2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 /* Define this as 1 if a pcc declaration of a char or short argument
166 gives the correct address. Otherwise assume pcc gives the
167 address of the corresponding int, which is not the same on a
168 big-endian machine. */
169
170 #if !defined (BELIEVE_PCC_PROMOTION)
171 #define BELIEVE_PCC_PROMOTION 0
172 #endif
173
174 static void
175 invalid_cpp_abbrev_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
178 }
179
180 static void
181 reg_value_complaint (int regnum, int num_regs, const char *sym)
182 {
183 complaint (&symfile_complaints,
184 _("register number %d too large (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint (&symfile_complaints, "%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221 \f
222
223 /* Look up a dbx type-number pair. Return the address of the slot
224 where the type for that number-pair is stored.
225 The number-pair is in TYPENUMS.
226
227 This can be used for finding the type associated with that pair
228 or for associating a new type with the pair. */
229
230 static struct type **
231 dbx_lookup_type (int typenums[2])
232 {
233 int filenum = typenums[0];
234 int index = typenums[1];
235 unsigned old_len;
236 int real_filenum;
237 struct header_file *f;
238 int f_orig_length;
239
240 if (filenum == -1) /* -1,-1 is for temporary types. */
241 return 0;
242
243 if (filenum < 0 || filenum >= n_this_object_header_files)
244 {
245 complaint (&symfile_complaints,
246 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
247 filenum, index, symnum);
248 goto error_return;
249 }
250
251 if (filenum == 0)
252 {
253 if (index < 0)
254 {
255 /* Caller wants address of address of type. We think
256 that negative (rs6k builtin) types will never appear as
257 "lvalues", (nor should they), so we stuff the real type
258 pointer into a temp, and return its address. If referenced,
259 this will do the right thing. */
260 static struct type *temp_type;
261
262 temp_type = rs6000_builtin_type (index);
263 return &temp_type;
264 }
265
266 /* Type is defined outside of header files.
267 Find it in this object file's type vector. */
268 if (index >= type_vector_length)
269 {
270 old_len = type_vector_length;
271 if (old_len == 0)
272 {
273 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
274 type_vector = (struct type **)
275 xmalloc (type_vector_length * sizeof (struct type *));
276 }
277 while (index >= type_vector_length)
278 {
279 type_vector_length *= 2;
280 }
281 type_vector = (struct type **)
282 xrealloc ((char *) type_vector,
283 (type_vector_length * sizeof (struct type *)));
284 memset (&type_vector[old_len], 0,
285 (type_vector_length - old_len) * sizeof (struct type *));
286 }
287 return (&type_vector[index]);
288 }
289 else
290 {
291 real_filenum = this_object_header_files[filenum];
292
293 if (real_filenum >= N_HEADER_FILES (current_objfile))
294 {
295 struct type *temp_type;
296 struct type **temp_type_p;
297
298 warning (_("GDB internal error: bad real_filenum"));
299
300 error_return:
301 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
302 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
303 *temp_type_p = temp_type;
304 return temp_type_p;
305 }
306
307 f = HEADER_FILES (current_objfile) + real_filenum;
308
309 f_orig_length = f->length;
310 if (index >= f_orig_length)
311 {
312 while (index >= f->length)
313 {
314 f->length *= 2;
315 }
316 f->vector = (struct type **)
317 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
318 memset (&f->vector[f_orig_length], 0,
319 (f->length - f_orig_length) * sizeof (struct type *));
320 }
321 return (&f->vector[index]);
322 }
323 }
324
325 /* Make sure there is a type allocated for type numbers TYPENUMS
326 and return the type object.
327 This can create an empty (zeroed) type object.
328 TYPENUMS may be (-1, -1) to return a new type object that is not
329 put into the type vector, and so may not be referred to by number. */
330
331 static struct type *
332 dbx_alloc_type (int typenums[2], struct objfile *objfile)
333 {
334 struct type **type_addr;
335
336 if (typenums[0] == -1)
337 {
338 return (alloc_type (objfile));
339 }
340
341 type_addr = dbx_lookup_type (typenums);
342
343 /* If we are referring to a type not known at all yet,
344 allocate an empty type for it.
345 We will fill it in later if we find out how. */
346 if (*type_addr == 0)
347 {
348 *type_addr = alloc_type (objfile);
349 }
350
351 return (*type_addr);
352 }
353
354 /* for all the stabs in a given stab vector, build appropriate types
355 and fix their symbols in given symbol vector. */
356
357 static void
358 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
359 struct objfile *objfile)
360 {
361 int ii;
362 char *name;
363 char *pp;
364 struct symbol *sym;
365
366 if (stabs)
367 {
368
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 while (pp[1] == ':')
377 {
378 pp += 2;
379 pp = (char *) strchr (pp, ':');
380 }
381 sym = find_symbol_in_list (symbols, name, pp - name);
382 if (!sym)
383 {
384 /* FIXME-maybe: it would be nice if we noticed whether
385 the variable was defined *anywhere*, not just whether
386 it is defined in this compilation unit. But neither
387 xlc or GCC seem to need such a definition, and until
388 we do psymtabs (so that the minimal symbols from all
389 compilation units are available now), I'm not sure
390 how to get the information. */
391
392 /* On xcoff, if a global is defined and never referenced,
393 ld will remove it from the executable. There is then
394 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
395 sym = (struct symbol *)
396 obstack_alloc (&objfile->objfile_obstack,
397 sizeof (struct symbol));
398
399 memset (sym, 0, sizeof (struct symbol));
400 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
401 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
402 DEPRECATED_SYMBOL_NAME (sym) =
403 obsavestring (name, pp - name, &objfile->objfile_obstack);
404 pp += 2;
405 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
406 {
407 /* I don't think the linker does this with functions,
408 so as far as I know this is never executed.
