* gdb.t10/Makefile.in (clean): Remove $(EXECUTABLES) too.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* This is used by other symbol readers besides stabs, so for cleanliness
221 should probably be in buildsym.c. */
222
223 int
224 hashname (name)
225 char *name;
226 {
227 register char *p = name;
228 register int total = p[0];
229 register int c;
230
231 c = p[1];
232 total += c << 2;
233 if (c)
234 {
235 c = p[2];
236 total += c << 4;
237 if (c)
238 {
239 total += p[3] << 6;
240 }
241 }
242
243 /* Ensure result is positive. */
244 if (total < 0)
245 {
246 total += (1000 << 6);
247 }
248 return (total % HASHSIZE);
249 }
250
251 \f
252 /* Look up a dbx type-number pair. Return the address of the slot
253 where the type for that number-pair is stored.
254 The number-pair is in TYPENUMS.
255
256 This can be used for finding the type associated with that pair
257 or for associating a new type with the pair. */
258
259 struct type **
260 dbx_lookup_type (typenums)
261 int typenums[2];
262 {
263 register int filenum = typenums[0];
264 register int index = typenums[1];
265 unsigned old_len;
266 register int real_filenum;
267 register struct header_file *f;
268 int f_orig_length;
269
270 if (filenum == -1) /* -1,-1 is for temporary types. */
271 return 0;
272
273 if (filenum < 0 || filenum >= n_this_object_header_files)
274 {
275 static struct complaint msg = {"\
276 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
277 0, 0};
278 complain (&msg, filenum, index, symnum);
279 goto error_return;
280 }
281
282 if (filenum == 0)
283 {
284 if (index < 0)
285 {
286 /* Caller wants address of address of type. We think
287 that negative (rs6k builtin) types will never appear as
288 "lvalues", (nor should they), so we stuff the real type
289 pointer into a temp, and return its address. If referenced,
290 this will do the right thing. */
291 static struct type *temp_type;
292
293 temp_type = rs6000_builtin_type(index);
294 return &temp_type;
295 }
296
297 /* Type is defined outside of header files.
298 Find it in this object file's type vector. */
299 if (index >= type_vector_length)
300 {
301 old_len = type_vector_length;
302 if (old_len == 0)
303 {
304 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
305 type_vector = (struct type **)
306 malloc (type_vector_length * sizeof (struct type *));
307 }
308 while (index >= type_vector_length)
309 {
310 type_vector_length *= 2;
311 }
312 type_vector = (struct type **)
313 xrealloc ((char *) type_vector,
314 (type_vector_length * sizeof (struct type *)));
315 memset (&type_vector[old_len], 0,
316 (type_vector_length - old_len) * sizeof (struct type *));
317 }
318 return (&type_vector[index]);
319 }
320 else
321 {
322 real_filenum = this_object_header_files[filenum];
323
324 if (real_filenum >= n_header_files)
325 {
326 struct type *temp_type;
327 struct type **temp_type_p;
328
329 warning ("GDB internal error: bad real_filenum");
330
331 error_return:
332 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
333 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
334 *temp_type_p = temp_type;
335 return temp_type_p;
336 }
337
338 f = &header_files[real_filenum];
339
340 f_orig_length = f->length;
341 if (index >= f_orig_length)
342 {
343 while (index >= f->length)
344 {
345 f->length *= 2;
346 }
347 f->vector = (struct type **)
348 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
349 memset (&f->vector[f_orig_length], 0,
350 (f->length - f_orig_length) * sizeof (struct type *));
351 }
352 return (&f->vector[index]);
353 }
354 }
355
356 /* Make sure there is a type allocated for type numbers TYPENUMS
357 and return the type object.
358 This can create an empty (zeroed) type object.
359 TYPENUMS may be (-1, -1) to return a new type object that is not
360 put into the type vector, and so may not be referred to by number. */
361
362 static struct type *
363 dbx_alloc_type (typenums, objfile)
364 int typenums[2];
365 struct objfile *objfile;
366 {
367 register struct type **type_addr;
368
369 if (typenums[0] == -1)
370 {
371 return (alloc_type (objfile));
372 }
373
374 type_addr = dbx_lookup_type (typenums);
375
376 /* If we are referring to a type not known at all yet,
377 allocate an empty type for it.
378 We will fill it in later if we find out how. */
379 if (*type_addr == 0)
380 {
381 *type_addr = alloc_type (objfile);
382 }
383
384 return (*type_addr);
385 }
386
387 /* for all the stabs in a given stab vector, build appropriate types
388 and fix their symbols in given symbol vector. */
389
390 static void
391 patch_block_stabs (symbols, stabs, objfile)
392 struct pending *symbols;
393 struct pending_stabs *stabs;
394 struct objfile *objfile;
395 {
396 int ii;
397 char *name;
398 char *pp;
399 struct symbol *sym;
400
401 if (stabs)
402 {
403
404 /* for all the stab entries, find their corresponding symbols and
405 patch their types! */
406
407 for (ii = 0; ii < stabs->count; ++ii)
408 {
409 name = stabs->stab[ii];
410 pp = (char*) strchr (name, ':');
411 sym = find_symbol_in_list (symbols, name, pp-name);
412 if (!sym)
413 {
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = (struct symbol *)
418 obstack_alloc (&objfile->symbol_obstack,
419 sizeof (struct symbol));
420
421 memset (sym, 0, sizeof (struct symbol));
422 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
423 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
424 SYMBOL_NAME (sym) =
425 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
426 pp += 2;
427 if (*(pp-1) == 'F' || *(pp-1) == 'f')
428 {
429 /* I don't think the linker does this with functions,
430 so as far as I know this is never executed.
431 But it doesn't hurt to check. */
432 SYMBOL_TYPE (sym) =
433 lookup_function_type (read_type (&pp, objfile));
434 }
435 else
436 {
437 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
438 }
439 add_symbol_to_list (sym, &global_symbols);
440 }
441 else
442 {
443 pp += 2;
444 if (*(pp-1) == 'F' || *(pp-1) == 'f')
445 {
446 SYMBOL_TYPE (sym) =
447 lookup_function_type (read_type (&pp, objfile));
448 }
449 else
450 {
451 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
452 }
453 }
454 }
455 }
456 }
457
458 \f
459 /* Read a number by which a type is referred to in dbx data,
460 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
461 Just a single number N is equivalent to (0,N).
462 Return the two numbers by storing them in the vector TYPENUMS.
463 TYPENUMS will then be used as an argument to dbx_lookup_type.
464
465 Returns 0 for success, -1 for error. */
466
467 static int
468 read_type_number (pp, typenums)
469 register char **pp;
470 register int *typenums;
471 {
472 int nbits;
473 if (**pp == '(')
474 {
475 (*pp)++;
476 typenums[0] = read_huge_number (pp, ',', &nbits);
477 if (nbits != 0) return -1;
478 typenums[1] = read_huge_number (pp, ')', &nbits);
479 if (nbits != 0) return -1;
480 }
481 else
482 {
483 typenums[0] = 0;
484 typenums[1] = read_huge_number (pp, 0, &nbits);
485 if (nbits != 0) return -1;
486 }
487 return 0;
488 }
489
490 \f
491 /* To handle GNU C++ typename abbreviation, we need to be able to
492 fill in a type's name as soon as space for that type is allocated.
493 `type_synonym_name' is the name of the type being allocated.
494 It is cleared as soon as it is used (lest all allocated types
495 get this name). */
496
497 static char *type_synonym_name;
498
499 /* ARGSUSED */
500 struct symbol *
501 define_symbol (valu, string, desc, type, objfile)
502 unsigned int valu;
503 char *string;
504 int desc;
505 int type;
506 struct objfile *objfile;
507 {
508 register struct symbol *sym;
509 char *p = (char *) strchr (string, ':');
510 int deftype;
511 int synonym = 0;
512 register int i;
513
514 /* We would like to eliminate nameless symbols, but keep their types.
515 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
516 to type 2, but, should not create a symbol to address that type. Since
517 the symbol will be nameless, there is no way any user can refer to it. */
518
519 int nameless;
520
521 /* Ignore syms with empty names. */
522 if (string[0] == 0)
523 return 0;
524
525 /* Ignore old-style symbols from cc -go */
526 if (p == 0)
527 return 0;
528
529 /* If a nameless stab entry, all we need is the type, not the symbol.
530 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
531 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
532
533 sym = (struct symbol *)
534 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
535 memset (sym, 0, sizeof (struct symbol));
536
537 if (processing_gcc_compilation)
538 {
539 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
540 number of bytes occupied by a type or object, which we ignore. */
541 SYMBOL_LINE(sym) = desc;
542 }
543 else
544 {
545 SYMBOL_LINE(sym) = 0; /* unknown */
546 }
547
548 if (string[0] == CPLUS_MARKER)
549 {
550 /* Special GNU C++ names. */
551 switch (string[1])
552 {
553 case 't':
554 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
555 &objfile -> symbol_obstack);
556 break;
557
558 case 'v': /* $vtbl_ptr_type */
559 /* Was: SYMBOL_NAME (sym) = "vptr"; */
560 goto normal;
561
562 case 'e':
563 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
564 &objfile -> symbol_obstack);
565 break;
566
567 case '_':
568 /* This was an anonymous type that was never fixed up. */
569 goto normal;
570
571 default:
572 complain (&unrecognized_cplus_name_complaint, string);
573 goto normal; /* Do *something* with it */
574 }
575 }
576 else
577 {
578 normal:
579 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
580 SYMBOL_NAME (sym) = (char *)
581 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
582 /* Open-coded bcopy--saves function call time. */
583 /* FIXME: Does it really? Try replacing with simple strcpy and
584 try it on an executable with a large symbol table. */
585 {
586 register char *p1 = string;
587 register char *p2 = SYMBOL_NAME (sym);
588 while (p1 != p)
589 {
590 *p2++ = *p1++;
591 }
592 *p2++ = '\0';
593 }
594
595 /* If this symbol is from a C++ compilation, then attempt to cache the
596 demangled form for future reference. This is a typical time versus
597 space tradeoff, that was decided in favor of time because it sped up
598 C++ symbol lookups by a factor of about 20. */
599
600 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
601 }
602 p++;
603
604 /* Determine the type of name being defined. */
605 #if 0
606 /* Getting GDB to correctly skip the symbol on an undefined symbol
607 descriptor and not ever dump core is a very dodgy proposition if
608 we do things this way. I say the acorn RISC machine can just
609 fix their compiler. */
610 /* The Acorn RISC machine's compiler can put out locals that don't
611 start with "234=" or "(3,4)=", so assume anything other than the
612 deftypes we know how to handle is a local. */
613 if (!strchr ("cfFGpPrStTvVXCR", *p))
614 #else
615 if (isdigit (*p) || *p == '(' || *p == '-')
616 #endif
617 deftype = 'l';
618 else
619 deftype = *p++;
620
621 switch (deftype)
622 {
623 case 'c':
624 /* c is a special case, not followed by a type-number.
625 SYMBOL:c=iVALUE for an integer constant symbol.
626 SYMBOL:c=rVALUE for a floating constant symbol.
627 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
628 e.g. "b:c=e6,0" for "const b = blob1"
629 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
630 if (*p != '=')
631 {
632 SYMBOL_CLASS (sym) = LOC_CONST;
633 SYMBOL_TYPE (sym) = error_type (&p);
634 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
635 add_symbol_to_list (sym, &file_symbols);
636 return sym;
637 }
638 ++p;
639 switch (*p++)
640 {
641 case 'r':
642 {
643 double d = atof (p);
644 char *dbl_valu;
645
646 /* FIXME: lookup_fundamental_type is a hack. We should be
647 creating a type especially for the type of float constants.
648 Problem is, what type should it be? We currently have to
649 read this in host floating point format, but what type
650 represents a host format "double"?
651
652 Also, what should the name of this type be? Should we
653 be using 'S' constants (see stabs.texinfo) instead? */
654
655 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
656 FT_DBL_PREC_FLOAT);
657 dbl_valu = (char *)
658 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
659 memcpy (dbl_valu, &d, sizeof (double));
660 /* Put it in target byte order, but it's still in host
661 floating point format. */
662 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
663 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
664 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
665 }
666 break;
667 case 'i':
668 {
669 /* Defining integer constants this way is kind of silly,
670 since 'e' constants allows the compiler to give not
671 only the value, but the type as well. C has at least
672 int, long, unsigned int, and long long as constant
673 types; other languages probably should have at least
674 unsigned as well as signed constants. */
675
676 /* We just need one int constant type for all objfiles.
