1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield
*next
;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist
*next
;
83 struct fn_fieldlist fn_fieldlist
;
89 read_one_struct_field (struct field_info
*, char **, char *,
90 struct type
*, struct objfile
*);
92 static struct type
*dbx_alloc_type (int[2], struct objfile
*);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type
*error_type (char **, struct objfile
*);
99 patch_block_stabs (struct pending
*, struct pending_stabs
*,
102 static void fix_common_block (struct symbol
*, int);
104 static int read_type_number (char **, int *);
106 static struct type
*read_type (char **, struct objfile
*);
108 static struct type
*read_range_type (char **, int[2], int, struct objfile
*);
110 static struct type
*read_sun_builtin_type (char **, int[2], struct objfile
*);
112 static struct type
*read_sun_floating_type (char **, int[2],
115 static struct type
*read_enum_type (char **, struct type
*, struct objfile
*);
117 static struct type
*rs6000_builtin_type (int, struct objfile
*);
120 read_member_functions (struct field_info
*, char **, struct type
*,
124 read_struct_fields (struct field_info
*, char **, struct type
*,
128 read_baseclasses (struct field_info
*, char **, struct type
*,
132 read_tilde_fields (struct field_info
*, char **, struct type
*,
135 static int attach_fn_fields_to_type (struct field_info
*, struct type
*);
137 static int attach_fields_to_type (struct field_info
*, struct type
*,
140 static struct type
*read_struct_type (char **, struct type
*,
144 static struct type
*read_array_type (char **, struct type
*,
147 static struct field
*read_args (char **, int, struct objfile
*, int *, int *);
149 static void add_undefined_type (struct type
*, int[2]);
152 read_cpp_abbrev (struct field_info
*, char **, struct type
*,
155 static char *find_name_end (char *name
);
157 static int process_reference (char **string
);
159 void stabsread_clear_cache (void);
161 static const char vptr_name
[] = "_vptr$";
162 static const char vb_name
[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1
)
167 complaint (&symfile_complaints
, _("invalid C++ abbreviation `%s'"), arg1
);
171 reg_value_complaint (int regnum
, int num_regs
, const char *sym
)
173 complaint (&symfile_complaints
,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum
, num_regs
- 1, sym
);
179 stabs_general_complaint (const char *arg1
)
181 complaint (&symfile_complaints
, "%s", arg1
);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type
**undef_types
;
187 static int undef_types_allocated
;
188 static int undef_types_length
;
189 static struct symbol
*current_symbol
= NULL
;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat
*noname_undefs
;
202 static int noname_undefs_allocated
;
203 static int noname_undefs_length
;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type
**
221 dbx_lookup_type (int typenums
[2], struct objfile
*objfile
)
223 int filenum
= typenums
[0];
224 int index
= typenums
[1];
227 struct header_file
*f
;
230 if (filenum
== -1) /* -1,-1 is for temporary types. */
233 if (filenum
< 0 || filenum
>= n_this_object_header_files
)
235 complaint (&symfile_complaints
,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum
, index
, symnum
);
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type
*temp_type
;
252 temp_type
= rs6000_builtin_type (index
, objfile
);
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index
>= type_vector_length
)
260 old_len
= type_vector_length
;
263 type_vector_length
= INITIAL_TYPE_VECTOR_LENGTH
;
264 type_vector
= (struct type
**)
265 xmalloc (type_vector_length
* sizeof (struct type
*));
267 while (index
>= type_vector_length
)
269 type_vector_length
*= 2;
271 type_vector
= (struct type
**)
272 xrealloc ((char *) type_vector
,
273 (type_vector_length
* sizeof (struct type
*)));
274 memset (&type_vector
[old_len
], 0,
275 (type_vector_length
- old_len
) * sizeof (struct type
*));
277 return (&type_vector
[index
]);
281 real_filenum
= this_object_header_files
[filenum
];
283 if (real_filenum
>= N_HEADER_FILES (objfile
))
285 static struct type
*temp_type
;
287 warning (_("GDB internal error: bad real_filenum"));
290 temp_type
= objfile_type (objfile
)->builtin_error
;
294 f
= HEADER_FILES (objfile
) + real_filenum
;
296 f_orig_length
= f
->length
;
297 if (index
>= f_orig_length
)
299 while (index
>= f
->length
)
303 f
->vector
= (struct type
**)
304 xrealloc ((char *) f
->vector
, f
->length
* sizeof (struct type
*));
305 memset (&f
->vector
[f_orig_length
], 0,
306 (f
->length
- f_orig_length
) * sizeof (struct type
*));
308 return (&f
->vector
[index
]);
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
319 dbx_alloc_type (int typenums
[2], struct objfile
*objfile
)
321 struct type
**type_addr
;
323 if (typenums
[0] == -1)
325 return (alloc_type (objfile
));
328 type_addr
= dbx_lookup_type (typenums
, objfile
);
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
335 *type_addr
= alloc_type (objfile
);
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
345 patch_block_stabs (struct pending
*symbols
, struct pending_stabs
*stabs
,
346 struct objfile
*objfile
)
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
358 for (ii
= 0; ii
< stabs
->count
; ++ii
)
360 name
= stabs
->stab
[ii
];
361 pp
= (char *) strchr (name
, ':');
362 gdb_assert (pp
); /* Must find a ':' or game's over. */
366 pp
= (char *) strchr (pp
, ':');
368 sym
= find_symbol_in_list (symbols
, name
, pp
- name
);
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym
= (struct symbol
*)
383 obstack_alloc (&objfile
->objfile_obstack
,
384 sizeof (struct symbol
));
386 memset (sym
, 0, sizeof (struct symbol
));
387 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
388 SYMBOL_CLASS (sym
) = LOC_OPTIMIZED_OUT
;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym
, obsavestring (name
, pp
- name
,
391 &objfile
->objfile_obstack
));
393 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
399 lookup_function_type (read_type (&pp
, objfile
));
403 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
405 add_symbol_to_list (sym
, &global_symbols
);
410 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
413 lookup_function_type (read_type (&pp
, objfile
));
417 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
431 Returns 0 for success, -1 for error. */
434 read_type_number (char **pp
, int *typenums
)
441 typenums
[0] = read_huge_number (pp
, ',', &nbits
, 0);
444 typenums
[1] = read_huge_number (pp
, ')', &nbits
, 0);
451 typenums
[1] = read_huge_number (pp
, 0, &nbits
, 0);
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478 static struct ref_map
*ref_map
;
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count
= 0;
483 /* Number of chunks malloced. */
484 static int ref_chunk
= 0;
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
490 stabsread_clear_cache (void)
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
501 ref_add (int refnum
, struct symbol
*sym
, char *stabs
, CORE_ADDR value
)
505 if (refnum
>= ref_count
)
506 ref_count
= refnum
+ 1;
507 if (ref_count
> ref_chunk
* MAX_CHUNK_REFS
)
509 int new_slots
= ref_count
- ref_chunk
* MAX_CHUNK_REFS
;
510 int new_chunks
= new_slots
/ MAX_CHUNK_REFS
+ 1;
512 ref_map
= (struct ref_map
*)
513 xrealloc (ref_map
, REF_MAP_SIZE (ref_chunk
+ new_chunks
));
514 memset (ref_map
+ ref_chunk
* MAX_CHUNK_REFS
, 0,
515 new_chunks
* REF_CHUNK_SIZE
);
516 ref_chunk
+= new_chunks
;
518 ref_map
[refnum
].stabs
= stabs
;
519 ref_map
[refnum
].sym
= sym
;
520 ref_map
[refnum
].value
= value
;
523 /* Return defined sym for the reference REFNUM. */
525 ref_search (int refnum
)
527 if (refnum
< 0 || refnum
> ref_count
)
529 return ref_map
[refnum
].sym
;
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
536 process_reference (char **string
)
544 /* Advance beyond the initial '#'. */
547 /* Read number as reference id. */
548 while (*p
&& isdigit (*p
))
550 refnum
= refnum
* 10 + *p
- '0';
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
561 symbol_reference_defined (char **string
)
566 refnum
= process_reference (&p
);
568 /* Defining symbols end in '=' */
571 /* Symbol is being defined here. */
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
585 stab_reg_to_regnum (struct symbol
*sym
, struct gdbarch
*gdbarch
)
587 int regno
= gdbarch_stab_reg_to_regnum (gdbarch
, SYMBOL_VALUE (sym
));
589 if (regno
>= gdbarch_num_regs (gdbarch
)
590 + gdbarch_num_pseudo_regs (gdbarch
))
592 reg_value_complaint (regno
,
593 gdbarch_num_regs (gdbarch
)
594 + gdbarch_num_pseudo_regs (gdbarch
),
595 SYMBOL_PRINT_NAME (sym
));
597 regno
= gdbarch_sp_regnum (gdbarch
); /* Known safe, though useless */
603 static const struct symbol_register_ops stab_register_funcs
= {
608 define_symbol (CORE_ADDR valu
, char *string
, int desc
, int type
,
609 struct objfile
*objfile
)
611 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
613 char *p
= (char *) find_name_end (string
);
617 char *new_name
= NULL
;
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
626 /* Ignore syms with empty names. */
630 /* Ignore old-style symbols from cc -go */
640 /* If a nameless stab entry, all we need is the type, not the symbol.
641 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
642 nameless
= (p
== string
|| ((string
[0] == ' ') && (string
[1] == ':')));
644 current_symbol
= sym
= (struct symbol
*)
645 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
646 memset (sym
, 0, sizeof (struct symbol
));
648 switch (type
& N_TYPE
)
651 SYMBOL_SECTION (sym
) = SECT_OFF_TEXT (objfile
);
654 SYMBOL_SECTION (sym
) = SECT_OFF_DATA (objfile
);
657 SYMBOL_SECTION (sym
) = SECT_OFF_BSS (objfile
);
661 if (processing_gcc_compilation
)
663 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
664 number of bytes occupied by a type or object, which we ignore. */
665 SYMBOL_LINE (sym
) = desc
;
669 SYMBOL_LINE (sym
) = 0; /* unknown */
672 if (is_cplus_marker (string
[0]))
674 /* Special GNU C++ names. */
678 SYMBOL_SET_LINKAGE_NAME (sym
, "this");
681 case 'v': /* $vtbl_ptr_type */
685 SYMBOL_SET_LINKAGE_NAME (sym
, "eh_throw");
689 /* This was an anonymous type that was never fixed up. */
693 /* SunPRO (3.0 at least) static variable encoding. */
694 if (gdbarch_static_transform_name_p (gdbarch
))
696 /* ... fall through ... */
699 complaint (&symfile_complaints
, _("Unknown C++ symbol name `%s'"),
701 goto normal
; /* Do *something* with it */
707 SYMBOL_SET_LANGUAGE (sym
, current_subfile
->language
);
708 if (SYMBOL_LANGUAGE (sym
) == language_cplus
)
710 char *name
= alloca (p
- string
+ 1);
712 memcpy (name
, string
, p
- string
);
713 name
[p
- string
] = '\0';
714 new_name
= cp_canonicalize_string (name
);
716 if (new_name
!= NULL
)
718 SYMBOL_SET_NAMES (sym
, new_name
, strlen (new_name
), 1, objfile
);
722 SYMBOL_SET_NAMES (sym
, string
, p
- string
, 1, objfile
);
724 if (SYMBOL_LANGUAGE (sym
) == language_cplus
)
725 cp_scan_for_anonymous_namespaces (sym
);
730 /* Determine the type of name being defined. */
732 /* Getting GDB to correctly skip the symbol on an undefined symbol
733 descriptor and not ever dump core is a very dodgy proposition if
734 we do things this way. I say the acorn RISC machine can just
735 fix their compiler. */
736 /* The Acorn RISC machine's compiler can put out locals that don't
737 start with "234=" or "(3,4)=", so assume anything other than the
738 deftypes we know how to handle is a local. */
739 if (!strchr ("cfFGpPrStTvVXCR", *p
))
741 if (isdigit (*p
) || *p
== '(' || *p
== '-')
750 /* c is a special case, not followed by a type-number.
751 SYMBOL:c=iVALUE for an integer constant symbol.
752 SYMBOL:c=rVALUE for a floating constant symbol.
753 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
754 e.g. "b:c=e6,0" for "const b = blob1"
755 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
758 SYMBOL_CLASS (sym
) = LOC_CONST
;
759 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
760 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
761 add_symbol_to_list (sym
, &file_symbols
);
771 struct type
*dbl_type
;
773 /* FIXME-if-picky-about-floating-accuracy: Should be using
774 target arithmetic to get the value. real.c in GCC
775 probably has the necessary code. */
777 dbl_type
= objfile_type (objfile
)->builtin_double
;
779 obstack_alloc (&objfile
->objfile_obstack
,
780 TYPE_LENGTH (dbl_type
));
781 store_typed_floating (dbl_valu
, dbl_type
, d
);
783 SYMBOL_TYPE (sym
) = dbl_type
;
784 SYMBOL_VALUE_BYTES (sym
) = dbl_valu
;
785 SYMBOL_CLASS (sym
) = LOC_CONST_BYTES
;
790 /* Defining integer constants this way is kind of silly,
791 since 'e' constants allows the compiler to give not
792 only the value, but the type as well. C has at least
793 int, long, unsigned int, and long long as constant
794 types; other languages probably should have at least
795 unsigned as well as signed constants. */
797 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_long
;
798 SYMBOL_VALUE (sym
) = atoi (p
);
799 SYMBOL_CLASS (sym
) = LOC_CONST
;
805 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_char
;
806 SYMBOL_VALUE (sym
) = atoi (p
);
807 SYMBOL_CLASS (sym
) = LOC_CONST
;
813 struct type
*range_type
;
816 gdb_byte
*string_local
= (gdb_byte
*) alloca (strlen (p
));
817 gdb_byte
*string_value
;
819 if (quote
!= '\'' && quote
!= '"')
821 SYMBOL_CLASS (sym
) = LOC_CONST
;
822 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
823 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
824 add_symbol_to_list (sym
, &file_symbols
);
828 /* Find matching quote, rejecting escaped quotes. */
829 while (*p
&& *p
!= quote
)
831 if (*p
== '\\' && p
[1] == quote
)
833 string_local
[ind
] = (gdb_byte
) quote
;
839 string_local
[ind
] = (gdb_byte
) (*p
);
846 SYMBOL_CLASS (sym
) = LOC_CONST
;
847 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
848 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
849 add_symbol_to_list (sym
, &file_symbols
);
853 /* NULL terminate the string. */
854 string_local
[ind
] = 0;
855 range_type
= create_range_type (NULL
,
856 objfile_type (objfile
)->builtin_int
,
858 SYMBOL_TYPE (sym
) = create_array_type (NULL
,
859 objfile_type (objfile
)->builtin_char
,
861 string_value
= obstack_alloc (&objfile
->objfile_obstack
, ind
+ 1);
862 memcpy (string_value
, string_local
, ind
+ 1);
865 SYMBOL_VALUE_BYTES (sym
) = string_value
;
866 SYMBOL_CLASS (sym
) = LOC_CONST_BYTES
;
871 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
872 can be represented as integral.