409 But it doesn't hurt to check. */
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 add_symbol_to_list (sym, &global_symbols);
418 }
419 else
420 {
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 SYMBOL_TYPE (sym) =
425 lookup_function_type (read_type (&pp, objfile));
426 }
427 else
428 {
429 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
430 }
431 }
432 }
433 }
434 }
435 \f
436
437 /* Read a number by which a type is referred to in dbx data,
438 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
439 Just a single number N is equivalent to (0,N).
440 Return the two numbers by storing them in the vector TYPENUMS.
441 TYPENUMS will then be used as an argument to dbx_lookup_type.
442
443 Returns 0 for success, -1 for error. */
444
445 static int
446 read_type_number (char **pp, int *typenums)
447 {
448 int nbits;
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
525 ref_chunk += new_chunks;
526 }
527 ref_map[refnum].stabs = stabs;
528 ref_map[refnum].sym = sym;
529 ref_map[refnum].value = value;
530 }
531
532 /* Return defined sym for the reference REFNUM. */
533 struct symbol *
534 ref_search (int refnum)
535 {
536 if (refnum < 0 || refnum > ref_count)
537 return 0;
538 return ref_map[refnum].sym;
539 }
540
541 /* Parse a reference id in STRING and return the resulting
542 reference number. Move STRING beyond the reference id. */
543
544 static int
545 process_reference (char **string)
546 {
547 char *p;
548 int refnum = 0;
549
550 if (**string != '#')
551 return 0;
552
553 /* Advance beyond the initial '#'. */
554 p = *string + 1;
555
556 /* Read number as reference id. */
557 while (*p && isdigit (*p))
558 {
559 refnum = refnum * 10 + *p - '0';
560 p++;
561 }
562 *string = p;
563 return refnum;
564 }
565
566 /* If STRING defines a reference, store away a pointer to the reference
567 definition for later use. Return the reference number. */
568
569 int
570 symbol_reference_defined (char **string)
571 {
572 char *p = *string;
573 int refnum = 0;
574
575 refnum = process_reference (&p);
576
577 /* Defining symbols end in '=' */
578 if (*p == '=')
579 {
580 /* Symbol is being defined here. */
581 *string = p + 1;
582 return refnum;
583 }
584 else
585 {
586 /* Must be a reference. Either the symbol has already been defined,
587 or this is a forward reference to it. */
588 *string = p;
589 return -1;
590 }
591 }
592
593 struct symbol *
594 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
595 struct objfile *objfile)
596 {
597 struct symbol *sym;
598 char *p = (char *) find_name_end (string);
599 int deftype;
600 int synonym = 0;
601 int i;
602
603 /* We would like to eliminate nameless symbols, but keep their types.
604 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
605 to type 2, but, should not create a symbol to address that type. Since
606 the symbol will be nameless, there is no way any user can refer to it. */
607
608 int nameless;
609
610 /* Ignore syms with empty names. */
611 if (string[0] == 0)
612 return 0;
613
614 /* Ignore old-style symbols from cc -go */
615 if (p == 0)
616 return 0;
617
618 while (p[1] == ':')
619 {
620 p += 2;
621 p = strchr (p, ':');
622 }
623
624 /* If a nameless stab entry, all we need is the type, not the symbol.
625 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
626 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
627
628 current_symbol = sym = (struct symbol *)
629 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
630 memset (sym, 0, sizeof (struct symbol));
631
632 switch (type & N_TYPE)
633 {
634 case N_TEXT:
635 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
636 break;
637 case N_DATA:
638 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
639 break;
640 case N_BSS:
641 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
642 break;
643 }
644
645 if (processing_gcc_compilation)
646 {
647 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
648 number of bytes occupied by a type or object, which we ignore. */
649 SYMBOL_LINE (sym) = desc;
650 }
651 else
652 {
653 SYMBOL_LINE (sym) = 0; /* unknown */
654 }
655
656 if (is_cplus_marker (string[0]))
657 {
658 /* Special GNU C++ names. */
659 switch (string[1])
660 {
661 case 't':
662 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
663 &objfile->objfile_obstack);
664 break;
665
666 case 'v': /* $vtbl_ptr_type */
667 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
668 goto normal;
669
670 case 'e':
671 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
672 &objfile->objfile_obstack);
673 break;
674
675 case '_':
676 /* This was an anonymous type that was never fixed up. */
677 goto normal;
678
679 #ifdef STATIC_TRANSFORM_NAME
680 case 'X':
681 /* SunPRO (3.0 at least) static variable encoding. */
682 goto normal;
683 #endif
684
685 default:
686 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
687 string);
688 goto normal; /* Do *something* with it */
689 }
690 }
691 else
692 {
693 normal:
694 SYMBOL_LANGUAGE (sym) = current_subfile->language;
695 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
696 }
697 p++;
698
699 /* Determine the type of name being defined. */
700 #if 0
701 /* Getting GDB to correctly skip the symbol on an undefined symbol
702 descriptor and not ever dump core is a very dodgy proposition if
703 we do things this way. I say the acorn RISC machine can just
704 fix their compiler. */
705 /* The Acorn RISC machine's compiler can put out locals that don't
706 start with "234=" or "(3,4)=", so assume anything other than the
707 deftypes we know how to handle is a local. */
708 if (!strchr ("cfFGpPrStTvVXCR", *p))
709 #else
710 if (isdigit (*p) || *p == '(' || *p == '-')
711 #endif
712 deftype = 'l';
713 else
714 deftype = *p++;
715
716 switch (deftype)
717 {
718 case 'c':
719 /* c is a special case, not followed by a type-number.