677 It doesn't depend on languages or anything (arguably its
678 name should be a language-specific name for a type of
679 that size, but I'm inclined to say that if the compiler
680 wants a nice name for the type, it can use 'e'). */
681 static struct type *int_const_type;
682
683 /* Yes, this is as long as a *host* int. That is because we
684 use atoi. */
685 if (int_const_type == NULL)
686 int_const_type =
687 init_type (TYPE_CODE_INT,
688 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
689 "integer constant",
690 (struct objfile *)NULL);
691 SYMBOL_TYPE (sym) = int_const_type;
692 SYMBOL_VALUE (sym) = atoi (p);
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 }
695 break;
696 case 'e':
697 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
698 can be represented as integral.
699 e.g. "b:c=e6,0" for "const b = blob1"
700 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
701 {
702 SYMBOL_CLASS (sym) = LOC_CONST;
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704
705 if (*p != ',')
706 {
707 SYMBOL_TYPE (sym) = error_type (&p);
708 break;
709 }
710 ++p;
711
712 /* If the value is too big to fit in an int (perhaps because
713 it is unsigned), or something like that, we silently get
714 a bogus value. The type and everything else about it is
715 correct. Ideally, we should be using whatever we have
716 available for parsing unsigned and long long values,
717 however. */
718 SYMBOL_VALUE (sym) = atoi (p);
719 }
720 break;
721 default:
722 {
723 SYMBOL_CLASS (sym) = LOC_CONST;
724 SYMBOL_TYPE (sym) = error_type (&p);
725 }
726 }
727 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
728 add_symbol_to_list (sym, &file_symbols);
729 return sym;
730
731 case 'C':
732 /* The name of a caught exception. */
733 SYMBOL_TYPE (sym) = read_type (&p, objfile);
734 SYMBOL_CLASS (sym) = LOC_LABEL;
735 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
736 SYMBOL_VALUE_ADDRESS (sym) = valu;
737 add_symbol_to_list (sym, &local_symbols);
738 break;
739
740 case 'f':
741 /* A static function definition. */
742 SYMBOL_TYPE (sym) = read_type (&p, objfile);
743 SYMBOL_CLASS (sym) = LOC_BLOCK;
744 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
745 add_symbol_to_list (sym, &file_symbols);
746 /* fall into process_function_types. */
747
748 process_function_types:
749 /* Function result types are described as the result type in stabs.
750 We need to convert this to the function-returning-type-X type
751 in GDB. E.g. "int" is converted to "function returning int". */
752 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
753 {
754 #if 0
755 /* This code doesn't work -- it needs to realloc and can't. */
756 /* Attempt to set up to record a function prototype... */
757 struct type *new = alloc_type (objfile);
758
759 /* Generate a template for the type of this function. The
760 types of the arguments will be added as we read the symbol
761 table. */
762 *new = *lookup_function_type (SYMBOL_TYPE(sym));
763 SYMBOL_TYPE(sym) = new;
764 TYPE_OBJFILE (new) = objfile;
765 in_function_type = new;
766 #else
767 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
768 #endif
769 }
770 /* fall into process_prototype_types */
771
772 process_prototype_types:
773 /* Sun acc puts declared types of arguments here. We don't care
774 about their actual types (FIXME -- we should remember the whole
775 function prototype), but the list may define some new types
776 that we have to remember, so we must scan it now. */
777 while (*p == ';') {
778 p++;
779 read_type (&p, objfile);
780 }
781 break;
782
783 case 'F':
784 /* A global function definition. */
785 SYMBOL_TYPE (sym) = read_type (&p, objfile);
786 SYMBOL_CLASS (sym) = LOC_BLOCK;
787 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
788 add_symbol_to_list (sym, &global_symbols);
789 goto process_function_types;
790
791 case 'G':
792 /* For a class G (global) symbol, it appears that the
793 value is not correct. It is necessary to search for the
794 corresponding linker definition to find the value.
795 These definitions appear at the end of the namelist. */
796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
797 i = hashname (SYMBOL_NAME (sym));
798 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
799 global_sym_chain[i] = sym;
800 SYMBOL_CLASS (sym) = LOC_STATIC;
801 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
802 add_symbol_to_list (sym, &global_symbols);
803 break;
804
805 /* This case is faked by a conditional above,
806 when there is no code letter in the dbx data.
807 Dbx data never actually contains 'l'. */
808 case 'l':
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_LOCAL;
811 SYMBOL_VALUE (sym) = valu;
812 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
813 add_symbol_to_list (sym, &local_symbols);
814 break;
815
816 case 'p':
817 if (*p == 'F')
818 /* pF is a two-letter code that means a function parameter in Fortran.
819 The type-number specifies the type of the return value.
820 Translate it into a pointer-to-function type. */
821 {
822 p++;
823 SYMBOL_TYPE (sym)
824 = lookup_pointer_type
825 (lookup_function_type (read_type (&p, objfile)));
826 }
827 else
828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
829
830 /* Normally this is a parameter, a LOC_ARG. On the i960, it
831 can also be a LOC_LOCAL_ARG depending on symbol type. */
832 #ifndef DBX_PARM_SYMBOL_CLASS
833 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
834 #endif
835
836 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
837 SYMBOL_VALUE (sym) = valu;
838 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
839 #if 0
840 /* This doesn't work yet. */
841 add_param_to_type (&in_function_type, sym);
842 #endif
843 add_symbol_to_list (sym, &local_symbols);
844
845 /* If it's gcc-compiled, if it says `short', believe it. */
846 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
847 break;
848
849 #if !BELIEVE_PCC_PROMOTION
850 {
851 /* This is the signed type which arguments get promoted to. */
852 static struct type *pcc_promotion_type;
853 /* This is the unsigned type which arguments get promoted to. */
854 static struct type *pcc_unsigned_promotion_type;
855
856 /* Call it "int" because this is mainly C lossage. */
857 if (pcc_promotion_type == NULL)
858 pcc_promotion_type =
859 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
860 0, "int", NULL);
861
862 if (pcc_unsigned_promotion_type == NULL)
863 pcc_unsigned_promotion_type =
864 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
865 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
866
867 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
868 /* This macro is defined on machines (e.g. sparc) where
869 we should believe the type of a PCC 'short' argument,
870 but shouldn't believe the address (the address is
871 the address of the corresponding int). Note that
872 this is only different from the BELIEVE_PCC_PROMOTION
873 case on big-endian machines.
874
875 My guess is that this correction, as opposed to changing
876 the parameter to an 'int' (as done below, for PCC
877 on most machines), is the right thing to do
878 on all machines, but I don't want to risk breaking
879 something that already works. On most PCC machines,
880 the sparc problem doesn't come up because the calling
881 function has to zero the top bytes (not knowing whether
882 the called function wants an int or a short), so there
883 is no practical difference between an int and a short
884 (except perhaps what happens when the GDB user types
885 "print short_arg = 0x10000;").
886
887 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
888 actually produces the correct address (we don't need to fix it
889 up). I made this code adapt so that it will offset the symbol
890 if it was pointing at an int-aligned location and not
891 otherwise. This way you can use the same gdb for 4.0.x and
892 4.1 systems.
893
894 If the parameter is shorter than an int, and is integral
895 (e.g. char, short, or unsigned equivalent), and is claimed to
896 be passed on an integer boundary, don't believe it! Offset the
897 parameter's address to the tail-end of that integer. */
898
899 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
900 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
901 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
902 {
903 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
904 - TYPE_LENGTH (SYMBOL_TYPE (sym));
905 }
906 break;
907
908 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
909
910 /* If PCC says a parameter is a short or a char,
911 it is really an int. */
912 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
913 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
914 {
915 SYMBOL_TYPE (sym) =
916 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
917 ? pcc_unsigned_promotion_type
918 : pcc_promotion_type;
919 }
920 break;
921
922 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
923 }
924 #endif /* !BELIEVE_PCC_PROMOTION. */
925
926 case 'P':
927 /* acc seems to use P to delare the prototypes of functions that
928 are referenced by this file. gdb is not prepared to deal
929 with this extra information. FIXME, it ought to. */
930 if (type == N_FUN)
931 {
932 read_type (&p, objfile);
933 goto process_prototype_types;
934 }
935 /*FALLTHROUGH*/
936
937 case 'R':
938 /* Parameter which is in a register. */
939 SYMBOL_TYPE (sym) = read_type (&p, objfile);
940 SYMBOL_CLASS (sym) = LOC_REGPARM;
941 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
942 if (SYMBOL_VALUE (sym) >= NUM_REGS)
943 {
944 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
945 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
946 }
947 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
948 add_symbol_to_list (sym, &local_symbols);
949 break;
950
951 case 'r':
952 /* Register variable (either global or local). */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_CLASS (sym) = LOC_REGISTER;
955 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
956 if (SYMBOL_VALUE (sym) >= NUM_REGS)
957 {
958 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
959 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
960 }
961 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
962 if (within_function)
963 {
964 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
965 name to represent an argument passed in a register.
966 GCC uses 'P' for the same case. So if we find such a symbol pair
967 we combine it into one 'P' symbol.
968 Note that this code illegally combines
969 main(argc) int argc; { register int argc = 1; }
970 but this case is considered pathological and causes a warning
971 from a decent compiler. */
972 if (local_symbols
973 && local_symbols->nsyms > 0)
974 {
975 struct symbol *prev_sym;
976 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
977 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
978 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
979 {
980 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
981 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
982 sym = prev_sym;
983 break;
984 }
985 }
986 add_symbol_to_list (sym, &local_symbols);
987 }
988 else
989 add_symbol_to_list (sym, &file_symbols);
990 break;
991
992 case 'S':
993 /* Static symbol at top level of file */
994 SYMBOL_TYPE (sym) = read_type (&p, objfile);
995 SYMBOL_CLASS (sym) = LOC_STATIC;
996 SYMBOL_VALUE_ADDRESS (sym) = valu;
997 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
998 add_symbol_to_list (sym, &file_symbols);
999 break;
1000
1001 case 't':
1002 #if 0
1003 /* See comment where long_kludge_name is declared. */
1004 /* Here we save the name of the symbol for read_range_type, which
1005 ends up reading in the basic types. In stabs, unfortunately there
1006 is no distinction between "int" and "long" types except their
1007 names. Until we work out a saner type policy (eliminating most
1008 builtin types and using the names specified in the files), we
1009 save away the name so that far away from here in read_range_type,
1010 we can examine it to decide between "int" and "long". FIXME. */
1011 long_kludge_name = SYMBOL_NAME (sym);
1012 #endif
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014
1015 /* For a nameless type, we don't want a create a symbol, thus we
1016 did not use `sym'. Return without further processing. */
1017 if (nameless) return NULL;
1018
1019 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1020 SYMBOL_VALUE (sym) = valu;
1021 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1022 /* C++ vagaries: we may have a type which is derived from
1023 a base type which did not have its name defined when the
1024 derived class was output. We fill in the derived class's
1025 base part member's name here in that case. */
1026 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1027 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1028 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1029 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1030 {
1031 int j;
1032 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1033 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1034 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1035 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1036 }
1037
1038 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1039 {
1040 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR)
1041 {
1042 /* If we are giving a name to a type such as "pointer
1043 to foo", we better not set the TYPE_NAME. If the
1044 program contains "typedef char *caddr_t;", we don't
1045 want all variables of type char * to print as
1046 caddr_t. This is not just a consequence of GDB's
1047 type management; PCC and GCC (at least through
1048 version 2.4) both output variables of either type
1049 char * or caddr_t with the type number defined in
1050 the 't' symbol for caddr_t. If a future compiler
1051 cleans this up it GDB is not ready for it yet, but
1052 if it becomes ready we somehow need to disable this
1053 check (without breaking the PCC/GCC2.4 case).
