;
2114 int length = 0;
2115 /* Total number of member functions defined in this class. If the class
2116 defines two `f' functions, and one `g' function, then this will have
2117 the value 3. */
2118 int total_length = 0;
2119 int i;
2120 struct next_fnfield
2121 {
2122 struct next_fnfield *next;
2123 struct fn_field fn_field;
2124 }
2125 *sublist;
2126 struct type *look_ahead_type;
2127 struct next_fnfieldlist *new_fnlist;
2128 struct next_fnfield *new_sublist;
2129 char *main_fn_name;
2130 char *p;
2131
2132 /* Process each list until we find something that is not a member function
2133 or find the end of the functions. */
2134
2135 while (**pp != ';')
2136 {
2137 /* We should be positioned at the start of the function name.
2138 Scan forward to find the first ':' and if it is not the
2139 first of a "::" delimiter, then this is not a member function. */
2140 p = *pp;
2141 while (*p != ':')
2142 {
2143 p++;
2144 }
2145 if (p[1] != ':')
2146 {
2147 break;
2148 }
2149
2150 sublist = NULL;
2151 look_ahead_type = NULL;
2152 length = 0;
2153
2154 new_fnlist = (struct next_fnfieldlist *)
2155 xmalloc (sizeof (struct next_fnfieldlist));
2156 make_cleanup (xfree, new_fnlist);
2157 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2158
2159 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2160 {
2161 /* This is a completely wierd case. In order to stuff in the
2162 names that might contain colons (the usual name delimiter),
2163 Mike Tiemann defined a different name format which is
2164 signalled if the identifier is "op$". In that case, the
2165 format is "op$::XXXX." where XXXX is the name. This is
2166 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2167 /* This lets the user type "break operator+".
2168 We could just put in "+" as the name, but that wouldn't
2169 work for "*". */
2170 static char opname[32] = "op$";
2171 char *o = opname + 3;
2172
2173 /* Skip past '::'. */
2174 *pp = p + 2;
2175
2176 STABS_CONTINUE (pp, objfile);
2177 p = *pp;
2178 while (*p != '.')
2179 {
2180 *o++ = *p++;
2181 }
2182 main_fn_name = savestring (opname, o - opname);
2183 /* Skip past '.' */
2184 *pp = p + 1;
2185 }
2186 else
2187 {
2188 main_fn_name = savestring (*pp, p - *pp);
2189 /* Skip past '::'. */
2190 *pp = p + 2;
2191 }
2192 new_fnlist->fn_fieldlist.name = main_fn_name;
2193
2194 do
2195 {
2196 new_sublist =
2197 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2198 make_cleanup (xfree, new_sublist);
2199 memset (new_sublist, 0, sizeof (struct next_fnfield));
2200
2201 /* Check for and handle cretinous dbx symbol name continuation! */
2202 if (look_ahead_type == NULL)
2203 {
2204 /* Normal case. */
2205 STABS_CONTINUE (pp, objfile);
2206
2207 new_sublist->fn_field.type = read_type (pp, objfile);
2208 if (**pp != ':')
2209 {
2210 /* Invalid symtab info for member function. */
2211 return 0;
2212 }
2213 }
2214 else
2215 {
2216 /* g++ version 1 kludge */
2217 new_sublist->fn_field.type = look_ahead_type;
2218 look_ahead_type = NULL;
2219 }
2220
2221 (*pp)++;
2222 p = *pp;
2223 while (*p != ';')
2224 {
2225 p++;
2226 }
2227
2228 /* If this is just a stub, then we don't have the real name here. */
2229
2230 if (TYPE_STUB (new_sublist->fn_field.type))
2231 {
2232 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2233 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2234 new_sublist->fn_field.is_stub = 1;
2235 }
2236 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2237 *pp = p + 1;
2238
2239 /* Set this member function's visibility fields. */
2240 switch (*(*pp)++)
2241 {
2242 case VISIBILITY_PRIVATE:
2243 new_sublist->fn_field.is_private = 1;
2244 break;
2245 case VISIBILITY_PROTECTED:
2246 new_sublist->fn_field.is_protected = 1;
2247 break;
2248 }
2249
2250 STABS_CONTINUE (pp, objfile);
2251 switch (**pp)
2252 {
2253 case 'A': /* Normal functions. */
2254 new_sublist->fn_field.is_const = 0;
2255 new_sublist->fn_field.is_volatile = 0;
2256 (*pp)++;
2257 break;
2258 case 'B': /* `const' member functions. */
2259 new_sublist->fn_field.is_const = 1;
2260 new_sublist->fn_field.is_volatile = 0;
2261 (*pp)++;
2262 break;
2263 case 'C': /* `volatile' member function. */
2264 new_sublist->fn_field.is_const = 0;
2265 new_sublist->fn_field.is_volatile = 1;
2266 (*pp)++;
2267 break;
2268 case 'D': /* `const volatile' member function. */
2269 new_sublist->fn_field.is_const = 1;
2270 new_sublist->fn_field.is_volatile = 1;
2271 (*pp)++;
2272 break;
2273 case '*': /* File compiled with g++ version 1 -- no info */
2274 case '?':
2275 case '.':
2276 break;
2277 default:
2278 complaint (&symfile_complaints,
2279 _("const/volatile indicator missing, got '%c'"), **pp);
2280 break;
2281 }
2282
2283 switch (*(*pp)++)
2284 {
2285 case '*':
2286 {
2287 int nbits;
2288 /* virtual member function, followed by index.
2289 The sign bit is set to distinguish pointers-to-methods
2290 from virtual function indicies. Since the array is
2291 in words, the quantity must be shifted left by 1
2292 on 16 bit machine, and by 2 on 32 bit machine, forcing
2293 the sign bit out, and usable as a valid index into
2294 the array. Remove the sign bit here. */
2295 new_sublist->fn_field.voffset =
2296 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2297 if (nbits != 0)
2298 return 0;
2299
2300 STABS_CONTINUE (pp, objfile);
2301 if (**pp == ';' || **pp == '\0')
2302 {
2303 /* Must be g++ version 1. */
2304 new_sublist->fn_field.fcontext = 0;
2305 }
2306 else
2307 {
2308 /* Figure out from whence this virtual function came.
2309 It may belong to virtual function table of
2310 one of its baseclasses. */
2311 look_ahead_type = read_type (pp, objfile);
2312 if (**pp == ':')
2313 {
2314 /* g++ version 1 overloaded methods. */
2315 }
2316 else
2317 {
2318 new_sublist->fn_field.fcontext = look_ahead_type;
2319 if (**pp != ';')
2320 {
2321 return 0;
2322 }
2323 else
2324 {
2325 ++*pp;
2326 }
2327 look_ahead_type = NULL;
2328 }
2329 }
2330 break;
2331 }
2332 case '?':
2333 /* static member function. */
2334 {
2335 int slen = strlen (main_fn_name);
2336
2337 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2338
2339 /* For static member functions, we can't tell if they
2340 are stubbed, as they are put out as functions, and not as
2341 methods.
2342 GCC v2 emits the fully mangled name if
2343 dbxout.c:flag_minimal_debug is not set, so we have to
2344 detect a fully mangled physname here and set is_stub
2345 accordingly. Fully mangled physnames in v2 start with
2346 the member function name, followed by two underscores.
2347 GCC v3 currently always emits stubbed member functions,
2348 but with fully mangled physnames, which start with _Z. */
2349 if (!(strncmp (new_sublist->fn_field.physname,
2350 main_fn_name, slen) == 0
2351 && new_sublist->fn_field.physname[slen] == '_'
2352 && new_sublist->fn_field.physname[slen + 1] == '_'))
2353 {
2354 new_sublist->fn_field.is_stub = 1;
2355 }
2356 break;
2357 }
2358
2359 default:
2360 /* error */
2361 complaint (&symfile_complaints,
2362 _("member function type missing, got '%c'"), (*pp)[-1]);
2363 /* Fall through into normal member function. */
2364
2365 case '.':
2366 /* normal member function. */
2367 new_sublist->fn_field.voffset = 0;
2368 new_sublist->fn_field.fcontext = 0;
2369 break;
2370 }
2371
2372 new_sublist->next = sublist;
2373 sublist = new_sublist;
2374 length++;
2375 STABS_CONTINUE (pp, objfile);
2376 }
2377 while (**pp != ';' && **pp != '\0');
2378
2379 (*pp)++;
2380 STABS_CONTINUE (pp, objfile);
2381
2382 /* Skip GCC 3.X member functions which are duplicates of the callable
2383 constructor/destructor. */
2384 if (strcmp (main_fn_name, "__base_ctor") == 0
2385 || strcmp (main_fn_name, "__base_dtor") == 0
2386 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2387 {
2388 xfree (main_fn_name);
2389 }
2390 else
2391 {
2392 int has_stub = 0;
2393 int has_destructor = 0, has_other = 0;
2394 int is_v3 = 0;
2395 struct next_fnfield *tmp_sublist;
2396
2397 /* Various versions of GCC emit various mostly-useless
2398 strings in the name field for special member functions.
