Handle EM_L1OM.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519 }
520
521 /* Return defined sym for the reference REFNUM. */
522 struct symbol *
523 ref_search (int refnum)
524 {
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528 }
529
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
533 static int
534 process_reference (char **string)
535 {
536 char *p;
537 int refnum = 0;
538
539 if (**string != '#')
540 return 0;
541
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553 }
554
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558 int
559 symbol_reference_defined (char **string)
560 {
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
567 if (*p == '=')
568 {
569 /* Symbol is being defined here. */
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580 }
581
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599 }
600
601 static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603 };
604
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
608 {
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
610 struct symbol *sym;
611 char *p = (char *) find_name_end (string);
612 int deftype;
613 int synonym = 0;
614 int i;
615 char *new_name = NULL;
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
634 p += 2;
635 p = strchr (p, ':');
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650 break;
651 case N_DATA:
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653 break;
654 case N_BSS:
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
664 }
665 else
666 {
667 SYMBOL_LINE (sym) = 0; /* unknown */
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
675 case 't':
676 SYMBOL_SET_LINKAGE_NAME (sym, "this");
677 break;
678
679 case 'v': /* $vtbl_ptr_type */
680 goto normal;
681
682 case 'e':
683 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
684 break;
685
686 case '_':
687 /* This was an anonymous type that was never fixed up. */
688 goto normal;
689
690 case 'X':
691 /* SunPRO (3.0 at least) static variable encoding. */
692 if (gdbarch_static_transform_name_p (gdbarch))
693 goto normal;
694 /* ... fall through ... */
695
696 default:
697 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
698 string);
699 goto normal; /* Do *something* with it */
700 }
701 }
702 else
703 {
704 normal:
705 SYMBOL_LANGUAGE (sym) = current_subfile->language;
706 if (SYMBOL_LANGUAGE (sym) == language_cplus)
707 {
708 char *name = alloca (p - string + 1);
709 memcpy (name, string, p - string);
710 name[p - string] = '\0';
711 new_name = cp_canonicalize_string (name);
712 cp_scan_for_anonymous_namespaces (sym);
713 }
714 if (new_name != NULL)
715 {
716 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
717 xfree (new_name);
718 }
719 else
720 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
721 }
722 p++;
723
724 /* Determine the type of name being defined. */
725 #if 0
726 /* Getting GDB to correctly skip the symbol on an undefined symbol
727 descriptor and not ever dump core is a very dodgy proposition if
728 we do things this way. I say the acorn RISC machine can just
729 fix their compiler. */
730 /* The Acorn RISC machine's compiler can put out locals that don't
731 start with "234=" or "(3,4)=", so assume anything other than the
732 deftypes we know how to handle is a local. */
733 if (!strchr ("cfFGpPrStTvVXCR", *p))
734 #else
735 if (isdigit (*p) || *p == '(' || *p == '-')
736 #endif
737 deftype = 'l';
738 else
739 deftype = *p++;
740
741 switch (deftype)
742 {
743 case 'c':
744 /* c is a special case, not followed by a type-number.
745 SYMBOL:c=iVALUE for an integer constant symbol.
746 SYMBOL:c=rVALUE for a floating constant symbol.
747 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
748 e.g. "b:c=e6,0" for "const b = blob1"
749 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
750 if (*p != '=')
751 {
752 SYMBOL_CLASS (sym) = LOC_CONST;
753 SYMBOL_TYPE (sym) = error_type (&p, objfile);
754 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
755 add_symbol_to_list (sym, &file_symbols);
756 return sym;
757 }
758 ++p;
759 switch (*p++)
760 {
761 case 'r':
762 {
763 double d = atof (p);
764 gdb_byte *dbl_valu;
765 struct type *dbl_type;
766
767 /* FIXME-if-picky-about-floating-accuracy: Should be using
768 target arithmetic to get the value. real.c in GCC
769 probably has the necessary code. */
770
771 dbl_type = objfile_type (objfile)->builtin_double;
772 dbl_valu =
773 obstack_alloc (&objfile->objfile_obstack,
774 TYPE_LENGTH (dbl_type));
775 store_typed_floating (dbl_valu, dbl_type, d);
776
777 SYMBOL_TYPE (sym) = dbl_type;
778 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
779 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
780 }
781 break;
782 case 'i':
783 {
784 /* Defining integer constants this way is kind of silly,
785 since 'e' constants allows the compiler to give not
786 only the value, but the type as well. C has at least
787 int, long, unsigned int, and long long as constant
788 types; other languages probably should have at least
789 unsigned as well as signed constants. */
790
791 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796
797 case 'c':
798 {
799 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
800 SYMBOL_VALUE (sym) = atoi (p);
801 SYMBOL_CLASS (sym) = LOC_CONST;
802 }
803 break;
804
805 case 's':
806 {
807 struct type *range_type;
808 int ind = 0;
809 char quote = *p++;
810 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
811 gdb_byte *string_value;
812
813 if (quote != '\'' && quote != '"')
814 {
815 SYMBOL_CLASS (sym) = LOC_CONST;
816 SYMBOL_TYPE (sym) = error_type (&p, objfile);
817 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
818 add_symbol_to_list (sym, &file_symbols);
819 return sym;
820 }
821
822 /* Find matching quote, rejecting escaped quotes. */
823 while (*p && *p != quote)
824 {
825 if (*p == '\\' && p[1] == quote)
826 {
827 string_local[ind] = (gdb_byte) quote;
828 ind++;
829 p += 2;
830 }
831 else if (*p)
832 {
833 string_local[ind] = (gdb_byte) (*p);
834 ind++;
835 p++;
836 }
837 }
838 if (*p != quote)
839 {
840 SYMBOL_CLASS (sym) = LOC_CONST;
841 SYMBOL_TYPE (sym) = error_type (&p, objfile);
842 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
843 add_symbol_to_list (sym, &file_symbols);
844 return sym;
845 }
846
847 /* NULL terminate the string. */
848 string_local[ind] = 0;
849 range_type = create_range_type (NULL,
850 objfile_type (objfile)->builtin_int,
851 0, ind);
852 SYMBOL_TYPE (sym) = create_array_type (NULL,
853 objfile_type (objfile)->builtin_char,
854 range_type);
855 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
856 memcpy (string_value, string_local, ind + 1);
857 p++;
858
859 SYMBOL_VALUE_BYTES (sym) = string_value;
860 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
861 }
862 break;
863
864 case 'e':
865 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
866 can be represented as integral.
867 e.g. "b:c=e6,0" for "const b = blob1"
868 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
869 {
870 SYMBOL_CLASS (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = read_type (&p, objfile);
872
873 if (*p != ',')
874 {
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 break;
877 }
878 ++p;
879
880 /* If the value is too big to fit in an int (perhaps because
881 it is unsigned), or something like that, we silently get
882 a bogus value. The type and everything else about it is
883 correct. Ideally, we should be using whatever we have
884 available for parsing unsigned and long long values,
885 however. */
886 SYMBOL_VALUE (sym) = atoi (p);
887 }
888 break;
889 default:
890 {
891 SYMBOL_CLASS (sym) = LOC_CONST;
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 }
894 }
895 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
896 add_symbol_to_list (sym, &file_symbols);
897 return sym;
898
899 case 'C':
900 /* The name of a caught exception. */
901 SYMBOL_TYPE (sym) = read_type (&p, objfile);
902 SYMBOL_CLASS (sym) = LOC_LABEL;
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 SYMBOL_VALUE_ADDRESS (sym) = valu;
905 add_symbol_to_list (sym, &local_symbols);
906 break;
907
908 case 'f':
909 /* A static function definition. */
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_CLASS (sym) = LOC_BLOCK;
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 /* fall into process_function_types. */
915
916 process_function_types:
917 /* Function result types are described as the result type in stabs.
918 We need to convert this to the function-returning-type-X type
919 in GDB. E.g. "int" is converted to "function returning int". */
920 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
921 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
922
923 /* All functions in C++ have prototypes. Stabs does not offer an
924 explicit way to identify prototyped or unprototyped functions,
925 but both GCC and Sun CC emit stabs for the "call-as" type rather
926 than the "declared-as" type for unprototyped functions, so
927 we treat all functions as if they were prototyped. This is used
928 primarily for promotion when calling the function from GDB. */
929 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
930
931 /* fall into process_prototype_types */
932
933 process_prototype_types:
934 /* Sun acc puts declared types of arguments here. */
935 if (*p == ';')
936 {
937 struct type *ftype = SYMBOL_TYPE (sym);
938 int nsemi = 0;
939 int nparams = 0;
940 char *p1 = p;
941
942 /* Obtain a worst case guess for the number of arguments
943 by counting the semicolons. */
944 while (*p1)
945 {
946 if (*p1++ == ';')
947 nsemi++;
948 }
949
950 /* Allocate parameter information fields and fill them in. */
951 TYPE_FIELDS (ftype) = (struct field *)
952 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
953 while (*p++ == ';')
954 {
955 struct type *ptype;
956
957 /* A type number of zero indicates the start of varargs.
958 FIXME: GDB currently ignores vararg functions. */
959 if (p[0] == '0' && p[1] == '\0')
960 break;
961 ptype = read_type (&p, objfile);
962
963 /* The Sun compilers mark integer arguments, which should
964 be promoted to the width of the calling conventions, with
965 a type which references itself. This type is turned into
966 a TYPE_CODE_VOID type by read_type, and we have to turn
967 it back into builtin_int here.
968 FIXME: Do we need a new builtin_promoted_int_arg ? */
969 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
970 ptype = objfile_type (objfile)->builtin_int;
971 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
972 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
973 }
974 TYPE_NFIELDS (ftype) = nparams;
975 TYPE_PROTOTYPED (ftype) = 1;
976 }
977 break;
978
979 case 'F':
980 /* A global function definition. */
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
982 SYMBOL_CLASS (sym) = LOC_BLOCK;
983 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
984 add_symbol_to_list (sym, &global_symbols);
985 goto process_function_types;
986
987 case 'G':
988 /* For a class G (global) symbol, it appears that the
989 value is not correct. It is necessary to search for the
990 corresponding linker definition to find the value.
991 These definitions appear at the end of the namelist. */
992 SYMBOL_TYPE (sym) = read_type (&p, objfile);
993 SYMBOL_CLASS (sym) = LOC_STATIC;
994 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
995 /* Don't add symbol references to global_sym_chain.
996 Symbol references don't have valid names and wont't match up with
997 minimal symbols when the global_sym_chain is relocated.
998 We'll fixup symbol references when we fixup the defining symbol. */
999 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1000 {
1001 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1002 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1003 global_sym_chain[i] = sym;
1004 }
1005 add_symbol_to_list (sym, &global_symbols);
1006 break;
1007
1008 /* This case is faked by a conditional above,
1009 when there is no code letter in the dbx data.
1010 Dbx data never actually contains 'l'. */
1011 case 's':
1012 case 'l':
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_CLASS (sym) = LOC_LOCAL;
1015 SYMBOL_VALUE (sym) = valu;
1016 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1017 add_symbol_to_list (sym, &local_symbols);
1018 break;
1019
1020 case 'p':
1021 if (*p == 'F')
1022 /* pF is a two-letter code that means a function parameter in Fortran.
1023 The type-number specifies the type of the return value.
1024 Translate it into a pointer-to-function type. */
1025 {
1026 p++;
1027 SYMBOL_TYPE (sym)
1028 = lookup_pointer_type
1029 (lookup_function_type (read_type (&p, objfile)));
1030 }
1031 else
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033
1034 SYMBOL_CLASS (sym) = LOC_ARG;
1035 SYMBOL_VALUE (sym) = valu;
1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1037 SYMBOL_IS_ARGUMENT (sym) = 1;
1038 add_symbol_to_list (sym, &local_symbols);
1039
1040 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1041 {
1042 /* On little-endian machines, this crud is never necessary,
1043 and, if the extra bytes contain garbage, is harmful. */
1044 break;
1045 }
1046
1047 /* If it's gcc-compiled, if it says `short', believe it. */
1048 if (processing_gcc_compilation
1049 || gdbarch_believe_pcc_promotion (gdbarch))
1050 break;
1051
1052 if (!gdbarch_believe_pcc_promotion (gdbarch))
1053 {
1054 /* If PCC says a parameter is a short or a char, it is
1055 really an int. */
1056 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1057 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1058 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1059 {
1060 SYMBOL_TYPE (sym) =
1061 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1062 ? objfile_type (objfile)->builtin_unsigned_int
1063 : objfile_type (objfile)->builtin_int;
1064 }
1065 break;
1066 }
1067
1068 case 'P':
1069 /* acc seems to use P to declare the prototypes of functions that
1070 are referenced by this file. gdb is not prepared to deal
1071 with this extra information. FIXME, it ought to. */
1072 if (type == N_FUN)
1073 {
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075 goto process_prototype_types;
1076 }
1077 /*FALLTHROUGH */
1078
1079 case 'R':
1080 /* Parameter which is in a register. */
1081 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1082 SYMBOL_CLASS (sym) = LOC_REGISTER;
1083 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1084 SYMBOL_IS_ARGUMENT (sym) = 1;
1085 SYMBOL_VALUE (sym) = valu;
1086 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1087 add_symbol_to_list (sym, &local_symbols);
1088 break;
1089
1090 case 'r':
1091 /* Register variable (either global or local). */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REGISTER;
1094 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1095 SYMBOL_VALUE (sym) = valu;
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1098 {
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
1113
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
1121 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1122 {
1123 struct symbol *prev_sym;
1124 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1125 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1126 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1127 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1128 SYMBOL_LINKAGE_NAME (sym)) == 0)
1129 {
1130 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1131 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1132 /* Use the type from the LOC_REGISTER; that is the type
1133 that is actually in that register. */
1134 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1135 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1136 sym = prev_sym;
1137 break;
1138 }
1139 }
1140 add_symbol_to_list (sym, &local_symbols);
1141 }
1142 else
1143 add_symbol_to_list (sym, &file_symbols);
1144 break;
1145
1146 case 'S':
1147 /* Static symbol at top level of file */
1148 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1149 SYMBOL_CLASS (sym) = LOC_STATIC;
1150 SYMBOL_VALUE_ADDRESS (sym) = valu;
1151 if (gdbarch_static_transform_name_p (gdbarch)
1152 && gdbarch_static_transform_name (gdbarch,
1153 SYMBOL_LINKAGE_NAME (sym))
1154 != SYMBOL_LINKAGE_NAME (sym))
1155 {
1156 struct minimal_symbol *msym;
1157 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1158 if (msym != NULL)
1159 {
1160 char *new_name = gdbarch_static_transform_name
1161 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1162 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1163 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1164 }
1165 }
1166 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1167 add_symbol_to_list (sym, &file_symbols);
1168 break;
1169
1170 case 't':
1171 /* In Ada, there is no distinction between typedef and non-typedef;
1172 any type declaration implicitly has the equivalent of a typedef,
1173 and thus 't' is in fact equivalent to 'Tt'.
1174
1175 Therefore, for Ada units, we check the character immediately
1176 before the 't', and if we do not find a 'T', then make sure to
1177 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1178 will be stored in the VAR_DOMAIN). If the symbol was indeed
1179 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1180 elsewhere, so we don't need to take care of that.
