gdb/
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obsavestring (name, pp - name,
391 &objfile->objfile_obstack));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '=' */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 struct objfile *objfile)
610 {
611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
612 struct symbol *sym;
613 char *p = (char *) find_name_end (string);
614 int deftype;
615 int synonym = 0;
616 int i;
617 char *new_name = NULL;
618
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
623
624 int nameless;
625
626 /* Ignore syms with empty names. */
627 if (string[0] == 0)
628 return 0;
629
630 /* Ignore old-style symbols from cc -go */
631 if (p == 0)
632 return 0;
633
634 while (p[1] == ':')
635 {
636 p += 2;
637 p = strchr (p, ':');
638 }
639
640 /* If a nameless stab entry, all we need is the type, not the symbol.
641 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
642 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
643
644 current_symbol = sym = (struct symbol *)
645 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
646 memset (sym, 0, sizeof (struct symbol));
647
648 switch (type & N_TYPE)
649 {
650 case N_TEXT:
651 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
652 break;
653 case N_DATA:
654 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
655 break;
656 case N_BSS:
657 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
658 break;
659 }
660
661 if (processing_gcc_compilation)
662 {
663 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
664 number of bytes occupied by a type or object, which we ignore. */
665 SYMBOL_LINE (sym) = desc;
666 }
667 else
668 {
669 SYMBOL_LINE (sym) = 0; /* unknown */
670 }
671
672 if (is_cplus_marker (string[0]))
673 {
674 /* Special GNU C++ names. */
675 switch (string[1])
676 {
677 case 't':
678 SYMBOL_SET_LINKAGE_NAME (sym, "this");
679 break;
680
681 case 'v': /* $vtbl_ptr_type */
682 goto normal;
683
684 case 'e':
685 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
686 break;
687
688 case '_':
689 /* This was an anonymous type that was never fixed up. */
690 goto normal;
691
692 case 'X':
693 /* SunPRO (3.0 at least) static variable encoding. */
694 if (gdbarch_static_transform_name_p (gdbarch))
695 goto normal;
696 /* ... fall through ... */
697
698 default:
699 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
700 string);
701 goto normal; /* Do *something* with it */
702 }
703 }
704 else
705 {
706 normal:
707 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
708 if (SYMBOL_LANGUAGE (sym) == language_cplus)
709 {
710 char *name = alloca (p - string + 1);
711
712 memcpy (name, string, p - string);
713 name[p - string] = '\0';
714 new_name = cp_canonicalize_string (name);
715 }
716 if (new_name != NULL)
717 {
718 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
719 xfree (new_name);
720 }
721 else
722 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
723
724 if (SYMBOL_LANGUAGE (sym) == language_cplus)
725 cp_scan_for_anonymous_namespaces (sym);
726
727 }
728 p++;
729
730 /* Determine the type of name being defined. */
731 #if 0
732 /* Getting GDB to correctly skip the symbol on an undefined symbol
733 descriptor and not ever dump core is a very dodgy proposition if
734 we do things this way. I say the acorn RISC machine can just
735 fix their compiler. */
736 /* The Acorn RISC machine's compiler can put out locals that don't
737 start with "234=" or "(3,4)=", so assume anything other than the
738 deftypes we know how to handle is a local. */
739 if (!strchr ("cfFGpPrStTvVXCR", *p))
740 #else
741 if (isdigit (*p) || *p == '(' || *p == '-')
742 #endif
743 deftype = 'l';
744 else
745 deftype = *p++;
746
747 switch (deftype)
748 {
749 case 'c':
750 /* c is a special case, not followed by a type-number.
751 SYMBOL:c=iVALUE for an integer constant symbol.
752 SYMBOL:c=rVALUE for a floating constant symbol.
753 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
754 e.g. "b:c=e6,0" for "const b = blob1"
755 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
756 if (*p != '=')
757 {
758 SYMBOL_CLASS (sym) = LOC_CONST;
759 SYMBOL_TYPE (sym) = error_type (&p, objfile);
760 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
761 add_symbol_to_list (sym, &file_symbols);
762 return sym;
763 }
764 ++p;
765 switch (*p++)
766 {
767 case 'r':
768 {
769 double d = atof (p);
770 gdb_byte *dbl_valu;
771 struct type *dbl_type;
772
773 /* FIXME-if-picky-about-floating-accuracy: Should be using
774 target arithmetic to get the value. real.c in GCC
775 probably has the necessary code. */
776
777 dbl_type = objfile_type (objfile)->builtin_double;
778 dbl_valu =
779 obstack_alloc (&objfile->objfile_obstack,
780 TYPE_LENGTH (dbl_type));
781 store_typed_floating (dbl_valu, dbl_type, d);
782
783 SYMBOL_TYPE (sym) = dbl_type;
784 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
785 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
786 }
787 break;
788 case 'i':
789 {
790 /* Defining integer constants this way is kind of silly,
791 since 'e' constants allows the compiler to give not
792 only the value, but the type as well. C has at least
793 int, long, unsigned int, and long long as constant
794 types; other languages probably should have at least
795 unsigned as well as signed constants. */
796
797 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
798 SYMBOL_VALUE (sym) = atoi (p);
799 SYMBOL_CLASS (sym) = LOC_CONST;
800 }
801 break;
802
803 case 'c':
804 {
805 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
806 SYMBOL_VALUE (sym) = atoi (p);
807 SYMBOL_CLASS (sym) = LOC_CONST;
808 }
809 break;
810
811 case 's':
812 {
813 struct type *range_type;
814 int ind = 0;
815 char quote = *p++;
816 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
817 gdb_byte *string_value;
818
819 if (quote != '\'' && quote != '"')
820 {
821 SYMBOL_CLASS (sym) = LOC_CONST;
822 SYMBOL_TYPE (sym) = error_type (&p, objfile);
823 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
824 add_symbol_to_list (sym, &file_symbols);
825 return sym;
826 }
827
828 /* Find matching quote, rejecting escaped quotes. */
829 while (*p && *p != quote)
830 {
831 if (*p == '\\' && p[1] == quote)
832 {
833 string_local[ind] = (gdb_byte) quote;
834 ind++;
835 p += 2;
836 }
837 else if (*p)
838 {
839 string_local[ind] = (gdb_byte) (*p);
840 ind++;
841 p++;
842 }
843 }
844 if (*p != quote)
845 {
846 SYMBOL_CLASS (sym) = LOC_CONST;
847 SYMBOL_TYPE (sym) = error_type (&p, objfile);
848 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
849 add_symbol_to_list (sym, &file_symbols);
850 return sym;
851 }
852
853 /* NULL terminate the string. */
854 string_local[ind] = 0;
855 range_type = create_range_type (NULL,
856 objfile_type (objfile)->builtin_int,
857 0, ind);
858 SYMBOL_TYPE (sym) = create_array_type (NULL,
859 objfile_type (objfile)->builtin_char,
860 range_type);
861 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
862 memcpy (string_value, string_local, ind + 1);
863 p++;
864
865 SYMBOL_VALUE_BYTES (sym) = string_value;
866 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
867 }
868 break;
869
870 case 'e':
871 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
872 can be represented as integral.
873 e.g. "b:c=e6,0" for "const b = blob1"
874 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
875 {
876 SYMBOL_CLASS (sym) = LOC_CONST;
877 SYMBOL_TYPE (sym) = read_type (&p, objfile);
878
879 if (*p != ',')
880 {
881 SYMBOL_TYPE (sym) = error_type (&p, objfile);
882 break;
883 }
884 ++p;
885
886 /* If the value is too big to fit in an int (perhaps because
887 it is unsigned), or something like that, we silently get
888 a bogus value. The type and everything else about it is
889 correct. Ideally, we should be using whatever we have
890 available for parsing unsigned and long long values,
891 however. */
892 SYMBOL_VALUE (sym) = atoi (p);
893 }
894 break;
895 default:
896 {
897 SYMBOL_CLASS (sym) = LOC_CONST;
898 SYMBOL_TYPE (sym) = error_type (&p, objfile);
899 }
900 }
901 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
902 add_symbol_to_list (sym, &file_symbols);
903 return sym;
904
905 case 'C':
906 /* The name of a caught exception. */
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908 SYMBOL_CLASS (sym) = LOC_LABEL;
909 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
910 SYMBOL_VALUE_ADDRESS (sym) = valu;
911 add_symbol_to_list (sym, &local_symbols);
912 break;
913
914 case 'f':
915 /* A static function definition. */
916 SYMBOL_TYPE (sym) = read_type (&p, objfile);
917 SYMBOL_CLASS (sym) = LOC_BLOCK;
918 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
919 add_symbol_to_list (sym, &file_symbols);
920 /* fall into process_function_types. */
921
922 process_function_types:
923 /* Function result types are described as the result type in stabs.
924 We need to convert this to the function-returning-type-X type
925 in GDB. E.g. "int" is converted to "function returning int". */
926 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
927 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
928
929 /* All functions in C++ have prototypes. Stabs does not offer an
930 explicit way to identify prototyped or unprototyped functions,
931 but both GCC and Sun CC emit stabs for the "call-as" type rather
932 than the "declared-as" type for unprototyped functions, so
933 we treat all functions as if they were prototyped. This is used
934 primarily for promotion when calling the function from GDB. */
935 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
936
937 /* fall into process_prototype_types */
938
939 process_prototype_types:
940 /* Sun acc puts declared types of arguments here. */
941 if (*p == ';')
942 {
943 struct type *ftype = SYMBOL_TYPE (sym);
944 int nsemi = 0;
945 int nparams = 0;
946 char *p1 = p;
947
948 /* Obtain a worst case guess for the number of arguments
949 by counting the semicolons. */
950 while (*p1)
951 {
952 if (*p1++ == ';')
953 nsemi++;
954 }
955
956 /* Allocate parameter information fields and fill them in. */
957 TYPE_FIELDS (ftype) = (struct field *)
958 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
959 while (*p++ == ';')
960 {
961 struct type *ptype;
962
963 /* A type number of zero indicates the start of varargs.
964 FIXME: GDB currently ignores vararg functions. */
965 if (p[0] == '0' && p[1] == '\0')
966 break;
967 ptype = read_type (&p, objfile);
968
969 /* The Sun compilers mark integer arguments, which should
970 be promoted to the width of the calling conventions, with
971 a type which references itself. This type is turned into
972 a TYPE_CODE_VOID type by read_type, and we have to turn
973 it back into builtin_int here.
974 FIXME: Do we need a new builtin_promoted_int_arg ? */
975 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
976 ptype = objfile_type (objfile)->builtin_int;
977 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
978 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
979 }
980 TYPE_NFIELDS (ftype) = nparams;
981 TYPE_PROTOTYPED (ftype) = 1;
982 }
983 break;
984
985 case 'F':
986 /* A global function definition. */
987 SYMBOL_TYPE (sym) = read_type (&p, objfile);
988 SYMBOL_CLASS (sym) = LOC_BLOCK;
989 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
990 add_symbol_to_list (sym, &global_symbols);
991 goto process_function_types;
992
993 case 'G':
994 /* For a class G (global) symbol, it appears that the
995 value is not correct. It is necessary to search for the
996 corresponding linker definition to find the value.
997 These definitions appear at the end of the namelist. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
999 SYMBOL_CLASS (sym) = LOC_STATIC;
1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1001 /* Don't add symbol references to global_sym_chain.
1002 Symbol references don't have valid names and wont't match up with
1003 minimal symbols when the global_sym_chain is relocated.
1004 We'll fixup symbol references when we fixup the defining symbol. */
1005 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1006 {
1007 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1008 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1009 global_sym_chain[i] = sym;
1010 }
1011 add_symbol_to_list (sym, &global_symbols);
1012 break;
1013
1014 /* This case is faked by a conditional above,
1015 when there is no code letter in the dbx data.
1016 Dbx data never actually contains 'l'. */
1017 case 's':
1018 case 'l':
1019 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1020 SYMBOL_CLASS (sym) = LOC_LOCAL;
1021 SYMBOL_VALUE (sym) = valu;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &local_symbols);
1024 break;
1025
1026 case 'p':
1027 if (*p == 'F')
1028 /* pF is a two-letter code that means a function parameter in Fortran.
1029 The type-number specifies the type of the return value.
1030 Translate it into a pointer-to-function type. */
1031 {
1032 p++;
1033 SYMBOL_TYPE (sym)
1034 = lookup_pointer_type
1035 (lookup_function_type (read_type (&p, objfile)));
1036 }
1037 else
1038 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1039
1040 SYMBOL_CLASS (sym) = LOC_ARG;
1041 SYMBOL_VALUE (sym) = valu;
1042 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1043 SYMBOL_IS_ARGUMENT (sym) = 1;
1044 add_symbol_to_list (sym, &local_symbols);
1045
1046 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1047 {
1048 /* On little-endian machines, this crud is never necessary,
1049 and, if the extra bytes contain garbage, is harmful. */
1050 break;
1051 }
1052
1053 /* If it's gcc-compiled, if it says `short', believe it. */
1054 if (processing_gcc_compilation
1055 || gdbarch_believe_pcc_promotion (gdbarch))
1056 break;
1057
1058 if (!gdbarch_believe_pcc_promotion (gdbarch))
1059 {
1060 /* If PCC says a parameter is a short or a char, it is
1061 really an int. */
1062 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1063 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1064 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1065 {
1066 SYMBOL_TYPE (sym) =
1067 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1068 ? objfile_type (objfile)->builtin_unsigned_int
1069 : objfile_type (objfile)->builtin_int;
1070 }
1071 break;
1072 }
1073
1074 case 'P':
1075 /* acc seems to use P to declare the prototypes of functions that
1076 are referenced by this file. gdb is not prepared to deal
1077 with this extra information. FIXME, it ought to. */
1078 if (type == N_FUN)
1079 {
1080 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1081 goto process_prototype_types;
1082 }
1083 /*FALLTHROUGH */
1084
1085 case 'R':
1086 /* Parameter which is in a register. */
1087 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 SYMBOL_CLASS (sym) = LOC_REGISTER;
1089 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1090 SYMBOL_IS_ARGUMENT (sym) = 1;
1091 SYMBOL_VALUE (sym) = valu;
1092 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1093 add_symbol_to_list (sym, &local_symbols);
1094 break;
1095
1096 case 'r':
1097 /* Register variable (either global or local). */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1099 SYMBOL_CLASS (sym) = LOC_REGISTER;
1100 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1101 SYMBOL_VALUE (sym) = valu;
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 if (within_function)
1104 {
1105 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1106 the same name to represent an argument passed in a
1107 register. GCC uses 'P' for the same case. So if we find
1108 such a symbol pair we combine it into one 'P' symbol.
1109 For Sun cc we need to do this regardless of
1110 stabs_argument_has_addr, because the compiler puts out
1111 the 'p' symbol even if it never saves the argument onto
1112 the stack.
1113
1114 On most machines, we want to preserve both symbols, so
1115 that we can still get information about what is going on
1116 with the stack (VAX for computing args_printed, using
1117 stack slots instead of saved registers in backtraces,
1118 etc.).