2399
2400 For stub methods, we need to defer correcting the name
2401 until we are ready to unstub the method, because the current
2402 name string is used by gdb_mangle_name. The only stub methods
2403 of concern here are GNU v2 operators; other methods have their
2404 names correct (see caveat below).
2405
2406 For non-stub methods, in GNU v3, we have a complete physname.
2407 Therefore we can safely correct the name now. This primarily
2408 affects constructors and destructors, whose name will be
2409 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2410 operators will also have incorrect names; for instance,
2411 "operator int" will be named "operator i" (i.e. the type is
2412 mangled).
2413
2414 For non-stub methods in GNU v2, we have no easy way to
2415 know if we have a complete physname or not. For most
2416 methods the result depends on the platform (if CPLUS_MARKER
2417 can be `$' or `.', it will use minimal debug information, or
2418 otherwise the full physname will be included).
2419
2420 Rather than dealing with this, we take a different approach.
2421 For v3 mangled names, we can use the full physname; for v2,
2422 we use cplus_demangle_opname (which is actually v2 specific),
2423 because the only interesting names are all operators - once again
2424 barring the caveat below. Skip this process if any method in the
2425 group is a stub, to prevent our fouling up the workings of
2426 gdb_mangle_name.
2427
2428 The caveat: GCC 2.95.x (and earlier?) put constructors and
2429 destructors in the same method group. We need to split this
2430 into two groups, because they should have different names.
2431 So for each method group we check whether it contains both
2432 routines whose physname appears to be a destructor (the physnames
2433 for and destructors are always provided, due to quirks in v2
2434 mangling) and routines whose physname does not appear to be a
2435 destructor. If so then we break up the list into two halves.
2436 Even if the constructors and destructors aren't in the same group
2437 the destructor will still lack the leading tilde, so that also
2438 needs to be fixed.
2439
2440 So, to summarize what we expect and handle here:
2441
2442 Given Given Real Real Action
2443 method name physname physname method name
2444
2445 __opi [none] __opi__3Foo operator int opname
2446 [now or later]
2447 Foo _._3Foo _._3Foo ~Foo separate and
2448 rename
2449 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2450 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2451 */
2452
2453 tmp_sublist = sublist;
2454 while (tmp_sublist != NULL)
2455 {
2456 if (tmp_sublist->fn_field.is_stub)
2457 has_stub = 1;
2458 if (tmp_sublist->fn_field.physname[0] == '_'
2459 && tmp_sublist->fn_field.physname[1] == 'Z')
2460 is_v3 = 1;
2461
2462 if (is_destructor_name (tmp_sublist->fn_field.physname))
2463 has_destructor++;
2464 else
2465 has_other++;
2466
2467 tmp_sublist = tmp_sublist->next;
2468 }
2469
2470 if (has_destructor && has_other)
2471 {
2472 struct next_fnfieldlist *destr_fnlist;
2473 struct next_fnfield *last_sublist;
2474
2475 /* Create a new fn_fieldlist for the destructors. */
2476
2477 destr_fnlist = (struct next_fnfieldlist *)
2478 xmalloc (sizeof (struct next_fnfieldlist));
2479 make_cleanup (xfree, destr_fnlist);
2480 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2481 destr_fnlist->fn_fieldlist.name
2482 = obconcat (&objfile->objfile_obstack, "", "~",
2483 new_fnlist->fn_fieldlist.name);
2484
2485 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2486 obstack_alloc (&objfile->objfile_obstack,
2487 sizeof (struct fn_field) * has_destructor);
2488 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2489 sizeof (struct fn_field) * has_destructor);
2490 tmp_sublist = sublist;
2491 last_sublist = NULL;
2492 i = 0;
2493 while (tmp_sublist != NULL)
2494 {
2495 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2496 {
2497 tmp_sublist = tmp_sublist->next;
2498 continue;
2499 }
2500
2501 destr_fnlist->fn_fieldlist.fn_fields[i++]
2502 = tmp_sublist->fn_field;
2503 if (last_sublist)
2504 last_sublist->next = tmp_sublist->next;
2505 else
2506 sublist = tmp_sublist->next;
2507 last_sublist = tmp_sublist;
2508 tmp_sublist = tmp_sublist->next;
2509 }
2510
2511 destr_fnlist->fn_fieldlist.length = has_destructor;
2512 destr_fnlist->next = fip->fnlist;
2513 fip->fnlist = destr_fnlist;
2514 nfn_fields++;
2515 total_length += has_destructor;
2516 length -= has_destructor;
2517 }
2518 else if (is_v3)
2519 {
2520 /* v3 mangling prevents the use of abbreviated physnames,
2521 so we can do this here. There are stubbed methods in v3
2522 only:
2523 - in -gstabs instead of -gstabs+
2524 - or for static methods, which are output as a function type
2525 instead of a method type. */
2526
2527 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2528 sublist->fn_field.physname);
2529 }
2530 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2531 {
2532 new_fnlist->fn_fieldlist.name =
2533 concat ("~", main_fn_name, (char *)NULL);
2534 xfree (main_fn_name);
2535 }
2536 else if (!has_stub)
2537 {
2538 char dem_opname[256];
2539 int ret;
2540 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2541 dem_opname, DMGL_ANSI);
2542 if (!ret)
2543 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2544 dem_opname, 0);
2545 if (ret)
2546 new_fnlist->fn_fieldlist.name
2547 = obsavestring (dem_opname, strlen (dem_opname),
2548 &objfile->objfile_obstack);
2549 }
2550
2551 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2552 obstack_alloc (&objfile->objfile_obstack,
2553 sizeof (struct fn_field) * length);
2554 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2555 sizeof (struct fn_field) * length);
2556 for (i = length; (i--, sublist); sublist = sublist->next)
2557 {
2558 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2559 }
2560
2561 new_fnlist->fn_fieldlist.length = length;
2562 new_fnlist->next = fip->fnlist;
2563 fip->fnlist = new_fnlist;
2564 nfn_fields++;
2565 total_length += length;
2566 }
2567 }
2568
2569 if (nfn_fields)
2570 {
2571 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2572 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2573 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2574 memset (TYPE_FN_FIELDLISTS (type), 0,
2575 sizeof (struct fn_fieldlist) * nfn_fields);
2576 TYPE_NFN_FIELDS (type) = nfn_fields;
2577 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2578 }
2579
2580 return 1;
2581 }
2582
2583 /* Special GNU C++ name.
2584
2585 Returns 1 for success, 0 for failure. "failure" means that we can't
2586 keep parsing and it's time for error_type(). */
2587
2588 static int
2589 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2590 struct objfile *objfile)
2591 {
2592 char *p;
2593 char *name;
2594 char cpp_abbrev;
2595 struct type *context;
2596
2597 p = *pp;
2598 if (*++p == 'v')
2599 {
2600 name = NULL;
2601 cpp_abbrev = *++p;
2602
2603 *pp = p + 1;
2604
2605 /* At this point, *pp points to something like "22:23=*22...",
2606 where the type number before the ':' is the "context" and
2607 everything after is a regular type definition. Lookup the
2608 type, find it's name, and construct the field name. */
2609
2610 context = read_type (pp, objfile);
2611
2612 switch (cpp_abbrev)
2613 {
2614 case 'f': /* $vf -- a virtual function table pointer */
2615 name = type_name_no_tag (context);
2616 if (name == NULL)
2617 {
2618 name = "";
2619 }
2620 fip->list->field.name =
2621 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2622 break;
2623
2624 case 'b': /* $vb -- a virtual bsomethingorother */
2625 name = type_name_no_tag (context);
2626 if (name == NULL)
2627 {
2628 complaint (&symfile_complaints,
2629 _("C++ abbreviated type name unknown at symtab pos %d"),
2630 symnum);
2631 name = "FOO";
2632 }
2633 fip->list->field.name =
2634 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2635 break;
2636
2637 default:
2638 invalid_cpp_abbrev_complaint (*pp);
2639 fip->list->field.name =
2640 obconcat (&objfile->objfile_obstack,
2641 "INVALID_CPLUSPLUS_ABBREV", "", "");
2642 break;
2643 }
2644
2645 /* At this point, *pp points to the ':'. Skip it and read the
2646 field type. */
2647
2648 p = ++(*pp);
2649 if (p[-1] != ':')
2650 {
2651 invalid_cpp_abbrev_complaint (*pp);
2652 return 0;
2653 }
2654 fip->list->field.type = read_type (pp, objfile);
2655 if (**pp == ',')
2656 (*pp)++; /* Skip the comma. */
2657 else
2658 return 0;
2659
2660 {
2661 int nbits;
2662 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2663 0);
2664 if (nbits != 0)
2665 return 0;
2666 }
2667 /* This field is unpacked. */
2668 FIELD_BITSIZE (fip->list->field) = 0;
2669 fip->list->visibility = VISIBILITY_PRIVATE;
2670 }
2671 else
2672 {
2673 invalid_cpp_abbrev_complaint (*pp);
2674 /* We have no idea what syntax an unrecognized abbrev would have, so
2675 better return 0. If we returned 1, we would need to at least advance
2676 *pp to avoid an infinite loop. */
2677 return 0;
2678 }
2679 return 1;
2680 }
2681
2682 static void
2683 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2684 struct type *type, struct objfile *objfile)
2685 {
2686 fip->list->field.name =
2687 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2688 *pp = p + 1;
2689
2690 /* This means we have a visibility for a field coming. */
2691 if (**pp == '/')
2692 {
2693 (*pp)++;
2694 fip->list->visibility = *(*pp)++;
2695 }
2696 else
2697 {
2698 /* normal dbx-style format, no explicit visibility */
2699 fip->list->visibility = VISIBILITY_PUBLIC;
2700 }
2701
2702 fip->list->field.type = read_type (pp, objfile);
2703 if (**pp == ':')
2704 {
2705 p = ++(*pp);
2706 #if 0
2707 /* Possible future hook for nested types. */
2708 if (**pp == '!')