873 e.g. "b:c=e6,0" for "const b = blob1"
874 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
876 SYMBOL_CLASS (sym
) = LOC_CONST
;
877 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
881 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
886 /* If the value is too big to fit in an int (perhaps because
887 it is unsigned), or something like that, we silently get
888 a bogus value. The type and everything else about it is
889 correct. Ideally, we should be using whatever we have
890 available for parsing unsigned and long long values,
892 SYMBOL_VALUE (sym
) = atoi (p
);
897 SYMBOL_CLASS (sym
) = LOC_CONST
;
898 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
901 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
902 add_symbol_to_list (sym
, &file_symbols
);
906 /* The name of a caught exception. */
907 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
908 SYMBOL_CLASS (sym
) = LOC_LABEL
;
909 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
910 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
911 add_symbol_to_list (sym
, &local_symbols
);
915 /* A static function definition. */
916 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
917 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
918 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
919 add_symbol_to_list (sym
, &file_symbols
);
920 /* fall into process_function_types. */
922 process_function_types
:
923 /* Function result types are described as the result type in stabs.
924 We need to convert this to the function-returning-type-X type
925 in GDB. E.g. "int" is converted to "function returning int". */
926 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_FUNC
)
927 SYMBOL_TYPE (sym
) = lookup_function_type (SYMBOL_TYPE (sym
));
929 /* All functions in C++ have prototypes. Stabs does not offer an
930 explicit way to identify prototyped or unprototyped functions,
931 but both GCC and Sun CC emit stabs for the "call-as" type rather
932 than the "declared-as" type for unprototyped functions, so
933 we treat all functions as if they were prototyped. This is used
934 primarily for promotion when calling the function from GDB. */
935 TYPE_PROTOTYPED (SYMBOL_TYPE (sym
)) = 1;
937 /* fall into process_prototype_types */
939 process_prototype_types
:
940 /* Sun acc puts declared types of arguments here. */
943 struct type
*ftype
= SYMBOL_TYPE (sym
);
948 /* Obtain a worst case guess for the number of arguments
949 by counting the semicolons. */
956 /* Allocate parameter information fields and fill them in. */
957 TYPE_FIELDS (ftype
) = (struct field
*)
958 TYPE_ALLOC (ftype
, nsemi
* sizeof (struct field
));
963 /* A type number of zero indicates the start of varargs.
964 FIXME: GDB currently ignores vararg functions. */
965 if (p
[0] == '0' && p
[1] == '\0')
967 ptype
= read_type (&p
, objfile
);
969 /* The Sun compilers mark integer arguments, which should
970 be promoted to the width of the calling conventions, with
971 a type which references itself. This type is turned into
972 a TYPE_CODE_VOID type by read_type, and we have to turn
973 it back into builtin_int here.
974 FIXME: Do we need a new builtin_promoted_int_arg ? */
975 if (TYPE_CODE (ptype
) == TYPE_CODE_VOID
)
976 ptype
= objfile_type (objfile
)->builtin_int
;
977 TYPE_FIELD_TYPE (ftype
, nparams
) = ptype
;
978 TYPE_FIELD_ARTIFICIAL (ftype
, nparams
++) = 0;
980 TYPE_NFIELDS (ftype
) = nparams
;
981 TYPE_PROTOTYPED (ftype
) = 1;
986 /* A global function definition. */
987 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
988 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
989 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
990 add_symbol_to_list (sym
, &global_symbols
);
991 goto process_function_types
;
994 /* For a class G (global) symbol, it appears that the
995 value is not correct. It is necessary to search for the
996 corresponding linker definition to find the value.
997 These definitions appear at the end of the namelist. */
998 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
999 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1000 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1001 /* Don't add symbol references to global_sym_chain.
1002 Symbol references don't have valid names and wont't match up with
1003 minimal symbols when the global_sym_chain is relocated.
1004 We'll fixup symbol references when we fixup the defining symbol. */
1005 if (SYMBOL_LINKAGE_NAME (sym
) && SYMBOL_LINKAGE_NAME (sym
)[0] != '#')
1007 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
1008 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
1009 global_sym_chain
[i
] = sym
;
1011 add_symbol_to_list (sym
, &global_symbols
);
1014 /* This case is faked by a conditional above,
1015 when there is no code letter in the dbx data.
1016 Dbx data never actually contains 'l'. */
1019 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1020 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
1021 SYMBOL_VALUE (sym
) = valu
;
1022 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1023 add_symbol_to_list (sym
, &local_symbols
);
1028 /* pF is a two-letter code that means a function parameter in Fortran.
1029 The type-number specifies the type of the return value.
1030 Translate it into a pointer-to-function type. */
1034 = lookup_pointer_type
1035 (lookup_function_type (read_type (&p
, objfile
)));
1038 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1040 SYMBOL_CLASS (sym
) = LOC_ARG
;
1041 SYMBOL_VALUE (sym
) = valu
;
1042 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1043 SYMBOL_IS_ARGUMENT (sym
) = 1;
1044 add_symbol_to_list (sym
, &local_symbols
);
1046 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_BIG
)
1048 /* On little-endian machines, this crud is never necessary,
1049 and, if the extra bytes contain garbage, is harmful. */
1053 /* If it's gcc-compiled, if it says `short', believe it. */
1054 if (processing_gcc_compilation
1055 || gdbarch_believe_pcc_promotion (gdbarch
))
1058 if (!gdbarch_believe_pcc_promotion (gdbarch
))
1060 /* If PCC says a parameter is a short or a char, it is
1062 if (TYPE_LENGTH (SYMBOL_TYPE (sym
))
1063 < gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
1064 && TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_INT
)
1067 TYPE_UNSIGNED (SYMBOL_TYPE (sym
))
1068 ? objfile_type (objfile
)->builtin_unsigned_int
1069 : objfile_type (objfile
)->builtin_int
;
1075 /* acc seems to use P to declare the prototypes of functions that
1076 are referenced by this file. gdb is not prepared to deal
1077 with this extra information. FIXME, it ought to. */
1080 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1081 goto process_prototype_types
;
1086 /* Parameter which is in a register. */
1087 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1088 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1089 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1090 SYMBOL_IS_ARGUMENT (sym
) = 1;
1091 SYMBOL_VALUE (sym
) = valu
;
1092 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1093 add_symbol_to_list (sym
, &local_symbols
);
1097 /* Register variable (either global or local). */
1098 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1099 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1100 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1101 SYMBOL_VALUE (sym
) = valu
;
1102 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1103 if (within_function
)
1105 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1106 the same name to represent an argument passed in a
1107 register. GCC uses 'P' for the same case. So if we find
1108 such a symbol pair we combine it into one 'P' symbol.
1109 For Sun cc we need to do this regardless of
1110 stabs_argument_has_addr, because the compiler puts out
1111 the 'p' symbol even if it never saves the argument onto
1114 On most machines, we want to preserve both symbols, so
1115 that we can still get information about what is going on
1116 with the stack (VAX for computing args_printed, using
1117 stack slots instead of saved registers in backtraces,
1120 Note that this code illegally combines
1121 main(argc) struct foo argc; { register struct foo argc; }
1122 but this case is considered pathological and causes a warning
1123 from a decent compiler. */
1126 && local_symbols
->nsyms
> 0
1127 && gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
)))
1129 struct symbol
*prev_sym
;
1131 prev_sym
= local_symbols
->symbol
[local_symbols
->nsyms
- 1];
1132 if ((SYMBOL_CLASS (prev_sym
) == LOC_REF_ARG
1133 || SYMBOL_CLASS (prev_sym
) == LOC_ARG
)
1134 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym
),
1135 SYMBOL_LINKAGE_NAME (sym
)) == 0)
1137 SYMBOL_CLASS (prev_sym
) = LOC_REGISTER
;
1138 SYMBOL_REGISTER_OPS (prev_sym
) = &stab_register_funcs
;
1139 /* Use the type from the LOC_REGISTER; that is the type
1140 that is actually in that register. */
1141 SYMBOL_TYPE (prev_sym
) = SYMBOL_TYPE (sym
);
1142 SYMBOL_VALUE (prev_sym
) = SYMBOL_VALUE (sym
);
1147 add_symbol_to_list (sym
, &local_symbols
);
1150 add_symbol_to_list (sym
, &file_symbols
);
1154 /* Static symbol at top level of file */
1155 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1156 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1157 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1158 if (gdbarch_static_transform_name_p (gdbarch
)
1159 && gdbarch_static_transform_name (gdbarch
,
1160 SYMBOL_LINKAGE_NAME (sym
))
1161 != SYMBOL_LINKAGE_NAME (sym
))
1163 struct minimal_symbol
*msym
;
1165 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
), NULL
, objfile
);
1168 char *new_name
= gdbarch_static_transform_name
1169 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1171 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1172 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1175 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1176 add_symbol_to_list (sym
, &file_symbols
);
1180 /* In Ada, there is no distinction between typedef and non-typedef;
1181 any type declaration implicitly has the equivalent of a typedef,
1182 and thus 't' is in fact equivalent to 'Tt'.
1184 Therefore, for Ada units, we check the character immediately
1185 before the 't', and if we do not find a 'T', then make sure to
1186 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1187 will be stored in the VAR_DOMAIN). If the symbol was indeed
1188 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1189 elsewhere, so we don't need to take care of that.
1191 This is important to do, because of forward references:
1192 The cleanup of undefined types stored in undef_types only uses
1193 STRUCT_DOMAIN symbols to perform the replacement. */
1194 synonym
= (SYMBOL_LANGUAGE (sym
) == language_ada
&& p
[-2] != 'T');
1197 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1199 /* For a nameless type, we don't want a create a symbol, thus we
1200 did not use `sym'. Return without further processing. */
1204 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1205 SYMBOL_VALUE (sym
) = valu
;
1206 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1207 /* C++ vagaries: we may have a type which is derived from
1208 a base type which did not have its name defined when the
1209 derived class was output. We fill in the derived class's
1210 base part member's name here in that case. */
1211 if (TYPE_NAME (SYMBOL_TYPE (sym
)) != NULL
)
1212 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_STRUCT
1213 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_UNION
)
1214 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)))
1218 for (j
= TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)) - 1; j
>= 0; j
--)
1219 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) == 0)
1220 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) =
1221 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym
), j
));
1224 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == NULL
)
1226 /* gcc-2.6 or later (when using -fvtable-thunks)
1227 emits a unique named type for a vtable entry.
1228 Some gdb code depends on that specific name. */
1229 extern const char vtbl_ptr_name
[];
1231 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_PTR
1232 && strcmp (SYMBOL_LINKAGE_NAME (sym
), vtbl_ptr_name
))
1233 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_FUNC
)
1235 /* If we are giving a name to a type such as "pointer to
1236 foo" or "function returning foo", we better not set
1237 the TYPE_NAME. If the program contains "typedef char
1238 *caddr_t;", we don't want all variables of type char
1239 * to print as caddr_t. This is not just a
1240 consequence of GDB's type management; PCC and GCC (at
1241 least through version 2.4) both output variables of
1242 either type char * or caddr_t with the type number
1243 defined in the 't' symbol for caddr_t. If a future
1244 compiler cleans this up it GDB is not ready for it
1245 yet, but if it becomes ready we somehow need to
1246 disable this check (without breaking the PCC/GCC2.4
1251 Fortunately, this check seems not to be necessary
1252 for anything except pointers or functions. */
1253 /* ezannoni: 2000-10-26. This seems to apply for
1254 versions of gcc older than 2.8. This was the original
1255 problem: with the following code gdb would tell that
1256 the type for name1 is caddr_t, and func is char()
1257 typedef char *caddr_t;
1269 /* Pascal accepts names for pointer types. */
1270 if (current_subfile
->language
== language_pascal
)
1272 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1276 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1279 add_symbol_to_list (sym
, &file_symbols
);
1283 /* Create the STRUCT_DOMAIN clone. */
1284 struct symbol
*struct_sym
= (struct symbol
*)
1285 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1288 SYMBOL_CLASS (struct_sym
) = LOC_TYPEDEF
;
1289 SYMBOL_VALUE (struct_sym
) = valu
;
1290 SYMBOL_DOMAIN (struct_sym
) = STRUCT_DOMAIN
;
1291 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1292 TYPE_NAME (SYMBOL_TYPE (sym
)) = obconcat (&objfile
->objfile_obstack
,
1293 SYMBOL_LINKAGE_NAME (sym
),
1295 add_symbol_to_list (struct_sym
, &file_symbols
);
1301 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1302 by 't' which means we are typedef'ing it as well. */
1303 synonym
= *p
== 't';
1308 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1310 /* For a nameless type, we don't want a create a symbol, thus we
1311 did not use `sym'. Return without further processing. */
1315 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1316 SYMBOL_VALUE (sym
) = valu
;
1317 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
1318 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym
)) == 0)
1319 TYPE_TAG_NAME (SYMBOL_TYPE (sym
)) = obconcat (&objfile
->objfile_obstack
,
1320 SYMBOL_LINKAGE_NAME (sym
),
1322 add_symbol_to_list (sym
, &file_symbols
);
1326 /* Clone the sym and then modify it. */
1327 struct symbol
*typedef_sym
= (struct symbol
*)
1328 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1330 *typedef_sym
= *sym
;
1331 SYMBOL_CLASS (typedef_sym
) = LOC_TYPEDEF
;
1332 SYMBOL_VALUE (typedef_sym
) = valu
;
1333 SYMBOL_DOMAIN (typedef_sym
) = VAR_DOMAIN
;
1334 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1335 TYPE_NAME (SYMBOL_TYPE (sym
)) = obconcat (&objfile
->objfile_obstack
,
1336 SYMBOL_LINKAGE_NAME (sym
),
1338 add_symbol_to_list (typedef_sym
, &file_symbols
);
1343 /* Static symbol of local scope */
1344 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1345 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1346 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1347 if (gdbarch_static_transform_name_p (gdbarch
)
1348 && gdbarch_static_transform_name (gdbarch
,
1349 SYMBOL_LINKAGE_NAME (sym
))
1350 != SYMBOL_LINKAGE_NAME (sym
))
1352 struct minimal_symbol
*msym
;
1354 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
),
1358 char *new_name
= gdbarch_static_transform_name
1359 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1361 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1362 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1365 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1366 add_symbol_to_list (sym
, &local_symbols
);
1370 /* Reference parameter */
1371 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1372 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1373 SYMBOL_IS_ARGUMENT (sym
) = 1;
1374 SYMBOL_VALUE (sym
) = valu
;
1375 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1376 add_symbol_to_list (sym
, &local_symbols
);
1380 /* Reference parameter which is in a register. */
1381 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1382 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1383 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1384 SYMBOL_IS_ARGUMENT (sym
) = 1;
1385 SYMBOL_VALUE (sym
) = valu
;
1386 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1387 add_symbol_to_list (sym
, &local_symbols
);
1391 /* This is used by Sun FORTRAN for "function result value".