1119
1120 Note that this code illegally combines
1121 main(argc) struct foo argc; { register struct foo argc; }
1122 but this case is considered pathological and causes a warning
1123 from a decent compiler. */
1124
1125 if (local_symbols
1126 && local_symbols->nsyms > 0
1127 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1128 {
1129 struct symbol *prev_sym;
1130
1131 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1132 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1133 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1134 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1135 SYMBOL_LINKAGE_NAME (sym)) == 0)
1136 {
1137 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1138 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1139 /* Use the type from the LOC_REGISTER; that is the type
1140 that is actually in that register. */
1141 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1142 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1143 sym = prev_sym;
1144 break;
1145 }
1146 }
1147 add_symbol_to_list (sym, &local_symbols);
1148 }
1149 else
1150 add_symbol_to_list (sym, &file_symbols);
1151 break;
1152
1153 case 'S':
1154 /* Static symbol at top level of file */
1155 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1156 SYMBOL_CLASS (sym) = LOC_STATIC;
1157 SYMBOL_VALUE_ADDRESS (sym) = valu;
1158 if (gdbarch_static_transform_name_p (gdbarch)
1159 && gdbarch_static_transform_name (gdbarch,
1160 SYMBOL_LINKAGE_NAME (sym))
1161 != SYMBOL_LINKAGE_NAME (sym))
1162 {
1163 struct minimal_symbol *msym;
1164
1165 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1166 if (msym != NULL)
1167 {
1168 char *new_name = gdbarch_static_transform_name
1169 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1170
1171 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1172 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1173 }
1174 }
1175 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1176 add_symbol_to_list (sym, &file_symbols);
1177 break;
1178
1179 case 't':
1180 /* In Ada, there is no distinction between typedef and non-typedef;
1181 any type declaration implicitly has the equivalent of a typedef,
1182 and thus 't' is in fact equivalent to 'Tt'.
1183
1184 Therefore, for Ada units, we check the character immediately
1185 before the 't', and if we do not find a 'T', then make sure to
1186 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1187 will be stored in the VAR_DOMAIN). If the symbol was indeed
1188 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1189 elsewhere, so we don't need to take care of that.
1190
1191 This is important to do, because of forward references:
1192 The cleanup of undefined types stored in undef_types only uses
1193 STRUCT_DOMAIN symbols to perform the replacement. */
1194 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1195
1196 /* Typedef */
1197 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1198
1199 /* For a nameless type, we don't want a create a symbol, thus we
1200 did not use `sym'. Return without further processing. */
1201 if (nameless)
1202 return NULL;
1203
1204 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1205 SYMBOL_VALUE (sym) = valu;
1206 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1207 /* C++ vagaries: we may have a type which is derived from
1208 a base type which did not have its name defined when the
1209 derived class was output. We fill in the derived class's
1210 base part member's name here in that case. */
1211 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1212 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1213 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1214 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1215 {
1216 int j;
1217
1218 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1219 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1220 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1221 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1222 }
1223
1224 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1225 {
1226 /* gcc-2.6 or later (when using -fvtable-thunks)
1227 emits a unique named type for a vtable entry.
1228 Some gdb code depends on that specific name. */
1229 extern const char vtbl_ptr_name[];
1230
1231 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1232 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1233 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1234 {
1235 /* If we are giving a name to a type such as "pointer to
1236 foo" or "function returning foo", we better not set
1237 the TYPE_NAME. If the program contains "typedef char
1238 *caddr_t;", we don't want all variables of type char
1239 * to print as caddr_t. This is not just a
1240 consequence of GDB's type management; PCC and GCC (at
1241 least through version 2.4) both output variables of
1242 either type char * or caddr_t with the type number
1243 defined in the 't' symbol for caddr_t. If a future
1244 compiler cleans this up it GDB is not ready for it
1245 yet, but if it becomes ready we somehow need to
1246 disable this check (without breaking the PCC/GCC2.4
1247 case).
1248
1249 Sigh.
1250
1251 Fortunately, this check seems not to be necessary
1252 for anything except pointers or functions. */
1253 /* ezannoni: 2000-10-26. This seems to apply for
1254 versions of gcc older than 2.8. This was the original
1255 problem: with the following code gdb would tell that
1256 the type for name1 is caddr_t, and func is char()
1257 typedef char *caddr_t;
1258 char *name2;
1259 struct x
1260 {
1261 char *name1;
1262 } xx;
1263 char *func()
1264 {
1265 }
1266 main () {}
1267 */
1268
1269 /* Pascal accepts names for pointer types. */
1270 if (current_subfile->language == language_pascal)
1271 {
1272 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1273 }
1274 }
1275 else
1276 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1277 }
1278
1279 add_symbol_to_list (sym, &file_symbols);
1280
1281 if (synonym)
1282 {
1283 /* Create the STRUCT_DOMAIN clone. */
1284 struct symbol *struct_sym = (struct symbol *)
1285 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1286
1287 *struct_sym = *sym;
1288 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1289 SYMBOL_VALUE (struct_sym) = valu;
1290 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1291 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1292 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1293 SYMBOL_LINKAGE_NAME (sym),
1294 (char *) NULL);
1295 add_symbol_to_list (struct_sym, &file_symbols);
1296 }
1297
1298 break;
1299
1300 case 'T':
1301 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1302 by 't' which means we are typedef'ing it as well. */
1303 synonym = *p == 't';
1304
1305 if (synonym)
1306 p++;
1307
1308 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1309
1310 /* For a nameless type, we don't want a create a symbol, thus we
1311 did not use `sym'. Return without further processing. */
1312 if (nameless)
1313 return NULL;
1314
1315 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1316 SYMBOL_VALUE (sym) = valu;
1317 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1318 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1319 TYPE_TAG_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1320 SYMBOL_LINKAGE_NAME (sym),
1321 (char *) NULL);
1322 add_symbol_to_list (sym, &file_symbols);
1323
1324 if (synonym)
1325 {
1326 /* Clone the sym and then modify it. */
1327 struct symbol *typedef_sym = (struct symbol *)
1328 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1329
1330 *typedef_sym = *sym;
1331 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1332 SYMBOL_VALUE (typedef_sym) = valu;
1333 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1334 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1335 TYPE_NAME (SYMBOL_TYPE (sym)) = obconcat (&objfile->objfile_obstack,
1336 SYMBOL_LINKAGE_NAME (sym),
1337 (char *) NULL);
1338 add_symbol_to_list (typedef_sym, &file_symbols);
1339 }
1340 break;
1341
1342 case 'V':
1343 /* Static symbol of local scope */
1344 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1345 SYMBOL_CLASS (sym) = LOC_STATIC;
1346 SYMBOL_VALUE_ADDRESS (sym) = valu;
1347 if (gdbarch_static_transform_name_p (gdbarch)
1348 && gdbarch_static_transform_name (gdbarch,
1349 SYMBOL_LINKAGE_NAME (sym))
1350 != SYMBOL_LINKAGE_NAME (sym))
1351 {
1352 struct minimal_symbol *msym;
1353
1354 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1355 NULL, objfile);
1356 if (msym != NULL)
1357 {
1358 char *new_name = gdbarch_static_transform_name
1359 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1360
1361 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1362 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1363 }
1364 }
1365 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1366 add_symbol_to_list (sym, &local_symbols);
1367 break;
1368
1369 case 'v':
1370 /* Reference parameter */
1371 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1372 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1373 SYMBOL_IS_ARGUMENT (sym) = 1;
1374 SYMBOL_VALUE (sym) = valu;
1375 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1376 add_symbol_to_list (sym, &local_symbols);
1377 break;
1378
1379 case 'a':
1380 /* Reference parameter which is in a register. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1383 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1384 SYMBOL_IS_ARGUMENT (sym) = 1;
1385 SYMBOL_VALUE (sym) = valu;
1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'X':
1391 /* This is used by Sun FORTRAN for "function result value".
1392 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1393 that Pascal uses it too, but when I tried it Pascal used
1394 "x:3" (local symbol) instead. */
1395 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1396 SYMBOL_CLASS (sym) = LOC_LOCAL;
1397 SYMBOL_VALUE (sym) = valu;
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 default:
1403 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1404 SYMBOL_CLASS (sym) = LOC_CONST;
1405 SYMBOL_VALUE (sym) = 0;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &file_symbols);
1408 break;
1409 }
1410
1411 /* Some systems pass variables of certain types by reference instead
1412 of by value, i.e. they will pass the address of a structure (in a
1413 register or on the stack) instead of the structure itself. */
1414
1415 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1416 && SYMBOL_IS_ARGUMENT (sym))
1417 {
1418 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1419 variables passed in a register). */
1420 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1421 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1422 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1423 and subsequent arguments on SPARC, for example). */
1424 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1425 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1426 }
1427
1428 return sym;
1429 }
1430
1431 /* Skip rest of this symbol and return an error type.
1432
1433 General notes on error recovery: error_type always skips to the
1434 end of the symbol (modulo cretinous dbx symbol name continuation).
1435 Thus code like this:
1436
1437 if (*(*pp)++ != ';')
1438 return error_type (pp, objfile);
1439
1440 is wrong because if *pp starts out pointing at '\0' (typically as the
1441 result of an earlier error), it will be incremented to point to the
1442 start of the next symbol, which might produce strange results, at least
1443 if you run off the end of the string table. Instead use
1444
1445 if (**pp != ';')
1446 return error_type (pp, objfile);
1447 ++*pp;
1448
1449 or
1450
1451 if (**pp != ';')
1452 foo = error_type (pp, objfile);
1453 else
1454 ++*pp;
1455
1456 And in case it isn't obvious, the point of all this hair is so the compiler
1457 can define new types and new syntaxes, and old versions of the
1458 debugger will be able to read the new symbol tables. */
1459
1460 static struct type *
1461 error_type (char **pp, struct objfile *objfile)
1462 {
1463 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1464 while (1)
1465 {
1466 /* Skip to end of symbol. */
1467 while (**pp != '\0')
1468 {
1469 (*pp)++;
1470 }
1471
1472 /* Check for and handle cretinous dbx symbol name continuation! */
1473 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1474 {
1475 *pp = next_symbol_text (objfile);
1476 }
1477 else
1478 {
1479 break;
1480 }
1481 }
1482 return objfile_type (objfile)->builtin_error;
1483 }
1484 \f
1485
1486 /* Read type information or a type definition; return the type. Even
1487 though this routine accepts either type information or a type
1488 definition, the distinction is relevant--some parts of stabsread.c
1489 assume that type information starts with a digit, '-', or '(' in
1490 deciding whether to call read_type. */
1491
1492 static struct type *
1493 read_type (char **pp, struct objfile *objfile)
1494 {
1495 struct type *type = 0;
1496 struct type *type1;
1497 int typenums[2];
1498 char type_descriptor;
1499
1500 /* Size in bits of type if specified by a type attribute, or -1 if
1501 there is no size attribute. */
1502 int type_size = -1;
1503
1504 /* Used to distinguish string and bitstring from char-array and set. */
1505 int is_string = 0;
1506
1507 /* Used to distinguish vector from array. */
1508 int is_vector = 0;
1509
1510 /* Read type number if present. The type number may be omitted.
1511 for instance in a two-dimensional array declared with type
1512 "ar1;1;10;ar1;1;10;4". */
1513 if ((**pp >= '0' && **pp <= '9')
1514 || **pp == '('
1515 || **pp == '-')
1516 {
1517 if (read_type_number (pp, typenums) != 0)
1518 return error_type (pp, objfile);
1519
1520 if (**pp != '=')
1521 {
1522 /* Type is not being defined here. Either it already
1523 exists, or this is a forward reference to it.
1524 dbx_alloc_type handles both cases. */
1525 type = dbx_alloc_type (typenums, objfile);
1526
1527 /* If this is a forward reference, arrange to complain if it
1528 doesn't get patched up by the time we're done
1529 reading. */
1530 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1531 add_undefined_type (type, typenums);
1532
1533 return type;
1534 }
1535
1536 /* Type is being defined here. */
1537 /* Skip the '='.
1538 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1539 (*pp) += 2;
1540 }
1541 else
1542 {
1543 /* 'typenums=' not present, type is anonymous. Read and return
1544 the definition, but don't put it in the type vector. */
1545 typenums[0] = typenums[1] = -1;
1546 (*pp)++;
1547 }
1548
1549 again:
1550 type_descriptor = (*pp)[-1];
1551 switch (type_descriptor)
1552 {
1553 case 'x':
1554 {
1555 enum type_code code;
1556
1557 /* Used to index through file_symbols. */
1558 struct pending *ppt;
1559 int i;
1560
1561 /* Name including "struct", etc. */
1562 char *type_name;
1563
1564 {
1565 char *from, *to, *p, *q1, *q2;
1566
1567 /* Set the type code according to the following letter. */
1568 switch ((*pp)[0])
1569 {
1570 case 's':
1571 code = TYPE_CODE_STRUCT;
1572 break;
1573 case 'u':
1574 code = TYPE_CODE_UNION;
1575 break;
1576 case 'e':
1577 code = TYPE_CODE_ENUM;
1578 break;
1579 default:
1580 {
1581 /* Complain and keep going, so compilers can invent new
1582 cross-reference types. */
1583 complaint (&symfile_complaints,
1584 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1585 code = TYPE_CODE_STRUCT;
1586 break;
1587 }
1588 }
1589
1590 q1 = strchr (*pp, '<');
1591 p = strchr (*pp, ':');
1592 if (p == NULL)
1593 return error_type (pp, objfile);
1594 if (q1 && p > q1 && p[1] == ':')
1595 {
1596 int nesting_level = 0;
1597
1598 for (q2 = q1; *q2; q2++)
1599 {
1600 if (*q2 == '<')
1601 nesting_level++;
1602 else if (*q2 == '>')
1603 nesting_level--;
1604 else if (*q2 == ':' && nesting_level == 0)
1605 break;
1606 }
1607 p = q2;
1608 if (*p != ':')
1609 return error_type (pp, objfile);
1610 }
1611 type_name = NULL;
1612 if (current_subfile->language == language_cplus)
1613 {
1614 char *new_name, *name = alloca (p - *pp + 1);
1615
1616 memcpy (name, *pp, p - *pp);
1617 name[p - *pp] = '\0';
1618 new_name = cp_canonicalize_string (name);
1619 if (new_name != NULL)
1620 {
1621 type_name = obsavestring (new_name, strlen (new_name),
1622 &objfile->objfile_obstack);
1623 xfree (new_name);
1624 }
1625 }
1626 if (type_name == NULL)
1627 {
1628 to = type_name =
1629 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1630
1631 /* Copy the name. */
1632 from = *pp + 1;
1633 while (from < p)
1634 *to++ = *from++;
1635 *to = '\0';
1636 }
1637
1638 /* Set the pointer ahead of the name which we just read, and
1639 the colon. */
1640 *pp = p + 1;
1641 }
1642
1643 /* If this type has already been declared, then reuse the same
1644 type, rather than allocating a new one. This saves some
1645 memory. */
1646
1647 for (ppt = file_symbols; ppt; ppt = ppt->next)
1648 for (i = 0; i < ppt->nsyms; i++)
1649 {
1650 struct symbol *sym = ppt->symbol[i];
1651
1652 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1653 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1654 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1655 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1656 {
1657 obstack_free (&objfile->objfile_obstack, type_name);
1658 type = SYMBOL_TYPE (sym);
1659 if (typenums[0] != -1)
1660 *dbx_lookup_type (typenums, objfile) = type;
1661 return type;
1662 }
1663 }
1664
1665 /* Didn't find the type to which this refers, so we must
1666 be dealing with a forward reference. Allocate a type
1667 structure for it, and keep track of it so we can
1668 fill in the rest of the fields when we get the full
1669 type. */
1670 type = dbx_alloc_type (typenums, objfile);
1671 TYPE_CODE (type) = code;
1672 TYPE_TAG_NAME (type) = type_name;
1673 INIT_CPLUS_SPECIFIC (type);
1674 TYPE_STUB (type) = 1;
1675
1676 add_undefined_type (type, typenums);
1677 return type;
1678 }
1679
1680 case '-': /* RS/6000 built-in type */
1681 case '0':
1682 case '1':
1683 case '2':
1684 case '3':
1685 case '4':
1686 case '5':
1687 case '6':
1688 case '7':
1689 case '8':
1690 case '9':
1691 case '(':
1692 (*pp)--;
1693
1694 /* We deal with something like t(1,2)=(3,4)=... which
1695 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1696
1697 /* Allocate and enter the typedef type first.