2709 {
2710 fip->list->field.bitpos = (long) -2; /* nested type */
2711 p = ++(*pp);
2712 }
2713 else
2714 ...;
2715 #endif
2716 while (*p != ';')
2717 {
2718 p++;
2719 }
2720 /* Static class member. */
2721 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2722 *pp = p + 1;
2723 return;
2724 }
2725 else if (**pp != ',')
2726 {
2727 /* Bad structure-type format. */
2728 stabs_general_complaint ("bad structure-type format");
2729 return;
2730 }
2731
2732 (*pp)++; /* Skip the comma. */
2733
2734 {
2735 int nbits;
2736 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2737 if (nbits != 0)
2738 {
2739 stabs_general_complaint ("bad structure-type format");
2740 return;
2741 }
2742 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2743 if (nbits != 0)
2744 {
2745 stabs_general_complaint ("bad structure-type format");
2746 return;
2747 }
2748 }
2749
2750 if (FIELD_BITPOS (fip->list->field) == 0
2751 && FIELD_BITSIZE (fip->list->field) == 0)
2752 {
2753 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2754 it is a field which has been optimized out. The correct stab for
2755 this case is to use VISIBILITY_IGNORE, but that is a recent
2756 invention. (2) It is a 0-size array. For example
2757 union { int num; char str[0]; } foo. Printing _("<no value>" for
2758 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2759 will continue to work, and a 0-size array as a whole doesn't
2760 have any contents to print.
2761
2762 I suspect this probably could also happen with gcc -gstabs (not
2763 -gstabs+) for static fields, and perhaps other C++ extensions.
2764 Hopefully few people use -gstabs with gdb, since it is intended
2765 for dbx compatibility. */
2766
2767 /* Ignore this field. */
2768 fip->list->visibility = VISIBILITY_IGNORE;
2769 }
2770 else
2771 {
2772 /* Detect an unpacked field and mark it as such.
2773 dbx gives a bit size for all fields.
2774 Note that forward refs cannot be packed,
2775 and treat enums as if they had the width of ints. */
2776
2777 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2778
2779 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2780 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2781 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2782 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2783 {
2784 FIELD_BITSIZE (fip->list->field) = 0;
2785 }
2786 if ((FIELD_BITSIZE (fip->list->field)
2787 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2788 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2789 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2790 )
2791 &&
2792 FIELD_BITPOS (fip->list->field) % 8 == 0)
2793 {
2794 FIELD_BITSIZE (fip->list->field) = 0;
2795 }
2796 }
2797 }
2798
2799
2800 /* Read struct or class data fields. They have the form:
2801
2802 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2803
2804 At the end, we see a semicolon instead of a field.
2805
2806 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2807 a static field.
2808
2809 The optional VISIBILITY is one of:
2810
2811 '/0' (VISIBILITY_PRIVATE)
2812 '/1' (VISIBILITY_PROTECTED)
2813 '/2' (VISIBILITY_PUBLIC)
2814 '/9' (VISIBILITY_IGNORE)
2815
2816 or nothing, for C style fields with public visibility.
2817
2818 Returns 1 for success, 0 for failure. */
2819
2820 static int
2821 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2822 struct objfile *objfile)
2823 {
2824 char *p;
2825 struct nextfield *new;
2826
2827 /* We better set p right now, in case there are no fields at all... */
2828
2829 p = *pp;
2830
2831 /* Read each data member type until we find the terminating ';' at the end of
2832 the data member list, or break for some other reason such as finding the
2833 start of the member function list. */
2834 /* Stab string for structure/union does not end with two ';' in
2835 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2836
2837 while (**pp != ';' && **pp != '\0')
2838 {
2839 STABS_CONTINUE (pp, objfile);
2840 /* Get space to record the next field's data. */
2841 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2842 make_cleanup (xfree, new);
2843 memset (new, 0, sizeof (struct nextfield));
2844 new->next = fip->list;
2845 fip->list = new;
2846
2847 /* Get the field name. */
2848 p = *pp;
2849
2850 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2851 unless the CPLUS_MARKER is followed by an underscore, in
2852 which case it is just the name of an anonymous type, which we
2853 should handle like any other type name. */
2854
2855 if (is_cplus_marker (p[0]) && p[1] != '_')
2856 {
2857 if (!read_cpp_abbrev (fip, pp, type, objfile))
2858 return 0;
2859 continue;
2860 }
2861
2862 /* Look for the ':' that separates the field name from the field
2863 values. Data members are delimited by a single ':', while member
2864 functions are delimited by a pair of ':'s. When we hit the member
2865 functions (if any), terminate scan loop and return. */
2866
2867 while (*p != ':' && *p != '\0')
2868 {
2869 p++;
2870 }
2871 if (*p == '\0')
2872 return 0;
2873
2874 /* Check to see if we have hit the member functions yet. */
2875 if (p[1] == ':')
2876 {
2877 break;
2878 }
2879 read_one_struct_field (fip, pp, p, type, objfile);
2880 }
2881 if (p[0] == ':' && p[1] == ':')
2882 {
2883 /* (the deleted) chill the list of fields: the last entry (at
2884 the head) is a partially constructed entry which we now
2885 scrub. */
2886 fip->list = fip->list->next;
2887 }
2888 return 1;
2889 }
2890 /* *INDENT-OFF* */
2891 /* The stabs for C++ derived classes contain baseclass information which
2892 is marked by a '!' character after the total size. This function is
2893 called when we encounter the baseclass marker, and slurps up all the
2894 baseclass information.
2895
2896 Immediately following the '!' marker is the number of base classes that
2897 the class is derived from, followed by information for each base class.
2898 For each base class, there are two visibility specifiers, a bit offset
2899 to the base class information within the derived class, a reference to
2900 the type for the base class, and a terminating semicolon.
2901
2902 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2903 ^^ ^ ^ ^ ^ ^ ^
2904 Baseclass information marker __________________|| | | | | | |
2905 Number of baseclasses __________________________| | | | | | |
2906 Visibility specifiers (2) ________________________| | | | | |
2907 Offset in bits from start of class _________________| | | | |
2908 Type number for base class ___________________________| | | |
2909 Visibility specifiers (2) _______________________________| | |
2910 Offset in bits from start of class ________________________| |
2911 Type number of base class ____________________________________|
2912
2913 Return 1 for success, 0 for (error-type-inducing) failure. */
2914 /* *INDENT-ON* */
2915
2916
2917
2918 static int
2919 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2920 struct objfile *objfile)
2921 {
2922 int i;
2923 struct nextfield *new;
2924
2925 if (**pp != '!')
