* NEWS: Note addition of macro support.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 extern void _initialize_stabsread (void);
57
58 /* The routines that read and process a complete stabs for a C struct or
59 C++ class pass lists of data member fields and lists of member function
60 fields in an instance of a field_info structure, as defined below.
61 This is part of some reorganization of low level C++ support and is
62 expected to eventually go away... (FIXME) */
63
64 struct field_info
65 {
66 struct nextfield
67 {
68 struct nextfield *next;
69
70 /* This is the raw visibility from the stab. It is not checked
71 for being one of the visibilities we recognize, so code which
72 examines this field better be able to deal. */
73 int visibility;
74
75 struct field field;
76 }
77 *list;
78 struct next_fnfieldlist
79 {
80 struct next_fnfieldlist *next;
81 struct fn_fieldlist fn_fieldlist;
82 }
83 *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static char *get_substring (char **, int);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_range_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int
136 attach_fields_to_type (struct field_info *, struct type *, struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct type **read_args (char **, int, struct objfile *);
146
147 static int
148 read_cpp_abbrev (struct field_info *, char **, struct type *,
149 struct objfile *);
150
151 /* new functions added for cfront support */
152
153 static int
154 copy_cfront_struct_fields (struct field_info *, struct type *,
155 struct objfile *);
156
157 static char *get_cfront_method_physname (char *);
158
159 static int
160 read_cfront_baseclasses (struct field_info *, char **,
161 struct type *, struct objfile *);
162
163 static int
164 read_cfront_static_fields (struct field_info *, char **,
165 struct type *, struct objfile *);
166 static int
167 read_cfront_member_functions (struct field_info *, char **,
168 struct type *, struct objfile *);
169
170 /* end new functions added for cfront support */
171
172 static void
173 add_live_range (struct objfile *, struct symbol *, CORE_ADDR, CORE_ADDR);
174
175 static int resolve_live_range (struct objfile *, struct symbol *, char *);
176
177 static int process_reference (char **string);
178
179 static CORE_ADDR ref_search_value (int refnum);
180
181 static int
182 resolve_symbol_reference (struct objfile *, struct symbol *, char *);
183
184 void stabsread_clear_cache (void);
185
186 static const char vptr_name[] =
187 {'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
188 static const char vb_name[] =
189 {'_', 'v', 'b', CPLUS_MARKER, '\0'};
190
191 /* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196 #if !defined (BELIEVE_PCC_PROMOTION)
197 #define BELIEVE_PCC_PROMOTION 0
198 #endif
199 #if !defined (BELIEVE_PCC_PROMOTION_TYPE)
200 #define BELIEVE_PCC_PROMOTION_TYPE 0
201 #endif
202
203 static struct complaint invalid_cpp_abbrev_complaint =
204 {"invalid C++ abbreviation `%s'", 0, 0};
205
206 static struct complaint invalid_cpp_type_complaint =
207 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
208
209 static struct complaint member_fn_complaint =
210 {"member function type missing, got '%c'", 0, 0};
211
212 static struct complaint const_vol_complaint =
213 {"const/volatile indicator missing, got '%c'", 0, 0};
214
215 static struct complaint error_type_complaint =
216 {"couldn't parse type; debugger out of date?", 0, 0};
217
218 static struct complaint invalid_member_complaint =
219 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
220
221 static struct complaint range_type_base_complaint =
222 {"base type %d of range type is not defined", 0, 0};
223
224 static struct complaint reg_value_complaint =
225 {"register number %d too large (max %d) in symbol %s", 0, 0};
226
227 static struct complaint vtbl_notfound_complaint =
228 {"virtual function table pointer not found when defining class `%s'", 0, 0};
229
230 static struct complaint unrecognized_cplus_name_complaint =
231 {"Unknown C++ symbol name `%s'", 0, 0};
232
233 static struct complaint rs6000_builtin_complaint =
234 {"Unknown builtin type %d", 0, 0};
235
236 static struct complaint unresolved_sym_chain_complaint =
237 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
238
239 static struct complaint stabs_general_complaint =
240 {"%s", 0, 0};
241
242 static struct complaint lrs_general_complaint =
243 {"%s", 0, 0};
244
245 /* Make a list of forward references which haven't been defined. */
246
247 static struct type **undef_types;
248 static int undef_types_allocated;
249 static int undef_types_length;
250 static struct symbol *current_symbol = NULL;
251
252 /* Check for and handle cretinous stabs symbol name continuation! */
253 #define STABS_CONTINUE(pp,objfile) \
254 do { \
255 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
256 *(pp) = next_symbol_text (objfile); \
257 } while (0)
258 \f
259 /* FIXME: These probably should be our own types (like rs6000_builtin_type
260 has its own types) rather than builtin_type_*. */
261 static struct type **os9k_type_vector[] =
262 {
263 0,
264 &builtin_type_int,
265 &builtin_type_char,
266 &builtin_type_long,
267 &builtin_type_short,
268 &builtin_type_unsigned_char,
269 &builtin_type_unsigned_short,
270 &builtin_type_unsigned_long,
271 &builtin_type_unsigned_int,
272 &builtin_type_float,
273 &builtin_type_double,
274 &builtin_type_void,
275 &builtin_type_long_double
276 };
277
278 static void os9k_init_type_vector (struct type **);
279
280 static void
281 os9k_init_type_vector (struct type **tv)
282 {
283 unsigned int i;
284 for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
285 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
286 }
287
288 /* Look up a dbx type-number pair. Return the address of the slot
289 where the type for that number-pair is stored.
290 The number-pair is in TYPENUMS.
291
292 This can be used for finding the type associated with that pair
293 or for associating a new type with the pair. */
294
295 struct type **
296 dbx_lookup_type (int typenums[2])
297 {
298 register int filenum = typenums[0];
299 register int index = typenums[1];
300 unsigned old_len;
301 register int real_filenum;
302 register struct header_file *f;
303 int f_orig_length;
304
305 if (filenum == -1) /* -1,-1 is for temporary types. */
306 return 0;
307
308 if (filenum < 0 || filenum >= n_this_object_header_files)
309 {
310 static struct complaint msg =
311 {"\
312 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
313 0, 0};
314 complain (&msg, filenum, index, symnum);
315 goto error_return;
316 }
317
318 if (filenum == 0)
319 {
320 if (index < 0)
321 {
322 /* Caller wants address of address of type. We think
323 that negative (rs6k builtin) types will never appear as
324 "lvalues", (nor should they), so we stuff the real type
325 pointer into a temp, and return its address. If referenced,
326 this will do the right thing. */
327 static struct type *temp_type;
328
329 temp_type = rs6000_builtin_type (index);
330 return &temp_type;
331 }
332
333 /* Type is defined outside of header files.
334 Find it in this object file's type vector. */
335 if (index >= type_vector_length)
336 {
337 old_len = type_vector_length;
338 if (old_len == 0)
339 {
340 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
341 type_vector = (struct type **)
342 xmalloc (type_vector_length * sizeof (struct type *));
343 }
344 while (index >= type_vector_length)
345 {
346 type_vector_length *= 2;
347 }
348 type_vector = (struct type **)
349 xrealloc ((char *) type_vector,
350 (type_vector_length * sizeof (struct type *)));
351 memset (&type_vector[old_len], 0,
352 (type_vector_length - old_len) * sizeof (struct type *));
353
354 if (os9k_stabs)
355 /* Deal with OS9000 fundamental types. */
356 os9k_init_type_vector (type_vector);
357 }
358 return (&type_vector[index]);
359 }
360 else
361 {
362 real_filenum = this_object_header_files[filenum];
363
364 if (real_filenum >= N_HEADER_FILES (current_objfile))
365 {
366 struct type *temp_type;
367 struct type **temp_type_p;
368
369 warning ("GDB internal error: bad real_filenum");
370
371 error_return:
372 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
373 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
374 *temp_type_p = temp_type;
375 return temp_type_p;
376 }
377
378 f = HEADER_FILES (current_objfile) + real_filenum;
379
380 f_orig_length = f->length;
381 if (index >= f_orig_length)
382 {
383 while (index >= f->length)
384 {
385 f->length *= 2;
386 }
387 f->vector = (struct type **)
388 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
389 memset (&f->vector[f_orig_length], 0,
390 (f->length - f_orig_length) * sizeof (struct type *));
391 }
392 return (&f->vector[index]);
393 }
394 }
395
396 /* Make sure there is a type allocated for type numbers TYPENUMS
397 and return the type object.
398 This can create an empty (zeroed) type object.
399 TYPENUMS may be (-1, -1) to return a new type object that is not
400 put into the type vector, and so may not be referred to by number. */
401
402 static struct type *
403 dbx_alloc_type (int typenums[2], struct objfile *objfile)
404 {
405 register struct type **type_addr;
406
407 if (typenums[0] == -1)
408 {
409 return (alloc_type (objfile));
410 }
411
412 type_addr = dbx_lookup_type (typenums);
413
414 /* If we are referring to a type not known at all yet,
415 allocate an empty type for it.
416 We will fill it in later if we find out how. */
417 if (*type_addr == 0)
418 {
419 *type_addr = alloc_type (objfile);
420 }
421
422 return (*type_addr);
423 }
424
425 /* for all the stabs in a given stab vector, build appropriate types
426 and fix their symbols in given symbol vector. */
427
428 static void
429 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
430 struct objfile *objfile)
431 {
432 int ii;
433 char *name;
434 char *pp;
435 struct symbol *sym;
436
437 if (stabs)
438 {
439
440 /* for all the stab entries, find their corresponding symbols and
441 patch their types! */
442
443 for (ii = 0; ii < stabs->count; ++ii)
444 {
445 name = stabs->stab[ii];
446 pp = (char *) strchr (name, ':');
447 while (pp[1] == ':')
448 {
449 pp += 2;
450 pp = (char *) strchr (pp, ':');
451 }
452 sym = find_symbol_in_list (symbols, name, pp - name);
453 if (!sym)
454 {
455 /* FIXME-maybe: it would be nice if we noticed whether
456 the variable was defined *anywhere*, not just whether
457 it is defined in this compilation unit. But neither
458 xlc or GCC seem to need such a definition, and until
459 we do psymtabs (so that the minimal symbols from all
460 compilation units are available now), I'm not sure
461 how to get the information. */
462
463 /* On xcoff, if a global is defined and never referenced,
464 ld will remove it from the executable. There is then
465 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
466 sym = (struct symbol *)
467 obstack_alloc (&objfile->symbol_obstack,
468 sizeof (struct symbol));
469
470 memset (sym, 0, sizeof (struct symbol));
471 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
472 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
473 SYMBOL_NAME (sym) =
474 obsavestring (name, pp - name, &objfile->symbol_obstack);
475 pp += 2;
476 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
477 {
478 /* I don't think the linker does this with functions,
479 so as far as I know this is never executed.
480 But it doesn't hurt to check. */
481 SYMBOL_TYPE (sym) =
482 lookup_function_type (read_type (&pp, objfile));
483 }
484 else
485 {
486 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
487 }
488 add_symbol_to_list (sym, &global_symbols);
489 }
490 else
491 {
492 pp += 2;
493 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
494 {
495 SYMBOL_TYPE (sym) =
496 lookup_function_type (read_type (&pp, objfile));
497 }
498 else
499 {
500 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
501 }
502 }
503 }
504 }
505 }
506 \f
507
508 /* Read a number by which a type is referred to in dbx data,
509 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
510 Just a single number N is equivalent to (0,N).
511 Return the two numbers by storing them in the vector TYPENUMS.
512 TYPENUMS will then be used as an argument to dbx_lookup_type.
513
514 Returns 0 for success, -1 for error. */
515
516 static int
517 read_type_number (register char **pp, register int *typenums)
518 {
519 int nbits;
520 if (**pp == '(')
521 {
522 (*pp)++;
523 typenums[0] = read_huge_number (pp, ',', &nbits);
524 if (nbits != 0)
525 return -1;
526 typenums[1] = read_huge_number (pp, ')', &nbits);
527 if (nbits != 0)
528 return -1;
529 }
530 else
531 {
532 typenums[0] = 0;
533 typenums[1] = read_huge_number (pp, 0, &nbits);
534 if (nbits != 0)
535 return -1;
536 }
537 return 0;
538 }
539 \f
540
541 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
542 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
543 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
544 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
545
546 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
547 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
548
549 /* This code added to support parsing of ARM/Cfront stabs strings */
550
551 /* Get substring from string up to char c, advance string pointer past
552 suibstring. */
553
554 static char *
555 get_substring (char **p, int c)
556 {
557 char *str;
558 str = *p;
559 *p = strchr (*p, c);
560 if (*p)
561 {
562 **p = 0;
563 (*p)++;
564 }
565 else
566 str = 0;
567 return str;
568 }
569
570 /* Physname gets strcat'd onto sname in order to recreate the mangled
571 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
572 the physname look like that of g++ - take out the initial mangling
573 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
574
575 static char *
576 get_cfront_method_physname (char *fname)
577 {
578 int len = 0;
579 /* FIXME would like to make this generic for g++ too, but
580 that is already handled in read_member_funcctions */
581 char *p = fname;
582
583 /* search ahead to find the start of the mangled suffix */
584 if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
585 p += 2;
586 while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
587 p = strchr (p, '_');
588 if (!(p && *p == '_' && *(p + 1) == '_'))
589 error ("Invalid mangled function name %s", fname);
590 p += 2; /* advance past '__' */
591
592 /* struct name length and name of type should come next; advance past it */
593 while (isdigit (*p))
594 {
595 len = len * 10 + (*p - '0');
596 p++;
597 }
598 p += len;
599
600 return p;
601 }
602
603 /* Read base classes within cfront class definition.
604 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
605 ^^^^^^^^^^^^^^^^^^
606
607 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
608 ^
609 */
610
611 static int
612 read_cfront_baseclasses (struct field_info *fip, char **pp, struct type *type,
613 struct objfile *objfile)
614 {
615 static struct complaint msg_unknown =
616 {"\
617 Unsupported token in stabs string %s.\n",
618 0, 0};
619 static struct complaint msg_notfound =
620 {"\
621 Unable to find base type for %s.\n",
622 0, 0};
623 int bnum = 0;
624 char *p;
625 int i;
626 struct nextfield *new;
627
628 if (**pp == ';') /* no base classes; return */
629 {
630 ++(*pp);
631 return 1;
632 }
633
634 /* first count base classes so we can allocate space before parsing */
635 for (p = *pp; p && *p && *p != ';'; p++)
636 {
637 if (*p == ' ')
638 bnum++;
639 }
640 bnum++; /* add one more for last one */
641
642 /* now parse the base classes until we get to the start of the methods
643 (code extracted and munged from read_baseclasses) */
644 ALLOCATE_CPLUS_STRUCT_TYPE (type);
645 TYPE_N_BASECLASSES (type) = bnum;
646
647 /* allocate space */
648 {
649 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
650 char *pointer;
651
652 pointer = (char *) TYPE_ALLOC (type, num_bytes);
653 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
654 }
655 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
656
657 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
658 {
659 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
660 make_cleanup (xfree, new);
661 memset (new, 0, sizeof (struct nextfield));
662 new->next = fip->list;
663 fip->list = new;
664 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
665
666 STABS_CONTINUE (pp, objfile);
667
668 /* virtual? eg: v2@Bvir */
669 if (**pp == 'v')
670 {
671 SET_TYPE_FIELD_VIRTUAL (type, i);
672 ++(*pp);
673 }
674
675 /* access? eg: 2@Bvir */
676 /* Note: protected inheritance not supported in cfront */
677 switch (*(*pp)++)
678 {
679 case CFRONT_VISIBILITY_PRIVATE:
680 new->visibility = VISIBILITY_PRIVATE;
681 break;
682 case CFRONT_VISIBILITY_PUBLIC:
683 new->visibility = VISIBILITY_PUBLIC;
684 break;
685 default:
686 /* Bad visibility format. Complain and treat it as
687 public. */
688 {
689 static struct complaint msg =
690 {
691 "Unknown visibility `%c' for baseclass", 0, 0};
692 complain (&msg, new->visibility);
693 new->visibility = VISIBILITY_PUBLIC;
694 }
695 }
696
697 /* "@" comes next - eg: @Bvir */
698 if (**pp != '@')
699 {
700 complain (&msg_unknown, *pp);
701 return 1;
702 }
703 ++(*pp);
704
705
706 /* Set the bit offset of the portion of the object corresponding
707 to this baseclass. Always zero in the absence of
708 multiple inheritance. */
709 /* Unable to read bit position from stabs;
710 Assuming no multiple inheritance for now FIXME! */
711 /* We may have read this in the structure definition;
712 now we should fixup the members to be the actual base classes */
713 FIELD_BITPOS (new->field) = 0;
714
715 /* Get the base class name and type */
716 {
717 char *bname; /* base class name */
718 struct symbol *bsym; /* base class */
719 char *p1, *p2;
720 p1 = strchr (*pp, ' ');
721 p2 = strchr (*pp, ';');
722 if (p1 < p2)
723 bname = get_substring (pp, ' ');
724 else
725 bname = get_substring (pp, ';');
726 if (!bname || !*bname)
727 {
728 complain (&msg_unknown, *pp);
729 return 1;
730 }
731 /* FIXME! attach base info to type */
732 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name */
733 if (bsym)
734 {
735 new->field.type = SYMBOL_TYPE (bsym);
736 new->field.name = type_name_no_tag (new->field.type);
737 }
738 else
739 {
740 complain (&msg_notfound, *pp);
741 return 1;
742 }
743 }
744
745 /* If more base classes to parse, loop again.
746 We ate the last ' ' or ';' in get_substring,
747 so on exit we will have skipped the trailing ';' */
748 /* if invalid, return 0; add code to detect - FIXME! */
749 }
750 return 1;
751 }
752
753 /* read cfront member functions.
754 pp points to string starting with list of functions
755 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
756 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
757 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
758 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
759 */
760
761 static int
762 read_cfront_member_functions (struct field_info *fip, char **pp,
763 struct type *type, struct objfile *objfile)
764 {
765 /* This code extracted from read_member_functions
766 so as to do the similar thing for our funcs */
767
768 int nfn_fields = 0;
769 int length = 0;
770 /* Total number of member functions defined in this class. If the class
771 defines two `f' functions, and one `g' function, then this will have
772 the value 3. */
773 int total_length = 0;
774 int i;
775 struct next_fnfield
776 {
777 struct next_fnfield *next;
778 struct fn_field fn_field;
779 }
780 *sublist;
781 struct type *look_ahead_type;
782 struct next_fnfieldlist *new_fnlist;
783 struct next_fnfield *new_sublist;
784 char *main_fn_name;
785 char *fname;
786 struct symbol *ref_func = 0;
787
788 /* Process each list until we find the end of the member functions.
789 eg: p = "__ct__1AFv foo__1AFv ;;;" */
790
791 STABS_CONTINUE (pp, objfile); /* handle \\ */
792
793 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
794 {
795 int is_static = 0;
796 int sublist_count = 0;
797 char *pname;
798 if (fname[0] == '*') /* static member */
799 {
800 is_static = 1;
801 sublist_count++;
802 fname++;
803 }
804 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
805 if (!ref_func)
806 {
807 static struct complaint msg =
808 {"\
809 Unable to find function symbol for %s\n",
810 0, 0};
811 complain (&msg, fname);
812 continue;
813 }
814 sublist = NULL;
815 look_ahead_type = NULL;
816 length = 0;
817
818 new_fnlist = (struct next_fnfieldlist *)
819 xmalloc (sizeof (struct next_fnfieldlist));
820 make_cleanup (xfree, new_fnlist);
821 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
822
823 /* The following is code to work around cfront generated stabs.