1181
1182 This is important to do, because of forward references:
1183 The cleanup of undefined types stored in undef_types only uses
1184 STRUCT_DOMAIN symbols to perform the replacement. */
1185 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1186
1187 /* Typedef */
1188 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1189
1190 /* For a nameless type, we don't want a create a symbol, thus we
1191 did not use `sym'. Return without further processing. */
1192 if (nameless)
1193 return NULL;
1194
1195 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1196 SYMBOL_VALUE (sym) = valu;
1197 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1198 /* C++ vagaries: we may have a type which is derived from
1199 a base type which did not have its name defined when the
1200 derived class was output. We fill in the derived class's
1201 base part member's name here in that case. */
1202 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1203 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1204 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1205 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1206 {
1207 int j;
1208 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1209 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1210 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1211 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1212 }
1213
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1215 {
1216 /* gcc-2.6 or later (when using -fvtable-thunks)
1217 emits a unique named type for a vtable entry.
1218 Some gdb code depends on that specific name. */
1219 extern const char vtbl_ptr_name[];
1220
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1222 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1224 {
1225 /* If we are giving a name to a type such as "pointer to
1226 foo" or "function returning foo", we better not set
1227 the TYPE_NAME. If the program contains "typedef char
1228 *caddr_t;", we don't want all variables of type char
1229 * to print as caddr_t. This is not just a
1230 consequence of GDB's type management; PCC and GCC (at
1231 least through version 2.4) both output variables of
1232 either type char * or caddr_t with the type number
1233 defined in the 't' symbol for caddr_t. If a future
1234 compiler cleans this up it GDB is not ready for it
1235 yet, but if it becomes ready we somehow need to
1236 disable this check (without breaking the PCC/GCC2.4
1237 case).
1238
1239 Sigh.
1240
1241 Fortunately, this check seems not to be necessary
1242 for anything except pointers or functions. */
1243 /* ezannoni: 2000-10-26. This seems to apply for
1244 versions of gcc older than 2.8. This was the original
1245 problem: with the following code gdb would tell that
1246 the type for name1 is caddr_t, and func is char()
1247 typedef char *caddr_t;
1248 char *name2;
1249 struct x
1250 {
1251 char *name1;
1252 } xx;
1253 char *func()
1254 {
1255 }
1256 main () {}
1257 */
1258
1259 /* Pascal accepts names for pointer types. */
1260 if (current_subfile->language == language_pascal)
1261 {
1262 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1263 }
1264 }
1265 else
1266 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1267 }
1268
1269 add_symbol_to_list (sym, &file_symbols);
1270
1271 if (synonym)
1272 {
1273 /* Create the STRUCT_DOMAIN clone. */
1274 struct symbol *struct_sym = (struct symbol *)
1275 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1276
1277 *struct_sym = *sym;
1278 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1279 SYMBOL_VALUE (struct_sym) = valu;
1280 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1281 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1282 TYPE_NAME (SYMBOL_TYPE (sym))
1283 = obconcat (&objfile->objfile_obstack, "", "",
1284 SYMBOL_LINKAGE_NAME (sym));
1285 add_symbol_to_list (struct_sym, &file_symbols);
1286 }
1287
1288 break;
1289
1290 case 'T':
1291 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1292 by 't' which means we are typedef'ing it as well. */
1293 synonym = *p == 't';
1294
1295 if (synonym)
1296 p++;
1297
1298 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1299
1300 /* For a nameless type, we don't want a create a symbol, thus we
1301 did not use `sym'. Return without further processing. */
1302 if (nameless)
1303 return NULL;
1304
1305 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1306 SYMBOL_VALUE (sym) = valu;
1307 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1308 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1309 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1310 = obconcat (&objfile->objfile_obstack, "", "",
1311 SYMBOL_LINKAGE_NAME (sym));
1312 add_symbol_to_list (sym, &file_symbols);
1313
1314 if (synonym)
1315 {
1316 /* Clone the sym and then modify it. */
1317 struct symbol *typedef_sym = (struct symbol *)
1318 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1319 *typedef_sym = *sym;
1320 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (typedef_sym) = valu;
1322 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1323 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack, "", "",
1326 SYMBOL_LINKAGE_NAME (sym));
1327 add_symbol_to_list (typedef_sym, &file_symbols);
1328 }
1329 break;
1330
1331 case 'V':
1332 /* Static symbol of local scope */
1333 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1334 SYMBOL_CLASS (sym) = LOC_STATIC;
1335 SYMBOL_VALUE_ADDRESS (sym) = valu;
1336 if (gdbarch_static_transform_name_p (gdbarch)
1337 && gdbarch_static_transform_name (gdbarch,
1338 SYMBOL_LINKAGE_NAME (sym))
1339 != SYMBOL_LINKAGE_NAME (sym))
1340 {
1341 struct minimal_symbol *msym;
1342 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1343 if (msym != NULL)
1344 {
1345 char *new_name = gdbarch_static_transform_name
1346 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1347 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1348 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1349 }
1350 }
1351 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1352 add_symbol_to_list (sym, &local_symbols);
1353 break;
1354
1355 case 'v':
1356 /* Reference parameter */
1357 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1358 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1359 SYMBOL_IS_ARGUMENT (sym) = 1;
1360 SYMBOL_VALUE (sym) = valu;
1361 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1362 add_symbol_to_list (sym, &local_symbols);
1363 break;
1364
1365 case 'a':
1366 /* Reference parameter which is in a register. */
1367 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1368 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1369 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1370 SYMBOL_IS_ARGUMENT (sym) = 1;
1371 SYMBOL_VALUE (sym) = valu;
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'X':
1377 /* This is used by Sun FORTRAN for "function result value".
1378 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1379 that Pascal uses it too, but when I tried it Pascal used
1380 "x:3" (local symbol) instead. */
1381 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1382 SYMBOL_CLASS (sym) = LOC_LOCAL;
1383 SYMBOL_VALUE (sym) = valu;
1384 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1385 add_symbol_to_list (sym, &local_symbols);
1386 break;
1387
1388 default:
1389 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1390 SYMBOL_CLASS (sym) = LOC_CONST;
1391 SYMBOL_VALUE (sym) = 0;
1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1393 add_symbol_to_list (sym, &file_symbols);
1394 break;
1395 }
1396
1397 /* Some systems pass variables of certain types by reference instead
1398 of by value, i.e. they will pass the address of a structure (in a
1399 register or on the stack) instead of the structure itself. */
1400
1401 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1402 && SYMBOL_IS_ARGUMENT (sym))
1403 {
1404 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1405 variables passed in a register). */
1406 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1407 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1408 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1409 and subsequent arguments on SPARC, for example). */
1410 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1411 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1412 }
1413
1414 return sym;
1415 }
1416
1417 /* Skip rest of this symbol and return an error type.
1418
1419 General notes on error recovery: error_type always skips to the
1420 end of the symbol (modulo cretinous dbx symbol name continuation).
1421 Thus code like this:
1422
1423 if (*(*pp)++ != ';')
1424 return error_type (pp, objfile);
1425
1426 is wrong because if *pp starts out pointing at '\0' (typically as the
1427 result of an earlier error), it will be incremented to point to the
1428 start of the next symbol, which might produce strange results, at least
1429 if you run off the end of the string table. Instead use
1430
1431 if (**pp != ';')
1432 return error_type (pp, objfile);
1433 ++*pp;
1434
1435 or
1436
1437 if (**pp != ';')
1438 foo = error_type (pp, objfile);
1439 else
1440 ++*pp;
1441
1442 And in case it isn't obvious, the point of all this hair is so the compiler
1443 can define new types and new syntaxes, and old versions of the
1444 debugger will be able to read the new symbol tables. */
1445
1446 static struct type *
1447 error_type (char **pp, struct objfile *objfile)
1448 {
1449 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1450 while (1)
1451 {
1452 /* Skip to end of symbol. */
1453 while (**pp != '\0')
1454 {
1455 (*pp)++;
1456 }
1457
1458 /* Check for and handle cretinous dbx symbol name continuation! */
1459 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1460 {
1461 *pp = next_symbol_text (objfile);
1462 }
1463 else
1464 {
1465 break;
1466 }
1467 }
1468 return objfile_type (objfile)->builtin_error;
1469 }
1470 \f
1471
1472 /* Read type information or a type definition; return the type. Even
1473 though this routine accepts either type information or a type
1474 definition, the distinction is relevant--some parts of stabsread.c
1475 assume that type information starts with a digit, '-', or '(' in
1476 deciding whether to call read_type. */
1477
1478 static struct type *
1479 read_type (char **pp, struct objfile *objfile)
1480 {
1481 struct type *type = 0;
1482 struct type *type1;
1483 int typenums[2];
1484 char type_descriptor;
1485
1486 /* Size in bits of type if specified by a type attribute, or -1 if
1487 there is no size attribute. */
1488 int type_size = -1;
1489
1490 /* Used to distinguish string and bitstring from char-array and set. */
1491 int is_string = 0;
1492
1493 /* Used to distinguish vector from array. */
1494 int is_vector = 0;
1495
1496 /* Read type number if present. The type number may be omitted.
1497 for instance in a two-dimensional array declared with type
1498 "ar1;1;10;ar1;1;10;4". */
1499 if ((**pp >= '0' && **pp <= '9')
1500 || **pp == '('
1501 || **pp == '-')
1502 {
1503 if (read_type_number (pp, typenums) != 0)
1504 return error_type (pp, objfile);
1505
1506 if (**pp != '=')
1507 {
1508 /* Type is not being defined here. Either it already
1509 exists, or this is a forward reference to it.
1510 dbx_alloc_type handles both cases. */
1511 type = dbx_alloc_type (typenums, objfile);
1512
1513 /* If this is a forward reference, arrange to complain if it
1514 doesn't get patched up by the time we're done
1515 reading. */
1516 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1517 add_undefined_type (type, typenums);
1518
1519 return type;
1520 }
1521
1522 /* Type is being defined here. */
1523 /* Skip the '='.
1524 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1525 (*pp) += 2;
1526 }
1527 else
1528 {
1529 /* 'typenums=' not present, type is anonymous. Read and return
1530 the definition, but don't put it in the type vector. */
1531 typenums[0] = typenums[1] = -1;
1532 (*pp)++;
1533 }
1534
1535 again:
1536 type_descriptor = (*pp)[-1];
1537 switch (type_descriptor)
1538 {
1539 case 'x':
1540 {
1541 enum type_code code;
1542
1543 /* Used to index through file_symbols. */
1544 struct pending *ppt;
1545 int i;
1546
1547 /* Name including "struct", etc. */
1548 char *type_name;
1549
1550 {
1551 char *from, *to, *p, *q1, *q2;
1552
1553 /* Set the type code according to the following letter. */
1554 switch ((*pp)[0])
1555 {
1556 case 's':
1557 code = TYPE_CODE_STRUCT;
1558 break;
1559 case 'u':
1560 code = TYPE_CODE_UNION;
1561 break;
1562 case 'e':
1563 code = TYPE_CODE_ENUM;
1564 break;
1565 default:
1566 {
1567 /* Complain and keep going, so compilers can invent new
1568 cross-reference types. */
1569 complaint (&symfile_complaints,
1570 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1571 code = TYPE_CODE_STRUCT;
1572 break;
1573 }
1574 }
1575
1576 q1 = strchr (*pp, '<');
1577 p = strchr (*pp, ':');
1578 if (p == NULL)
1579 return error_type (pp, objfile);
1580 if (q1 && p > q1 && p[1] == ':')
1581 {
1582 int nesting_level = 0;
1583 for (q2 = q1; *q2; q2++)
1584 {
1585 if (*q2 == '<')
1586 nesting_level++;
1587 else if (*q2 == '>')
1588 nesting_level--;
1589 else if (*q2 == ':' && nesting_level == 0)
1590 break;
1591 }
1592 p = q2;
1593 if (*p != ':')
1594 return error_type (pp, objfile);
1595 }
1596 type_name = NULL;
1597 if (current_subfile->language == language_cplus)
1598 {
1599 char *new_name, *name = alloca (p - *pp + 1);
1600 memcpy (name, *pp, p - *pp);
1601 name[p - *pp] = '\0';
1602 new_name = cp_canonicalize_string (name);
1603 if (new_name != NULL)
1604 {
1605 type_name = obsavestring (new_name, strlen (new_name),
1606 &objfile->objfile_obstack);
1607 xfree (new_name);
1608 }
1609 }
1610 if (type_name == NULL)
1611 {
1612 to = type_name =
1613 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1614
1615 /* Copy the name. */
1616 from = *pp + 1;
1617 while (from < p)
1618 *to++ = *from++;
1619 *to = '\0';
1620 }
1621
1622 /* Set the pointer ahead of the name which we just read, and
1623 the colon. */
1624 *pp = p + 1;
1625 }
1626
1627 /* If this type has already been declared, then reuse the same
1628 type, rather than allocating a new one. This saves some
1629 memory. */
1630
1631 for (ppt = file_symbols; ppt; ppt = ppt->next)
1632 for (i = 0; i < ppt->nsyms; i++)
1633 {
1634 struct symbol *sym = ppt->symbol[i];
1635
1636 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1637 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1638 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1639 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1640 {
1641 obstack_free (&objfile->objfile_obstack, type_name);
1642 type = SYMBOL_TYPE (sym);
1643 if (typenums[0] != -1)
1644 *dbx_lookup_type (typenums, objfile) = type;
1645 return type;
1646 }
1647 }
1648
1649 /* Didn't find the type to which this refers, so we must
1650 be dealing with a forward reference. Allocate a type
1651 structure for it, and keep track of it so we can
1652 fill in the rest of the fields when we get the full
1653 type. */
1654 type = dbx_alloc_type (typenums, objfile);
1655 TYPE_CODE (type) = code;
1656 TYPE_TAG_NAME (type) = type_name;
1657 INIT_CPLUS_SPECIFIC (type);
1658 TYPE_STUB (type) = 1;
1659
1660 add_undefined_type (type, typenums);
1661 return type;
1662 }
1663
1664 case '-': /* RS/6000 built-in type */
1665 case '0':
1666 case '1':
1667 case '2':
1668 case '3':
1669 case '4':
1670 case '5':
1671 case '6':
1672 case '7':
1673 case '8':
1674 case '9':
1675 case '(':
1676 (*pp)--;
1677
1678 /* We deal with something like t(1,2)=(3,4)=... which
1679 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1680
1681 /* Allocate and enter the typedef type first.
1682 This handles recursive types. */
1683 type = dbx_alloc_type (typenums, objfile);
1684 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1685 {
1686 struct type *xtype = read_type (pp, objfile);
1687 if (type == xtype)
1688 {
1689 /* It's being defined as itself. That means it is "void". */
1690 TYPE_CODE (type) = TYPE_CODE_VOID;
1691 TYPE_LENGTH (type) = 1;
1692 }
1693 else if (type_size >= 0 || is_string)
1694 {
1695 /* This is the absolute wrong way to construct types. Every
1696 other debug format has found a way around this problem and
1697 the related problems with unnecessarily stubbed types;
1698 someone motivated should attempt to clean up the issue
1699 here as well. Once a type pointed to has been created it
1700 should not be modified.