2926 {
2927 return 1;
2928 }
2929 else
2930 {
2931 /* Skip the '!' baseclass information marker. */
2932 (*pp)++;
2933 }
2934
2935 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2936 {
2937 int nbits;
2938 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2939 if (nbits != 0)
2940 return 0;
2941 }
2942
2943 #if 0
2944 /* Some stupid compilers have trouble with the following, so break
2945 it up into simpler expressions. */
2946 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2947 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2948 #else
2949 {
2950 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2951 char *pointer;
2952
2953 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2954 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2955 }
2956 #endif /* 0 */
2957
2958 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2959
2960 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2961 {
2962 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2963 make_cleanup (xfree, new);
2964 memset (new, 0, sizeof (struct nextfield));
2965 new->next = fip->list;
2966 fip->list = new;
2967 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
2968
2969 STABS_CONTINUE (pp, objfile);
2970 switch (**pp)
2971 {
2972 case '0':
2973 /* Nothing to do. */
2974 break;
2975 case '1':
2976 SET_TYPE_FIELD_VIRTUAL (type, i);
2977 break;
2978 default:
2979 /* Unknown character. Complain and treat it as non-virtual. */
2980 {
2981 complaint (&symfile_complaints,
2982 _("Unknown virtual character `%c' for baseclass"), **pp);
2983 }
2984 }
2985 ++(*pp);
2986
2987 new->visibility = *(*pp)++;
2988 switch (new->visibility)
2989 {
2990 case VISIBILITY_PRIVATE:
2991 case VISIBILITY_PROTECTED:
2992 case VISIBILITY_PUBLIC:
2993 break;
2994 default:
2995 /* Bad visibility format. Complain and treat it as
2996 public. */
2997 {
2998 complaint (&symfile_complaints,
2999 _("Unknown visibility `%c' for baseclass"),
3000 new->visibility);
3001 new->visibility = VISIBILITY_PUBLIC;
3002 }
3003 }
3004
3005 {
3006 int nbits;
3007
3008 /* The remaining value is the bit offset of the portion of the object
3009 corresponding to this baseclass. Always zero in the absence of
3010 multiple inheritance. */
3011
3012 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3013 if (nbits != 0)
3014 return 0;
3015 }
3016
3017 /* The last piece of baseclass information is the type of the
3018 base class. Read it, and remember it's type name as this
3019 field's name. */
3020
3021 new->field.type = read_type (pp, objfile);
3022 new->field.name = type_name_no_tag (new->field.type);
3023
3024 /* skip trailing ';' and bump count of number of fields seen */
3025 if (**pp == ';')
3026 (*pp)++;
3027 else
3028 return 0;
3029 }
3030 return 1;
3031 }
3032
3033 /* The tail end of stabs for C++ classes that contain a virtual function
3034 pointer contains a tilde, a %, and a type number.
3035 The type number refers to the base class (possibly this class itself) which
3036 contains the vtable pointer for the current class.
3037
3038 This function is called when we have parsed all the method declarations,
3039 so we can look for the vptr base class info. */
3040
3041 static int
3042 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3043 struct objfile *objfile)
3044 {
3045 char *p;
3046
3047 STABS_CONTINUE (pp, objfile);
3048
3049 /* If we are positioned at a ';', then skip it. */
3050 if (**pp == ';')
3051 {
3052 (*pp)++;
3053 }
3054
3055 if (**pp == '~')
3056 {
3057 (*pp)++;
3058
3059 if (**pp == '=' || **pp == '+' || **pp == '-')
3060 {
3061 /* Obsolete flags that used to indicate the presence
3062 of constructors and/or destructors. */
3063 (*pp)++;
3064 }
3065
3066 /* Read either a '%' or the final ';'. */
3067 if (*(*pp)++ == '%')
3068 {
3069 /* The next number is the type number of the base class
3070 (possibly our own class) which supplies the vtable for
3071 this class. Parse it out, and search that class to find
3072 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3073 and TYPE_VPTR_FIELDNO. */
3074
3075 struct type *t;
3076 int i;
3077
3078 t = read_type (pp, objfile);
3079 p = (*pp)++;
3080 while (*p != '\0' && *p != ';')
3081 {
3082 p++;
3083 }
3084 if (*p == '\0')
3085 {
3086 /* Premature end of symbol. */
3087 return 0;
3088 }
3089
3090 TYPE_VPTR_BASETYPE (type) = t;
3091 if (type == t) /* Our own class provides vtbl ptr */
3092 {
3093 for (i = TYPE_NFIELDS (t) - 1;
3094 i >= TYPE_N_BASECLASSES (t);
3095 --i)
3096 {
3097 char *name = TYPE_FIELD_NAME (t, i);
3098 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3099 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3100 {
3101 TYPE_VPTR_FIELDNO (type) = i;
3102 goto gotit;
3103 }
3104 }
3105 /* Virtual function table field not found. */
3106 complaint (&symfile_complaints,
3107 _("virtual function table pointer not found when defining class `%s'"),
3108 TYPE_NAME (type));
3109 return 0;
3110 }
3111 else
3112 {
3113 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3114 }
3115
3116 gotit:
3117 *pp = p + 1;
3118 }
3119 }
3120 return 1;
3121 }
3122
3123 static int
3124 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3125 {
3126 int n;
3127
3128 for (n = TYPE_NFN_FIELDS (type);
3129 fip->fnlist != NULL;
3130 fip->fnlist = fip->fnlist->next)
3131 {
3132 --n; /* Circumvent Sun3 compiler bug */
3133 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3134 }
3135 return 1;
3136 }
3137
3138 /* Create the vector of fields, and record how big it is.
3139 We need this info to record proper virtual function table information
3140 for this class's virtual functions. */
3141
3142 static int
3143 attach_fields_to_type (struct field_info *fip, struct type *type,
3144 struct objfile *objfile)
3145 {
3146 int nfields = 0;
3147 int non_public_fields = 0;
3148 struct nextfield *scan;
3149
3150 /* Count up the number of fields that we have, as well as taking note of
3151 whether or not there are any non-public fields, which requires us to
3152 allocate and build the private_field_bits and protected_field_bits
3153 bitfields. */
3154
3155 for (scan = fip->list; scan != NULL; scan = scan->next)
3156 {
3157 nfields++;
3158 if (scan->visibility != VISIBILITY_PUBLIC)
3159 {
3160 non_public_fields++;
3161 }
3162 }
3163
3164 /* Now we know how many fields there are, and whether or not there are any
3165 non-public fields. Record the field count, allocate space for the
3166 array of fields, and create blank visibility bitfields if necessary. */
3167
3168 TYPE_NFIELDS (type) = nfields;
3169 TYPE_FIELDS (type) = (struct field *)
3170 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3171 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3172
3173 if (non_public_fields)
3174 {
3175 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3176
3177 TYPE_FIELD_PRIVATE_BITS (type) =
3178 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3179 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3180
3181 TYPE_FIELD_PROTECTED_BITS (type) =
3182 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3183 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3184
3185 TYPE_FIELD_IGNORE_BITS (type) =
3186 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3187 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3188 }
3189
3190 /* Copy the saved-up fields into the field vector. Start from the head
3191 of the list, adding to the tail of the field array, so that they end
3192 up in the same order in the array in which they were added to the list. */
3193
3194 while (nfields-- > 0)
3195 {
3196 TYPE_FIELD (type, nfields) = fip->list->field;
3197 switch (fip->list->visibility)
3198 {
3199 case VISIBILITY_PRIVATE:
3200 SET_TYPE_FIELD_PRIVATE (type, nfields);
3201 break;
3202
3203 case VISIBILITY_PROTECTED:
3204 SET_TYPE_FIELD_PROTECTED (type, nfields);
3205 break;
3206
3207 case VISIBILITY_IGNORE:
3208 SET_TYPE_FIELD_IGNORE (type, nfields);
3209 break;
3210
3211 case VISIBILITY_PUBLIC:
3212 break;
3213
3214 default:
3215 /* Unknown visibility. Complain and treat it as public. */
3216 {
3217 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3218 fip->list->visibility);
3219 }
3220 break;
3221 }
3222 fip->list = fip->list->next;
3223 }
3224 return 1;
3225 }
3226
3227
3228 /* Complain that the compiler has emitted more than one definition for the
3229 structure type TYPE. */
3230 static void
3231 complain_about_struct_wipeout (struct type *type)
3232 {
3233 char *name = "";
3234 char *kind = "";
3235
3236 if (TYPE_TAG_NAME (type))
3237 {
3238 name = TYPE_TAG_NAME (type);
3239 switch (TYPE_CODE (type))
3240 {
3241 case TYPE_CODE_STRUCT: kind = "struct "; break;
3242 case TYPE_CODE_UNION: kind = "union "; break;
3243 case TYPE_CODE_ENUM: kind = "enum "; break;
3244 default: kind = "";
3245 }
3246 }
3247 else if (TYPE_NAME (type))
3248 {
3249 name = TYPE_NAME (type);
3250 kind = "";
3251 }
3252 else
3253 {
3254 name = "<unknown>";
3255 kind = "";
3256 }
3257
3258 complaint (&symfile_complaints,
3259 _("struct/union type gets multiply defined: %s%s"), kind, name);
3260 }
3261
3262
3263 /* Read the description of a structure (or union type) and return an object
3264 describing the type.