720 SYMBOL:c=iVALUE for an integer constant symbol.
721 SYMBOL:c=rVALUE for a floating constant symbol.
722 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 if (*p != '=')
726 {
727 SYMBOL_CLASS (sym) = LOC_CONST;
728 SYMBOL_TYPE (sym) = error_type (&p, objfile);
729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
730 add_symbol_to_list (sym, &file_symbols);
731 return sym;
732 }
733 ++p;
734 switch (*p++)
735 {
736 case 'r':
737 {
738 double d = atof (p);
739 gdb_byte *dbl_valu;
740
741 /* FIXME-if-picky-about-floating-accuracy: Should be using
742 target arithmetic to get the value. real.c in GCC
743 probably has the necessary code. */
744
745 /* FIXME: lookup_fundamental_type is a hack. We should be
746 creating a type especially for the type of float constants.
747 Problem is, what type should it be?
748
749 Also, what should the name of this type be? Should we
750 be using 'S' constants (see stabs.texinfo) instead? */
751
752 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
753 FT_DBL_PREC_FLOAT);
754 dbl_valu =
755 obstack_alloc (&objfile->objfile_obstack,
756 TYPE_LENGTH (SYMBOL_TYPE (sym)));
757 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
758 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
759 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
760 }
761 break;
762 case 'i':
763 {
764 /* Defining integer constants this way is kind of silly,
765 since 'e' constants allows the compiler to give not
766 only the value, but the type as well. C has at least
767 int, long, unsigned int, and long long as constant
768 types; other languages probably should have at least
769 unsigned as well as signed constants. */
770
771 /* We just need one int constant type for all objfiles.
772 It doesn't depend on languages or anything (arguably its
773 name should be a language-specific name for a type of
774 that size, but I'm inclined to say that if the compiler
775 wants a nice name for the type, it can use 'e'). */
776 static struct type *int_const_type;
777
778 /* Yes, this is as long as a *host* int. That is because we
779 use atoi. */
780 if (int_const_type == NULL)
781 int_const_type =
782 init_type (TYPE_CODE_INT,
783 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
784 "integer constant",
785 (struct objfile *) NULL);
786 SYMBOL_TYPE (sym) = int_const_type;
787 SYMBOL_VALUE (sym) = atoi (p);
788 SYMBOL_CLASS (sym) = LOC_CONST;
789 }
790 break;
791 case 'e':
792 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
793 can be represented as integral.
794 e.g. "b:c=e6,0" for "const b = blob1"
795 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
796 {
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 if (*p != ',')
801 {
802 SYMBOL_TYPE (sym) = error_type (&p, objfile);
803 break;
804 }
805 ++p;
806
807 /* If the value is too big to fit in an int (perhaps because
808 it is unsigned), or something like that, we silently get
809 a bogus value. The type and everything else about it is
810 correct. Ideally, we should be using whatever we have
811 available for parsing unsigned and long long values,
812 however. */
813 SYMBOL_VALUE (sym) = atoi (p);
814 }
815 break;
816 default:
817 {
818 SYMBOL_CLASS (sym) = LOC_CONST;
819 SYMBOL_TYPE (sym) = error_type (&p, objfile);
820 }
821 }
822 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
823 add_symbol_to_list (sym, &file_symbols);
824 return sym;
825
826 case 'C':
827 /* The name of a caught exception. */
828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
829 SYMBOL_CLASS (sym) = LOC_LABEL;
830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 SYMBOL_VALUE_ADDRESS (sym) = valu;
832 add_symbol_to_list (sym, &local_symbols);
833 break;
834
835 case 'f':
836 /* A static function definition. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_BLOCK;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 add_symbol_to_list (sym, &file_symbols);
841 /* fall into process_function_types. */
842
843 process_function_types:
844 /* Function result types are described as the result type in stabs.