824 The stabs contains full mangled name for each field.
825 We try to demangle the name and extract the field name out of it. */
826 {
827 char *dem, *dem_p, *dem_args;
828 int dem_len;
829 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
830 if (dem != NULL)
831 {
832 dem_p = strrchr (dem, ':');
833 if (dem_p != 0 && *(dem_p - 1) == ':')
834 dem_p++;
835 /* get rid of args */
836 dem_args = strchr (dem_p, '(');
837 if (dem_args == NULL)
838 dem_len = strlen (dem_p);
839 else
840 dem_len = dem_args - dem_p;
841 main_fn_name =
842 obsavestring (dem_p, dem_len, &objfile->type_obstack);
843 }
844 else
845 {
846 main_fn_name =
847 obsavestring (fname, strlen (fname), &objfile->type_obstack);
848 }
849 } /* end of code for cfront work around */
850
851 new_fnlist->fn_fieldlist.name = main_fn_name;
852
853 /*-------------------------------------------------*/
854 /* Set up the sublists
855 Sublists are stuff like args, static, visibility, etc.
856 so in ARM, we have to set that info some other way.
857 Multiple sublists happen if overloading
858 eg: foo::26=##1;:;2A.;
859 In g++, we'd loop here thru all the sublists... */
860
861 new_sublist =
862 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
863 make_cleanup (xfree, new_sublist);
864 memset (new_sublist, 0, sizeof (struct next_fnfield));
865
866 /* eat 1; from :;2A.; */
867 new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
868 /* Make this type look like a method stub for gdb */
869 TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
870 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
871
872 /* If this is just a stub, then we don't have the real name here. */
873 if (TYPE_STUB (new_sublist->fn_field.type))
874 {
875 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
876 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
877 new_sublist->fn_field.is_stub = 1;
878 }
879
880 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
881 physname gets strcat'd in order to recreate the onto mangled name */
882 pname = get_cfront_method_physname (fname);
883 new_sublist->fn_field.physname = savestring (pname, strlen (pname));
884
885
886 /* Set this member function's visibility fields.
887 Unable to distinguish access from stabs definition!
888 Assuming public for now. FIXME!
889 (for private, set new_sublist->fn_field.is_private = 1,
890 for public, set new_sublist->fn_field.is_protected = 1) */
891
892 /* Unable to distinguish const/volatile from stabs definition!
893 Assuming normal for now. FIXME! */
894
895 new_sublist->fn_field.is_const = 0;
896 new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
897
898 /* Set virtual/static function info
899 How to get vtable offsets ?
900 Assuming normal for now FIXME!!
901 For vtables, figure out from whence this virtual function came.
902 It may belong to virtual function table of
903 one of its baseclasses.
904 set:
905 new_sublist -> fn_field.voffset = vtable offset,
906 new_sublist -> fn_field.fcontext = look_ahead_type;
907 where look_ahead_type is type of baseclass */
908 if (is_static)
909 new_sublist->fn_field.voffset = VOFFSET_STATIC;
910 else /* normal member function. */
911 new_sublist->fn_field.voffset = 0;
912 new_sublist->fn_field.fcontext = 0;
913
914
915 /* Prepare new sublist */
916 new_sublist->next = sublist;
917 sublist = new_sublist;
918 length++;
919
920 /* In g++, we loop thu sublists - now we set from functions. */
921 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
922 obstack_alloc (&objfile->type_obstack,
923 sizeof (struct fn_field) * length);
924 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
925 sizeof (struct fn_field) * length);
926 for (i = length; (i--, sublist); sublist = sublist->next)
927 {
928 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
929 }
930
931 new_fnlist->fn_fieldlist.length = length;
932 new_fnlist->next = fip->fnlist;
933 fip->fnlist = new_fnlist;
934 nfn_fields++;
935 total_length += length;
936 STABS_CONTINUE (pp, objfile); /* handle \\ */
937 } /* end of loop */
938
939 if (nfn_fields)
940 {
941 /* type should already have space */
942 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
943 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
944 memset (TYPE_FN_FIELDLISTS (type), 0,
945 sizeof (struct fn_fieldlist) * nfn_fields);
946 TYPE_NFN_FIELDS (type) = nfn_fields;
947 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
948 }
949
950 /* end of scope for reading member func */
951
952 /* eg: ";;" */
953
954 /* Skip trailing ';' and bump count of number of fields seen */
955 if (**pp == ';')
956 (*pp)++;
957 else
958 return 0;
959 return 1;
960 }
961
962 /* This routine fixes up partial cfront types that were created
963 while parsing the stabs. The main need for this function is
964 to add information such as methods to classes.
965 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
966 int
967 resolve_cfront_continuation (struct objfile *objfile, struct symbol *sym,
968 char *p)
969 {
970 struct symbol *ref_sym = 0;
971 char *sname;
972 /* snarfed from read_struct_type */
973 struct field_info fi;
974 struct type *type;
975 struct cleanup *back_to;
976
977 /* Need to make sure that fi isn't gunna conflict with struct
978 in case struct already had some fnfs */
979 fi.list = NULL;
980 fi.fnlist = NULL;
981 back_to = make_cleanup (null_cleanup, 0);
982
983 /* We only accept structs, classes and unions at the moment.
984 Other continuation types include t (typedef), r (long dbl), ...
985 We may want to add support for them as well;
986 right now they are handled by duplicating the symbol information
987 into the type information (see define_symbol) */
988 if (*p != 's' /* structs */
989 && *p != 'c' /* class */
990 && *p != 'u') /* union */
991 return 0; /* only handle C++ types */
992 p++;
993
994 /* Get symbol typs name and validate
995 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
996 sname = get_substring (&p, ';');
997 if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
998 error ("Internal error: base symbol type name does not match\n");
999
1000 /* Find symbol's internal gdb reference using demangled_name.
1001 This is the real sym that we want;
1002 sym was a temp hack to make debugger happy */
1003 ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
1004 type = SYMBOL_TYPE (ref_sym);
1005
1006
1007 /* Now read the baseclasses, if any, read the regular C struct or C++
1008 class member fields, attach the fields to the type, read the C++
1009 member functions, attach them to the type, and then read any tilde
1010 field (baseclass specifier for the class holding the main vtable). */
1011
1012 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1013 /* g++ does this next, but cfront already did this:
1014 || !read_struct_fields (&fi, &p, type, objfile) */
1015 || !copy_cfront_struct_fields (&fi, type, objfile)
1016 || !read_cfront_member_functions (&fi, &p, type, objfile)
1017 || !read_cfront_static_fields (&fi, &p, type, objfile)
1018 || !attach_fields_to_type (&fi, type, objfile)
1019 || !attach_fn_fields_to_type (&fi, type)
1020 /* g++ does this next, but cfront doesn't seem to have this:
1021 || !read_tilde_fields (&fi, &p, type, objfile) */
1022 )
1023 {
1024 type = error_type (&p, objfile);
1025 }
1026
1027 do_cleanups (back_to);
1028 return 0;
1029 }
1030 /* End of code added to support parsing of ARM/Cfront stabs strings */
1031
1032
1033 /* This routine fixes up symbol references/aliases to point to the original
1034 symbol definition. Returns 0 on failure, non-zero on success. */
1035
1036 static int
1037 resolve_symbol_reference (struct objfile *objfile, struct symbol *sym, char *p)
1038 {
1039 int refnum;
1040 struct symbol *ref_sym = 0;
1041 struct alias_list *alias;
1042
1043 /* If this is not a symbol reference return now. */
1044 if (*p != '#')
1045 return 0;
1046
1047 /* Use "#<num>" as the name; we'll fix the name later.
1048 We stored the original symbol name as "#<id>=<name>"
1049 so we can now search for "#<id>" to resolving the reference.
1050 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1051
1052 /*---------------------------------------------------------*/
1053 /* Get the reference id number, and
1054 advance p past the names so we can parse the rest.
1055 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1056 /*---------------------------------------------------------*/
1057
1058 /* This gets reference name from string. sym may not have a name. */
1059
1060 /* Get the reference number associated with the reference id in the
1061 gdb stab string. From that reference number, get the main/primary
1062 symbol for this alias. */
1063 refnum = process_reference (&p);
1064 ref_sym = ref_search (refnum);
1065 if (!ref_sym)
1066 {
1067 complain (&lrs_general_complaint, "symbol for reference not found");
1068 return 0;
1069 }
1070
1071 /* Parse the stab of the referencing symbol
1072 now that we have the referenced symbol.
1073 Add it as a new symbol and a link back to the referenced symbol.
1074 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1075
1076
1077 /* If the stab symbol table and string contain:
1078 RSYM 0 5 00000000 868 #15=z:r(0,1)
1079 LBRAC 0 0 00000000 899 #5=
1080 SLINE 0 16 00000003 923 #6=
1081 Then the same symbols can be later referenced by:
1082 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1083 This is used in live range splitting to:
1084 1) specify that a symbol (#15) is actually just a new storage
1085 class for a symbol (#15=z) which was previously defined.
1086 2) specify that the beginning and ending ranges for a symbol
1087 (#15) are the values of the beginning (#5) and ending (#6)
1088 symbols. */
1089
1090 /* Read number as reference id.
1091 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1092 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1093 in case of "l(0,0)"? */
1094
1095 /*--------------------------------------------------*/
1096 /* Add this symbol to the reference list. */
1097 /*--------------------------------------------------*/
1098
1099 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1100 sizeof (struct alias_list));
1101 if (!alias)
1102 {
1103 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1104 return 0;
1105 }
1106
1107 alias->next = 0;
1108 alias->sym = sym;
1109
1110 if (!SYMBOL_ALIASES (ref_sym))
1111 {
1112 SYMBOL_ALIASES (ref_sym) = alias;
1113 }
1114 else
1115 {
1116 struct alias_list *temp;
1117
1118 /* Get to the end of the list. */
1119 for (temp = SYMBOL_ALIASES (ref_sym);
1120 temp->next;
1121 temp = temp->next)
1122 ;
1123 temp->next = alias;
1124 }
1125
1126 /* Want to fix up name so that other functions (eg. valops)
1127 will correctly print the name.
1128 Don't add_symbol_to_list so that lookup_symbol won't find it.
1129 nope... needed for fixups. */
1130 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1131
1132 /* Done! */
1133 return 1;
1134 }
1135
1136 /* Structure for storing pointers to reference definitions for fast lookup
1137 during "process_later". */
1138
1139 struct ref_map
1140 {
1141 char *stabs;
1142 CORE_ADDR value;
1143 struct symbol *sym;
1144 };
1145
1146 #define MAX_CHUNK_REFS 100
1147 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1148 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1149
1150 static struct ref_map *ref_map;
1151
1152 /* Ptr to free cell in chunk's linked list. */
1153 static int ref_count = 0;
1154
1155 /* Number of chunks malloced. */
1156 static int ref_chunk = 0;
1157
1158 /* This file maintains a cache of stabs aliases found in the symbol
1159 table. If the symbol table changes, this cache must be cleared
1160 or we are left holding onto data in invalid obstacks. */
1161 void
1162 stabsread_clear_cache (void)
1163 {
1164 ref_count = 0;
1165 ref_chunk = 0;
1166 }
1167
1168 /* Create array of pointers mapping refids to symbols and stab strings.
1169 Add pointers to reference definition symbols and/or their values as we
1170 find them, using their reference numbers as our index.
1171 These will be used later when we resolve references. */
1172 void
1173 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
1174 {
1175 if (ref_count == 0)
1176 ref_chunk = 0;
1177 if (refnum >= ref_count)
1178 ref_count = refnum + 1;
1179 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1180 {
1181 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1182 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1183 ref_map = (struct ref_map *)
1184 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1185 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1186 ref_chunk += new_chunks;
1187 }
1188 ref_map[refnum].stabs = stabs;
1189 ref_map[refnum].sym = sym;
1190 ref_map[refnum].value = value;
1191 }
1192
1193 /* Return defined sym for the reference REFNUM. */
1194 struct symbol *
1195 ref_search (int refnum)
1196 {
1197 if (refnum < 0 || refnum > ref_count)
1198 return 0;
1199 return ref_map[refnum].sym;
1200 }
1201
1202 /* Return value for the reference REFNUM. */
1203
1204 static CORE_ADDR
1205 ref_search_value (int refnum)
1206 {
1207 if (refnum < 0 || refnum > ref_count)
1208 return 0;
1209 return ref_map[refnum].value;
1210 }
1211
1212 /* Parse a reference id in STRING and return the resulting
1213 reference number. Move STRING beyond the reference id. */
1214
1215 static int
1216 process_reference (char **string)
1217 {
1218 char *p;
1219 int refnum = 0;
1220
1221 if (**string != '#')
1222 return 0;
1223
1224 /* Advance beyond the initial '#'. */
1225 p = *string + 1;
1226
1227 /* Read number as reference id. */
1228 while (*p && isdigit (*p))
1229 {
1230 refnum = refnum * 10 + *p - '0';
1231 p++;
1232 }
1233 *string = p;
1234 return refnum;
1235 }
1236
1237 /* If STRING defines a reference, store away a pointer to the reference
1238 definition for later use. Return the reference number. */
1239
1240 int
1241 symbol_reference_defined (char **string)
1242 {
1243 char *p = *string;
1244 int refnum = 0;
1245
1246 refnum = process_reference (&p);
1247
1248 /* Defining symbols end in '=' */
1249 if (*p == '=')
1250 {
1251 /* Symbol is being defined here. */
1252 *string = p + 1;
1253 return refnum;
1254 }
1255 else
1256 {
1257 /* Must be a reference. Either the symbol has already been defined,
1258 or this is a forward reference to it. */
1259 *string = p;
1260 return -1;
1261 }
1262 }
1263
1264 /* ARGSUSED */
1265 struct symbol *
1266 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
1267 struct objfile *objfile)
1268 {
1269 register struct symbol *sym;
1270 char *p = (char *) strchr (string, ':');
1271 int deftype;
1272 int synonym = 0;
1273 register int i;
1274
1275 /* We would like to eliminate nameless symbols, but keep their types.
1276 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1277 to type 2, but, should not create a symbol to address that type. Since
1278 the symbol will be nameless, there is no way any user can refer to it. */
1279
1280 int nameless;
1281
1282 /* Ignore syms with empty names. */
1283 if (string[0] == 0)
1284 return 0;
1285
1286 /* Ignore old-style symbols from cc -go */
1287 if (p == 0)
1288 return 0;
1289
1290 while (p[1] == ':')
1291 {
1292 p += 2;
1293 p = strchr (p, ':');
1294 }
1295
1296 /* If a nameless stab entry, all we need is the type, not the symbol.
1297 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1298 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1299
1300 current_symbol = sym = (struct symbol *)
1301 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1302 memset (sym, 0, sizeof (struct symbol));
1303
1304 switch (type & N_TYPE)
1305 {
1306 case N_TEXT:
1307 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
1308 break;
1309 case N_DATA:
1310 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
1311 break;
1312 case N_BSS:
1313 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
1314 break;
1315 }
1316
1317 if (processing_gcc_compilation)
1318 {
1319 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1320 number of bytes occupied by a type or object, which we ignore. */
1321 SYMBOL_LINE (sym) = desc;
1322 }
1323 else
1324 {
1325 SYMBOL_LINE (sym) = 0; /* unknown */
1326 }
1327
1328 if (is_cplus_marker (string[0]))
1329 {
1330 /* Special GNU C++ names. */
1331 switch (string[1])
1332 {
1333 case 't':
1334 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1335 &objfile->symbol_obstack);
1336 break;
1337
1338 case 'v': /* $vtbl_ptr_type */
1339 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1340 goto normal;
1341
1342 case 'e':
1343 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1344 &objfile->symbol_obstack);
1345 break;
1346
1347 case '_':
1348 /* This was an anonymous type that was never fixed up. */
1349 goto normal;
1350
1351 #ifdef STATIC_TRANSFORM_NAME
1352 case 'X':
1353 /* SunPRO (3.0 at least) static variable encoding. */
1354 goto normal;
1355 #endif
1356
1357 default:
1358 complain (&unrecognized_cplus_name_complaint, string);
1359 goto normal; /* Do *something* with it */
1360 }
1361 }
1362 else if (string[0] == '#')
1363 {
1364 /* Special GNU C extension for referencing symbols. */
1365 char *s;
1366 int refnum, nlen;
1367
1368 /* If STRING defines a new reference id, then add it to the
1369 reference map. Else it must be referring to a previously
1370 defined symbol, so add it to the alias list of the previously
1371 defined symbol. */
1372 s = string;
1373 refnum = symbol_reference_defined (&s);
1374 if (refnum >= 0)
1375 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1376 else if (!resolve_symbol_reference (objfile, sym, string))
1377 return NULL;
1378
1379 /* S..P contains the name of the symbol. We need to store
1380 the correct name into SYMBOL_NAME. */
1381 nlen = p - s;
1382 if (refnum >= 0)
1383 {
1384 if (nlen > 0)
1385 {
1386 SYMBOL_NAME (sym) = (char *)
1387 obstack_alloc (&objfile->symbol_obstack, nlen);
1388 strncpy (SYMBOL_NAME (sym), s, nlen);
1389 SYMBOL_NAME (sym)[nlen] = '\0';
1390 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1391 }
1392 else
1393 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1394 Get error if leave name 0. So give it something. */
1395 {
1396 nlen = p - string;
1397 SYMBOL_NAME (sym) = (char *)
1398 obstack_alloc (&objfile->symbol_obstack, nlen);
1399 strncpy (SYMBOL_NAME (sym), string, nlen);
1400 SYMBOL_NAME (sym)[nlen] = '\0';
1401 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1402 }
1403 }
1404 /* Advance STRING beyond the reference id. */
1405 string = s;
1406 }
1407 else
1408 {
1409 normal:
1410 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1411 SYMBOL_NAME (sym) = (char *)
1412 obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
1413 /* Open-coded memcpy--saves function call time. */
1414 /* FIXME: Does it really? Try replacing with simple strcpy and
1415 try it on an executable with a large symbol table. */
1416 /* FIXME: considering that gcc can open code memcpy anyway, I
1417 doubt it. xoxorich. */
1418 {
1419 register char *p1 = string;
1420 register char *p2 = SYMBOL_NAME (sym);
1421 while (p1 != p)
1422 {
1423 *p2++ = *p1++;
1424 }
1425 *p2++ = '\0';
1426 }
1427
1428 /* If this symbol is from a C++ compilation, then attempt to cache the
1429 demangled form for future reference. This is a typical time versus
1430 space tradeoff, that was decided in favor of time because it sped up
1431 C++ symbol lookups by a factor of about 20. */
1432
1433 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1434 }
1435 p++;
1436
1437 /* Determine the type of name being defined. */
1438 #if 0
1439 /* Getting GDB to correctly skip the symbol on an undefined symbol
1440 descriptor and not ever dump core is a very dodgy proposition if
1441 we do things this way. I say the acorn RISC machine can just
1442 fix their compiler. */
1443 /* The Acorn RISC machine's compiler can put out locals that don't
1444 start with "234=" or "(3,4)=", so assume anything other than the
1445 deftypes we know how to handle is a local. */
1446 if (!strchr ("cfFGpPrStTvVXCR", *p))
1447 #else
1448 if (isdigit (*p) || *p == '(' || *p == '-')
1449 #endif
1450 deftype = 'l';
1451 else
1452 deftype = *p++;
1453
1454 switch (deftype)
1455 {
1456 case 'c':
1457 /* c is a special case, not followed by a type-number.