3265
3266 PP points to a character pointer that points to the next unconsumed token
3267 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3268 *PP will point to "4a:1,0,32;;".
3269
3270 TYPE points to an incomplete type that needs to be filled in.
3271
3272 OBJFILE points to the current objfile from which the stabs information is
3273 being read. (Note that it is redundant in that TYPE also contains a pointer
3274 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3275 */
3276
3277 static struct type *
3278 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3279 struct objfile *objfile)
3280 {
3281 struct cleanup *back_to;
3282 struct field_info fi;
3283
3284 fi.list = NULL;
3285 fi.fnlist = NULL;
3286
3287 /* When describing struct/union/class types in stabs, G++ always drops
3288 all qualifications from the name. So if you've got:
3289 struct A { ... struct B { ... }; ... };
3290 then G++ will emit stabs for `struct A::B' that call it simply
3291 `struct B'. Obviously, if you've got a real top-level definition for
3292 `struct B', or other nested definitions, this is going to cause
3293 problems.
3294
3295 Obviously, GDB can't fix this by itself, but it can at least avoid
3296 scribbling on existing structure type objects when new definitions
3297 appear. */
3298 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3299 || TYPE_STUB (type)))
3300 {
3301 complain_about_struct_wipeout (type);
3302
3303 /* It's probably best to return the type unchanged. */
3304 return type;
3305 }
3306
3307 back_to = make_cleanup (null_cleanup, 0);
3308
3309 INIT_CPLUS_SPECIFIC (type);
3310 TYPE_CODE (type) = type_code;
3311 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3312
3313 /* First comes the total size in bytes. */
3314
3315 {
3316 int nbits;
3317 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3318 if (nbits != 0)
3319 return error_type (pp, objfile);
3320 }
3321
3322 /* Now read the baseclasses, if any, read the regular C struct or C++
3323 class member fields, attach the fields to the type, read the C++
3324 member functions, attach them to the type, and then read any tilde
3325 field (baseclass specifier for the class holding the main vtable). */
3326
3327 if (!read_baseclasses (&fi, pp, type, objfile)
3328 || !read_struct_fields (&fi, pp, type, objfile)
3329 || !attach_fields_to_type (&fi, type, objfile)
3330 || !read_member_functions (&fi, pp, type, objfile)
3331 || !attach_fn_fields_to_type (&fi, type)
3332 || !read_tilde_fields (&fi, pp, type, objfile))
3333 {
3334 type = error_type (pp, objfile);
3335 }
3336
3337 do_cleanups (back_to);
3338 return (type);
3339 }
3340
3341 /* Read a definition of an array type,
3342 and create and return a suitable type object.
3343 Also creates a range type which represents the bounds of that
3344 array. */
3345
3346 static struct type *
3347 read_array_type (char **pp, struct type *type,
3348 struct objfile *objfile)
3349 {
3350 struct type *index_type, *element_type, *range_type;
3351 int lower, upper;
3352 int adjustable = 0;
3353 int nbits;
3354
3355 /* Format of an array type:
3356 "ar<index type>;lower;upper;<array_contents_type>".
3357 OS9000: "arlower,upper;<array_contents_type>".
3358
3359 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3360 for these, produce a type like float[][]. */
3361
3362 {
3363 index_type = read_type (pp, objfile);
3364 if (**pp != ';')
3365 /* Improper format of array type decl. */
3366 return error_type (pp, objfile);
3367 ++*pp;
3368 }
3369
3370 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3371 {
3372 (*pp)++;
3373 adjustable = 1;
3374 }
3375 lower = read_huge_number (pp, ';', &nbits, 0);
3376
3377 if (nbits != 0)
3378 return error_type (pp, objfile);
3379
3380 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3381 {
3382 (*pp)++;
3383 adjustable = 1;
3384 }
3385 upper = read_huge_number (pp, ';', &nbits, 0);
3386 if (nbits != 0)
3387 return error_type (pp, objfile);
3388
3389 element_type = read_type (pp, objfile);
3390
3391 if (adjustable)
3392 {
3393 lower = 0;
3394 upper = -1;
3395 }
3396
3397 range_type =
3398 create_range_type ((struct type *) NULL, index_type, lower, upper);
3399 type = create_array_type (type, element_type, range_type);
3400
3401 return type;
3402 }
3403
3404
3405 /* Read a definition of an enumeration type,
3406 and create and return a suitable type object.
3407 Also defines the symbols that represent the values of the type. */
3408
3409 static struct type *
3410 read_enum_type (char **pp, struct type *type,
3411 struct objfile *objfile)
3412 {
3413 char *p;
3414 char *name;
3415 long n;
3416 struct symbol *sym;
3417 int nsyms = 0;
3418 struct pending **symlist;
3419 struct pending *osyms, *syms;
3420 int o_nsyms;
3421 int nbits;
3422 int unsigned_enum = 1;
3423
3424 #if 0
3425 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3426 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3427 to do? For now, force all enum values to file scope. */
3428 if (within_function)
3429 symlist = &local_symbols;
3430 else
3431 #endif
3432 symlist = &file_symbols;
3433 osyms = *symlist;
3434 o_nsyms = osyms ? osyms->nsyms : 0;
3435
3436 /* The aix4 compiler emits an extra field before the enum members;
3437 my guess is it's a type of some sort. Just ignore it. */
3438 if (**pp == '-')
3439 {
3440 /* Skip over the type. */
3441 while (**pp != ':')
3442 (*pp)++;
3443
3444 /* Skip over the colon. */
3445 (*pp)++;
3446 }
3447
3448 /* Read the value-names and their values.
3449 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3450 A semicolon or comma instead of a NAME means the end. */
3451 while (**pp && **pp != ';' && **pp != ',')
3452 {
3453 STABS_CONTINUE (pp, objfile);
3454 p = *pp;
3455 while (*p != ':')
3456 p++;
3457 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3458 *pp = p + 1;
3459 n = read_huge_number (pp, ',', &nbits, 0);
3460 if (nbits != 0)
3461 return error_type (pp, objfile);
3462
3463 sym = (struct symbol *)
3464 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3465 memset (sym, 0, sizeof (struct symbol));
3466 DEPRECATED_SYMBOL_NAME (sym) = name;
3467 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3468 SYMBOL_CLASS (sym) = LOC_CONST;
3469 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3470 SYMBOL_VALUE (sym) = n;
3471 if (n < 0)
3472 unsigned_enum = 0;
3473 add_symbol_to_list (sym, symlist);
3474 nsyms++;
3475 }
3476
3477 if (**pp == ';')
3478 (*pp)++; /* Skip the semicolon. */
3479
3480 /* Now fill in the fields of the type-structure. */
3481
3482 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3483 TYPE_CODE (type) = TYPE_CODE_ENUM;
3484 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3485 if (unsigned_enum)
3486 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3487 TYPE_NFIELDS (type) = nsyms;
3488 TYPE_FIELDS (type) = (struct field *)
3489 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3490 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3491
3492 /* Find the symbols for the values and put them into the type.
3493 The symbols can be found in the symlist that we put them on
3494 to cause them to be defined. osyms contains the old value
3495 of that symlist; everything up to there was defined by us. */
3496 /* Note that we preserve the order of the enum constants, so
3497 that in something like "enum {FOO, LAST_THING=FOO}" we print
3498 FOO, not LAST_THING. */
3499
3500 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3501 {
3502 int last = syms == osyms ? o_nsyms : 0;
3503 int j = syms->nsyms;
3504 for (; --j >= last; --n)
3505 {
3506 struct symbol *xsym = syms->symbol[j];
3507 SYMBOL_TYPE (xsym) = type;
3508 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3509 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3510 TYPE_FIELD_BITSIZE (type, n) = 0;
3511 }
3512 if (syms == osyms)
3513 break;
3514 }
3515
3516 return type;
3517 }
3518
3519 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3520 typedefs in every file (for int, long, etc):
3521
3522 type = b <signed> <width> <format type>; <offset>; <nbits>
3523 signed = u or s.
3524 optional format type = c or b for char or boolean.
3525 offset = offset from high order bit to start bit of type.
3526 width is # bytes in object of this type, nbits is # bits in type.
3527
3528 The width/offset stuff appears to be for small objects stored in
3529 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3530 FIXME. */
3531
3532 static struct type *
3533 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3534 {
3535 int type_bits;
3536 int nbits;
3537 int signed_type;
3538 enum type_code code = TYPE_CODE_INT;
3539
3540 switch (**pp)
3541 {
3542 case 's':
3543 signed_type = 1;
3544 break;
3545 case 'u':
3546 signed_type = 0;
3547 break;
3548 default:
3549 return error_type (pp, objfile);
3550 }
3551 (*pp)++;
3552
3553 /* For some odd reason, all forms of char put a c here. This is strange
3554 because no other type has this honor. We can safely ignore this because
3555 we actually determine 'char'acterness by the number of bits specified in
3556 the descriptor.