1698 This handles recursive types. */
1699 type = dbx_alloc_type (typenums, objfile);
1700 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1701 {
1702 struct type *xtype = read_type (pp, objfile);
1703
1704 if (type == xtype)
1705 {
1706 /* It's being defined as itself. That means it is "void". */
1707 TYPE_CODE (type) = TYPE_CODE_VOID;
1708 TYPE_LENGTH (type) = 1;
1709 }
1710 else if (type_size >= 0 || is_string)
1711 {
1712 /* This is the absolute wrong way to construct types. Every
1713 other debug format has found a way around this problem and
1714 the related problems with unnecessarily stubbed types;
1715 someone motivated should attempt to clean up the issue
1716 here as well. Once a type pointed to has been created it
1717 should not be modified.
1718
1719 Well, it's not *absolutely* wrong. Constructing recursive
1720 types (trees, linked lists) necessarily entails modifying
1721 types after creating them. Constructing any loop structure
1722 entails side effects. The Dwarf 2 reader does handle this
1723 more gracefully (it never constructs more than once
1724 instance of a type object, so it doesn't have to copy type
1725 objects wholesale), but it still mutates type objects after
1726 other folks have references to them.
1727
1728 Keep in mind that this circularity/mutation issue shows up
1729 at the source language level, too: C's "incomplete types",
1730 for example. So the proper cleanup, I think, would be to
1731 limit GDB's type smashing to match exactly those required
1732 by the source language. So GDB could have a
1733 "complete_this_type" function, but never create unnecessary
1734 copies of a type otherwise. */
1735 replace_type (type, xtype);
1736 TYPE_NAME (type) = NULL;
1737 TYPE_TAG_NAME (type) = NULL;
1738 }
1739 else
1740 {
1741 TYPE_TARGET_STUB (type) = 1;
1742 TYPE_TARGET_TYPE (type) = xtype;
1743 }
1744 }
1745 break;
1746
1747 /* In the following types, we must be sure to overwrite any existing
1748 type that the typenums refer to, rather than allocating a new one
1749 and making the typenums point to the new one. This is because there
1750 may already be pointers to the existing type (if it had been
1751 forward-referenced), and we must change it to a pointer, function,
1752 reference, or whatever, *in-place*. */
1753
1754 case '*': /* Pointer to another type */
1755 type1 = read_type (pp, objfile);
1756 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1757 break;
1758
1759 case '&': /* Reference to another type */
1760 type1 = read_type (pp, objfile);
1761 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1762 break;
1763
1764 case 'f': /* Function returning another type */
1765 type1 = read_type (pp, objfile);
1766 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1767 break;
1768
1769 case 'g': /* Prototyped function. (Sun) */
1770 {
1771 /* Unresolved questions:
1772
1773 - According to Sun's ``STABS Interface Manual'', for 'f'
1774 and 'F' symbol descriptors, a `0' in the argument type list
1775 indicates a varargs function. But it doesn't say how 'g'
1776 type descriptors represent that info. Someone with access
1777 to Sun's toolchain should try it out.
1778
1779 - According to the comment in define_symbol (search for
1780 `process_prototype_types:'), Sun emits integer arguments as
1781 types which ref themselves --- like `void' types. Do we
1782 have to deal with that here, too? Again, someone with
1783 access to Sun's toolchain should try it out and let us
1784 know. */
1785
1786 const char *type_start = (*pp) - 1;
1787 struct type *return_type = read_type (pp, objfile);
1788 struct type *func_type
1789 = make_function_type (return_type,
1790 dbx_lookup_type (typenums, objfile));
1791 struct type_list {
1792 struct type *type;
1793 struct type_list *next;
1794 } *arg_types = 0;
1795 int num_args = 0;
1796
1797 while (**pp && **pp != '#')
1798 {
1799 struct type *arg_type = read_type (pp, objfile);
1800 struct type_list *new = alloca (sizeof (*new));
1801 new->type = arg_type;
1802 new->next = arg_types;
1803 arg_types = new;
1804 num_args++;
1805 }
1806 if (**pp == '#')
1807 ++*pp;
1808 else
1809 {
1810 complaint (&symfile_complaints,
1811 _("Prototyped function type didn't end arguments with `#':\n%s"),
1812 type_start);
1813 }
1814
1815 /* If there is just one argument whose type is `void', then
1816 that's just an empty argument list. */
1817 if (arg_types
1818 && ! arg_types->next
1819 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1820 num_args = 0;
1821
1822 TYPE_FIELDS (func_type)
1823 = (struct field *) TYPE_ALLOC (func_type,
1824 num_args * sizeof (struct field));
1825 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1826 {
1827 int i;
1828 struct type_list *t;
1829
1830 /* We stuck each argument type onto the front of the list
1831 when we read it, so the list is reversed. Build the
1832 fields array right-to-left. */
1833 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1834 TYPE_FIELD_TYPE (func_type, i) = t->type;
1835 }
1836 TYPE_NFIELDS (func_type) = num_args;
1837 TYPE_PROTOTYPED (func_type) = 1;
1838
1839 type = func_type;
1840 break;
1841 }
1842
1843 case 'k': /* Const qualifier on some type (Sun) */
1844 type = read_type (pp, objfile);
1845 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1846 dbx_lookup_type (typenums, objfile));
1847 break;
1848
1849 case 'B': /* Volatile qual on some type (Sun) */
1850 type = read_type (pp, objfile);
1851 type = make_cv_type (TYPE_CONST (type), 1, type,
1852 dbx_lookup_type (typenums, objfile));
1853 break;
1854
1855 case '@':
1856 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1857 { /* Member (class & variable) type */
1858 /* FIXME -- we should be doing smash_to_XXX types here. */
1859
1860 struct type *domain = read_type (pp, objfile);
1861 struct type *memtype;
1862
1863 if (**pp != ',')
1864 /* Invalid member type data format. */
1865 return error_type (pp, objfile);
1866 ++*pp;
1867
1868 memtype = read_type (pp, objfile);
1869 type = dbx_alloc_type (typenums, objfile);
1870 smash_to_memberptr_type (type, domain, memtype);
1871 }
1872 else
1873 /* type attribute */
1874 {
1875 char *attr = *pp;
1876
1877 /* Skip to the semicolon. */
1878 while (**pp != ';' && **pp != '\0')
1879 ++(*pp);
1880 if (**pp == '\0')
1881 return error_type (pp, objfile);
1882 else
1883 ++ * pp; /* Skip the semicolon. */
1884
1885 switch (*attr)
1886 {
1887 case 's': /* Size attribute */
1888 type_size = atoi (attr + 1);
1889 if (type_size <= 0)
1890 type_size = -1;
1891 break;
1892
1893 case 'S': /* String attribute */
1894 /* FIXME: check to see if following type is array? */
1895 is_string = 1;
1896 break;
1897
1898 case 'V': /* Vector attribute */
1899 /* FIXME: check to see if following type is array? */
1900 is_vector = 1;
1901 break;
1902
1903 default:
1904 /* Ignore unrecognized type attributes, so future compilers
1905 can invent new ones. */
1906 break;
1907 }
1908 ++*pp;
1909 goto again;
1910 }
1911 break;
1912
1913 case '#': /* Method (class & fn) type */
1914 if ((*pp)[0] == '#')
1915 {
1916 /* We'll get the parameter types from the name. */
1917 struct type *return_type;
1918
1919 (*pp)++;
1920 return_type = read_type (pp, objfile);
1921 if (*(*pp)++ != ';')
1922 complaint (&symfile_complaints,
1923 _("invalid (minimal) member type data format at symtab pos %d."),
1924 symnum);
1925 type = allocate_stub_method (return_type);
1926 if (typenums[0] != -1)
1927 *dbx_lookup_type (typenums, objfile) = type;
1928 }
1929 else
1930 {
1931 struct type *domain = read_type (pp, objfile);
1932 struct type *return_type;
1933 struct field *args;
1934 int nargs, varargs;
1935
1936 if (**pp != ',')
1937 /* Invalid member type data format. */
1938 return error_type (pp, objfile);
1939 else
1940 ++(*pp);
1941
1942 return_type = read_type (pp, objfile);
1943 args = read_args (pp, ';', objfile, &nargs, &varargs);
1944 if (args == NULL)
1945 return error_type (pp, objfile);
1946 type = dbx_alloc_type (typenums, objfile);
1947 smash_to_method_type (type, domain, return_type, args,
1948 nargs, varargs);
1949 }
1950 break;
1951
1952 case 'r': /* Range type */
1953 type = read_range_type (pp, typenums, type_size, objfile);
1954 if (typenums[0] != -1)
1955 *dbx_lookup_type (typenums, objfile) = type;
1956 break;
1957
1958 case 'b':
1959 {
1960 /* Sun ACC builtin int type */
1961 type = read_sun_builtin_type (pp, typenums, objfile);
1962 if (typenums[0] != -1)
1963 *dbx_lookup_type (typenums, objfile) = type;
1964 }
1965 break;
1966
1967 case 'R': /* Sun ACC builtin float type */
1968 type = read_sun_floating_type (pp, typenums, objfile);
1969 if (typenums[0] != -1)
1970 *dbx_lookup_type (typenums, objfile) = type;
1971 break;
1972
1973 case 'e': /* Enumeration type */
1974 type = dbx_alloc_type (typenums, objfile);
1975 type = read_enum_type (pp, type, objfile);
1976 if (typenums[0] != -1)
1977 *dbx_lookup_type (typenums, objfile) = type;
1978 break;
1979
1980 case 's': /* Struct type */
1981 case 'u': /* Union type */
1982 {
1983 enum type_code type_code = TYPE_CODE_UNDEF;
1984 type = dbx_alloc_type (typenums, objfile);
1985 switch (type_descriptor)
1986 {
1987 case 's':
1988 type_code = TYPE_CODE_STRUCT;
1989 break;
1990 case 'u':
1991 type_code = TYPE_CODE_UNION;
1992 break;
1993 }
1994 type = read_struct_type (pp, type, type_code, objfile);
1995 break;
1996 }
1997
1998 case 'a': /* Array type */
1999 if (**pp != 'r')
2000 return error_type (pp, objfile);
2001 ++*pp;
2002
2003 type = dbx_alloc_type (typenums, objfile);
2004 type = read_array_type (pp, type, objfile);
2005 if (is_string)
2006 TYPE_CODE (type) = TYPE_CODE_STRING;
2007 if (is_vector)
2008 make_vector_type (type);
2009 break;
2010
2011 case 'S': /* Set or bitstring type */
2012 type1 = read_type (pp, objfile);
2013 type = create_set_type ((struct type *) NULL, type1);
2014 if (is_string)
2015 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2016 if (typenums[0] != -1)
2017 *dbx_lookup_type (typenums, objfile) = type;
2018 break;
2019
2020 default:
2021 --*pp; /* Go back to the symbol in error */
2022 /* Particularly important if it was \0! */
2023 return error_type (pp, objfile);
2024 }
2025
2026 if (type == 0)
2027 {
2028 warning (_("GDB internal error, type is NULL in stabsread.c."));
2029 return error_type (pp, objfile);
2030 }
2031
2032 /* Size specified in a type attribute overrides any other size. */
2033 if (type_size != -1)
2034 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2035
2036 return type;
2037 }
2038 \f
2039 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2040 Return the proper type node for a given builtin type number. */
2041
2042 static const struct objfile_data *rs6000_builtin_type_data;
2043
2044 static struct type *
2045 rs6000_builtin_type (int typenum, struct objfile *objfile)
2046 {
2047 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2048
2049 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2050 #define NUMBER_RECOGNIZED 34
2051 struct type *rettype = NULL;
2052
2053 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2054 {
2055 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2056 return objfile_type (objfile)->builtin_error;
2057 }
2058
2059 if (!negative_types)
2060 {
2061 /* This includes an empty slot for type number -0. */
2062 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2063 NUMBER_RECOGNIZED + 1, struct type *);
2064 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2065 }
2066
2067 if (negative_types[-typenum] != NULL)
2068 return negative_types[-typenum];
2069
2070 #if TARGET_CHAR_BIT != 8
2071 #error This code wrong for TARGET_CHAR_BIT not 8
2072 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2073 that if that ever becomes not true, the correct fix will be to
2074 make the size in the struct type to be in bits, not in units of
2075 TARGET_CHAR_BIT. */
2076 #endif
2077
2078 switch (-typenum)
2079 {
2080 case 1:
2081 /* The size of this and all the other types are fixed, defined
2082 by the debugging format. If there is a type called "int" which
2083 is other than 32 bits, then it should use a new negative type
2084 number (or avoid negative type numbers for that case).
2085 See stabs.texinfo. */
2086 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2087 break;
2088 case 2:
2089 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2090 break;
2091 case 3:
2092 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2093 break;
2094 case 4:
2095 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2096 break;
2097 case 5:
2098 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2099 "unsigned char", objfile);
2100 break;
2101 case 6:
2102 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2103 break;
2104 case 7:
2105 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2106 "unsigned short", objfile);
2107 break;
2108 case 8:
2109 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2110 "unsigned int", objfile);
2111 break;
2112 case 9:
2113 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2114 "unsigned", objfile);
2115 case 10:
2116 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2117 "unsigned long", objfile);
2118 break;
2119 case 11:
2120 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2121 break;
2122 case 12:
2123 /* IEEE single precision (32 bit). */
2124 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2125 break;
2126 case 13:
2127 /* IEEE double precision (64 bit). */
2128 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2129 break;
2130 case 14:
2131 /* This is an IEEE double on the RS/6000, and different machines with
2132 different sizes for "long double" should use different negative
2133 type numbers. See stabs.texinfo. */
2134 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2135 break;
2136 case 15:
2137 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2138 break;
2139 case 16:
2140 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2141 "boolean", objfile);
2142 break;
2143 case 17:
2144 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2145 break;
2146 case 18:
2147 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2148 break;
2149 case 19:
2150 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2151 break;
2152 case 20:
2153 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2154 "character", objfile);
2155 break;
2156 case 21:
2157 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2158 "logical*1", objfile);
2159 break;
2160 case 22:
2161 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2162 "logical*2", objfile);
2163 break;
2164 case 23:
2165 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2166 "logical*4", objfile);
2167 break;
2168 case 24:
2169 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2170 "logical", objfile);
2171 break;
2172 case 25:
2173 /* Complex type consisting of two IEEE single precision values. */
2174 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2175 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2176 objfile);
2177 break;
2178 case 26:
2179 /* Complex type consisting of two IEEE double precision values. */
2180 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2181 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2182 objfile);
2183 break;
2184 case 27:
2185 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2186 break;
2187 case 28:
2188 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2189 break;
2190 case 29:
2191 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2192 break;
2193 case 30:
2194 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2195 break;
2196 case 31:
2197 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2198 break;
2199 case 32:
2200 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2201 "unsigned long long", objfile);
2202 break;
2203 case 33:
2204 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2205 "logical*8", objfile);
2206 break;
2207 case 34:
2208 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2209 break;
2210 }
2211 negative_types[-typenum] = rettype;
2212 return rettype;
2213 }
2214 \f
2215 /* This page contains subroutines of read_type. */
2216
2217 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2218
2219 static void
2220 update_method_name_from_physname (char **old_name, char *physname)
2221 {
2222 char *method_name;
2223
2224 method_name = method_name_from_physname (physname);
2225
2226 if (method_name == NULL)
2227 {
2228 complaint (&symfile_complaints,
2229 _("Method has bad physname %s\n"), physname);
2230 return;
2231 }
2232
2233 if (strcmp (*old_name, method_name) != 0)
2234 {
2235 xfree (*old_name);
2236 *old_name = method_name;
2237 }
2238 else
2239 xfree (method_name);
2240 }
2241
2242 /* Read member function stabs info for C++ classes. The form of each member
2243 function data is:
2244
2245 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2246
2247 An example with two member functions is:
2248
2249 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2250
2251 For the case of overloaded operators, the format is op$::*.funcs, where
2252 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2253 name (such as `+=') and `.' marks the end of the operator name.