1054
1055 Sigh.
1056
1057 Fortunately, this check seems not to be necessary
1058 for anything except pointers. */
1059 }
1060 else
1061 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1062 }
1063
1064 add_symbol_to_list (sym, &file_symbols);
1065 break;
1066
1067 case 'T':
1068 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1069 by 't' which means we are typedef'ing it as well. */
1070 synonym = *p == 't';
1071
1072 if (synonym)
1073 {
1074 p++;
1075 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1076 strlen (SYMBOL_NAME (sym)),
1077 &objfile -> symbol_obstack);
1078 }
1079
1080 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1081
1082 /* For a nameless type, we don't want a create a symbol, thus we
1083 did not use `sym'. Return without further processing. */
1084 if (nameless) return NULL;
1085
1086 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1087 SYMBOL_VALUE (sym) = valu;
1088 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1089 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1090 TYPE_NAME (SYMBOL_TYPE (sym))
1091 = obconcat (&objfile -> type_obstack, "",
1092 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
1093 ? "enum "
1094 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1095 ? "struct " : "union ")),
1096 SYMBOL_NAME (sym));
1097 add_symbol_to_list (sym, &file_symbols);
1098
1099 if (synonym)
1100 {
1101 /* Clone the sym and then modify it. */
1102 register struct symbol *typedef_sym = (struct symbol *)
1103 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1104 *typedef_sym = *sym;
1105 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1106 SYMBOL_VALUE (typedef_sym) = valu;
1107 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1108 add_symbol_to_list (typedef_sym, &file_symbols);
1109 }
1110 break;
1111
1112 case 'V':
1113 /* Static symbol of local scope */
1114 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1115 SYMBOL_CLASS (sym) = LOC_STATIC;
1116 SYMBOL_VALUE_ADDRESS (sym) = valu;
1117 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1118 add_symbol_to_list (sym, &local_symbols);
1119 break;
1120
1121 case 'v':
1122 /* Reference parameter */
1123 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1124 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1125 SYMBOL_VALUE (sym) = valu;
1126 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1127 add_symbol_to_list (sym, &local_symbols);
1128 break;
1129
1130 case 'X':
1131 /* This is used by Sun FORTRAN for "function result value".
1132 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1133 that Pascal uses it too, but when I tried it Pascal used
1134 "x:3" (local symbol) instead. */
1135 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1136 SYMBOL_CLASS (sym) = LOC_LOCAL;
1137 SYMBOL_VALUE (sym) = valu;
1138 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1139 add_symbol_to_list (sym, &local_symbols);
1140 break;
1141
1142 default:
1143 SYMBOL_TYPE (sym) = error_type (&p);
1144 SYMBOL_CLASS (sym) = LOC_CONST;
1145 SYMBOL_VALUE (sym) = 0;
1146 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1147 add_symbol_to_list (sym, &file_symbols);
1148 break;
1149 }
1150
1151 /* When passing structures to a function, some systems sometimes pass
1152 the address in a register, not the structure itself.
1153
1154 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1155 to LOC_REGPARM_ADDR for structures and unions. */
1156
1157 #if !defined (REG_STRUCT_HAS_ADDR)
1158 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1159 #endif
1160
1161 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1162 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1163 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1164 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1165 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1166
1167 return sym;
1168 }
1169
1170 \f
1171 /* Skip rest of this symbol and return an error type.
1172
1173 General notes on error recovery: error_type always skips to the
1174 end of the symbol (modulo cretinous dbx symbol name continuation).
1175 Thus code like this:
1176
1177 if (*(*pp)++ != ';')
1178 return error_type (pp);
1179
1180 is wrong because if *pp starts out pointing at '\0' (typically as the
1181 result of an earlier error), it will be incremented to point to the
1182 start of the next symbol, which might produce strange results, at least
1183 if you run off the end of the string table. Instead use
1184
1185 if (**pp != ';')
1186 return error_type (pp);
1187 ++*pp;
1188
1189 or
1190
1191 if (**pp != ';')
1192 foo = error_type (pp);
1193 else
1194 ++*pp;
1195
1196 And in case it isn't obvious, the point of all this hair is so the compiler
1197 can define new types and new syntaxes, and old versions of the
1198 debugger will be able to read the new symbol tables. */
1199
1200 static struct type *
1201 error_type (pp)
1202 char **pp;
1203 {
1204 complain (&error_type_complaint);
1205 while (1)
1206 {
1207 /* Skip to end of symbol. */
1208 while (**pp != '\0')
1209 {
1210 (*pp)++;
1211 }
1212
1213 /* Check for and handle cretinous dbx symbol name continuation! */
1214 if ((*pp)[-1] == '\\')
1215 {
1216 *pp = next_symbol_text ();
1217 }
1218 else
1219 {
1220 break;
1221 }
1222 }
1223 return (builtin_type_error);
1224 }
1225
1226 \f
1227 /* Read type information or a type definition; return the type. Even
1228 though this routine accepts either type information or a type
1229 definition, the distinction is relevant--some parts of stabsread.c
1230 assume that type information starts with a digit, '-', or '(' in
1231 deciding whether to call read_type. */
1232
1233 struct type *
1234 read_type (pp, objfile)
1235 register char **pp;
1236 struct objfile *objfile;
1237 {
1238 register struct type *type = 0;
1239 struct type *type1;
1240 int typenums[2];
1241 int xtypenums[2];
1242 char type_descriptor;
1243
1244 /* Read type number if present. The type number may be omitted.
1245 for instance in a two-dimensional array declared with type
1246 "ar1;1;10;ar1;1;10;4". */
1247 if ((**pp >= '0' && **pp <= '9')
1248 || **pp == '(')
1249 {
1250 if (read_type_number (pp, typenums) != 0)
1251 return error_type (pp);
1252
1253 /* Type is not being defined here. Either it already exists,
1254 or this is a forward reference to it. dbx_alloc_type handles
1255 both cases. */
1256 if (**pp != '=')
1257 return dbx_alloc_type (typenums, objfile);
1258
1259 /* Type is being defined here. */
1260 /* Skip the '='. */
1261 ++(*pp);
1262
1263 while (**pp == '@')
1264 {
1265 char *p = *pp + 1;
1266 /* It might be a type attribute or a member type. */
1267 if (isdigit (*p) || *p == '(' || *p == '-')
1268 /* Member type. */
1269 break;
1270 else
1271 {
1272 /* Type attributes; skip to the semicolon. */
1273 while (*p != ';' && *p != '\0')
1274 ++p;
1275 *pp = p;
1276 if (*p == '\0')
1277 return error_type (pp);
1278 else
1279 /* Skip the semicolon. */
1280 ++*pp;
1281 }
1282 }
1283 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1284 ++(*pp);
1285 }
1286 else
1287 {
1288 /* 'typenums=' not present, type is anonymous. Read and return
1289 the definition, but don't put it in the type vector. */
1290 typenums[0] = typenums[1] = -1;
1291 (*pp)++;
1292 }
1293
1294 type_descriptor = (*pp)[-1];
1295 switch (type_descriptor)
1296 {
1297 case 'x':
1298 {
1299 enum type_code code;
1300
1301 /* Used to index through file_symbols. */
1302 struct pending *ppt;
1303 int i;
1304
1305 /* Name including "struct", etc. */
1306 char *type_name;
1307
1308 /* Name without "struct", etc. */
1309 char *type_name_only;
1310
1311 {
1312 char *prefix;
1313 char *from, *to;
1314
1315 /* Set the type code according to the following letter. */
1316 switch ((*pp)[0])
1317 {
1318 case 's':
1319 code = TYPE_CODE_STRUCT;
1320 prefix = "struct ";
1321 break;
1322 case 'u':
1323 code = TYPE_CODE_UNION;
1324 prefix = "union ";
1325 break;
1326 case 'e':
1327 code = TYPE_CODE_ENUM;
1328 prefix = "enum ";
1329 break;
1330 default:
1331 return error_type (pp);
1332 }
1333
1334 to = type_name = (char *)
1335 obstack_alloc (&objfile -> type_obstack,
1336 (strlen (prefix) +
1337 ((char *) strchr (*pp, ':') - (*pp)) + 1));
1338
1339 /* Copy the prefix. */
1340 from = prefix;
1341 while ((*to++ = *from++) != '\0')
1342 ;
1343 to--;
1344
1345 type_name_only = to;
1346
1347 /* Copy the name. */
1348 from = *pp + 1;
1349 while ((*to++ = *from++) != ':')
1350 ;
1351 *--to = '\0';
1352
1353 /* Set the pointer ahead of the name which we just read. */
1354 *pp = from;
1355
1356 #if 0
1357 /* The following hack is clearly wrong, because it doesn't
1358 check whether we are in a baseclass. I tried to reproduce
1359 the case that it is trying to fix, but I couldn't get
1360 g++ to put out a cross reference to a basetype. Perhaps
1361 it doesn't do it anymore. */
1362 /* Note: for C++, the cross reference may be to a base type which
1363 has not yet been seen. In this case, we skip to the comma,
1364 which will mark the end of the base class name. (The ':'
1365 at the end of the base class name will be skipped as well.)
1366 But sometimes (ie. when the cross ref is the last thing on
1367 the line) there will be no ','. */
1368 from = (char *) strchr (*pp, ',');
1369 if (from)
1370 *pp = from;
1371 #endif /* 0 */
1372 }
1373
1374 /* Now check to see whether the type has already been declared. */
1375 /* This is necessary at least in the case where the
1376 program says something like
1377 struct foo bar[5];
1378 The compiler puts out a cross-reference; we better find
1379 set the length of the structure correctly so we can
1380 set the length of the array. */
1381 for (ppt = file_symbols; ppt; ppt = ppt->next)
1382 for (i = 0; i < ppt->nsyms; i++)
1383 {
1384 struct symbol *sym = ppt->symbol[i];
1385
1386 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1387 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1388 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1389 && STREQ (SYMBOL_NAME (sym), type_name_only))
1390 {
1391 obstack_free (&objfile -> type_obstack, type_name);
1392 type = SYMBOL_TYPE (sym);
1393 return type;
1394 }
1395 }
1396
1397 /* Didn't find the type to which this refers, so we must
1398 be dealing with a forward reference. Allocate a type
1399 structure for it, and keep track of it so we can
1400 fill in the rest of the fields when we get the full
1401 type. */
1402 type = dbx_alloc_type (typenums, objfile);
1403 TYPE_CODE (type) = code;
1404 TYPE_NAME (type) = type_name;
1405 INIT_CPLUS_SPECIFIC(type);
1406 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1407
1408 add_undefined_type (type);
1409 return type;
1410 }
1411
1412 case '-': /* RS/6000 built-in type */
1413 case '0':
1414 case '1':
1415 case '2':
1416 case '3':
1417 case '4':
1418 case '5':
1419 case '6':
1420 case '7':
1421 case '8':
1422 case '9':
1423 case '(':
1424
1425 /* The type is being defined to another type. When we support
1426 Ada (and arguably for C, so "whatis foo" can give "size_t",
1427 "wchar_t", or whatever it was declared as) we'll need to
1428 allocate a distinct type here rather than returning the
1429 existing one. GCC is currently (deliberately) incapable of
1430 putting out the debugging information to do that, however. */
1431
1432 (*pp)--;
1433 if (read_type_number (pp, xtypenums) != 0)
1434 return error_type (pp);
1435 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1436 /* It's being defined as itself. That means it is "void". */
1437 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1438 else
1439 type = *dbx_lookup_type (xtypenums);
1440 if (typenums[0] != -1)
1441 *dbx_lookup_type (typenums) = type;
1442 /* This can happen if we had '-' followed by a garbage character,
1443 for example. */
1444 if (type == NULL)
1445 return error_type (pp);
1446 break;
1447
1448 /* In the following types, we must be sure to overwrite any existing
1449 type that the typenums refer to, rather than allocating a new one
1450 and making the typenums point to the new one. This is because there
1451 may already be pointers to the existing type (if it had been
1452 forward-referenced), and we must change it to a pointer, function,
1453 reference, or whatever, *in-place*. */
1454
1455 case '*':
1456 type1 = read_type (pp, objfile);
1457 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1458 break;
1459
1460 case '&': /* Reference to another type */
1461 type1 = read_type (pp, objfile);
1462 type = make_reference_type (type1, dbx_lookup_type (typenums));
1463 break;
1464
1465 case 'f': /* Function returning another type */
1466 type1 = read_type (pp, objfile);
1467 type = make_function_type (type1, dbx_lookup_type (typenums));
1468 break;
1469
1470 case 'k': /* Const qualifier on some type (Sun) */
1471 type = read_type (pp, objfile);
1472 /* FIXME! For now, we ignore const and volatile qualifiers. */
1473 break;
1474
1475 case 'B': /* Volatile qual on some type (Sun) */
1476 type = read_type (pp, objfile);
1477 /* FIXME! For now, we ignore const and volatile qualifiers. */
1478 break;
1479
1480 /* FIXME -- we should be doing smash_to_XXX types here. */
1481 case '@': /* Member (class & variable) type */
1482 {
1483 struct type *domain = read_type (pp, objfile);
1484 struct type *memtype;
1485
1486 if (**pp != ',')
1487 /* Invalid member type data format. */