1392 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1393 that Pascal uses it too, but when I tried it Pascal used
1394 "x:3" (local symbol) instead. */
1395 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1396 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
1397 SYMBOL_VALUE (sym
) = valu
;
1398 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1399 add_symbol_to_list (sym
, &local_symbols
);
1403 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
1404 SYMBOL_CLASS (sym
) = LOC_CONST
;
1405 SYMBOL_VALUE (sym
) = 0;
1406 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1407 add_symbol_to_list (sym
, &file_symbols
);
1411 /* Some systems pass variables of certain types by reference instead
1412 of by value, i.e. they will pass the address of a structure (in a
1413 register or on the stack) instead of the structure itself. */
1415 if (gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
))
1416 && SYMBOL_IS_ARGUMENT (sym
))
1418 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1419 variables passed in a register). */
1420 if (SYMBOL_CLASS (sym
) == LOC_REGISTER
)
1421 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1422 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1423 and subsequent arguments on SPARC, for example). */
1424 else if (SYMBOL_CLASS (sym
) == LOC_ARG
)
1425 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1431 /* Skip rest of this symbol and return an error type.
1433 General notes on error recovery: error_type always skips to the
1434 end of the symbol (modulo cretinous dbx symbol name continuation).
1435 Thus code like this:
1437 if (*(*pp)++ != ';')
1438 return error_type (pp, objfile);
1440 is wrong because if *pp starts out pointing at '\0' (typically as the
1441 result of an earlier error), it will be incremented to point to the
1442 start of the next symbol, which might produce strange results, at least
1443 if you run off the end of the string table. Instead use
1446 return error_type (pp, objfile);
1452 foo = error_type (pp, objfile);
1456 And in case it isn't obvious, the point of all this hair is so the compiler
1457 can define new types and new syntaxes, and old versions of the
1458 debugger will be able to read the new symbol tables. */
1460 static struct type
*
1461 error_type (char **pp
, struct objfile
*objfile
)
1463 complaint (&symfile_complaints
, _("couldn't parse type; debugger out of date?"));
1466 /* Skip to end of symbol. */
1467 while (**pp
!= '\0')
1472 /* Check for and handle cretinous dbx symbol name continuation! */
1473 if ((*pp
)[-1] == '\\' || (*pp
)[-1] == '?')
1475 *pp
= next_symbol_text (objfile
);
1482 return objfile_type (objfile
)->builtin_error
;
1486 /* Read type information or a type definition; return the type. Even
1487 though this routine accepts either type information or a type
1488 definition, the distinction is relevant--some parts of stabsread.c
1489 assume that type information starts with a digit, '-', or '(' in
1490 deciding whether to call read_type. */
1492 static struct type
*
1493 read_type (char **pp
, struct objfile
*objfile
)
1495 struct type
*type
= 0;
1498 char type_descriptor
;
1500 /* Size in bits of type if specified by a type attribute, or -1 if
1501 there is no size attribute. */
1504 /* Used to distinguish string and bitstring from char-array and set. */
1507 /* Used to distinguish vector from array. */
1510 /* Read type number if present. The type number may be omitted.
1511 for instance in a two-dimensional array declared with type
1512 "ar1;1;10;ar1;1;10;4". */
1513 if ((**pp
>= '0' && **pp
<= '9')
1517 if (read_type_number (pp
, typenums
) != 0)
1518 return error_type (pp
, objfile
);
1522 /* Type is not being defined here. Either it already
1523 exists, or this is a forward reference to it.
1524 dbx_alloc_type handles both cases. */
1525 type
= dbx_alloc_type (typenums
, objfile
);
1527 /* If this is a forward reference, arrange to complain if it
1528 doesn't get patched up by the time we're done
1530 if (TYPE_CODE (type
) == TYPE_CODE_UNDEF
)
1531 add_undefined_type (type
, typenums
);
1536 /* Type is being defined here. */
1538 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1543 /* 'typenums=' not present, type is anonymous. Read and return
1544 the definition, but don't put it in the type vector. */
1545 typenums
[0] = typenums
[1] = -1;
1550 type_descriptor
= (*pp
)[-1];
1551 switch (type_descriptor
)
1555 enum type_code code
;
1557 /* Used to index through file_symbols. */
1558 struct pending
*ppt
;
1561 /* Name including "struct", etc. */
1565 char *from
, *to
, *p
, *q1
, *q2
;
1567 /* Set the type code according to the following letter. */
1571 code
= TYPE_CODE_STRUCT
;
1574 code
= TYPE_CODE_UNION
;
1577 code
= TYPE_CODE_ENUM
;
1581 /* Complain and keep going, so compilers can invent new
1582 cross-reference types. */
1583 complaint (&symfile_complaints
,
1584 _("Unrecognized cross-reference type `%c'"), (*pp
)[0]);
1585 code
= TYPE_CODE_STRUCT
;
1590 q1
= strchr (*pp
, '<');
1591 p
= strchr (*pp
, ':');
1593 return error_type (pp
, objfile
);
1594 if (q1
&& p
> q1
&& p
[1] == ':')
1596 int nesting_level
= 0;
1598 for (q2
= q1
; *q2
; q2
++)
1602 else if (*q2
== '>')
1604 else if (*q2
== ':' && nesting_level
== 0)
1609 return error_type (pp
, objfile
);
1612 if (current_subfile
->language
== language_cplus
)
1614 char *new_name
, *name
= alloca (p
- *pp
+ 1);
1616 memcpy (name
, *pp
, p
- *pp
);
1617 name
[p
- *pp
] = '\0';
1618 new_name
= cp_canonicalize_string (name
);
1619 if (new_name
!= NULL
)
1621 type_name
= obsavestring (new_name
, strlen (new_name
),
1622 &objfile
->objfile_obstack
);
1626 if (type_name
== NULL
)
1629 (char *) obstack_alloc (&objfile
->objfile_obstack
, p
- *pp
+ 1);
1631 /* Copy the name. */
1638 /* Set the pointer ahead of the name which we just read, and
1643 /* If this type has already been declared, then reuse the same
1644 type, rather than allocating a new one. This saves some
1647 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
1648 for (i
= 0; i
< ppt
->nsyms
; i
++)
1650 struct symbol
*sym
= ppt
->symbol
[i
];
1652 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
1653 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
1654 && (TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
1655 && strcmp (SYMBOL_LINKAGE_NAME (sym
), type_name
) == 0)
1657 obstack_free (&objfile
->objfile_obstack
, type_name
);
1658 type
= SYMBOL_TYPE (sym
);
1659 if (typenums
[0] != -1)
1660 *dbx_lookup_type (typenums
, objfile
) = type
;
1665 /* Didn't find the type to which this refers, so we must
1666 be dealing with a forward reference. Allocate a type
1667 structure for it, and keep track of it so we can
1668 fill in the rest of the fields when we get the full
1670 type
= dbx_alloc_type (typenums
, objfile
);
1671 TYPE_CODE (type
) = code
;
1672 TYPE_TAG_NAME (type
) = type_name
;
1673 INIT_CPLUS_SPECIFIC (type
);
1674 TYPE_STUB (type
) = 1;
1676 add_undefined_type (type
, typenums
);
1680 case '-': /* RS/6000 built-in type */
1694 /* We deal with something like t(1,2)=(3,4)=... which
1695 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1697 /* Allocate and enter the typedef type first.
1698 This handles recursive types. */
1699 type
= dbx_alloc_type (typenums
, objfile
);
1700 TYPE_CODE (type
) = TYPE_CODE_TYPEDEF
;
1702 struct type
*xtype
= read_type (pp
, objfile
);
1706 /* It's being defined as itself. That means it is "void". */
1707 TYPE_CODE (type
) = TYPE_CODE_VOID
;
1708 TYPE_LENGTH (type
) = 1;
1710 else if (type_size
>= 0 || is_string
)
1712 /* This is the absolute wrong way to construct types. Every
1713 other debug format has found a way around this problem and
1714 the related problems with unnecessarily stubbed types;
1715 someone motivated should attempt to clean up the issue
1716 here as well. Once a type pointed to has been created it
1717 should not be modified.
1719 Well, it's not *absolutely* wrong. Constructing recursive
1720 types (trees, linked lists) necessarily entails modifying
1721 types after creating them. Constructing any loop structure
1722 entails side effects. The Dwarf 2 reader does handle this
1723 more gracefully (it never constructs more than once
1724 instance of a type object, so it doesn't have to copy type
1725 objects wholesale), but it still mutates type objects after
1726 other folks have references to them.
1728 Keep in mind that this circularity/mutation issue shows up
1729 at the source language level, too: C's "incomplete types",
1730 for example. So the proper cleanup, I think, would be to
1731 limit GDB's type smashing to match exactly those required
1732 by the source language. So GDB could have a
1733 "complete_this_type" function, but never create unnecessary
1734 copies of a type otherwise. */
1735 replace_type (type
, xtype
);
1736 TYPE_NAME (type
) = NULL
;
1737 TYPE_TAG_NAME (type
) = NULL
;
1741 TYPE_TARGET_STUB (type
) = 1;
1742 TYPE_TARGET_TYPE (type
) = xtype
;
1747 /* In the following types, we must be sure to overwrite any existing
1748 type that the typenums refer to, rather than allocating a new one
1749 and making the typenums point to the new one. This is because there
1750 may already be pointers to the existing type (if it had been
1751 forward-referenced), and we must change it to a pointer, function,
1752 reference, or whatever, *in-place*. */
1754 case '*': /* Pointer to another type */
1755 type1
= read_type (pp
, objfile
);
1756 type
= make_pointer_type (type1
, dbx_lookup_type (typenums
, objfile
));
1759 case '&': /* Reference to another type */
1760 type1
= read_type (pp
, objfile
);
1761 type
= make_reference_type (type1
, dbx_lookup_type (typenums
, objfile
));
1764 case 'f': /* Function returning another type */
1765 type1
= read_type (pp
, objfile
);
1766 type
= make_function_type (type1
, dbx_lookup_type (typenums
, objfile
));
1769 case 'g': /* Prototyped function. (Sun) */
1771 /* Unresolved questions:
1773 - According to Sun's ``STABS Interface Manual'', for 'f'
1774 and 'F' symbol descriptors, a `0' in the argument type list
1775 indicates a varargs function. But it doesn't say how 'g'
1776 type descriptors represent that info. Someone with access
1777 to Sun's toolchain should try it out.