1458 SYMBOL:c=iVALUE for an integer constant symbol.
1459 SYMBOL:c=rVALUE for a floating constant symbol.
1460 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1461 e.g. "b:c=e6,0" for "const b = blob1"
1462 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1463 if (*p != '=')
1464 {
1465 SYMBOL_CLASS (sym) = LOC_CONST;
1466 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1467 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1468 add_symbol_to_list (sym, &file_symbols);
1469 return sym;
1470 }
1471 ++p;
1472 switch (*p++)
1473 {
1474 case 'r':
1475 {
1476 double d = atof (p);
1477 char *dbl_valu;
1478
1479 /* FIXME-if-picky-about-floating-accuracy: Should be using
1480 target arithmetic to get the value. real.c in GCC
1481 probably has the necessary code. */
1482
1483 /* FIXME: lookup_fundamental_type is a hack. We should be
1484 creating a type especially for the type of float constants.
1485 Problem is, what type should it be?
1486
1487 Also, what should the name of this type be? Should we
1488 be using 'S' constants (see stabs.texinfo) instead? */
1489
1490 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1491 FT_DBL_PREC_FLOAT);
1492 dbl_valu = (char *)
1493 obstack_alloc (&objfile->symbol_obstack,
1494 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1495 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
1496 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1497 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1498 }
1499 break;
1500 case 'i':
1501 {
1502 /* Defining integer constants this way is kind of silly,
1503 since 'e' constants allows the compiler to give not
1504 only the value, but the type as well. C has at least
1505 int, long, unsigned int, and long long as constant
1506 types; other languages probably should have at least
1507 unsigned as well as signed constants. */
1508
1509 /* We just need one int constant type for all objfiles.
1510 It doesn't depend on languages or anything (arguably its
1511 name should be a language-specific name for a type of
1512 that size, but I'm inclined to say that if the compiler
1513 wants a nice name for the type, it can use 'e'). */
1514 static struct type *int_const_type;
1515
1516 /* Yes, this is as long as a *host* int. That is because we
1517 use atoi. */
1518 if (int_const_type == NULL)
1519 int_const_type =
1520 init_type (TYPE_CODE_INT,
1521 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1522 "integer constant",
1523 (struct objfile *) NULL);
1524 SYMBOL_TYPE (sym) = int_const_type;
1525 SYMBOL_VALUE (sym) = atoi (p);
1526 SYMBOL_CLASS (sym) = LOC_CONST;
1527 }
1528 break;
1529 case 'e':
1530 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1531 can be represented as integral.
1532 e.g. "b:c=e6,0" for "const b = blob1"
1533 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1534 {
1535 SYMBOL_CLASS (sym) = LOC_CONST;
1536 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1537
1538 if (*p != ',')
1539 {
1540 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1541 break;
1542 }
1543 ++p;
1544
1545 /* If the value is too big to fit in an int (perhaps because
1546 it is unsigned), or something like that, we silently get
1547 a bogus value. The type and everything else about it is
1548 correct. Ideally, we should be using whatever we have
1549 available for parsing unsigned and long long values,
1550 however. */
1551 SYMBOL_VALUE (sym) = atoi (p);
1552 }
1553 break;
1554 default:
1555 {
1556 SYMBOL_CLASS (sym) = LOC_CONST;
1557 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1558 }
1559 }
1560 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1561 add_symbol_to_list (sym, &file_symbols);
1562 return sym;
1563
1564 case 'C':
1565 /* The name of a caught exception. */
1566 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1567 SYMBOL_CLASS (sym) = LOC_LABEL;
1568 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1569 SYMBOL_VALUE_ADDRESS (sym) = valu;
1570 add_symbol_to_list (sym, &local_symbols);
1571 break;
1572
1573 case 'f':
1574 /* A static function definition. */
1575 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1576 SYMBOL_CLASS (sym) = LOC_BLOCK;
1577 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1578 add_symbol_to_list (sym, &file_symbols);
1579 /* fall into process_function_types. */
1580
1581 process_function_types:
1582 /* Function result types are described as the result type in stabs.
1583 We need to convert this to the function-returning-type-X type
1584 in GDB. E.g. "int" is converted to "function returning int". */
1585 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1586 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1587
1588 /* All functions in C++ have prototypes. */
1589 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1590 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1591
1592 /* fall into process_prototype_types */
1593
1594 process_prototype_types:
1595 /* Sun acc puts declared types of arguments here. */
1596 if (*p == ';')
1597 {
1598 struct type *ftype = SYMBOL_TYPE (sym);
1599 int nsemi = 0;
1600 int nparams = 0;
1601 char *p1 = p;
1602
1603 /* Obtain a worst case guess for the number of arguments
1604 by counting the semicolons. */
1605 while (*p1)
1606 {
1607 if (*p1++ == ';')
1608 nsemi++;
1609 }
1610
1611 /* Allocate parameter information fields and fill them in. */
1612 TYPE_FIELDS (ftype) = (struct field *)
1613 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1614 while (*p++ == ';')
1615 {
1616 struct type *ptype;
1617
1618 /* A type number of zero indicates the start of varargs.
1619 FIXME: GDB currently ignores vararg functions. */
1620 if (p[0] == '0' && p[1] == '\0')
1621 break;
1622 ptype = read_type (&p, objfile);
1623
1624 /* The Sun compilers mark integer arguments, which should
1625 be promoted to the width of the calling conventions, with
1626 a type which references itself. This type is turned into
1627 a TYPE_CODE_VOID type by read_type, and we have to turn
1628 it back into builtin_type_int here.
1629 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1630 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1631 ptype = builtin_type_int;
1632 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1633 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1634 }
1635 TYPE_NFIELDS (ftype) = nparams;
1636 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1637 }
1638 break;
1639
1640 case 'F':
1641 /* A global function definition. */
1642 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1643 SYMBOL_CLASS (sym) = LOC_BLOCK;
1644 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1645 add_symbol_to_list (sym, &global_symbols);
1646 goto process_function_types;
1647
1648 case 'G':
1649 /* For a class G (global) symbol, it appears that the
1650 value is not correct. It is necessary to search for the
1651 corresponding linker definition to find the value.
1652 These definitions appear at the end of the namelist. */
1653 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1654 SYMBOL_CLASS (sym) = LOC_STATIC;
1655 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1656 /* Don't add symbol references to global_sym_chain.
1657 Symbol references don't have valid names and wont't match up with
1658 minimal symbols when the global_sym_chain is relocated.
1659 We'll fixup symbol references when we fixup the defining symbol. */
1660 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1661 {
1662 i = hashname (SYMBOL_NAME (sym));
1663 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1664 global_sym_chain[i] = sym;
1665 }
1666 add_symbol_to_list (sym, &global_symbols);
1667 break;
1668
1669 /* This case is faked by a conditional above,
1670 when there is no code letter in the dbx data.
1671 Dbx data never actually contains 'l'. */
1672 case 's':
1673 case 'l':
1674 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1675 SYMBOL_CLASS (sym) = LOC_LOCAL;
1676 SYMBOL_VALUE (sym) = valu;
1677 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1678 add_symbol_to_list (sym, &local_symbols);
1679 break;
1680
1681 case 'p':
1682 if (*p == 'F')
1683 /* pF is a two-letter code that means a function parameter in Fortran.
1684 The type-number specifies the type of the return value.
1685 Translate it into a pointer-to-function type. */
1686 {
1687 p++;
1688 SYMBOL_TYPE (sym)
1689 = lookup_pointer_type
1690 (lookup_function_type (read_type (&p, objfile)));
1691 }
1692 else
1693 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1694
1695 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1696 can also be a LOC_LOCAL_ARG depending on symbol type. */
1697 #ifndef DBX_PARM_SYMBOL_CLASS
1698 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1699 #endif
1700
1701 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1702 SYMBOL_VALUE (sym) = valu;
1703 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1704 add_symbol_to_list (sym, &local_symbols);
1705
1706 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
1707 {
1708 /* On little-endian machines, this crud is never necessary,
1709 and, if the extra bytes contain garbage, is harmful. */
1710 break;
1711 }
1712
1713 /* If it's gcc-compiled, if it says `short', believe it. */
1714 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1715 break;
1716
1717 if (!BELIEVE_PCC_PROMOTION)
1718 {
1719 /* This is the signed type which arguments get promoted to. */
1720 static struct type *pcc_promotion_type;
1721 /* This is the unsigned type which arguments get promoted to. */
1722 static struct type *pcc_unsigned_promotion_type;
1723
1724 /* Call it "int" because this is mainly C lossage. */
1725 if (pcc_promotion_type == NULL)
1726 pcc_promotion_type =
1727 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1728 0, "int", NULL);
1729
1730 if (pcc_unsigned_promotion_type == NULL)
1731 pcc_unsigned_promotion_type =
1732 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1733 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1734
1735 if (BELIEVE_PCC_PROMOTION_TYPE)
1736 {
1737 /* This is defined on machines (e.g. sparc) where we
1738 should believe the type of a PCC 'short' argument,
1739 but shouldn't believe the address (the address is the
1740 address of the corresponding int).
1741
1742 My guess is that this correction, as opposed to
1743 changing the parameter to an 'int' (as done below,
1744 for PCC on most machines), is the right thing to do
1745 on all machines, but I don't want to risk breaking
1746 something that already works. On most PCC machines,
1747 the sparc problem doesn't come up because the calling
1748 function has to zero the top bytes (not knowing
1749 whether the called function wants an int or a short),
1750 so there is little practical difference between an
1751 int and a short (except perhaps what happens when the
1752 GDB user types "print short_arg = 0x10000;").
1753
1754 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1755 compiler actually produces the correct address (we
1756 don't need to fix it up). I made this code adapt so
1757 that it will offset the symbol if it was pointing at
1758 an int-aligned location and not otherwise. This way
1759 you can use the same gdb for 4.0.x and 4.1 systems.
1760
1761 If the parameter is shorter than an int, and is
1762 integral (e.g. char, short, or unsigned equivalent),
1763 and is claimed to be passed on an integer boundary,
1764 don't believe it! Offset the parameter's address to
1765 the tail-end of that integer. */
1766
1767 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1768 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1769 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1770 {
1771 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1772 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1773 }
1774 break;
1775 }
1776 else
1777 {
1778 /* If PCC says a parameter is a short or a char,
1779 it is really an int. */
1780 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1781 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1782 {
1783 SYMBOL_TYPE (sym) =
1784 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1785 ? pcc_unsigned_promotion_type
1786 : pcc_promotion_type;
1787 }
1788 break;
1789 }
1790 }
1791
1792 case 'P':
1793 /* acc seems to use P to declare the prototypes of functions that
1794 are referenced by this file. gdb is not prepared to deal
1795 with this extra information. FIXME, it ought to. */
1796 if (type == N_FUN)
1797 {
1798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1799 goto process_prototype_types;
1800 }
1801 /*FALLTHROUGH */
1802
1803 case 'R':
1804 /* Parameter which is in a register. */
1805 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1806 SYMBOL_CLASS (sym) = LOC_REGPARM;
1807 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1808 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1809 {
1810 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1811 NUM_REGS + NUM_PSEUDO_REGS,
1812 SYMBOL_SOURCE_NAME (sym));
1813 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1814 }
1815 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1816 add_symbol_to_list (sym, &local_symbols);
1817 break;
1818
1819 case 'r':
1820 /* Register variable (either global or local). */
1821 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1822 SYMBOL_CLASS (sym) = LOC_REGISTER;
1823 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1824 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1825 {
1826 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
1827 NUM_REGS + NUM_PSEUDO_REGS,
1828 SYMBOL_SOURCE_NAME (sym));
1829 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1830 }
1831 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1832 if (within_function)
1833 {
1834 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1835 name to represent an argument passed in a register.
1836 GCC uses 'P' for the same case. So if we find such a symbol pair
1837 we combine it into one 'P' symbol. For Sun cc we need to do this
1838 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1839 the 'p' symbol even if it never saves the argument onto the stack.
1840
1841 On most machines, we want to preserve both symbols, so that
1842 we can still get information about what is going on with the
1843 stack (VAX for computing args_printed, using stack slots instead
1844 of saved registers in backtraces, etc.).
1845
1846 Note that this code illegally combines
1847 main(argc) struct foo argc; { register struct foo argc; }
1848 but this case is considered pathological and causes a warning
1849 from a decent compiler. */
1850
1851 if (local_symbols
1852 && local_symbols->nsyms > 0
1853 #ifndef USE_REGISTER_NOT_ARG
1854 && REG_STRUCT_HAS_ADDR_P ()
1855 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1856 SYMBOL_TYPE (sym))
1857 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1858 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1859 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1860 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1861 #endif
1862 )
1863 {
1864 struct symbol *prev_sym;
1865 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1866 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1867 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1868 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
1869 {
1870 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1871 /* Use the type from the LOC_REGISTER; that is the type
1872 that is actually in that register. */
1873 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1874 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1875 sym = prev_sym;
1876 break;
1877 }
1878 }
1879 add_symbol_to_list (sym, &local_symbols);
1880 }
1881 else
1882 add_symbol_to_list (sym, &file_symbols);
1883 break;
1884
1885 case 'S':
1886 /* Static symbol at top level of file */
1887 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1888 SYMBOL_CLASS (sym) = LOC_STATIC;
1889 SYMBOL_VALUE_ADDRESS (sym) = valu;
1890 #ifdef STATIC_TRANSFORM_NAME
1891 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1892 {
1893 struct minimal_symbol *msym;
1894 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1895 if (msym != NULL)
1896 {
1897 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1898 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1899 }
1900 }
1901 #endif
1902 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1903 add_symbol_to_list (sym, &file_symbols);
1904 break;
1905
1906 case 't':
1907 /* Typedef */
1908 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1909
1910 /* For a nameless type, we don't want a create a symbol, thus we
1911 did not use `sym'. Return without further processing. */
1912 if (nameless)
1913 return NULL;
1914
1915 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1916 SYMBOL_VALUE (sym) = valu;
1917 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1918 /* C++ vagaries: we may have a type which is derived from
1919 a base type which did not have its name defined when the
1920 derived class was output. We fill in the derived class's
1921 base part member's name here in that case. */
1922 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1923 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1924 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1925 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1926 {
1927 int j;
1928 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1929 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1930 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1931 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1932 }
1933
1934 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1935 {
1936 /* gcc-2.6 or later (when using -fvtable-thunks)
1937 emits a unique named type for a vtable entry.
1938 Some gdb code depends on that specific name. */
1939 extern const char vtbl_ptr_name[];
1940
1941 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1942 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1943 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1944 {
1945 /* If we are giving a name to a type such as "pointer to
1946 foo" or "function returning foo", we better not set
1947 the TYPE_NAME. If the program contains "typedef char
1948 *caddr_t;", we don't want all variables of type char
1949 * to print as caddr_t. This is not just a
1950 consequence of GDB's type management; PCC and GCC (at
1951 least through version 2.4) both output variables of
1952 either type char * or caddr_t with the type number
1953 defined in the 't' symbol for caddr_t. If a future
1954 compiler cleans this up it GDB is not ready for it
1955 yet, but if it becomes ready we somehow need to
1956 disable this check (without breaking the PCC/GCC2.4
1957 case).
1958
1959 Sigh.
1960
1961 Fortunately, this check seems not to be necessary
1962 for anything except pointers or functions. */
1963 /* ezannoni: 2000-10-26. This seems to apply for
1964 versions of gcc older than 2.8. This was the original
1965 problem: with the following code gdb would tell that
1966 the type for name1 is caddr_t, and func is char()
1967 typedef char *caddr_t;
1968 char *name2;
1969 struct x
1970 {
1971 char *name1;
1972 } xx;
1973 char *func()
1974 {
1975 }
1976 main () {}
1977 */
1978
1979 /* Pascal accepts names for pointer types. */
1980 if (current_subfile->language == language_pascal)
1981 {
1982 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1983 }
1984 }
1985 else
1986 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1987 }
1988
1989 add_symbol_to_list (sym, &file_symbols);
1990 break;
1991
1992 case 'T':
1993 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1994 by 't' which means we are typedef'ing it as well. */
1995 synonym = *p == 't';
1996
1997 if (synonym)
1998 p++;
1999 /* The semantics of C++ state that "struct foo { ... }" also defines
2000 a typedef for "foo". Unfortunately, cfront never makes the typedef
2001 when translating C++ into C. We make the typedef here so that
2002 "ptype foo" works as expected for cfront translated code. */
2003 else if (current_subfile->language == language_cplus)
2004 synonym = 1;
2005
2006 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2007
2008 /* For a nameless type, we don't want a create a symbol, thus we
2009 did not use `sym'. Return without further processing. */
2010 if (nameless)
2011 return NULL;
2012
2013 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2014 SYMBOL_VALUE (sym) = valu;
2015 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2016 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2017 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2018 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2019 add_symbol_to_list (sym, &file_symbols);
2020
2021 if (synonym)
2022 {
2023 /* Clone the sym and then modify it. */
2024 register struct symbol *typedef_sym = (struct symbol *)
2025 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2026 *typedef_sym = *sym;
2027 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2028 SYMBOL_VALUE (typedef_sym) = valu;
2029 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2030 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2031 TYPE_NAME (SYMBOL_TYPE (sym))
2032 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2033 add_symbol_to_list (typedef_sym, &file_symbols);
2034 }
2035 break;
2036
2037 case 'V':
2038 /* Static symbol of local scope */
2039 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2040 SYMBOL_CLASS (sym) = LOC_STATIC;
2041 SYMBOL_VALUE_ADDRESS (sym) = valu;
2042 #ifdef STATIC_TRANSFORM_NAME
2043 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2044 {
2045 struct minimal_symbol *msym;
2046 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2047 if (msym != NULL)
2048 {
2049 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2050 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2051 }
2052 }
2053 #endif
2054 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2055 if (os9k_stabs)
2056 add_symbol_to_list (sym, &global_symbols);
2057 else
2058 add_symbol_to_list (sym, &local_symbols);
2059 break;
2060
2061 case 'v':
2062 /* Reference parameter */
2063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2064 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2065 SYMBOL_VALUE (sym) = valu;
2066 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2067 add_symbol_to_list (sym, &local_symbols);
2068 break;
2069
2070 case 'a':
2071 /* Reference parameter which is in a register. */
2072 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2073 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2074 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2075 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
2076 {
2077 complain (&reg_value_complaint, SYMBOL_VALUE (sym),
2078 NUM_REGS + NUM_PSEUDO_REGS,
2079 SYMBOL_SOURCE_NAME (sym));
2080 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2081 }
2082 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2083 add_symbol_to_list (sym, &local_symbols);
2084 break;
2085
2086 case 'X':
2087 /* This is used by Sun FORTRAN for "function result value".
2088 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2089 that Pascal uses it too, but when I tried it Pascal used
2090 "x:3" (local symbol) instead. */
2091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2092 SYMBOL_CLASS (sym) = LOC_LOCAL;
2093 SYMBOL_VALUE (sym) = valu;
2094 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2095 add_symbol_to_list (sym, &local_symbols);
2096 break;
2097
2098 /* New code added to support cfront stabs strings.