1701
1702 Well, it's not *absolutely* wrong. Constructing recursive
1703 types (trees, linked lists) necessarily entails modifying
1704 types after creating them. Constructing any loop structure
1705 entails side effects. The Dwarf 2 reader does handle this
1706 more gracefully (it never constructs more than once
1707 instance of a type object, so it doesn't have to copy type
1708 objects wholesale), but it still mutates type objects after
1709 other folks have references to them.
1710
1711 Keep in mind that this circularity/mutation issue shows up
1712 at the source language level, too: C's "incomplete types",
1713 for example. So the proper cleanup, I think, would be to
1714 limit GDB's type smashing to match exactly those required
1715 by the source language. So GDB could have a
1716 "complete_this_type" function, but never create unnecessary
1717 copies of a type otherwise. */
1718 replace_type (type, xtype);
1719 TYPE_NAME (type) = NULL;
1720 TYPE_TAG_NAME (type) = NULL;
1721 }
1722 else
1723 {
1724 TYPE_TARGET_STUB (type) = 1;
1725 TYPE_TARGET_TYPE (type) = xtype;
1726 }
1727 }
1728 break;
1729
1730 /* In the following types, we must be sure to overwrite any existing
1731 type that the typenums refer to, rather than allocating a new one
1732 and making the typenums point to the new one. This is because there
1733 may already be pointers to the existing type (if it had been
1734 forward-referenced), and we must change it to a pointer, function,
1735 reference, or whatever, *in-place*. */
1736
1737 case '*': /* Pointer to another type */
1738 type1 = read_type (pp, objfile);
1739 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1740 break;
1741
1742 case '&': /* Reference to another type */
1743 type1 = read_type (pp, objfile);
1744 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1745 break;
1746
1747 case 'f': /* Function returning another type */
1748 type1 = read_type (pp, objfile);
1749 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1750 break;
1751
1752 case 'g': /* Prototyped function. (Sun) */
1753 {
1754 /* Unresolved questions:
1755
1756 - According to Sun's ``STABS Interface Manual'', for 'f'
1757 and 'F' symbol descriptors, a `0' in the argument type list
1758 indicates a varargs function. But it doesn't say how 'g'
1759 type descriptors represent that info. Someone with access
1760 to Sun's toolchain should try it out.
1761
1762 - According to the comment in define_symbol (search for
1763 `process_prototype_types:'), Sun emits integer arguments as
1764 types which ref themselves --- like `void' types. Do we
1765 have to deal with that here, too? Again, someone with
1766 access to Sun's toolchain should try it out and let us
1767 know. */
1768
1769 const char *type_start = (*pp) - 1;
1770 struct type *return_type = read_type (pp, objfile);
1771 struct type *func_type
1772 = make_function_type (return_type,
1773 dbx_lookup_type (typenums, objfile));
1774 struct type_list {
1775 struct type *type;
1776 struct type_list *next;
1777 } *arg_types = 0;
1778 int num_args = 0;
1779
1780 while (**pp && **pp != '#')
1781 {
1782 struct type *arg_type = read_type (pp, objfile);
1783 struct type_list *new = alloca (sizeof (*new));
1784 new->type = arg_type;
1785 new->next = arg_types;
1786 arg_types = new;
1787 num_args++;
1788 }
1789 if (**pp == '#')
1790 ++*pp;
1791 else
1792 {
1793 complaint (&symfile_complaints,
1794 _("Prototyped function type didn't end arguments with `#':\n%s"),
1795 type_start);
1796 }
1797
1798 /* If there is just one argument whose type is `void', then
1799 that's just an empty argument list. */
1800 if (arg_types
1801 && ! arg_types->next
1802 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1803 num_args = 0;
1804
1805 TYPE_FIELDS (func_type)
1806 = (struct field *) TYPE_ALLOC (func_type,
1807 num_args * sizeof (struct field));
1808 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1809 {
1810 int i;
1811 struct type_list *t;
1812
1813 /* We stuck each argument type onto the front of the list
1814 when we read it, so the list is reversed. Build the
1815 fields array right-to-left. */
1816 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1817 TYPE_FIELD_TYPE (func_type, i) = t->type;
1818 }
1819 TYPE_NFIELDS (func_type) = num_args;
1820 TYPE_PROTOTYPED (func_type) = 1;
1821
1822 type = func_type;
1823 break;
1824 }
1825
1826 case 'k': /* Const qualifier on some type (Sun) */
1827 type = read_type (pp, objfile);
1828 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1829 dbx_lookup_type (typenums, objfile));
1830 break;
1831
1832 case 'B': /* Volatile qual on some type (Sun) */
1833 type = read_type (pp, objfile);
1834 type = make_cv_type (TYPE_CONST (type), 1, type,
1835 dbx_lookup_type (typenums, objfile));
1836 break;
1837
1838 case '@':
1839 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1840 { /* Member (class & variable) type */
1841 /* FIXME -- we should be doing smash_to_XXX types here. */
1842
1843 struct type *domain = read_type (pp, objfile);
1844 struct type *memtype;
1845
1846 if (**pp != ',')
1847 /* Invalid member type data format. */
1848 return error_type (pp, objfile);
1849 ++*pp;
1850
1851 memtype = read_type (pp, objfile);
1852 type = dbx_alloc_type (typenums, objfile);
1853 smash_to_memberptr_type (type, domain, memtype);
1854 }
1855 else
1856 /* type attribute */
1857 {
1858 char *attr = *pp;
1859 /* Skip to the semicolon. */
1860 while (**pp != ';' && **pp != '\0')
1861 ++(*pp);
1862 if (**pp == '\0')
1863 return error_type (pp, objfile);
1864 else
1865 ++ * pp; /* Skip the semicolon. */
1866
1867 switch (*attr)
1868 {
1869 case 's': /* Size attribute */
1870 type_size = atoi (attr + 1);
1871 if (type_size <= 0)
1872 type_size = -1;
1873 break;
1874
1875 case 'S': /* String attribute */
1876 /* FIXME: check to see if following type is array? */
1877 is_string = 1;
1878 break;
1879
1880 case 'V': /* Vector attribute */
1881 /* FIXME: check to see if following type is array? */
1882 is_vector = 1;
1883 break;
1884
1885 default:
1886 /* Ignore unrecognized type attributes, so future compilers
1887 can invent new ones. */
1888 break;
1889 }
1890 ++*pp;
1891 goto again;
1892 }
1893 break;
1894
1895 case '#': /* Method (class & fn) type */
1896 if ((*pp)[0] == '#')
1897 {
1898 /* We'll get the parameter types from the name. */
1899 struct type *return_type;
1900
1901 (*pp)++;
1902 return_type = read_type (pp, objfile);
1903 if (*(*pp)++ != ';')
1904 complaint (&symfile_complaints,
1905 _("invalid (minimal) member type data format at symtab pos %d."),
1906 symnum);
1907 type = allocate_stub_method (return_type);
1908 if (typenums[0] != -1)
1909 *dbx_lookup_type (typenums, objfile) = type;
1910 }
1911 else
1912 {
1913 struct type *domain = read_type (pp, objfile);
1914 struct type *return_type;
1915 struct field *args;
1916 int nargs, varargs;
1917
1918 if (**pp != ',')
1919 /* Invalid member type data format. */
1920 return error_type (pp, objfile);
1921 else
1922 ++(*pp);
1923
1924 return_type = read_type (pp, objfile);
1925 args = read_args (pp, ';', objfile, &nargs, &varargs);
1926 if (args == NULL)
1927 return error_type (pp, objfile);
1928 type = dbx_alloc_type (typenums, objfile);
1929 smash_to_method_type (type, domain, return_type, args,
1930 nargs, varargs);
1931 }
1932 break;
1933
1934 case 'r': /* Range type */
1935 type = read_range_type (pp, typenums, type_size, objfile);
1936 if (typenums[0] != -1)
1937 *dbx_lookup_type (typenums, objfile) = type;
1938 break;
1939
1940 case 'b':
1941 {
1942 /* Sun ACC builtin int type */
1943 type = read_sun_builtin_type (pp, typenums, objfile);
1944 if (typenums[0] != -1)
1945 *dbx_lookup_type (typenums, objfile) = type;
1946 }
1947 break;
1948
1949 case 'R': /* Sun ACC builtin float type */
1950 type = read_sun_floating_type (pp, typenums, objfile);
1951 if (typenums[0] != -1)
1952 *dbx_lookup_type (typenums, objfile) = type;
1953 break;
1954
1955 case 'e': /* Enumeration type */
1956 type = dbx_alloc_type (typenums, objfile);
1957 type = read_enum_type (pp, type, objfile);
1958 if (typenums[0] != -1)
1959 *dbx_lookup_type (typenums, objfile) = type;
1960 break;
1961
1962 case 's': /* Struct type */
1963 case 'u': /* Union type */
1964 {
1965 enum type_code type_code = TYPE_CODE_UNDEF;
1966 type = dbx_alloc_type (typenums, objfile);
1967 switch (type_descriptor)
1968 {
1969 case 's':
1970 type_code = TYPE_CODE_STRUCT;
1971 break;
1972 case 'u':
1973 type_code = TYPE_CODE_UNION;
1974 break;
1975 }
1976 type = read_struct_type (pp, type, type_code, objfile);
1977 break;
1978 }
1979
1980 case 'a': /* Array type */
1981 if (**pp != 'r')
1982 return error_type (pp, objfile);
1983 ++*pp;
1984
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_array_type (pp, type, objfile);
1987 if (is_string)
1988 TYPE_CODE (type) = TYPE_CODE_STRING;
1989 if (is_vector)
1990 make_vector_type (type);
1991 break;
1992
1993 case 'S': /* Set or bitstring type */
1994 type1 = read_type (pp, objfile);
1995 type = create_set_type ((struct type *) NULL, type1);
1996 if (is_string)
1997 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2000 break;
2001
2002 default:
2003 --*pp; /* Go back to the symbol in error */
2004 /* Particularly important if it was \0! */
2005 return error_type (pp, objfile);
2006 }
2007
2008 if (type == 0)
2009 {
2010 warning (_("GDB internal error, type is NULL in stabsread.c."));
2011 return error_type (pp, objfile);
2012 }
2013
2014 /* Size specified in a type attribute overrides any other size. */
2015 if (type_size != -1)
2016 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2017
2018 return type;
2019 }
2020 \f
2021 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2022 Return the proper type node for a given builtin type number. */
2023
2024 static const struct objfile_data *rs6000_builtin_type_data;
2025
2026 static struct type *
2027 rs6000_builtin_type (int typenum, struct objfile *objfile)
2028 {
2029 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
2030
2031 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2032 #define NUMBER_RECOGNIZED 34
2033 struct type *rettype = NULL;
2034
2035 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2036 {
2037 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2038 return objfile_type (objfile)->builtin_error;
2039 }
2040
2041 if (!negative_types)
2042 {
2043 /* This includes an empty slot for type number -0. */
2044 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2045 NUMBER_RECOGNIZED + 1, struct type *);
2046 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2047 }
2048
2049 if (negative_types[-typenum] != NULL)
2050 return negative_types[-typenum];
2051
2052 #if TARGET_CHAR_BIT != 8
2053 #error This code wrong for TARGET_CHAR_BIT not 8
2054 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2055 that if that ever becomes not true, the correct fix will be to
2056 make the size in the struct type to be in bits, not in units of
2057 TARGET_CHAR_BIT. */
2058 #endif
2059
2060 switch (-typenum)
2061 {
2062 case 1:
2063 /* The size of this and all the other types are fixed, defined
2064 by the debugging format. If there is a type called "int" which
2065 is other than 32 bits, then it should use a new negative type
2066 number (or avoid negative type numbers for that case).
2067 See stabs.texinfo. */
2068 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2069 break;
2070 case 2:
2071 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2072 break;
2073 case 3:
2074 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2075 break;
2076 case 4:
2077 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2078 break;
2079 case 5:
2080 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2081 "unsigned char", objfile);
2082 break;
2083 case 6:
2084 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2085 break;
2086 case 7:
2087 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2088 "unsigned short", objfile);
2089 break;
2090 case 8:
2091 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2092 "unsigned int", objfile);
2093 break;
2094 case 9:
2095 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2096 "unsigned", objfile);
2097 case 10:
2098 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2099 "unsigned long", objfile);
2100 break;
2101 case 11:
2102 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2103 break;
2104 case 12:
2105 /* IEEE single precision (32 bit). */
2106 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2107 break;
2108 case 13:
2109 /* IEEE double precision (64 bit). */
2110 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2111 break;
2112 case 14:
2113 /* This is an IEEE double on the RS/6000, and different machines with
2114 different sizes for "long double" should use different negative
2115 type numbers. See stabs.texinfo. */
2116 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2117 break;
2118 case 15:
2119 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2120 break;
2121 case 16:
2122 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2123 "boolean", objfile);
2124 break;
2125 case 17:
2126 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2127 break;
2128 case 18:
2129 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2130 break;
2131 case 19:
2132 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2133 break;
2134 case 20:
2135 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2136 "character", objfile);
2137 break;
2138 case 21:
2139 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2140 "logical*1", objfile);
2141 break;
2142 case 22:
2143 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2144 "logical*2", objfile);
2145 break;
2146 case 23:
2147 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2148 "logical*4", objfile);
2149 break;
2150 case 24:
2151 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2152 "logical", objfile);
2153 break;
2154 case 25:
2155 /* Complex type consisting of two IEEE single precision values. */
2156 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2157 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2158 objfile);
2159 break;
2160 case 26:
2161 /* Complex type consisting of two IEEE double precision values. */
2162 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2163 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2164 objfile);
2165 break;
2166 case 27:
2167 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2168 break;
2169 case 28:
2170 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2171 break;
2172 case 29:
2173 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2174 break;
2175 case 30:
2176 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2177 break;
2178 case 31:
2179 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2180 break;
2181 case 32:
2182 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2183 "unsigned long long", objfile);
2184 break;
2185 case 33:
2186 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2187 "logical*8", objfile);
2188 break;
2189 case 34:
2190 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2191 break;
2192 }
2193 negative_types[-typenum] = rettype;
2194 return rettype;
2195 }
2196 \f
2197 /* This page contains subroutines of read_type. */
2198
2199 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2200
2201 static void
2202 update_method_name_from_physname (char **old_name, char *physname)
2203 {
2204 char *method_name;
2205
2206 method_name = method_name_from_physname (physname);
2207
2208 if (method_name == NULL)
2209 {
2210 complaint (&symfile_complaints,
2211 _("Method has bad physname %s\n"), physname);
2212 return;
2213 }
2214
2215 if (strcmp (*old_name, method_name) != 0)
2216 {
2217 xfree (*old_name);
2218 *old_name = method_name;
2219 }
2220 else
2221 xfree (method_name);
2222 }
2223
2224 /* Read member function stabs info for C++ classes. The form of each member
2225 function data is:
2226
2227 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2228
2229 An example with two member functions is:
2230
2231 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2232
2233 For the case of overloaded operators, the format is op$::*.funcs, where
2234 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2235 name (such as `+=') and `.' marks the end of the operator name.