1779 - According to the comment in define_symbol (search for
1780 `process_prototype_types:'), Sun emits integer arguments as
1781 types which ref themselves --- like `void' types. Do we
1782 have to deal with that here, too? Again, someone with
1783 access to Sun's toolchain should try it out and let us
1786 const char *type_start
= (*pp
) - 1;
1787 struct type
*return_type
= read_type (pp
, objfile
);
1788 struct type
*func_type
1789 = make_function_type (return_type
,
1790 dbx_lookup_type (typenums
, objfile
));
1793 struct type_list
*next
;
1797 while (**pp
&& **pp
!= '#')
1799 struct type
*arg_type
= read_type (pp
, objfile
);
1800 struct type_list
*new = alloca (sizeof (*new));
1801 new->type
= arg_type
;
1802 new->next
= arg_types
;
1810 complaint (&symfile_complaints
,
1811 _("Prototyped function type didn't end arguments with `#':\n%s"),
1815 /* If there is just one argument whose type is `void', then
1816 that's just an empty argument list. */
1818 && ! arg_types
->next
1819 && TYPE_CODE (arg_types
->type
) == TYPE_CODE_VOID
)
1822 TYPE_FIELDS (func_type
)
1823 = (struct field
*) TYPE_ALLOC (func_type
,
1824 num_args
* sizeof (struct field
));
1825 memset (TYPE_FIELDS (func_type
), 0, num_args
* sizeof (struct field
));
1828 struct type_list
*t
;
1830 /* We stuck each argument type onto the front of the list
1831 when we read it, so the list is reversed. Build the
1832 fields array right-to-left. */
1833 for (t
= arg_types
, i
= num_args
- 1; t
; t
= t
->next
, i
--)
1834 TYPE_FIELD_TYPE (func_type
, i
) = t
->type
;
1836 TYPE_NFIELDS (func_type
) = num_args
;
1837 TYPE_PROTOTYPED (func_type
) = 1;
1843 case 'k': /* Const qualifier on some type (Sun) */
1844 type
= read_type (pp
, objfile
);
1845 type
= make_cv_type (1, TYPE_VOLATILE (type
), type
,
1846 dbx_lookup_type (typenums
, objfile
));
1849 case 'B': /* Volatile qual on some type (Sun) */
1850 type
= read_type (pp
, objfile
);
1851 type
= make_cv_type (TYPE_CONST (type
), 1, type
,
1852 dbx_lookup_type (typenums
, objfile
));
1856 if (isdigit (**pp
) || **pp
== '(' || **pp
== '-')
1857 { /* Member (class & variable) type */
1858 /* FIXME -- we should be doing smash_to_XXX types here. */
1860 struct type
*domain
= read_type (pp
, objfile
);
1861 struct type
*memtype
;
1864 /* Invalid member type data format. */
1865 return error_type (pp
, objfile
);
1868 memtype
= read_type (pp
, objfile
);
1869 type
= dbx_alloc_type (typenums
, objfile
);
1870 smash_to_memberptr_type (type
, domain
, memtype
);
1873 /* type attribute */
1877 /* Skip to the semicolon. */
1878 while (**pp
!= ';' && **pp
!= '\0')
1881 return error_type (pp
, objfile
);
1883 ++ * pp
; /* Skip the semicolon. */
1887 case 's': /* Size attribute */
1888 type_size
= atoi (attr
+ 1);
1893 case 'S': /* String attribute */
1894 /* FIXME: check to see if following type is array? */
1898 case 'V': /* Vector attribute */
1899 /* FIXME: check to see if following type is array? */
1904 /* Ignore unrecognized type attributes, so future compilers
1905 can invent new ones. */
1913 case '#': /* Method (class & fn) type */
1914 if ((*pp
)[0] == '#')
1916 /* We'll get the parameter types from the name. */
1917 struct type
*return_type
;
1920 return_type
= read_type (pp
, objfile
);
1921 if (*(*pp
)++ != ';')
1922 complaint (&symfile_complaints
,
1923 _("invalid (minimal) member type data format at symtab pos %d."),
1925 type
= allocate_stub_method (return_type
);
1926 if (typenums
[0] != -1)
1927 *dbx_lookup_type (typenums
, objfile
) = type
;
1931 struct type
*domain
= read_type (pp
, objfile
);
1932 struct type
*return_type
;
1937 /* Invalid member type data format. */
1938 return error_type (pp
, objfile
);
1942 return_type
= read_type (pp
, objfile
);
1943 args
= read_args (pp
, ';', objfile
, &nargs
, &varargs
);
1945 return error_type (pp
, objfile
);
1946 type
= dbx_alloc_type (typenums
, objfile
);
1947 smash_to_method_type (type
, domain
, return_type
, args
,
1952 case 'r': /* Range type */
1953 type
= read_range_type (pp
, typenums
, type_size
, objfile
);
1954 if (typenums
[0] != -1)
1955 *dbx_lookup_type (typenums
, objfile
) = type
;
1960 /* Sun ACC builtin int type */
1961 type
= read_sun_builtin_type (pp
, typenums
, objfile
);
1962 if (typenums
[0] != -1)
1963 *dbx_lookup_type (typenums
, objfile
) = type
;
1967 case 'R': /* Sun ACC builtin float type */
1968 type
= read_sun_floating_type (pp
, typenums
, objfile
);
1969 if (typenums
[0] != -1)
1970 *dbx_lookup_type (typenums
, objfile
) = type
;
1973 case 'e': /* Enumeration type */
1974 type
= dbx_alloc_type (typenums
, objfile
);
1975 type
= read_enum_type (pp
, type
, objfile
);
1976 if (typenums
[0] != -1)
1977 *dbx_lookup_type (typenums
, objfile
) = type
;
1980 case 's': /* Struct type */
1981 case 'u': /* Union type */
1983 enum type_code type_code
= TYPE_CODE_UNDEF
;
1984 type
= dbx_alloc_type (typenums
, objfile
);
1985 switch (type_descriptor
)
1988 type_code
= TYPE_CODE_STRUCT
;
1991 type_code
= TYPE_CODE_UNION
;
1994 type
= read_struct_type (pp
, type
, type_code
, objfile
);
1998 case 'a': /* Array type */
2000 return error_type (pp
, objfile
);
2003 type
= dbx_alloc_type (typenums
, objfile
);
2004 type
= read_array_type (pp
, type
, objfile
);
2006 TYPE_CODE (type
) = TYPE_CODE_STRING
;
2008 make_vector_type (type
);
2011 case 'S': /* Set or bitstring type */
2012 type1
= read_type (pp
, objfile
);
2013 type
= create_set_type ((struct type
*) NULL
, type1
);
2015 TYPE_CODE (type
) = TYPE_CODE_BITSTRING
;
2016 if (typenums
[0] != -1)
2017 *dbx_lookup_type (typenums
, objfile
) = type
;
2021 --*pp
; /* Go back to the symbol in error */
2022 /* Particularly important if it was \0! */
2023 return error_type (pp
, objfile
);
2028 warning (_("GDB internal error, type is NULL in stabsread.c."));
2029 return error_type (pp
, objfile
);
2032 /* Size specified in a type attribute overrides any other size. */
2033 if (type_size
!= -1)
2034 TYPE_LENGTH (type
) = (type_size
+ TARGET_CHAR_BIT
- 1) / TARGET_CHAR_BIT
;
2039 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2040 Return the proper type node for a given builtin type number. */
2042 static const struct objfile_data
*rs6000_builtin_type_data
;
2044 static struct type
*
2045 rs6000_builtin_type (int typenum
, struct objfile
*objfile
)
2047 struct type
**negative_types
= objfile_data (objfile
, rs6000_builtin_type_data
);
2049 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2050 #define NUMBER_RECOGNIZED 34
2051 struct type
*rettype
= NULL
;
2053 if (typenum
>= 0 || typenum
< -NUMBER_RECOGNIZED
)
2055 complaint (&symfile_complaints
, _("Unknown builtin type %d"), typenum
);
2056 return objfile_type (objfile
)->builtin_error
;
2059 if (!negative_types
)
2061 /* This includes an empty slot for type number -0. */
2062 negative_types
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
2063 NUMBER_RECOGNIZED
+ 1, struct type
*);
2064 set_objfile_data (objfile
, rs6000_builtin_type_data
, negative_types
);
2067 if (negative_types
[-typenum
] != NULL
)
2068 return negative_types
[-typenum
];
2070 #if TARGET_CHAR_BIT != 8
2071 #error This code wrong for TARGET_CHAR_BIT not 8
2072 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2073 that if that ever becomes not true, the correct fix will be to
2074 make the size in the struct type to be in bits, not in units of
2081 /* The size of this and all the other types are fixed, defined
2082 by the debugging format. If there is a type called "int" which
2083 is other than 32 bits, then it should use a new negative type
2084 number (or avoid negative type numbers for that case).
2085 See stabs.texinfo. */
2086 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "int", objfile
);
2089 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "char", objfile
);
2092 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "short", objfile
);
2095 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "long", objfile
);
2098 rettype
= init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_UNSIGNED
,
2099 "unsigned char", objfile
);
2102 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "signed char", objfile
);
2105 rettype
= init_type (TYPE_CODE_INT
, 2, TYPE_FLAG_UNSIGNED
,
2106 "unsigned short", objfile
);
2109 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2110 "unsigned int", objfile
);
2113 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2114 "unsigned", objfile
);
2116 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2117 "unsigned long", objfile
);
2120 rettype
= init_type (TYPE_CODE_VOID
, 1, 0, "void", objfile
);
2123 /* IEEE single precision (32 bit). */
2124 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "float", objfile
);
2127 /* IEEE double precision (64 bit). */
2128 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "double", objfile
);
2131 /* This is an IEEE double on the RS/6000, and different machines with
2132 different sizes for "long double" should use different negative
2133 type numbers. See stabs.texinfo. */
2134 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "long double", objfile
);
2137 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer", objfile
);
2140 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2141 "boolean", objfile
);
2144 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "short real", objfile
);
2147 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "real", objfile
);
2150 rettype
= init_type (TYPE_CODE_ERROR
, 0, 0, "stringptr", objfile
);
2153 rettype
= init_type (TYPE_CODE_CHAR
, 1, TYPE_FLAG_UNSIGNED
,
2154 "character", objfile
);
2157 rettype
= init_type (TYPE_CODE_BOOL
, 1, TYPE_FLAG_UNSIGNED
,
2158 "logical*1", objfile
);
2161 rettype
= init_type (TYPE_CODE_BOOL
, 2, TYPE_FLAG_UNSIGNED
,
2162 "logical*2", objfile
);
2165 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2166 "logical*4", objfile
);
2169 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2170 "logical", objfile
);
2173 /* Complex type consisting of two IEEE single precision values. */
2174 rettype
= init_type (TYPE_CODE_COMPLEX
, 8, 0, "complex", objfile
);
2175 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 4, 0, "float",
2179 /* Complex type consisting of two IEEE double precision values. */
2180 rettype
= init_type (TYPE_CODE_COMPLEX
, 16, 0, "double complex", NULL
);
2181 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 8, 0, "double",
2185 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "integer*1", objfile
);
2188 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "integer*2", objfile
);
2191 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer*4", objfile
);
2194 rettype
= init_type (TYPE_CODE_CHAR
, 2, 0, "wchar", objfile
);
2197 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "long long", objfile
);
2200 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2201 "unsigned long long", objfile
);
2204 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2205 "logical*8", objfile
);
2208 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "integer*8", objfile
);
2211 negative_types
[-typenum
] = rettype
;
2215 /* This page contains subroutines of read_type. */
2217 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2220 update_method_name_from_physname (char **old_name
, char *physname
)
2224 method_name
= method_name_from_physname (physname
);
2226 if (method_name
== NULL
)
2228 complaint (&symfile_complaints
,
2229 _("Method has bad physname %s\n"), physname
);
2233 if (strcmp (*old_name
, method_name
) != 0)
2236 *old_name
= method_name
;
2239 xfree (method_name
);
2242 /* Read member function stabs info for C++ classes. The form of each member
2245 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2247 An example with two member functions is:
2249 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2251 For the case of overloaded operators, the format is op$::*.funcs, where
2252 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2253 name (such as `+=') and `.' marks the end of the operator name.
2255 Returns 1 for success, 0 for failure. */
2258 read_member_functions (struct field_info
*fip
, char **pp
, struct type
*type
,
2259 struct objfile
*objfile
)
2263 /* Total number of member functions defined in this class. If the class
2264 defines two `f' functions, and one `g' function, then this will have
2266 int total_length
= 0;
2270 struct next_fnfield
*next
;
2271 struct fn_field fn_field
;
2274 struct type
*look_ahead_type
;
2275 struct next_fnfieldlist
*new_fnlist
;
2276 struct next_fnfield
*new_sublist
;
2280 /* Process each list until we find something that is not a member function
2281 or find the end of the functions. */
2285 /* We should be positioned at the start of the function name.
2286 Scan forward to find the first ':' and if it is not the
2287 first of a "::" delimiter, then this is not a member function. */
2299 look_ahead_type
= NULL
;
2302 new_fnlist
= (struct next_fnfieldlist
*)
2303 xmalloc (sizeof (struct next_fnfieldlist
));
2304 make_cleanup (xfree
, new_fnlist
);
2305 memset (new_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2307 if ((*pp
)[0] == 'o' && (*pp
)[1] == 'p' && is_cplus_marker ((*pp
)[2]))
2309 /* This is a completely wierd case. In order to stuff in the
2310 names that might contain colons (the usual name delimiter),
2311 Mike Tiemann defined a different name format which is
2312 signalled if the identifier is "op$". In that case, the
2313 format is "op$::XXXX." where XXXX is the name. This is
2314 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2315 /* This lets the user type "break operator+".
2316 We could just put in "+" as the name, but that wouldn't
2318 static char opname
[32] = "op$";
2319 char *o
= opname
+ 3;
2321 /* Skip past '::'. */
2324 STABS_CONTINUE (pp
, objfile
);
2330 main_fn_name
= savestring (opname
, o
- opname
);
2336 main_fn_name
= savestring (*pp
, p
- *pp
);
2337 /* Skip past '::'. */
2340 new_fnlist
->fn_fieldlist
.name
= main_fn_name
;
2345 (struct next_fnfield
*) xmalloc (sizeof (struct next_fnfield
));
2346 make_cleanup (xfree
, new_sublist
);
2347 memset (new_sublist
, 0, sizeof (struct next_fnfield
));
2349 /* Check for and handle cretinous dbx symbol name continuation! */
2350 if (look_ahead_type
== NULL
)
2353 STABS_CONTINUE (pp
, objfile
);
2355 new_sublist
->fn_field
.type
= read_type (pp
, objfile
);
2358 /* Invalid symtab info for member function. */
2364 /* g++ version 1 kludge */
2365 new_sublist
->fn_field
.type
= look_ahead_type
;
2366 look_ahead_type
= NULL
;
2376 /* If this is just a stub, then we don't have the real name here. */
2378 if (TYPE_STUB (new_sublist
->fn_field
.type
))
2380 if (!TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
))
2381 TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
) = type
;
2382 new_sublist
->fn_field
.is_stub
= 1;
2384 new_sublist
->fn_field
.physname
= savestring (*pp
, p
- *pp
);
2387 /* Set this member function's visibility fields. */
2390 case VISIBILITY_PRIVATE
:
2391 new_sublist
->fn_field
.is_private
= 1;
2393 case VISIBILITY_PROTECTED
:
2394 new_sublist
->fn_field
.is_protected
= 1;
2398 STABS_CONTINUE (pp
, objfile
);
2401 case 'A': /* Normal functions. */
2402 new_sublist
->fn_field
.is_const
= 0;
2403 new_sublist
->fn_field
.is_volatile
= 0;
2406 case 'B': /* `const' member functions. */
2407 new_sublist
->fn_field
.is_const
= 1;
2408 new_sublist
->fn_field
.is_volatile
= 0;
2411 case 'C': /* `volatile' member function. */
2412 new_sublist
->fn_field
.is_const
= 0;
2413 new_sublist
->fn_field
.is_volatile
= 1;
2416 case 'D': /* `const volatile' member function. */
2417 new_sublist
->fn_field
.is_const
= 1;
2418 new_sublist
->fn_field
.is_volatile
= 1;
2421 case '*': /* File compiled with g++ version 1 -- no info */
2426 complaint (&symfile_complaints
,
2427 _("const/volatile indicator missing, got '%c'"), **pp
);
2436 /* virtual member function, followed by index.
2437 The sign bit is set to distinguish pointers-to-methods
2438 from virtual function indicies. Since the array is
2439 in words, the quantity must be shifted left by 1
2440 on 16 bit machine, and by 2 on 32 bit machine, forcing
2441 the sign bit out, and usable as a valid index into
2442 the array. Remove the sign bit here. */
2443 new_sublist
->fn_field
.voffset
=
2444 (0x7fffffff & read_huge_number (pp
, ';', &nbits
, 0)) + 2;
2448 STABS_CONTINUE (pp
, objfile
);
2449 if (**pp
== ';' || **pp
== '\0')
2451 /* Must be g++ version 1. */
2452 new_sublist
->fn_field
.fcontext
= 0;
2456 /* Figure out from whence this virtual function came.
2457 It may belong to virtual function table of
2458 one of its baseclasses. */
2459 look_ahead_type
= read_type (pp
, objfile
);
2462 /* g++ version 1 overloaded methods. */
2466 new_sublist
->fn_field
.fcontext
= look_ahead_type
;
2475 look_ahead_type
= NULL
;
2481 /* static member function. */
2483 int slen
= strlen (main_fn_name
);
2485 new_sublist
->fn_field
.voffset
= VOFFSET_STATIC
;
2487 /* For static member functions, we can't tell if they
2488 are stubbed, as they are put out as functions, and not as
2490 GCC v2 emits the fully mangled name if
2491 dbxout.c:flag_minimal_debug is not set, so we have to
2492 detect a fully mangled physname here and set is_stub
2493 accordingly. Fully mangled physnames in v2 start with
2494 the member function name, followed by two underscores.
2495 GCC v3 currently always emits stubbed member functions,
2496 but with fully mangled physnames, which start with _Z. */
2497 if (!(strncmp (new_sublist
->fn_field
.physname
,
2498 main_fn_name
, slen
) == 0
2499 && new_sublist
->fn_field
.physname
[slen
] == '_'
2500 && new_sublist
->fn_field
.physname
[slen
+ 1] == '_'))
2502 new_sublist
->fn_field
.is_stub
= 1;
2509 complaint (&symfile_complaints
,
2510 _("member function type missing, got '%c'"), (*pp
)[-1]);
2511 /* Fall through into normal member function. */
2514 /* normal member function. */
2515 new_sublist
->fn_field
.voffset
= 0;
2516 new_sublist
->fn_field
.fcontext
= 0;
2520 new_sublist
->next
= sublist
;
2521 sublist
= new_sublist
;
2523 STABS_CONTINUE (pp
, objfile
);
2525 while (**pp
!= ';' && **pp
!= '\0');
2528 STABS_CONTINUE (pp
, objfile
);
2530 /* Skip GCC 3.X member functions which are duplicates of the callable
2531 constructor/destructor. */
2532 if (strcmp_iw (main_fn_name
, "__base_ctor ") == 0
2533 || strcmp_iw (main_fn_name
, "__base_dtor ") == 0
2534 || strcmp (main_fn_name
, "__deleting_dtor") == 0)
2536 xfree (main_fn_name
);
2541 int has_destructor
= 0, has_other
= 0;
2543 struct next_fnfield
*tmp_sublist
;
2545 /* Various versions of GCC emit various mostly-useless
2546 strings in the name field for special member functions.