2099 Note: case 'P' already handled above */
2100 case 'Z':
2101 /* Cfront type continuation coming up!
2102 Find the original definition and add to it.
2103 We'll have to do this for the typedef too,
2104 since we cloned the symbol to define a type in read_type.
2105 Stabs info examples:
2106 __1C :Ztl
2107 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2108 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2109 where C is the name of the class.
2110 Unfortunately, we can't lookup the original symbol yet 'cuz
2111 we haven't finished reading all the symbols.
2112 Instead, we save it for processing later */
2113 process_later (sym, p, resolve_cfront_continuation);
2114 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2115 SYMBOL_CLASS (sym) = LOC_CONST;
2116 SYMBOL_VALUE (sym) = 0;
2117 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2118 /* Don't add to list - we'll delete it later when
2119 we add the continuation to the real sym */
2120 return sym;
2121 /* End of new code added to support cfront stabs strings */
2122
2123 default:
2124 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2125 SYMBOL_CLASS (sym) = LOC_CONST;
2126 SYMBOL_VALUE (sym) = 0;
2127 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2128 add_symbol_to_list (sym, &file_symbols);
2129 break;
2130 }
2131
2132 /* When passing structures to a function, some systems sometimes pass
2133 the address in a register, not the structure itself. */
2134
2135 if (REG_STRUCT_HAS_ADDR_P ()
2136 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2137 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2138 {
2139 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2140
2141 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2142 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2143 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2144 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2145 {
2146 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2147 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2148 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2149 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2150 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2151 and subsequent arguments on the sparc, for example). */
2152 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2153 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2154 }
2155 }
2156
2157 /* Is there more to parse? For example LRS/alias information? */
2158 while (*p && *p == ';')
2159 {
2160 p++;
2161 if (*p && p[0] == 'l' && p[1] == '(')
2162 {
2163 /* GNU extensions for live range splitting may be appended to
2164 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2165
2166 /* Resolve the live range and add it to SYM's live range list. */
2167 if (!resolve_live_range (objfile, sym, p))
2168 return NULL;
2169
2170 /* Find end of live range info. */
2171 p = strchr (p, ')');
2172 if (!*p || *p != ')')
2173 {
2174 complain (&lrs_general_complaint, "live range format not recognized");
2175 return NULL;
2176 }
2177 p++;
2178 }
2179 }
2180 return sym;
2181 }
2182
2183 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2184 non-zero on success, zero otherwise. */
2185
2186 static int
2187 resolve_live_range (struct objfile *objfile, struct symbol *sym, char *p)
2188 {
2189 int refnum;
2190 CORE_ADDR start, end;
2191
2192 /* Sanity check the beginning of the stabs string. */
2193 if (!*p || *p != 'l')
2194 {
2195 complain (&lrs_general_complaint, "live range string 1");
2196 return 0;
2197 }
2198 p++;
2199
2200 if (!*p || *p != '(')
2201 {
2202 complain (&lrs_general_complaint, "live range string 2");
2203 return 0;
2204 }
2205 p++;
2206
2207 /* Get starting value of range and advance P past the reference id.
2208
2209 ?!? In theory, the process_reference should never fail, but we should
2210 catch that case just in case the compiler scrogged the stabs. */
2211 refnum = process_reference (&p);
2212 start = ref_search_value (refnum);
2213 if (!start)
2214 {
2215 complain (&lrs_general_complaint, "Live range symbol not found 1");
2216 return 0;
2217 }
2218
2219 if (!*p || *p != ',')
2220 {
2221 complain (&lrs_general_complaint, "live range string 3");
2222 return 0;
2223 }
2224 p++;
2225
2226 /* Get ending value of range and advance P past the reference id.
2227
2228 ?!? In theory, the process_reference should never fail, but we should
2229 catch that case just in case the compiler scrogged the stabs. */
2230 refnum = process_reference (&p);
2231 end = ref_search_value (refnum);
2232 if (!end)
2233 {
2234 complain (&lrs_general_complaint, "Live range symbol not found 2");
2235 return 0;
2236 }
2237
2238 if (!*p || *p != ')')
2239 {
2240 complain (&lrs_general_complaint, "live range string 4");
2241 return 0;
2242 }
2243
2244 /* Now that we know the bounds of the range, add it to the
2245 symbol. */
2246 add_live_range (objfile, sym, start, end);
2247
2248 return 1;
2249 }
2250
2251 /* Add a new live range defined by START and END to the symbol SYM
2252 in objfile OBJFILE. */
2253
2254 static void
2255 add_live_range (struct objfile *objfile, struct symbol *sym, CORE_ADDR start,
2256 CORE_ADDR end)
2257 {
2258 struct range_list *r, *rs;
2259
2260 if (start >= end)
2261 {
2262 complain (&lrs_general_complaint, "end of live range follows start");
2263 return;
2264 }
2265
2266 /* Alloc new live range structure. */
2267 r = (struct range_list *)
2268 obstack_alloc (&objfile->type_obstack,
2269 sizeof (struct range_list));
2270 r->start = start;
2271 r->end = end;
2272 r->next = 0;
2273
2274 /* Append this range to the symbol's range list. */
2275 if (!SYMBOL_RANGES (sym))
2276 SYMBOL_RANGES (sym) = r;
2277 else
2278 {
2279 /* Get the last range for the symbol. */
2280 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2281 ;
2282 rs->next = r;
2283 }
2284 }
2285 \f
2286
2287 /* Skip rest of this symbol and return an error type.
2288
2289 General notes on error recovery: error_type always skips to the
2290 end of the symbol (modulo cretinous dbx symbol name continuation).
2291 Thus code like this:
2292
2293 if (*(*pp)++ != ';')
2294 return error_type (pp, objfile);
2295
2296 is wrong because if *pp starts out pointing at '\0' (typically as the
2297 result of an earlier error), it will be incremented to point to the
2298 start of the next symbol, which might produce strange results, at least
2299 if you run off the end of the string table. Instead use
2300
2301 if (**pp != ';')
2302 return error_type (pp, objfile);
2303 ++*pp;
2304
2305 or
2306
2307 if (**pp != ';')
2308 foo = error_type (pp, objfile);
2309 else
2310 ++*pp;
2311
2312 And in case it isn't obvious, the point of all this hair is so the compiler
2313 can define new types and new syntaxes, and old versions of the
2314 debugger will be able to read the new symbol tables. */
2315
2316 static struct type *
2317 error_type (char **pp, struct objfile *objfile)
2318 {
2319 complain (&error_type_complaint);
2320 while (1)
2321 {
2322 /* Skip to end of symbol. */
2323 while (**pp != '\0')
2324 {
2325 (*pp)++;
2326 }
2327
2328 /* Check for and handle cretinous dbx symbol name continuation! */
2329 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2330 {
2331 *pp = next_symbol_text (objfile);
2332 }
2333 else
2334 {
2335 break;
2336 }
2337 }
2338 return (builtin_type_error);
2339 }
2340 \f
2341
2342 /* Read type information or a type definition; return the type. Even
2343 though this routine accepts either type information or a type
2344 definition, the distinction is relevant--some parts of stabsread.c
2345 assume that type information starts with a digit, '-', or '(' in
2346 deciding whether to call read_type. */
2347
2348 struct type *
2349 read_type (register char **pp, struct objfile *objfile)
2350 {
2351 register struct type *type = 0;
2352 struct type *type1;
2353 int typenums[2];
2354 char type_descriptor;
2355
2356 /* Size in bits of type if specified by a type attribute, or -1 if
2357 there is no size attribute. */
2358 int type_size = -1;
2359
2360 /* Used to distinguish string and bitstring from char-array and set. */
2361 int is_string = 0;
2362
2363 /* Used to distinguish vector from array. */
2364 int is_vector = 0;
2365
2366 /* Read type number if present. The type number may be omitted.
2367 for instance in a two-dimensional array declared with type
2368 "ar1;1;10;ar1;1;10;4". */
2369 if ((**pp >= '0' && **pp <= '9')
2370 || **pp == '('
2371 || **pp == '-')
2372 {
2373 if (read_type_number (pp, typenums) != 0)
2374 return error_type (pp, objfile);
2375
2376 /* Type is not being defined here. Either it already exists,
2377 or this is a forward reference to it. dbx_alloc_type handles
2378 both cases. */
2379 if (**pp != '=')
2380 return dbx_alloc_type (typenums, objfile);
2381
2382 /* Type is being defined here. */
2383 /* Skip the '='.
2384 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2385 (*pp) += 2;
2386 }
2387 else
2388 {
2389 /* 'typenums=' not present, type is anonymous. Read and return
2390 the definition, but don't put it in the type vector. */
2391 typenums[0] = typenums[1] = -1;
2392 (*pp)++;
2393 }
2394
2395 again:
2396 type_descriptor = (*pp)[-1];
2397 switch (type_descriptor)
2398 {
2399 case 'x':
2400 {
2401 enum type_code code;
2402
2403 /* Used to index through file_symbols. */
2404 struct pending *ppt;
2405 int i;
2406
2407 /* Name including "struct", etc. */
2408 char *type_name;
2409
2410 {
2411 char *from, *to, *p, *q1, *q2;
2412
2413 /* Set the type code according to the following letter. */
2414 switch ((*pp)[0])
2415 {
2416 case 's':
2417 code = TYPE_CODE_STRUCT;
2418 break;
2419 case 'u':
2420 code = TYPE_CODE_UNION;
2421 break;
2422 case 'e':
2423 code = TYPE_CODE_ENUM;
2424 break;
2425 default:
2426 {
2427 /* Complain and keep going, so compilers can invent new
2428 cross-reference types. */
2429 static struct complaint msg =
2430 {"Unrecognized cross-reference type `%c'", 0, 0};
2431 complain (&msg, (*pp)[0]);
2432 code = TYPE_CODE_STRUCT;
2433 break;
2434 }
2435 }
2436
2437 q1 = strchr (*pp, '<');
2438 p = strchr (*pp, ':');
2439 if (p == NULL)
2440 return error_type (pp, objfile);
2441 if (q1 && p > q1 && p[1] == ':')
2442 {
2443 int nesting_level = 0;
2444 for (q2 = q1; *q2; q2++)
2445 {
2446 if (*q2 == '<')
2447 nesting_level++;
2448 else if (*q2 == '>')
2449 nesting_level--;
2450 else if (*q2 == ':' && nesting_level == 0)
2451 break;
2452 }
2453 p = q2;
2454 if (*p != ':')
2455 return error_type (pp, objfile);
2456 }
2457 to = type_name =
2458 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2459
2460 /* Copy the name. */
2461 from = *pp + 1;
2462 while (from < p)
2463 *to++ = *from++;
2464 *to = '\0';
2465
2466 /* Set the pointer ahead of the name which we just read, and
2467 the colon. */
2468 *pp = from + 1;
2469 }
2470
2471 /* Now check to see whether the type has already been
2472 declared. This was written for arrays of cross-referenced
2473 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2474 sure it is not necessary anymore. But it might be a good
2475 idea, to save a little memory. */
2476
2477 for (ppt = file_symbols; ppt; ppt = ppt->next)
2478 for (i = 0; i < ppt->nsyms; i++)
2479 {
2480 struct symbol *sym = ppt->symbol[i];
2481
2482 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2483 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2484 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2485 && STREQ (SYMBOL_NAME (sym), type_name))
2486 {
2487 obstack_free (&objfile->type_obstack, type_name);
2488 type = SYMBOL_TYPE (sym);
2489 return type;
2490 }
2491 }
2492
2493 /* Didn't find the type to which this refers, so we must
2494 be dealing with a forward reference. Allocate a type
2495 structure for it, and keep track of it so we can
2496 fill in the rest of the fields when we get the full
2497 type. */
2498 type = dbx_alloc_type (typenums, objfile);
2499 TYPE_CODE (type) = code;
2500 TYPE_TAG_NAME (type) = type_name;
2501 INIT_CPLUS_SPECIFIC (type);
2502 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2503
2504 add_undefined_type (type);
2505 return type;
2506 }
2507
2508 case '-': /* RS/6000 built-in type */
2509 case '0':
2510 case '1':
2511 case '2':
2512 case '3':
2513 case '4':
2514 case '5':
2515 case '6':
2516 case '7':
2517 case '8':
2518 case '9':
2519 case '(':
2520 (*pp)--;
2521
2522 /* We deal with something like t(1,2)=(3,4)=... which
2523 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2524
2525 /* Allocate and enter the typedef type first.
2526 This handles recursive types. */
2527 type = dbx_alloc_type (typenums, objfile);
2528 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2529 {
2530 struct type *xtype = read_type (pp, objfile);
2531 if (type == xtype)
2532 {
2533 /* It's being defined as itself. That means it is "void". */
2534 TYPE_CODE (type) = TYPE_CODE_VOID;
2535 TYPE_LENGTH (type) = 1;
2536 }
2537 else if (type_size >= 0 || is_string)
2538 {
2539 /* This is the absolute wrong way to construct types. Every
2540 other debug format has found a way around this problem and
2541 the related problems with unnecessarily stubbed types;
2542 someone motivated should attempt to clean up the issue
2543 here as well. Once a type pointed to has been created it
2544 should not be modified.
2545
2546 Well, it's not *absolutely* wrong. Constructing recursive
2547 types (trees, linked lists) necessarily entails modifying
2548 types after creating them. Constructing any loop structure
2549 entails side effects. The Dwarf 2 reader does handle this
2550 more gracefully (it never constructs more than once
2551 instance of a type object, so it doesn't have to copy type
2552 objects wholesale), but it still mutates type objects after
2553 other folks have references to them.
2554
2555 Keep in mind that this circularity/mutation issue shows up
2556 at the source language level, too: C's "incomplete types",
2557 for example. So the proper cleanup, I think, would be to
2558 limit GDB's type smashing to match exactly those required
2559 by the source language. So GDB could have a
2560 "complete_this_type" function, but never create unnecessary
2561 copies of a type otherwise. */
2562 replace_type (type, xtype);
2563 TYPE_NAME (type) = NULL;
2564 TYPE_TAG_NAME (type) = NULL;
2565 }
2566 else
2567 {
2568 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2569 TYPE_TARGET_TYPE (type) = xtype;
2570 }
2571 }
2572 break;
2573
2574 /* In the following types, we must be sure to overwrite any existing
2575 type that the typenums refer to, rather than allocating a new one
2576 and making the typenums point to the new one. This is because there
2577 may already be pointers to the existing type (if it had been
2578 forward-referenced), and we must change it to a pointer, function,
2579 reference, or whatever, *in-place*. */
2580
2581 case '*': /* Pointer to another type */
2582 type1 = read_type (pp, objfile);
2583 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2584 break;
2585
2586 case '&': /* Reference to another type */
2587 type1 = read_type (pp, objfile);
2588 type = make_reference_type (type1, dbx_lookup_type (typenums));
2589 break;
2590
2591 case 'f': /* Function returning another type */
2592 if (os9k_stabs && **pp == '(')
2593 {
2594 /* Function prototype; parse it.
2595 We must conditionalize this on os9k_stabs because otherwise
2596 it could be confused with a Sun-style (1,3) typenumber
2597 (I think). */
2598 struct type *t;
2599 ++*pp;
2600 while (**pp != ')')
2601 {
2602 t = read_type (pp, objfile);
2603 if (**pp == ',')
2604 ++ * pp;
2605 }
2606 }
2607 type1 = read_type (pp, objfile);
2608 type = make_function_type (type1, dbx_lookup_type (typenums));
2609 break;
2610
2611 case 'g': /* Prototyped function. (Sun) */
2612 {
2613 /* Unresolved questions:
2614
2615 - According to Sun's ``STABS Interface Manual'', for 'f'
2616 and 'F' symbol descriptors, a `0' in the argument type list
2617 indicates a varargs function. But it doesn't say how 'g'
2618 type descriptors represent that info. Someone with access
2619 to Sun's toolchain should try it out.