2254
2255 Returns 1 for success, 0 for failure. */
2256
2257 static int
2258 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2259 struct objfile *objfile)
2260 {
2261 int nfn_fields = 0;
2262 int length = 0;
2263 /* Total number of member functions defined in this class. If the class
2264 defines two `f' functions, and one `g' function, then this will have
2265 the value 3. */
2266 int total_length = 0;
2267 int i;
2268 struct next_fnfield
2269 {
2270 struct next_fnfield *next;
2271 struct fn_field fn_field;
2272 }
2273 *sublist;
2274 struct type *look_ahead_type;
2275 struct next_fnfieldlist *new_fnlist;
2276 struct next_fnfield *new_sublist;
2277 char *main_fn_name;
2278 char *p;
2279
2280 /* Process each list until we find something that is not a member function
2281 or find the end of the functions. */
2282
2283 while (**pp != ';')
2284 {
2285 /* We should be positioned at the start of the function name.
2286 Scan forward to find the first ':' and if it is not the
2287 first of a "::" delimiter, then this is not a member function. */
2288 p = *pp;
2289 while (*p != ':')
2290 {
2291 p++;
2292 }
2293 if (p[1] != ':')
2294 {
2295 break;
2296 }
2297
2298 sublist = NULL;
2299 look_ahead_type = NULL;
2300 length = 0;
2301
2302 new_fnlist = (struct next_fnfieldlist *)
2303 xmalloc (sizeof (struct next_fnfieldlist));
2304 make_cleanup (xfree, new_fnlist);
2305 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2306
2307 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2308 {
2309 /* This is a completely wierd case. In order to stuff in the
2310 names that might contain colons (the usual name delimiter),
2311 Mike Tiemann defined a different name format which is
2312 signalled if the identifier is "op$". In that case, the
2313 format is "op$::XXXX." where XXXX is the name. This is
2314 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2315 /* This lets the user type "break operator+".
2316 We could just put in "+" as the name, but that wouldn't
2317 work for "*". */
2318 static char opname[32] = "op$";
2319 char *o = opname + 3;
2320
2321 /* Skip past '::'. */
2322 *pp = p + 2;
2323
2324 STABS_CONTINUE (pp, objfile);
2325 p = *pp;
2326 while (*p != '.')
2327 {
2328 *o++ = *p++;
2329 }
2330 main_fn_name = savestring (opname, o - opname);
2331 /* Skip past '.' */
2332 *pp = p + 1;
2333 }
2334 else
2335 {
2336 main_fn_name = savestring (*pp, p - *pp);
2337 /* Skip past '::'. */
2338 *pp = p + 2;
2339 }
2340 new_fnlist->fn_fieldlist.name = main_fn_name;
2341
2342 do
2343 {
2344 new_sublist =
2345 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2346 make_cleanup (xfree, new_sublist);
2347 memset (new_sublist, 0, sizeof (struct next_fnfield));
2348
2349 /* Check for and handle cretinous dbx symbol name continuation! */
2350 if (look_ahead_type == NULL)
2351 {
2352 /* Normal case. */
2353 STABS_CONTINUE (pp, objfile);
2354
2355 new_sublist->fn_field.type = read_type (pp, objfile);
2356 if (**pp != ':')
2357 {
2358 /* Invalid symtab info for member function. */
2359 return 0;
2360 }
2361 }
2362 else
2363 {
2364 /* g++ version 1 kludge */
2365 new_sublist->fn_field.type = look_ahead_type;
2366 look_ahead_type = NULL;
2367 }
2368
2369 (*pp)++;
2370 p = *pp;
2371 while (*p != ';')
2372 {
2373 p++;
2374 }
2375
2376 /* If this is just a stub, then we don't have the real name here. */
2377
2378 if (TYPE_STUB (new_sublist->fn_field.type))
2379 {
2380 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2381 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2382 new_sublist->fn_field.is_stub = 1;
2383 }
2384 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2385 *pp = p + 1;
2386
2387 /* Set this member function's visibility fields. */
2388 switch (*(*pp)++)
2389 {
2390 case VISIBILITY_PRIVATE:
2391 new_sublist->fn_field.is_private = 1;
2392 break;
2393 case VISIBILITY_PROTECTED:
2394 new_sublist->fn_field.is_protected = 1;
2395 break;
2396 }
2397
2398 STABS_CONTINUE (pp, objfile);
2399 switch (**pp)
2400 {
2401 case 'A': /* Normal functions. */
2402 new_sublist->fn_field.is_const = 0;
2403 new_sublist->fn_field.is_volatile = 0;
2404 (*pp)++;
2405 break;
2406 case 'B': /* `const' member functions. */
2407 new_sublist->fn_field.is_const = 1;
2408 new_sublist->fn_field.is_volatile = 0;
2409 (*pp)++;
2410 break;
2411 case 'C': /* `volatile' member function. */
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 1;
2414 (*pp)++;
2415 break;
2416 case 'D': /* `const volatile' member function. */
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 1;
2419 (*pp)++;
2420 break;
2421 case '*': /* File compiled with g++ version 1 -- no info */
2422 case '?':
2423 case '.':
2424 break;
2425 default:
2426 complaint (&symfile_complaints,
2427 _("const/volatile indicator missing, got '%c'"), **pp);
2428 break;
2429 }
2430
2431 switch (*(*pp)++)
2432 {
2433 case '*':
2434 {
2435 int nbits;
2436 /* virtual member function, followed by index.
2437 The sign bit is set to distinguish pointers-to-methods
2438 from virtual function indicies. Since the array is
2439 in words, the quantity must be shifted left by 1
2440 on 16 bit machine, and by 2 on 32 bit machine, forcing
2441 the sign bit out, and usable as a valid index into
2442 the array. Remove the sign bit here. */
2443 new_sublist->fn_field.voffset =
2444 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2445 if (nbits != 0)
2446 return 0;
2447
2448 STABS_CONTINUE (pp, objfile);
2449 if (**pp == ';' || **pp == '\0')
2450 {
2451 /* Must be g++ version 1. */
2452 new_sublist->fn_field.fcontext = 0;
2453 }
2454 else
2455 {
2456 /* Figure out from whence this virtual function came.
2457 It may belong to virtual function table of
2458 one of its baseclasses. */
2459 look_ahead_type = read_type (pp, objfile);
2460 if (**pp == ':')
2461 {
2462 /* g++ version 1 overloaded methods. */
2463 }
2464 else
2465 {
2466 new_sublist->fn_field.fcontext = look_ahead_type;
2467 if (**pp != ';')
2468 {
2469 return 0;
2470 }
2471 else
2472 {
2473 ++*pp;
2474 }
2475 look_ahead_type = NULL;
2476 }
2477 }
2478 break;
2479 }
2480 case '?':
2481 /* static member function. */
2482 {
2483 int slen = strlen (main_fn_name);
2484
2485 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2486
2487 /* For static member functions, we can't tell if they
2488 are stubbed, as they are put out as functions, and not as
2489 methods.
2490 GCC v2 emits the fully mangled name if
2491 dbxout.c:flag_minimal_debug is not set, so we have to
2492 detect a fully mangled physname here and set is_stub
2493 accordingly. Fully mangled physnames in v2 start with
2494 the member function name, followed by two underscores.
2495 GCC v3 currently always emits stubbed member functions,
2496 but with fully mangled physnames, which start with _Z. */
2497 if (!(strncmp (new_sublist->fn_field.physname,
2498 main_fn_name, slen) == 0
2499 && new_sublist->fn_field.physname[slen] == '_'
2500 && new_sublist->fn_field.physname[slen + 1] == '_'))
2501 {
2502 new_sublist->fn_field.is_stub = 1;
2503 }
2504 break;
2505 }
2506
2507 default:
2508 /* error */
2509 complaint (&symfile_complaints,
2510 _("member function type missing, got '%c'"), (*pp)[-1]);
2511 /* Fall through into normal member function. */
2512
2513 case '.':
2514 /* normal member function. */
2515 new_sublist->fn_field.voffset = 0;
2516 new_sublist->fn_field.fcontext = 0;
2517 break;
2518 }
2519
2520 new_sublist->next = sublist;
2521 sublist = new_sublist;
2522 length++;
2523 STABS_CONTINUE (pp, objfile);
2524 }
2525 while (**pp != ';' && **pp != '\0');
2526
2527 (*pp)++;
2528 STABS_CONTINUE (pp, objfile);
2529
2530 /* Skip GCC 3.X member functions which are duplicates of the callable
2531 constructor/destructor. */
2532 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2533 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2534 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2535 {
2536 xfree (main_fn_name);
2537 }
2538 else
2539 {
2540 int has_stub = 0;
2541 int has_destructor = 0, has_other = 0;
2542 int is_v3 = 0;
2543 struct next_fnfield *tmp_sublist;
2544
2545 /* Various versions of GCC emit various mostly-useless
2546 strings in the name field for special member functions.
2547
2548 For stub methods, we need to defer correcting the name
2549 until we are ready to unstub the method, because the current
2550 name string is used by gdb_mangle_name. The only stub methods
2551 of concern here are GNU v2 operators; other methods have their
2552 names correct (see caveat below).
2553
2554 For non-stub methods, in GNU v3, we have a complete physname.
2555 Therefore we can safely correct the name now. This primarily
2556 affects constructors and destructors, whose name will be
2557 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2558 operators will also have incorrect names; for instance,
2559 "operator int" will be named "operator i" (i.e. the type is
2560 mangled).
2561
2562 For non-stub methods in GNU v2, we have no easy way to
2563 know if we have a complete physname or not. For most
2564 methods the result depends on the platform (if CPLUS_MARKER
2565 can be `$' or `.', it will use minimal debug information, or
2566 otherwise the full physname will be included).
2567
2568 Rather than dealing with this, we take a different approach.
2569 For v3 mangled names, we can use the full physname; for v2,
2570 we use cplus_demangle_opname (which is actually v2 specific),
2571 because the only interesting names are all operators - once again
2572 barring the caveat below. Skip this process if any method in the
2573 group is a stub, to prevent our fouling up the workings of
2574 gdb_mangle_name.
2575
2576 The caveat: GCC 2.95.x (and earlier?) put constructors and
2577 destructors in the same method group. We need to split this
2578 into two groups, because they should have different names.
2579 So for each method group we check whether it contains both
2580 routines whose physname appears to be a destructor (the physnames
2581 for and destructors are always provided, due to quirks in v2
2582 mangling) and routines whose physname does not appear to be a
2583 destructor. If so then we break up the list into two halves.
2584 Even if the constructors and destructors aren't in the same group
2585 the destructor will still lack the leading tilde, so that also
2586 needs to be fixed.
2587
2588 So, to summarize what we expect and handle here:
2589
2590 Given Given Real Real Action
2591 method name physname physname method name
2592
2593 __opi [none] __opi__3Foo operator int opname
2594 [now or later]
2595 Foo _._3Foo _._3Foo ~Foo separate and
2596 rename
2597 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2598 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2599 */
2600
2601 tmp_sublist = sublist;
2602 while (tmp_sublist != NULL)
2603 {
2604 if (tmp_sublist->fn_field.is_stub)
2605 has_stub = 1;
2606 if (tmp_sublist->fn_field.physname[0] == '_'
2607 && tmp_sublist->fn_field.physname[1] == 'Z')
2608 is_v3 = 1;
2609
2610 if (is_destructor_name (tmp_sublist->fn_field.physname))
2611 has_destructor++;
2612 else
2613 has_other++;
2614
2615 tmp_sublist = tmp_sublist->next;
2616 }
2617
2618 if (has_destructor && has_other)
2619 {
2620 struct next_fnfieldlist *destr_fnlist;
2621 struct next_fnfield *last_sublist;
2622
2623 /* Create a new fn_fieldlist for the destructors. */
2624
2625 destr_fnlist = (struct next_fnfieldlist *)
2626 xmalloc (sizeof (struct next_fnfieldlist));
2627 make_cleanup (xfree, destr_fnlist);
2628 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2629 destr_fnlist->fn_fieldlist.name
2630 = obconcat (&objfile->objfile_obstack, "~",
2631 new_fnlist->fn_fieldlist.name, (char *) NULL);
2632
2633 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2634 obstack_alloc (&objfile->objfile_obstack,
2635 sizeof (struct fn_field) * has_destructor);
2636 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2637 sizeof (struct fn_field) * has_destructor);
2638 tmp_sublist = sublist;
2639 last_sublist = NULL;
2640 i = 0;
2641 while (tmp_sublist != NULL)
2642 {
2643 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2644 {
2645 tmp_sublist = tmp_sublist->next;
2646 continue;
2647 }
2648
2649 destr_fnlist->fn_fieldlist.fn_fields[i++]
2650 = tmp_sublist->fn_field;
2651 if (last_sublist)
2652 last_sublist->next = tmp_sublist->next;
2653 else
2654 sublist = tmp_sublist->next;
2655 last_sublist = tmp_sublist;
2656 tmp_sublist = tmp_sublist->next;
2657 }
2658
2659 destr_fnlist->fn_fieldlist.length = has_destructor;
2660 destr_fnlist->next = fip->fnlist;
2661 fip->fnlist = destr_fnlist;
2662 nfn_fields++;
2663 total_length += has_destructor;
2664 length -= has_destructor;
2665 }
2666 else if (is_v3)
2667 {
2668 /* v3 mangling prevents the use of abbreviated physnames,
2669 so we can do this here. There are stubbed methods in v3
2670 only:
2671 - in -gstabs instead of -gstabs+
2672 - or for static methods, which are output as a function type
2673 instead of a method type. */
2674
2675 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2676 sublist->fn_field.physname);
2677 }
2678 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2679 {
2680 new_fnlist->fn_fieldlist.name =
2681 concat ("~", main_fn_name, (char *)NULL);
2682 xfree (main_fn_name);
2683 }
2684 else if (!has_stub)
2685 {
2686 char dem_opname[256];
2687 int ret;
2688
2689 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2690 dem_opname, DMGL_ANSI);
2691 if (!ret)
2692 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2693 dem_opname, 0);
2694 if (ret)
2695 new_fnlist->fn_fieldlist.name
2696 = obsavestring (dem_opname, strlen (dem_opname),
2697 &objfile->objfile_obstack);
2698 }
2699
2700 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2701 obstack_alloc (&objfile->objfile_obstack,
2702 sizeof (struct fn_field) * length);
2703 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2704 sizeof (struct fn_field) * length);
2705 for (i = length; (i--, sublist); sublist = sublist->next)
2706 {
2707 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2708 }
2709
2710 new_fnlist->fn_fieldlist.length = length;
2711 new_fnlist->next = fip->fnlist;
2712 fip->fnlist = new_fnlist;
2713 nfn_fields++;
2714 total_length += length;
2715 }
2716 }
2717
2718 if (nfn_fields)
2719 {
2720 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2721 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2722 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2723 memset (TYPE_FN_FIELDLISTS (type), 0,
2724 sizeof (struct fn_fieldlist) * nfn_fields);
2725 TYPE_NFN_FIELDS (type) = nfn_fields;
2726 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2727 }
2728
2729 return 1;
2730 }
2731
2732 /* Special GNU C++ name.