2548 For stub methods, we need to defer correcting the name
2549 until we are ready to unstub the method, because the current
2550 name string is used by gdb_mangle_name. The only stub methods
2551 of concern here are GNU v2 operators; other methods have their
2552 names correct (see caveat below).
2554 For non-stub methods, in GNU v3, we have a complete physname.
2555 Therefore we can safely correct the name now. This primarily
2556 affects constructors and destructors, whose name will be
2557 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2558 operators will also have incorrect names; for instance,
2559 "operator int" will be named "operator i" (i.e. the type is
2562 For non-stub methods in GNU v2, we have no easy way to
2563 know if we have a complete physname or not. For most
2564 methods the result depends on the platform (if CPLUS_MARKER
2565 can be `$' or `.', it will use minimal debug information, or
2566 otherwise the full physname will be included).
2568 Rather than dealing with this, we take a different approach.
2569 For v3 mangled names, we can use the full physname; for v2,
2570 we use cplus_demangle_opname (which is actually v2 specific),
2571 because the only interesting names are all operators - once again
2572 barring the caveat below. Skip this process if any method in the
2573 group is a stub, to prevent our fouling up the workings of
2576 The caveat: GCC 2.95.x (and earlier?) put constructors and
2577 destructors in the same method group. We need to split this
2578 into two groups, because they should have different names.
2579 So for each method group we check whether it contains both
2580 routines whose physname appears to be a destructor (the physnames
2581 for and destructors are always provided, due to quirks in v2
2582 mangling) and routines whose physname does not appear to be a
2583 destructor. If so then we break up the list into two halves.
2584 Even if the constructors and destructors aren't in the same group
2585 the destructor will still lack the leading tilde, so that also
2588 So, to summarize what we expect and handle here:
2590 Given Given Real Real Action
2591 method name physname physname method name
2593 __opi [none] __opi__3Foo operator int opname
2595 Foo _._3Foo _._3Foo ~Foo separate and
2597 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2598 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2601 tmp_sublist
= sublist
;
2602 while (tmp_sublist
!= NULL
)
2604 if (tmp_sublist
->fn_field
.is_stub
)
2606 if (tmp_sublist
->fn_field
.physname
[0] == '_'
2607 && tmp_sublist
->fn_field
.physname
[1] == 'Z')
2610 if (is_destructor_name (tmp_sublist
->fn_field
.physname
))
2615 tmp_sublist
= tmp_sublist
->next
;
2618 if (has_destructor
&& has_other
)
2620 struct next_fnfieldlist
*destr_fnlist
;
2621 struct next_fnfield
*last_sublist
;
2623 /* Create a new fn_fieldlist for the destructors. */
2625 destr_fnlist
= (struct next_fnfieldlist
*)
2626 xmalloc (sizeof (struct next_fnfieldlist
));
2627 make_cleanup (xfree
, destr_fnlist
);
2628 memset (destr_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2629 destr_fnlist
->fn_fieldlist
.name
2630 = obconcat (&objfile
->objfile_obstack
, "~",
2631 new_fnlist
->fn_fieldlist
.name
, (char *) NULL
);
2633 destr_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2634 obstack_alloc (&objfile
->objfile_obstack
,
2635 sizeof (struct fn_field
) * has_destructor
);
2636 memset (destr_fnlist
->fn_fieldlist
.fn_fields
, 0,
2637 sizeof (struct fn_field
) * has_destructor
);
2638 tmp_sublist
= sublist
;
2639 last_sublist
= NULL
;
2641 while (tmp_sublist
!= NULL
)
2643 if (!is_destructor_name (tmp_sublist
->fn_field
.physname
))
2645 tmp_sublist
= tmp_sublist
->next
;
2649 destr_fnlist
->fn_fieldlist
.fn_fields
[i
++]
2650 = tmp_sublist
->fn_field
;
2652 last_sublist
->next
= tmp_sublist
->next
;
2654 sublist
= tmp_sublist
->next
;
2655 last_sublist
= tmp_sublist
;
2656 tmp_sublist
= tmp_sublist
->next
;
2659 destr_fnlist
->fn_fieldlist
.length
= has_destructor
;
2660 destr_fnlist
->next
= fip
->fnlist
;
2661 fip
->fnlist
= destr_fnlist
;
2663 total_length
+= has_destructor
;
2664 length
-= has_destructor
;
2668 /* v3 mangling prevents the use of abbreviated physnames,
2669 so we can do this here. There are stubbed methods in v3
2671 - in -gstabs instead of -gstabs+
2672 - or for static methods, which are output as a function type
2673 instead of a method type. */
2675 update_method_name_from_physname (&new_fnlist
->fn_fieldlist
.name
,
2676 sublist
->fn_field
.physname
);
2678 else if (has_destructor
&& new_fnlist
->fn_fieldlist
.name
[0] != '~')
2680 new_fnlist
->fn_fieldlist
.name
=
2681 concat ("~", main_fn_name
, (char *)NULL
);
2682 xfree (main_fn_name
);
2686 char dem_opname
[256];
2689 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2690 dem_opname
, DMGL_ANSI
);
2692 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2695 new_fnlist
->fn_fieldlist
.name
2696 = obsavestring (dem_opname
, strlen (dem_opname
),
2697 &objfile
->objfile_obstack
);
2700 new_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2701 obstack_alloc (&objfile
->objfile_obstack
,
2702 sizeof (struct fn_field
) * length
);
2703 memset (new_fnlist
->fn_fieldlist
.fn_fields
, 0,
2704 sizeof (struct fn_field
) * length
);
2705 for (i
= length
; (i
--, sublist
); sublist
= sublist
->next
)
2707 new_fnlist
->fn_fieldlist
.fn_fields
[i
] = sublist
->fn_field
;
2710 new_fnlist
->fn_fieldlist
.length
= length
;
2711 new_fnlist
->next
= fip
->fnlist
;
2712 fip
->fnlist
= new_fnlist
;
2714 total_length
+= length
;
2720 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
2721 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
2722 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * nfn_fields
);
2723 memset (TYPE_FN_FIELDLISTS (type
), 0,
2724 sizeof (struct fn_fieldlist
) * nfn_fields
);
2725 TYPE_NFN_FIELDS (type
) = nfn_fields
;
2726 TYPE_NFN_FIELDS_TOTAL (type
) = total_length
;
2732 /* Special GNU C++ name.
2734 Returns 1 for success, 0 for failure. "failure" means that we can't
2735 keep parsing and it's time for error_type(). */
2738 read_cpp_abbrev (struct field_info
*fip
, char **pp
, struct type
*type
,
2739 struct objfile
*objfile
)
2744 struct type
*context
;
2754 /* At this point, *pp points to something like "22:23=*22...",
2755 where the type number before the ':' is the "context" and
2756 everything after is a regular type definition. Lookup the
2757 type, find it's name, and construct the field name. */
2759 context
= read_type (pp
, objfile
);
2763 case 'f': /* $vf -- a virtual function table pointer */
2764 name
= type_name_no_tag (context
);
2769 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
,
2770 vptr_name
, name
, (char *) NULL
);
2773 case 'b': /* $vb -- a virtual bsomethingorother */
2774 name
= type_name_no_tag (context
);
2777 complaint (&symfile_complaints
,
2778 _("C++ abbreviated type name unknown at symtab pos %d"),
2782 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
, vb_name
,
2783 name
, (char *) NULL
);
2787 invalid_cpp_abbrev_complaint (*pp
);
2788 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
,
2789 "INVALID_CPLUSPLUS_ABBREV",
2794 /* At this point, *pp points to the ':'. Skip it and read the
2800 invalid_cpp_abbrev_complaint (*pp
);
2803 fip
->list
->field
.type
= read_type (pp
, objfile
);
2805 (*pp
)++; /* Skip the comma. */
2812 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
,
2817 /* This field is unpacked. */
2818 FIELD_BITSIZE (fip
->list
->field
) = 0;
2819 fip
->list
->visibility
= VISIBILITY_PRIVATE
;
2823 invalid_cpp_abbrev_complaint (*pp
);
2824 /* We have no idea what syntax an unrecognized abbrev would have, so
2825 better return 0. If we returned 1, we would need to at least advance
2826 *pp to avoid an infinite loop. */
2833 read_one_struct_field (struct field_info
*fip
, char **pp
, char *p
,
2834 struct type
*type
, struct objfile
*objfile
)
2836 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
2838 fip
->list
->field
.name
=
2839 obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
2842 /* This means we have a visibility for a field coming. */
2846 fip
->list
->visibility
= *(*pp
)++;
2850 /* normal dbx-style format, no explicit visibility */
2851 fip
->list
->visibility
= VISIBILITY_PUBLIC
;
2854 fip
->list
->field
.type
= read_type (pp
, objfile
);
2859 /* Possible future hook for nested types. */
2862 fip
->list
->field
.bitpos
= (long) -2; /* nested type */
2872 /* Static class member. */
2873 SET_FIELD_PHYSNAME (fip
->list
->field
, savestring (*pp
, p
- *pp
));
2877 else if (**pp
!= ',')
2879 /* Bad structure-type format. */
2880 stabs_general_complaint ("bad structure-type format");
2884 (*pp
)++; /* Skip the comma. */
2889 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ',', &nbits
, 0);
2892 stabs_general_complaint ("bad structure-type format");
2895 FIELD_BITSIZE (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
, 0);
2898 stabs_general_complaint ("bad structure-type format");
2903 if (FIELD_BITPOS (fip
->list
->field
) == 0
2904 && FIELD_BITSIZE (fip
->list
->field
) == 0)
2906 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2907 it is a field which has been optimized out. The correct stab for
2908 this case is to use VISIBILITY_IGNORE, but that is a recent
2909 invention. (2) It is a 0-size array. For example
2910 union { int num; char str[0]; } foo. Printing _("<no value>" for
2911 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2912 will continue to work, and a 0-size array as a whole doesn't
2913 have any contents to print.
2915 I suspect this probably could also happen with gcc -gstabs (not
2916 -gstabs+) for static fields, and perhaps other C++ extensions.
2917 Hopefully few people use -gstabs with gdb, since it is intended
2918 for dbx compatibility. */
2920 /* Ignore this field. */
2921 fip
->list
->visibility
= VISIBILITY_IGNORE
;
2925 /* Detect an unpacked field and mark it as such.
2926 dbx gives a bit size for all fields.
2927 Note that forward refs cannot be packed,
2928 and treat enums as if they had the width of ints. */
2930 struct type
*field_type
= check_typedef (FIELD_TYPE (fip
->list
->field
));
2932 if (TYPE_CODE (field_type
) != TYPE_CODE_INT
2933 && TYPE_CODE (field_type
) != TYPE_CODE_RANGE
2934 && TYPE_CODE (field_type
) != TYPE_CODE_BOOL
2935 && TYPE_CODE (field_type
) != TYPE_CODE_ENUM
)
2937 FIELD_BITSIZE (fip
->list
->field
) = 0;
2939 if ((FIELD_BITSIZE (fip
->list
->field
)
2940 == TARGET_CHAR_BIT
* TYPE_LENGTH (field_type
)
2941 || (TYPE_CODE (field_type
) == TYPE_CODE_ENUM
2942 && FIELD_BITSIZE (fip
->list
->field
)
2943 == gdbarch_int_bit (gdbarch
))
2946 FIELD_BITPOS (fip
->list
->field
) % 8 == 0)
2948 FIELD_BITSIZE (fip
->list
->field
) = 0;
2954 /* Read struct or class data fields. They have the form:
2956 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2958 At the end, we see a semicolon instead of a field.
2960 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2963 The optional VISIBILITY is one of:
2965 '/0' (VISIBILITY_PRIVATE)
2966 '/1' (VISIBILITY_PROTECTED)
2967 '/2' (VISIBILITY_PUBLIC)
2968 '/9' (VISIBILITY_IGNORE)
2970 or nothing, for C style fields with public visibility.
2972 Returns 1 for success, 0 for failure. */
2975 read_struct_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
2976 struct objfile
*objfile
)
2979 struct nextfield
*new;
2981 /* We better set p right now, in case there are no fields at all... */
2985 /* Read each data member type until we find the terminating ';' at the end of
2986 the data member list, or break for some other reason such as finding the
2987 start of the member function list. */
2988 /* Stab string for structure/union does not end with two ';' in
2989 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2991 while (**pp
!= ';' && **pp
!= '\0')
2993 STABS_CONTINUE (pp
, objfile
);
2994 /* Get space to record the next field's data. */
2995 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
2996 make_cleanup (xfree
, new);
2997 memset (new, 0, sizeof (struct nextfield
));
2998 new->next
= fip
->list
;
3001 /* Get the field name. */
3004 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3005 unless the CPLUS_MARKER is followed by an underscore, in
3006 which case it is just the name of an anonymous type, which we
3007 should handle like any other type name. */
3009 if (is_cplus_marker (p
[0]) && p
[1] != '_')
3011 if (!read_cpp_abbrev (fip
, pp
, type
, objfile
))
3016 /* Look for the ':' that separates the field name from the field
3017 values. Data members are delimited by a single ':', while member
3018 functions are delimited by a pair of ':'s. When we hit the member
3019 functions (if any), terminate scan loop and return. */
3021 while (*p
!= ':' && *p
!= '\0')
3028 /* Check to see if we have hit the member functions yet. */
3033 read_one_struct_field (fip
, pp
, p
, type
, objfile
);
3035 if (p
[0] == ':' && p
[1] == ':')
3037 /* (the deleted) chill the list of fields: the last entry (at
3038 the head) is a partially constructed entry which we now
3040 fip
->list
= fip
->list
->next
;
3045 /* The stabs for C++ derived classes contain baseclass information which
3046 is marked by a '!' character after the total size. This function is
3047 called when we encounter the baseclass marker, and slurps up all the
3048 baseclass information.
3050 Immediately following the '!' marker is the number of base classes that
3051 the class is derived from, followed by information for each base class.
3052 For each base class, there are two visibility specifiers, a bit offset
3053 to the base class information within the derived class, a reference to
3054 the type for the base class, and a terminating semicolon.