2236
2237 Returns 1 for success, 0 for failure. */
2238
2239 static int
2240 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2241 struct objfile *objfile)
2242 {
2243 int nfn_fields = 0;
2244 int length = 0;
2245 /* Total number of member functions defined in this class. If the class
2246 defines two `f' functions, and one `g' function, then this will have
2247 the value 3. */
2248 int total_length = 0;
2249 int i;
2250 struct next_fnfield
2251 {
2252 struct next_fnfield *next;
2253 struct fn_field fn_field;
2254 }
2255 *sublist;
2256 struct type *look_ahead_type;
2257 struct next_fnfieldlist *new_fnlist;
2258 struct next_fnfield *new_sublist;
2259 char *main_fn_name;
2260 char *p;
2261
2262 /* Process each list until we find something that is not a member function
2263 or find the end of the functions. */
2264
2265 while (**pp != ';')
2266 {
2267 /* We should be positioned at the start of the function name.
2268 Scan forward to find the first ':' and if it is not the
2269 first of a "::" delimiter, then this is not a member function. */
2270 p = *pp;
2271 while (*p != ':')
2272 {
2273 p++;
2274 }
2275 if (p[1] != ':')
2276 {
2277 break;
2278 }
2279
2280 sublist = NULL;
2281 look_ahead_type = NULL;
2282 length = 0;
2283
2284 new_fnlist = (struct next_fnfieldlist *)
2285 xmalloc (sizeof (struct next_fnfieldlist));
2286 make_cleanup (xfree, new_fnlist);
2287 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2288
2289 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2290 {
2291 /* This is a completely wierd case. In order to stuff in the
2292 names that might contain colons (the usual name delimiter),
2293 Mike Tiemann defined a different name format which is
2294 signalled if the identifier is "op$". In that case, the
2295 format is "op$::XXXX." where XXXX is the name. This is
2296 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2297 /* This lets the user type "break operator+".
2298 We could just put in "+" as the name, but that wouldn't
2299 work for "*". */
2300 static char opname[32] = "op$";
2301 char *o = opname + 3;
2302
2303 /* Skip past '::'. */
2304 *pp = p + 2;
2305
2306 STABS_CONTINUE (pp, objfile);
2307 p = *pp;
2308 while (*p != '.')
2309 {
2310 *o++ = *p++;
2311 }
2312 main_fn_name = savestring (opname, o - opname);
2313 /* Skip past '.' */
2314 *pp = p + 1;
2315 }
2316 else
2317 {
2318 main_fn_name = savestring (*pp, p - *pp);
2319 /* Skip past '::'. */
2320 *pp = p + 2;
2321 }
2322 new_fnlist->fn_fieldlist.name = main_fn_name;
2323
2324 do
2325 {
2326 new_sublist =
2327 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2328 make_cleanup (xfree, new_sublist);
2329 memset (new_sublist, 0, sizeof (struct next_fnfield));
2330
2331 /* Check for and handle cretinous dbx symbol name continuation! */
2332 if (look_ahead_type == NULL)
2333 {
2334 /* Normal case. */
2335 STABS_CONTINUE (pp, objfile);
2336
2337 new_sublist->fn_field.type = read_type (pp, objfile);
2338 if (**pp != ':')
2339 {
2340 /* Invalid symtab info for member function. */
2341 return 0;
2342 }
2343 }
2344 else
2345 {
2346 /* g++ version 1 kludge */
2347 new_sublist->fn_field.type = look_ahead_type;
2348 look_ahead_type = NULL;
2349 }
2350
2351 (*pp)++;
2352 p = *pp;
2353 while (*p != ';')
2354 {
2355 p++;
2356 }
2357
2358 /* If this is just a stub, then we don't have the real name here. */
2359
2360 if (TYPE_STUB (new_sublist->fn_field.type))
2361 {
2362 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2363 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2364 new_sublist->fn_field.is_stub = 1;
2365 }
2366 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2367 *pp = p + 1;
2368
2369 /* Set this member function's visibility fields. */
2370 switch (*(*pp)++)
2371 {
2372 case VISIBILITY_PRIVATE:
2373 new_sublist->fn_field.is_private = 1;
2374 break;
2375 case VISIBILITY_PROTECTED:
2376 new_sublist->fn_field.is_protected = 1;
2377 break;
2378 }
2379
2380 STABS_CONTINUE (pp, objfile);
2381 switch (**pp)
2382 {
2383 case 'A': /* Normal functions. */
2384 new_sublist->fn_field.is_const = 0;
2385 new_sublist->fn_field.is_volatile = 0;
2386 (*pp)++;
2387 break;
2388 case 'B': /* `const' member functions. */
2389 new_sublist->fn_field.is_const = 1;
2390 new_sublist->fn_field.is_volatile = 0;
2391 (*pp)++;
2392 break;
2393 case 'C': /* `volatile' member function. */
2394 new_sublist->fn_field.is_const = 0;
2395 new_sublist->fn_field.is_volatile = 1;
2396 (*pp)++;
2397 break;
2398 case 'D': /* `const volatile' member function. */
2399 new_sublist->fn_field.is_const = 1;
2400 new_sublist->fn_field.is_volatile = 1;
2401 (*pp)++;
2402 break;
2403 case '*': /* File compiled with g++ version 1 -- no info */
2404 case '?':
2405 case '.':
2406 break;
2407 default:
2408 complaint (&symfile_complaints,
2409 _("const/volatile indicator missing, got '%c'"), **pp);
2410 break;
2411 }
2412
2413 switch (*(*pp)++)
2414 {
2415 case '*':
2416 {
2417 int nbits;
2418 /* virtual member function, followed by index.
2419 The sign bit is set to distinguish pointers-to-methods
2420 from virtual function indicies. Since the array is
2421 in words, the quantity must be shifted left by 1
2422 on 16 bit machine, and by 2 on 32 bit machine, forcing
2423 the sign bit out, and usable as a valid index into
2424 the array. Remove the sign bit here. */
2425 new_sublist->fn_field.voffset =
2426 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2427 if (nbits != 0)
2428 return 0;
2429
2430 STABS_CONTINUE (pp, objfile);
2431 if (**pp == ';' || **pp == '\0')
2432 {
2433 /* Must be g++ version 1. */
2434 new_sublist->fn_field.fcontext = 0;
2435 }
2436 else
2437 {
2438 /* Figure out from whence this virtual function came.
2439 It may belong to virtual function table of
2440 one of its baseclasses. */
2441 look_ahead_type = read_type (pp, objfile);
2442 if (**pp == ':')
2443 {
2444 /* g++ version 1 overloaded methods. */
2445 }
2446 else
2447 {
2448 new_sublist->fn_field.fcontext = look_ahead_type;
2449 if (**pp != ';')
2450 {
2451 return 0;
2452 }
2453 else
2454 {
2455 ++*pp;
2456 }
2457 look_ahead_type = NULL;
2458 }
2459 }
2460 break;
2461 }
2462 case '?':
2463 /* static member function. */
2464 {
2465 int slen = strlen (main_fn_name);
2466
2467 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2468
2469 /* For static member functions, we can't tell if they
2470 are stubbed, as they are put out as functions, and not as
2471 methods.
2472 GCC v2 emits the fully mangled name if
2473 dbxout.c:flag_minimal_debug is not set, so we have to
2474 detect a fully mangled physname here and set is_stub
2475 accordingly. Fully mangled physnames in v2 start with
2476 the member function name, followed by two underscores.
2477 GCC v3 currently always emits stubbed member functions,
2478 but with fully mangled physnames, which start with _Z. */
2479 if (!(strncmp (new_sublist->fn_field.physname,
2480 main_fn_name, slen) == 0
2481 && new_sublist->fn_field.physname[slen] == '_'
2482 && new_sublist->fn_field.physname[slen + 1] == '_'))
2483 {
2484 new_sublist->fn_field.is_stub = 1;
2485 }
2486 break;
2487 }
2488
2489 default:
2490 /* error */
2491 complaint (&symfile_complaints,
2492 _("member function type missing, got '%c'"), (*pp)[-1]);
2493 /* Fall through into normal member function. */
2494
2495 case '.':
2496 /* normal member function. */
2497 new_sublist->fn_field.voffset = 0;
2498 new_sublist->fn_field.fcontext = 0;
2499 break;
2500 }
2501
2502 new_sublist->next = sublist;
2503 sublist = new_sublist;
2504 length++;
2505 STABS_CONTINUE (pp, objfile);
2506 }
2507 while (**pp != ';' && **pp != '\0');
2508
2509 (*pp)++;
2510 STABS_CONTINUE (pp, objfile);
2511
2512 /* Skip GCC 3.X member functions which are duplicates of the callable
2513 constructor/destructor. */
2514 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2515 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2516 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2517 {
2518 xfree (main_fn_name);
2519 }
2520 else
2521 {
2522 int has_stub = 0;
2523 int has_destructor = 0, has_other = 0;
2524 int is_v3 = 0;
2525 struct next_fnfield *tmp_sublist;
2526
2527 /* Various versions of GCC emit various mostly-useless
2528 strings in the name field for special member functions.
2529
2530 For stub methods, we need to defer correcting the name
2531 until we are ready to unstub the method, because the current
2532 name string is used by gdb_mangle_name. The only stub methods
2533 of concern here are GNU v2 operators; other methods have their
2534 names correct (see caveat below).
2535
2536 For non-stub methods, in GNU v3, we have a complete physname.
2537 Therefore we can safely correct the name now. This primarily
2538 affects constructors and destructors, whose name will be
2539 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2540 operators will also have incorrect names; for instance,
2541 "operator int" will be named "operator i" (i.e. the type is
2542 mangled).
2543
2544 For non-stub methods in GNU v2, we have no easy way to
2545 know if we have a complete physname or not. For most
2546 methods the result depends on the platform (if CPLUS_MARKER
2547 can be `$' or `.', it will use minimal debug information, or
2548 otherwise the full physname will be included).
2549
2550 Rather than dealing with this, we take a different approach.
2551 For v3 mangled names, we can use the full physname; for v2,
2552 we use cplus_demangle_opname (which is actually v2 specific),
2553 because the only interesting names are all operators - once again
2554 barring the caveat below. Skip this process if any method in the
2555 group is a stub, to prevent our fouling up the workings of
2556 gdb_mangle_name.
2557
2558 The caveat: GCC 2.95.x (and earlier?) put constructors and
2559 destructors in the same method group. We need to split this
2560 into two groups, because they should have different names.
2561 So for each method group we check whether it contains both
2562 routines whose physname appears to be a destructor (the physnames
2563 for and destructors are always provided, due to quirks in v2
2564 mangling) and routines whose physname does not appear to be a
2565 destructor. If so then we break up the list into two halves.
2566 Even if the constructors and destructors aren't in the same group
2567 the destructor will still lack the leading tilde, so that also
2568 needs to be fixed.
2569
2570 So, to summarize what we expect and handle here:
2571
2572 Given Given Real Real Action
2573 method name physname physname method name
2574
2575 __opi [none] __opi__3Foo operator int opname
2576 [now or later]
2577 Foo _._3Foo _._3Foo ~Foo separate and
2578 rename
2579 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2580 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2581 */
2582
2583 tmp_sublist = sublist;
2584 while (tmp_sublist != NULL)
2585 {
2586 if (tmp_sublist->fn_field.is_stub)
2587 has_stub = 1;
2588 if (tmp_sublist->fn_field.physname[0] == '_'
2589 && tmp_sublist->fn_field.physname[1] == 'Z')
2590 is_v3 = 1;
2591
2592 if (is_destructor_name (tmp_sublist->fn_field.physname))
2593 has_destructor++;
2594 else
2595 has_other++;
2596
2597 tmp_sublist = tmp_sublist->next;
2598 }
2599
2600 if (has_destructor && has_other)
2601 {
2602 struct next_fnfieldlist *destr_fnlist;
2603 struct next_fnfield *last_sublist;
2604
2605 /* Create a new fn_fieldlist for the destructors. */
2606
2607 destr_fnlist = (struct next_fnfieldlist *)
2608 xmalloc (sizeof (struct next_fnfieldlist));
2609 make_cleanup (xfree, destr_fnlist);
2610 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2611 destr_fnlist->fn_fieldlist.name
2612 = obconcat (&objfile->objfile_obstack, "", "~",
2613 new_fnlist->fn_fieldlist.name);
2614
2615 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2616 obstack_alloc (&objfile->objfile_obstack,
2617 sizeof (struct fn_field) * has_destructor);
2618 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2619 sizeof (struct fn_field) * has_destructor);
2620 tmp_sublist = sublist;
2621 last_sublist = NULL;
2622 i = 0;
2623 while (tmp_sublist != NULL)
2624 {
2625 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2626 {
2627 tmp_sublist = tmp_sublist->next;
2628 continue;
2629 }
2630
2631 destr_fnlist->fn_fieldlist.fn_fields[i++]
2632 = tmp_sublist->fn_field;
2633 if (last_sublist)
2634 last_sublist->next = tmp_sublist->next;
2635 else
2636 sublist = tmp_sublist->next;
2637 last_sublist = tmp_sublist;
2638 tmp_sublist = tmp_sublist->next;
2639 }
2640
2641 destr_fnlist->fn_fieldlist.length = has_destructor;
2642 destr_fnlist->next = fip->fnlist;
2643 fip->fnlist = destr_fnlist;
2644 nfn_fields++;
2645 total_length += has_destructor;
2646 length -= has_destructor;
2647 }
2648 else if (is_v3)
2649 {
2650 /* v3 mangling prevents the use of abbreviated physnames,
2651 so we can do this here. There are stubbed methods in v3
2652 only:
2653 - in -gstabs instead of -gstabs+
2654 - or for static methods, which are output as a function type
2655 instead of a method type. */
2656
2657 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2658 sublist->fn_field.physname);
2659 }
2660 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2661 {
2662 new_fnlist->fn_fieldlist.name =
2663 concat ("~", main_fn_name, (char *)NULL);
2664 xfree (main_fn_name);
2665 }
2666 else if (!has_stub)
2667 {
2668 char dem_opname[256];
2669 int ret;
2670 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2671 dem_opname, DMGL_ANSI);
2672 if (!ret)
2673 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2674 dem_opname, 0);
2675 if (ret)
2676 new_fnlist->fn_fieldlist.name
2677 = obsavestring (dem_opname, strlen (dem_opname),
2678 &objfile->objfile_obstack);
2679 }
2680
2681 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2682 obstack_alloc (&objfile->objfile_obstack,
2683 sizeof (struct fn_field) * length);
2684 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2685 sizeof (struct fn_field) * length);
2686 for (i = length; (i--, sublist); sublist = sublist->next)
2687 {
2688 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2689 }
2690
2691 new_fnlist->fn_fieldlist.length = length;
2692 new_fnlist->next = fip->fnlist;
2693 fip->fnlist = new_fnlist;
2694 nfn_fields++;
2695 total_length += length;
2696 }
2697 }
2698
2699 if (nfn_fields)
2700 {
2701 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2702 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2703 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2704 memset (TYPE_FN_FIELDLISTS (type), 0,
2705 sizeof (struct fn_fieldlist) * nfn_fields);
2706 TYPE_NFN_FIELDS (type) = nfn_fields;
2707 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2708 }
2709
2710 return 1;
2711 }
2712
2713 /* Special GNU C++ name.