2733
2734 Returns 1 for success, 0 for failure. "failure" means that we can't
2735 keep parsing and it's time for error_type(). */
2736
2737 static int
2738 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2739 struct objfile *objfile)
2740 {
2741 char *p;
2742 char *name;
2743 char cpp_abbrev;
2744 struct type *context;
2745
2746 p = *pp;
2747 if (*++p == 'v')
2748 {
2749 name = NULL;
2750 cpp_abbrev = *++p;
2751
2752 *pp = p + 1;
2753
2754 /* At this point, *pp points to something like "22:23=*22...",
2755 where the type number before the ':' is the "context" and
2756 everything after is a regular type definition. Lookup the
2757 type, find it's name, and construct the field name. */
2758
2759 context = read_type (pp, objfile);
2760
2761 switch (cpp_abbrev)
2762 {
2763 case 'f': /* $vf -- a virtual function table pointer */
2764 name = type_name_no_tag (context);
2765 if (name == NULL)
2766 {
2767 name = "";
2768 }
2769 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2770 vptr_name, name, (char *) NULL);
2771 break;
2772
2773 case 'b': /* $vb -- a virtual bsomethingorother */
2774 name = type_name_no_tag (context);
2775 if (name == NULL)
2776 {
2777 complaint (&symfile_complaints,
2778 _("C++ abbreviated type name unknown at symtab pos %d"),
2779 symnum);
2780 name = "FOO";
2781 }
2782 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2783 name, (char *) NULL);
2784 break;
2785
2786 default:
2787 invalid_cpp_abbrev_complaint (*pp);
2788 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2789 "INVALID_CPLUSPLUS_ABBREV",
2790 (char *) NULL);
2791 break;
2792 }
2793
2794 /* At this point, *pp points to the ':'. Skip it and read the
2795 field type. */
2796
2797 p = ++(*pp);
2798 if (p[-1] != ':')
2799 {
2800 invalid_cpp_abbrev_complaint (*pp);
2801 return 0;
2802 }
2803 fip->list->field.type = read_type (pp, objfile);
2804 if (**pp == ',')
2805 (*pp)++; /* Skip the comma. */
2806 else
2807 return 0;
2808
2809 {
2810 int nbits;
2811
2812 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2813 0);
2814 if (nbits != 0)
2815 return 0;
2816 }
2817 /* This field is unpacked. */
2818 FIELD_BITSIZE (fip->list->field) = 0;
2819 fip->list->visibility = VISIBILITY_PRIVATE;
2820 }
2821 else
2822 {
2823 invalid_cpp_abbrev_complaint (*pp);
2824 /* We have no idea what syntax an unrecognized abbrev would have, so
2825 better return 0. If we returned 1, we would need to at least advance
2826 *pp to avoid an infinite loop. */
2827 return 0;
2828 }
2829 return 1;
2830 }
2831
2832 static void
2833 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2834 struct type *type, struct objfile *objfile)
2835 {
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2837
2838 fip->list->field.name =
2839 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2840 *pp = p + 1;
2841
2842 /* This means we have a visibility for a field coming. */
2843 if (**pp == '/')
2844 {
2845 (*pp)++;
2846 fip->list->visibility = *(*pp)++;
2847 }
2848 else
2849 {
2850 /* normal dbx-style format, no explicit visibility */
2851 fip->list->visibility = VISIBILITY_PUBLIC;
2852 }
2853
2854 fip->list->field.type = read_type (pp, objfile);
2855 if (**pp == ':')
2856 {
2857 p = ++(*pp);
2858 #if 0
2859 /* Possible future hook for nested types. */
2860 if (**pp == '!')
2861 {
2862 fip->list->field.bitpos = (long) -2; /* nested type */
2863 p = ++(*pp);
2864 }
2865 else
2866 ...;
2867 #endif
2868 while (*p != ';')
2869 {
2870 p++;
2871 }
2872 /* Static class member. */
2873 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2874 *pp = p + 1;
2875 return;
2876 }
2877 else if (**pp != ',')
2878 {
2879 /* Bad structure-type format. */
2880 stabs_general_complaint ("bad structure-type format");
2881 return;
2882 }
2883
2884 (*pp)++; /* Skip the comma. */
2885
2886 {
2887 int nbits;
2888
2889 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2890 if (nbits != 0)
2891 {
2892 stabs_general_complaint ("bad structure-type format");
2893 return;
2894 }
2895 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2896 if (nbits != 0)
2897 {
2898 stabs_general_complaint ("bad structure-type format");
2899 return;
2900 }
2901 }
2902
2903 if (FIELD_BITPOS (fip->list->field) == 0
2904 && FIELD_BITSIZE (fip->list->field) == 0)
2905 {
2906 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2907 it is a field which has been optimized out. The correct stab for
2908 this case is to use VISIBILITY_IGNORE, but that is a recent
2909 invention. (2) It is a 0-size array. For example
2910 union { int num; char str[0]; } foo. Printing _("<no value>" for
2911 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2912 will continue to work, and a 0-size array as a whole doesn't
2913 have any contents to print.
2914
2915 I suspect this probably could also happen with gcc -gstabs (not
2916 -gstabs+) for static fields, and perhaps other C++ extensions.
2917 Hopefully few people use -gstabs with gdb, since it is intended
2918 for dbx compatibility. */
2919
2920 /* Ignore this field. */
2921 fip->list->visibility = VISIBILITY_IGNORE;
2922 }
2923 else
2924 {
2925 /* Detect an unpacked field and mark it as such.
2926 dbx gives a bit size for all fields.
2927 Note that forward refs cannot be packed,
2928 and treat enums as if they had the width of ints. */
2929
2930 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2931
2932 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2933 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2934 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2935 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2936 {
2937 FIELD_BITSIZE (fip->list->field) = 0;
2938 }
2939 if ((FIELD_BITSIZE (fip->list->field)
2940 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2941 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2942 && FIELD_BITSIZE (fip->list->field)
2943 == gdbarch_int_bit (gdbarch))
2944 )
2945 &&
2946 FIELD_BITPOS (fip->list->field) % 8 == 0)
2947 {
2948 FIELD_BITSIZE (fip->list->field) = 0;
2949 }
2950 }
2951 }
2952
2953
2954 /* Read struct or class data fields. They have the form:
2955
2956 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2957
2958 At the end, we see a semicolon instead of a field.
2959
2960 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2961 a static field.
2962
2963 The optional VISIBILITY is one of:
2964
2965 '/0' (VISIBILITY_PRIVATE)
2966 '/1' (VISIBILITY_PROTECTED)
2967 '/2' (VISIBILITY_PUBLIC)
2968 '/9' (VISIBILITY_IGNORE)
2969
2970 or nothing, for C style fields with public visibility.
2971
2972 Returns 1 for success, 0 for failure. */
2973
2974 static int
2975 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2976 struct objfile *objfile)
2977 {
2978 char *p;
2979 struct nextfield *new;
2980
2981 /* We better set p right now, in case there are no fields at all... */
2982
2983 p = *pp;
2984
2985 /* Read each data member type until we find the terminating ';' at the end of
2986 the data member list, or break for some other reason such as finding the
2987 start of the member function list. */
2988 /* Stab string for structure/union does not end with two ';' in
2989 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2990
2991 while (**pp != ';' && **pp != '\0')
2992 {
2993 STABS_CONTINUE (pp, objfile);
2994 /* Get space to record the next field's data. */
2995 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2996 make_cleanup (xfree, new);
2997 memset (new, 0, sizeof (struct nextfield));
2998 new->next = fip->list;
2999 fip->list = new;
3000
3001 /* Get the field name. */
3002 p = *pp;
3003
3004 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3005 unless the CPLUS_MARKER is followed by an underscore, in
3006 which case it is just the name of an anonymous type, which we
3007 should handle like any other type name. */
3008
3009 if (is_cplus_marker (p[0]) && p[1] != '_')
3010 {
3011 if (!read_cpp_abbrev (fip, pp, type, objfile))
3012 return 0;
3013 continue;
3014 }
3015
3016 /* Look for the ':' that separates the field name from the field
3017 values. Data members are delimited by a single ':', while member
3018 functions are delimited by a pair of ':'s. When we hit the member
3019 functions (if any), terminate scan loop and return. */
3020
3021 while (*p != ':' && *p != '\0')
3022 {
3023 p++;
3024 }
3025 if (*p == '\0')
3026 return 0;
3027
3028 /* Check to see if we have hit the member functions yet. */
3029 if (p[1] == ':')
3030 {
3031 break;
3032 }
3033 read_one_struct_field (fip, pp, p, type, objfile);
3034 }
3035 if (p[0] == ':' && p[1] == ':')
3036 {
3037 /* (the deleted) chill the list of fields: the last entry (at
3038 the head) is a partially constructed entry which we now
3039 scrub. */
3040 fip->list = fip->list->next;
3041 }
3042 return 1;
3043 }
3044 /* *INDENT-OFF* */
3045 /* The stabs for C++ derived classes contain baseclass information which
3046 is marked by a '!' character after the total size. This function is
3047 called when we encounter the baseclass marker, and slurps up all the
3048 baseclass information.
3049
3050 Immediately following the '!' marker is the number of base classes that
3051 the class is derived from, followed by information for each base class.
3052 For each base class, there are two visibility specifiers, a bit offset
3053 to the base class information within the derived class, a reference to
3054 the type for the base class, and a terminating semicolon.
3055
3056 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3057 ^^ ^ ^ ^ ^ ^ ^
3058 Baseclass information marker __________________|| | | | | | |
3059 Number of baseclasses __________________________| | | | | | |
3060 Visibility specifiers (2) ________________________| | | | | |
3061 Offset in bits from start of class _________________| | | | |
3062 Type number for base class ___________________________| | | |
3063 Visibility specifiers (2) _______________________________| | |
3064 Offset in bits from start of class ________________________| |
3065 Type number of base class ____________________________________|
3066
3067 Return 1 for success, 0 for (error-type-inducing) failure. */
3068 /* *INDENT-ON* */
3069
3070
3071
3072 static int
3073 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3074 struct objfile *objfile)
3075 {
3076 int i;
3077 struct nextfield *new;
3078
3079 if (**pp != '!')
3080 {
3081 return 1;
3082 }
3083 else
3084 {
3085 /* Skip the '!' baseclass information marker. */
3086 (*pp)++;
3087 }
3088
3089 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3090 {
3091 int nbits;
3092
3093 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3094 if (nbits != 0)
3095 return 0;
3096 }
3097
3098 #if 0
3099 /* Some stupid compilers have trouble with the following, so break
3100 it up into simpler expressions. */
3101 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3102 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3103 #else
3104 {
3105 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3106 char *pointer;
3107
3108 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3109 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3110 }
3111 #endif /* 0 */
3112
3113 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3114
3115 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3116 {
3117 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3118 make_cleanup (xfree, new);
3119 memset (new, 0, sizeof (struct nextfield));
3120 new->next = fip->list;
3121 fip->list = new;
3122 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3123
3124 STABS_CONTINUE (pp, objfile);
3125 switch (**pp)
3126 {
3127 case '0':
3128 /* Nothing to do. */
3129 break;
3130 case '1':
3131 SET_TYPE_FIELD_VIRTUAL (type, i);
3132 break;
3133 default:
3134 /* Unknown character. Complain and treat it as non-virtual. */
3135 {
3136 complaint (&symfile_complaints,
3137 _("Unknown virtual character `%c' for baseclass"), **pp);
3138 }
3139 }
3140 ++(*pp);
3141
3142 new->visibility = *(*pp)++;
3143 switch (new->visibility)
3144 {
3145 case VISIBILITY_PRIVATE:
3146 case VISIBILITY_PROTECTED:
3147 case VISIBILITY_PUBLIC:
3148 break;
3149 default:
3150 /* Bad visibility format. Complain and treat it as
3151 public. */
3152 {
3153 complaint (&symfile_complaints,
3154 _("Unknown visibility `%c' for baseclass"),
3155 new->visibility);
3156 new->visibility = VISIBILITY_PUBLIC;
3157 }
3158 }
3159
3160 {
3161 int nbits;
3162
3163 /* The remaining value is the bit offset of the portion of the object
3164 corresponding to this baseclass. Always zero in the absence of
3165 multiple inheritance. */
3166
3167 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3168 if (nbits != 0)
3169 return 0;
3170 }
3171
3172 /* The last piece of baseclass information is the type of the
3173 base class. Read it, and remember it's type name as this
3174 field's name. */
3175
3176 new->field.type = read_type (pp, objfile);
3177 new->field.name = type_name_no_tag (new->field.type);
3178
3179 /* skip trailing ';' and bump count of number of fields seen */
3180 if (**pp == ';')
3181 (*pp)++;
3182 else
3183 return 0;
3184 }
3185 return 1;
3186 }
3187
3188 /* The tail end of stabs for C++ classes that contain a virtual function
3189 pointer contains a tilde, a %, and a type number.
3190 The type number refers to the base class (possibly this class itself) which
3191 contains the vtable pointer for the current class.