3056 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3058 Baseclass information marker __________________|| | | | | | |
3059 Number of baseclasses __________________________| | | | | | |
3060 Visibility specifiers (2) ________________________| | | | | |
3061 Offset in bits from start of class _________________| | | | |
3062 Type number for base class ___________________________| | | |
3063 Visibility specifiers (2) _______________________________| | |
3064 Offset in bits from start of class ________________________| |
3065 Type number of base class ____________________________________|
3067 Return 1 for success, 0 for (error-type-inducing) failure. */
3073 read_baseclasses (struct field_info
*fip
, char **pp
, struct type
*type
,
3074 struct objfile
*objfile
)
3077 struct nextfield
*new;
3085 /* Skip the '!' baseclass information marker. */
3089 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3093 TYPE_N_BASECLASSES (type
) = read_huge_number (pp
, ',', &nbits
, 0);
3099 /* Some stupid compilers have trouble with the following, so break
3100 it up into simpler expressions. */
3101 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*)
3102 TYPE_ALLOC (type
, B_BYTES (TYPE_N_BASECLASSES (type
)));
3105 int num_bytes
= B_BYTES (TYPE_N_BASECLASSES (type
));
3108 pointer
= (char *) TYPE_ALLOC (type
, num_bytes
);
3109 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*) pointer
;
3113 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), TYPE_N_BASECLASSES (type
));
3115 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); i
++)
3117 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
3118 make_cleanup (xfree
, new);
3119 memset (new, 0, sizeof (struct nextfield
));
3120 new->next
= fip
->list
;
3122 FIELD_BITSIZE (new->field
) = 0; /* this should be an unpacked field! */
3124 STABS_CONTINUE (pp
, objfile
);
3128 /* Nothing to do. */
3131 SET_TYPE_FIELD_VIRTUAL (type
, i
);
3134 /* Unknown character. Complain and treat it as non-virtual. */
3136 complaint (&symfile_complaints
,
3137 _("Unknown virtual character `%c' for baseclass"), **pp
);
3142 new->visibility
= *(*pp
)++;
3143 switch (new->visibility
)
3145 case VISIBILITY_PRIVATE
:
3146 case VISIBILITY_PROTECTED
:
3147 case VISIBILITY_PUBLIC
:
3150 /* Bad visibility format. Complain and treat it as
3153 complaint (&symfile_complaints
,
3154 _("Unknown visibility `%c' for baseclass"),
3156 new->visibility
= VISIBILITY_PUBLIC
;
3163 /* The remaining value is the bit offset of the portion of the object
3164 corresponding to this baseclass. Always zero in the absence of
3165 multiple inheritance. */
3167 FIELD_BITPOS (new->field
) = read_huge_number (pp
, ',', &nbits
, 0);
3172 /* The last piece of baseclass information is the type of the
3173 base class. Read it, and remember it's type name as this
3176 new->field
.type
= read_type (pp
, objfile
);
3177 new->field
.name
= type_name_no_tag (new->field
.type
);
3179 /* skip trailing ';' and bump count of number of fields seen */
3188 /* The tail end of stabs for C++ classes that contain a virtual function
3189 pointer contains a tilde, a %, and a type number.
3190 The type number refers to the base class (possibly this class itself) which
3191 contains the vtable pointer for the current class.
3193 This function is called when we have parsed all the method declarations,
3194 so we can look for the vptr base class info. */
3197 read_tilde_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
3198 struct objfile
*objfile
)
3202 STABS_CONTINUE (pp
, objfile
);
3204 /* If we are positioned at a ';', then skip it. */
3214 if (**pp
== '=' || **pp
== '+' || **pp
== '-')
3216 /* Obsolete flags that used to indicate the presence
3217 of constructors and/or destructors. */
3221 /* Read either a '%' or the final ';'. */
3222 if (*(*pp
)++ == '%')
3224 /* The next number is the type number of the base class
3225 (possibly our own class) which supplies the vtable for
3226 this class. Parse it out, and search that class to find
3227 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3228 and TYPE_VPTR_FIELDNO. */
3233 t
= read_type (pp
, objfile
);
3235 while (*p
!= '\0' && *p
!= ';')
3241 /* Premature end of symbol. */
3245 TYPE_VPTR_BASETYPE (type
) = t
;
3246 if (type
== t
) /* Our own class provides vtbl ptr */
3248 for (i
= TYPE_NFIELDS (t
) - 1;
3249 i
>= TYPE_N_BASECLASSES (t
);
3252 char *name
= TYPE_FIELD_NAME (t
, i
);
3254 if (!strncmp (name
, vptr_name
, sizeof (vptr_name
) - 2)
3255 && is_cplus_marker (name
[sizeof (vptr_name
) - 2]))
3257 TYPE_VPTR_FIELDNO (type
) = i
;
3261 /* Virtual function table field not found. */
3262 complaint (&symfile_complaints
,
3263 _("virtual function table pointer not found when defining class `%s'"),
3269 TYPE_VPTR_FIELDNO (type
) = TYPE_VPTR_FIELDNO (t
);
3280 attach_fn_fields_to_type (struct field_info
*fip
, struct type
*type
)
3284 for (n
= TYPE_NFN_FIELDS (type
);
3285 fip
->fnlist
!= NULL
;
3286 fip
->fnlist
= fip
->fnlist
->next
)
3288 --n
; /* Circumvent Sun3 compiler bug */
3289 TYPE_FN_FIELDLISTS (type
)[n
] = fip
->fnlist
->fn_fieldlist
;
3294 /* Create the vector of fields, and record how big it is.
3295 We need this info to record proper virtual function table information
3296 for this class's virtual functions. */
3299 attach_fields_to_type (struct field_info
*fip
, struct type
*type
,
3300 struct objfile
*objfile
)
3303 int non_public_fields
= 0;
3304 struct nextfield
*scan
;
3306 /* Count up the number of fields that we have, as well as taking note of
3307 whether or not there are any non-public fields, which requires us to
3308 allocate and build the private_field_bits and protected_field_bits
3311 for (scan
= fip
->list
; scan
!= NULL
; scan
= scan
->next
)
3314 if (scan
->visibility
!= VISIBILITY_PUBLIC
)
3316 non_public_fields
++;
3320 /* Now we know how many fields there are, and whether or not there are any
3321 non-public fields. Record the field count, allocate space for the
3322 array of fields, and create blank visibility bitfields if necessary. */
3324 TYPE_NFIELDS (type
) = nfields
;
3325 TYPE_FIELDS (type
) = (struct field
*)
3326 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
3327 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nfields
);
3329 if (non_public_fields
)
3331 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3333 TYPE_FIELD_PRIVATE_BITS (type
) =
3334 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3335 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
3337 TYPE_FIELD_PROTECTED_BITS (type
) =
3338 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3339 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
3341 TYPE_FIELD_IGNORE_BITS (type
) =
3342 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3343 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
3346 /* Copy the saved-up fields into the field vector. Start from the head
3347 of the list, adding to the tail of the field array, so that they end
3348 up in the same order in the array in which they were added to the list. */
3350 while (nfields
-- > 0)
3352 TYPE_FIELD (type
, nfields
) = fip
->list
->field
;
3353 switch (fip
->list
->visibility
)
3355 case VISIBILITY_PRIVATE
:
3356 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
3359 case VISIBILITY_PROTECTED
:
3360 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
3363 case VISIBILITY_IGNORE
:
3364 SET_TYPE_FIELD_IGNORE (type
, nfields
);
3367 case VISIBILITY_PUBLIC
:
3371 /* Unknown visibility. Complain and treat it as public. */
3373 complaint (&symfile_complaints
, _("Unknown visibility `%c' for field"),
3374 fip
->list
->visibility
);
3378 fip
->list
= fip
->list
->next
;
3384 /* Complain that the compiler has emitted more than one definition for the
3385 structure type TYPE. */
3387 complain_about_struct_wipeout (struct type
*type
)
3392 if (TYPE_TAG_NAME (type
))
3394 name
= TYPE_TAG_NAME (type
);
3395 switch (TYPE_CODE (type
))
3397 case TYPE_CODE_STRUCT
: kind
= "struct "; break;
3398 case TYPE_CODE_UNION
: kind
= "union "; break;
3399 case TYPE_CODE_ENUM
: kind
= "enum "; break;
3403 else if (TYPE_NAME (type
))
3405 name
= TYPE_NAME (type
);
3414 complaint (&symfile_complaints
,
3415 _("struct/union type gets multiply defined: %s%s"), kind
, name
);
3418 /* Set the length for all variants of a same main_type, which are
3419 connected in the closed chain.
3421 This is something that needs to be done when a type is defined *after*
3422 some cross references to this type have already been read. Consider
3423 for instance the following scenario where we have the following two
3426 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3427 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3429 A stubbed version of type dummy is created while processing the first
3430 stabs entry. The length of that type is initially set to zero, since
3431 it is unknown at this point. Also, a "constant" variation of type
3432 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3435 The second stabs entry allows us to replace the stubbed definition
3436 with the real definition. However, we still need to adjust the length
3437 of the "constant" variation of that type, as its length was left
3438 untouched during the main type replacement... */
3441 set_length_in_type_chain (struct type
*type
)
3443 struct type
*ntype
= TYPE_CHAIN (type
);
3445 while (ntype
!= type
)
3447 if (TYPE_LENGTH(ntype
) == 0)
3448 TYPE_LENGTH (ntype
) = TYPE_LENGTH (type
);
3450 complain_about_struct_wipeout (ntype
);
3451 ntype
= TYPE_CHAIN (ntype
);
3455 /* Read the description of a structure (or union type) and return an object
3456 describing the type.
3458 PP points to a character pointer that points to the next unconsumed token
3459 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3460 *PP will point to "4a:1,0,32;;".
3462 TYPE points to an incomplete type that needs to be filled in.
3464 OBJFILE points to the current objfile from which the stabs information is
3465 being read. (Note that it is redundant in that TYPE also contains a pointer
3466 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3469 static struct type
*
3470 read_struct_type (char **pp
, struct type
*type
, enum type_code type_code
,
3471 struct objfile
*objfile
)
3473 struct cleanup
*back_to
;
3474 struct field_info fi
;
3479 /* When describing struct/union/class types in stabs, G++ always drops
3480 all qualifications from the name. So if you've got:
3481 struct A { ... struct B { ... }; ... };
3482 then G++ will emit stabs for `struct A::B' that call it simply
3483 `struct B'. Obviously, if you've got a real top-level definition for
3484 `struct B', or other nested definitions, this is going to cause
3487 Obviously, GDB can't fix this by itself, but it can at least avoid
3488 scribbling on existing structure type objects when new definitions
3490 if (! (TYPE_CODE (type
) == TYPE_CODE_UNDEF
3491 || TYPE_STUB (type
)))
3493 complain_about_struct_wipeout (type
);
3495 /* It's probably best to return the type unchanged. */
3499 back_to
= make_cleanup (null_cleanup
, 0);
3501 INIT_CPLUS_SPECIFIC (type
);
3502 TYPE_CODE (type
) = type_code
;
3503 TYPE_STUB (type
) = 0;
3505 /* First comes the total size in bytes. */
3510 TYPE_LENGTH (type
) = read_huge_number (pp
, 0, &nbits
, 0);
3512 return error_type (pp
, objfile
);
3513 set_length_in_type_chain (type
);
3516 /* Now read the baseclasses, if any, read the regular C struct or C++
3517 class member fields, attach the fields to the type, read the C++
3518 member functions, attach them to the type, and then read any tilde
3519 field (baseclass specifier for the class holding the main vtable). */
3521 if (!read_baseclasses (&fi
, pp
, type
, objfile
)
3522 || !read_struct_fields (&fi
, pp
, type
, objfile
)
3523 || !attach_fields_to_type (&fi
, type
, objfile
)
3524 || !read_member_functions (&fi
, pp
, type
, objfile
)
3525 || !attach_fn_fields_to_type (&fi
, type
)
3526 || !read_tilde_fields (&fi
, pp
, type
, objfile
))
3528 type
= error_type (pp
, objfile
);
3531 do_cleanups (back_to
);
3535 /* Read a definition of an array type,
3536 and create and return a suitable type object.
3537 Also creates a range type which represents the bounds of that
3540 static struct type
*
3541 read_array_type (char **pp
, struct type
*type
,
3542 struct objfile
*objfile
)
3544 struct type
*index_type
, *element_type
, *range_type
;
3549 /* Format of an array type:
3550 "ar<index type>;lower;upper;<array_contents_type>".
3551 OS9000: "arlower,upper;<array_contents_type>".
3553 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3554 for these, produce a type like float[][]. */
3557 index_type
= read_type (pp
, objfile
);
3559 /* Improper format of array type decl. */
3560 return error_type (pp
, objfile
);
3564 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3569 lower
= read_huge_number (pp
, ';', &nbits
, 0);
3572 return error_type (pp
, objfile
);
3574 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3579 upper
= read_huge_number (pp
, ';', &nbits
, 0);
3581 return error_type (pp
, objfile
);
3583 element_type
= read_type (pp
, objfile
);
3592 create_range_type ((struct type
*) NULL
, index_type
, lower
, upper
);
3593 type
= create_array_type (type
, element_type
, range_type
);
3599 /* Read a definition of an enumeration type,
3600 and create and return a suitable type object.
3601 Also defines the symbols that represent the values of the type. */
3603 static struct type
*
3604 read_enum_type (char **pp
, struct type
*type
,
3605 struct objfile
*objfile
)
3607 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3613 struct pending
**symlist
;
3614 struct pending
*osyms
, *syms
;
3617 int unsigned_enum
= 1;
3620 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3621 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3622 to do? For now, force all enum values to file scope. */
3623 if (within_function
)
3624 symlist
= &local_symbols
;
3627 symlist
= &file_symbols
;
3629 o_nsyms
= osyms
? osyms
->nsyms
: 0;
3631 /* The aix4 compiler emits an extra field before the enum members;
3632 my guess is it's a type of some sort. Just ignore it. */
3635 /* Skip over the type. */
3639 /* Skip over the colon. */
3643 /* Read the value-names and their values.
3644 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3645 A semicolon or comma instead of a NAME means the end. */
3646 while (**pp
&& **pp
!= ';' && **pp
!= ',')
3648 STABS_CONTINUE (pp
, objfile
);
3652 name
= obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
3654 n
= read_huge_number (pp
, ',', &nbits
, 0);
3656 return error_type (pp
, objfile
);
3658 sym
= (struct symbol
*)
3659 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
3660 memset (sym
, 0, sizeof (struct symbol
));
3661 SYMBOL_SET_LINKAGE_NAME (sym
, name
);
3662 SYMBOL_SET_LANGUAGE (sym
, current_subfile
->language
);
3663 SYMBOL_CLASS (sym
) = LOC_CONST
;
3664 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
3665 SYMBOL_VALUE (sym
) = n
;
3668 add_symbol_to_list (sym
, symlist
);
3673 (*pp
)++; /* Skip the semicolon. */
3675 /* Now fill in the fields of the type-structure. */
3677 TYPE_LENGTH (type
) = gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
;
3678 set_length_in_type_chain (type
);
3679 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
3680 TYPE_STUB (type
) = 0;
3682 TYPE_UNSIGNED (type
) = 1;
3683 TYPE_NFIELDS (type
) = nsyms
;
3684 TYPE_FIELDS (type
) = (struct field
*)
3685 TYPE_ALLOC (type
, sizeof (struct field
) * nsyms
);
3686 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nsyms
);
3688 /* Find the symbols for the values and put them into the type.