1488 return error_type (pp);
1489 ++*pp;
1490
1491 memtype = read_type (pp, objfile);
1492 type = dbx_alloc_type (typenums, objfile);
1493 smash_to_member_type (type, domain, memtype);
1494 }
1495 break;
1496
1497 case '#': /* Method (class & fn) type */
1498 if ((*pp)[0] == '#')
1499 {
1500 /* We'll get the parameter types from the name. */
1501 struct type *return_type;
1502
1503 (*pp)++;
1504 return_type = read_type (pp, objfile);
1505 if (*(*pp)++ != ';')
1506 complain (&invalid_member_complaint, symnum);
1507 type = allocate_stub_method (return_type);
1508 if (typenums[0] != -1)
1509 *dbx_lookup_type (typenums) = type;
1510 }
1511 else
1512 {
1513 struct type *domain = read_type (pp, objfile);
1514 struct type *return_type;
1515 struct type **args;
1516
1517 if (**pp != ',')
1518 /* Invalid member type data format. */
1519 return error_type (pp);
1520 else
1521 ++(*pp);
1522
1523 return_type = read_type (pp, objfile);
1524 args = read_args (pp, ';', objfile);
1525 type = dbx_alloc_type (typenums, objfile);
1526 smash_to_method_type (type, domain, return_type, args);
1527 }
1528 break;
1529
1530 case 'r': /* Range type */
1531 type = read_range_type (pp, typenums, objfile);
1532 if (typenums[0] != -1)
1533 *dbx_lookup_type (typenums) = type;
1534 break;
1535
1536 case 'b': /* Sun ACC builtin int type */
1537 type = read_sun_builtin_type (pp, typenums, objfile);
1538 if (typenums[0] != -1)
1539 *dbx_lookup_type (typenums) = type;
1540 break;
1541
1542 case 'R': /* Sun ACC builtin float type */
1543 type = read_sun_floating_type (pp, typenums, objfile);
1544 if (typenums[0] != -1)
1545 *dbx_lookup_type (typenums) = type;
1546 break;
1547
1548 case 'e': /* Enumeration type */
1549 type = dbx_alloc_type (typenums, objfile);
1550 type = read_enum_type (pp, type, objfile);
1551 if (typenums[0] != -1)
1552 *dbx_lookup_type (typenums) = type;
1553 break;
1554
1555 case 's': /* Struct type */
1556 case 'u': /* Union type */
1557 type = dbx_alloc_type (typenums, objfile);
1558 if (!TYPE_NAME (type))
1559 {
1560 TYPE_NAME (type) = type_synonym_name;
1561 }
1562 type_synonym_name = NULL;
1563 switch (type_descriptor)
1564 {
1565 case 's':
1566 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1567 break;
1568 case 'u':
1569 TYPE_CODE (type) = TYPE_CODE_UNION;
1570 break;
1571 }
1572 type = read_struct_type (pp, type, objfile);
1573 break;
1574
1575 case 'a': /* Array type */
1576 if (**pp != 'r')
1577 return error_type (pp);
1578 ++*pp;
1579
1580 type = dbx_alloc_type (typenums, objfile);
1581 type = read_array_type (pp, type, objfile);
1582 break;
1583
1584 default:
1585 --*pp; /* Go back to the symbol in error */
1586 /* Particularly important if it was \0! */
1587 return error_type (pp);
1588 }
1589
1590 if (type == 0)
1591 {
1592 warning ("GDB internal error, type is NULL in stabsread.c\n");
1593 return error_type (pp);
1594 }
1595
1596 return type;
1597 }
1598 \f
1599 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1600 Return the proper type node for a given builtin type number. */
1601
1602 static struct type *
1603 rs6000_builtin_type (typenum)
1604 int typenum;
1605 {
1606 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1607 #define NUMBER_RECOGNIZED 30
1608 /* This includes an empty slot for type number -0. */
1609 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1610 struct type *rettype;
1611
1612 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1613 {
1614 complain (&rs6000_builtin_complaint, typenum);
1615 return builtin_type_error;
1616 }
1617 if (negative_types[-typenum] != NULL)
1618 return negative_types[-typenum];
1619
1620 #if TARGET_CHAR_BIT != 8
1621 #error This code wrong for TARGET_CHAR_BIT not 8
1622 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1623 that if that ever becomes not true, the correct fix will be to
1624 make the size in the struct type to be in bits, not in units of
1625 TARGET_CHAR_BIT. */
1626 #endif
1627
1628 switch (-typenum)
1629 {
1630 case 1:
1631 /* The size of this and all the other types are fixed, defined
1632 by the debugging format. If there is a type called "int" which
1633 is other than 32 bits, then it should use a new negative type
1634 number (or avoid negative type numbers for that case).
1635 See stabs.texinfo. */
1636 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1637 break;
1638 case 2:
1639 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1640 break;
1641 case 3:
1642 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1643 break;
1644 case 4:
1645 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1646 break;
1647 case 5:
1648 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1649 "unsigned char", NULL);
1650 break;
1651 case 6:
1652 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1653 break;
1654 case 7:
1655 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1656 "unsigned short", NULL);
1657 break;
1658 case 8:
1659 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1660 "unsigned int", NULL);
1661 break;
1662 case 9:
1663 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1664 "unsigned", NULL);
1665 case 10:
1666 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1667 "unsigned long", NULL);
1668 break;
1669 case 11:
1670 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1671 break;
1672 case 12:
1673 /* IEEE single precision (32 bit). */
1674 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1675 break;
1676 case 13:
1677 /* IEEE double precision (64 bit). */
1678 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1679 break;
1680 case 14:
1681 /* This is an IEEE double on the RS/6000, and different machines with
1682 different sizes for "long double" should use different negative
1683 type numbers. See stabs.texinfo. */
1684 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1685 break;
1686 case 15:
1687 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1688 break;
1689 case 16:
1690 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1691 break;
1692 case 17:
1693 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1694 break;
1695 case 18:
1696 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1697 break;
1698 case 19:
1699 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1700 break;
1701 case 20:
1702 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1703 "character", NULL);
1704 break;
1705 case 21:
1706 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1707 "logical*1", NULL);
1708 break;
1709 case 22:
1710 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1711 "logical*2", NULL);
1712 break;
1713 case 23:
1714 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1715 "logical*4", NULL);
1716 break;
1717 case 24:
1718 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1719 "logical", NULL);
1720 break;
1721 case 25:
1722 /* Complex type consisting of two IEEE single precision values. */
1723 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1724 break;
1725 case 26:
1726 /* Complex type consisting of two IEEE double precision values. */
1727 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1728 break;
1729 case 27:
1730 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1731 break;
1732 case 28:
1733 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1734 break;
1735 case 29:
1736 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1737 break;
1738 case 30:
1739 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1740 break;
1741 }
1742 negative_types[-typenum] = rettype;
1743 return rettype;
1744 }
1745 \f
1746 /* This page contains subroutines of read_type. */
1747
1748 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1749 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1750 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1751
1752 /* Read member function stabs info for C++ classes. The form of each member
1753 function data is:
1754
1755 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1756
1757 An example with two member functions is:
1758
1759 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1760
1761 For the case of overloaded operators, the format is op$::*.funcs, where
1762 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1763 name (such as `+=') and `.' marks the end of the operator name.
1764
1765 Returns 1 for success, 0 for failure. */
1766
1767 static int
1768 read_member_functions (fip, pp, type, objfile)
1769 struct field_info *fip;
1770 char **pp;
1771 struct type *type;
1772 struct objfile *objfile;
1773 {
1774 int nfn_fields = 0;
1775 int length = 0;
1776 /* Total number of member functions defined in this class. If the class
1777 defines two `f' functions, and one `g' function, then this will have
1778 the value 3. */
1779 int total_length = 0;
1780 int i;
1781 struct next_fnfield
1782 {
1783 struct next_fnfield *next;
1784 struct fn_field fn_field;
1785 } *sublist;
1786 struct type *look_ahead_type;
1787 struct next_fnfieldlist *new_fnlist;
1788 struct next_fnfield *new_sublist;
1789 char *main_fn_name;
1790 register char *p;
1791
1792 /* Process each list until we find something that is not a member function
1793 or find the end of the functions. */
1794
1795 while (**pp != ';')
1796 {
1797 /* We should be positioned at the start of the function name.
1798 Scan forward to find the first ':' and if it is not the
1799 first of a "::" delimiter, then this is not a member function. */
1800 p = *pp;
1801 while (*p != ':')
1802 {
1803 p++;
1804 }
1805 if (p[1] != ':')
1806 {
1807 break;
1808 }
1809
1810 sublist = NULL;
1811 look_ahead_type = NULL;
1812 length = 0;
1813
1814 new_fnlist = (struct next_fnfieldlist *)
1815 xmalloc (sizeof (struct next_fnfieldlist));
1816 make_cleanup (free, new_fnlist);
1817 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1818
1819 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1820 {
1821 /* This is a completely wierd case. In order to stuff in the
1822 names that might contain colons (the usual name delimiter),
1823 Mike Tiemann defined a different name format which is
1824 signalled if the identifier is "op$". In that case, the
1825 format is "op$::XXXX." where XXXX is the name. This is
1826 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1827 /* This lets the user type "break operator+".
1828 We could just put in "+" as the name, but that wouldn't
1829 work for "*". */
1830 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1831 char *o = opname + 3;
1832
1833 /* Skip past '::'. */
1834 *pp = p + 2;
1835
1836 STABS_CONTINUE (pp);
1837 p = *pp;
1838 while (*p != '.')
1839 {
1840 *o++ = *p++;
1841 }
1842 main_fn_name = savestring (opname, o - opname);
1843 /* Skip past '.' */
1844 *pp = p + 1;
1845 }
1846 else
1847 {
1848 main_fn_name = savestring (*pp, p - *pp);
1849 /* Skip past '::'. */
1850 *pp = p + 2;
1851 }
1852 new_fnlist -> fn_fieldlist.name = main_fn_name;
1853
1854 do
1855 {
1856 new_sublist =
1857 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1858 make_cleanup (free, new_sublist);
1859 memset (new_sublist, 0, sizeof (struct next_fnfield));
1860
1861 /* Check for and handle cretinous dbx symbol name continuation! */
1862 if (look_ahead_type == NULL)
1863 {
1864 /* Normal case. */
1865 STABS_CONTINUE (pp);
1866
1867 new_sublist -> fn_field.type = read_type (pp, objfile);
1868 if (**pp != ':')
1869 {
1870 /* Invalid symtab info for member function. */
1871 return 0;
1872 }
1873 }
1874 else
1875 {
1876 /* g++ version 1 kludge */
1877 new_sublist -> fn_field.type = look_ahead_type;
1878 look_ahead_type = NULL;
1879 }
1880
1881 (*pp)++;
1882 p = *pp;
1883 while (*p != ';')
1884 {
1885 p++;
1886 }
1887
1888 /* If this is just a stub, then we don't have the real name here. */
1889
1890 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1891 {
1892 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1893 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1894 new_sublist -> fn_field.is_stub = 1;
1895 }
1896 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1897 *pp = p + 1;
1898
1899 /* Set this member function's visibility fields. */
1900 switch (*(*pp)++)
1901 {
1902 case VISIBILITY_PRIVATE:
1903 new_sublist -> fn_field.is_private = 1;
1904 break;
1905 case VISIBILITY_PROTECTED:
1906 new_sublist -> fn_field.is_protected = 1;
1907 break;
1908 }
1909
1910 STABS_CONTINUE (pp);
1911 switch (**pp)
1912 {
1913 case 'A': /* Normal functions. */
1914 new_sublist -> fn_field.is_const = 0;
1915 new_sublist -> fn_field.is_volatile = 0;
1916 (*pp)++;
1917 break;
1918 case 'B': /* `const' member functions. */
1919 new_sublist -> fn_field.is_const = 1;
1920 new_sublist -> fn_field.is_volatile = 0;
1921 (*pp)++;
1922 break;
1923 case 'C': /* `volatile' member function. */
1924 new_sublist -> fn_field.is_const = 0;
1925 new_sublist -> fn_field.is_volatile = 1;
1926 (*pp)++;
1927 break;
1928 case 'D': /* `const volatile' member function. */
1929 new_sublist -> fn_field.is_const = 1;
1930 new_sublist -> fn_field.is_volatile = 1;
1931 (*pp)++;
1932 break;
1933 case '*': /* File compiled with g++ version 1 -- no info */
1934 case '?':
1935 case '.':
1936 break;
1937 default:
1938 complain (&const_vol_complaint, **pp);
1939 break;
1940 }
1941
1942 switch (*(*pp)++)
1943 {
1944 case '*':
1945 {
1946 int nbits;
1947 /* virtual member function, followed by index.