845 We need to convert this to the function-returning-type-X type
846 in GDB. E.g. "int" is converted to "function returning int". */
847 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
848 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
849
850 /* All functions in C++ have prototypes. Stabs does not offer an
851 explicit way to identify prototyped or unprototyped functions,
852 but both GCC and Sun CC emit stabs for the "call-as" type rather
853 than the "declared-as" type for unprototyped functions, so
854 we treat all functions as if they were prototyped. This is used
855 primarily for promotion when calling the function from GDB. */
856 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
857
858 /* fall into process_prototype_types */
859
860 process_prototype_types:
861 /* Sun acc puts declared types of arguments here. */
862 if (*p == ';')
863 {
864 struct type *ftype = SYMBOL_TYPE (sym);
865 int nsemi = 0;
866 int nparams = 0;
867 char *p1 = p;
868
869 /* Obtain a worst case guess for the number of arguments
870 by counting the semicolons. */
871 while (*p1)
872 {
873 if (*p1++ == ';')
874 nsemi++;
875 }
876
877 /* Allocate parameter information fields and fill them in. */
878 TYPE_FIELDS (ftype) = (struct field *)
879 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
880 while (*p++ == ';')
881 {
882 struct type *ptype;
883
884 /* A type number of zero indicates the start of varargs.
885 FIXME: GDB currently ignores vararg functions. */
886 if (p[0] == '0' && p[1] == '\0')
887 break;
888 ptype = read_type (&p, objfile);
889
890 /* The Sun compilers mark integer arguments, which should
891 be promoted to the width of the calling conventions, with
892 a type which references itself. This type is turned into
893 a TYPE_CODE_VOID type by read_type, and we have to turn
894 it back into builtin_type_int here.
895 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
896 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
897 ptype = builtin_type_int;
898 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
899 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
900 }
901 TYPE_NFIELDS (ftype) = nparams;
902 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
903 }
904 break;
905
906 case 'F':
907 /* A global function definition. */
908 SYMBOL_TYPE (sym) = read_type (&p, objfile);
909 SYMBOL_CLASS (sym) = LOC_BLOCK;
910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
911 add_symbol_to_list (sym, &global_symbols);
912 goto process_function_types;
913
914 case 'G':
915 /* For a class G (global) symbol, it appears that the
916 value is not correct. It is necessary to search for the
917 corresponding linker definition to find the value.
918 These definitions appear at the end of the namelist. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_STATIC;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 /* Don't add symbol references to global_sym_chain.
923 Symbol references don't have valid names and wont't match up with
924 minimal symbols when the global_sym_chain is relocated.
925 We'll fixup symbol references when we fixup the defining symbol. */
926 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
927 {
928 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
929 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
930 global_sym_chain[i] = sym;
931 }
932 add_symbol_to_list (sym, &global_symbols);
933 break;
934
935 /* This case is faked by a conditional above,
936 when there is no code letter in the dbx data.
937 Dbx data never actually contains 'l'. */
938 case 's':
939 case 'l':
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
941 SYMBOL_CLASS (sym) = LOC_LOCAL;
942 SYMBOL_VALUE (sym) = valu;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'p':
948 if (*p == 'F')
949 /* pF is a two-letter code that means a function parameter in Fortran.
950 The type-number specifies the type of the return value.
951 Translate it into a pointer-to-function type. */
952 {
953 p++;
954 SYMBOL_TYPE (sym)
955 = lookup_pointer_type
956 (lookup_function_type (read_type (&p, objfile)));
957 }
958 else
959 SYMBOL_TYPE (sym) = read_type (&p, objfile);
960
961 SYMBOL_CLASS (sym) = LOC_ARG;
962 SYMBOL_VALUE (sym) = valu;
963 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
964 add_symbol_to_list (sym, &local_symbols);
965
966 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
967 {
968 /* On little-endian machines, this crud is never necessary,
969 and, if the extra bytes contain garbage, is harmful. */
970 break;
971 }
972
973 /* If it's gcc-compiled, if it says `short', believe it. */
974 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
975 break;
976
977 if (!BELIEVE_PCC_PROMOTION)
978 {
979 /* This is the signed type which arguments get promoted to. */
980 static struct type *pcc_promotion_type;
981 /* This is the unsigned type which arguments get promoted to. */
982 static struct type *pcc_unsigned_promotion_type;
983
984 /* Call it "int" because this is mainly C lossage. */
985 if (pcc_promotion_type == NULL)
986 pcc_promotion_type =
987 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
988 0, "int", NULL);
989
990 if (pcc_unsigned_promotion_type == NULL)
991 pcc_unsigned_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
994
995 /* If PCC says a parameter is a short or a char, it is
996 really an int. */
997 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
998 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
999 {
1000 SYMBOL_TYPE (sym) =
1001 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1002 ? pcc_unsigned_promotion_type
1003 : pcc_promotion_type;
1004 }
1005 break;
1006 }
1007
1008 case 'P':
1009 /* acc seems to use P to declare the prototypes of functions that
1010 are referenced by this file. gdb is not prepared to deal
1011 with this extra information. FIXME, it ought to. */
1012 if (type == N_FUN)
1013 {
1014 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1015 goto process_prototype_types;
1016 }
1017 /*FALLTHROUGH */
1018
1019 case 'R':
1020 /* Parameter which is in a register. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_REGPARM;
1023 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1024 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1025 + gdbarch_num_pseudo_regs (current_gdbarch))
1026 {
1027 reg_value_complaint (SYMBOL_VALUE (sym),
1028 gdbarch_num_regs (current_gdbarch)
1029 + gdbarch_num_pseudo_regs (current_gdbarch),
1030 SYMBOL_PRINT_NAME (sym));
1031 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1032 }
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'r':
1038 /* Register variable (either global or local). */
1039 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1040 SYMBOL_CLASS (sym) = LOC_REGISTER;
1041 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1042 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1043 + gdbarch_num_pseudo_regs (current_gdbarch))
1044 {
1045 reg_value_complaint (SYMBOL_VALUE (sym),
1046 gdbarch_num_regs (current_gdbarch)
1047 + gdbarch_num_pseudo_regs (current_gdbarch),
1048 SYMBOL_PRINT_NAME (sym));
1049 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1050 }
1051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1052 if (within_function)
1053 {
1054 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1055 the same name to represent an argument passed in a
1056 register. GCC uses 'P' for the same case. So if we find
1057 such a symbol pair we combine it into one 'P' symbol.