3689 The symbols can be found in the symlist that we put them on
3690 to cause them to be defined. osyms contains the old value
3691 of that symlist; everything up to there was defined by us. */
3692 /* Note that we preserve the order of the enum constants, so
3693 that in something like "enum {FOO, LAST_THING=FOO}" we print
3694 FOO, not LAST_THING. */
3696 for (syms
= *symlist
, n
= nsyms
- 1; syms
; syms
= syms
->next
)
3698 int last
= syms
== osyms
? o_nsyms
: 0;
3699 int j
= syms
->nsyms
;
3701 for (; --j
>= last
; --n
)
3703 struct symbol
*xsym
= syms
->symbol
[j
];
3705 SYMBOL_TYPE (xsym
) = type
;
3706 TYPE_FIELD_NAME (type
, n
) = SYMBOL_LINKAGE_NAME (xsym
);
3707 TYPE_FIELD_BITPOS (type
, n
) = SYMBOL_VALUE (xsym
);
3708 TYPE_FIELD_BITSIZE (type
, n
) = 0;
3717 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3718 typedefs in every file (for int, long, etc):
3720 type = b <signed> <width> <format type>; <offset>; <nbits>
3722 optional format type = c or b for char or boolean.
3723 offset = offset from high order bit to start bit of type.
3724 width is # bytes in object of this type, nbits is # bits in type.
3726 The width/offset stuff appears to be for small objects stored in
3727 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3730 static struct type
*
3731 read_sun_builtin_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3736 enum type_code code
= TYPE_CODE_INT
;
3747 return error_type (pp
, objfile
);
3751 /* For some odd reason, all forms of char put a c here. This is strange
3752 because no other type has this honor. We can safely ignore this because
3753 we actually determine 'char'acterness by the number of bits specified in
3755 Boolean forms, e.g Fortran logical*X, put a b here. */
3759 else if (**pp
== 'b')
3761 code
= TYPE_CODE_BOOL
;
3765 /* The first number appears to be the number of bytes occupied
3766 by this type, except that unsigned short is 4 instead of 2.
3767 Since this information is redundant with the third number,
3768 we will ignore it. */
3769 read_huge_number (pp
, ';', &nbits
, 0);
3771 return error_type (pp
, objfile
);
3773 /* The second number is always 0, so ignore it too. */
3774 read_huge_number (pp
, ';', &nbits
, 0);
3776 return error_type (pp
, objfile
);
3778 /* The third number is the number of bits for this type. */
3779 type_bits
= read_huge_number (pp
, 0, &nbits
, 0);
3781 return error_type (pp
, objfile
);
3782 /* The type *should* end with a semicolon. If it are embedded
3783 in a larger type the semicolon may be the only way to know where
3784 the type ends. If this type is at the end of the stabstring we
3785 can deal with the omitted semicolon (but we don't have to like
3786 it). Don't bother to complain(), Sun's compiler omits the semicolon
3792 return init_type (TYPE_CODE_VOID
, 1,
3793 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3796 return init_type (code
,
3797 type_bits
/ TARGET_CHAR_BIT
,
3798 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3802 static struct type
*
3803 read_sun_floating_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3808 struct type
*rettype
;
3810 /* The first number has more details about the type, for example
3812 details
= read_huge_number (pp
, ';', &nbits
, 0);
3814 return error_type (pp
, objfile
);
3816 /* The second number is the number of bytes occupied by this type */
3817 nbytes
= read_huge_number (pp
, ';', &nbits
, 0);
3819 return error_type (pp
, objfile
);
3821 if (details
== NF_COMPLEX
|| details
== NF_COMPLEX16
3822 || details
== NF_COMPLEX32
)
3824 rettype
= init_type (TYPE_CODE_COMPLEX
, nbytes
, 0, NULL
, objfile
);
3825 TYPE_TARGET_TYPE (rettype
)
3826 = init_type (TYPE_CODE_FLT
, nbytes
/ 2, 0, NULL
, objfile
);
3830 return init_type (TYPE_CODE_FLT
, nbytes
, 0, NULL
, objfile
);
3833 /* Read a number from the string pointed to by *PP.
3834 The value of *PP is advanced over the number.
3835 If END is nonzero, the character that ends the
3836 number must match END, or an error happens;
3837 and that character is skipped if it does match.
3838 If END is zero, *PP is left pointing to that character.
3840 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3841 the number is represented in an octal representation, assume that
3842 it is represented in a 2's complement representation with a size of
3843 TWOS_COMPLEMENT_BITS.
3845 If the number fits in a long, set *BITS to 0 and return the value.
3846 If not, set *BITS to be the number of bits in the number and return 0.
3848 If encounter garbage, set *BITS to -1 and return 0. */
3851 read_huge_number (char **pp
, int end
, int *bits
, int twos_complement_bits
)
3862 int twos_complement_representation
= 0;
3870 /* Leading zero means octal. GCC uses this to output values larger
3871 than an int (because that would be hard in decimal). */
3878 /* Skip extra zeros. */
3882 if (sign
> 0 && radix
== 8 && twos_complement_bits
> 0)
3884 /* Octal, possibly signed. Check if we have enough chars for a
3890 while ((c
= *p1
) >= '0' && c
< '8')
3894 if (len
> twos_complement_bits
/ 3
3895 || (twos_complement_bits
% 3 == 0 && len
== twos_complement_bits
/ 3))
3897 /* Ok, we have enough characters for a signed value, check
3898 for signness by testing if the sign bit is set. */
3899 sign_bit
= (twos_complement_bits
% 3 + 2) % 3;
3901 if (c
& (1 << sign_bit
))
3903 /* Definitely signed. */
3904 twos_complement_representation
= 1;
3910 upper_limit
= LONG_MAX
/ radix
;
3912 while ((c
= *p
++) >= '0' && c
< ('0' + radix
))
3914 if (n
<= upper_limit
)
3916 if (twos_complement_representation
)
3918 /* Octal, signed, twos complement representation. In
3919 this case, n is the corresponding absolute value. */
3922 long sn
= c
- '0' - ((2 * (c
- '0')) | (2 << sign_bit
));
3934 /* unsigned representation */
3936 n
+= c
- '0'; /* FIXME this overflows anyway */
3942 /* This depends on large values being output in octal, which is
3949 /* Ignore leading zeroes. */
3953 else if (c
== '2' || c
== '3')
3974 if (radix
== 8 && twos_complement_bits
> 0 && nbits
> twos_complement_bits
)
3976 /* We were supposed to parse a number with maximum
3977 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3988 /* Large decimal constants are an error (because it is hard to
3989 count how many bits are in them). */
3995 /* -0x7f is the same as 0x80. So deal with it by adding one to
3996 the number of bits. Two's complement represention octals
3997 can't have a '-' in front. */
3998 if (sign
== -1 && !twos_complement_representation
)
4009 /* It's *BITS which has the interesting information. */
4013 static struct type
*
4014 read_range_type (char **pp
, int typenums
[2], int type_size
,
4015 struct objfile
*objfile
)
4017 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
4018 char *orig_pp
= *pp
;
4023 struct type
*result_type
;
4024 struct type
*index_type
= NULL
;
4026 /* First comes a type we are a subrange of.
4027 In C it is usually 0, 1 or the type being defined. */
4028 if (read_type_number (pp
, rangenums
) != 0)
4029 return error_type (pp
, objfile
);
4030 self_subrange
= (rangenums
[0] == typenums
[0] &&
4031 rangenums
[1] == typenums
[1]);
4036 index_type
= read_type (pp
, objfile
);
4039 /* A semicolon should now follow; skip it. */
4043 /* The remaining two operands are usually lower and upper bounds
4044 of the range. But in some special cases they mean something else. */
4045 n2
= read_huge_number (pp
, ';', &n2bits
, type_size
);
4046 n3
= read_huge_number (pp
, ';', &n3bits
, type_size
);
4048 if (n2bits
== -1 || n3bits
== -1)
4049 return error_type (pp
, objfile
);
4052 goto handle_true_range
;
4054 /* If limits are huge, must be large integral type. */
4055 if (n2bits
!= 0 || n3bits
!= 0)
4057 char got_signed
= 0;
4058 char got_unsigned
= 0;
4059 /* Number of bits in the type. */
4062 /* If a type size attribute has been specified, the bounds of
4063 the range should fit in this size. If the lower bounds needs
4064 more bits than the upper bound, then the type is signed. */
4065 if (n2bits
<= type_size
&& n3bits
<= type_size
)
4067 if (n2bits
== type_size
&& n2bits
> n3bits
)
4073 /* Range from 0 to <large number> is an unsigned large integral type. */
4074 else if ((n2bits
== 0 && n2
== 0) && n3bits
!= 0)
4079 /* Range from <large number> to <large number>-1 is a large signed
4080 integral type. Take care of the case where <large number> doesn't
4081 fit in a long but <large number>-1 does. */
4082 else if ((n2bits
!= 0 && n3bits
!= 0 && n2bits
== n3bits
+ 1)
4083 || (n2bits
!= 0 && n3bits
== 0
4084 && (n2bits
== sizeof (long) * HOST_CHAR_BIT
)
4091 if (got_signed
|| got_unsigned
)
4093 return init_type (TYPE_CODE_INT
, nbits
/ TARGET_CHAR_BIT
,
4094 got_unsigned
? TYPE_FLAG_UNSIGNED
: 0, NULL
,
4098 return error_type (pp
, objfile
);
4101 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4102 if (self_subrange
&& n2
== 0 && n3
== 0)
4103 return init_type (TYPE_CODE_VOID
, 1, 0, NULL
, objfile
);
4105 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4106 is the width in bytes.
4108 Fortran programs appear to use this for complex types also. To
4109 distinguish between floats and complex, g77 (and others?) seem
4110 to use self-subranges for the complexes, and subranges of int for
4113 Also note that for complexes, g77 sets n2 to the size of one of
4114 the member floats, not the whole complex beast. My guess is that
4115 this was to work well with pre-COMPLEX versions of gdb. */
4117 if (n3
== 0 && n2
> 0)
4119 struct type
*float_type
4120 = init_type (TYPE_CODE_FLT
, n2
, 0, NULL
, objfile
);
4124 struct type
*complex_type
=
4125 init_type (TYPE_CODE_COMPLEX
, 2 * n2
, 0, NULL
, objfile
);
4127 TYPE_TARGET_TYPE (complex_type
) = float_type
;
4128 return complex_type
;
4134 /* If the upper bound is -1, it must really be an unsigned integral. */
4136 else if (n2
== 0 && n3
== -1)
4138 int bits
= type_size
;
4142 /* We don't know its size. It is unsigned int or unsigned
4143 long. GCC 2.3.3 uses this for long long too, but that is
4144 just a GDB 3.5 compatibility hack. */
4145 bits
= gdbarch_int_bit (gdbarch
);
4148 return init_type (TYPE_CODE_INT
, bits
/ TARGET_CHAR_BIT
,
4149 TYPE_FLAG_UNSIGNED
, NULL
, objfile
);
4152 /* Special case: char is defined (Who knows why) as a subrange of
4153 itself with range 0-127. */
4154 else if (self_subrange
&& n2
== 0 && n3
== 127)
4155 return init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_NOSIGN
, NULL
, objfile
);
4157 /* We used to do this only for subrange of self or subrange of int. */
4160 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4161 "unsigned long", and we already checked for that,
4162 so don't need to test for it here. */
4165 /* n3 actually gives the size. */
4166 return init_type (TYPE_CODE_INT
, -n3
, TYPE_FLAG_UNSIGNED
,
4169 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4170 unsigned n-byte integer. But do require n to be a power of
4171 two; we don't want 3- and 5-byte integers flying around. */
4177 for (bytes
= 0; (bits
& 0xff) == 0xff; bytes
++)
4180 && ((bytes
- 1) & bytes
) == 0) /* "bytes is a power of two" */
4181 return init_type (TYPE_CODE_INT
, bytes
, TYPE_FLAG_UNSIGNED
, NULL
,
4185 /* I think this is for Convex "long long". Since I don't know whether
4186 Convex sets self_subrange, I also accept that particular size regardless
4187 of self_subrange. */
4188 else if (n3
== 0 && n2
< 0
4190 || n2
== -gdbarch_long_long_bit
4191 (gdbarch
) / TARGET_CHAR_BIT
))
4192 return init_type (TYPE_CODE_INT
, -n2
, 0, NULL
, objfile
);
4193 else if (n2
== -n3
- 1)
4196 return init_type (TYPE_CODE_INT
, 1, 0, NULL
, objfile
);
4198 return init_type (TYPE_CODE_INT
, 2, 0, NULL
, objfile
);
4199 if (n3
== 0x7fffffff)
4200 return init_type (TYPE_CODE_INT
, 4, 0, NULL
, objfile
);
4203 /* We have a real range type on our hands. Allocate space and
4204 return a real pointer. */
4208 index_type
= objfile_type (objfile
)->builtin_int
;
4210 index_type
= *dbx_lookup_type (rangenums
, objfile
);
4211 if (index_type
== NULL
)
4213 /* Does this actually ever happen? Is that why we are worrying
4214 about dealing with it rather than just calling error_type? */
4216 complaint (&symfile_complaints
,
4217 _("base type %d of range type is not defined"), rangenums
[1]);
4219 index_type
= objfile_type (objfile
)->builtin_int
;
4222 result_type
= create_range_type ((struct type
*) NULL
, index_type
, n2
, n3
);
4223 return (result_type
);
4226 /* Read in an argument list. This is a list of types, separated by commas
4227 and terminated with END. Return the list of types read in, or NULL
4228 if there is an error. */
4230 static struct field
*
4231 read_args (char **pp
, int end
, struct objfile
*objfile
, int *nargsp
,
4234 /* FIXME! Remove this arbitrary limit! */
4235 struct type
*types
[1024]; /* allow for fns of 1023 parameters */
4242 /* Invalid argument list: no ','. */
4245 STABS_CONTINUE (pp
, objfile
);
4246 types
[n
++] = read_type (pp
, objfile
);
4248 (*pp
)++; /* get past `end' (the ':' character) */
4252 /* We should read at least the THIS parameter here. Some broken stabs
4253 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4254 have been present ";-16,(0,43)" reference instead. This way the
4255 excessive ";" marker prematurely stops the parameters parsing. */
4257 complaint (&symfile_complaints
, _("Invalid (empty) method arguments"));
4260 else if (TYPE_CODE (types
[n
- 1]) != TYPE_CODE_VOID
)
4268 rval
= (struct field
*) xmalloc (n
* sizeof (struct field
));
4269 memset (rval
, 0, n
* sizeof (struct field
));
4270 for (i
= 0; i
< n
; i
++)
4271 rval
[i
].type
= types
[i
];
4276 /* Common block handling. */
4278 /* List of symbols declared since the last BCOMM. This list is a tail
4279 of local_symbols. When ECOMM is seen, the symbols on the list
4280 are noted so their proper addresses can be filled in later,
4281 using the common block base address gotten from the assembler
4284 static struct pending
*common_block
;
4285 static int common_block_i
;
4287 /* Name of the current common block. We get it from the BCOMM instead of the
4288 ECOMM to match IBM documentation (even though IBM puts the name both places
4289 like everyone else). */
4290 static char *common_block_name
;
4292 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4293 to remain after this function returns. */
4296 common_block_start (char *name
, struct objfile
*objfile
)
4298 if (common_block_name
!= NULL
)
4300 complaint (&symfile_complaints
,
4301 _("Invalid symbol data: common block within common block"));
4303 common_block
= local_symbols
;
4304 common_block_i
= local_symbols
? local_symbols
->nsyms
: 0;
4305 common_block_name
= obsavestring (name
, strlen (name
),
4306 &objfile
->objfile_obstack
);
4309 /* Process a N_ECOMM symbol. */
4312 common_block_end (struct objfile
*objfile
)
4314 /* Symbols declared since the BCOMM are to have the common block
4315 start address added in when we know it. common_block and
4316 common_block_i point to the first symbol after the BCOMM in
4317 the local_symbols list; copy the list and hang it off the
4318 symbol for the common block name for later fixup. */
4321 struct pending
*new = 0;
4322 struct pending
*next
;
4325 if (common_block_name
== NULL
)
4327 complaint (&symfile_complaints
, _("ECOMM symbol unmatched by BCOMM"));
4331 sym
= (struct symbol
*)
4332 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
4333 memset (sym
, 0, sizeof (struct symbol
));
4334 /* Note: common_block_name already saved on objfile_obstack */
4335 SYMBOL_SET_LINKAGE_NAME (sym
, common_block_name
);
4336 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
4338 /* Now we copy all the symbols which have been defined since the BCOMM. */
4340 /* Copy all the struct pendings before common_block. */
4341 for (next
= local_symbols
;
4342 next
!= NULL
&& next
!= common_block
;
4345 for (j
= 0; j
< next
->nsyms
; j
++)
4346 add_symbol_to_list (next
->symbol
[j
], &new);
4349 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4350 NULL, it means copy all the local symbols (which we already did
4353 if (common_block
!= NULL
)
4354 for (j
= common_block_i
; j
< common_block
->nsyms
; j
++)
4355 add_symbol_to_list (common_block
->symbol
[j
], &new);
4357 SYMBOL_TYPE (sym
) = (struct type
*) new;
4359 /* Should we be putting local_symbols back to what it was?