1948 The sign bit is set to distinguish pointers-to-methods
1949 from virtual function indicies. Since the array is
1950 in words, the quantity must be shifted left by 1
1951 on 16 bit machine, and by 2 on 32 bit machine, forcing
1952 the sign bit out, and usable as a valid index into
1953 the array. Remove the sign bit here. */
1954 new_sublist -> fn_field.voffset =
1955 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1956 if (nbits != 0)
1957 return 0;
1958
1959 STABS_CONTINUE (pp);
1960 if (**pp == ';' || **pp == '\0')
1961 {
1962 /* Must be g++ version 1. */
1963 new_sublist -> fn_field.fcontext = 0;
1964 }
1965 else
1966 {
1967 /* Figure out from whence this virtual function came.
1968 It may belong to virtual function table of
1969 one of its baseclasses. */
1970 look_ahead_type = read_type (pp, objfile);
1971 if (**pp == ':')
1972 {
1973 /* g++ version 1 overloaded methods. */
1974 }
1975 else
1976 {
1977 new_sublist -> fn_field.fcontext = look_ahead_type;
1978 if (**pp != ';')
1979 {
1980 return 0;
1981 }
1982 else
1983 {
1984 ++*pp;
1985 }
1986 look_ahead_type = NULL;
1987 }
1988 }
1989 break;
1990 }
1991 case '?':
1992 /* static member function. */
1993 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1994 if (strncmp (new_sublist -> fn_field.physname,
1995 main_fn_name, strlen (main_fn_name)))
1996 {
1997 new_sublist -> fn_field.is_stub = 1;
1998 }
1999 break;
2000
2001 default:
2002 /* error */
2003 complain (&member_fn_complaint, (*pp)[-1]);
2004 /* Fall through into normal member function. */
2005
2006 case '.':
2007 /* normal member function. */
2008 new_sublist -> fn_field.voffset = 0;
2009 new_sublist -> fn_field.fcontext = 0;
2010 break;
2011 }
2012
2013 new_sublist -> next = sublist;
2014 sublist = new_sublist;
2015 length++;
2016 STABS_CONTINUE (pp);
2017 }
2018 while (**pp != ';' && **pp != '\0');
2019
2020 (*pp)++;
2021
2022 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2023 obstack_alloc (&objfile -> type_obstack,
2024 sizeof (struct fn_field) * length);
2025 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2026 sizeof (struct fn_field) * length);
2027 for (i = length; (i--, sublist); sublist = sublist -> next)
2028 {
2029 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2030 }
2031
2032 new_fnlist -> fn_fieldlist.length = length;
2033 new_fnlist -> next = fip -> fnlist;
2034 fip -> fnlist = new_fnlist;
2035 nfn_fields++;
2036 total_length += length;
2037 STABS_CONTINUE (pp);
2038 }
2039
2040 if (nfn_fields)
2041 {
2042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2043 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2044 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2045 memset (TYPE_FN_FIELDLISTS (type), 0,
2046 sizeof (struct fn_fieldlist) * nfn_fields);
2047 TYPE_NFN_FIELDS (type) = nfn_fields;
2048 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2049 }
2050
2051 return 1;
2052 }
2053
2054 /* Special GNU C++ name.
2055
2056 Returns 1 for success, 0 for failure. "failure" means that we can't
2057 keep parsing and it's time for error_type(). */
2058
2059 static int
2060 read_cpp_abbrev (fip, pp, type, objfile)
2061 struct field_info *fip;
2062 char **pp;
2063 struct type *type;
2064 struct objfile *objfile;
2065 {
2066 register char *p;
2067 const char *prefix;
2068 char *name;
2069 char cpp_abbrev;
2070 struct type *context;
2071
2072 p = *pp;
2073 if (*++p == 'v')
2074 {
2075 name = NULL;
2076 cpp_abbrev = *++p;
2077
2078 *pp = p + 1;
2079
2080 /* At this point, *pp points to something like "22:23=*22...",
2081 where the type number before the ':' is the "context" and
2082 everything after is a regular type definition. Lookup the
2083 type, find it's name, and construct the field name. */
2084
2085 context = read_type (pp, objfile);
2086
2087 switch (cpp_abbrev)
2088 {
2089 case 'f': /* $vf -- a virtual function table pointer */
2090 fip->list->field.name =
2091 obconcat (&objfile->type_obstack, vptr_name, "", "");
2092 break;
2093
2094 case 'b': /* $vb -- a virtual bsomethingorother */
2095 name = type_name_no_tag (context);
2096 if (name == NULL)
2097 {
2098 complain (&invalid_cpp_type_complaint, symnum);
2099 name = "FOO";
2100 }
2101 fip->list->field.name =
2102 obconcat (&objfile->type_obstack, vb_name, name, "");
2103 break;
2104
2105 default:
2106 complain (&invalid_cpp_abbrev_complaint, *pp);
2107 fip->list->field.name =
2108 obconcat (&objfile->type_obstack,
2109 "INVALID_CPLUSPLUS_ABBREV", "", "");
2110 break;
2111 }
2112
2113 /* At this point, *pp points to the ':'. Skip it and read the
2114 field type. */
2115
2116 p = ++(*pp);
2117 if (p[-1] != ':')
2118 {
2119 complain (&invalid_cpp_abbrev_complaint, *pp);
2120 return 0;
2121 }
2122 fip->list->field.type = read_type (pp, objfile);
2123 if (**pp == ',')
2124 (*pp)++; /* Skip the comma. */
2125 else
2126 return 0;
2127
2128 {
2129 int nbits;
2130 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2131 if (nbits != 0)
2132 return 0;
2133 }
2134 /* This field is unpacked. */
2135 fip->list->field.bitsize = 0;
2136 fip->list->visibility = VISIBILITY_PRIVATE;
2137 }
2138 else
2139 {
2140 complain (&invalid_cpp_abbrev_complaint, *pp);
2141 /* We have no idea what syntax an unrecognized abbrev would have, so
2142 better return 0. If we returned 1, we would need to at least advance
2143 *pp to avoid an infinite loop. */
2144 return 0;
2145 }
2146 return 1;
2147 }
2148
2149 static void
2150 read_one_struct_field (fip, pp, p, type, objfile)
2151 struct field_info *fip;
2152 char **pp;
2153 char *p;
2154 struct type *type;
2155 struct objfile *objfile;
2156 {
2157 fip -> list -> field.name =
2158 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2159 *pp = p + 1;
2160
2161 /* This means we have a visibility for a field coming. */
2162 if (**pp == '/')
2163 {
2164 (*pp)++;
2165 fip -> list -> visibility = *(*pp)++;
2166 switch (fip -> list -> visibility)
2167 {
2168 case VISIBILITY_PRIVATE:
2169 case VISIBILITY_PROTECTED:
2170 break;
2171
2172 case VISIBILITY_PUBLIC:
2173 /* Nothing to do */
2174 break;
2175
2176 default:
2177 /* Unknown visibility specifier. */
2178 complain (&stabs_general_complaint,
2179 "unknown visibility specifier");
2180 return;
2181 break;
2182 }
2183 }
2184 else
2185 {
2186 /* normal dbx-style format, no explicit visibility */
2187 fip -> list -> visibility = VISIBILITY_PUBLIC;
2188 }
2189
2190 fip -> list -> field.type = read_type (pp, objfile);
2191 if (**pp == ':')
2192 {
2193 p = ++(*pp);
2194 #if 0
2195 /* Possible future hook for nested types. */
2196 if (**pp == '!')
2197 {
2198 fip -> list -> field.bitpos = (long)-2; /* nested type */
2199 p = ++(*pp);
2200 }
2201 else
2202 #endif
2203 {
2204 /* Static class member. */
2205 fip -> list -> field.bitpos = (long) -1;
2206 }
2207 while (*p != ';')
2208 {
2209 p++;
2210 }
2211 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2212 *pp = p + 1;
2213 return;
2214 }
2215 else if (**pp != ',')
2216 {
2217 /* Bad structure-type format. */
2218 complain (&stabs_general_complaint, "bad structure-type format");
2219 return;
2220 }
2221
2222 (*pp)++; /* Skip the comma. */
2223
2224 {
2225 int nbits;
2226 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2227 if (nbits != 0)
2228 {
2229 complain (&stabs_general_complaint, "bad structure-type format");
2230 return;
2231 }
2232 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2233 if (nbits != 0)
2234 {
2235 complain (&stabs_general_complaint, "bad structure-type format");
2236 return;
2237 }
2238 }
2239 #if 0
2240 /* FIXME-tiemann: Can't the compiler put out something which
2241 lets us distinguish these? (or maybe just not put out anything
2242 for the field). What is the story here? What does the compiler
2243 really do? Also, patch gdb.texinfo for this case; I document
2244 it as a possible problem there. Search for "DBX-style". */
2245
2246 /* This is wrong because this is identical to the symbols
2247 produced for GCC 0-size arrays. For example:
2248 typedef union {
2249 int num;
2250 char str[0];
2251 } foo;
2252 The code which dumped core in such circumstances should be
2253 fixed not to dump core. */
2254
2255 /* g++ -g0 can put out bitpos & bitsize zero for a static
2256 field. This does not give us any way of getting its
2257 class, so we can't know its name. But we can just
2258 ignore the field so we don't dump core and other nasty
2259 stuff. */
2260 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2261 {
2262 complain (&dbx_class_complaint);
2263 /* Ignore this field. */
2264 fip -> list = fip -> list -> next;
2265 }
2266 else
2267 #endif /* 0 */
2268 {
2269 /* Detect an unpacked field and mark it as such.
2270 dbx gives a bit size for all fields.
2271 Note that forward refs cannot be packed,
2272 and treat enums as if they had the width of ints. */
2273
2274 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2275 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2276 {
2277 fip -> list -> field.bitsize = 0;
2278 }
2279 if ((fip -> list -> field.bitsize
2280 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2281 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2282 && (fip -> list -> field.bitsize
2283 == TARGET_INT_BIT)
2284 )
2285 )
2286 &&
2287 fip -> list -> field.bitpos % 8 == 0)
2288 {
2289 fip -> list -> field.bitsize = 0;
2290 }
2291 }
2292 }
2293
2294
2295 /* Read struct or class data fields. They have the form:
2296
2297 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2298
2299 At the end, we see a semicolon instead of a field.
2300
2301 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2302 a static field.
2303
2304 The optional VISIBILITY is one of:
2305
2306 '/0' (VISIBILITY_PRIVATE)
2307 '/1' (VISIBILITY_PROTECTED)
2308 '/2' (VISIBILITY_PUBLIC)
2309
2310 or nothing, for C style fields with public visibility.
2311
2312 Returns 1 for success, 0 for failure. */
2313
2314 static int
2315 read_struct_fields (fip, pp, type, objfile)
2316 struct field_info *fip;
2317 char **pp;
2318 struct type *type;
2319 struct objfile *objfile;
2320 {
2321 register char *p;
2322 struct nextfield *new;
2323
2324 /* We better set p right now, in case there are no fields at all... */
2325
2326 p = *pp;
2327
2328 /* Read each data member type until we find the terminating ';' at the end of
2329 the data member list, or break for some other reason such as finding the
2330 start of the member function list. */
2331
2332 while (**pp != ';')
2333 {
2334 STABS_CONTINUE (pp);
2335 /* Get space to record the next field's data. */
2336 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2337 make_cleanup (free, new);
2338 memset (new, 0, sizeof (struct nextfield));
2339 new -> next = fip -> list;
2340 fip -> list = new;
2341
2342 /* Get the field name. */
2343 p = *pp;
2344 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2345 the CPLUS_MARKER is followed by an underscore, in which case it is
2346 just the name of an anonymous type, which we should handle like any
2347 other type name. */
2348 if (*p == CPLUS_MARKER && p[1] != '_')
2349 {
2350 if (!read_cpp_abbrev (fip, pp, type, objfile))
2351 return 0;
2352 continue;
2353 }
2354
2355 /* Look for the ':' that separates the field name from the field
2356 values. Data members are delimited by a single ':', while member
2357 functions are delimited by a pair of ':'s. When we hit the member
2358 functions (if any), terminate scan loop and return. */
2359
2360 while (*p != ':' && *p != '\0')
2361 {
2362 p++;
2363 }
2364 if (*p == '\0')
2365 return 0;
2366
2367 /* Check to see if we have hit the member functions yet. */
2368 if (p[1] == ':')
2369 {
2370 break;
2371 }
2372 read_one_struct_field (fip, pp, p, type, objfile);
2373 }
2374 if (p[1] == ':')
2375 {
2376 /* chill the list of fields: the last entry (at the head) is a
2377 partially constructed entry which we now scrub. */
2378 fip -> list = fip -> list -> next;
2379 }
2380 return 1;
2381 }
2382
2383 /* The stabs for C++ derived classes contain baseclass information which
2384 is marked by a '!' character after the total size. This function is
2385 called when we encounter the baseclass marker, and slurps up all the
2386 baseclass information.