2714
2715 Returns 1 for success, 0 for failure. "failure" means that we can't
2716 keep parsing and it's time for error_type(). */
2717
2718 static int
2719 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2720 struct objfile *objfile)
2721 {
2722 char *p;
2723 char *name;
2724 char cpp_abbrev;
2725 struct type *context;
2726
2727 p = *pp;
2728 if (*++p == 'v')
2729 {
2730 name = NULL;
2731 cpp_abbrev = *++p;
2732
2733 *pp = p + 1;
2734
2735 /* At this point, *pp points to something like "22:23=*22...",
2736 where the type number before the ':' is the "context" and
2737 everything after is a regular type definition. Lookup the
2738 type, find it's name, and construct the field name. */
2739
2740 context = read_type (pp, objfile);
2741
2742 switch (cpp_abbrev)
2743 {
2744 case 'f': /* $vf -- a virtual function table pointer */
2745 name = type_name_no_tag (context);
2746 if (name == NULL)
2747 {
2748 name = "";
2749 }
2750 fip->list->field.name =
2751 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2752 break;
2753
2754 case 'b': /* $vb -- a virtual bsomethingorother */
2755 name = type_name_no_tag (context);
2756 if (name == NULL)
2757 {
2758 complaint (&symfile_complaints,
2759 _("C++ abbreviated type name unknown at symtab pos %d"),
2760 symnum);
2761 name = "FOO";
2762 }
2763 fip->list->field.name =
2764 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2765 break;
2766
2767 default:
2768 invalid_cpp_abbrev_complaint (*pp);
2769 fip->list->field.name =
2770 obconcat (&objfile->objfile_obstack,
2771 "INVALID_CPLUSPLUS_ABBREV", "", "");
2772 break;
2773 }
2774
2775 /* At this point, *pp points to the ':'. Skip it and read the
2776 field type. */
2777
2778 p = ++(*pp);
2779 if (p[-1] != ':')
2780 {
2781 invalid_cpp_abbrev_complaint (*pp);
2782 return 0;
2783 }
2784 fip->list->field.type = read_type (pp, objfile);
2785 if (**pp == ',')
2786 (*pp)++; /* Skip the comma. */
2787 else
2788 return 0;
2789
2790 {
2791 int nbits;
2792 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2793 0);
2794 if (nbits != 0)
2795 return 0;
2796 }
2797 /* This field is unpacked. */
2798 FIELD_BITSIZE (fip->list->field) = 0;
2799 fip->list->visibility = VISIBILITY_PRIVATE;
2800 }
2801 else
2802 {
2803 invalid_cpp_abbrev_complaint (*pp);
2804 /* We have no idea what syntax an unrecognized abbrev would have, so
2805 better return 0. If we returned 1, we would need to at least advance
2806 *pp to avoid an infinite loop. */
2807 return 0;
2808 }
2809 return 1;
2810 }
2811
2812 static void
2813 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2814 struct type *type, struct objfile *objfile)
2815 {
2816 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2817
2818 fip->list->field.name =
2819 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2820 *pp = p + 1;
2821
2822 /* This means we have a visibility for a field coming. */
2823 if (**pp == '/')
2824 {
2825 (*pp)++;
2826 fip->list->visibility = *(*pp)++;
2827 }
2828 else
2829 {
2830 /* normal dbx-style format, no explicit visibility */
2831 fip->list->visibility = VISIBILITY_PUBLIC;
2832 }
2833
2834 fip->list->field.type = read_type (pp, objfile);
2835 if (**pp == ':')
2836 {
2837 p = ++(*pp);
2838 #if 0
2839 /* Possible future hook for nested types. */
2840 if (**pp == '!')
2841 {
2842 fip->list->field.bitpos = (long) -2; /* nested type */
2843 p = ++(*pp);
2844 }
2845 else
2846 ...;
2847 #endif
2848 while (*p != ';')
2849 {
2850 p++;
2851 }
2852 /* Static class member. */
2853 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2854 *pp = p + 1;
2855 return;
2856 }
2857 else if (**pp != ',')
2858 {
2859 /* Bad structure-type format. */
2860 stabs_general_complaint ("bad structure-type format");
2861 return;
2862 }
2863
2864 (*pp)++; /* Skip the comma. */
2865
2866 {
2867 int nbits;
2868 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2869 if (nbits != 0)
2870 {
2871 stabs_general_complaint ("bad structure-type format");
2872 return;
2873 }
2874 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2875 if (nbits != 0)
2876 {
2877 stabs_general_complaint ("bad structure-type format");
2878 return;
2879 }
2880 }
2881
2882 if (FIELD_BITPOS (fip->list->field) == 0
2883 && FIELD_BITSIZE (fip->list->field) == 0)
2884 {
2885 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2886 it is a field which has been optimized out. The correct stab for
2887 this case is to use VISIBILITY_IGNORE, but that is a recent
2888 invention. (2) It is a 0-size array. For example
2889 union { int num; char str[0]; } foo. Printing _("<no value>" for
2890 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2891 will continue to work, and a 0-size array as a whole doesn't
2892 have any contents to print.
2893
2894 I suspect this probably could also happen with gcc -gstabs (not
2895 -gstabs+) for static fields, and perhaps other C++ extensions.
2896 Hopefully few people use -gstabs with gdb, since it is intended
2897 for dbx compatibility. */
2898
2899 /* Ignore this field. */
2900 fip->list->visibility = VISIBILITY_IGNORE;
2901 }
2902 else
2903 {
2904 /* Detect an unpacked field and mark it as such.
2905 dbx gives a bit size for all fields.
2906 Note that forward refs cannot be packed,
2907 and treat enums as if they had the width of ints. */
2908
2909 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2910
2911 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2912 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2913 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2914 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2915 {
2916 FIELD_BITSIZE (fip->list->field) = 0;
2917 }
2918 if ((FIELD_BITSIZE (fip->list->field)
2919 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2920 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2921 && FIELD_BITSIZE (fip->list->field)
2922 == gdbarch_int_bit (gdbarch))
2923 )
2924 &&
2925 FIELD_BITPOS (fip->list->field) % 8 == 0)
2926 {
2927 FIELD_BITSIZE (fip->list->field) = 0;
2928 }
2929 }
2930 }
2931
2932
2933 /* Read struct or class data fields. They have the form:
2934
2935 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2936
2937 At the end, we see a semicolon instead of a field.
2938
2939 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2940 a static field.
2941
2942 The optional VISIBILITY is one of:
2943
2944 '/0' (VISIBILITY_PRIVATE)
2945 '/1' (VISIBILITY_PROTECTED)
2946 '/2' (VISIBILITY_PUBLIC)
2947 '/9' (VISIBILITY_IGNORE)
2948
2949 or nothing, for C style fields with public visibility.
2950
2951 Returns 1 for success, 0 for failure. */
2952
2953 static int
2954 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2955 struct objfile *objfile)
2956 {
2957 char *p;
2958 struct nextfield *new;
2959
2960 /* We better set p right now, in case there are no fields at all... */
2961
2962 p = *pp;
2963
2964 /* Read each data member type until we find the terminating ';' at the end of
2965 the data member list, or break for some other reason such as finding the
2966 start of the member function list. */
2967 /* Stab string for structure/union does not end with two ';' in
2968 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2969
2970 while (**pp != ';' && **pp != '\0')
2971 {
2972 STABS_CONTINUE (pp, objfile);
2973 /* Get space to record the next field's data. */
2974 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2975 make_cleanup (xfree, new);
2976 memset (new, 0, sizeof (struct nextfield));
2977 new->next = fip->list;
2978 fip->list = new;
2979
2980 /* Get the field name. */
2981 p = *pp;
2982
2983 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2984 unless the CPLUS_MARKER is followed by an underscore, in
2985 which case it is just the name of an anonymous type, which we
2986 should handle like any other type name. */
2987
2988 if (is_cplus_marker (p[0]) && p[1] != '_')
2989 {
2990 if (!read_cpp_abbrev (fip, pp, type, objfile))
2991 return 0;
2992 continue;
2993 }
2994
2995 /* Look for the ':' that separates the field name from the field
2996 values. Data members are delimited by a single ':', while member
2997 functions are delimited by a pair of ':'s. When we hit the member
2998 functions (if any), terminate scan loop and return. */
2999
3000 while (*p != ':' && *p != '\0')
3001 {
3002 p++;
3003 }
3004 if (*p == '\0')
3005 return 0;
3006
3007 /* Check to see if we have hit the member functions yet. */
3008 if (p[1] == ':')
3009 {
3010 break;
3011 }
3012 read_one_struct_field (fip, pp, p, type, objfile);
3013 }
3014 if (p[0] == ':' && p[1] == ':')
3015 {
3016 /* (the deleted) chill the list of fields: the last entry (at
3017 the head) is a partially constructed entry which we now
3018 scrub. */
3019 fip->list = fip->list->next;
3020 }
3021 return 1;
3022 }
3023 /* *INDENT-OFF* */
3024 /* The stabs for C++ derived classes contain baseclass information which
3025 is marked by a '!' character after the total size. This function is
3026 called when we encounter the baseclass marker, and slurps up all the
3027 baseclass information.
3028
3029 Immediately following the '!' marker is the number of base classes that
3030 the class is derived from, followed by information for each base class.
3031 For each base class, there are two visibility specifiers, a bit offset
3032 to the base class information within the derived class, a reference to
3033 the type for the base class, and a terminating semicolon.
3034
3035 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3036 ^^ ^ ^ ^ ^ ^ ^
3037 Baseclass information marker __________________|| | | | | | |
3038 Number of baseclasses __________________________| | | | | | |
3039 Visibility specifiers (2) ________________________| | | | | |
3040 Offset in bits from start of class _________________| | | | |
3041 Type number for base class ___________________________| | | |
3042 Visibility specifiers (2) _______________________________| | |
3043 Offset in bits from start of class ________________________| |
3044 Type number of base class ____________________________________|
3045
3046 Return 1 for success, 0 for (error-type-inducing) failure. */
3047 /* *INDENT-ON* */
3048
3049
3050
3051 static int
3052 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3053 struct objfile *objfile)
3054 {
3055 int i;
3056 struct nextfield *new;
3057
3058 if (**pp != '!')
3059 {
3060 return 1;
3061 }
3062 else
3063 {
3064 /* Skip the '!' baseclass information marker. */
3065 (*pp)++;
3066 }
3067
3068 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3069 {
3070 int nbits;
3071 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3072 if (nbits != 0)
3073 return 0;
3074 }
3075
3076 #if 0
3077 /* Some stupid compilers have trouble with the following, so break
3078 it up into simpler expressions. */
3079 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3080 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3081 #else
3082 {
3083 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3084 char *pointer;
3085
3086 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3087 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3088 }
3089 #endif /* 0 */
3090
3091 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3092
3093 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3094 {
3095 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3096 make_cleanup (xfree, new);
3097 memset (new, 0, sizeof (struct nextfield));
3098 new->next = fip->list;
3099 fip->list = new;
3100 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3101
3102 STABS_CONTINUE (pp, objfile);
3103 switch (**pp)
3104 {
3105 case '0':
3106 /* Nothing to do. */
3107 break;
3108 case '1':
3109 SET_TYPE_FIELD_VIRTUAL (type, i);
3110 break;
3111 default:
3112 /* Unknown character. Complain and treat it as non-virtual. */
3113 {
3114 complaint (&symfile_complaints,
3115 _("Unknown virtual character `%c' for baseclass"), **pp);
3116 }
3117 }
3118 ++(*pp);
3119
3120 new->visibility = *(*pp)++;
3121 switch (new->visibility)
3122 {
3123 case VISIBILITY_PRIVATE:
3124 case VISIBILITY_PROTECTED:
3125 case VISIBILITY_PUBLIC:
3126 break;
3127 default:
3128 /* Bad visibility format. Complain and treat it as
3129 public. */
3130 {
3131 complaint (&symfile_complaints,
3132 _("Unknown visibility `%c' for baseclass"),
3133 new->visibility);
3134 new->visibility = VISIBILITY_PUBLIC;
3135 }
3136 }
3137
3138 {
3139 int nbits;
3140
3141 /* The remaining value is the bit offset of the portion of the object
3142 corresponding to this baseclass. Always zero in the absence of
3143 multiple inheritance. */
3144
3145 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3146 if (nbits != 0)
3147 return 0;
3148 }
3149
3150 /* The last piece of baseclass information is the type of the
3151 base class. Read it, and remember it's type name as this
3152 field's name. */
3153
3154 new->field.type = read_type (pp, objfile);
3155 new->field.name = type_name_no_tag (new->field.type);
3156
3157 /* skip trailing ';' and bump count of number of fields seen */
3158 if (**pp == ';')
3159 (*pp)++;
3160 else
3161 return 0;
3162 }
3163 return 1;
3164 }
3165
3166 /* The tail end of stabs for C++ classes that contain a virtual function
3167 pointer contains a tilde, a %, and a type number.
3168 The type number refers to the base class (possibly this class itself) which
3169 contains the vtable pointer for the current class.
3170
3171 This function is called when we have parsed all the method declarations,
3172 so we can look for the vptr base class info. */
3173
3174 static int
3175 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3176 struct objfile *objfile)
3177 {
3178 char *p;
3179
3180 STABS_CONTINUE (pp, objfile);
3181
3182 /* If we are positioned at a ';', then skip it. */
3183 if (**pp == ';')
3184 {
3185 (*pp)++;
3186 }
3187
3188 if (**pp == '~')
3189 {
3190 (*pp)++;
3191
3192 if (**pp == '=' || **pp == '+' || **pp == '-')
3193 {
3194 /* Obsolete flags that used to indicate the presence
3195 of constructors and/or destructors. */
3196 (*pp)++;
3197 }
3198
3199 /* Read either a '%' or the final ';'. */
3200 if (*(*pp)++ == '%')
3201 {
3202 /* The next number is the type number of the base class
3203 (possibly our own class) which supplies the vtable for
3204 this class. Parse it out, and search that class to find
3205 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3206 and TYPE_VPTR_FIELDNO. */
3207
3208 struct type *t;
3209 int i;
3210
3211 t = read_type (pp, objfile);
3212 p = (*pp)++;
3213 while (*p != '\0' && *p != ';')
3214 {
3215 p++;
3216 }
3217 if (*p == '\0')
3218 {
3219 /* Premature end of symbol. */
3220 return 0;
3221 }
3222
3223 TYPE_VPTR_BASETYPE (type) = t;
3224 if (type == t) /* Our own class provides vtbl ptr */
3225 {
3226 for (i = TYPE_NFIELDS (t) - 1;
3227 i >= TYPE_N_BASECLASSES (t);
3228 --i)
3229 {
3230 char *name = TYPE_FIELD_NAME (t, i);
3231 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3232 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3233 {
3234 TYPE_VPTR_FIELDNO (type) = i;
3235 goto gotit;
3236 }
3237 }
3238 /* Virtual function table field not found. */
3239 complaint (&symfile_complaints,
3240 _("virtual function table pointer not found when defining class `%s'"),
3241 TYPE_NAME (type));
3242 return 0;
3243 }
3244 else
3245 {
3246 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3247 }
3248
3249 gotit:
3250 *pp = p + 1;
3251 }
3252 }
3253 return 1;
3254 }
3255
3256 static int
3257 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3258 {
3259 int n;
3260
3261 for (n = TYPE_NFN_FIELDS (type);
3262 fip->fnlist != NULL;
3263 fip->fnlist = fip->fnlist->next)
3264 {
3265 --n; /* Circumvent Sun3 compiler bug */
3266 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3267 }
3268 return 1;
3269 }
3270
3271 /* Create the vector of fields, and record how big it is.