1058 For Sun cc we need to do this regardless of
1059 stabs_argument_has_addr, because the compiler puts out
1060 the 'p' symbol even if it never saves the argument onto
1061 the stack.
1062
1063 On most machines, we want to preserve both symbols, so
1064 that we can still get information about what is going on
1065 with the stack (VAX for computing args_printed, using
1066 stack slots instead of saved registers in backtraces,
1067 etc.).
1068
1069 Note that this code illegally combines
1070 main(argc) struct foo argc; { register struct foo argc; }
1071 but this case is considered pathological and causes a warning
1072 from a decent compiler. */
1073
1074 if (local_symbols
1075 && local_symbols->nsyms > 0
1076 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1077 SYMBOL_TYPE (sym)))
1078 {
1079 struct symbol *prev_sym;
1080 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1081 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1082 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1083 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1084 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1085 {
1086 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1087 /* Use the type from the LOC_REGISTER; that is the type
1088 that is actually in that register. */
1089 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1090 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1091 sym = prev_sym;
1092 break;
1093 }
1094 }
1095 add_symbol_to_list (sym, &local_symbols);
1096 }
1097 else
1098 add_symbol_to_list (sym, &file_symbols);
1099 break;
1100
1101 case 'S':
1102 /* Static symbol at top level of file */
1103 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1104 SYMBOL_CLASS (sym) = LOC_STATIC;
1105 SYMBOL_VALUE_ADDRESS (sym) = valu;
1106 #ifdef STATIC_TRANSFORM_NAME
1107 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1108 {
1109 struct minimal_symbol *msym;
1110 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1111 if (msym != NULL)
1112 {
1113 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1114 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1115 }
1116 }
1117 #endif
1118 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1119 add_symbol_to_list (sym, &file_symbols);
1120 break;
1121
1122 case 't':
1123 /* In Ada, there is no distinction between typedef and non-typedef;
1124 any type declaration implicitly has the equivalent of a typedef,
1125 and thus 't' is in fact equivalent to 'Tt'.
1126
1127 Therefore, for Ada units, we check the character immediately
1128 before the 't', and if we do not find a 'T', then make sure to
1129 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1130 will be stored in the VAR_DOMAIN). If the symbol was indeed
1131 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1132 elsewhere, so we don't need to take care of that.
1133
1134 This is important to do, because of forward references:
1135 The cleanup of undefined types stored in undef_types only uses
1136 STRUCT_DOMAIN symbols to perform the replacement. */
1137 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1138
1139 /* Typedef */
1140 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1141
1142 /* For a nameless type, we don't want a create a symbol, thus we
1143 did not use `sym'. Return without further processing. */
1144 if (nameless)
1145 return NULL;
1146
1147 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1148 SYMBOL_VALUE (sym) = valu;
1149 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1150 /* C++ vagaries: we may have a type which is derived from
1151 a base type which did not have its name defined when the
1152 derived class was output. We fill in the derived class's
1153 base part member's name here in that case. */
1154 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1155 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1156 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1157 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1158 {
1159 int j;
1160 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1161 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1162 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1163 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1164 }
1165
1166 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1167 {
1168 /* gcc-2.6 or later (when using -fvtable-thunks)
1169 emits a unique named type for a vtable entry.
1170 Some gdb code depends on that specific name. */
1171 extern const char vtbl_ptr_name[];
1172
1173 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1174 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1175 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1176 {
1177 /* If we are giving a name to a type such as "pointer to
1178 foo" or "function returning foo", we better not set
1179 the TYPE_NAME. If the program contains "typedef char
1180 *caddr_t;", we don't want all variables of type char
1181 * to print as caddr_t. This is not just a
1182 consequence of GDB's type management; PCC and GCC (at
1183 least through version 2.4) both output variables of
1184 either type char * or caddr_t with the type number
1185 defined in the 't' symbol for caddr_t. If a future
1186 compiler cleans this up it GDB is not ready for it
1187 yet, but if it becomes ready we somehow need to
1188 disable this check (without breaking the PCC/GCC2.4
1189 case).