2387
2388 Immediately following the '!' marker is the number of base classes that
2389 the class is derived from, followed by information for each base class.
2390 For each base class, there are two visibility specifiers, a bit offset
2391 to the base class information within the derived class, a reference to
2392 the type for the base class, and a terminating semicolon.
2393
2394 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2395 ^^ ^ ^ ^ ^ ^ ^
2396 Baseclass information marker __________________|| | | | | | |
2397 Number of baseclasses __________________________| | | | | | |
2398 Visibility specifiers (2) ________________________| | | | | |
2399 Offset in bits from start of class _________________| | | | |
2400 Type number for base class ___________________________| | | |
2401 Visibility specifiers (2) _______________________________| | |
2402 Offset in bits from start of class ________________________| |
2403 Type number of base class ____________________________________|
2404
2405 Return 1 for success, 0 for (error-type-inducing) failure. */
2406
2407 static int
2408 read_baseclasses (fip, pp, type, objfile)
2409 struct field_info *fip;
2410 char **pp;
2411 struct type *type;
2412 struct objfile *objfile;
2413 {
2414 int i;
2415 struct nextfield *new;
2416
2417 if (**pp != '!')
2418 {
2419 return 1;
2420 }
2421 else
2422 {
2423 /* Skip the '!' baseclass information marker. */
2424 (*pp)++;
2425 }
2426
2427 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2428 {
2429 int nbits;
2430 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2431 if (nbits != 0)
2432 return 0;
2433 }
2434
2435 #if 0
2436 /* Some stupid compilers have trouble with the following, so break
2437 it up into simpler expressions. */
2438 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2439 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2440 #else
2441 {
2442 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2443 char *pointer;
2444
2445 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2446 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2447 }
2448 #endif /* 0 */
2449
2450 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2451
2452 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2453 {
2454 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2455 make_cleanup (free, new);
2456 memset (new, 0, sizeof (struct nextfield));
2457 new -> next = fip -> list;
2458 fip -> list = new;
2459 new -> field.bitsize = 0; /* this should be an unpacked field! */
2460
2461 STABS_CONTINUE (pp);
2462 switch (*(*pp)++)
2463 {
2464 case '0':
2465 /* Nothing to do. */
2466 break;
2467 case '1':
2468 SET_TYPE_FIELD_VIRTUAL (type, i);
2469 break;
2470 default:
2471 /* Bad visibility format. */
2472 return 0;
2473 }
2474
2475 new -> visibility = *(*pp)++;
2476 switch (new -> visibility)
2477 {
2478 case VISIBILITY_PRIVATE:
2479 case VISIBILITY_PROTECTED:
2480 case VISIBILITY_PUBLIC:
2481 break;
2482 default:
2483 /* Bad visibility format. */
2484 return 0;
2485 }
2486
2487 {
2488 int nbits;
2489
2490 /* The remaining value is the bit offset of the portion of the object
2491 corresponding to this baseclass. Always zero in the absence of
2492 multiple inheritance. */
2493
2494 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2495 if (nbits != 0)
2496 return 0;
2497 }
2498
2499 /* The last piece of baseclass information is the type of the
2500 base class. Read it, and remember it's type name as this
2501 field's name. */
2502
2503 new -> field.type = read_type (pp, objfile);
2504 new -> field.name = type_name_no_tag (new -> field.type);
2505
2506 /* skip trailing ';' and bump count of number of fields seen */
2507 if (**pp == ';')
2508 (*pp)++;
2509 else
2510 return 0;
2511 }
2512 return 1;
2513 }
2514
2515 /* The tail end of stabs for C++ classes that contain a virtual function
2516 pointer contains a tilde, a %, and a type number.
2517 The type number refers to the base class (possibly this class itself) which
2518 contains the vtable pointer for the current class.
2519
2520 This function is called when we have parsed all the method declarations,
2521 so we can look for the vptr base class info. */
2522
2523 static int
2524 read_tilde_fields (fip, pp, type, objfile)
2525 struct field_info *fip;
2526 char **pp;
2527 struct type *type;
2528 struct objfile *objfile;
2529 {
2530 register char *p;
2531
2532 STABS_CONTINUE (pp);
2533
2534 /* If we are positioned at a ';', then skip it. */
2535 if (**pp == ';')
2536 {
2537 (*pp)++;
2538 }
2539
2540 if (**pp == '~')
2541 {
2542 (*pp)++;
2543
2544 if (**pp == '=' || **pp == '+' || **pp == '-')
2545 {
2546 /* Obsolete flags that used to indicate the presence
2547 of constructors and/or destructors. */
2548 (*pp)++;
2549 }
2550
2551 /* Read either a '%' or the final ';'. */
2552 if (*(*pp)++ == '%')
2553 {
2554 /* The next number is the type number of the base class
2555 (possibly our own class) which supplies the vtable for
2556 this class. Parse it out, and search that class to find
2557 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2558 and TYPE_VPTR_FIELDNO. */
2559
2560 struct type *t;
2561 int i;
2562
2563 t = read_type (pp, objfile);
2564 p = (*pp)++;
2565 while (*p != '\0' && *p != ';')
2566 {
2567 p++;
2568 }
2569 if (*p == '\0')
2570 {
2571 /* Premature end of symbol. */
2572 return 0;
2573 }
2574
2575 TYPE_VPTR_BASETYPE (type) = t;
2576 if (type == t) /* Our own class provides vtbl ptr */
2577 {
2578 for (i = TYPE_NFIELDS (t) - 1;
2579 i >= TYPE_N_BASECLASSES (t);
2580 --i)
2581 {
2582 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2583 sizeof (vptr_name) - 1))
2584 {
2585 TYPE_VPTR_FIELDNO (type) = i;
2586 goto gotit;
2587 }
2588 }
2589 /* Virtual function table field not found. */
2590 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2591 return 0;
2592 }
2593 else
2594 {
2595 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2596 }
2597
2598 gotit:
2599 *pp = p + 1;
2600 }
2601 }
2602 return 1;
2603 }
2604
2605 static int
2606 attach_fn_fields_to_type (fip, type)
2607 struct field_info *fip;
2608 register struct type *type;
2609 {
2610 register int n;
2611
2612 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2613 {
2614 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2615 {
2616 /* @@ Memory leak on objfile -> type_obstack? */
2617 return 0;
2618 }
2619 TYPE_NFN_FIELDS_TOTAL (type) +=
2620 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2621 }
2622
2623 for (n = TYPE_NFN_FIELDS (type);
2624 fip -> fnlist != NULL;
2625 fip -> fnlist = fip -> fnlist -> next)
2626 {
2627 --n; /* Circumvent Sun3 compiler bug */
2628 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2629 }
2630 return 1;
2631 }
2632
2633 /* Create the vector of fields, and record how big it is.
2634 We need this info to record proper virtual function table information
2635 for this class's virtual functions. */
2636
2637 static int
2638 attach_fields_to_type (fip, type, objfile)
2639 struct field_info *fip;
2640 register struct type *type;
2641 struct objfile *objfile;
2642 {
2643 register int nfields = 0;
2644 register int non_public_fields = 0;
2645 register struct nextfield *scan;
2646
2647 /* Count up the number of fields that we have, as well as taking note of
2648 whether or not there are any non-public fields, which requires us to
2649 allocate and build the private_field_bits and protected_field_bits
2650 bitfields. */
2651
2652 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2653 {
2654 nfields++;
2655 if (scan -> visibility != VISIBILITY_PUBLIC)
2656 {
2657 non_public_fields++;
2658 }
2659 }
2660
2661 /* Now we know how many fields there are, and whether or not there are any
2662 non-public fields. Record the field count, allocate space for the
2663 array of fields, and create blank visibility bitfields if necessary. */
2664
2665 TYPE_NFIELDS (type) = nfields;
2666 TYPE_FIELDS (type) = (struct field *)
2667 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2668 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2669
2670 if (non_public_fields)
2671 {
2672 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2673
2674 TYPE_FIELD_PRIVATE_BITS (type) =
2675 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2676 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2677
2678 TYPE_FIELD_PROTECTED_BITS (type) =
2679 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2680 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2681 }
2682
2683 /* Copy the saved-up fields into the field vector. Start from the head
2684 of the list, adding to the tail of the field array, so that they end
2685 up in the same order in the array in which they were added to the list. */
2686
2687 while (nfields-- > 0)
2688 {
2689 TYPE_FIELD (type, nfields) = fip -> list -> field;
2690 switch (fip -> list -> visibility)
2691 {
2692 case VISIBILITY_PRIVATE:
2693 SET_TYPE_FIELD_PRIVATE (type, nfields);
2694 break;
2695
2696 case VISIBILITY_PROTECTED:
2697 SET_TYPE_FIELD_PROTECTED (type, nfields);
2698 break;
2699
2700 case VISIBILITY_PUBLIC:
2701 break;
2702
2703 default:
2704 /* Should warn about this unknown visibility? */
2705 break;
2706 }
2707 fip -> list = fip -> list -> next;
2708 }
2709 return 1;
2710 }
2711
2712 /* Read the description of a structure (or union type) and return an object
2713 describing the type.
2714
2715 PP points to a character pointer that points to the next unconsumed token
2716 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2717 *PP will point to "4a:1,0,32;;".
2718
2719 TYPE points to an incomplete type that needs to be filled in.
2720
2721 OBJFILE points to the current objfile from which the stabs information is
2722 being read. (Note that it is redundant in that TYPE also contains a pointer
2723 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2724 */
2725
2726 static struct type *
2727 read_struct_type (pp, type, objfile)
2728 char **pp;
2729 struct type *type;
2730 struct objfile *objfile;
2731 {
2732 struct cleanup *back_to;
2733 struct field_info fi;
2734
2735 fi.list = NULL;
2736 fi.fnlist = NULL;
2737
2738 back_to = make_cleanup (null_cleanup, 0);
2739
2740 INIT_CPLUS_SPECIFIC (type);
2741 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2742
2743 /* First comes the total size in bytes. */
2744
2745 {
2746 int nbits;
2747 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2748 if (nbits != 0)
2749 return error_type (pp);
2750 }
2751
2752 /* Now read the baseclasses, if any, read the regular C struct or C++
2753 class member fields, attach the fields to the type, read the C++
2754 member functions, attach them to the type, and then read any tilde
2755 field (baseclass specifier for the class holding the main vtable). */
2756
2757 if (!read_baseclasses (&fi, pp, type, objfile)
2758 || !read_struct_fields (&fi, pp, type, objfile)
2759 || !attach_fields_to_type (&fi, type, objfile)
2760 || !read_member_functions (&fi, pp, type, objfile)
2761 || !attach_fn_fields_to_type (&fi, type)
2762 || !read_tilde_fields (&fi, pp, type, objfile))
2763 {
2764 do_cleanups (back_to);
2765 return (error_type (pp));
2766 }
2767
2768 do_cleanups (back_to);
2769 return (type);
2770 }
2771
2772 /* Read a definition of an array type,
2773 and create and return a suitable type object.
2774 Also creates a range type which represents the bounds of that
2775 array. */
2776
2777 static struct type *
2778 read_array_type (pp, type, objfile)
2779 register char **pp;
2780 register struct type *type;
2781 struct objfile *objfile;
2782 {
2783 struct type *index_type, *element_type, *range_type;
2784 int lower, upper;
2785 int adjustable = 0;
2786 int nbits;
2787
2788 /* Format of an array type:
2789 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2790 to handle this.