3272 We need this info to record proper virtual function table information
3273 for this class's virtual functions. */
3274
3275 static int
3276 attach_fields_to_type (struct field_info *fip, struct type *type,
3277 struct objfile *objfile)
3278 {
3279 int nfields = 0;
3280 int non_public_fields = 0;
3281 struct nextfield *scan;
3282
3283 /* Count up the number of fields that we have, as well as taking note of
3284 whether or not there are any non-public fields, which requires us to
3285 allocate and build the private_field_bits and protected_field_bits
3286 bitfields. */
3287
3288 for (scan = fip->list; scan != NULL; scan = scan->next)
3289 {
3290 nfields++;
3291 if (scan->visibility != VISIBILITY_PUBLIC)
3292 {
3293 non_public_fields++;
3294 }
3295 }
3296
3297 /* Now we know how many fields there are, and whether or not there are any
3298 non-public fields. Record the field count, allocate space for the
3299 array of fields, and create blank visibility bitfields if necessary. */
3300
3301 TYPE_NFIELDS (type) = nfields;
3302 TYPE_FIELDS (type) = (struct field *)
3303 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3304 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3305
3306 if (non_public_fields)
3307 {
3308 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3309
3310 TYPE_FIELD_PRIVATE_BITS (type) =
3311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3312 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3313
3314 TYPE_FIELD_PROTECTED_BITS (type) =
3315 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3316 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3317
3318 TYPE_FIELD_IGNORE_BITS (type) =
3319 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3320 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3321 }
3322
3323 /* Copy the saved-up fields into the field vector. Start from the head
3324 of the list, adding to the tail of the field array, so that they end
3325 up in the same order in the array in which they were added to the list. */
3326
3327 while (nfields-- > 0)
3328 {
3329 TYPE_FIELD (type, nfields) = fip->list->field;
3330 switch (fip->list->visibility)
3331 {
3332 case VISIBILITY_PRIVATE:
3333 SET_TYPE_FIELD_PRIVATE (type, nfields);
3334 break;
3335
3336 case VISIBILITY_PROTECTED:
3337 SET_TYPE_FIELD_PROTECTED (type, nfields);
3338 break;
3339
3340 case VISIBILITY_IGNORE:
3341 SET_TYPE_FIELD_IGNORE (type, nfields);
3342 break;
3343
3344 case VISIBILITY_PUBLIC:
3345 break;
3346
3347 default:
3348 /* Unknown visibility. Complain and treat it as public. */
3349 {
3350 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3351 fip->list->visibility);
3352 }
3353 break;
3354 }
3355 fip->list = fip->list->next;
3356 }
3357 return 1;
3358 }
3359
3360
3361 /* Complain that the compiler has emitted more than one definition for the
3362 structure type TYPE. */
3363 static void
3364 complain_about_struct_wipeout (struct type *type)
3365 {
3366 char *name = "";
3367 char *kind = "";
3368
3369 if (TYPE_TAG_NAME (type))
3370 {
3371 name = TYPE_TAG_NAME (type);
3372 switch (TYPE_CODE (type))
3373 {
3374 case TYPE_CODE_STRUCT: kind = "struct "; break;
3375 case TYPE_CODE_UNION: kind = "union "; break;
3376 case TYPE_CODE_ENUM: kind = "enum "; break;
3377 default: kind = "";
3378 }
3379 }
3380 else if (TYPE_NAME (type))
3381 {
3382 name = TYPE_NAME (type);
3383 kind = "";
3384 }
3385 else
3386 {
3387 name = "<unknown>";
3388 kind = "";
3389 }
3390
3391 complaint (&symfile_complaints,
3392 _("struct/union type gets multiply defined: %s%s"), kind, name);
3393 }
3394
3395 /* Set the length for all variants of a same main_type, which are
3396 connected in the closed chain.
3397
3398 This is something that needs to be done when a type is defined *after*
3399 some cross references to this type have already been read. Consider
3400 for instance the following scenario where we have the following two
3401 stabs entries:
3402
3403 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3404 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3405
3406 A stubbed version of type dummy is created while processing the first
3407 stabs entry. The length of that type is initially set to zero, since
3408 it is unknown at this point. Also, a "constant" variation of type
3409 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3410 the stabs line).
3411
3412 The second stabs entry allows us to replace the stubbed definition
3413 with the real definition. However, we still need to adjust the length
3414 of the "constant" variation of that type, as its length was left
3415 untouched during the main type replacement... */
3416
3417 static void
3418 set_length_in_type_chain (struct type *type)
3419 {
3420 struct type *ntype = TYPE_CHAIN (type);
3421
3422 while (ntype != type)
3423 {
3424 if (TYPE_LENGTH(ntype) == 0)
3425 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3426 else
3427 complain_about_struct_wipeout (ntype);
3428 ntype = TYPE_CHAIN (ntype);
3429 }
3430 }
3431
3432 /* Read the description of a structure (or union type) and return an object
3433 describing the type.
3434
3435 PP points to a character pointer that points to the next unconsumed token
3436 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3437 *PP will point to "4a:1,0,32;;".
3438
3439 TYPE points to an incomplete type that needs to be filled in.
3440
3441 OBJFILE points to the current objfile from which the stabs information is
3442 being read. (Note that it is redundant in that TYPE also contains a pointer
3443 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3444 */
3445
3446 static struct type *
3447 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3448 struct objfile *objfile)
3449 {
3450 struct cleanup *back_to;
3451 struct field_info fi;
3452
3453 fi.list = NULL;
3454 fi.fnlist = NULL;
3455
3456 /* When describing struct/union/class types in stabs, G++ always drops
3457 all qualifications from the name. So if you've got:
3458 struct A { ... struct B { ... }; ... };
3459 then G++ will emit stabs for `struct A::B' that call it simply
3460 `struct B'. Obviously, if you've got a real top-level definition for
3461 `struct B', or other nested definitions, this is going to cause
3462 problems.
3463
3464 Obviously, GDB can't fix this by itself, but it can at least avoid
3465 scribbling on existing structure type objects when new definitions
3466 appear. */
3467 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3468 || TYPE_STUB (type)))
3469 {
3470 complain_about_struct_wipeout (type);
3471
3472 /* It's probably best to return the type unchanged. */
3473 return type;
3474 }
3475
3476 back_to = make_cleanup (null_cleanup, 0);
3477
3478 INIT_CPLUS_SPECIFIC (type);
3479 TYPE_CODE (type) = type_code;
3480 TYPE_STUB (type) = 0;
3481
3482 /* First comes the total size in bytes. */
3483
3484 {
3485 int nbits;
3486 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3487 if (nbits != 0)
3488 return error_type (pp, objfile);
3489 set_length_in_type_chain (type);
3490 }
3491
3492 /* Now read the baseclasses, if any, read the regular C struct or C++
3493 class member fields, attach the fields to the type, read the C++
3494 member functions, attach them to the type, and then read any tilde
3495 field (baseclass specifier for the class holding the main vtable). */
3496
3497 if (!read_baseclasses (&fi, pp, type, objfile)
3498 || !read_struct_fields (&fi, pp, type, objfile)
3499 || !attach_fields_to_type (&fi, type, objfile)
3500 || !read_member_functions (&fi, pp, type, objfile)
3501 || !attach_fn_fields_to_type (&fi, type)
3502 || !read_tilde_fields (&fi, pp, type, objfile))
3503 {
3504 type = error_type (pp, objfile);
3505 }
3506
3507 do_cleanups (back_to);
3508 return (type);
3509 }
3510
3511 /* Read a definition of an array type,
3512 and create and return a suitable type object.
3513 Also creates a range type which represents the bounds of that
3514 array. */
3515
3516 static struct type *
3517 read_array_type (char **pp, struct type *type,
3518 struct objfile *objfile)
3519 {
3520 struct type *index_type, *element_type, *range_type;
3521 int lower, upper;
3522 int adjustable = 0;
3523 int nbits;
3524
3525 /* Format of an array type:
3526 "ar<index type>;lower;upper;<array_contents_type>".
3527 OS9000: "arlower,upper;<array_contents_type>".
3528
3529 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3530 for these, produce a type like float[][]. */
3531
3532 {
3533 index_type = read_type (pp, objfile);
3534 if (**pp != ';')
3535 /* Improper format of array type decl. */
3536 return error_type (pp, objfile);
3537 ++*pp;
3538 }
3539
3540 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3541 {
3542 (*pp)++;
3543 adjustable = 1;
3544 }
3545 lower = read_huge_number (pp, ';', &nbits, 0);
3546
3547 if (nbits != 0)
3548 return error_type (pp, objfile);
3549
3550 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3551 {
3552 (*pp)++;
3553 adjustable = 1;
3554 }
3555 upper = read_huge_number (pp, ';', &nbits, 0);
3556 if (nbits != 0)
3557 return error_type (pp, objfile);
3558
3559 element_type = read_type (pp, objfile);
3560
3561 if (adjustable)
3562 {
3563 lower = 0;
3564 upper = -1;
3565 }
3566
3567 range_type =
3568 create_range_type ((struct type *) NULL, index_type, lower, upper);
3569 type = create_array_type (type, element_type, range_type);
3570
3571 return type;
3572 }
3573
3574
3575 /* Read a definition of an enumeration type,
3576 and create and return a suitable type object.
3577 Also defines the symbols that represent the values of the type. */
3578
3579 static struct type *
3580 read_enum_type (char **pp, struct type *type,
3581 struct objfile *objfile)
3582 {
3583 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3584 char *p;
3585 char *name;
3586 long n;
3587 struct symbol *sym;
3588 int nsyms = 0;
3589 struct pending **symlist;
3590 struct pending *osyms, *syms;
3591 int o_nsyms;
3592 int nbits;
3593 int unsigned_enum = 1;
3594
3595 #if 0
3596 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3597 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3598 to do? For now, force all enum values to file scope. */
3599 if (within_function)
3600 symlist = &local_symbols;
3601 else
3602 #endif
3603 symlist = &file_symbols;
3604 osyms = *symlist;
3605 o_nsyms = osyms ? osyms->nsyms : 0;
3606
3607 /* The aix4 compiler emits an extra field before the enum members;
3608 my guess is it's a type of some sort. Just ignore it. */
3609 if (**pp == '-')
3610 {
3611 /* Skip over the type. */
3612 while (**pp != ':')
3613 (*pp)++;
3614
3615 /* Skip over the colon. */
3616 (*pp)++;
3617 }
3618
3619 /* Read the value-names and their values.
3620 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3621 A semicolon or comma instead of a NAME means the end. */
3622 while (**pp && **pp != ';' && **pp != ',')
3623 {
3624 STABS_CONTINUE (pp, objfile);
3625 p = *pp;
3626 while (*p != ':')
3627 p++;
3628 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3629 *pp = p + 1;
3630 n = read_huge_number (pp, ',', &nbits, 0);
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633
3634 sym = (struct symbol *)
3635 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3636 memset (sym, 0, sizeof (struct symbol));
3637 SYMBOL_SET_LINKAGE_NAME (sym, name);
3638 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3639 SYMBOL_CLASS (sym) = LOC_CONST;
3640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3641 SYMBOL_VALUE (sym) = n;
3642 if (n < 0)
3643 unsigned_enum = 0;
3644 add_symbol_to_list (sym, symlist);
3645 nsyms++;
3646 }
3647
3648 if (**pp == ';')
3649 (*pp)++; /* Skip the semicolon. */
3650
3651 /* Now fill in the fields of the type-structure. */
3652
3653 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3654 set_length_in_type_chain (type);
3655 TYPE_CODE (type) = TYPE_CODE_ENUM;
3656 TYPE_STUB (type) = 0;
3657 if (unsigned_enum)
3658 TYPE_UNSIGNED (type) = 1;
3659 TYPE_NFIELDS (type) = nsyms;
3660 TYPE_FIELDS (type) = (struct field *)
3661 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3662 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3663
3664 /* Find the symbols for the values and put them into the type.
3665 The symbols can be found in the symlist that we put them on
3666 to cause them to be defined. osyms contains the old value
3667 of that symlist; everything up to there was defined by us. */
3668 /* Note that we preserve the order of the enum constants, so
3669 that in something like "enum {FOO, LAST_THING=FOO}" we print
3670 FOO, not LAST_THING. */
3671
3672 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3673 {
3674 int last = syms == osyms ? o_nsyms : 0;
3675 int j = syms->nsyms;
3676 for (; --j >= last; --n)
3677 {
3678 struct symbol *xsym = syms->symbol[j];
3679 SYMBOL_TYPE (xsym) = type;
3680 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3681 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3682 TYPE_FIELD_BITSIZE (type, n) = 0;
3683 }
3684 if (syms == osyms)
3685 break;
3686 }
3687
3688 return type;
3689 }
3690
3691 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3692 typedefs in every file (for int, long, etc):
3693
3694 type = b <signed> <width> <format type>; <offset>; <nbits>
3695 signed = u or s.
3696 optional format type = c or b for char or boolean.
3697 offset = offset from high order bit to start bit of type.
3698 width is # bytes in object of this type, nbits is # bits in type.
3699
3700 The width/offset stuff appears to be for small objects stored in
3701 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3702 FIXME. */
3703
3704 static struct type *
3705 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3706 {
3707 int type_bits;
3708 int nbits;
3709 int signed_type;
3710 enum type_code code = TYPE_CODE_INT;
3711
3712 switch (**pp)
3713 {
3714 case 's':
3715 signed_type = 1;
3716 break;
3717 case 'u':
3718 signed_type = 0;
3719 break;
3720 default:
3721 return error_type (pp, objfile);
3722 }
3723 (*pp)++;
3724
3725 /* For some odd reason, all forms of char put a c here. This is strange
3726 because no other type has this honor. We can safely ignore this because
3727 we actually determine 'char'acterness by the number of bits specified in
3728 the descriptor.
3729 Boolean forms, e.g Fortran logical*X, put a b here. */
3730
3731 if (**pp == 'c')
3732 (*pp)++;
3733 else if (**pp == 'b')
3734 {
3735 code = TYPE_CODE_BOOL;
3736 (*pp)++;
3737 }
3738
3739 /* The first number appears to be the number of bytes occupied
3740 by this type, except that unsigned short is 4 instead of 2.