1190
1191 Sigh.
1192
1193 Fortunately, this check seems not to be necessary
1194 for anything except pointers or functions. */
1195 /* ezannoni: 2000-10-26. This seems to apply for
1196 versions of gcc older than 2.8. This was the original
1197 problem: with the following code gdb would tell that
1198 the type for name1 is caddr_t, and func is char()
1199 typedef char *caddr_t;
1200 char *name2;
1201 struct x
1202 {
1203 char *name1;
1204 } xx;
1205 char *func()
1206 {
1207 }
1208 main () {}
1209 */
1210
1211 /* Pascal accepts names for pointer types. */
1212 if (current_subfile->language == language_pascal)
1213 {
1214 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1215 }
1216 }
1217 else
1218 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1219 }
1220
1221 add_symbol_to_list (sym, &file_symbols);
1222
1223 if (synonym)
1224 {
1225 /* Create the STRUCT_DOMAIN clone. */
1226 struct symbol *struct_sym = (struct symbol *)
1227 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1228
1229 *struct_sym = *sym;
1230 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1231 SYMBOL_VALUE (struct_sym) = valu;
1232 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1234 TYPE_NAME (SYMBOL_TYPE (sym))
1235 = obconcat (&objfile->objfile_obstack, "", "",
1236 DEPRECATED_SYMBOL_NAME (sym));
1237 add_symbol_to_list (struct_sym, &file_symbols);
1238 }
1239
1240 break;
1241
1242 case 'T':
1243 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1244 by 't' which means we are typedef'ing it as well. */
1245 synonym = *p == 't';
1246
1247 if (synonym)
1248 p++;
1249
1250 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1251
1252 /* For a nameless type, we don't want a create a symbol, thus we
1253 did not use `sym'. Return without further processing. */
1254 if (nameless)
1255 return NULL;
1256
1257 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1258 SYMBOL_VALUE (sym) = valu;
1259 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1260 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1261 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1262 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1263 add_symbol_to_list (sym, &file_symbols);
1264
1265 if (synonym)
1266 {
1267 /* Clone the sym and then modify it. */
1268 struct symbol *typedef_sym = (struct symbol *)
1269 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1270 *typedef_sym = *sym;
1271 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1272 SYMBOL_VALUE (typedef_sym) = valu;
1273 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1274 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1275 TYPE_NAME (SYMBOL_TYPE (sym))
1276 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1277 add_symbol_to_list (typedef_sym, &file_symbols);
1278 }
1279 break;
1280
1281 case 'V':
1282 /* Static symbol of local scope */
1283 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1284 SYMBOL_CLASS (sym) = LOC_STATIC;
1285 SYMBOL_VALUE_ADDRESS (sym) = valu;
1286 #ifdef STATIC_TRANSFORM_NAME
1287 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1288 {
1289 struct minimal_symbol *msym;
1290 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1291 if (msym != NULL)
1292 {
1293 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1294 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1295 }
1296 }
1297 #endif
1298 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1299 add_symbol_to_list (sym, &local_symbols);
1300 break;
1301
1302 case 'v':
1303 /* Reference parameter */
1304 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1305 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1306 SYMBOL_VALUE (sym) = valu;
1307 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1308 add_symbol_to_list (sym, &local_symbols);
1309 break;
1310
1311 case 'a':
1312 /* Reference parameter which is in a register. */
1313 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1314 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1315 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1316 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1317 + gdbarch_num_pseudo_regs (current_gdbarch))
1318 {
1319 reg_value_complaint (SYMBOL_VALUE (sym),
1320 gdbarch_num_regs (current_gdbarch)
1321 + gdbarch_num_pseudo_regs (current_gdbarch),
1322 SYMBOL_PRINT_NAME (sym));
1323 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1324 }
1325 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1326 add_symbol_to_list (sym, &local_symbols);
1327 break;
1328
1329 case 'X':
1330 /* This is used by Sun FORTRAN for "function result value".
1331 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1332 that Pascal uses it too, but when I tried it Pascal used
1333 "x:3" (local symbol) instead. */
1334 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1335 SYMBOL_CLASS (sym) = LOC_LOCAL;
1336 SYMBOL_VALUE (sym) = valu;
1337 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1338 add_symbol_to_list (sym, &local_symbols);
1339 break;
1340
1341 default:
1342 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1343 SYMBOL_CLASS (sym) = LOC_CONST;
1344 SYMBOL_VALUE (sym) = 0;
1345 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1346 add_symbol_to_list (sym, &file_symbols);
1347 break;
1348 }
1349
1350 /* Some systems pass variables of certain types by reference instead
1351 of by value, i.e. they will pass the address of a structure (in a
1352 register or on the stack) instead of the structure itself. */
1353
1354 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1355 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1356 {
1357 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1358 variables passed in a register). */
1359 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1360 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1361 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1362 and subsequent arguments on SPARC, for example). */
1363 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1364 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1365 }
1366
1367 return sym;
1368 }
1369
1370 /* Skip rest of this symbol and return an error type.
1371
1372 General notes on error recovery: error_type always skips to the
1373 end of the symbol (modulo cretinous dbx symbol name continuation).