2791
2792 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2793 for these, produce a type like float[][]. */
2794
2795 index_type = read_type (pp, objfile);
2796 if (**pp != ';')
2797 /* Improper format of array type decl. */
2798 return error_type (pp);
2799 ++*pp;
2800
2801 if (!(**pp >= '0' && **pp <= '9'))
2802 {
2803 (*pp)++;
2804 adjustable = 1;
2805 }
2806 lower = read_huge_number (pp, ';', &nbits);
2807 if (nbits != 0)
2808 return error_type (pp);
2809
2810 if (!(**pp >= '0' && **pp <= '9'))
2811 {
2812 (*pp)++;
2813 adjustable = 1;
2814 }
2815 upper = read_huge_number (pp, ';', &nbits);
2816 if (nbits != 0)
2817 return error_type (pp);
2818
2819 element_type = read_type (pp, objfile);
2820
2821 if (adjustable)
2822 {
2823 lower = 0;
2824 upper = -1;
2825 }
2826
2827 range_type =
2828 create_range_type ((struct type *) NULL, index_type, lower, upper);
2829 type = create_array_type (type, element_type, range_type);
2830
2831 /* If we have an array whose element type is not yet known, but whose
2832 bounds *are* known, record it to be adjusted at the end of the file. */
2833
2834 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2835 {
2836 add_undefined_type (type);
2837 }
2838
2839 return type;
2840 }
2841
2842
2843 /* Read a definition of an enumeration type,
2844 and create and return a suitable type object.
2845 Also defines the symbols that represent the values of the type. */
2846
2847 static struct type *
2848 read_enum_type (pp, type, objfile)
2849 register char **pp;
2850 register struct type *type;
2851 struct objfile *objfile;
2852 {
2853 register char *p;
2854 char *name;
2855 register long n;
2856 register struct symbol *sym;
2857 int nsyms = 0;
2858 struct pending **symlist;
2859 struct pending *osyms, *syms;
2860 int o_nsyms;
2861
2862 #if 0
2863 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2864 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2865 to do? For now, force all enum values to file scope. */
2866 if (within_function)
2867 symlist = &local_symbols;
2868 else
2869 #endif
2870 symlist = &file_symbols;
2871 osyms = *symlist;
2872 o_nsyms = osyms ? osyms->nsyms : 0;
2873
2874 /* Read the value-names and their values.
2875 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2876 A semicolon or comma instead of a NAME means the end. */
2877 while (**pp && **pp != ';' && **pp != ',')
2878 {
2879 int nbits;
2880 STABS_CONTINUE (pp);
2881 p = *pp;
2882 while (*p != ':') p++;
2883 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2884 *pp = p + 1;
2885 n = read_huge_number (pp, ',', &nbits);
2886 if (nbits != 0)
2887 return error_type (pp);
2888
2889 sym = (struct symbol *)
2890 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2891 memset (sym, 0, sizeof (struct symbol));
2892 SYMBOL_NAME (sym) = name;
2893 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2894 SYMBOL_CLASS (sym) = LOC_CONST;
2895 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2896 SYMBOL_VALUE (sym) = n;
2897 add_symbol_to_list (sym, symlist);
2898 nsyms++;
2899 }
2900
2901 if (**pp == ';')
2902 (*pp)++; /* Skip the semicolon. */
2903
2904 /* Now fill in the fields of the type-structure. */
2905
2906 TYPE_LENGTH (type) = sizeof (int);
2907 TYPE_CODE (type) = TYPE_CODE_ENUM;
2908 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2909 TYPE_NFIELDS (type) = nsyms;
2910 TYPE_FIELDS (type) = (struct field *)
2911 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2912 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2913
2914 /* Find the symbols for the values and put them into the type.
2915 The symbols can be found in the symlist that we put them on
2916 to cause them to be defined. osyms contains the old value
2917 of that symlist; everything up to there was defined by us. */
2918 /* Note that we preserve the order of the enum constants, so
2919 that in something like "enum {FOO, LAST_THING=FOO}" we print
2920 FOO, not LAST_THING. */
2921
2922 for (syms = *symlist, n = 0; syms; syms = syms->next)
2923 {
2924 int j = 0;
2925 if (syms == osyms)
2926 j = o_nsyms;
2927 for (; j < syms->nsyms; j++,n++)
2928 {
2929 struct symbol *xsym = syms->symbol[j];
2930 SYMBOL_TYPE (xsym) = type;
2931 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2932 TYPE_FIELD_VALUE (type, n) = 0;
2933 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2934 TYPE_FIELD_BITSIZE (type, n) = 0;
2935 }
2936 if (syms == osyms)
2937 break;
2938 }
2939
2940 #if 0
2941 /* This screws up perfectly good C programs with enums. FIXME. */
2942 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2943 if(TYPE_NFIELDS(type) == 2 &&
2944 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2945 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2946 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2947 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2948 TYPE_CODE(type) = TYPE_CODE_BOOL;
2949 #endif
2950
2951 return type;
2952 }
2953
2954 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2955 typedefs in every file (for int, long, etc):
2956
2957 type = b <signed> <width>; <offset>; <nbits>
2958 signed = u or s. Possible c in addition to u or s (for char?).
2959 offset = offset from high order bit to start bit of type.
2960 width is # bytes in object of this type, nbits is # bits in type.
2961
2962 The width/offset stuff appears to be for small objects stored in
2963 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2964 FIXME. */
2965
2966 static struct type *
2967 read_sun_builtin_type (pp, typenums, objfile)
2968 char **pp;
2969 int typenums[2];
2970 struct objfile *objfile;
2971 {
2972 int type_bits;
2973 int nbits;
2974 int signed_type;
2975
2976 switch (**pp)
2977 {
2978 case 's':
2979 signed_type = 1;
2980 break;
2981 case 'u':
2982 signed_type = 0;
2983 break;
2984 default:
2985 return error_type (pp);
2986 }
2987 (*pp)++;
2988
2989 /* For some odd reason, all forms of char put a c here. This is strange
2990 because no other type has this honor. We can safely ignore this because
2991 we actually determine 'char'acterness by the number of bits specified in
2992 the descriptor. */
2993
2994 if (**pp == 'c')
2995 (*pp)++;
2996
2997 /* The first number appears to be the number of bytes occupied
2998 by this type, except that unsigned short is 4 instead of 2.
2999 Since this information is redundant with the third number,
3000 we will ignore it. */
3001 read_huge_number (pp, ';', &nbits);
3002 if (nbits != 0)
3003 return error_type (pp);
3004
3005 /* The second number is always 0, so ignore it too. */
3006 read_huge_number (pp, ';', &nbits);
3007 if (nbits != 0)
3008 return error_type (pp);
3009
3010 /* The third number is the number of bits for this type. */
3011 type_bits = read_huge_number (pp, 0, &nbits);
3012 if (nbits != 0)
3013 return error_type (pp);
3014
3015 #if 0
3016 /* FIXME. Here we should just be able to make a type of the right
3017 number of bits and signedness. FIXME. */
3018
3019 if (type_bits == TARGET_LONG_LONG_BIT)
3020 return (lookup_fundamental_type (objfile,
3021 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
3022
3023 if (type_bits == TARGET_INT_BIT)
3024 {
3025 /* FIXME -- the only way to distinguish `int' from `long'
3026 is to look at its name! */
3027 if (signed_type)
3028 {
3029 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3030 return lookup_fundamental_type (objfile, FT_LONG);
3031 else
3032 return lookup_fundamental_type (objfile, FT_INTEGER);
3033 }
3034 else
3035 {
3036 if (long_kludge_name
3037 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3038 long_kludge_name[9] == 'l' /* long */)
3039 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3040 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
3041 else
3042 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
3043 }
3044 }
3045
3046 if (type_bits == TARGET_SHORT_BIT)
3047 return (lookup_fundamental_type (objfile,
3048 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
3049
3050 if (type_bits == TARGET_CHAR_BIT)
3051 return (lookup_fundamental_type (objfile,
3052 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
3053
3054 if (type_bits == 0)
3055 return lookup_fundamental_type (objfile, FT_VOID);
3056
3057 return error_type (pp);
3058 #else
3059 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3060 type_bits / TARGET_CHAR_BIT,
3061 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3062 objfile);
3063 #endif
3064 }
3065
3066 static struct type *
3067 read_sun_floating_type (pp, typenums, objfile)
3068 char **pp;
3069 int typenums[2];
3070 struct objfile *objfile;
3071 {
3072 int nbits;
3073 int details;
3074 int nbytes;
3075
3076 /* The first number has more details about the type, for example
3077 FN_COMPLEX. */
3078 details = read_huge_number (pp, ';', &nbits);
3079 if (nbits != 0)
3080 return error_type (pp);
3081
3082 /* The second number is the number of bytes occupied by this type */
3083 nbytes = read_huge_number (pp, ';', &nbits);
3084 if (nbits != 0)
3085 return error_type (pp);
3086
3087 if (details == NF_COMPLEX || details == NF_COMPLEX16
3088 || details == NF_COMPLEX32)
3089 /* This is a type we can't handle, but we do know the size.
3090 We also will be able to give it a name. */
3091 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3092
3093 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3094 }
3095
3096 /* Read a number from the string pointed to by *PP.
3097 The value of *PP is advanced over the number.
3098 If END is nonzero, the character that ends the
3099 number must match END, or an error happens;
3100 and that character is skipped if it does match.
3101 If END is zero, *PP is left pointing to that character.
3102
3103 If the number fits in a long, set *BITS to 0 and return the value.
3104 If not, set *BITS to be the number of bits in the number and return 0.
3105
3106 If encounter garbage, set *BITS to -1 and return 0. */
3107
3108 static long
3109 read_huge_number (pp, end, bits)
3110 char **pp;
3111 int end;
3112 int *bits;
3113 {
3114 char *p = *pp;
3115 int sign = 1;
3116 long n = 0;
3117 int radix = 10;
3118 char overflow = 0;
3119 int nbits = 0;
3120 int c;
3121 long upper_limit;
3122
3123 if (*p == '-')
3124 {
3125 sign = -1;
3126 p++;
3127 }
3128
3129 /* Leading zero means octal. GCC uses this to output values larger
3130 than an int (because that would be hard in decimal). */
3131 if (*p == '0')
3132 {
3133 radix = 8;
3134 p++;
3135 }
3136
3137 upper_limit = LONG_MAX / radix;
3138 while ((c = *p++) >= '0' && c < ('0' + radix))
3139 {
3140 if (n <= upper_limit)
3141 {
3142 n *= radix;
3143 n += c - '0'; /* FIXME this overflows anyway */
3144 }
3145 else
3146 overflow = 1;
3147
3148 /* This depends on large values being output in octal, which is
3149 what GCC does. */
3150 if (radix == 8)
3151 {
3152 if (nbits == 0)
3153 {
3154 if (c == '0')
3155 /* Ignore leading zeroes. */
3156 ;
3157 else if (c == '1')
3158 nbits = 1;
3159 else if (c == '2' || c == '3')
3160 nbits = 2;
3161 else
3162 nbits = 3;
3163 }
3164 else
3165 nbits += 3;
3166 }
3167 }
3168 if (end)
3169 {
3170 if (c && c != end)
3171 {
3172 if (bits != NULL)
3173 *bits = -1;
3174 return;
3175 }
3176 }
3177 else
3178 --p;
3179
3180 *pp = p;
3181 if (overflow)
3182 {
3183 if (nbits == 0)
3184 {
3185 /* Large decimal constants are an error (because it is hard to
3186 count how many bits are in them). */
3187 if (bits != NULL)
3188 *bits = -1;
3189 return;
3190 }
3191
3192 /* -0x7f is the same as 0x80. So deal with it by adding one to
3193 the number of bits. */
3194 if (sign == -1)
3195 ++nbits;
3196 if (bits)
3197 *bits = nbits;
3198 }
3199 else
3200 {
3201 if (bits)
3202 *bits = 0;
3203 return n * sign;
3204 }
3205 /* It's *BITS which has the interesting information. */
3206 return 0;
3207 }
3208
3209 static struct type *
3210 read_range_type (pp, typenums, objfile)
3211 char **pp;
3212 int typenums[2];
3213 struct objfile *objfile;
3214 {
3215 int rangenums[2];
3216 long n2, n3;
3217 int n2bits, n3bits;
3218 int self_subrange;
3219 struct type *result_type;
3220 struct type *index_type;
3221
3222 /* First comes a type we are a subrange of.