3741 Since this information is redundant with the third number,
3742 we will ignore it. */
3743 read_huge_number (pp, ';', &nbits, 0);
3744 if (nbits != 0)
3745 return error_type (pp, objfile);
3746
3747 /* The second number is always 0, so ignore it too. */
3748 read_huge_number (pp, ';', &nbits, 0);
3749 if (nbits != 0)
3750 return error_type (pp, objfile);
3751
3752 /* The third number is the number of bits for this type. */
3753 type_bits = read_huge_number (pp, 0, &nbits, 0);
3754 if (nbits != 0)
3755 return error_type (pp, objfile);
3756 /* The type *should* end with a semicolon. If it are embedded
3757 in a larger type the semicolon may be the only way to know where
3758 the type ends. If this type is at the end of the stabstring we
3759 can deal with the omitted semicolon (but we don't have to like
3760 it). Don't bother to complain(), Sun's compiler omits the semicolon
3761 for "void". */
3762 if (**pp == ';')
3763 ++(*pp);
3764
3765 if (type_bits == 0)
3766 return init_type (TYPE_CODE_VOID, 1,
3767 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3768 objfile);
3769 else
3770 return init_type (code,
3771 type_bits / TARGET_CHAR_BIT,
3772 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3773 objfile);
3774 }
3775
3776 static struct type *
3777 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3778 {
3779 int nbits;
3780 int details;
3781 int nbytes;
3782 struct type *rettype;
3783
3784 /* The first number has more details about the type, for example
3785 FN_COMPLEX. */
3786 details = read_huge_number (pp, ';', &nbits, 0);
3787 if (nbits != 0)
3788 return error_type (pp, objfile);
3789
3790 /* The second number is the number of bytes occupied by this type */
3791 nbytes = read_huge_number (pp, ';', &nbits, 0);
3792 if (nbits != 0)
3793 return error_type (pp, objfile);
3794
3795 if (details == NF_COMPLEX || details == NF_COMPLEX16
3796 || details == NF_COMPLEX32)
3797 {
3798 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3799 TYPE_TARGET_TYPE (rettype)
3800 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3801 return rettype;
3802 }
3803
3804 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3805 }
3806
3807 /* Read a number from the string pointed to by *PP.
3808 The value of *PP is advanced over the number.
3809 If END is nonzero, the character that ends the
3810 number must match END, or an error happens;
3811 and that character is skipped if it does match.
3812 If END is zero, *PP is left pointing to that character.
3813
3814 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3815 the number is represented in an octal representation, assume that
3816 it is represented in a 2's complement representation with a size of
3817 TWOS_COMPLEMENT_BITS.
3818
3819 If the number fits in a long, set *BITS to 0 and return the value.
3820 If not, set *BITS to be the number of bits in the number and return 0.
3821
3822 If encounter garbage, set *BITS to -1 and return 0. */
3823
3824 static long
3825 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3826 {
3827 char *p = *pp;
3828 int sign = 1;
3829 int sign_bit = 0;
3830 long n = 0;
3831 int radix = 10;
3832 char overflow = 0;
3833 int nbits = 0;
3834 int c;
3835 long upper_limit;
3836 int twos_complement_representation = 0;
3837
3838 if (*p == '-')
3839 {
3840 sign = -1;
3841 p++;
3842 }
3843
3844 /* Leading zero means octal. GCC uses this to output values larger
3845 than an int (because that would be hard in decimal). */
3846 if (*p == '0')
3847 {
3848 radix = 8;
3849 p++;
3850 }
3851
3852 /* Skip extra zeros. */
3853 while (*p == '0')
3854 p++;
3855
3856 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3857 {
3858 /* Octal, possibly signed. Check if we have enough chars for a
3859 negative number. */
3860
3861 size_t len;
3862 char *p1 = p;
3863 while ((c = *p1) >= '0' && c < '8')
3864 p1++;
3865
3866 len = p1 - p;
3867 if (len > twos_complement_bits / 3
3868 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3869 {
3870 /* Ok, we have enough characters for a signed value, check
3871 for signness by testing if the sign bit is set. */
3872 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3873 c = *p - '0';
3874 if (c & (1 << sign_bit))
3875 {
3876 /* Definitely signed. */
3877 twos_complement_representation = 1;
3878 sign = -1;
3879 }
3880 }
3881 }
3882
3883 upper_limit = LONG_MAX / radix;
3884
3885 while ((c = *p++) >= '0' && c < ('0' + radix))
3886 {
3887 if (n <= upper_limit)
3888 {
3889 if (twos_complement_representation)
3890 {
3891 /* Octal, signed, twos complement representation. In
3892 this case, n is the corresponding absolute value. */
3893 if (n == 0)
3894 {
3895 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3896 n = -sn;
3897 }
3898 else
3899 {
3900 n *= radix;
3901 n -= c - '0';
3902 }
3903 }
3904 else
3905 {
3906 /* unsigned representation */
3907 n *= radix;
3908 n += c - '0'; /* FIXME this overflows anyway */
3909 }
3910 }
3911 else
3912 overflow = 1;
3913
3914 /* This depends on large values being output in octal, which is
3915 what GCC does. */
3916 if (radix == 8)
3917 {
3918 if (nbits == 0)
3919 {
3920 if (c == '0')
3921 /* Ignore leading zeroes. */
3922 ;
3923 else if (c == '1')
3924 nbits = 1;
3925 else if (c == '2' || c == '3')
3926 nbits = 2;
3927 else
3928 nbits = 3;
3929 }
3930 else
3931 nbits += 3;
3932 }
3933 }
3934 if (end)
3935 {
3936 if (c && c != end)
3937 {
3938 if (bits != NULL)
3939 *bits = -1;
3940 return 0;
3941 }
3942 }
3943 else
3944 --p;
3945
3946 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3947 {
3948 /* We were supposed to parse a number with maximum
3949 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3950 if (bits != NULL)
3951 *bits = -1;
3952 return 0;
3953 }
3954
3955 *pp = p;
3956 if (overflow)
3957 {
3958 if (nbits == 0)
3959 {
3960 /* Large decimal constants are an error (because it is hard to
3961 count how many bits are in them). */
3962 if (bits != NULL)
3963 *bits = -1;
3964 return 0;
3965 }
3966
3967 /* -0x7f is the same as 0x80. So deal with it by adding one to
3968 the number of bits. Two's complement represention octals
3969 can't have a '-' in front. */
3970 if (sign == -1 && !twos_complement_representation)
3971 ++nbits;
3972 if (bits)
3973 *bits = nbits;
3974 }
3975 else
3976 {
3977 if (bits)
3978 *bits = 0;
3979 return n * sign;
3980 }
3981 /* It's *BITS which has the interesting information. */
3982 return 0;
3983 }
3984
3985 static struct type *
3986 read_range_type (char **pp, int typenums[2], int type_size,
3987 struct objfile *objfile)
3988 {
3989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3990 char *orig_pp = *pp;
3991 int rangenums[2];
3992 long n2, n3;
3993 int n2bits, n3bits;
3994 int self_subrange;
3995 struct type *result_type;
3996 struct type *index_type = NULL;
3997
3998 /* First comes a type we are a subrange of.
3999 In C it is usually 0, 1 or the type being defined. */
4000 if (read_type_number (pp, rangenums) != 0)
4001 return error_type (pp, objfile);
4002 self_subrange = (rangenums[0] == typenums[0] &&
4003 rangenums[1] == typenums[1]);
4004
4005 if (**pp == '=')
4006 {
4007 *pp = orig_pp;
4008 index_type = read_type (pp, objfile);
4009 }
4010
4011 /* A semicolon should now follow; skip it. */
4012 if (**pp == ';')
4013 (*pp)++;
4014
4015 /* The remaining two operands are usually lower and upper bounds
4016 of the range. But in some special cases they mean something else. */
4017 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4018 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4019
4020 if (n2bits == -1 || n3bits == -1)
4021 return error_type (pp, objfile);
4022
4023 if (index_type)
4024 goto handle_true_range;
4025
4026 /* If limits are huge, must be large integral type. */
4027 if (n2bits != 0 || n3bits != 0)
4028 {
4029 char got_signed = 0;
4030 char got_unsigned = 0;
4031 /* Number of bits in the type. */
4032 int nbits = 0;
4033
4034 /* If a type size attribute has been specified, the bounds of
4035 the range should fit in this size. If the lower bounds needs
4036 more bits than the upper bound, then the type is signed. */
4037 if (n2bits <= type_size && n3bits <= type_size)
4038 {
4039 if (n2bits == type_size && n2bits > n3bits)
4040 got_signed = 1;
4041 else
4042 got_unsigned = 1;
4043 nbits = type_size;
4044 }
4045 /* Range from 0 to <large number> is an unsigned large integral type. */
4046 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4047 {
4048 got_unsigned = 1;
4049 nbits = n3bits;
4050 }
4051 /* Range from <large number> to <large number>-1 is a large signed
4052 integral type. Take care of the case where <large number> doesn't
4053 fit in a long but <large number>-1 does. */
4054 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4055 || (n2bits != 0 && n3bits == 0
4056 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4057 && n3 == LONG_MAX))
4058 {
4059 got_signed = 1;
4060 nbits = n2bits;
4061 }
4062
4063 if (got_signed || got_unsigned)
4064 {
4065 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4066 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4067 objfile);
4068 }
4069 else
4070 return error_type (pp, objfile);
4071 }
4072
4073 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4074 if (self_subrange && n2 == 0 && n3 == 0)
4075 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4076
4077 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4078 is the width in bytes.
4079
4080 Fortran programs appear to use this for complex types also. To
4081 distinguish between floats and complex, g77 (and others?) seem
4082 to use self-subranges for the complexes, and subranges of int for
4083 the floats.
4084
4085 Also note that for complexes, g77 sets n2 to the size of one of
4086 the member floats, not the whole complex beast. My guess is that
4087 this was to work well with pre-COMPLEX versions of gdb. */
4088
4089 if (n3 == 0 && n2 > 0)
4090 {
4091 struct type *float_type
4092 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4093
4094 if (self_subrange)
4095 {
4096 struct type *complex_type =
4097 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4098 TYPE_TARGET_TYPE (complex_type) = float_type;
4099 return complex_type;
4100 }
4101 else
4102 return float_type;
4103 }
4104
4105 /* If the upper bound is -1, it must really be an unsigned integral. */
4106
4107 else if (n2 == 0 && n3 == -1)
4108 {
4109 int bits = type_size;
4110 if (bits <= 0)
4111 {
4112 /* We don't know its size. It is unsigned int or unsigned
4113 long. GCC 2.3.3 uses this for long long too, but that is
4114 just a GDB 3.5 compatibility hack. */
4115 bits = gdbarch_int_bit (gdbarch);
4116 }
4117
4118 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4119 TYPE_FLAG_UNSIGNED, NULL, objfile);
4120 }
4121
4122 /* Special case: char is defined (Who knows why) as a subrange of
4123 itself with range 0-127. */
4124 else if (self_subrange && n2 == 0 && n3 == 127)
4125 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4126
4127 /* We used to do this only for subrange of self or subrange of int. */
4128 else if (n2 == 0)
4129 {
4130 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4131 "unsigned long", and we already checked for that,
4132 so don't need to test for it here. */
4133
4134 if (n3 < 0)
4135 /* n3 actually gives the size. */
4136 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4137 NULL, objfile);
4138
4139 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4140 unsigned n-byte integer. But do require n to be a power of
4141 two; we don't want 3- and 5-byte integers flying around. */
4142 {
4143 int bytes;
4144 unsigned long bits;
4145
4146 bits = n3;
4147 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4148 bits >>= 8;
4149 if (bits == 0
4150 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4151 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4152 objfile);
4153 }
4154 }
4155 /* I think this is for Convex "long long". Since I don't know whether
4156 Convex sets self_subrange, I also accept that particular size regardless
4157 of self_subrange. */
4158 else if (n3 == 0 && n2 < 0
4159 && (self_subrange
4160 || n2 == -gdbarch_long_long_bit
4161 (gdbarch) / TARGET_CHAR_BIT))
4162 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4163 else if (n2 == -n3 - 1)
4164 {
4165 if (n3 == 0x7f)
4166 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4167 if (n3 == 0x7fff)
4168 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4169 if (n3 == 0x7fffffff)
4170 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4171 }
4172
4173 /* We have a real range type on our hands. Allocate space and
4174 return a real pointer. */
4175 handle_true_range:
4176
4177 if (self_subrange)
4178 index_type = objfile_type (objfile)->builtin_int;
4179 else
4180 index_type = *dbx_lookup_type (rangenums, objfile);
4181 if (index_type == NULL)
4182 {
4183 /* Does this actually ever happen? Is that why we are worrying
4184 about dealing with it rather than just calling error_type? */
4185
4186 complaint (&symfile_complaints,
4187 _("base type %d of range type is not defined"), rangenums[1]);
4188
4189 index_type = objfile_type (objfile)->builtin_int;
4190 }
4191
4192 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4193 return (result_type);
4194 }
4195
4196 /* Read in an argument list. This is a list of types, separated by commas
4197 and terminated with END. Return the list of types read in, or NULL
4198 if there is an error. */
4199
4200 static struct field *
4201 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4202 int *varargsp)
4203 {
4204 /* FIXME! Remove this arbitrary limit! */
4205 struct type *types[1024]; /* allow for fns of 1023 parameters */
4206 int n = 0, i;
4207 struct field *rval;
4208
4209 while (**pp != end)
4210 {
4211 if (**pp != ',')
4212 /* Invalid argument list: no ','. */
4213 return NULL;
4214 (*pp)++;
4215 STABS_CONTINUE (pp, objfile);
4216 types[n++] = read_type (pp, objfile);
4217 }
4218 (*pp)++; /* get past `end' (the ':' character) */
4219
4220 if (n == 0)
4221 {
4222 /* We should read at least the THIS parameter here. Some broken stabs
4223 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4224 have been present ";-16,(0,43)" reference instead. This way the
4225 excessive ";" marker prematurely stops the parameters parsing. */
4226
4227 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4228 *varargsp = 0;
4229 }
4230 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4231 *varargsp = 1;
4232 else
4233 {
4234 n--;
4235 *varargsp = 0;
4236 }
4237
4238 rval = (struct field *) xmalloc (n * sizeof (struct field));
4239 memset (rval, 0, n * sizeof (struct field));
4240 for (i = 0; i < n; i++)
4241 rval[i].type = types[i];
4242 *nargsp = n;
4243 return rval;
4244 }
4245 \f
4246 /* Common block handling. */
4247
4248 /* List of symbols declared since the last BCOMM. This list is a tail
4249 of local_symbols. When ECOMM is seen, the symbols on the list
4250 are noted so their proper addresses can be filled in later,
4251 using the common block base address gotten from the assembler
4252 stabs. */
4253
4254 static struct pending *common_block;
4255 static int common_block_i;
4256
4257 /* Name of the current common block. We get it from the BCOMM instead of the
4258 ECOMM to match IBM documentation (even though IBM puts the name both places
4259 like everyone else). */
4260 static char *common_block_name;
4261
4262 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4263 to remain after this function returns. */
4264
4265 void
4266 common_block_start (char *name, struct objfile *objfile)
4267 {
4268 if (common_block_name != NULL)
4269 {
4270 complaint (&symfile_complaints,
4271 _("Invalid symbol data: common block within common block"));
4272 }
4273 common_block = local_symbols;
4274 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4275 common_block_name = obsavestring (name, strlen (name),
4276 &objfile->objfile_obstack);
4277 }
4278
4279 /* Process a N_ECOMM symbol. */
4280
4281 void
4282 common_block_end (struct objfile *objfile)
4283 {
4284 /* Symbols declared since the BCOMM are to have the common block
4285 start address added in when we know it. common_block and
4286 common_block_i point to the first symbol after the BCOMM in
4287 the local_symbols list; copy the list and hang it off the
4288 symbol for the common block name for later fixup. */
4289 int i;
4290 struct symbol *sym;
4291 struct pending *new = 0;
4292 struct pending *next;
4293 int j;
4294
4295 if (common_block_name == NULL)
4296 {
4297 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4298 return;
4299 }
4300
4301 sym = (struct symbol *)
4302 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4303 memset (sym, 0, sizeof (struct symbol));
4304 /* Note: common_block_name already saved on objfile_obstack */
4305 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4306 SYMBOL_CLASS (sym) = LOC_BLOCK;
4307
4308 /* Now we copy all the symbols which have been defined since the BCOMM. */
4309
4310 /* Copy all the struct pendings before common_block. */
4311 for (next = local_symbols;
4312 next != NULL && next != common_block;
4313 next = next->next)
4314 {
4315 for (j = 0; j < next->nsyms; j++)
4316 add_symbol_to_list (next->symbol[j], &new);
4317 }
4318
4319 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4320 NULL, it means copy all the local symbols (which we already did
4321 above). */
4322
4323 if (common_block != NULL)
4324 for (j = common_block_i; j < common_block->nsyms; j++)
4325 add_symbol_to_list (common_block->symbol[j], &new);
4326
4327 SYMBOL_TYPE (sym) = (struct type *) new;
4328
4329 /* Should we be putting local_symbols back to what it was?