3192
3193 This function is called when we have parsed all the method declarations,
3194 so we can look for the vptr base class info. */
3195
3196 static int
3197 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3198 struct objfile *objfile)
3199 {
3200 char *p;
3201
3202 STABS_CONTINUE (pp, objfile);
3203
3204 /* If we are positioned at a ';', then skip it. */
3205 if (**pp == ';')
3206 {
3207 (*pp)++;
3208 }
3209
3210 if (**pp == '~')
3211 {
3212 (*pp)++;
3213
3214 if (**pp == '=' || **pp == '+' || **pp == '-')
3215 {
3216 /* Obsolete flags that used to indicate the presence
3217 of constructors and/or destructors. */
3218 (*pp)++;
3219 }
3220
3221 /* Read either a '%' or the final ';'. */
3222 if (*(*pp)++ == '%')
3223 {
3224 /* The next number is the type number of the base class
3225 (possibly our own class) which supplies the vtable for
3226 this class. Parse it out, and search that class to find
3227 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3228 and TYPE_VPTR_FIELDNO. */
3229
3230 struct type *t;
3231 int i;
3232
3233 t = read_type (pp, objfile);
3234 p = (*pp)++;
3235 while (*p != '\0' && *p != ';')
3236 {
3237 p++;
3238 }
3239 if (*p == '\0')
3240 {
3241 /* Premature end of symbol. */
3242 return 0;
3243 }
3244
3245 TYPE_VPTR_BASETYPE (type) = t;
3246 if (type == t) /* Our own class provides vtbl ptr */
3247 {
3248 for (i = TYPE_NFIELDS (t) - 1;
3249 i >= TYPE_N_BASECLASSES (t);
3250 --i)
3251 {
3252 char *name = TYPE_FIELD_NAME (t, i);
3253
3254 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3255 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3256 {
3257 TYPE_VPTR_FIELDNO (type) = i;
3258 goto gotit;
3259 }
3260 }
3261 /* Virtual function table field not found. */
3262 complaint (&symfile_complaints,
3263 _("virtual function table pointer not found when defining class `%s'"),
3264 TYPE_NAME (type));
3265 return 0;
3266 }
3267 else
3268 {
3269 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3270 }
3271
3272 gotit:
3273 *pp = p + 1;
3274 }
3275 }
3276 return 1;
3277 }
3278
3279 static int
3280 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3281 {
3282 int n;
3283
3284 for (n = TYPE_NFN_FIELDS (type);
3285 fip->fnlist != NULL;
3286 fip->fnlist = fip->fnlist->next)
3287 {
3288 --n; /* Circumvent Sun3 compiler bug */
3289 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3290 }
3291 return 1;
3292 }
3293
3294 /* Create the vector of fields, and record how big it is.
3295 We need this info to record proper virtual function table information
3296 for this class's virtual functions. */
3297
3298 static int
3299 attach_fields_to_type (struct field_info *fip, struct type *type,
3300 struct objfile *objfile)
3301 {
3302 int nfields = 0;
3303 int non_public_fields = 0;
3304 struct nextfield *scan;
3305
3306 /* Count up the number of fields that we have, as well as taking note of
3307 whether or not there are any non-public fields, which requires us to
3308 allocate and build the private_field_bits and protected_field_bits
3309 bitfields. */
3310
3311 for (scan = fip->list; scan != NULL; scan = scan->next)
3312 {
3313 nfields++;
3314 if (scan->visibility != VISIBILITY_PUBLIC)
3315 {
3316 non_public_fields++;
3317 }
3318 }
3319
3320 /* Now we know how many fields there are, and whether or not there are any
3321 non-public fields. Record the field count, allocate space for the
3322 array of fields, and create blank visibility bitfields if necessary. */
3323
3324 TYPE_NFIELDS (type) = nfields;
3325 TYPE_FIELDS (type) = (struct field *)
3326 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3327 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3328
3329 if (non_public_fields)
3330 {
3331 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3332
3333 TYPE_FIELD_PRIVATE_BITS (type) =
3334 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3335 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3336
3337 TYPE_FIELD_PROTECTED_BITS (type) =
3338 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3339 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3340
3341 TYPE_FIELD_IGNORE_BITS (type) =
3342 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3343 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3344 }
3345
3346 /* Copy the saved-up fields into the field vector. Start from the head
3347 of the list, adding to the tail of the field array, so that they end
3348 up in the same order in the array in which they were added to the list. */
3349
3350 while (nfields-- > 0)
3351 {
3352 TYPE_FIELD (type, nfields) = fip->list->field;
3353 switch (fip->list->visibility)
3354 {
3355 case VISIBILITY_PRIVATE:
3356 SET_TYPE_FIELD_PRIVATE (type, nfields);
3357 break;
3358
3359 case VISIBILITY_PROTECTED:
3360 SET_TYPE_FIELD_PROTECTED (type, nfields);
3361 break;
3362
3363 case VISIBILITY_IGNORE:
3364 SET_TYPE_FIELD_IGNORE (type, nfields);
3365 break;
3366
3367 case VISIBILITY_PUBLIC:
3368 break;
3369
3370 default:
3371 /* Unknown visibility. Complain and treat it as public. */
3372 {
3373 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3374 fip->list->visibility);
3375 }
3376 break;
3377 }
3378 fip->list = fip->list->next;
3379 }
3380 return 1;
3381 }
3382
3383
3384 /* Complain that the compiler has emitted more than one definition for the
3385 structure type TYPE. */
3386 static void
3387 complain_about_struct_wipeout (struct type *type)
3388 {
3389 char *name = "";
3390 char *kind = "";
3391
3392 if (TYPE_TAG_NAME (type))
3393 {
3394 name = TYPE_TAG_NAME (type);
3395 switch (TYPE_CODE (type))
3396 {
3397 case TYPE_CODE_STRUCT: kind = "struct "; break;
3398 case TYPE_CODE_UNION: kind = "union "; break;
3399 case TYPE_CODE_ENUM: kind = "enum "; break;
3400 default: kind = "";
3401 }
3402 }
3403 else if (TYPE_NAME (type))
3404 {
3405 name = TYPE_NAME (type);
3406 kind = "";
3407 }
3408 else
3409 {
3410 name = "<unknown>";
3411 kind = "";
3412 }
3413
3414 complaint (&symfile_complaints,
3415 _("struct/union type gets multiply defined: %s%s"), kind, name);
3416 }
3417
3418 /* Set the length for all variants of a same main_type, which are
3419 connected in the closed chain.
3420
3421 This is something that needs to be done when a type is defined *after*
3422 some cross references to this type have already been read. Consider
3423 for instance the following scenario where we have the following two
3424 stabs entries:
3425
3426 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3427 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3428
3429 A stubbed version of type dummy is created while processing the first
3430 stabs entry. The length of that type is initially set to zero, since
3431 it is unknown at this point. Also, a "constant" variation of type
3432 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3433 the stabs line).
3434
3435 The second stabs entry allows us to replace the stubbed definition
3436 with the real definition. However, we still need to adjust the length
3437 of the "constant" variation of that type, as its length was left
3438 untouched during the main type replacement... */
3439
3440 static void
3441 set_length_in_type_chain (struct type *type)
3442 {
3443 struct type *ntype = TYPE_CHAIN (type);
3444
3445 while (ntype != type)
3446 {
3447 if (TYPE_LENGTH(ntype) == 0)
3448 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3449 else
3450 complain_about_struct_wipeout (ntype);
3451 ntype = TYPE_CHAIN (ntype);
3452 }
3453 }
3454
3455 /* Read the description of a structure (or union type) and return an object
3456 describing the type.
3457
3458 PP points to a character pointer that points to the next unconsumed token
3459 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3460 *PP will point to "4a:1,0,32;;".
3461
3462 TYPE points to an incomplete type that needs to be filled in.
3463
3464 OBJFILE points to the current objfile from which the stabs information is
3465 being read. (Note that it is redundant in that TYPE also contains a pointer
3466 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3467 */
3468
3469 static struct type *
3470 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3471 struct objfile *objfile)
3472 {
3473 struct cleanup *back_to;
3474 struct field_info fi;
3475
3476 fi.list = NULL;
3477 fi.fnlist = NULL;
3478
3479 /* When describing struct/union/class types in stabs, G++ always drops
3480 all qualifications from the name. So if you've got:
3481 struct A { ... struct B { ... }; ... };
3482 then G++ will emit stabs for `struct A::B' that call it simply
3483 `struct B'. Obviously, if you've got a real top-level definition for
3484 `struct B', or other nested definitions, this is going to cause
3485 problems.
3486
3487 Obviously, GDB can't fix this by itself, but it can at least avoid
3488 scribbling on existing structure type objects when new definitions
3489 appear. */
3490 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3491 || TYPE_STUB (type)))
3492 {
3493 complain_about_struct_wipeout (type);
3494
3495 /* It's probably best to return the type unchanged. */
3496 return type;
3497 }
3498
3499 back_to = make_cleanup (null_cleanup, 0);
3500
3501 INIT_CPLUS_SPECIFIC (type);
3502 TYPE_CODE (type) = type_code;
3503 TYPE_STUB (type) = 0;
3504
3505 /* First comes the total size in bytes. */
3506
3507 {
3508 int nbits;
3509
3510 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3511 if (nbits != 0)
3512 return error_type (pp, objfile);
3513 set_length_in_type_chain (type);
3514 }
3515
3516 /* Now read the baseclasses, if any, read the regular C struct or C++
3517 class member fields, attach the fields to the type, read the C++
3518 member functions, attach them to the type, and then read any tilde
3519 field (baseclass specifier for the class holding the main vtable). */
3520
3521 if (!read_baseclasses (&fi, pp, type, objfile)
3522 || !read_struct_fields (&fi, pp, type, objfile)
3523 || !attach_fields_to_type (&fi, type, objfile)
3524 || !read_member_functions (&fi, pp, type, objfile)
3525 || !attach_fn_fields_to_type (&fi, type)
3526 || !read_tilde_fields (&fi, pp, type, objfile))
3527 {
3528 type = error_type (pp, objfile);
3529 }
3530
3531 do_cleanups (back_to);
3532 return (type);
3533 }
3534
3535 /* Read a definition of an array type,
3536 and create and return a suitable type object.
3537 Also creates a range type which represents the bounds of that
3538 array. */
3539
3540 static struct type *
3541 read_array_type (char **pp, struct type *type,
3542 struct objfile *objfile)
3543 {
3544 struct type *index_type, *element_type, *range_type;
3545 int lower, upper;
3546 int adjustable = 0;
3547 int nbits;
3548
3549 /* Format of an array type:
3550 "ar<index type>;lower;upper;<array_contents_type>".
3551 OS9000: "arlower,upper;<array_contents_type>".
3552
3553 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3554 for these, produce a type like float[][]. */
3555
3556 {
3557 index_type = read_type (pp, objfile);
3558 if (**pp != ';')
3559 /* Improper format of array type decl. */
3560 return error_type (pp, objfile);
3561 ++*pp;
3562 }
3563
3564 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3565 {
3566 (*pp)++;
3567 adjustable = 1;
3568 }
3569 lower = read_huge_number (pp, ';', &nbits, 0);
3570
3571 if (nbits != 0)
3572 return error_type (pp, objfile);
3573
3574 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3575 {
3576 (*pp)++;
3577 adjustable = 1;
3578 }
3579 upper = read_huge_number (pp, ';', &nbits, 0);
3580 if (nbits != 0)
3581 return error_type (pp, objfile);
3582
3583 element_type = read_type (pp, objfile);
3584
3585 if (adjustable)
3586 {
3587 lower = 0;
3588 upper = -1;
3589 }
3590
3591 range_type =
3592 create_range_type ((struct type *) NULL, index_type, lower, upper);
3593 type = create_array_type (type, element_type, range_type);
3594
3595 return type;
3596 }
3597
3598
3599 /* Read a definition of an enumeration type,
3600 and create and return a suitable type object.
3601 Also defines the symbols that represent the values of the type. */
3602
3603 static struct type *
3604 read_enum_type (char **pp, struct type *type,
3605 struct objfile *objfile)
3606 {
3607 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3608 char *p;
3609 char *name;
3610 long n;
3611 struct symbol *sym;
3612 int nsyms = 0;
3613 struct pending **symlist;
3614 struct pending *osyms, *syms;
3615 int o_nsyms;
3616 int nbits;
3617 int unsigned_enum = 1;
3618
3619 #if 0
3620 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3621 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3622 to do? For now, force all enum values to file scope. */
3623 if (within_function)
3624 symlist = &local_symbols;
3625 else
3626 #endif
3627 symlist = &file_symbols;
3628 osyms = *symlist;
3629 o_nsyms = osyms ? osyms->nsyms : 0;
3630
3631 /* The aix4 compiler emits an extra field before the enum members;
3632 my guess is it's a type of some sort. Just ignore it. */
3633 if (**pp == '-')
3634 {
3635 /* Skip over the type. */
3636 while (**pp != ':')
3637 (*pp)++;
3638
3639 /* Skip over the colon. */
3640 (*pp)++;
3641 }
3642
3643 /* Read the value-names and their values.
3644 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3645 A semicolon or comma instead of a NAME means the end. */
3646 while (**pp && **pp != ';' && **pp != ',')
3647 {
3648 STABS_CONTINUE (pp, objfile);
3649 p = *pp;
3650 while (*p != ':')
3651 p++;
3652 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3653 *pp = p + 1;
3654 n = read_huge_number (pp, ',', &nbits, 0);
3655 if (nbits != 0)
3656 return error_type (pp, objfile);
3657
3658 sym = (struct symbol *)
3659 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3660 memset (sym, 0, sizeof (struct symbol));
3661 SYMBOL_SET_LINKAGE_NAME (sym, name);
3662 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3663 SYMBOL_CLASS (sym) = LOC_CONST;
3664 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3665 SYMBOL_VALUE (sym) = n;
3666 if (n < 0)
3667 unsigned_enum = 0;
3668 add_symbol_to_list (sym, symlist);
3669 nsyms++;
3670 }
3671
3672 if (**pp == ';')
3673 (*pp)++; /* Skip the semicolon. */
3674
3675 /* Now fill in the fields of the type-structure. */
3676
3677 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3678 set_length_in_type_chain (type);
3679 TYPE_CODE (type) = TYPE_CODE_ENUM;
3680 TYPE_STUB (type) = 0;
3681 if (unsigned_enum)
3682 TYPE_UNSIGNED (type) = 1;
3683 TYPE_NFIELDS (type) = nsyms;
3684 TYPE_FIELDS (type) = (struct field *)
3685 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3686 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3687
3688 /* Find the symbols for the values and put them into the type.
3689 The symbols can be found in the symlist that we put them on
3690 to cause them to be defined. osyms contains the old value
3691 of that symlist; everything up to there was defined by us. */
3692 /* Note that we preserve the order of the enum constants, so
3693 that in something like "enum {FOO, LAST_THING=FOO}" we print
3694 FOO, not LAST_THING. */
3695
3696 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3697 {
3698 int last = syms == osyms ? o_nsyms : 0;
3699 int j = syms->nsyms;
3700
3701 for (; --j >= last; --n)
3702 {
3703 struct symbol *xsym = syms->symbol[j];
3704
3705 SYMBOL_TYPE (xsym) = type;
3706 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3707 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3708 TYPE_FIELD_BITSIZE (type, n) = 0;
3709 }
3710 if (syms == osyms)
3711 break;
3712 }
3713
3714 return type;
3715 }
3716
3717 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3718 typedefs in every file (for int, long, etc):
3719
3720 type = b <signed> <width> <format type>; <offset>; <nbits>
3721 signed = u or s.
3722 optional format type = c or b for char or boolean.
3723 offset = offset from high order bit to start bit of type.
3724 width is # bytes in object of this type, nbits is # bits in type.
3725
3726 The width/offset stuff appears to be for small objects stored in
3727 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3728 FIXME. */
3729
3730 static struct type *
3731 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3732 {
3733 int type_bits;
3734 int nbits;
3735 int signed_type;
3736 enum type_code code = TYPE_CODE_INT;
3737
3738 switch (**pp)
3739 {
3740 case 's':
3741 signed_type = 1;
3742 break;
3743 case 'u':
3744 signed_type = 0;
3745 break;
3746 default:
3747 return error_type (pp, objfile);
3748 }
3749 (*pp)++;
3750
3751 /* For some odd reason, all forms of char put a c here. This is strange
3752 because no other type has this honor. We can safely ignore this because
3753 we actually determine 'char'acterness by the number of bits specified in
3754 the descriptor.