3223 In C it is usually 0, 1 or the type being defined. */
3224 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3225 not just a type number. */
3226 if (read_type_number (pp, rangenums) != 0)
3227 return error_type (pp);
3228 self_subrange = (rangenums[0] == typenums[0] &&
3229 rangenums[1] == typenums[1]);
3230
3231 /* A semicolon should now follow; skip it. */
3232 if (**pp == ';')
3233 (*pp)++;
3234
3235 /* The remaining two operands are usually lower and upper bounds
3236 of the range. But in some special cases they mean something else. */
3237 n2 = read_huge_number (pp, ';', &n2bits);
3238 n3 = read_huge_number (pp, ';', &n3bits);
3239
3240 if (n2bits == -1 || n3bits == -1)
3241 return error_type (pp);
3242
3243 /* If limits are huge, must be large integral type. */
3244 if (n2bits != 0 || n3bits != 0)
3245 {
3246 char got_signed = 0;
3247 char got_unsigned = 0;
3248 /* Number of bits in the type. */
3249 int nbits;
3250
3251 /* Range from 0 to <large number> is an unsigned large integral type. */
3252 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3253 {
3254 got_unsigned = 1;
3255 nbits = n3bits;
3256 }
3257 /* Range from <large number> to <large number>-1 is a large signed
3258 integral type. */
3259 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3260 {
3261 got_signed = 1;
3262 nbits = n2bits;
3263 }
3264
3265 if (got_signed || got_unsigned)
3266 {
3267 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3268 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3269 objfile);
3270 }
3271 else
3272 return error_type (pp);
3273 }
3274
3275 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3276 if (self_subrange && n2 == 0 && n3 == 0)
3277 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3278
3279 /* If n3 is zero and n2 is not, we want a floating type,
3280 and n2 is the width in bytes.
3281
3282 Fortran programs appear to use this for complex types also,
3283 and they give no way to distinguish between double and single-complex!
3284
3285 GDB does not have complex types.
3286
3287 Just return the complex as a float of that size. It won't work right
3288 for the complex values, but at least it makes the file loadable.
3289
3290 FIXME, we may be able to distinguish these by their names. FIXME. */
3291
3292 if (n3 == 0 && n2 > 0)
3293 {
3294 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3295 }
3296
3297 /* If the upper bound is -1, it must really be an unsigned int. */
3298
3299 else if (n2 == 0 && n3 == -1)
3300 {
3301 /* It is unsigned int or unsigned long. */
3302 /* GCC sometimes uses this for long long too. We could
3303 distinguish it by the name, but we don't. */
3304 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3305 TYPE_FLAG_UNSIGNED, NULL, objfile);
3306 }
3307
3308 /* Special case: char is defined (Who knows why) as a subrange of
3309 itself with range 0-127. */
3310 else if (self_subrange && n2 == 0 && n3 == 127)
3311 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3312
3313 /* We used to do this only for subrange of self or subrange of int. */
3314 else if (n2 == 0)
3315 {
3316 if (n3 < 0)
3317 /* n3 actually gives the size. */
3318 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3319 NULL, objfile);
3320 if (n3 == 0xff)
3321 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3322 if (n3 == 0xffff)
3323 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3324
3325 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3326 "unsigned long", and we already checked for that,
3327 so don't need to test for it here. */
3328 }
3329 /* I think this is for Convex "long long". Since I don't know whether
3330 Convex sets self_subrange, I also accept that particular size regardless
3331 of self_subrange. */
3332 else if (n3 == 0 && n2 < 0
3333 && (self_subrange
3334 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3335 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3336 else if (n2 == -n3 -1)
3337 {
3338 if (n3 == 0x7f)
3339 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3340 if (n3 == 0x7fff)
3341 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3342 if (n3 == 0x7fffffff)
3343 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3344 }
3345
3346 /* We have a real range type on our hands. Allocate space and
3347 return a real pointer. */
3348
3349 /* At this point I don't have the faintest idea how to deal with
3350 a self_subrange type; I'm going to assume that this is used
3351 as an idiom, and that all of them are special cases. So . . . */
3352 if (self_subrange)
3353 return error_type (pp);
3354
3355 index_type = *dbx_lookup_type (rangenums);
3356 if (index_type == NULL)
3357 {
3358 /* Does this actually ever happen? Is that why we are worrying
3359 about dealing with it rather than just calling error_type? */
3360
3361 static struct type *range_type_index;
3362
3363 complain (&range_type_base_complaint, rangenums[1]);
3364 if (range_type_index == NULL)
3365 range_type_index =
3366 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3367 0, "range type index type", NULL);
3368 index_type = range_type_index;
3369 }
3370
3371 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3372 return (result_type);
3373 }
3374
3375 /* Read in an argument list. This is a list of types, separated by commas
3376 and terminated with END. Return the list of types read in, or (struct type
3377 **)-1 if there is an error. */
3378
3379 static struct type **
3380 read_args (pp, end, objfile)
3381 char **pp;
3382 int end;
3383 struct objfile *objfile;
3384 {
3385 /* FIXME! Remove this arbitrary limit! */
3386 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3387 int n = 0;
3388
3389 while (**pp != end)
3390 {
3391 if (**pp != ',')
3392 /* Invalid argument list: no ','. */
3393 return (struct type **)-1;
3394 (*pp)++;
3395 STABS_CONTINUE (pp);
3396 types[n++] = read_type (pp, objfile);
3397 }
3398 (*pp)++; /* get past `end' (the ':' character) */
3399
3400 if (n == 1)
3401 {
3402 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3403 }
3404 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3405 {
3406 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3407 memset (rval + n, 0, sizeof (struct type *));
3408 }
3409 else
3410 {
3411 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3412 }
3413 memcpy (rval, types, n * sizeof (struct type *));
3414 return rval;
3415 }
3416
3417 /* Add a common block's start address to the offset of each symbol
3418 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3419 the common block name). */
3420
3421 static void
3422 fix_common_block (sym, valu)
3423 struct symbol *sym;
3424 int valu;
3425 {
3426 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3427 for ( ; next; next = next->next)
3428 {
3429 register int j;
3430 for (j = next->nsyms - 1; j >= 0; j--)
3431 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3432 }
3433 }
3434
3435
3436 \f
3437 /* What about types defined as forward references inside of a small lexical
3438 scope? */
3439 /* Add a type to the list of undefined types to be checked through
3440 once this file has been read in. */
3441
3442 void
3443 add_undefined_type (type)
3444 struct type *type;
3445 {
3446 if (undef_types_length == undef_types_allocated)
3447 {
3448 undef_types_allocated *= 2;
3449 undef_types = (struct type **)
3450 xrealloc ((char *) undef_types,
3451 undef_types_allocated * sizeof (struct type *));
3452 }
3453 undef_types[undef_types_length++] = type;
3454 }
3455
3456 /* Go through each undefined type, see if it's still undefined, and fix it
3457 up if possible. We have two kinds of undefined types:
3458
3459 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3460 Fix: update array length using the element bounds
3461 and the target type's length.
3462 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3463 yet defined at the time a pointer to it was made.
3464 Fix: Do a full lookup on the struct/union tag. */
3465 void
3466 cleanup_undefined_types ()
3467 {
3468 struct type **type;
3469
3470 for (type = undef_types; type < undef_types + undef_types_length; type++)
3471 {
3472 switch (TYPE_CODE (*type))
3473 {
3474
3475 case TYPE_CODE_STRUCT:
3476 case TYPE_CODE_UNION:
3477 case TYPE_CODE_ENUM:
3478 {
3479 /* Check if it has been defined since. */
3480 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3481 {
3482 struct pending *ppt;
3483 int i;
3484 /* Name of the type, without "struct" or "union" */
3485 char *typename = type_name_no_tag (*type);
3486
3487 if (typename == NULL)
3488 {
3489 static struct complaint msg = {"need a type name", 0, 0};
3490 complain (&msg);
3491 break;
3492 }
3493 for (ppt = file_symbols; ppt; ppt = ppt->next)
3494 {
3495 for (i = 0; i < ppt->nsyms; i++)
3496 {
3497 struct symbol *sym = ppt->symbol[i];
3498
3499 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3500 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3501 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3502 TYPE_CODE (*type))
3503 && STREQ (SYMBOL_NAME (sym), typename))
3504 {
3505 memcpy (*type, SYMBOL_TYPE (sym),
3506 sizeof (struct type));
3507 }
3508 }
3509 }
3510 }
3511 }
3512 break;
3513
3514 case TYPE_CODE_ARRAY:
3515 {
3516 struct type *range_type;
3517 int lower, upper;
3518
3519 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3520 goto badtype;
3521 if (TYPE_NFIELDS (*type) != 1)
3522 goto badtype;
3523 range_type = TYPE_FIELD_TYPE (*type, 0);
3524 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3525 goto badtype;
3526
3527 /* Now recompute the length of the array type, based on its
3528 number of elements and the target type's length. */
3529 lower = TYPE_FIELD_BITPOS (range_type, 0);
3530 upper = TYPE_FIELD_BITPOS (range_type, 1);
3531 TYPE_LENGTH (*type) = (upper - lower + 1)
3532 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3533 }
3534 break;
3535
3536 default:
3537 badtype:
3538 {
3539 static struct complaint msg = {"\
3540 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3541 complain (&msg, TYPE_CODE (*type));
3542 }
3543 break;
3544 }
3545 }
3546 undef_types_length = 0;
3547 }
3548
3549 /* Scan through all of the global symbols defined in the object file,
3550 assigning values to the debugging symbols that need to be assigned
3551 to. Get these symbols from the minimal symbol table. */
3552
3553 void
3554 scan_file_globals (objfile)
3555 struct objfile *objfile;
3556 {
3557 int hash;
3558 struct minimal_symbol *msymbol;
3559 struct symbol *sym, *prev;
3560
3561 if (objfile->msymbols == 0) /* Beware the null file. */
3562 return;
3563
3564 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3565 {
3566 QUIT;
3567
3568 prev = NULL;
3569
3570 /* Get the hash index and check all the symbols
3571 under that hash index. */
3572
3573 hash = hashname (SYMBOL_NAME (msymbol));
3574
3575 for (sym = global_sym_chain[hash]; sym;)
3576 {
3577 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3578 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3579 {
3580 /* Splice this symbol out of the hash chain and
3581 assign the value we have to it. */
3582 if (prev)
3583 {
3584 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3585 }
3586 else
3587 {
3588 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3589 }
3590
3591 /* Check to see whether we need to fix up a common block. */
3592 /* Note: this code might be executed several times for
3593 the same symbol if there are multiple references. */
3594
3595 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3596 {
3597 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3598 }
3599 else
3600 {
3601 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3602 }
3603
3604 if (prev)
3605 {
3606 sym = SYMBOL_VALUE_CHAIN (prev);
3607 }
3608 else
3609 {
3610 sym = global_sym_chain[hash];
3611 }
3612 }
3613 else
3614 {
3615 prev = sym;
3616 sym = SYMBOL_VALUE_CHAIN (sym);
3617 }
3618 }
3619 }
3620 }
3621
3622 /* Initialize anything that needs initializing when starting to read
3623 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3624 to a psymtab. */
3625
3626 void
3627 stabsread_init ()
3628 {
3629 }
3630
3631 /* Initialize anything that needs initializing when a completely new
3632 symbol file is specified (not just adding some symbols from another
3633 file, e.g. a shared library). */
3634
3635 void
3636 stabsread_new_init ()
3637 {
3638 /* Empty the hash table of global syms looking for values. */
3639 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3640 }
3641
3642 /* Initialize anything that needs initializing at the same time as
3643 start_symtab() is called. */
3644
3645 void start_stabs ()
3646 {
3647 global_stabs = NULL; /* AIX COFF */
3648 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3649 n_this_object_header_files = 1;
3650 type_vector_length = 0;
3651 type_vector = (struct type **) 0;
3652 }
3653
3654 /* Call after end_symtab() */
3655
3656 void end_stabs ()
3657 {
3658 if (type_vector)
3659 {
3660 free ((char *) type_vector);
3661 }
3662 type_vector = 0;
3663 type_vector_length = 0;
3664 previous_stab_code = 0;
3665 }
3666
3667 void
3668 finish_global_stabs (objfile)
3669 struct objfile *objfile;
3670 {
3671 if (global_stabs)
3672 {
3673 patch_block_stabs (global_symbols, global_stabs, objfile);
3674 free ((PTR) global_stabs);
3675 global_stabs = NULL;
3676 }
3677 }
3678
3679 /* Initializer for this module */
3680
3681 void
3682 _initialize_stabsread ()
3683 {
3684 undef_types_allocated = 20;
3685 undef_types_length = 0;
3686 undef_types = (struct type **)
3687 xmalloc (undef_types_allocated * sizeof (struct type *));
3688 }
This page took 0.283658 seconds and 4 git commands to generate.