2620
2621 - According to the comment in define_symbol (search for
2622 `process_prototype_types:'), Sun emits integer arguments as
2623 types which ref themselves --- like `void' types. Do we
2624 have to deal with that here, too? Again, someone with
2625 access to Sun's toolchain should try it out and let us
2626 know. */
2627
2628 const char *type_start = (*pp) - 1;
2629 struct type *return_type = read_type (pp, objfile);
2630 struct type *func_type
2631 = make_function_type (return_type, dbx_lookup_type (typenums));
2632 struct type_list {
2633 struct type *type;
2634 struct type_list *next;
2635 } *arg_types = 0;
2636 int num_args = 0;
2637
2638 while (**pp && **pp != '#')
2639 {
2640 struct type *arg_type = read_type (pp, objfile);
2641 struct type_list *new = alloca (sizeof (*new));
2642 new->type = arg_type;
2643 new->next = arg_types;
2644 arg_types = new;
2645 num_args++;
2646 }
2647 if (**pp == '#')
2648 ++*pp;
2649 else
2650 {
2651 static struct complaint msg = {
2652 "Prototyped function type didn't end arguments with `#':\n%s",
2653 0, 0
2654 };
2655 complain (&msg, type_start);
2656 }
2657
2658 /* If there is just one argument whose type is `void', then
2659 that's just an empty argument list. */
2660 if (arg_types
2661 && ! arg_types->next
2662 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
2663 num_args = 0;
2664
2665 TYPE_FIELDS (func_type)
2666 = (struct field *) TYPE_ALLOC (func_type,
2667 num_args * sizeof (struct field));
2668 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
2669 {
2670 int i;
2671 struct type_list *t;
2672
2673 /* We stuck each argument type onto the front of the list
2674 when we read it, so the list is reversed. Build the
2675 fields array right-to-left. */
2676 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
2677 TYPE_FIELD_TYPE (func_type, i) = t->type;
2678 }
2679 TYPE_NFIELDS (func_type) = num_args;
2680 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
2681
2682 type = func_type;
2683 break;
2684 }
2685
2686 case 'k': /* Const qualifier on some type (Sun) */
2687 case 'c': /* Const qualifier on some type (OS9000) */
2688 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2689 only accept 'c' in the os9k_stabs case. */
2690 if (type_descriptor == 'c' && !os9k_stabs)
2691 return error_type (pp, objfile);
2692 type = read_type (pp, objfile);
2693 type = make_cv_type (1, TYPE_VOLATILE (type), type,
2694 dbx_lookup_type (typenums));
2695 break;
2696
2697 case 'B': /* Volatile qual on some type (Sun) */
2698 case 'i': /* Volatile qual on some type (OS9000) */
2699 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2700 only accept 'i' in the os9k_stabs case. */
2701 if (type_descriptor == 'i' && !os9k_stabs)
2702 return error_type (pp, objfile);
2703 type = read_type (pp, objfile);
2704 type = make_cv_type (TYPE_CONST (type), 1, type,
2705 dbx_lookup_type (typenums));
2706 break;
2707
2708 case '@':
2709 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2710 { /* Member (class & variable) type */
2711 /* FIXME -- we should be doing smash_to_XXX types here. */
2712
2713 struct type *domain = read_type (pp, objfile);
2714 struct type *memtype;
2715
2716 if (**pp != ',')
2717 /* Invalid member type data format. */
2718 return error_type (pp, objfile);
2719 ++*pp;
2720
2721 memtype = read_type (pp, objfile);
2722 type = dbx_alloc_type (typenums, objfile);
2723 smash_to_member_type (type, domain, memtype);
2724 }
2725 else
2726 /* type attribute */
2727 {
2728 char *attr = *pp;
2729 /* Skip to the semicolon. */
2730 while (**pp != ';' && **pp != '\0')
2731 ++(*pp);
2732 if (**pp == '\0')
2733 return error_type (pp, objfile);
2734 else
2735 ++ * pp; /* Skip the semicolon. */
2736
2737 switch (*attr)
2738 {
2739 case 's': /* Size attribute */
2740 type_size = atoi (attr + 1);
2741 if (type_size <= 0)
2742 type_size = -1;
2743 break;
2744
2745 case 'S': /* String attribute */
2746 /* FIXME: check to see if following type is array? */
2747 is_string = 1;
2748 break;
2749
2750 case 'V': /* Vector attribute */
2751 /* FIXME: check to see if following type is array? */
2752 is_vector = 1;
2753 break;
2754
2755 default:
2756 /* Ignore unrecognized type attributes, so future compilers
2757 can invent new ones. */
2758 break;
2759 }
2760 ++*pp;
2761 goto again;
2762 }
2763 break;
2764
2765 case '#': /* Method (class & fn) type */
2766 if ((*pp)[0] == '#')
2767 {
2768 /* We'll get the parameter types from the name. */
2769 struct type *return_type;
2770
2771 (*pp)++;
2772 return_type = read_type (pp, objfile);
2773 if (*(*pp)++ != ';')
2774 complain (&invalid_member_complaint, symnum);
2775 type = allocate_stub_method (return_type);
2776 if (typenums[0] != -1)
2777 *dbx_lookup_type (typenums) = type;
2778 }
2779 else
2780 {
2781 struct type *domain = read_type (pp, objfile);
2782 struct type *return_type;
2783 struct type **args;
2784
2785 if (**pp != ',')
2786 /* Invalid member type data format. */
2787 return error_type (pp, objfile);
2788 else
2789 ++(*pp);
2790
2791 return_type = read_type (pp, objfile);
2792 args = read_args (pp, ';', objfile);
2793 type = dbx_alloc_type (typenums, objfile);
2794 smash_to_method_type (type, domain, return_type, args);
2795 }
2796 break;
2797
2798 case 'r': /* Range type */
2799 type = read_range_type (pp, typenums, objfile);
2800 if (typenums[0] != -1)
2801 *dbx_lookup_type (typenums) = type;
2802 break;
2803
2804 case 'b':
2805 if (os9k_stabs)
2806 /* Const and volatile qualified type. */
2807 type = read_type (pp, objfile);
2808 else
2809 {
2810 /* Sun ACC builtin int type */
2811 type = read_sun_builtin_type (pp, typenums, objfile);
2812 if (typenums[0] != -1)
2813 *dbx_lookup_type (typenums) = type;
2814 }
2815 break;
2816
2817 case 'R': /* Sun ACC builtin float type */
2818 type = read_sun_floating_type (pp, typenums, objfile);
2819 if (typenums[0] != -1)
2820 *dbx_lookup_type (typenums) = type;
2821 break;
2822
2823 case 'e': /* Enumeration type */
2824 type = dbx_alloc_type (typenums, objfile);
2825 type = read_enum_type (pp, type, objfile);
2826 if (typenums[0] != -1)
2827 *dbx_lookup_type (typenums) = type;
2828 break;
2829
2830 case 's': /* Struct type */
2831 case 'u': /* Union type */
2832 {
2833 enum type_code type_code = TYPE_CODE_UNDEF;
2834 type = dbx_alloc_type (typenums, objfile);
2835 switch (type_descriptor)
2836 {
2837 case 's':
2838 type_code = TYPE_CODE_STRUCT;
2839 break;
2840 case 'u':
2841 type_code = TYPE_CODE_UNION;
2842 break;
2843 }
2844 type = read_struct_type (pp, type, type_code, objfile);
2845 break;
2846 }
2847
2848 case 'a': /* Array type */
2849 if (**pp != 'r')
2850 return error_type (pp, objfile);
2851 ++*pp;
2852
2853 type = dbx_alloc_type (typenums, objfile);
2854 type = read_array_type (pp, type, objfile);
2855 if (is_string)
2856 TYPE_CODE (type) = TYPE_CODE_STRING;
2857 if (is_vector)
2858 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
2859 break;
2860
2861 case 'S': /* Set or bitstring type */
2862 type1 = read_type (pp, objfile);
2863 type = create_set_type ((struct type *) NULL, type1);
2864 if (is_string)
2865 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2866 if (typenums[0] != -1)
2867 *dbx_lookup_type (typenums) = type;
2868 break;
2869
2870 default:
2871 --*pp; /* Go back to the symbol in error */
2872 /* Particularly important if it was \0! */
2873 return error_type (pp, objfile);
2874 }
2875
2876 if (type == 0)
2877 {
2878 warning ("GDB internal error, type is NULL in stabsread.c\n");
2879 return error_type (pp, objfile);
2880 }
2881
2882 /* Size specified in a type attribute overrides any other size. */
2883 if (type_size != -1)
2884 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2885
2886 return type;
2887 }
2888 \f
2889 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2890 Return the proper type node for a given builtin type number. */
2891
2892 static struct type *
2893 rs6000_builtin_type (int typenum)
2894 {
2895 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2896 #define NUMBER_RECOGNIZED 34
2897 /* This includes an empty slot for type number -0. */
2898 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2899 struct type *rettype = NULL;
2900
2901 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2902 {
2903 complain (&rs6000_builtin_complaint, typenum);
2904 return builtin_type_error;
2905 }
2906 if (negative_types[-typenum] != NULL)
2907 return negative_types[-typenum];
2908
2909 #if TARGET_CHAR_BIT != 8
2910 #error This code wrong for TARGET_CHAR_BIT not 8
2911 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2912 that if that ever becomes not true, the correct fix will be to
2913 make the size in the struct type to be in bits, not in units of
2914 TARGET_CHAR_BIT. */
2915 #endif
2916
2917 switch (-typenum)
2918 {
2919 case 1:
2920 /* The size of this and all the other types are fixed, defined
2921 by the debugging format. If there is a type called "int" which
2922 is other than 32 bits, then it should use a new negative type
2923 number (or avoid negative type numbers for that case).
2924 See stabs.texinfo. */
2925 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2926 break;
2927 case 2:
2928 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2929 break;
2930 case 3:
2931 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2932 break;
2933 case 4:
2934 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2935 break;
2936 case 5:
2937 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2938 "unsigned char", NULL);
2939 break;
2940 case 6:
2941 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2942 break;
2943 case 7:
2944 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2945 "unsigned short", NULL);
2946 break;
2947 case 8:
2948 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2949 "unsigned int", NULL);
2950 break;
2951 case 9:
2952 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2953 "unsigned", NULL);
2954 case 10:
2955 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2956 "unsigned long", NULL);
2957 break;
2958 case 11:
2959 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2960 break;
2961 case 12:
2962 /* IEEE single precision (32 bit). */
2963 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2964 break;
2965 case 13:
2966 /* IEEE double precision (64 bit). */
2967 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2968 break;
2969 case 14:
2970 /* This is an IEEE double on the RS/6000, and different machines with
2971 different sizes for "long double" should use different negative
2972 type numbers. See stabs.texinfo. */
2973 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2974 break;
2975 case 15:
2976 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2977 break;
2978 case 16:
2979 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2980 "boolean", NULL);
2981 break;
2982 case 17:
2983 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2984 break;
2985 case 18:
2986 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2987 break;
2988 case 19:
2989 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2990 break;
2991 case 20:
2992 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2993 "character", NULL);
2994 break;
2995 case 21:
2996 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2997 "logical*1", NULL);
2998 break;
2999 case 22:
3000 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
3001 "logical*2", NULL);
3002 break;
3003 case 23:
3004 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
3005 "logical*4", NULL);
3006 break;
3007 case 24:
3008 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
3009 "logical", NULL);
3010 break;
3011 case 25:
3012 /* Complex type consisting of two IEEE single precision values. */
3013 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
3014 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
3015 NULL);
3016 break;
3017 case 26:
3018 /* Complex type consisting of two IEEE double precision values. */
3019 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
3020 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
3021 NULL);
3022 break;
3023 case 27:
3024 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
3025 break;
3026 case 28:
3027 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
3028 break;
3029 case 29:
3030 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
3031 break;
3032 case 30:
3033 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
3034 break;
3035 case 31:
3036 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
3037 break;
3038 case 32:
3039 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
3040 "unsigned long long", NULL);
3041 break;
3042 case 33:
3043 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
3044 "logical*8", NULL);
3045 break;
3046 case 34:
3047 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
3048 break;
3049 }
3050 negative_types[-typenum] = rettype;
3051 return rettype;
3052 }
3053 \f
3054 /* This page contains subroutines of read_type. */
3055
3056 /* Read member function stabs info for C++ classes. The form of each member
3057 function data is:
3058
3059 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
3060
3061 An example with two member functions is:
3062
3063 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
3064
3065 For the case of overloaded operators, the format is op$::*.funcs, where
3066 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
3067 name (such as `+=') and `.' marks the end of the operator name.
3068
3069 Returns 1 for success, 0 for failure. */
3070
3071 static int
3072 read_member_functions (struct field_info *fip, char **pp, struct type *type,
3073 struct objfile *objfile)
3074 {
3075 int nfn_fields = 0;
3076 int length = 0;
3077 /* Total number of member functions defined in this class. If the class
3078 defines two `f' functions, and one `g' function, then this will have
3079 the value 3. */
3080 int total_length = 0;
3081 int i;
3082 struct next_fnfield
3083 {
3084 struct next_fnfield *next;
3085 struct fn_field fn_field;
3086 }
3087 *sublist;
3088 struct type *look_ahead_type;
3089 struct next_fnfieldlist *new_fnlist;
3090 struct next_fnfield *new_sublist;
3091 char *main_fn_name;
3092 register char *p;
3093
3094 /* Process each list until we find something that is not a member function
3095 or find the end of the functions. */
3096
3097 while (**pp != ';')
3098 {
3099 /* We should be positioned at the start of the function name.
3100 Scan forward to find the first ':' and if it is not the
3101 first of a "::" delimiter, then this is not a member function. */
3102 p = *pp;
3103 while (*p != ':')
3104 {
3105 p++;
3106 }
3107 if (p[1] != ':')
3108 {
3109 break;
3110 }
3111
3112 sublist = NULL;
3113 look_ahead_type = NULL;
3114 length = 0;
3115
3116 new_fnlist = (struct next_fnfieldlist *)
3117 xmalloc (sizeof (struct next_fnfieldlist));
3118 make_cleanup (xfree, new_fnlist);
3119 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3120
3121 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3122 {
3123 /* This is a completely wierd case. In order to stuff in the
3124 names that might contain colons (the usual name delimiter),
3125 Mike Tiemann defined a different name format which is
3126 signalled if the identifier is "op$". In that case, the
3127 format is "op$::XXXX." where XXXX is the name. This is
3128 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3129 /* This lets the user type "break operator+".
3130 We could just put in "+" as the name, but that wouldn't
3131 work for "*". */
3132 static char opname[32] =
3133 {'o', 'p', CPLUS_MARKER};
3134 char *o = opname + 3;
3135
3136 /* Skip past '::'. */
3137 *pp = p + 2;
3138
3139 STABS_CONTINUE (pp, objfile);
3140 p = *pp;
3141 while (*p != '.')
3142 {
3143 *o++ = *p++;
3144 }
3145 main_fn_name = savestring (opname, o - opname);
3146 /* Skip past '.' */
3147 *pp = p + 1;
3148 }
3149 else
3150 {
3151 main_fn_name = savestring (*pp, p - *pp);
3152 /* Skip past '::'. */
3153 *pp = p + 2;
3154 }
3155 new_fnlist->fn_fieldlist.name = main_fn_name;
3156
3157 do
3158 {
3159 new_sublist =
3160 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3161 make_cleanup (xfree, new_sublist);
3162 memset (new_sublist, 0, sizeof (struct next_fnfield));
3163
3164 /* Check for and handle cretinous dbx symbol name continuation! */
3165 if (look_ahead_type == NULL)
3166 {
3167 /* Normal case. */
3168 STABS_CONTINUE (pp, objfile);
3169
3170 new_sublist->fn_field.type = read_type (pp, objfile);
3171 if (**pp != ':')
3172 {
3173 /* Invalid symtab info for member function. */
3174 return 0;
3175 }
3176 }
3177 else
3178 {
3179 /* g++ version 1 kludge */
3180 new_sublist->fn_field.type = look_ahead_type;
3181 look_ahead_type = NULL;
3182 }
3183
3184 (*pp)++;
3185 p = *pp;
3186 while (*p != ';')
3187 {
3188 p++;
3189 }
3190
3191 /* If this is just a stub, then we don't have the real name here. */
3192
3193 if (TYPE_STUB (new_sublist->fn_field.type))
3194 {
3195 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3196 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3197 new_sublist->fn_field.is_stub = 1;
3198 }
3199 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3200 *pp = p + 1;
3201
3202 /* Set this member function's visibility fields. */
3203 switch (*(*pp)++)
3204 {
3205 case VISIBILITY_PRIVATE:
3206 new_sublist->fn_field.is_private = 1;
3207 break;
3208 case VISIBILITY_PROTECTED:
3209 new_sublist->fn_field.is_protected = 1;
3210 break;
3211 }
3212
3213 STABS_CONTINUE (pp, objfile);
3214 switch (**pp)
3215 {
3216 case 'A': /* Normal functions. */
3217 new_sublist->fn_field.is_const = 0;
3218 new_sublist->fn_field.is_volatile = 0;
3219 (*pp)++;
3220 break;
3221 case 'B': /* `const' member functions. */
3222 new_sublist->fn_field.is_const = 1;
3223 new_sublist->fn_field.is_volatile = 0;
3224 (*pp)++;
3225 break;
3226 case 'C': /* `volatile' member function. */
3227 new_sublist->fn_field.is_const = 0;
3228 new_sublist->fn_field.is_volatile = 1;
3229 (*pp)++;
3230 break;
3231 case 'D': /* `const volatile' member function. */
3232 new_sublist->fn_field.is_const = 1;
3233 new_sublist->fn_field.is_volatile = 1;
3234 (*pp)++;
3235 break;
3236 case '*': /* File compiled with g++ version 1 -- no info */
3237 case '?':
3238 case '.':
3239 break;
3240 default:
3241 complain (&const_vol_complaint, **pp);
3242 break;
3243 }
3244
3245 switch (*(*pp)++)
3246 {
3247 case '*':
3248 {
3249 int nbits;
3250 /* virtual member function, followed by index.
3251 The sign bit is set to distinguish pointers-to-methods
3252 from virtual function indicies. Since the array is
3253 in words, the quantity must be shifted left by 1
3254 on 16 bit machine, and by 2 on 32 bit machine, forcing
3255 the sign bit out, and usable as a valid index into
3256 the array. Remove the sign bit here. */
3257 new_sublist->fn_field.voffset =
3258 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3259 if (nbits != 0)
3260 return 0;
3261
3262 STABS_CONTINUE (pp, objfile);
3263 if (**pp == ';' || **pp == '\0')
3264 {
3265 /* Must be g++ version 1. */
3266 new_sublist->fn_field.fcontext = 0;
3267 }
3268 else
3269 {
3270 /* Figure out from whence this virtual function came.
3271 It may belong to virtual function table of
3272 one of its baseclasses. */
3273 look_ahead_type = read_type (pp, objfile);
3274 if (**pp == ':')
3275 {
3276 /* g++ version 1 overloaded methods. */
3277 }
3278 else
3279 {
3280 new_sublist->fn_field.fcontext = look_ahead_type;
3281 if (**pp != ';')
3282 {
3283 return 0;
3284 }
3285 else
3286 {
3287 ++*pp;
3288 }
3289 look_ahead_type = NULL;
3290 }
3291 }
3292 break;
3293 }
3294 case '?':
3295 /* static member function. */
3296 {
3297 int slen = strlen (main_fn_name);
3298
3299 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3300
3301 /* For static member functions, we can't tell if they
3302 are stubbed, as they are put out as functions, and not as
3303 methods.
3304 GCC v2 emits the fully mangled name if
3305 dbxout.c:flag_minimal_debug is not set, so we have to
3306 detect a fully mangled physname here and set is_stub
3307 accordingly. Fully mangled physnames in v2 start with
3308 the member function name, followed by two underscores.
3309 GCC v3 currently always emits stubbed member functions,
3310 but with fully mangled physnames, which start with _Z. */
3311 if (!(strncmp (new_sublist->fn_field.physname,
3312 main_fn_name, slen) == 0
3313 && new_sublist->fn_field.physname[slen] == '_'
3314 && new_sublist->fn_field.physname[slen + 1] == '_'))
3315 {
3316 new_sublist->fn_field.is_stub = 1;
3317 }
3318 break;
3319 }
3320
3321 default:
3322 /* error */
3323 complain (&member_fn_complaint, (*pp)[-1]);
3324 /* Fall through into normal member function. */
3325
3326 case '.':
3327 /* normal member function. */
3328 new_sublist->fn_field.voffset = 0;
3329 new_sublist->fn_field.fcontext = 0;
3330 break;
3331 }
3332
3333 new_sublist->next = sublist;
3334 sublist = new_sublist;
3335 length++;
3336 STABS_CONTINUE (pp, objfile);
3337 }
3338 while (**pp != ';' && **pp != '\0');
3339
3340 (*pp)++;
3341 STABS_CONTINUE (pp, objfile);
3342
3343 /* Skip GCC 3.X member functions which are duplicates of the callable
3344 constructor/destructor. */
3345 if (strcmp (main_fn_name, "__base_ctor") == 0
3346 || strcmp (main_fn_name, "__base_dtor") == 0
3347 || strcmp (main_fn_name, "__deleting_dtor") == 0)
3348 {
3349 xfree (main_fn_name);
3350 }
3351 else
3352 {
3353 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3354 obstack_alloc (&objfile->type_obstack,
3355 sizeof (struct fn_field) * length);
3356 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3357 sizeof (struct fn_field) * length);
3358 for (i = length; (i--, sublist); sublist = sublist->next)
3359 {
3360 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3361 }
3362
3363 new_fnlist->fn_fieldlist.length = length;
3364 new_fnlist->next = fip->fnlist;
3365 fip->fnlist = new_fnlist;
3366 nfn_fields++;
3367 total_length += length;
3368 }
3369 }
3370
3371 if (nfn_fields)
3372 {
3373 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3374 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3375 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3376 memset (TYPE_FN_FIELDLISTS (type), 0,
3377 sizeof (struct fn_fieldlist) * nfn_fields);
3378 TYPE_NFN_FIELDS (type) = nfn_fields;
3379 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3380 }
3381
3382 return 1;
3383 }
3384
3385 /* Special GNU C++ name.