3755 Boolean forms, e.g Fortran logical*X, put a b here. */
3756
3757 if (**pp == 'c')
3758 (*pp)++;
3759 else if (**pp == 'b')
3760 {
3761 code = TYPE_CODE_BOOL;
3762 (*pp)++;
3763 }
3764
3765 /* The first number appears to be the number of bytes occupied
3766 by this type, except that unsigned short is 4 instead of 2.
3767 Since this information is redundant with the third number,
3768 we will ignore it. */
3769 read_huge_number (pp, ';', &nbits, 0);
3770 if (nbits != 0)
3771 return error_type (pp, objfile);
3772
3773 /* The second number is always 0, so ignore it too. */
3774 read_huge_number (pp, ';', &nbits, 0);
3775 if (nbits != 0)
3776 return error_type (pp, objfile);
3777
3778 /* The third number is the number of bits for this type. */
3779 type_bits = read_huge_number (pp, 0, &nbits, 0);
3780 if (nbits != 0)
3781 return error_type (pp, objfile);
3782 /* The type *should* end with a semicolon. If it are embedded
3783 in a larger type the semicolon may be the only way to know where
3784 the type ends. If this type is at the end of the stabstring we
3785 can deal with the omitted semicolon (but we don't have to like
3786 it). Don't bother to complain(), Sun's compiler omits the semicolon
3787 for "void". */
3788 if (**pp == ';')
3789 ++(*pp);
3790
3791 if (type_bits == 0)
3792 return init_type (TYPE_CODE_VOID, 1,
3793 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3794 objfile);
3795 else
3796 return init_type (code,
3797 type_bits / TARGET_CHAR_BIT,
3798 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3799 objfile);
3800 }
3801
3802 static struct type *
3803 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3804 {
3805 int nbits;
3806 int details;
3807 int nbytes;
3808 struct type *rettype;
3809
3810 /* The first number has more details about the type, for example
3811 FN_COMPLEX. */
3812 details = read_huge_number (pp, ';', &nbits, 0);
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
3816 /* The second number is the number of bytes occupied by this type */
3817 nbytes = read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 if (details == NF_COMPLEX || details == NF_COMPLEX16
3822 || details == NF_COMPLEX32)
3823 {
3824 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3825 TYPE_TARGET_TYPE (rettype)
3826 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3827 return rettype;
3828 }
3829
3830 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3831 }
3832
3833 /* Read a number from the string pointed to by *PP.
3834 The value of *PP is advanced over the number.
3835 If END is nonzero, the character that ends the
3836 number must match END, or an error happens;
3837 and that character is skipped if it does match.
3838 If END is zero, *PP is left pointing to that character.
3839
3840 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3841 the number is represented in an octal representation, assume that
3842 it is represented in a 2's complement representation with a size of
3843 TWOS_COMPLEMENT_BITS.
3844
3845 If the number fits in a long, set *BITS to 0 and return the value.
3846 If not, set *BITS to be the number of bits in the number and return 0.
3847
3848 If encounter garbage, set *BITS to -1 and return 0. */
3849
3850 static long
3851 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3852 {
3853 char *p = *pp;
3854 int sign = 1;
3855 int sign_bit = 0;
3856 long n = 0;
3857 int radix = 10;
3858 char overflow = 0;
3859 int nbits = 0;
3860 int c;
3861 long upper_limit;
3862 int twos_complement_representation = 0;
3863
3864 if (*p == '-')
3865 {
3866 sign = -1;
3867 p++;
3868 }
3869
3870 /* Leading zero means octal. GCC uses this to output values larger
3871 than an int (because that would be hard in decimal). */
3872 if (*p == '0')
3873 {
3874 radix = 8;
3875 p++;
3876 }
3877
3878 /* Skip extra zeros. */
3879 while (*p == '0')
3880 p++;
3881
3882 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3883 {
3884 /* Octal, possibly signed. Check if we have enough chars for a
3885 negative number. */
3886
3887 size_t len;
3888 char *p1 = p;
3889
3890 while ((c = *p1) >= '0' && c < '8')
3891 p1++;
3892
3893 len = p1 - p;
3894 if (len > twos_complement_bits / 3
3895 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3896 {
3897 /* Ok, we have enough characters for a signed value, check
3898 for signness by testing if the sign bit is set. */
3899 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3900 c = *p - '0';
3901 if (c & (1 << sign_bit))
3902 {
3903 /* Definitely signed. */
3904 twos_complement_representation = 1;
3905 sign = -1;
3906 }
3907 }
3908 }
3909
3910 upper_limit = LONG_MAX / radix;
3911
3912 while ((c = *p++) >= '0' && c < ('0' + radix))
3913 {
3914 if (n <= upper_limit)
3915 {
3916 if (twos_complement_representation)
3917 {
3918 /* Octal, signed, twos complement representation. In
3919 this case, n is the corresponding absolute value. */
3920 if (n == 0)
3921 {
3922 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3923
3924 n = -sn;
3925 }
3926 else
3927 {
3928 n *= radix;
3929 n -= c - '0';
3930 }
3931 }
3932 else
3933 {
3934 /* unsigned representation */
3935 n *= radix;
3936 n += c - '0'; /* FIXME this overflows anyway */
3937 }
3938 }
3939 else
3940 overflow = 1;
3941
3942 /* This depends on large values being output in octal, which is
3943 what GCC does. */
3944 if (radix == 8)
3945 {
3946 if (nbits == 0)
3947 {
3948 if (c == '0')
3949 /* Ignore leading zeroes. */
3950 ;
3951 else if (c == '1')
3952 nbits = 1;
3953 else if (c == '2' || c == '3')
3954 nbits = 2;
3955 else
3956 nbits = 3;
3957 }
3958 else
3959 nbits += 3;
3960 }
3961 }
3962 if (end)
3963 {
3964 if (c && c != end)
3965 {
3966 if (bits != NULL)
3967 *bits = -1;
3968 return 0;
3969 }
3970 }
3971 else
3972 --p;
3973
3974 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3975 {
3976 /* We were supposed to parse a number with maximum
3977 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3978 if (bits != NULL)
3979 *bits = -1;
3980 return 0;
3981 }
3982
3983 *pp = p;
3984 if (overflow)
3985 {
3986 if (nbits == 0)
3987 {
3988 /* Large decimal constants are an error (because it is hard to
3989 count how many bits are in them). */
3990 if (bits != NULL)
3991 *bits = -1;
3992 return 0;
3993 }
3994
3995 /* -0x7f is the same as 0x80. So deal with it by adding one to
3996 the number of bits. Two's complement represention octals
3997 can't have a '-' in front. */
3998 if (sign == -1 && !twos_complement_representation)
3999 ++nbits;
4000 if (bits)
4001 *bits = nbits;
4002 }
4003 else
4004 {
4005 if (bits)
4006 *bits = 0;
4007 return n * sign;
4008 }
4009 /* It's *BITS which has the interesting information. */
4010 return 0;
4011 }
4012
4013 static struct type *
4014 read_range_type (char **pp, int typenums[2], int type_size,
4015 struct objfile *objfile)
4016 {
4017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4018 char *orig_pp = *pp;
4019 int rangenums[2];
4020 long n2, n3;
4021 int n2bits, n3bits;
4022 int self_subrange;
4023 struct type *result_type;
4024 struct type *index_type = NULL;
4025
4026 /* First comes a type we are a subrange of.
4027 In C it is usually 0, 1 or the type being defined. */
4028 if (read_type_number (pp, rangenums) != 0)
4029 return error_type (pp, objfile);
4030 self_subrange = (rangenums[0] == typenums[0] &&
4031 rangenums[1] == typenums[1]);
4032
4033 if (**pp == '=')
4034 {
4035 *pp = orig_pp;
4036 index_type = read_type (pp, objfile);
4037 }
4038
4039 /* A semicolon should now follow; skip it. */
4040 if (**pp == ';')
4041 (*pp)++;
4042
4043 /* The remaining two operands are usually lower and upper bounds
4044 of the range. But in some special cases they mean something else. */
4045 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4046 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4047
4048 if (n2bits == -1 || n3bits == -1)
4049 return error_type (pp, objfile);
4050
4051 if (index_type)
4052 goto handle_true_range;
4053
4054 /* If limits are huge, must be large integral type. */
4055 if (n2bits != 0 || n3bits != 0)
4056 {
4057 char got_signed = 0;
4058 char got_unsigned = 0;
4059 /* Number of bits in the type. */
4060 int nbits = 0;
4061
4062 /* If a type size attribute has been specified, the bounds of
4063 the range should fit in this size. If the lower bounds needs
4064 more bits than the upper bound, then the type is signed. */
4065 if (n2bits <= type_size && n3bits <= type_size)
4066 {
4067 if (n2bits == type_size && n2bits > n3bits)
4068 got_signed = 1;
4069 else
4070 got_unsigned = 1;
4071 nbits = type_size;
4072 }
4073 /* Range from 0 to <large number> is an unsigned large integral type. */
4074 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4075 {
4076 got_unsigned = 1;
4077 nbits = n3bits;
4078 }
4079 /* Range from <large number> to <large number>-1 is a large signed
4080 integral type. Take care of the case where <large number> doesn't
4081 fit in a long but <large number>-1 does. */
4082 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4083 || (n2bits != 0 && n3bits == 0
4084 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4085 && n3 == LONG_MAX))
4086 {
4087 got_signed = 1;
4088 nbits = n2bits;
4089 }
4090
4091 if (got_signed || got_unsigned)
4092 {
4093 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4094 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4095 objfile);
4096 }
4097 else
4098 return error_type (pp, objfile);
4099 }
4100
4101 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4102 if (self_subrange && n2 == 0 && n3 == 0)
4103 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4104
4105 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4106 is the width in bytes.
4107
4108 Fortran programs appear to use this for complex types also. To
4109 distinguish between floats and complex, g77 (and others?) seem
4110 to use self-subranges for the complexes, and subranges of int for
4111 the floats.
4112
4113 Also note that for complexes, g77 sets n2 to the size of one of
4114 the member floats, not the whole complex beast. My guess is that
4115 this was to work well with pre-COMPLEX versions of gdb. */
4116
4117 if (n3 == 0 && n2 > 0)
4118 {
4119 struct type *float_type
4120 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4121
4122 if (self_subrange)
4123 {
4124 struct type *complex_type =
4125 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4126
4127 TYPE_TARGET_TYPE (complex_type) = float_type;
4128 return complex_type;
4129 }
4130 else
4131 return float_type;
4132 }
4133
4134 /* If the upper bound is -1, it must really be an unsigned integral. */
4135
4136 else if (n2 == 0 && n3 == -1)
4137 {
4138 int bits = type_size;
4139
4140 if (bits <= 0)
4141 {
4142 /* We don't know its size. It is unsigned int or unsigned
4143 long. GCC 2.3.3 uses this for long long too, but that is
4144 just a GDB 3.5 compatibility hack. */
4145 bits = gdbarch_int_bit (gdbarch);
4146 }
4147
4148 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4149 TYPE_FLAG_UNSIGNED, NULL, objfile);
4150 }
4151
4152 /* Special case: char is defined (Who knows why) as a subrange of
4153 itself with range 0-127. */
4154 else if (self_subrange && n2 == 0 && n3 == 127)
4155 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4156
4157 /* We used to do this only for subrange of self or subrange of int. */
4158 else if (n2 == 0)
4159 {
4160 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4161 "unsigned long", and we already checked for that,
4162 so don't need to test for it here. */
4163
4164 if (n3 < 0)
4165 /* n3 actually gives the size. */
4166 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4167 NULL, objfile);
4168
4169 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4170 unsigned n-byte integer. But do require n to be a power of
4171 two; we don't want 3- and 5-byte integers flying around. */
4172 {
4173 int bytes;
4174 unsigned long bits;
4175
4176 bits = n3;
4177 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4178 bits >>= 8;
4179 if (bits == 0
4180 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4181 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4182 objfile);
4183 }
4184 }
4185 /* I think this is for Convex "long long". Since I don't know whether
4186 Convex sets self_subrange, I also accept that particular size regardless
4187 of self_subrange. */
4188 else if (n3 == 0 && n2 < 0
4189 && (self_subrange
4190 || n2 == -gdbarch_long_long_bit
4191 (gdbarch) / TARGET_CHAR_BIT))
4192 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4193 else if (n2 == -n3 - 1)
4194 {
4195 if (n3 == 0x7f)
4196 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4197 if (n3 == 0x7fff)
4198 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4199 if (n3 == 0x7fffffff)
4200 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4201 }
4202
4203 /* We have a real range type on our hands. Allocate space and
4204 return a real pointer. */
4205 handle_true_range:
4206
4207 if (self_subrange)
4208 index_type = objfile_type (objfile)->builtin_int;
4209 else
4210 index_type = *dbx_lookup_type (rangenums, objfile);
4211 if (index_type == NULL)
4212 {
4213 /* Does this actually ever happen? Is that why we are worrying
4214 about dealing with it rather than just calling error_type? */
4215
4216 complaint (&symfile_complaints,
4217 _("base type %d of range type is not defined"), rangenums[1]);
4218
4219 index_type = objfile_type (objfile)->builtin_int;
4220 }
4221
4222 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4223 return (result_type);
4224 }
4225
4226 /* Read in an argument list. This is a list of types, separated by commas
4227 and terminated with END. Return the list of types read in, or NULL
4228 if there is an error. */
4229
4230 static struct field *
4231 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4232 int *varargsp)
4233 {
4234 /* FIXME! Remove this arbitrary limit! */
4235 struct type *types[1024]; /* allow for fns of 1023 parameters */
4236 int n = 0, i;
4237 struct field *rval;
4238
4239 while (**pp != end)
4240 {
4241 if (**pp != ',')
4242 /* Invalid argument list: no ','. */
4243 return NULL;
4244 (*pp)++;
4245 STABS_CONTINUE (pp, objfile);
4246 types[n++] = read_type (pp, objfile);
4247 }
4248 (*pp)++; /* get past `end' (the ':' character) */
4249
4250 if (n == 0)
4251 {
4252 /* We should read at least the THIS parameter here. Some broken stabs
4253 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4254 have been present ";-16,(0,43)" reference instead. This way the
4255 excessive ";" marker prematurely stops the parameters parsing. */
4256
4257 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4258 *varargsp = 0;
4259 }
4260 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4261 *varargsp = 1;
4262 else
4263 {
4264 n--;
4265 *varargsp = 0;
4266 }
4267
4268 rval = (struct field *) xmalloc (n * sizeof (struct field));
4269 memset (rval, 0, n * sizeof (struct field));
4270 for (i = 0; i < n; i++)
4271 rval[i].type = types[i];
4272 *nargsp = n;
4273 return rval;
4274 }
4275 \f
4276 /* Common block handling. */
4277
4278 /* List of symbols declared since the last BCOMM. This list is a tail
4279 of local_symbols. When ECOMM is seen, the symbols on the list
4280 are noted so their proper addresses can be filled in later,
4281 using the common block base address gotten from the assembler
4282 stabs. */
4283
4284 static struct pending *common_block;
4285 static int common_block_i;
4286
4287 /* Name of the current common block. We get it from the BCOMM instead of the
4288 ECOMM to match IBM documentation (even though IBM puts the name both places
4289 like everyone else). */
4290 static char *common_block_name;
4291
4292 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4293 to remain after this function returns. */
4294
4295 void
4296 common_block_start (char *name, struct objfile *objfile)
4297 {
4298 if (common_block_name != NULL)
4299 {
4300 complaint (&symfile_complaints,
4301 _("Invalid symbol data: common block within common block"));
4302 }
4303 common_block = local_symbols;
4304 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4305 common_block_name = obsavestring (name, strlen (name),
4306 &objfile->objfile_obstack);
4307 }
4308
4309 /* Process a N_ECOMM symbol. */
4310
4311 void
4312 common_block_end (struct objfile *objfile)
4313 {
4314 /* Symbols declared since the BCOMM are to have the common block
4315 start address added in when we know it. common_block and
4316 common_block_i point to the first symbol after the BCOMM in
4317 the local_symbols list; copy the list and hang it off the
4318 symbol for the common block name for later fixup. */
4319 int i;
4320 struct symbol *sym;
4321 struct pending *new = 0;
4322 struct pending *next;
4323 int j;
4324
4325 if (common_block_name == NULL)
4326 {
4327 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4328 return;
4329 }
4330
4331 sym = (struct symbol *)
4332 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4333 memset (sym, 0, sizeof (struct symbol));
4334 /* Note: common_block_name already saved on objfile_obstack */
4335 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4336 SYMBOL_CLASS (sym) = LOC_BLOCK;
4337
4338 /* Now we copy all the symbols which have been defined since the BCOMM. */
4339
4340 /* Copy all the struct pendings before common_block. */
4341 for (next = local_symbols;
4342 next != NULL && next != common_block;
4343 next = next->next)
4344 {
4345 for (j = 0; j < next->nsyms; j++)
4346 add_symbol_to_list (next->symbol[j], &new);
4347 }
4348
4349 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4350 NULL, it means copy all the local symbols (which we already did
4351 above). */
4352
4353 if (common_block != NULL)
4354 for (j = common_block_i; j < common_block->nsyms; j++)
4355 add_symbol_to_list (common_block->symbol[j], &new);
4356
4357 SYMBOL_TYPE (sym) = (struct type *) new;
4358
4359 /* Should we be putting local_symbols back to what it was?