1374 Thus code like this:
1375
1376 if (*(*pp)++ != ';')
1377 return error_type (pp, objfile);
1378
1379 is wrong because if *pp starts out pointing at '\0' (typically as the
1380 result of an earlier error), it will be incremented to point to the
1381 start of the next symbol, which might produce strange results, at least
1382 if you run off the end of the string table. Instead use
1383
1384 if (**pp != ';')
1385 return error_type (pp, objfile);
1386 ++*pp;
1387
1388 or
1389
1390 if (**pp != ';')
1391 foo = error_type (pp, objfile);
1392 else
1393 ++*pp;
1394
1395 And in case it isn't obvious, the point of all this hair is so the compiler
1396 can define new types and new syntaxes, and old versions of the
1397 debugger will be able to read the new symbol tables. */
1398
1399 static struct type *
1400 error_type (char **pp, struct objfile *objfile)
1401 {
1402 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1403 while (1)
1404 {
1405 /* Skip to end of symbol. */
1406 while (**pp != '\0')
1407 {
1408 (*pp)++;
1409 }
1410
1411 /* Check for and handle cretinous dbx symbol name continuation! */
1412 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1413 {
1414 *pp = next_symbol_text (objfile);
1415 }
1416 else
1417 {
1418 break;
1419 }
1420 }
1421 return (builtin_type_error);
1422 }
1423 \f
1424
1425 /* Read type information or a type definition; return the type. Even
1426 though this routine accepts either type information or a type
1427 definition, the distinction is relevant--some parts of stabsread.c
1428 assume that type information starts with a digit, '-', or '(' in
1429 deciding whether to call read_type. */
1430
1431 static struct type *
1432 read_type (char **pp, struct objfile *objfile)
1433 {
1434 struct type *type = 0;
1435 struct type *type1;
1436 int typenums[2];
1437 char type_descriptor;
1438
1439 /* Size in bits of type if specified by a type attribute, or -1 if
1440 there is no size attribute. */
1441 int type_size = -1;
1442
1443 /* Used to distinguish string and bitstring from char-array and set. */
1444 int is_string = 0;
1445
1446 /* Used to distinguish vector from array. */
1447 int is_vector = 0;
1448
1449 /* Read type number if present. The type number may be omitted.
1450 for instance in a two-dimensional array declared with type
1451 "ar1;1;10;ar1;1;10;4". */
1452 if ((**pp >= '0' && **pp <= '9')
1453 || **pp == '('
1454 || **pp == '-')
1455 {
1456 if (read_type_number (pp, typenums) != 0)
1457 return error_type (pp, objfile);
1458
1459 if (**pp != '=')
1460 {
1461 /* Type is not being defined here. Either it already
1462 exists, or this is a forward reference to it.
1463 dbx_alloc_type handles both cases. */
1464 type = dbx_alloc_type (typenums, objfile);
1465
1466 /* If this is a forward reference, arrange to complain if it
1467 doesn't get patched up by the time we're done
1468 reading. */
1469 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1470 add_undefined_type (type, typenums);
1471
1472 return type;
1473 }
1474
1475 /* Type is being defined here. */
1476 /* Skip the '='.
1477 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1478 (*pp) += 2;
1479 }
1480 else
1481 {
1482 /* 'typenums=' not present, type is anonymous. Read and return
1483 the definition, but don't put it in the type vector. */
1484 typenums[0] = typenums[1] = -1;
1485 (*pp)++;
1486 }
1487
1488 again:
1489 type_descriptor = (*pp)[-1];
1490 switch (type_descriptor)
1491 {
1492 case 'x':
1493 {
1494 enum type_code code;
1495
1496 /* Used to index through file_symbols. */
1497 struct pending *ppt;
1498 int i;
1499
1500 /* Name including "struct", etc. */
1501 char *type_name;
1502
1503 {
1504 char *from, *to, *p, *q1, *q2;
1505
1506 /* Set the type code according to the following letter. */
1507 switch ((*pp)[0])
1508 {
1509 case 's':
1510 code = TYPE_CODE_STRUCT;
1511 break;
1512 case 'u':
1513 code = TYPE_CODE_UNION;
1514 break;
1515 case 'e':
1516 code = TYPE_CODE_ENUM;
1517 break;
1518 default:
1519 {
1520 /* Complain and keep going, so compilers can invent new
1521 cross-reference types. */
1522 complaint (&symfile_complaints,
1523 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1524 code = TYPE_CODE_STRUCT;
1525 break;
1526 }
1527 }
1528
1529 q1 = strchr (*pp, '<');
1530 p = strchr (*pp, ':');
1531 if (p == NULL)
1532 return error_type (pp, objfile);
1533 if (q1 && p > q1 && p[1] == ':')
1534 {
1535 int nesting_level = 0;
1536 for (q2 = q1; *q2; q2++)
1537 {
1538 if (*q2 == '<')
1539 nesting_level++;
1540 else if (*q2 == '>')
1541 nesting_level--;
1542 else if (*q2 == ':' && nesting_level == 0)
1543 break;
1544 }
1545 p = q2;
1546 if (*p != ':')
1547 return error_type (pp, objfile);
1548 }
1549 to = type_name =
1550 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1551
1552 /* Copy the name. */
1553 from = *pp + 1;
1554 while (from < p)
1555 *to++ = *from++;
1556 *to = '\0';
1557
1558 /* Set the pointer ahead of the name which we just read, and
1559 the colon. */
1560 *pp = from + 1;
1561 }
1562
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1565 memory. */
1566
1567 for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 for (i = 0; i < ppt->nsyms; i++)
1569 {
1570 struct symbol *sym = ppt->symbol[i];
1571