3386
3387 Returns 1 for success, 0 for failure. "failure" means that we can't
3388 keep parsing and it's time for error_type(). */
3389
3390 static int
3391 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
3392 struct objfile *objfile)
3393 {
3394 register char *p;
3395 char *name;
3396 char cpp_abbrev;
3397 struct type *context;
3398
3399 p = *pp;
3400 if (*++p == 'v')
3401 {
3402 name = NULL;
3403 cpp_abbrev = *++p;
3404
3405 *pp = p + 1;
3406
3407 /* At this point, *pp points to something like "22:23=*22...",
3408 where the type number before the ':' is the "context" and
3409 everything after is a regular type definition. Lookup the
3410 type, find it's name, and construct the field name. */
3411
3412 context = read_type (pp, objfile);
3413
3414 switch (cpp_abbrev)
3415 {
3416 case 'f': /* $vf -- a virtual function table pointer */
3417 name = type_name_no_tag (context);
3418 if (name == NULL)
3419 {
3420 name = "";
3421 }
3422 fip->list->field.name =
3423 obconcat (&objfile->type_obstack, vptr_name, name, "");
3424 break;
3425
3426 case 'b': /* $vb -- a virtual bsomethingorother */
3427 name = type_name_no_tag (context);
3428 if (name == NULL)
3429 {
3430 complain (&invalid_cpp_type_complaint, symnum);
3431 name = "FOO";
3432 }
3433 fip->list->field.name =
3434 obconcat (&objfile->type_obstack, vb_name, name, "");
3435 break;
3436
3437 default:
3438 complain (&invalid_cpp_abbrev_complaint, *pp);
3439 fip->list->field.name =
3440 obconcat (&objfile->type_obstack,
3441 "INVALID_CPLUSPLUS_ABBREV", "", "");
3442 break;
3443 }
3444
3445 /* At this point, *pp points to the ':'. Skip it and read the
3446 field type. */
3447
3448 p = ++(*pp);
3449 if (p[-1] != ':')
3450 {
3451 complain (&invalid_cpp_abbrev_complaint, *pp);
3452 return 0;
3453 }
3454 fip->list->field.type = read_type (pp, objfile);
3455 if (**pp == ',')
3456 (*pp)++; /* Skip the comma. */
3457 else
3458 return 0;
3459
3460 {
3461 int nbits;
3462 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3463 if (nbits != 0)
3464 return 0;
3465 }
3466 /* This field is unpacked. */
3467 FIELD_BITSIZE (fip->list->field) = 0;
3468 fip->list->visibility = VISIBILITY_PRIVATE;
3469 }
3470 else
3471 {
3472 complain (&invalid_cpp_abbrev_complaint, *pp);
3473 /* We have no idea what syntax an unrecognized abbrev would have, so
3474 better return 0. If we returned 1, we would need to at least advance
3475 *pp to avoid an infinite loop. */
3476 return 0;
3477 }
3478 return 1;
3479 }
3480
3481 static void
3482 read_one_struct_field (struct field_info *fip, char **pp, char *p,
3483 struct type *type, struct objfile *objfile)
3484 {
3485 /* The following is code to work around cfront generated stabs.
3486 The stabs contains full mangled name for each field.
3487 We try to demangle the name and extract the field name out of it.
3488 */
3489 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3490 {
3491 char save_p;
3492 char *dem, *dem_p;
3493 save_p = *p;
3494 *p = '\0';
3495 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3496 if (dem != NULL)
3497 {
3498 dem_p = strrchr (dem, ':');
3499 if (dem_p != 0 && *(dem_p - 1) == ':')
3500 dem_p++;
3501 FIELD_NAME (fip->list->field) =
3502 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3503 }
3504 else
3505 {
3506 FIELD_NAME (fip->list->field) =
3507 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3508 }
3509 *p = save_p;
3510 }
3511 /* end of code for cfront work around */
3512
3513 else
3514 fip->list->field.name =
3515 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3516 *pp = p + 1;
3517
3518 /* This means we have a visibility for a field coming. */
3519 if (**pp == '/')
3520 {
3521 (*pp)++;
3522 fip->list->visibility = *(*pp)++;
3523 }
3524 else
3525 {
3526 /* normal dbx-style format, no explicit visibility */
3527 fip->list->visibility = VISIBILITY_PUBLIC;
3528 }
3529
3530 fip->list->field.type = read_type (pp, objfile);
3531 if (**pp == ':')
3532 {
3533 p = ++(*pp);
3534 #if 0
3535 /* Possible future hook for nested types. */
3536 if (**pp == '!')
3537 {
3538 fip->list->field.bitpos = (long) -2; /* nested type */
3539 p = ++(*pp);
3540 }
3541 else
3542 ...;
3543 #endif
3544 while (*p != ';')
3545 {
3546 p++;
3547 }
3548 /* Static class member. */
3549 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3550 *pp = p + 1;
3551 return;
3552 }
3553 else if (**pp != ',')
3554 {
3555 /* Bad structure-type format. */
3556 complain (&stabs_general_complaint, "bad structure-type format");
3557 return;
3558 }
3559
3560 (*pp)++; /* Skip the comma. */
3561
3562 {
3563 int nbits;
3564 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3565 if (nbits != 0)
3566 {
3567 complain (&stabs_general_complaint, "bad structure-type format");
3568 return;
3569 }
3570 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3571 if (nbits != 0)
3572 {
3573 complain (&stabs_general_complaint, "bad structure-type format");
3574 return;
3575 }
3576 }
3577
3578 if (FIELD_BITPOS (fip->list->field) == 0
3579 && FIELD_BITSIZE (fip->list->field) == 0)
3580 {
3581 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3582 it is a field which has been optimized out. The correct stab for
3583 this case is to use VISIBILITY_IGNORE, but that is a recent
3584 invention. (2) It is a 0-size array. For example
3585 union { int num; char str[0]; } foo. Printing "<no value>" for
3586 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3587 will continue to work, and a 0-size array as a whole doesn't
3588 have any contents to print.
3589
3590 I suspect this probably could also happen with gcc -gstabs (not
3591 -gstabs+) for static fields, and perhaps other C++ extensions.
3592 Hopefully few people use -gstabs with gdb, since it is intended
3593 for dbx compatibility. */
3594
3595 /* Ignore this field. */
3596 fip->list->visibility = VISIBILITY_IGNORE;
3597 }
3598 else
3599 {
3600 /* Detect an unpacked field and mark it as such.
3601 dbx gives a bit size for all fields.
3602 Note that forward refs cannot be packed,
3603 and treat enums as if they had the width of ints. */
3604
3605 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3606
3607 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3608 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3609 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3610 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3611 {
3612 FIELD_BITSIZE (fip->list->field) = 0;
3613 }
3614 if ((FIELD_BITSIZE (fip->list->field)
3615 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3616 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3617 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3618 )
3619 &&
3620 FIELD_BITPOS (fip->list->field) % 8 == 0)
3621 {
3622 FIELD_BITSIZE (fip->list->field) = 0;
3623 }
3624 }
3625 }
3626
3627
3628 /* Read struct or class data fields. They have the form:
3629
3630 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3631
3632 At the end, we see a semicolon instead of a field.
3633
3634 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3635 a static field.
3636
3637 The optional VISIBILITY is one of:
3638
3639 '/0' (VISIBILITY_PRIVATE)
3640 '/1' (VISIBILITY_PROTECTED)
3641 '/2' (VISIBILITY_PUBLIC)
3642 '/9' (VISIBILITY_IGNORE)
3643
3644 or nothing, for C style fields with public visibility.
3645
3646 Returns 1 for success, 0 for failure. */
3647
3648 static int
3649 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3650 struct objfile *objfile)
3651 {
3652 register char *p;
3653 struct nextfield *new;
3654
3655 /* We better set p right now, in case there are no fields at all... */
3656
3657 p = *pp;
3658
3659 /* Read each data member type until we find the terminating ';' at the end of
3660 the data member list, or break for some other reason such as finding the
3661 start of the member function list. */
3662 /* Stab string for structure/union does not end with two ';' in
3663 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3664
3665 while (**pp != ';' && **pp != '\0')
3666 {
3667 if (os9k_stabs && **pp == ',')
3668 break;
3669 STABS_CONTINUE (pp, objfile);
3670 /* Get space to record the next field's data. */
3671 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3672 make_cleanup (xfree, new);
3673 memset (new, 0, sizeof (struct nextfield));
3674 new->next = fip->list;
3675 fip->list = new;
3676
3677 /* Get the field name. */
3678 p = *pp;
3679
3680 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3681 unless the CPLUS_MARKER is followed by an underscore, in
3682 which case it is just the name of an anonymous type, which we
3683 should handle like any other type name. */
3684
3685 if (is_cplus_marker (p[0]) && p[1] != '_')
3686 {
3687 if (!read_cpp_abbrev (fip, pp, type, objfile))
3688 return 0;
3689 continue;
3690 }
3691
3692 /* Look for the ':' that separates the field name from the field
3693 values. Data members are delimited by a single ':', while member
3694 functions are delimited by a pair of ':'s. When we hit the member
3695 functions (if any), terminate scan loop and return. */
3696
3697 while (*p != ':' && *p != '\0')
3698 {
3699 p++;
3700 }
3701 if (*p == '\0')
3702 return 0;
3703
3704 /* Check to see if we have hit the member functions yet. */
3705 if (p[1] == ':')
3706 {
3707 break;
3708 }
3709 read_one_struct_field (fip, pp, p, type, objfile);
3710 }
3711 if (p[0] == ':' && p[1] == ':')
3712 {
3713 /* chill the list of fields: the last entry (at the head) is a
3714 partially constructed entry which we now scrub. */
3715 fip->list = fip->list->next;
3716 }
3717 return 1;
3718 }
3719 /* *INDENT-OFF* */
3720 /* The stabs for C++ derived classes contain baseclass information which
3721 is marked by a '!' character after the total size. This function is
3722 called when we encounter the baseclass marker, and slurps up all the
3723 baseclass information.
3724
3725 Immediately following the '!' marker is the number of base classes that
3726 the class is derived from, followed by information for each base class.
3727 For each base class, there are two visibility specifiers, a bit offset
3728 to the base class information within the derived class, a reference to
3729 the type for the base class, and a terminating semicolon.
3730
3731 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3732 ^^ ^ ^ ^ ^ ^ ^
3733 Baseclass information marker __________________|| | | | | | |
3734 Number of baseclasses __________________________| | | | | | |
3735 Visibility specifiers (2) ________________________| | | | | |
3736 Offset in bits from start of class _________________| | | | |
3737 Type number for base class ___________________________| | | |
3738 Visibility specifiers (2) _______________________________| | |
3739 Offset in bits from start of class ________________________| |
3740 Type number of base class ____________________________________|
3741
3742 Return 1 for success, 0 for (error-type-inducing) failure. */
3743 /* *INDENT-ON* */
3744
3745
3746
3747 static int
3748 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3749 struct objfile *objfile)
3750 {
3751 int i;
3752 struct nextfield *new;
3753
3754 if (**pp != '!')
3755 {
3756 return 1;
3757 }
3758 else
3759 {
3760 /* Skip the '!' baseclass information marker. */
3761 (*pp)++;
3762 }
3763
3764 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3765 {
3766 int nbits;
3767 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3768 if (nbits != 0)
3769 return 0;
3770 }
3771
3772 #if 0
3773 /* Some stupid compilers have trouble with the following, so break
3774 it up into simpler expressions. */
3775 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3776 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3777 #else
3778 {
3779 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3780 char *pointer;
3781
3782 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3783 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3784 }
3785 #endif /* 0 */
3786
3787 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3788
3789 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3790 {
3791 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3792 make_cleanup (xfree, new);
3793 memset (new, 0, sizeof (struct nextfield));
3794 new->next = fip->list;
3795 fip->list = new;
3796 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3797
3798 STABS_CONTINUE (pp, objfile);
3799 switch (**pp)
3800 {
3801 case '0':
3802 /* Nothing to do. */
3803 break;
3804 case '1':
3805 SET_TYPE_FIELD_VIRTUAL (type, i);
3806 break;
3807 default:
3808 /* Unknown character. Complain and treat it as non-virtual. */
3809 {
3810 static struct complaint msg =
3811 {
3812 "Unknown virtual character `%c' for baseclass", 0, 0};
3813 complain (&msg, **pp);
3814 }
3815 }
3816 ++(*pp);
3817
3818 new->visibility = *(*pp)++;
3819 switch (new->visibility)
3820 {
3821 case VISIBILITY_PRIVATE:
3822 case VISIBILITY_PROTECTED:
3823 case VISIBILITY_PUBLIC:
3824 break;
3825 default:
3826 /* Bad visibility format. Complain and treat it as
3827 public. */
3828 {
3829 static struct complaint msg =
3830 {
3831 "Unknown visibility `%c' for baseclass", 0, 0
3832 };
3833 complain (&msg, new->visibility);
3834 new->visibility = VISIBILITY_PUBLIC;
3835 }
3836 }
3837
3838 {
3839 int nbits;
3840
3841 /* The remaining value is the bit offset of the portion of the object
3842 corresponding to this baseclass. Always zero in the absence of
3843 multiple inheritance. */
3844
3845 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3846 if (nbits != 0)
3847 return 0;
3848 }
3849
3850 /* The last piece of baseclass information is the type of the
3851 base class. Read it, and remember it's type name as this
3852 field's name. */
3853
3854 new->field.type = read_type (pp, objfile);
3855 new->field.name = type_name_no_tag (new->field.type);
3856
3857 /* skip trailing ';' and bump count of number of fields seen */
3858 if (**pp == ';')
3859 (*pp)++;
3860 else
3861 return 0;
3862 }
3863 return 1;
3864 }
3865
3866 /* The tail end of stabs for C++ classes that contain a virtual function
3867 pointer contains a tilde, a %, and a type number.
3868 The type number refers to the base class (possibly this class itself) which
3869 contains the vtable pointer for the current class.
3870
3871 This function is called when we have parsed all the method declarations,
3872 so we can look for the vptr base class info. */
3873
3874 static int
3875 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3876 struct objfile *objfile)
3877 {
3878 register char *p;
3879
3880 STABS_CONTINUE (pp, objfile);
3881
3882 /* If we are positioned at a ';', then skip it. */
3883 if (**pp == ';')
3884 {
3885 (*pp)++;
3886 }
3887
3888 if (**pp == '~')
3889 {
3890 (*pp)++;
3891
3892 if (**pp == '=' || **pp == '+' || **pp == '-')
3893 {
3894 /* Obsolete flags that used to indicate the presence
3895 of constructors and/or destructors. */
3896 (*pp)++;
3897 }
3898
3899 /* Read either a '%' or the final ';'. */
3900 if (*(*pp)++ == '%')
3901 {
3902 /* The next number is the type number of the base class
3903 (possibly our own class) which supplies the vtable for
3904 this class. Parse it out, and search that class to find
3905 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3906 and TYPE_VPTR_FIELDNO. */
3907
3908 struct type *t;
3909 int i;
3910
3911 t = read_type (pp, objfile);
3912 p = (*pp)++;
3913 while (*p != '\0' && *p != ';')
3914 {
3915 p++;
3916 }
3917 if (*p == '\0')
3918 {
3919 /* Premature end of symbol. */
3920 return 0;
3921 }
3922
3923 TYPE_VPTR_BASETYPE (type) = t;
3924 if (type == t) /* Our own class provides vtbl ptr */
3925 {
3926 for (i = TYPE_NFIELDS (t) - 1;
3927 i >= TYPE_N_BASECLASSES (t);
3928 --i)
3929 {
3930 if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3931 sizeof (vptr_name) - 1))
3932 {
3933 TYPE_VPTR_FIELDNO (type) = i;
3934 goto gotit;
3935 }
3936 }
3937 /* Virtual function table field not found. */
3938 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3939 return 0;
3940 }
3941 else
3942 {
3943 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3944 }
3945
3946 gotit:
3947 *pp = p + 1;
3948 }
3949 }
3950 return 1;
3951 }
3952
3953 static int
3954 attach_fn_fields_to_type (struct field_info *fip, register struct type *type)
3955 {
3956 register int n;
3957
3958 for (n = TYPE_NFN_FIELDS (type);
3959 fip->fnlist != NULL;
3960 fip->fnlist = fip->fnlist->next)
3961 {
3962 --n; /* Circumvent Sun3 compiler bug */
3963 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3964 }
3965 return 1;
3966 }
3967
3968 /* read cfront class static data.
3969 pp points to string starting with the list of static data
3970 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3971 ^^^^^^^^
3972
3973 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3974 ^
3975 */
3976
3977 static int
3978 read_cfront_static_fields (struct field_info *fip, char **pp, struct type *type,
3979 struct objfile *objfile)
3980 {
3981 struct nextfield *new;
3982 struct type *stype;
3983 char *sname;
3984 struct symbol *ref_static = 0;
3985
3986 if (**pp == ';') /* no static data; return */
3987 {
3988 ++(*pp);
3989 return 1;
3990 }
3991
3992 /* Process each field in the list until we find the terminating ";" */
3993
3994 /* eg: p = "as__1A ;;;" */
3995 STABS_CONTINUE (pp, objfile); /* handle \\ */
3996 while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
3997 {
3998 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name */
3999 if (!ref_static)
4000 {
4001 static struct complaint msg =
4002 {"\
4003 Unable to find symbol for static data field %s\n",
4004 0, 0};
4005 complain (&msg, sname);
4006 continue;
4007 }
4008 stype = SYMBOL_TYPE (ref_static);
4009
4010 /* allocate a new fip */
4011 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4012 make_cleanup (xfree, new);
4013 memset (new, 0, sizeof (struct nextfield));
4014 new->next = fip->list;
4015 fip->list = new;
4016
4017 /* set visibility */
4018 /* FIXME! no way to tell visibility from stabs??? */
4019 new->visibility = VISIBILITY_PUBLIC;
4020
4021 /* set field info into fip */
4022 fip->list->field.type = stype;
4023
4024 /* set bitpos & bitsize */
4025 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
4026
4027 /* set name field */
4028 /* The following is code to work around cfront generated stabs.
4029 The stabs contains full mangled name for each field.
4030 We try to demangle the name and extract the field name out of it.
4031 */
4032 if (ARM_DEMANGLING)
4033 {
4034 char *dem, *dem_p;
4035 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
4036 if (dem != NULL)
4037 {
4038 dem_p = strrchr (dem, ':');
4039 if (dem_p != 0 && *(dem_p - 1) == ':')
4040 dem_p++;
4041 fip->list->field.name =
4042 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
4043 }
4044 else
4045 {
4046 fip->list->field.name =
4047 obsavestring (sname, strlen (sname), &objfile->type_obstack);
4048 }
4049 } /* end of code for cfront work around */
4050 } /* loop again for next static field */
4051 return 1;
4052 }
4053
4054 /* Copy structure fields to fip so attach_fields_to_type will work.
4055 type has already been created with the initial instance data fields.
4056 Now we want to be able to add the other members to the class,
4057 so we want to add them back to the fip and reattach them again
4058 once we have collected all the class members. */
4059
4060 static int
4061 copy_cfront_struct_fields (struct field_info *fip, struct type *type,
4062 struct objfile *objfile)
4063 {
4064 int nfields = TYPE_NFIELDS (type);
4065 int i;
4066 struct nextfield *new;
4067
4068 /* Copy the fields into the list of fips and reset the types
4069 to remove the old fields */
4070
4071 for (i = 0; i < nfields; i++)
4072 {
4073 /* allocate a new fip */
4074 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
4075 make_cleanup (xfree, new);
4076 memset (new, 0, sizeof (struct nextfield));
4077 new->next = fip->list;
4078 fip->list = new;
4079
4080 /* copy field info into fip */
4081 new->field = TYPE_FIELD (type, i);
4082 /* set visibility */
4083 if (TYPE_FIELD_PROTECTED (type, i))
4084 new->visibility = VISIBILITY_PROTECTED;
4085 else if (TYPE_FIELD_PRIVATE (type, i))
4086 new->visibility = VISIBILITY_PRIVATE;
4087 else
4088 new->visibility = VISIBILITY_PUBLIC;
4089 }
4090 /* Now delete the fields from the type since we will be
4091 allocing new space once we get the rest of the fields
4092 in attach_fields_to_type.