4360 Does it matter? */
4361
4362 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4363 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4364 global_sym_chain[i] = sym;
4365 common_block_name = NULL;
4366 }
4367
4368 /* Add a common block's start address to the offset of each symbol
4369 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4370 the common block name). */
4371
4372 static void
4373 fix_common_block (struct symbol *sym, int valu)
4374 {
4375 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4376
4377 for (; next; next = next->next)
4378 {
4379 int j;
4380
4381 for (j = next->nsyms - 1; j >= 0; j--)
4382 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4383 }
4384 }
4385 \f
4386
4387
4388 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4389 See add_undefined_type for more details. */
4390
4391 static void
4392 add_undefined_type_noname (struct type *type, int typenums[2])
4393 {
4394 struct nat nat;
4395
4396 nat.typenums[0] = typenums [0];
4397 nat.typenums[1] = typenums [1];
4398 nat.type = type;
4399
4400 if (noname_undefs_length == noname_undefs_allocated)
4401 {
4402 noname_undefs_allocated *= 2;
4403 noname_undefs = (struct nat *)
4404 xrealloc ((char *) noname_undefs,
4405 noname_undefs_allocated * sizeof (struct nat));
4406 }
4407 noname_undefs[noname_undefs_length++] = nat;
4408 }
4409
4410 /* Add TYPE to the UNDEF_TYPES vector.
4411 See add_undefined_type for more details. */
4412
4413 static void
4414 add_undefined_type_1 (struct type *type)
4415 {
4416 if (undef_types_length == undef_types_allocated)
4417 {
4418 undef_types_allocated *= 2;
4419 undef_types = (struct type **)
4420 xrealloc ((char *) undef_types,
4421 undef_types_allocated * sizeof (struct type *));
4422 }
4423 undef_types[undef_types_length++] = type;
4424 }
4425
4426 /* What about types defined as forward references inside of a small lexical
4427 scope? */
4428 /* Add a type to the list of undefined types to be checked through
4429 once this file has been read in.
4430
4431 In practice, we actually maintain two such lists: The first list
4432 (UNDEF_TYPES) is used for types whose name has been provided, and
4433 concerns forward references (eg 'xs' or 'xu' forward references);
4434 the second list (NONAME_UNDEFS) is used for types whose name is
4435 unknown at creation time, because they were referenced through
4436 their type number before the actual type was declared.
4437 This function actually adds the given type to the proper list. */
4438
4439 static void
4440 add_undefined_type (struct type *type, int typenums[2])
4441 {
4442 if (TYPE_TAG_NAME (type) == NULL)
4443 add_undefined_type_noname (type, typenums);
4444 else
4445 add_undefined_type_1 (type);
4446 }
4447
4448 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4449
4450 static void
4451 cleanup_undefined_types_noname (struct objfile *objfile)
4452 {
4453 int i;
4454
4455 for (i = 0; i < noname_undefs_length; i++)
4456 {
4457 struct nat nat = noname_undefs[i];
4458 struct type **type;
4459
4460 type = dbx_lookup_type (nat.typenums, objfile);
4461 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4462 {
4463 /* The instance flags of the undefined type are still unset,
4464 and needs to be copied over from the reference type.
4465 Since replace_type expects them to be identical, we need
4466 to set these flags manually before hand. */
4467 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4468 replace_type (nat.type, *type);
4469 }
4470 }
4471
4472 noname_undefs_length = 0;
4473 }
4474
4475 /* Go through each undefined type, see if it's still undefined, and fix it
4476 up if possible. We have two kinds of undefined types:
4477
4478 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4479 Fix: update array length using the element bounds
4480 and the target type's length.
4481 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4482 yet defined at the time a pointer to it was made.
4483 Fix: Do a full lookup on the struct/union tag. */
4484
4485 static void
4486 cleanup_undefined_types_1 (void)
4487 {
4488 struct type **type;
4489
4490 /* Iterate over every undefined type, and look for a symbol whose type
4491 matches our undefined type. The symbol matches if:
4492 1. It is a typedef in the STRUCT domain;
4493 2. It has the same name, and same type code;
4494 3. The instance flags are identical.
4495
4496 It is important to check the instance flags, because we have seen
4497 examples where the debug info contained definitions such as:
4498
4499 "foo_t:t30=B31=xefoo_t:"
4500
4501 In this case, we have created an undefined type named "foo_t" whose
4502 instance flags is null (when processing "xefoo_t"), and then created
4503 another type with the same name, but with different instance flags
4504 ('B' means volatile). I think that the definition above is wrong,
4505 since the same type cannot be volatile and non-volatile at the same
4506 time, but we need to be able to cope with it when it happens. The
4507 approach taken here is to treat these two types as different. */
4508
4509 for (type = undef_types; type < undef_types + undef_types_length; type++)
4510 {
4511 switch (TYPE_CODE (*type))
4512 {
4513
4514 case TYPE_CODE_STRUCT:
4515 case TYPE_CODE_UNION:
4516 case TYPE_CODE_ENUM:
4517 {
4518 /* Check if it has been defined since. Need to do this here
4519 as well as in check_typedef to deal with the (legitimate in
4520 C though not C++) case of several types with the same name
4521 in different source files. */
4522 if (TYPE_STUB (*type))
4523 {
4524 struct pending *ppt;
4525 int i;
4526 /* Name of the type, without "struct" or "union" */
4527 char *typename = TYPE_TAG_NAME (*type);
4528
4529 if (typename == NULL)
4530 {
4531 complaint (&symfile_complaints, _("need a type name"));
4532 break;
4533 }
4534 for (ppt = file_symbols; ppt; ppt = ppt->next)
4535 {
4536 for (i = 0; i < ppt->nsyms; i++)
4537 {
4538 struct symbol *sym = ppt->symbol[i];
4539
4540 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4541 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4542 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4543 TYPE_CODE (*type))
4544 && (TYPE_INSTANCE_FLAGS (*type) ==
4545 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4546 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4547 typename) == 0)
4548 replace_type (*type, SYMBOL_TYPE (sym));
4549 }
4550 }
4551 }
4552 }
4553 break;
4554
4555 default:
4556 {
4557 complaint (&symfile_complaints,
4558 _("forward-referenced types left unresolved, "
4559 "type code %d."),
4560 TYPE_CODE (*type));
4561 }
4562 break;
4563 }
4564 }
4565
4566 undef_types_length = 0;
4567 }
4568
4569 /* Try to fix all the undefined types we ecountered while processing
4570 this unit. */
4571
4572 void
4573 cleanup_undefined_types (struct objfile *objfile)
4574 {
4575 cleanup_undefined_types_1 ();
4576 cleanup_undefined_types_noname (objfile);
4577 }
4578
4579 /* Scan through all of the global symbols defined in the object file,
4580 assigning values to the debugging symbols that need to be assigned
4581 to. Get these symbols from the minimal symbol table. */
4582
4583 void
4584 scan_file_globals (struct objfile *objfile)
4585 {
4586 int hash;
4587 struct minimal_symbol *msymbol;
4588 struct symbol *sym, *prev;
4589 struct objfile *resolve_objfile;
4590
4591 /* SVR4 based linkers copy referenced global symbols from shared
4592 libraries to the main executable.
4593 If we are scanning the symbols for a shared library, try to resolve
4594 them from the minimal symbols of the main executable first. */
4595
4596 if (symfile_objfile && objfile != symfile_objfile)
4597 resolve_objfile = symfile_objfile;
4598 else
4599 resolve_objfile = objfile;
4600
4601 while (1)
4602 {
4603 /* Avoid expensive loop through all minimal symbols if there are
4604 no unresolved symbols. */
4605 for (hash = 0; hash < HASHSIZE; hash++)
4606 {
4607 if (global_sym_chain[hash])
4608 break;
4609 }
4610 if (hash >= HASHSIZE)
4611 return;
4612
4613 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4614 {
4615 QUIT;
4616
4617 /* Skip static symbols. */
4618 switch (MSYMBOL_TYPE (msymbol))
4619 {
4620 case mst_file_text:
4621 case mst_file_data:
4622 case mst_file_bss:
4623 continue;
4624 default:
4625 break;
4626 }
4627
4628 prev = NULL;
4629
4630 /* Get the hash index and check all the symbols
4631 under that hash index. */
4632
4633 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4634
4635 for (sym = global_sym_chain[hash]; sym;)
4636 {
4637 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4638 SYMBOL_LINKAGE_NAME (sym)) == 0)
4639 {
4640 /* Splice this symbol out of the hash chain and
4641 assign the value we have to it. */
4642 if (prev)
4643 {
4644 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4645 }
4646 else
4647 {
4648 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4649 }
4650
4651 /* Check to see whether we need to fix up a common block. */
4652 /* Note: this code might be executed several times for
4653 the same symbol if there are multiple references. */
4654 if (sym)
4655 {
4656 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4657 {
4658 fix_common_block (sym,
4659 SYMBOL_VALUE_ADDRESS (msymbol));
4660 }
4661 else
4662 {
4663 SYMBOL_VALUE_ADDRESS (sym)
4664 = SYMBOL_VALUE_ADDRESS (msymbol);
4665 }
4666 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4667 }
4668
4669 if (prev)
4670 {
4671 sym = SYMBOL_VALUE_CHAIN (prev);
4672 }
4673 else
4674 {
4675 sym = global_sym_chain[hash];
4676 }
4677 }
4678 else
4679 {
4680 prev = sym;
4681 sym = SYMBOL_VALUE_CHAIN (sym);
4682 }
4683 }
4684 }
4685 if (resolve_objfile == objfile)
4686 break;
4687 resolve_objfile = objfile;
4688 }
4689
4690 /* Change the storage class of any remaining unresolved globals to
4691 LOC_UNRESOLVED and remove them from the chain. */
4692 for (hash = 0; hash < HASHSIZE; hash++)
4693 {
4694 sym = global_sym_chain[hash];
4695 while (sym)
4696 {
4697 prev = sym;
4698 sym = SYMBOL_VALUE_CHAIN (sym);
4699
4700 /* Change the symbol address from the misleading chain value
4701 to address zero. */
4702 SYMBOL_VALUE_ADDRESS (prev) = 0;
4703
4704 /* Complain about unresolved common block symbols. */
4705 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4706 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4707 else
4708 complaint (&symfile_complaints,
4709 _("%s: common block `%s' from global_sym_chain unresolved"),
4710 objfile->name, SYMBOL_PRINT_NAME (prev));
4711 }
4712 }
4713 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4714 }
4715
4716 /* Initialize anything that needs initializing when starting to read
4717 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4718 to a psymtab. */
4719
4720 void
4721 stabsread_init (void)
4722 {
4723 }
4724
4725 /* Initialize anything that needs initializing when a completely new
4726 symbol file is specified (not just adding some symbols from another
4727 file, e.g. a shared library). */
4728
4729 void
4730 stabsread_new_init (void)
4731 {
4732 /* Empty the hash table of global syms looking for values. */
4733 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4734 }
4735
4736 /* Initialize anything that needs initializing at the same time as
4737 start_symtab() is called. */
4738
4739 void
4740 start_stabs (void)
4741 {
4742 global_stabs = NULL; /* AIX COFF */
4743 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4744 n_this_object_header_files = 1;
4745 type_vector_length = 0;
4746 type_vector = (struct type **) 0;
4747
4748 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4749 common_block_name = NULL;
4750 }
4751
4752 /* Call after end_symtab() */
4753
4754 void
4755 end_stabs (void)
4756 {
4757 if (type_vector)
4758 {
4759 xfree (type_vector);
4760 }
4761 type_vector = 0;
4762 type_vector_length = 0;
4763 previous_stab_code = 0;
4764 }
4765
4766 void
4767 finish_global_stabs (struct objfile *objfile)
4768 {
4769 if (global_stabs)
4770 {
4771 patch_block_stabs (global_symbols, global_stabs, objfile);
4772 xfree (global_stabs);
4773 global_stabs = NULL;
4774 }
4775 }
4776
4777 /* Find the end of the name, delimited by a ':', but don't match
4778 ObjC symbols which look like -[Foo bar::]:bla. */
4779 static char *
4780 find_name_end (char *name)
4781 {
4782 char *s = name;
4783
4784 if (s[0] == '-' || *s == '+')
4785 {
4786 /* Must be an ObjC method symbol. */
4787 if (s[1] != '[')
4788 {
4789 error (_("invalid symbol name \"%s\""), name);
4790 }
4791 s = strchr (s, ']');
4792 if (s == NULL)
4793 {
4794 error (_("invalid symbol name \"%s\""), name);
4795 }
4796 return strchr (s, ':');
4797 }
4798 else
4799 {
4800 return strchr (s, ':');
4801 }
4802 }
4803
4804 /* Initializer for this module */
4805
4806 void
4807 _initialize_stabsread (void)
4808 {
4809 rs6000_builtin_type_data = register_objfile_data ();
4810
4811 undef_types_allocated = 20;
4812 undef_types_length = 0;
4813 undef_types = (struct type **)
4814 xmalloc (undef_types_allocated * sizeof (struct type *));
4815
4816 noname_undefs_allocated = 20;
4817 noname_undefs_length = 0;
4818 noname_undefs = (struct nat *)
4819 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4820 }
This page took 0.13585 seconds and 4 git commands to generate.