3557 Boolean forms, e.g Fortran logical*X, put a b here. */
3558
3559 if (**pp == 'c')
3560 (*pp)++;
3561 else if (**pp == 'b')
3562 {
3563 code = TYPE_CODE_BOOL;
3564 (*pp)++;
3565 }
3566
3567 /* The first number appears to be the number of bytes occupied
3568 by this type, except that unsigned short is 4 instead of 2.
3569 Since this information is redundant with the third number,
3570 we will ignore it. */
3571 read_huge_number (pp, ';', &nbits, 0);
3572 if (nbits != 0)
3573 return error_type (pp, objfile);
3574
3575 /* The second number is always 0, so ignore it too. */
3576 read_huge_number (pp, ';', &nbits, 0);
3577 if (nbits != 0)
3578 return error_type (pp, objfile);
3579
3580 /* The third number is the number of bits for this type. */
3581 type_bits = read_huge_number (pp, 0, &nbits, 0);
3582 if (nbits != 0)
3583 return error_type (pp, objfile);
3584 /* The type *should* end with a semicolon. If it are embedded
3585 in a larger type the semicolon may be the only way to know where
3586 the type ends. If this type is at the end of the stabstring we
3587 can deal with the omitted semicolon (but we don't have to like
3588 it). Don't bother to complain(), Sun's compiler omits the semicolon
3589 for "void". */
3590 if (**pp == ';')
3591 ++(*pp);
3592
3593 if (type_bits == 0)
3594 return init_type (TYPE_CODE_VOID, 1,
3595 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3596 objfile);
3597 else
3598 return init_type (code,
3599 type_bits / TARGET_CHAR_BIT,
3600 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3601 objfile);
3602 }
3603
3604 static struct type *
3605 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3606 {
3607 int nbits;
3608 int details;
3609 int nbytes;
3610 struct type *rettype;
3611
3612 /* The first number has more details about the type, for example
3613 FN_COMPLEX. */
3614 details = read_huge_number (pp, ';', &nbits, 0);
3615 if (nbits != 0)
3616 return error_type (pp, objfile);
3617
3618 /* The second number is the number of bytes occupied by this type */
3619 nbytes = read_huge_number (pp, ';', &nbits, 0);
3620 if (nbits != 0)
3621 return error_type (pp, objfile);
3622
3623 if (details == NF_COMPLEX || details == NF_COMPLEX16
3624 || details == NF_COMPLEX32)
3625 {
3626 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3627 TYPE_TARGET_TYPE (rettype)
3628 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3629 return rettype;
3630 }
3631
3632 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3633 }
3634
3635 /* Read a number from the string pointed to by *PP.
3636 The value of *PP is advanced over the number.
3637 If END is nonzero, the character that ends the
3638 number must match END, or an error happens;
3639 and that character is skipped if it does match.
3640 If END is zero, *PP is left pointing to that character.
3641
3642 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3643 the number is represented in an octal representation, assume that
3644 it is represented in a 2's complement representation with a size of
3645 TWOS_COMPLEMENT_BITS.
3646
3647 If the number fits in a long, set *BITS to 0 and return the value.
3648 If not, set *BITS to be the number of bits in the number and return 0.
3649
3650 If encounter garbage, set *BITS to -1 and return 0. */
3651
3652 static long
3653 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3654 {
3655 char *p = *pp;
3656 int sign = 1;
3657 int sign_bit;
3658 long n = 0;
3659 long sn = 0;
3660 int radix = 10;
3661 char overflow = 0;
3662 int nbits = 0;
3663 int c;
3664 long upper_limit;
3665 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3666
3667 if (*p == '-')
3668 {
3669 sign = -1;
3670 p++;
3671 }
3672
3673 /* Leading zero means octal. GCC uses this to output values larger
3674 than an int (because that would be hard in decimal). */
3675 if (*p == '0')
3676 {
3677 radix = 8;
3678 p++;
3679 }
3680
3681 upper_limit = LONG_MAX / radix;
3682
3683 while ((c = *p++) >= '0' && c < ('0' + radix))
3684 {
3685 if (n <= upper_limit)
3686 {
3687 if (twos_complement_representation)
3688 {
3689 /* Octal, signed, twos complement representation. In this case,
3690 sn is the signed value, n is the corresponding absolute
3691 value. signed_bit is the position of the sign bit in the
3692 first three bits. */
3693 if (sn == 0)
3694 {
3695 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3696 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3697 }
3698 else
3699 {
3700 sn *= radix;
3701 sn += c - '0';
3702 }
3703
3704 if (sn < 0)
3705 n = -sn;
3706 }
3707 else
3708 {
3709 /* unsigned representation */
3710 n *= radix;
3711 n += c - '0'; /* FIXME this overflows anyway */
3712 }
3713 }
3714 else
3715 overflow = 1;
3716
3717 /* This depends on large values being output in octal, which is
3718 what GCC does. */
3719 if (radix == 8)
3720 {
3721 if (nbits == 0)
3722 {
3723 if (c == '0')
3724 /* Ignore leading zeroes. */
3725 ;
3726 else if (c == '1')
3727 nbits = 1;
3728 else if (c == '2' || c == '3')
3729 nbits = 2;
3730 else
3731 nbits = 3;
3732 }
3733 else
3734 nbits += 3;
3735 }
3736 }
3737 if (end)
3738 {
3739 if (c && c != end)
3740 {
3741 if (bits != NULL)
3742 *bits = -1;
3743 return 0;
3744 }
3745 }
3746 else
3747 --p;
3748
3749 *pp = p;
3750 if (overflow)
3751 {
3752 if (nbits == 0)
3753 {
3754 /* Large decimal constants are an error (because it is hard to
3755 count how many bits are in them). */
3756 if (bits != NULL)
3757 *bits = -1;
3758 return 0;
3759 }
3760
3761 /* -0x7f is the same as 0x80. So deal with it by adding one to
3762 the number of bits. */
3763 if (sign == -1)
3764 ++nbits;
3765 if (bits)
3766 *bits = nbits;
3767 }
3768 else
3769 {
3770 if (bits)
3771 *bits = 0;
3772 if (twos_complement_representation)
3773 return sn;
3774 else
3775 return n * sign;
3776 }
3777 /* It's *BITS which has the interesting information. */
3778 return 0;
3779 }
3780
3781 static struct type *
3782 read_range_type (char **pp, int typenums[2], int type_size,
3783 struct objfile *objfile)
3784 {
3785 char *orig_pp = *pp;
3786 int rangenums[2];
3787 long n2, n3;
3788 int n2bits, n3bits;
3789 int self_subrange;
3790 struct type *result_type;
3791 struct type *index_type = NULL;
3792
3793 /* First comes a type we are a subrange of.
3794 In C it is usually 0, 1 or the type being defined. */
3795 if (read_type_number (pp, rangenums) != 0)
3796 return error_type (pp, objfile);
3797 self_subrange = (rangenums[0] == typenums[0] &&
3798 rangenums[1] == typenums[1]);
3799
3800 if (**pp == '=')
3801 {
3802 *pp = orig_pp;
3803 index_type = read_type (pp, objfile);
3804 }
3805
3806 /* A semicolon should now follow; skip it. */
3807 if (**pp == ';')
3808 (*pp)++;
3809
3810 /* The remaining two operands are usually lower and upper bounds
3811 of the range. But in some special cases they mean something else. */
3812 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3813 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3814
3815 if (n2bits == -1 || n3bits == -1)
3816 return error_type (pp, objfile);
3817
3818 if (index_type)
3819 goto handle_true_range;
3820
3821 /* If limits are huge, must be large integral type. */
3822 if (n2bits != 0 || n3bits != 0)
3823 {
3824 char got_signed = 0;
3825 char got_unsigned = 0;
3826 /* Number of bits in the type. */
3827 int nbits = 0;
3828
3829 /* If a type size attribute has been specified, the bounds of
3830 the range should fit in this size. If the lower bounds needs
3831 more bits than the upper bound, then the type is signed. */
3832 if (n2bits <= type_size && n3bits <= type_size)
3833 {
3834 if (n2bits == type_size && n2bits > n3bits)
3835 got_signed = 1;
3836 else
3837 got_unsigned = 1;
3838 nbits = type_size;
3839 }
3840 /* Range from 0 to <large number> is an unsigned large integral type. */
3841 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3842 {
3843 got_unsigned = 1;
3844 nbits = n3bits;
3845 }
3846 /* Range from <large number> to <large number>-1 is a large signed
3847 integral type. Take care of the case where <large number> doesn't
3848 fit in a long but <large number>-1 does. */
3849 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3850 || (n2bits != 0 && n3bits == 0
3851 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3852 && n3 == LONG_MAX))
3853 {
3854 got_signed = 1;
3855 nbits = n2bits;
3856 }
3857
3858 if (got_signed || got_unsigned)
3859 {
3860 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3861 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3862 objfile);
3863 }
3864 else
3865 return error_type (pp, objfile);
3866 }
3867
3868 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3869 if (self_subrange && n2 == 0 && n3 == 0)
3870 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3871
3872 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3873 is the width in bytes.