4093 The pointer TYPE_FIELDS(type) is left dangling but should
4094 be freed later by objstack_free */
4095 TYPE_FIELDS (type) = 0;
4096 TYPE_NFIELDS (type) = 0;
4097
4098 return 1;
4099 }
4100
4101 /* Create the vector of fields, and record how big it is.
4102 We need this info to record proper virtual function table information
4103 for this class's virtual functions. */
4104
4105 static int
4106 attach_fields_to_type (struct field_info *fip, register struct type *type,
4107 struct objfile *objfile)
4108 {
4109 register int nfields = 0;
4110 register int non_public_fields = 0;
4111 register struct nextfield *scan;
4112
4113 /* Count up the number of fields that we have, as well as taking note of
4114 whether or not there are any non-public fields, which requires us to
4115 allocate and build the private_field_bits and protected_field_bits
4116 bitfields. */
4117
4118 for (scan = fip->list; scan != NULL; scan = scan->next)
4119 {
4120 nfields++;
4121 if (scan->visibility != VISIBILITY_PUBLIC)
4122 {
4123 non_public_fields++;
4124 }
4125 }
4126
4127 /* Now we know how many fields there are, and whether or not there are any
4128 non-public fields. Record the field count, allocate space for the
4129 array of fields, and create blank visibility bitfields if necessary. */
4130
4131 TYPE_NFIELDS (type) = nfields;
4132 TYPE_FIELDS (type) = (struct field *)
4133 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4134 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4135
4136 if (non_public_fields)
4137 {
4138 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4139
4140 TYPE_FIELD_PRIVATE_BITS (type) =
4141 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4142 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4143
4144 TYPE_FIELD_PROTECTED_BITS (type) =
4145 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4146 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4147
4148 TYPE_FIELD_IGNORE_BITS (type) =
4149 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4150 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4151 }
4152
4153 /* Copy the saved-up fields into the field vector. Start from the head
4154 of the list, adding to the tail of the field array, so that they end
4155 up in the same order in the array in which they were added to the list. */
4156
4157 while (nfields-- > 0)
4158 {
4159 TYPE_FIELD (type, nfields) = fip->list->field;
4160 switch (fip->list->visibility)
4161 {
4162 case VISIBILITY_PRIVATE:
4163 SET_TYPE_FIELD_PRIVATE (type, nfields);
4164 break;
4165
4166 case VISIBILITY_PROTECTED:
4167 SET_TYPE_FIELD_PROTECTED (type, nfields);
4168 break;
4169
4170 case VISIBILITY_IGNORE:
4171 SET_TYPE_FIELD_IGNORE (type, nfields);
4172 break;
4173
4174 case VISIBILITY_PUBLIC:
4175 break;
4176
4177 default:
4178 /* Unknown visibility. Complain and treat it as public. */
4179 {
4180 static struct complaint msg =
4181 {
4182 "Unknown visibility `%c' for field", 0, 0};
4183 complain (&msg, fip->list->visibility);
4184 }
4185 break;
4186 }
4187 fip->list = fip->list->next;
4188 }
4189 return 1;
4190 }
4191
4192
4193 static struct complaint multiply_defined_struct =
4194 {"struct/union type gets multiply defined: %s%s", 0, 0};
4195
4196
4197 /* Complain that the compiler has emitted more than one definition for the
4198 structure type TYPE. */
4199 static void
4200 complain_about_struct_wipeout (struct type *type)
4201 {
4202 char *name = "";
4203 char *kind = "";
4204
4205 if (TYPE_TAG_NAME (type))
4206 {
4207 name = TYPE_TAG_NAME (type);
4208 switch (TYPE_CODE (type))
4209 {
4210 case TYPE_CODE_STRUCT: kind = "struct "; break;
4211 case TYPE_CODE_UNION: kind = "union "; break;
4212 case TYPE_CODE_ENUM: kind = "enum "; break;
4213 default: kind = "";
4214 }
4215 }
4216 else if (TYPE_NAME (type))
4217 {
4218 name = TYPE_NAME (type);
4219 kind = "";
4220 }
4221 else
4222 {
4223 name = "<unknown>";
4224 kind = "";
4225 }
4226
4227 complain (&multiply_defined_struct, kind, name);
4228 }
4229
4230
4231 /* Read the description of a structure (or union type) and return an object
4232 describing the type.
4233
4234 PP points to a character pointer that points to the next unconsumed token
4235 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4236 *PP will point to "4a:1,0,32;;".
4237
4238 TYPE points to an incomplete type that needs to be filled in.
4239
4240 OBJFILE points to the current objfile from which the stabs information is
4241 being read. (Note that it is redundant in that TYPE also contains a pointer
4242 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4243 */
4244
4245 static struct type *
4246 read_struct_type (char **pp, struct type *type, enum type_code type_code,
4247 struct objfile *objfile)
4248 {
4249 struct cleanup *back_to;
4250 struct field_info fi;
4251
4252 fi.list = NULL;
4253 fi.fnlist = NULL;
4254
4255 /* When describing struct/union/class types in stabs, G++ always drops
4256 all qualifications from the name. So if you've got:
4257 struct A { ... struct B { ... }; ... };
4258 then G++ will emit stabs for `struct A::B' that call it simply
4259 `struct B'. Obviously, if you've got a real top-level definition for
4260 `struct B', or other nested definitions, this is going to cause
4261 problems.
4262
4263 Obviously, GDB can't fix this by itself, but it can at least avoid
4264 scribbling on existing structure type objects when new definitions
4265 appear. */
4266 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
4267 || TYPE_STUB (type)))
4268 {
4269 complain_about_struct_wipeout (type);
4270
4271 /* It's probably best to return the type unchanged. */
4272 return type;
4273 }
4274
4275 back_to = make_cleanup (null_cleanup, 0);
4276
4277 INIT_CPLUS_SPECIFIC (type);
4278 TYPE_CODE (type) = type_code;
4279 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4280
4281 /* First comes the total size in bytes. */
4282
4283 {
4284 int nbits;
4285 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4286 if (nbits != 0)
4287 return error_type (pp, objfile);
4288 }
4289
4290 /* Now read the baseclasses, if any, read the regular C struct or C++
4291 class member fields, attach the fields to the type, read the C++
4292 member functions, attach them to the type, and then read any tilde
4293 field (baseclass specifier for the class holding the main vtable). */
4294
4295 if (!read_baseclasses (&fi, pp, type, objfile)
4296 || !read_struct_fields (&fi, pp, type, objfile)
4297 || !attach_fields_to_type (&fi, type, objfile)
4298 || !read_member_functions (&fi, pp, type, objfile)
4299 || !attach_fn_fields_to_type (&fi, type)
4300 || !read_tilde_fields (&fi, pp, type, objfile))
4301 {
4302 type = error_type (pp, objfile);
4303 }
4304
4305 do_cleanups (back_to);
4306 return (type);
4307 }
4308
4309 /* Read a definition of an array type,
4310 and create and return a suitable type object.
4311 Also creates a range type which represents the bounds of that
4312 array. */
4313
4314 static struct type *
4315 read_array_type (register char **pp, register struct type *type,
4316 struct objfile *objfile)
4317 {
4318 struct type *index_type, *element_type, *range_type;
4319 int lower, upper;
4320 int adjustable = 0;
4321 int nbits;
4322
4323 /* Format of an array type:
4324 "ar<index type>;lower;upper;<array_contents_type>".
4325 OS9000: "arlower,upper;<array_contents_type>".
4326
4327 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4328 for these, produce a type like float[][]. */
4329
4330 if (os9k_stabs)
4331 index_type = builtin_type_int;
4332 else
4333 {
4334 index_type = read_type (pp, objfile);
4335 if (**pp != ';')
4336 /* Improper format of array type decl. */
4337 return error_type (pp, objfile);
4338 ++*pp;
4339 }
4340
4341 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4342 {
4343 (*pp)++;
4344 adjustable = 1;
4345 }
4346 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4347 if (nbits != 0)
4348 return error_type (pp, objfile);
4349
4350 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4351 {
4352 (*pp)++;
4353 adjustable = 1;
4354 }
4355 upper = read_huge_number (pp, ';', &nbits);
4356 if (nbits != 0)
4357 return error_type (pp, objfile);
4358
4359 element_type = read_type (pp, objfile);
4360
4361 if (adjustable)
4362 {
4363 lower = 0;
4364 upper = -1;
4365 }
4366
4367 range_type =
4368 create_range_type ((struct type *) NULL, index_type, lower, upper);
4369 type = create_array_type (type, element_type, range_type);
4370
4371 return type;
4372 }
4373
4374
4375 /* Read a definition of an enumeration type,
4376 and create and return a suitable type object.
4377 Also defines the symbols that represent the values of the type. */
4378
4379 static struct type *
4380 read_enum_type (register char **pp, register struct type *type,
4381 struct objfile *objfile)
4382 {
4383 register char *p;
4384 char *name;
4385 register long n;
4386 register struct symbol *sym;
4387 int nsyms = 0;
4388 struct pending **symlist;
4389 struct pending *osyms, *syms;
4390 int o_nsyms;
4391 int nbits;
4392 int unsigned_enum = 1;
4393
4394 #if 0
4395 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4396 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4397 to do? For now, force all enum values to file scope. */
4398 if (within_function)
4399 symlist = &local_symbols;
4400 else
4401 #endif
4402 symlist = &file_symbols;
4403 osyms = *symlist;
4404 o_nsyms = osyms ? osyms->nsyms : 0;
4405
4406 if (os9k_stabs)
4407 {
4408 /* Size. Perhaps this does not have to be conditionalized on
4409 os9k_stabs (assuming the name of an enum constant can't start
4410 with a digit). */
4411 read_huge_number (pp, 0, &nbits);
4412 if (nbits != 0)
4413 return error_type (pp, objfile);
4414 }
4415
4416 /* The aix4 compiler emits an extra field before the enum members;
4417 my guess is it's a type of some sort. Just ignore it. */
4418 if (**pp == '-')
4419 {
4420 /* Skip over the type. */
4421 while (**pp != ':')
4422 (*pp)++;
4423
4424 /* Skip over the colon. */
4425 (*pp)++;
4426 }
4427
4428 /* Read the value-names and their values.
4429 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4430 A semicolon or comma instead of a NAME means the end. */
4431 while (**pp && **pp != ';' && **pp != ',')
4432 {
4433 STABS_CONTINUE (pp, objfile);
4434 p = *pp;
4435 while (*p != ':')
4436 p++;
4437 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4438 *pp = p + 1;
4439 n = read_huge_number (pp, ',', &nbits);
4440 if (nbits != 0)
4441 return error_type (pp, objfile);
4442
4443 sym = (struct symbol *)
4444 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4445 memset (sym, 0, sizeof (struct symbol));
4446 SYMBOL_NAME (sym) = name;
4447 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4448 SYMBOL_CLASS (sym) = LOC_CONST;
4449 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4450 SYMBOL_VALUE (sym) = n;
4451 if (n < 0)
4452 unsigned_enum = 0;
4453 add_symbol_to_list (sym, symlist);
4454 nsyms++;
4455 }
4456
4457 if (**pp == ';')
4458 (*pp)++; /* Skip the semicolon. */
4459
4460 /* Now fill in the fields of the type-structure. */
4461
4462 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4463 TYPE_CODE (type) = TYPE_CODE_ENUM;
4464 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4465 if (unsigned_enum)
4466 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4467 TYPE_NFIELDS (type) = nsyms;
4468 TYPE_FIELDS (type) = (struct field *)
4469 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4470 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4471
4472 /* Find the symbols for the values and put them into the type.
4473 The symbols can be found in the symlist that we put them on
4474 to cause them to be defined. osyms contains the old value
4475 of that symlist; everything up to there was defined by us. */
4476 /* Note that we preserve the order of the enum constants, so
4477 that in something like "enum {FOO, LAST_THING=FOO}" we print
4478 FOO, not LAST_THING. */
4479
4480 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4481 {
4482 int last = syms == osyms ? o_nsyms : 0;
4483 int j = syms->nsyms;
4484 for (; --j >= last; --n)
4485 {
4486 struct symbol *xsym = syms->symbol[j];
4487 SYMBOL_TYPE (xsym) = type;
4488 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4489 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4490 TYPE_FIELD_BITSIZE (type, n) = 0;
4491 }
4492 if (syms == osyms)
4493 break;
4494 }
4495
4496 return type;
4497 }
4498
4499 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4500 typedefs in every file (for int, long, etc):
4501
4502 type = b <signed> <width> <format type>; <offset>; <nbits>
4503 signed = u or s.
4504 optional format type = c or b for char or boolean.
4505 offset = offset from high order bit to start bit of type.
4506 width is # bytes in object of this type, nbits is # bits in type.
4507
4508 The width/offset stuff appears to be for small objects stored in
4509 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4510 FIXME. */
4511
4512 static struct type *
4513 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
4514 {
4515 int type_bits;
4516 int nbits;
4517 int signed_type;
4518 enum type_code code = TYPE_CODE_INT;
4519
4520 switch (**pp)
4521 {
4522 case 's':
4523 signed_type = 1;
4524 break;
4525 case 'u':
4526 signed_type = 0;
4527 break;
4528 default:
4529 return error_type (pp, objfile);
4530 }
4531 (*pp)++;
4532
4533 /* For some odd reason, all forms of char put a c here. This is strange
4534 because no other type has this honor. We can safely ignore this because
4535 we actually determine 'char'acterness by the number of bits specified in
4536 the descriptor.
4537 Boolean forms, e.g Fortran logical*X, put a b here. */
4538
4539 if (**pp == 'c')
4540 (*pp)++;
4541 else if (**pp == 'b')
4542 {
4543 code = TYPE_CODE_BOOL;
4544 (*pp)++;
4545 }
4546
4547 /* The first number appears to be the number of bytes occupied
4548 by this type, except that unsigned short is 4 instead of 2.
4549 Since this information is redundant with the third number,
4550 we will ignore it. */
4551 read_huge_number (pp, ';', &nbits);
4552 if (nbits != 0)
4553 return error_type (pp, objfile);
4554
4555 /* The second number is always 0, so ignore it too. */
4556 read_huge_number (pp, ';', &nbits);
4557 if (nbits != 0)
4558 return error_type (pp, objfile);
4559
4560 /* The third number is the number of bits for this type. */
4561 type_bits = read_huge_number (pp, 0, &nbits);
4562 if (nbits != 0)
4563 return error_type (pp, objfile);
4564 /* The type *should* end with a semicolon. If it are embedded
4565 in a larger type the semicolon may be the only way to know where
4566 the type ends. If this type is at the end of the stabstring we
4567 can deal with the omitted semicolon (but we don't have to like
4568 it). Don't bother to complain(), Sun's compiler omits the semicolon
4569 for "void". */
4570 if (**pp == ';')
4571 ++(*pp);
4572
4573 if (type_bits == 0)
4574 return init_type (TYPE_CODE_VOID, 1,
4575 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4576 objfile);
4577 else
4578 return init_type (code,
4579 type_bits / TARGET_CHAR_BIT,
4580 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4581 objfile);
4582 }
4583
4584 static struct type *
4585 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
4586 {
4587 int nbits;
4588 int details;
4589 int nbytes;
4590 struct type *rettype;
4591
4592 /* The first number has more details about the type, for example
4593 FN_COMPLEX. */
4594 details = read_huge_number (pp, ';', &nbits);
4595 if (nbits != 0)
4596 return error_type (pp, objfile);
4597
4598 /* The second number is the number of bytes occupied by this type */
4599 nbytes = read_huge_number (pp, ';', &nbits);
4600 if (nbits != 0)
4601 return error_type (pp, objfile);
4602
4603 if (details == NF_COMPLEX || details == NF_COMPLEX16
4604 || details == NF_COMPLEX32)
4605 {
4606 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4607 TYPE_TARGET_TYPE (rettype)
4608 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
4609 return rettype;
4610 }
4611
4612 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4613 }
4614
4615 /* Read a number from the string pointed to by *PP.
4616 The value of *PP is advanced over the number.
4617 If END is nonzero, the character that ends the
4618 number must match END, or an error happens;
4619 and that character is skipped if it does match.
4620 If END is zero, *PP is left pointing to that character.
4621
4622 If the number fits in a long, set *BITS to 0 and return the value.
4623 If not, set *BITS to be the number of bits in the number and return 0.
4624
4625 If encounter garbage, set *BITS to -1 and return 0. */
4626
4627 static long
4628 read_huge_number (char **pp, int end, int *bits)
4629 {
4630 char *p = *pp;
4631 int sign = 1;
4632 long n = 0;
4633 int radix = 10;
4634 char overflow = 0;
4635 int nbits = 0;
4636 int c;
4637 long upper_limit;
4638
4639 if (*p == '-')
4640 {
4641 sign = -1;
4642 p++;
4643 }
4644
4645 /* Leading zero means octal. GCC uses this to output values larger
4646 than an int (because that would be hard in decimal). */
4647 if (*p == '0')
4648 {
4649 radix = 8;
4650 p++;
4651 }
4652
4653 if (os9k_stabs)
4654 upper_limit = ULONG_MAX / radix;
4655 else
4656 upper_limit = LONG_MAX / radix;
4657
4658 while ((c = *p++) >= '0' && c < ('0' + radix))
4659 {
4660 if (n <= upper_limit)
4661 {
4662 n *= radix;
4663 n += c - '0'; /* FIXME this overflows anyway */
4664 }
4665 else
4666 overflow = 1;
4667
4668 /* This depends on large values being output in octal, which is
4669 what GCC does. */
4670 if (radix == 8)
4671 {
4672 if (nbits == 0)
4673 {
4674 if (c == '0')
4675 /* Ignore leading zeroes. */
4676 ;
4677 else if (c == '1')
4678 nbits = 1;
4679 else if (c == '2' || c == '3')
4680 nbits = 2;
4681 else
4682 nbits = 3;
4683 }
4684 else
4685 nbits += 3;
4686 }
4687 }
4688 if (end)
4689 {
4690 if (c && c != end)
4691 {
4692 if (bits != NULL)
4693 *bits = -1;
4694 return 0;
4695 }
4696 }
4697 else
4698 --p;
4699
4700 *pp = p;
4701 if (overflow)
4702 {
4703 if (nbits == 0)
4704 {
4705 /* Large decimal constants are an error (because it is hard to
4706 count how many bits are in them). */
4707 if (bits != NULL)
4708 *bits = -1;
4709 return 0;
4710 }
4711
4712 /* -0x7f is the same as 0x80. So deal with it by adding one to
4713 the number of bits. */
4714 if (sign == -1)
4715 ++nbits;
4716 if (bits)
4717 *bits = nbits;
4718 }
4719 else
4720 {
4721 if (bits)
4722 *bits = 0;
4723 return n * sign;
4724 }
4725 /* It's *BITS which has the interesting information. */
4726 return 0;
4727 }
4728
4729 static struct type *
4730 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
4731 {
4732 char *orig_pp = *pp;
4733 int rangenums[2];
4734 long n2, n3;
4735 int n2bits, n3bits;
4736 int self_subrange;
4737 struct type *result_type;
4738 struct type *index_type = NULL;
4739
4740 /* First comes a type we are a subrange of.