4330 Does it matter? */
4331
4332 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4333 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4334 global_sym_chain[i] = sym;
4335 common_block_name = NULL;
4336 }
4337
4338 /* Add a common block's start address to the offset of each symbol
4339 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4340 the common block name). */
4341
4342 static void
4343 fix_common_block (struct symbol *sym, int valu)
4344 {
4345 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4346 for (; next; next = next->next)
4347 {
4348 int j;
4349 for (j = next->nsyms - 1; j >= 0; j--)
4350 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4351 }
4352 }
4353 \f
4354
4355
4356 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4357 See add_undefined_type for more details. */
4358
4359 static void
4360 add_undefined_type_noname (struct type *type, int typenums[2])
4361 {
4362 struct nat nat;
4363
4364 nat.typenums[0] = typenums [0];
4365 nat.typenums[1] = typenums [1];
4366 nat.type = type;
4367
4368 if (noname_undefs_length == noname_undefs_allocated)
4369 {
4370 noname_undefs_allocated *= 2;
4371 noname_undefs = (struct nat *)
4372 xrealloc ((char *) noname_undefs,
4373 noname_undefs_allocated * sizeof (struct nat));
4374 }
4375 noname_undefs[noname_undefs_length++] = nat;
4376 }
4377
4378 /* Add TYPE to the UNDEF_TYPES vector.
4379 See add_undefined_type for more details. */
4380
4381 static void
4382 add_undefined_type_1 (struct type *type)
4383 {
4384 if (undef_types_length == undef_types_allocated)
4385 {
4386 undef_types_allocated *= 2;
4387 undef_types = (struct type **)
4388 xrealloc ((char *) undef_types,
4389 undef_types_allocated * sizeof (struct type *));
4390 }
4391 undef_types[undef_types_length++] = type;
4392 }
4393
4394 /* What about types defined as forward references inside of a small lexical
4395 scope? */
4396 /* Add a type to the list of undefined types to be checked through
4397 once this file has been read in.
4398
4399 In practice, we actually maintain two such lists: The first list
4400 (UNDEF_TYPES) is used for types whose name has been provided, and
4401 concerns forward references (eg 'xs' or 'xu' forward references);
4402 the second list (NONAME_UNDEFS) is used for types whose name is
4403 unknown at creation time, because they were referenced through
4404 their type number before the actual type was declared.
4405 This function actually adds the given type to the proper list. */
4406
4407 static void
4408 add_undefined_type (struct type *type, int typenums[2])
4409 {
4410 if (TYPE_TAG_NAME (type) == NULL)
4411 add_undefined_type_noname (type, typenums);
4412 else
4413 add_undefined_type_1 (type);
4414 }
4415
4416 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4417
4418 static void
4419 cleanup_undefined_types_noname (struct objfile *objfile)
4420 {
4421 int i;
4422
4423 for (i = 0; i < noname_undefs_length; i++)
4424 {
4425 struct nat nat = noname_undefs[i];
4426 struct type **type;
4427
4428 type = dbx_lookup_type (nat.typenums, objfile);
4429 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4430 {
4431 /* The instance flags of the undefined type are still unset,
4432 and needs to be copied over from the reference type.
4433 Since replace_type expects them to be identical, we need
4434 to set these flags manually before hand. */
4435 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4436 replace_type (nat.type, *type);
4437 }
4438 }
4439
4440 noname_undefs_length = 0;
4441 }
4442
4443 /* Go through each undefined type, see if it's still undefined, and fix it
4444 up if possible. We have two kinds of undefined types:
4445
4446 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4447 Fix: update array length using the element bounds
4448 and the target type's length.
4449 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4450 yet defined at the time a pointer to it was made.
4451 Fix: Do a full lookup on the struct/union tag. */
4452
4453 static void
4454 cleanup_undefined_types_1 (void)
4455 {
4456 struct type **type;
4457
4458 /* Iterate over every undefined type, and look for a symbol whose type
4459 matches our undefined type. The symbol matches if:
4460 1. It is a typedef in the STRUCT domain;
4461 2. It has the same name, and same type code;
4462 3. The instance flags are identical.
4463
4464 It is important to check the instance flags, because we have seen
4465 examples where the debug info contained definitions such as:
4466
4467 "foo_t:t30=B31=xefoo_t:"
4468
4469 In this case, we have created an undefined type named "foo_t" whose
4470 instance flags is null (when processing "xefoo_t"), and then created
4471 another type with the same name, but with different instance flags
4472 ('B' means volatile). I think that the definition above is wrong,
4473 since the same type cannot be volatile and non-volatile at the same
4474 time, but we need to be able to cope with it when it happens. The
4475 approach taken here is to treat these two types as different. */
4476
4477 for (type = undef_types; type < undef_types + undef_types_length; type++)
4478 {
4479 switch (TYPE_CODE (*type))
4480 {
4481
4482 case TYPE_CODE_STRUCT:
4483 case TYPE_CODE_UNION:
4484 case TYPE_CODE_ENUM:
4485 {
4486 /* Check if it has been defined since. Need to do this here
4487 as well as in check_typedef to deal with the (legitimate in
4488 C though not C++) case of several types with the same name
4489 in different source files. */
4490 if (TYPE_STUB (*type))
4491 {
4492 struct pending *ppt;
4493 int i;
4494 /* Name of the type, without "struct" or "union" */
4495 char *typename = TYPE_TAG_NAME (*type);
4496
4497 if (typename == NULL)
4498 {
4499 complaint (&symfile_complaints, _("need a type name"));
4500 break;
4501 }
4502 for (ppt = file_symbols; ppt; ppt = ppt->next)
4503 {
4504 for (i = 0; i < ppt->nsyms; i++)
4505 {
4506 struct symbol *sym = ppt->symbol[i];
4507
4508 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4509 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4510 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4511 TYPE_CODE (*type))
4512 && (TYPE_INSTANCE_FLAGS (*type) ==
4513 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4514 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4515 typename) == 0)
4516 replace_type (*type, SYMBOL_TYPE (sym));
4517 }
4518 }
4519 }
4520 }
4521 break;
4522
4523 default:
4524 {
4525 complaint (&symfile_complaints,
4526 _("forward-referenced types left unresolved, "
4527 "type code %d."),
4528 TYPE_CODE (*type));
4529 }
4530 break;
4531 }
4532 }
4533
4534 undef_types_length = 0;
4535 }
4536
4537 /* Try to fix all the undefined types we ecountered while processing
4538 this unit. */
4539
4540 void
4541 cleanup_undefined_types (struct objfile *objfile)
4542 {
4543 cleanup_undefined_types_1 ();
4544 cleanup_undefined_types_noname (objfile);
4545 }
4546
4547 /* Scan through all of the global symbols defined in the object file,
4548 assigning values to the debugging symbols that need to be assigned
4549 to. Get these symbols from the minimal symbol table. */
4550
4551 void
4552 scan_file_globals (struct objfile *objfile)
4553 {
4554 int hash;
4555 struct minimal_symbol *msymbol;
4556 struct symbol *sym, *prev;
4557 struct objfile *resolve_objfile;
4558
4559 /* SVR4 based linkers copy referenced global symbols from shared
4560 libraries to the main executable.
4561 If we are scanning the symbols for a shared library, try to resolve
4562 them from the minimal symbols of the main executable first. */
4563
4564 if (symfile_objfile && objfile != symfile_objfile)
4565 resolve_objfile = symfile_objfile;
4566 else
4567 resolve_objfile = objfile;
4568
4569 while (1)
4570 {
4571 /* Avoid expensive loop through all minimal symbols if there are
4572 no unresolved symbols. */
4573 for (hash = 0; hash < HASHSIZE; hash++)
4574 {
4575 if (global_sym_chain[hash])
4576 break;
4577 }
4578 if (hash >= HASHSIZE)
4579 return;
4580
4581 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4582 {
4583 QUIT;
4584
4585 /* Skip static symbols. */
4586 switch (MSYMBOL_TYPE (msymbol))
4587 {
4588 case mst_file_text:
4589 case mst_file_data:
4590 case mst_file_bss:
4591 continue;
4592 default:
4593 break;
4594 }
4595
4596 prev = NULL;
4597
4598 /* Get the hash index and check all the symbols
4599 under that hash index. */
4600
4601 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4602
4603 for (sym = global_sym_chain[hash]; sym;)
4604 {
4605 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4606 SYMBOL_LINKAGE_NAME (sym)) == 0)
4607 {
4608 /* Splice this symbol out of the hash chain and
4609 assign the value we have to it. */
4610 if (prev)
4611 {
4612 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4613 }
4614 else
4615 {
4616 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4617 }
4618
4619 /* Check to see whether we need to fix up a common block. */
4620 /* Note: this code might be executed several times for
4621 the same symbol if there are multiple references. */
4622 if (sym)
4623 {
4624 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4625 {
4626 fix_common_block (sym,
4627 SYMBOL_VALUE_ADDRESS (msymbol));
4628 }
4629 else
4630 {
4631 SYMBOL_VALUE_ADDRESS (sym)
4632 = SYMBOL_VALUE_ADDRESS (msymbol);
4633 }
4634 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4635 }
4636
4637 if (prev)
4638 {
4639 sym = SYMBOL_VALUE_CHAIN (prev);
4640 }
4641 else
4642 {
4643 sym = global_sym_chain[hash];
4644 }
4645 }
4646 else
4647 {
4648 prev = sym;
4649 sym = SYMBOL_VALUE_CHAIN (sym);
4650 }
4651 }
4652 }
4653 if (resolve_objfile == objfile)
4654 break;
4655 resolve_objfile = objfile;
4656 }
4657
4658 /* Change the storage class of any remaining unresolved globals to
4659 LOC_UNRESOLVED and remove them from the chain. */
4660 for (hash = 0; hash < HASHSIZE; hash++)
4661 {
4662 sym = global_sym_chain[hash];
4663 while (sym)
4664 {
4665 prev = sym;
4666 sym = SYMBOL_VALUE_CHAIN (sym);
4667
4668 /* Change the symbol address from the misleading chain value
4669 to address zero. */
4670 SYMBOL_VALUE_ADDRESS (prev) = 0;
4671
4672 /* Complain about unresolved common block symbols. */
4673 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4674 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4675 else
4676 complaint (&symfile_complaints,
4677 _("%s: common block `%s' from global_sym_chain unresolved"),
4678 objfile->name, SYMBOL_PRINT_NAME (prev));
4679 }
4680 }
4681 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4682 }
4683
4684 /* Initialize anything that needs initializing when starting to read
4685 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4686 to a psymtab. */
4687
4688 void
4689 stabsread_init (void)
4690 {
4691 }
4692
4693 /* Initialize anything that needs initializing when a completely new
4694 symbol file is specified (not just adding some symbols from another
4695 file, e.g. a shared library). */
4696
4697 void
4698 stabsread_new_init (void)
4699 {
4700 /* Empty the hash table of global syms looking for values. */
4701 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4702 }
4703
4704 /* Initialize anything that needs initializing at the same time as
4705 start_symtab() is called. */
4706
4707 void
4708 start_stabs (void)
4709 {
4710 global_stabs = NULL; /* AIX COFF */
4711 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4712 n_this_object_header_files = 1;
4713 type_vector_length = 0;
4714 type_vector = (struct type **) 0;
4715
4716 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4717 common_block_name = NULL;
4718 }
4719
4720 /* Call after end_symtab() */
4721
4722 void
4723 end_stabs (void)
4724 {
4725 if (type_vector)
4726 {
4727 xfree (type_vector);
4728 }
4729 type_vector = 0;
4730 type_vector_length = 0;
4731 previous_stab_code = 0;
4732 }
4733
4734 void
4735 finish_global_stabs (struct objfile *objfile)
4736 {
4737 if (global_stabs)
4738 {
4739 patch_block_stabs (global_symbols, global_stabs, objfile);
4740 xfree (global_stabs);
4741 global_stabs = NULL;
4742 }
4743 }
4744
4745 /* Find the end of the name, delimited by a ':', but don't match
4746 ObjC symbols which look like -[Foo bar::]:bla. */
4747 static char *
4748 find_name_end (char *name)
4749 {
4750 char *s = name;
4751 if (s[0] == '-' || *s == '+')
4752 {
4753 /* Must be an ObjC method symbol. */
4754 if (s[1] != '[')
4755 {
4756 error (_("invalid symbol name \"%s\""), name);
4757 }
4758 s = strchr (s, ']');
4759 if (s == NULL)
4760 {
4761 error (_("invalid symbol name \"%s\""), name);
4762 }
4763 return strchr (s, ':');
4764 }
4765 else
4766 {
4767 return strchr (s, ':');
4768 }
4769 }
4770
4771 /* Initializer for this module */
4772
4773 void
4774 _initialize_stabsread (void)
4775 {
4776 rs6000_builtin_type_data = register_objfile_data ();
4777
4778 undef_types_allocated = 20;
4779 undef_types_length = 0;
4780 undef_types = (struct type **)
4781 xmalloc (undef_types_allocated * sizeof (struct type *));
4782
4783 noname_undefs_allocated = 20;
4784 noname_undefs_length = 0;
4785 noname_undefs = (struct nat *)
4786 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4787 }
This page took 0.152809 seconds and 4 git commands to generate.