3874
3875 Fortran programs appear to use this for complex types also. To
3876 distinguish between floats and complex, g77 (and others?) seem
3877 to use self-subranges for the complexes, and subranges of int for
3878 the floats.
3879
3880 Also note that for complexes, g77 sets n2 to the size of one of
3881 the member floats, not the whole complex beast. My guess is that
3882 this was to work well with pre-COMPLEX versions of gdb. */
3883
3884 if (n3 == 0 && n2 > 0)
3885 {
3886 struct type *float_type
3887 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3888
3889 if (self_subrange)
3890 {
3891 struct type *complex_type =
3892 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3893 TYPE_TARGET_TYPE (complex_type) = float_type;
3894 return complex_type;
3895 }
3896 else
3897 return float_type;
3898 }
3899
3900 /* If the upper bound is -1, it must really be an unsigned int. */
3901
3902 else if (n2 == 0 && n3 == -1)
3903 {
3904 /* It is unsigned int or unsigned long. */
3905 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3906 compatibility hack. */
3907 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3908 TYPE_FLAG_UNSIGNED, NULL, objfile);
3909 }
3910
3911 /* Special case: char is defined (Who knows why) as a subrange of
3912 itself with range 0-127. */
3913 else if (self_subrange && n2 == 0 && n3 == 127)
3914 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3915
3916 /* We used to do this only for subrange of self or subrange of int. */
3917 else if (n2 == 0)
3918 {
3919 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3920 "unsigned long", and we already checked for that,
3921 so don't need to test for it here. */
3922
3923 if (n3 < 0)
3924 /* n3 actually gives the size. */
3925 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3926 NULL, objfile);
3927
3928 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3929 unsigned n-byte integer. But do require n to be a power of
3930 two; we don't want 3- and 5-byte integers flying around. */
3931 {
3932 int bytes;
3933 unsigned long bits;
3934
3935 bits = n3;
3936 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3937 bits >>= 8;
3938 if (bits == 0
3939 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3940 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3941 objfile);
3942 }
3943 }
3944 /* I think this is for Convex "long long". Since I don't know whether
3945 Convex sets self_subrange, I also accept that particular size regardless
3946 of self_subrange. */
3947 else if (n3 == 0 && n2 < 0
3948 && (self_subrange
3949 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3950 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3951 else if (n2 == -n3 - 1)
3952 {
3953 if (n3 == 0x7f)
3954 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3955 if (n3 == 0x7fff)
3956 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3957 if (n3 == 0x7fffffff)
3958 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3959 }
3960
3961 /* We have a real range type on our hands. Allocate space and
3962 return a real pointer. */
3963 handle_true_range:
3964
3965 if (self_subrange)
3966 index_type = builtin_type_int;
3967 else
3968 index_type = *dbx_lookup_type (rangenums);
3969 if (index_type == NULL)
3970 {
3971 /* Does this actually ever happen? Is that why we are worrying
3972 about dealing with it rather than just calling error_type? */
3973
3974 static struct type *range_type_index;
3975
3976 complaint (&symfile_complaints,
3977 _("base type %d of range type is not defined"), rangenums[1]);
3978 if (range_type_index == NULL)
3979 range_type_index =
3980 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3981 0, "range type index type", NULL);
3982 index_type = range_type_index;
3983 }
3984
3985 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3986 return (result_type);
3987 }
3988
3989 /* Read in an argument list. This is a list of types, separated by commas
3990 and terminated with END. Return the list of types read in, or NULL
3991 if there is an error. */
3992
3993 static struct field *
3994 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3995 int *varargsp)
3996 {
3997 /* FIXME! Remove this arbitrary limit! */
3998 struct type *types[1024]; /* allow for fns of 1023 parameters */
3999 int n = 0, i;
4000 struct field *rval;
4001
4002 while (**pp != end)
4003 {
4004 if (**pp != ',')
4005 /* Invalid argument list: no ','. */
4006 return NULL;
4007 (*pp)++;
4008 STABS_CONTINUE (pp, objfile);
4009 types[n++] = read_type (pp, objfile);
4010 }
4011 (*pp)++; /* get past `end' (the ':' character) */
4012
4013 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4014 *varargsp = 1;
4015 else
4016 {
4017 n--;
4018 *varargsp = 0;
4019 }
4020
4021 rval = (struct field *) xmalloc (n * sizeof (struct field));
4022 memset (rval, 0, n * sizeof (struct field));
4023 for (i = 0; i < n; i++)
4024 rval[i].type = types[i];
4025 *nargsp = n;
4026 return rval;
4027 }
4028 \f
4029 /* Common block handling. */
4030
4031 /* List of symbols declared since the last BCOMM. This list is a tail
4032 of local_symbols. When ECOMM is seen, the symbols on the list
4033 are noted so their proper addresses can be filled in later,
4034 using the common block base address gotten from the assembler
4035 stabs. */
4036
4037 static struct pending *common_block;
4038 static int common_block_i;
4039
4040 /* Name of the current common block. We get it from the BCOMM instead of the
4041 ECOMM to match IBM documentation (even though IBM puts the name both places
4042 like everyone else). */
4043 static char *common_block_name;
4044
4045 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4046 to remain after this function returns. */
4047
4048 void
4049 common_block_start (char *name, struct objfile *objfile)
4050 {
4051 if (common_block_name != NULL)
4052 {
4053 complaint (&symfile_complaints,
4054 _("Invalid symbol data: common block within common block"));
4055 }
4056 common_block = local_symbols;
4057 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4058 common_block_name = obsavestring (name, strlen (name),
4059 &objfile->objfile_obstack);
4060 }
4061
4062 /* Process a N_ECOMM symbol. */
4063
4064 void
4065 common_block_end (struct objfile *objfile)
4066 {
4067 /* Symbols declared since the BCOMM are to have the common block
4068 start address added in when we know it. common_block and
4069 common_block_i point to the first symbol after the BCOMM in
4070 the local_symbols list; copy the list and hang it off the
4071 symbol for the common block name for later fixup. */
4072 int i;
4073 struct symbol *sym;
4074 struct pending *new = 0;
4075 struct pending *next;
4076 int j;
4077
4078 if (common_block_name == NULL)
4079 {
4080 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4081 return;
4082 }
4083
4084 sym = (struct symbol *)
4085 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4086 memset (sym, 0, sizeof (struct symbol));
4087 /* Note: common_block_name already saved on objfile_obstack */
4088 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4089 SYMBOL_CLASS (sym) = LOC_BLOCK;
4090
4091 /* Now we copy all the symbols which have been defined since the BCOMM. */
4092
4093 /* Copy all the struct pendings before common_block. */
4094 for (next = local_symbols;
4095 next != NULL && next != common_block;
4096 next = next->next)
4097 {
4098 for (j = 0; j < next->nsyms; j++)
4099 add_symbol_to_list (next->symbol[j], &new);
4100 }
4101
4102 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4103 NULL, it means copy all the local symbols (which we already did
4104 above). */
4105
4106 if (common_block != NULL)
4107 for (j = common_block_i; j < common_block->nsyms; j++)
4108 add_symbol_to_list (common_block->symbol[j], &new);
4109
4110 SYMBOL_TYPE (sym) = (struct type *) new;
4111
4112 /* Should we be putting local_symbols back to what it was?
4113 Does it matter? */
4114
4115 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4116 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4117 global_sym_chain[i] = sym;
4118 common_block_name = NULL;
4119 }
4120
4121 /* Add a common block's start address to the offset of each symbol
4122 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4123 the common block name). */
4124
4125 static void
4126 fix_common_block (struct symbol *sym, int valu)
4127 {
4128 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4129 for (; next; next = next->next)
4130 {
4131 int j;
4132 for (j = next->nsyms - 1; j >= 0; j--)
4133 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4134 }
4135 }
4136 \f
4137
4138
4139 /* What about types defined as forward references inside of a small lexical
4140 scope? */
4141 /* Add a type to the list of undefined types to be checked through
4142 once this file has been read in. */
4143
4144 static void
4145 add_undefined_type (struct type *type)
4146 {
4147 if (undef_types_length == undef_types_allocated)
4148 {
4149 undef_types_allocated *= 2;
4150 undef_types = (struct type **)
4151 xrealloc ((char *) undef_types,
4152 undef_types_allocated * sizeof (struct type *));
4153 }
4154 undef_types[undef_types_length++] = type;
4155 }
4156
4157 /* Go through each undefined type, see if it's still undefined, and fix it
4158 up if possible. We have two kinds of undefined types:
4159
4160 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4161 Fix: update array length using the element bounds
4162 and the target type's length.