4741 In C it is usually 0, 1 or the type being defined. */
4742 if (read_type_number (pp, rangenums) != 0)
4743 return error_type (pp, objfile);
4744 self_subrange = (rangenums[0] == typenums[0] &&
4745 rangenums[1] == typenums[1]);
4746
4747 if (**pp == '=')
4748 {
4749 *pp = orig_pp;
4750 index_type = read_type (pp, objfile);
4751 }
4752
4753 /* A semicolon should now follow; skip it. */
4754 if (**pp == ';')
4755 (*pp)++;
4756
4757 /* The remaining two operands are usually lower and upper bounds
4758 of the range. But in some special cases they mean something else. */
4759 n2 = read_huge_number (pp, ';', &n2bits);
4760 n3 = read_huge_number (pp, ';', &n3bits);
4761
4762 if (n2bits == -1 || n3bits == -1)
4763 return error_type (pp, objfile);
4764
4765 if (index_type)
4766 goto handle_true_range;
4767
4768 /* If limits are huge, must be large integral type. */
4769 if (n2bits != 0 || n3bits != 0)
4770 {
4771 char got_signed = 0;
4772 char got_unsigned = 0;
4773 /* Number of bits in the type. */
4774 int nbits = 0;
4775
4776 /* Range from 0 to <large number> is an unsigned large integral type. */
4777 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4778 {
4779 got_unsigned = 1;
4780 nbits = n3bits;
4781 }
4782 /* Range from <large number> to <large number>-1 is a large signed
4783 integral type. Take care of the case where <large number> doesn't
4784 fit in a long but <large number>-1 does. */
4785 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4786 || (n2bits != 0 && n3bits == 0
4787 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4788 && n3 == LONG_MAX))
4789 {
4790 got_signed = 1;
4791 nbits = n2bits;
4792 }
4793
4794 if (got_signed || got_unsigned)
4795 {
4796 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4797 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4798 objfile);
4799 }
4800 else
4801 return error_type (pp, objfile);
4802 }
4803
4804 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4805 if (self_subrange && n2 == 0 && n3 == 0)
4806 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4807
4808 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4809 is the width in bytes.
4810
4811 Fortran programs appear to use this for complex types also. To
4812 distinguish between floats and complex, g77 (and others?) seem
4813 to use self-subranges for the complexes, and subranges of int for
4814 the floats.
4815
4816 Also note that for complexes, g77 sets n2 to the size of one of
4817 the member floats, not the whole complex beast. My guess is that
4818 this was to work well with pre-COMPLEX versions of gdb. */
4819
4820 if (n3 == 0 && n2 > 0)
4821 {
4822 struct type *float_type
4823 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4824
4825 if (self_subrange)
4826 {
4827 struct type *complex_type =
4828 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4829 TYPE_TARGET_TYPE (complex_type) = float_type;
4830 return complex_type;
4831 }
4832 else
4833 return float_type;
4834 }
4835
4836 /* If the upper bound is -1, it must really be an unsigned int. */
4837
4838 else if (n2 == 0 && n3 == -1)
4839 {
4840 /* It is unsigned int or unsigned long. */
4841 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4842 compatibility hack. */
4843 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4844 TYPE_FLAG_UNSIGNED, NULL, objfile);
4845 }
4846
4847 /* Special case: char is defined (Who knows why) as a subrange of
4848 itself with range 0-127. */
4849 else if (self_subrange && n2 == 0 && n3 == 127)
4850 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4851
4852 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4853 && !self_subrange)
4854 goto handle_true_range;
4855
4856 /* We used to do this only for subrange of self or subrange of int. */
4857 else if (n2 == 0)
4858 {
4859 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4860 "unsigned long", and we already checked for that,
4861 so don't need to test for it here. */
4862
4863 if (n3 < 0)
4864 /* n3 actually gives the size. */
4865 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4866 NULL, objfile);
4867
4868 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4869 unsigned n-byte integer. But do require n to be a power of
4870 two; we don't want 3- and 5-byte integers flying around. */
4871 {
4872 int bytes;
4873 unsigned long bits;
4874
4875 bits = n3;
4876 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4877 bits >>= 8;
4878 if (bits == 0
4879 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4880 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4881 objfile);
4882 }
4883 }
4884 /* I think this is for Convex "long long". Since I don't know whether
4885 Convex sets self_subrange, I also accept that particular size regardless
4886 of self_subrange. */
4887 else if (n3 == 0 && n2 < 0
4888 && (self_subrange
4889 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4890 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4891 else if (n2 == -n3 - 1)
4892 {
4893 if (n3 == 0x7f)
4894 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4895 if (n3 == 0x7fff)
4896 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4897 if (n3 == 0x7fffffff)
4898 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4899 }
4900
4901 /* We have a real range type on our hands. Allocate space and
4902 return a real pointer. */
4903 handle_true_range:
4904
4905 if (self_subrange)
4906 index_type = builtin_type_int;
4907 else
4908 index_type = *dbx_lookup_type (rangenums);
4909 if (index_type == NULL)
4910 {
4911 /* Does this actually ever happen? Is that why we are worrying
4912 about dealing with it rather than just calling error_type? */
4913
4914 static struct type *range_type_index;
4915
4916 complain (&range_type_base_complaint, rangenums[1]);
4917 if (range_type_index == NULL)
4918 range_type_index =
4919 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4920 0, "range type index type", NULL);
4921 index_type = range_type_index;
4922 }
4923
4924 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4925 return (result_type);
4926 }
4927
4928 /* Read in an argument list. This is a list of types, separated by commas
4929 and terminated with END. Return the list of types read in, or (struct type
4930 **)-1 if there is an error. */
4931
4932 static struct type **
4933 read_args (char **pp, int end, struct objfile *objfile)
4934 {
4935 /* FIXME! Remove this arbitrary limit! */
4936 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4937 int n = 0;
4938
4939 while (**pp != end)
4940 {
4941 if (**pp != ',')
4942 /* Invalid argument list: no ','. */
4943 return (struct type **) -1;
4944 (*pp)++;
4945 STABS_CONTINUE (pp, objfile);
4946 types[n++] = read_type (pp, objfile);
4947 }
4948 (*pp)++; /* get past `end' (the ':' character) */
4949
4950 if (n == 1)
4951 {
4952 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4953 }
4954 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4955 {
4956 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4957 memset (rval + n, 0, sizeof (struct type *));
4958 }
4959 else
4960 {
4961 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4962 }
4963 memcpy (rval, types, n * sizeof (struct type *));
4964 return rval;
4965 }
4966 \f
4967 /* Common block handling. */
4968
4969 /* List of symbols declared since the last BCOMM. This list is a tail
4970 of local_symbols. When ECOMM is seen, the symbols on the list
4971 are noted so their proper addresses can be filled in later,
4972 using the common block base address gotten from the assembler
4973 stabs. */
4974
4975 static struct pending *common_block;
4976 static int common_block_i;
4977
4978 /* Name of the current common block. We get it from the BCOMM instead of the
4979 ECOMM to match IBM documentation (even though IBM puts the name both places
4980 like everyone else). */
4981 static char *common_block_name;
4982
4983 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4984 to remain after this function returns. */
4985
4986 void
4987 common_block_start (char *name, struct objfile *objfile)
4988 {
4989 if (common_block_name != NULL)
4990 {
4991 static struct complaint msg =
4992 {
4993 "Invalid symbol data: common block within common block",
4994 0, 0};
4995 complain (&msg);
4996 }
4997 common_block = local_symbols;
4998 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4999 common_block_name = obsavestring (name, strlen (name),
5000 &objfile->symbol_obstack);
5001 }
5002
5003 /* Process a N_ECOMM symbol. */
5004
5005 void
5006 common_block_end (struct objfile *objfile)
5007 {
5008 /* Symbols declared since the BCOMM are to have the common block
5009 start address added in when we know it. common_block and
5010 common_block_i point to the first symbol after the BCOMM in
5011 the local_symbols list; copy the list and hang it off the
5012 symbol for the common block name for later fixup. */
5013 int i;
5014 struct symbol *sym;
5015 struct pending *new = 0;
5016 struct pending *next;
5017 int j;
5018
5019 if (common_block_name == NULL)
5020 {
5021 static struct complaint msg =
5022 {"ECOMM symbol unmatched by BCOMM", 0, 0};
5023 complain (&msg);
5024 return;
5025 }
5026
5027 sym = (struct symbol *)
5028 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
5029 memset (sym, 0, sizeof (struct symbol));
5030 /* Note: common_block_name already saved on symbol_obstack */
5031 SYMBOL_NAME (sym) = common_block_name;
5032 SYMBOL_CLASS (sym) = LOC_BLOCK;
5033
5034 /* Now we copy all the symbols which have been defined since the BCOMM. */
5035
5036 /* Copy all the struct pendings before common_block. */
5037 for (next = local_symbols;
5038 next != NULL && next != common_block;
5039 next = next->next)
5040 {
5041 for (j = 0; j < next->nsyms; j++)
5042 add_symbol_to_list (next->symbol[j], &new);
5043 }
5044
5045 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
5046 NULL, it means copy all the local symbols (which we already did
5047 above). */
5048
5049 if (common_block != NULL)
5050 for (j = common_block_i; j < common_block->nsyms; j++)
5051 add_symbol_to_list (common_block->symbol[j], &new);
5052
5053 SYMBOL_TYPE (sym) = (struct type *) new;
5054
5055 /* Should we be putting local_symbols back to what it was?
5056 Does it matter? */
5057
5058 i = hashname (SYMBOL_NAME (sym));
5059 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
5060 global_sym_chain[i] = sym;
5061 common_block_name = NULL;
5062 }
5063
5064 /* Add a common block's start address to the offset of each symbol
5065 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5066 the common block name). */
5067
5068 static void
5069 fix_common_block (struct symbol *sym, int valu)
5070 {
5071 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
5072 for (; next; next = next->next)
5073 {
5074 register int j;
5075 for (j = next->nsyms - 1; j >= 0; j--)
5076 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5077 }
5078 }
5079 \f
5080
5081
5082 /* What about types defined as forward references inside of a small lexical
5083 scope? */
5084 /* Add a type to the list of undefined types to be checked through
5085 once this file has been read in. */
5086
5087 void
5088 add_undefined_type (struct type *type)
5089 {
5090 if (undef_types_length == undef_types_allocated)
5091 {
5092 undef_types_allocated *= 2;
5093 undef_types = (struct type **)
5094 xrealloc ((char *) undef_types,
5095 undef_types_allocated * sizeof (struct type *));
5096 }
5097 undef_types[undef_types_length++] = type;
5098 }
5099
5100 /* Go through each undefined type, see if it's still undefined, and fix it
5101 up if possible. We have two kinds of undefined types:
5102
5103 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
5104 Fix: update array length using the element bounds
5105 and the target type's length.
5106 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
5107 yet defined at the time a pointer to it was made.
5108 Fix: Do a full lookup on the struct/union tag. */
5109 void
5110 cleanup_undefined_types (void)
5111 {
5112 struct type **type;
5113
5114 for (type = undef_types; type < undef_types + undef_types_length; type++)
5115 {
5116 switch (TYPE_CODE (*type))
5117 {
5118
5119 case TYPE_CODE_STRUCT:
5120 case TYPE_CODE_UNION:
5121 case TYPE_CODE_ENUM:
5122 {
5123 /* Check if it has been defined since. Need to do this here
5124 as well as in check_typedef to deal with the (legitimate in
5125 C though not C++) case of several types with the same name
5126 in different source files. */
5127 if (TYPE_STUB (*type))
5128 {
5129 struct pending *ppt;
5130 int i;
5131 /* Name of the type, without "struct" or "union" */
5132 char *typename = TYPE_TAG_NAME (*type);
5133
5134 if (typename == NULL)
5135 {
5136 static struct complaint msg =
5137 {"need a type name", 0, 0};
5138 complain (&msg);
5139 break;
5140 }
5141 for (ppt = file_symbols; ppt; ppt = ppt->next)
5142 {
5143 for (i = 0; i < ppt->nsyms; i++)
5144 {
5145 struct symbol *sym = ppt->symbol[i];
5146
5147 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
5148 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
5149 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
5150 TYPE_CODE (*type))
5151 && STREQ (SYMBOL_NAME (sym), typename))
5152 replace_type (*type, SYMBOL_TYPE (sym));
5153 }
5154 }
5155 }
5156 }
5157 break;
5158
5159 default:
5160 {
5161 static struct complaint msg =
5162 {"\
5163 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
5164 complain (&msg, TYPE_CODE (*type));
5165 }
5166 break;
5167 }
5168 }
5169
5170 undef_types_length = 0;
5171 }
5172
5173 /* Scan through all of the global symbols defined in the object file,
5174 assigning values to the debugging symbols that need to be assigned
5175 to. Get these symbols from the minimal symbol table. */
5176
5177 void
5178 scan_file_globals (struct objfile *objfile)
5179 {
5180 int hash;
5181 struct minimal_symbol *msymbol;
5182 struct symbol *sym, *prev, *rsym;
5183 struct objfile *resolve_objfile;
5184
5185 /* SVR4 based linkers copy referenced global symbols from shared
5186 libraries to the main executable.
5187 If we are scanning the symbols for a shared library, try to resolve
5188 them from the minimal symbols of the main executable first. */
5189
5190 if (symfile_objfile && objfile != symfile_objfile)
5191 resolve_objfile = symfile_objfile;
5192 else
5193 resolve_objfile = objfile;
5194
5195 while (1)
5196 {
5197 /* Avoid expensive loop through all minimal symbols if there are
5198 no unresolved symbols. */
5199 for (hash = 0; hash < HASHSIZE; hash++)
5200 {
5201 if (global_sym_chain[hash])
5202 break;
5203 }
5204 if (hash >= HASHSIZE)
5205 return;
5206
5207 for (msymbol = resolve_objfile->msymbols;
5208 msymbol && SYMBOL_NAME (msymbol) != NULL;
5209 msymbol++)
5210 {
5211 QUIT;
5212
5213 /* Skip static symbols. */
5214 switch (MSYMBOL_TYPE (msymbol))
5215 {
5216 case mst_file_text:
5217 case mst_file_data:
5218 case mst_file_bss:
5219 continue;
5220 default:
5221 break;
5222 }
5223
5224 prev = NULL;
5225
5226 /* Get the hash index and check all the symbols
5227 under that hash index. */
5228
5229 hash = hashname (SYMBOL_NAME (msymbol));
5230
5231 for (sym = global_sym_chain[hash]; sym;)
5232 {
5233 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5234 STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5235 {
5236
5237 struct alias_list *aliases;
5238
5239 /* Splice this symbol out of the hash chain and
5240 assign the value we have to it. */
5241 if (prev)
5242 {
5243 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5244 }
5245 else
5246 {
5247 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5248 }
5249
5250 /* Check to see whether we need to fix up a common block. */
5251 /* Note: this code might be executed several times for
5252 the same symbol if there are multiple references. */
5253
5254 /* If symbol has aliases, do minimal symbol fixups for each.
5255 These live aliases/references weren't added to
5256 global_sym_chain hash but may also need to be fixed up. */
5257 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5258 symbols? Still, we wouldn't want to add_to_list. */
5259 /* Now do the same for each alias of this symbol */
5260 rsym = sym;
5261 aliases = SYMBOL_ALIASES (sym);
5262 while (rsym)
5263 {
5264 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5265 {
5266 fix_common_block (rsym,
5267 SYMBOL_VALUE_ADDRESS (msymbol));
5268 }
5269 else
5270 {
5271 SYMBOL_VALUE_ADDRESS (rsym)
5272 = SYMBOL_VALUE_ADDRESS (msymbol);
5273 }
5274 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5275 if (aliases)
5276 {
5277 rsym = aliases->sym;
5278 aliases = aliases->next;
5279 }
5280 else
5281 rsym = NULL;
5282 }
5283
5284
5285 if (prev)
5286 {
5287 sym = SYMBOL_VALUE_CHAIN (prev);
5288 }
5289 else
5290 {
5291 sym = global_sym_chain[hash];
5292 }
5293 }
5294 else
5295 {
5296 prev = sym;
5297 sym = SYMBOL_VALUE_CHAIN (sym);
5298 }
5299 }
5300 }
5301 if (resolve_objfile == objfile)
5302 break;
5303 resolve_objfile = objfile;
5304 }
5305
5306 /* Change the storage class of any remaining unresolved globals to
5307 LOC_UNRESOLVED and remove them from the chain. */
5308 for (hash = 0; hash < HASHSIZE; hash++)
5309 {
5310 sym = global_sym_chain[hash];
5311 while (sym)
5312 {
5313 prev = sym;
5314 sym = SYMBOL_VALUE_CHAIN (sym);
5315
5316 /* Change the symbol address from the misleading chain value
5317 to address zero. */
5318 SYMBOL_VALUE_ADDRESS (prev) = 0;
5319
5320 /* Complain about unresolved common block symbols. */
5321 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5322 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5323 else
5324 complain (&unresolved_sym_chain_complaint,
5325 objfile->name, SYMBOL_NAME (prev));
5326 }
5327 }
5328 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5329 }
5330
5331 /* Initialize anything that needs initializing when starting to read
5332 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5333 to a psymtab. */
5334
5335 void
5336 stabsread_init (void)
5337 {
5338 }
5339
5340 /* Initialize anything that needs initializing when a completely new
5341 symbol file is specified (not just adding some symbols from another
5342 file, e.g. a shared library). */
5343
5344 void
5345 stabsread_new_init (void)
5346 {
5347 /* Empty the hash table of global syms looking for values. */
5348 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5349 }
5350
5351 /* Initialize anything that needs initializing at the same time as
5352 start_symtab() is called. */
5353
5354 void
5355 start_stabs (void)
5356 {
5357 global_stabs = NULL; /* AIX COFF */
5358 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5359 n_this_object_header_files = 1;
5360 type_vector_length = 0;
5361 type_vector = (struct type **) 0;
5362
5363 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5364 common_block_name = NULL;
5365
5366 os9k_stabs = 0;
5367 }
5368
5369 /* Call after end_symtab() */
5370
5371 void
5372 end_stabs (void)
5373 {
5374 if (type_vector)
5375 {
5376 xfree (type_vector);
5377 }
5378 type_vector = 0;
5379 type_vector_length = 0;
5380 previous_stab_code = 0;
5381 }
5382
5383 void
5384 finish_global_stabs (struct objfile *objfile)
5385 {
5386 if (global_stabs)
5387 {
5388 patch_block_stabs (global_symbols, global_stabs, objfile);
5389 xfree (global_stabs);
5390 global_stabs = NULL;
5391 }
5392 }
5393
5394 /* Initializer for this module */
5395
5396 void
5397 _initialize_stabsread (void)
5398 {
5399 undef_types_allocated = 20;
5400 undef_types_length = 0;
5401 undef_types = (struct type **)
5402 xmalloc (undef_types_allocated * sizeof (struct type *));
5403 }
This page took 0.14866 seconds and 4 git commands to generate.