4362 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
4363 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
4364 global_sym_chain
[i
] = sym
;
4365 common_block_name
= NULL
;
4368 /* Add a common block's start address to the offset of each symbol
4369 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4370 the common block name). */
4373 fix_common_block (struct symbol
*sym
, int valu
)
4375 struct pending
*next
= (struct pending
*) SYMBOL_TYPE (sym
);
4377 for (; next
; next
= next
->next
)
4381 for (j
= next
->nsyms
- 1; j
>= 0; j
--)
4382 SYMBOL_VALUE_ADDRESS (next
->symbol
[j
]) += valu
;
4388 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4389 See add_undefined_type for more details. */
4392 add_undefined_type_noname (struct type
*type
, int typenums
[2])
4396 nat
.typenums
[0] = typenums
[0];
4397 nat
.typenums
[1] = typenums
[1];
4400 if (noname_undefs_length
== noname_undefs_allocated
)
4402 noname_undefs_allocated
*= 2;
4403 noname_undefs
= (struct nat
*)
4404 xrealloc ((char *) noname_undefs
,
4405 noname_undefs_allocated
* sizeof (struct nat
));
4407 noname_undefs
[noname_undefs_length
++] = nat
;
4410 /* Add TYPE to the UNDEF_TYPES vector.
4411 See add_undefined_type for more details. */
4414 add_undefined_type_1 (struct type
*type
)
4416 if (undef_types_length
== undef_types_allocated
)
4418 undef_types_allocated
*= 2;
4419 undef_types
= (struct type
**)
4420 xrealloc ((char *) undef_types
,
4421 undef_types_allocated
* sizeof (struct type
*));
4423 undef_types
[undef_types_length
++] = type
;
4426 /* What about types defined as forward references inside of a small lexical
4428 /* Add a type to the list of undefined types to be checked through
4429 once this file has been read in.
4431 In practice, we actually maintain two such lists: The first list
4432 (UNDEF_TYPES) is used for types whose name has been provided, and
4433 concerns forward references (eg 'xs' or 'xu' forward references);
4434 the second list (NONAME_UNDEFS) is used for types whose name is
4435 unknown at creation time, because they were referenced through
4436 their type number before the actual type was declared.
4437 This function actually adds the given type to the proper list. */
4440 add_undefined_type (struct type
*type
, int typenums
[2])
4442 if (TYPE_TAG_NAME (type
) == NULL
)
4443 add_undefined_type_noname (type
, typenums
);
4445 add_undefined_type_1 (type
);
4448 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4451 cleanup_undefined_types_noname (struct objfile
*objfile
)
4455 for (i
= 0; i
< noname_undefs_length
; i
++)
4457 struct nat nat
= noname_undefs
[i
];
4460 type
= dbx_lookup_type (nat
.typenums
, objfile
);
4461 if (nat
.type
!= *type
&& TYPE_CODE (*type
) != TYPE_CODE_UNDEF
)
4463 /* The instance flags of the undefined type are still unset,
4464 and needs to be copied over from the reference type.
4465 Since replace_type expects them to be identical, we need
4466 to set these flags manually before hand. */
4467 TYPE_INSTANCE_FLAGS (nat
.type
) = TYPE_INSTANCE_FLAGS (*type
);
4468 replace_type (nat
.type
, *type
);
4472 noname_undefs_length
= 0;
4475 /* Go through each undefined type, see if it's still undefined, and fix it
4476 up if possible. We have two kinds of undefined types:
4478 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4479 Fix: update array length using the element bounds
4480 and the target type's length.
4481 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4482 yet defined at the time a pointer to it was made.
4483 Fix: Do a full lookup on the struct/union tag. */
4486 cleanup_undefined_types_1 (void)
4490 /* Iterate over every undefined type, and look for a symbol whose type
4491 matches our undefined type. The symbol matches if:
4492 1. It is a typedef in the STRUCT domain;
4493 2. It has the same name, and same type code;
4494 3. The instance flags are identical.
4496 It is important to check the instance flags, because we have seen
4497 examples where the debug info contained definitions such as:
4499 "foo_t:t30=B31=xefoo_t:"
4501 In this case, we have created an undefined type named "foo_t" whose
4502 instance flags is null (when processing "xefoo_t"), and then created
4503 another type with the same name, but with different instance flags
4504 ('B' means volatile). I think that the definition above is wrong,
4505 since the same type cannot be volatile and non-volatile at the same
4506 time, but we need to be able to cope with it when it happens. The
4507 approach taken here is to treat these two types as different. */
4509 for (type
= undef_types
; type
< undef_types
+ undef_types_length
; type
++)
4511 switch (TYPE_CODE (*type
))
4514 case TYPE_CODE_STRUCT
:
4515 case TYPE_CODE_UNION
:
4516 case TYPE_CODE_ENUM
:
4518 /* Check if it has been defined since. Need to do this here
4519 as well as in check_typedef to deal with the (legitimate in
4520 C though not C++) case of several types with the same name
4521 in different source files. */
4522 if (TYPE_STUB (*type
))
4524 struct pending
*ppt
;
4526 /* Name of the type, without "struct" or "union" */
4527 char *typename
= TYPE_TAG_NAME (*type
);
4529 if (typename
== NULL
)
4531 complaint (&symfile_complaints
, _("need a type name"));
4534 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
4536 for (i
= 0; i
< ppt
->nsyms
; i
++)
4538 struct symbol
*sym
= ppt
->symbol
[i
];
4540 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4541 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4542 && (TYPE_CODE (SYMBOL_TYPE (sym
)) ==
4544 && (TYPE_INSTANCE_FLAGS (*type
) ==
4545 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym
)))
4546 && strcmp (SYMBOL_LINKAGE_NAME (sym
),
4548 replace_type (*type
, SYMBOL_TYPE (sym
));
4557 complaint (&symfile_complaints
,
4558 _("forward-referenced types left unresolved, "
4566 undef_types_length
= 0;
4569 /* Try to fix all the undefined types we ecountered while processing
4573 cleanup_undefined_types (struct objfile
*objfile
)
4575 cleanup_undefined_types_1 ();
4576 cleanup_undefined_types_noname (objfile
);
4579 /* Scan through all of the global symbols defined in the object file,
4580 assigning values to the debugging symbols that need to be assigned
4581 to. Get these symbols from the minimal symbol table. */
4584 scan_file_globals (struct objfile
*objfile
)
4587 struct minimal_symbol
*msymbol
;
4588 struct symbol
*sym
, *prev
;
4589 struct objfile
*resolve_objfile
;
4591 /* SVR4 based linkers copy referenced global symbols from shared
4592 libraries to the main executable.
4593 If we are scanning the symbols for a shared library, try to resolve
4594 them from the minimal symbols of the main executable first. */
4596 if (symfile_objfile
&& objfile
!= symfile_objfile
)
4597 resolve_objfile
= symfile_objfile
;
4599 resolve_objfile
= objfile
;
4603 /* Avoid expensive loop through all minimal symbols if there are
4604 no unresolved symbols. */
4605 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4607 if (global_sym_chain
[hash
])
4610 if (hash
>= HASHSIZE
)
4613 ALL_OBJFILE_MSYMBOLS (resolve_objfile
, msymbol
)
4617 /* Skip static symbols. */
4618 switch (MSYMBOL_TYPE (msymbol
))
4630 /* Get the hash index and check all the symbols
4631 under that hash index. */
4633 hash
= hashname (SYMBOL_LINKAGE_NAME (msymbol
));
4635 for (sym
= global_sym_chain
[hash
]; sym
;)
4637 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol
),
4638 SYMBOL_LINKAGE_NAME (sym
)) == 0)
4640 /* Splice this symbol out of the hash chain and
4641 assign the value we have to it. */
4644 SYMBOL_VALUE_CHAIN (prev
) = SYMBOL_VALUE_CHAIN (sym
);
4648 global_sym_chain
[hash
] = SYMBOL_VALUE_CHAIN (sym
);
4651 /* Check to see whether we need to fix up a common block. */
4652 /* Note: this code might be executed several times for
4653 the same symbol if there are multiple references. */
4656 if (SYMBOL_CLASS (sym
) == LOC_BLOCK
)
4658 fix_common_block (sym
,
4659 SYMBOL_VALUE_ADDRESS (msymbol
));
4663 SYMBOL_VALUE_ADDRESS (sym
)
4664 = SYMBOL_VALUE_ADDRESS (msymbol
);
4666 SYMBOL_SECTION (sym
) = SYMBOL_SECTION (msymbol
);
4671 sym
= SYMBOL_VALUE_CHAIN (prev
);
4675 sym
= global_sym_chain
[hash
];
4681 sym
= SYMBOL_VALUE_CHAIN (sym
);
4685 if (resolve_objfile
== objfile
)
4687 resolve_objfile
= objfile
;
4690 /* Change the storage class of any remaining unresolved globals to
4691 LOC_UNRESOLVED and remove them from the chain. */
4692 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4694 sym
= global_sym_chain
[hash
];
4698 sym
= SYMBOL_VALUE_CHAIN (sym
);
4700 /* Change the symbol address from the misleading chain value
4702 SYMBOL_VALUE_ADDRESS (prev
) = 0;
4704 /* Complain about unresolved common block symbols. */
4705 if (SYMBOL_CLASS (prev
) == LOC_STATIC
)
4706 SYMBOL_CLASS (prev
) = LOC_UNRESOLVED
;
4708 complaint (&symfile_complaints
,
4709 _("%s: common block `%s' from global_sym_chain unresolved"),
4710 objfile
->name
, SYMBOL_PRINT_NAME (prev
));
4713 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4716 /* Initialize anything that needs initializing when starting to read
4717 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4721 stabsread_init (void)
4725 /* Initialize anything that needs initializing when a completely new
4726 symbol file is specified (not just adding some symbols from another
4727 file, e.g. a shared library). */
4730 stabsread_new_init (void)
4732 /* Empty the hash table of global syms looking for values. */
4733 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4736 /* Initialize anything that needs initializing at the same time as
4737 start_symtab() is called. */
4742 global_stabs
= NULL
; /* AIX COFF */
4743 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4744 n_this_object_header_files
= 1;
4745 type_vector_length
= 0;
4746 type_vector
= (struct type
**) 0;
4748 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4749 common_block_name
= NULL
;
4752 /* Call after end_symtab() */
4759 xfree (type_vector
);
4762 type_vector_length
= 0;
4763 previous_stab_code
= 0;
4767 finish_global_stabs (struct objfile
*objfile
)
4771 patch_block_stabs (global_symbols
, global_stabs
, objfile
);
4772 xfree (global_stabs
);
4773 global_stabs
= NULL
;
4777 /* Find the end of the name, delimited by a ':', but don't match
4778 ObjC symbols which look like -[Foo bar::]:bla. */
4780 find_name_end (char *name
)
4784 if (s
[0] == '-' || *s
== '+')
4786 /* Must be an ObjC method symbol. */
4789 error (_("invalid symbol name \"%s\""), name
);
4791 s
= strchr (s
, ']');
4794 error (_("invalid symbol name \"%s\""), name
);
4796 return strchr (s
, ':');
4800 return strchr (s
, ':');
4804 /* Initializer for this module */
4807 _initialize_stabsread (void)
4809 rs6000_builtin_type_data
= register_objfile_data ();
4811 undef_types_allocated
= 20;
4812 undef_types_length
= 0;
4813 undef_types
= (struct type
**)
4814 xmalloc (undef_types_allocated
* sizeof (struct type
*));
4816 noname_undefs_allocated
= 20;
4817 noname_undefs_length
= 0;
4818 noname_undefs
= (struct nat
*)
4819 xmalloc (noname_undefs_allocated
* sizeof (struct nat
));