4163 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4164 yet defined at the time a pointer to it was made.
4165 Fix: Do a full lookup on the struct/union tag. */
4166 void
4167 cleanup_undefined_types (void)
4168 {
4169 struct type **type;
4170
4171 for (type = undef_types; type < undef_types + undef_types_length; type++)
4172 {
4173 switch (TYPE_CODE (*type))
4174 {
4175
4176 case TYPE_CODE_STRUCT:
4177 case TYPE_CODE_UNION:
4178 case TYPE_CODE_ENUM:
4179 {
4180 /* Check if it has been defined since. Need to do this here
4181 as well as in check_typedef to deal with the (legitimate in
4182 C though not C++) case of several types with the same name
4183 in different source files. */
4184 if (TYPE_STUB (*type))
4185 {
4186 struct pending *ppt;
4187 int i;
4188 /* Name of the type, without "struct" or "union" */
4189 char *typename = TYPE_TAG_NAME (*type);
4190
4191 if (typename == NULL)
4192 {
4193 complaint (&symfile_complaints, _("need a type name"));
4194 break;
4195 }
4196 for (ppt = file_symbols; ppt; ppt = ppt->next)
4197 {
4198 for (i = 0; i < ppt->nsyms; i++)
4199 {
4200 struct symbol *sym = ppt->symbol[i];
4201
4202 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4203 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4204 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4205 TYPE_CODE (*type))
4206 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4207 replace_type (*type, SYMBOL_TYPE (sym));
4208 }
4209 }
4210 }
4211 }
4212 break;
4213
4214 default:
4215 {
4216 complaint (&symfile_complaints,
4217 _("forward-referenced types left unresolved, "
4218 "type code %d."),
4219 TYPE_CODE (*type));
4220 }
4221 break;
4222 }
4223 }
4224
4225 undef_types_length = 0;
4226 }
4227
4228 /* Scan through all of the global symbols defined in the object file,
4229 assigning values to the debugging symbols that need to be assigned
4230 to. Get these symbols from the minimal symbol table. */
4231
4232 void
4233 scan_file_globals (struct objfile *objfile)
4234 {
4235 int hash;
4236 struct minimal_symbol *msymbol;
4237 struct symbol *sym, *prev;
4238 struct objfile *resolve_objfile;
4239
4240 /* SVR4 based linkers copy referenced global symbols from shared
4241 libraries to the main executable.
4242 If we are scanning the symbols for a shared library, try to resolve
4243 them from the minimal symbols of the main executable first. */
4244
4245 if (symfile_objfile && objfile != symfile_objfile)
4246 resolve_objfile = symfile_objfile;
4247 else
4248 resolve_objfile = objfile;
4249
4250 while (1)
4251 {
4252 /* Avoid expensive loop through all minimal symbols if there are
4253 no unresolved symbols. */
4254 for (hash = 0; hash < HASHSIZE; hash++)
4255 {
4256 if (global_sym_chain[hash])
4257 break;
4258 }
4259 if (hash >= HASHSIZE)
4260 return;
4261
4262 for (msymbol = resolve_objfile->msymbols;
4263 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4264 msymbol++)
4265 {
4266 QUIT;
4267
4268 /* Skip static symbols. */
4269 switch (MSYMBOL_TYPE (msymbol))
4270 {
4271 case mst_file_text:
4272 case mst_file_data:
4273 case mst_file_bss:
4274 continue;
4275 default:
4276 break;
4277 }
4278
4279 prev = NULL;
4280
4281 /* Get the hash index and check all the symbols
4282 under that hash index. */
4283
4284 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4285
4286 for (sym = global_sym_chain[hash]; sym;)
4287 {
4288 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4289 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4290 {
4291 /* Splice this symbol out of the hash chain and
4292 assign the value we have to it. */
4293 if (prev)
4294 {
4295 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4296 }
4297 else
4298 {
4299 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4300 }
4301
4302 /* Check to see whether we need to fix up a common block. */
4303 /* Note: this code might be executed several times for
4304 the same symbol if there are multiple references. */
4305 if (sym)
4306 {
4307 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4308 {
4309 fix_common_block (sym,
4310 SYMBOL_VALUE_ADDRESS (msymbol));
4311 }
4312 else
4313 {
4314 SYMBOL_VALUE_ADDRESS (sym)
4315 = SYMBOL_VALUE_ADDRESS (msymbol);
4316 }
4317 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4318 }
4319
4320 if (prev)
4321 {
4322 sym = SYMBOL_VALUE_CHAIN (prev);
4323 }
4324 else
4325 {
4326 sym = global_sym_chain[hash];
4327 }
4328 }
4329 else
4330 {
4331 prev = sym;
4332 sym = SYMBOL_VALUE_CHAIN (sym);
4333 }
4334 }
4335 }
4336 if (resolve_objfile == objfile)
4337 break;
4338 resolve_objfile = objfile;
4339 }
4340
4341 /* Change the storage class of any remaining unresolved globals to
4342 LOC_UNRESOLVED and remove them from the chain. */
4343 for (hash = 0; hash < HASHSIZE; hash++)
4344 {
4345 sym = global_sym_chain[hash];
4346 while (sym)
4347 {
4348 prev = sym;
4349 sym = SYMBOL_VALUE_CHAIN (sym);
4350
4351 /* Change the symbol address from the misleading chain value
4352 to address zero. */
4353 SYMBOL_VALUE_ADDRESS (prev) = 0;
4354
4355 /* Complain about unresolved common block symbols. */
4356 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4357 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4358 else
4359 complaint (&symfile_complaints,
4360 _("%s: common block `%s' from global_sym_chain unresolved"),
4361 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4362 }
4363 }
4364 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4365 }
4366
4367 /* Initialize anything that needs initializing when starting to read
4368 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4369 to a psymtab. */
4370
4371 void
4372 stabsread_init (void)
4373 {
4374 }
4375
4376 /* Initialize anything that needs initializing when a completely new
4377 symbol file is specified (not just adding some symbols from another
4378 file, e.g. a shared library). */
4379
4380 void
4381 stabsread_new_init (void)
4382 {
4383 /* Empty the hash table of global syms looking for values. */
4384 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4385 }
4386
4387 /* Initialize anything that needs initializing at the same time as
4388 start_symtab() is called. */
4389
4390 void
4391 start_stabs (void)
4392 {
4393 global_stabs = NULL; /* AIX COFF */
4394 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4395 n_this_object_header_files = 1;
4396 type_vector_length = 0;
4397 type_vector = (struct type **) 0;
4398
4399 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4400 common_block_name = NULL;
4401 }
4402
4403 /* Call after end_symtab() */
4404
4405 void
4406 end_stabs (void)
4407 {
4408 if (type_vector)
4409 {
4410 xfree (type_vector);
4411 }
4412 type_vector = 0;
4413 type_vector_length = 0;
4414 previous_stab_code = 0;
4415 }
4416
4417 void
4418 finish_global_stabs (struct objfile *objfile)
4419 {
4420 if (global_stabs)
4421 {
4422 patch_block_stabs (global_symbols, global_stabs, objfile);
4423 xfree (global_stabs);
4424 global_stabs = NULL;
4425 }
4426 }
4427
4428 /* Find the end of the name, delimited by a ':', but don't match
4429 ObjC symbols which look like -[Foo bar::]:bla. */
4430 static char *
4431 find_name_end (char *name)
4432 {
4433 char *s = name;
4434 if (s[0] == '-' || *s == '+')
4435 {
4436 /* Must be an ObjC method symbol. */
4437 if (s[1] != '[')
4438 {
4439 error (_("invalid symbol name \"%s\""), name);
4440 }
4441 s = strchr (s, ']');
4442 if (s == NULL)
4443 {
4444 error (_("invalid symbol name \"%s\""), name);
4445 }
4446 return strchr (s, ':');
4447 }
4448 else
4449 {
4450 return strchr (s, ':');
4451 }
4452 }
4453
4454 /* Initializer for this module */
4455
4456 void
4457 _initialize_stabsread (void)
4458 {
4459 undef_types_allocated = 20;
4460 undef_types_length = 0;
4461 undef_types = (struct type **)
4462 xmalloc (undef_types_allocated * sizeof (struct type *));
4463 }
This page took 0.127793 seconds and 4 git commands to generate.