1572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1576 {
1577 obstack_free (&objfile->objfile_obstack, type_name);
1578 type = SYMBOL_TYPE (sym);
1579 if (typenums[0] != -1)
1580 *dbx_lookup_type (typenums) = type;
1581 return type;
1582 }
1583 }
1584
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1589 type. */
1590 type = dbx_alloc_type (typenums, objfile);
1591 TYPE_CODE (type) = code;
1592 TYPE_TAG_NAME (type) = type_name;
1593 INIT_CPLUS_SPECIFIC (type);
1594 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1595
1596 add_undefined_type (type, typenums);
1597 return type;
1598 }
1599
1600 case '-': /* RS/6000 built-in type */
1601 case '0':
1602 case '1':
1603 case '2':
1604 case '3':
1605 case '4':
1606 case '5':
1607 case '6':
1608 case '7':
1609 case '8':
1610 case '9':
1611 case '(':
1612 (*pp)--;
1613
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type = dbx_alloc_type (typenums, objfile);
1620 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621 {
1622 struct type *xtype = read_type (pp, objfile);
1623 if (type == xtype)
1624 {
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type) = TYPE_CODE_VOID;
1627 TYPE_LENGTH (type) = 1;
1628 }
1629 else if (type_size >= 0 || is_string)
1630 {
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1637
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1646
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type, xtype);
1655 TYPE_NAME (type) = NULL;
1656 TYPE_TAG_NAME (type) = NULL;
1657 }
1658 else
1659 {
1660 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1661 TYPE_TARGET_TYPE (type) = xtype;
1662 }
1663 }
1664 break;
1665
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1672
1673 case '*': /* Pointer to another type */
1674 type1 = read_type (pp, objfile);
1675 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1676 break;
1677
1678 case '&': /* Reference to another type */
1679 type1 = read_type (pp, objfile);
1680 type = make_reference_type (type1, dbx_lookup_type (typenums));
1681 break;
1682
1683 case 'f': /* Function returning another type */
1684 type1 = read_type (pp, objfile);
1685 type = make_function_type (type1, dbx_lookup_type (typenums));
1686 break;
1687
1688 case 'g': /* Prototyped function. (Sun) */
1689 {
1690 /* Unresolved questions:
1691
1692 - According to Sun's ``STABS Interface Manual'', for 'f'
1693 and 'F' symbol descriptors, a `0' in the argument type list
1694 indicates a varargs function. But it doesn't say how 'g'
1695 type descriptors represent that info. Someone with access
1696 to Sun's toolchain should try it out.
1697
1698 - According to the comment in define_symbol (search for
1699 `process_prototype_types:'), Sun emits integer arguments as
1700 types which ref themselves --- like `void' types. Do we
1701 have to deal with that here, too? Again, someone with
1702 access to Sun's toolchain should try it out and let us
1703 know. */
1704
1705 const char *type_start = (*pp) - 1;
1706 struct type *return_type = read_type (pp, objfile);
1707 struct type *func_type
1708 = make_function_type (return_type, dbx_lookup_type (typenums));
1709 struct type_list {
1710 struct type *type;
1711 struct type_list *next;
1712 } *arg_types = 0;
1713 int num_args = 0;
1714
1715 while (**pp && **pp != '#')
1716 {
1717 struct type *arg_type = read_type (pp, objfile);
1718 struct type_list *new = alloca (sizeof (*new));
1719 new->type = arg_type;
1720 new->next = arg_types;
1721 arg_types = new;
1722 num_args++;
1723 }
1724 if (**pp == '#')
1725 ++*pp;
1726 else
1727 {
1728 complaint (&symfile_complaints,
1729 _("Prototyped function type didn't end arguments with `#':\n%s"),
1730 type_start);
1731 }
1732
1733 /* If there is just one argument whose type is `void', then
1734 that's just an empty argument list. */
1735 if (arg_types
1736 && ! arg_types->next
1737 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1738 num_args = 0;
1739
1740 TYPE_FIELDS (func_type)
1741 = (struct field *) TYPE_ALLOC (func_type,
1742 num_args * sizeof (struct field));
1743 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1744 {
1745 int i;
1746 struct type_list *t;
1747
1748 /* We stuck each argument type onto the front of the list
1749 when we read it, so the list is reversed. Build the
1750 fields array right-to-left. */
1751 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1752 TYPE_FIELD_TYPE (func_type, i) = t->type;
1753 }
1754 TYPE_NFIELDS (func_type) = num_args;
1755 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1756
1757 type = func_type;
1758 break;
1759 }
1760
1761 case 'k': /* Const qualifier on some type (Sun) */
1762 type = read_type (pp, objfile);
1763 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1764 dbx_lookup_type (typenums));
1765 break;
1766
1767 case 'B': /* Volatile qual on some type (Sun) */
1768 type = read_type (pp, objfile);
1769 type = make_cv_type (TYPE_CONST (type), 1, type,
1770 dbx_lookup_type (typenums));
1771 break;
1772
1773 case '@':
1774 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1775 { /* Member (class & variable) type */
1776 /* FIXME -- we should be doing smash_to_XXX types here. */
1777
1778 struct type *domain = read_type (pp, objfile);
1779 struct type *memtype;
1780
1781 if (**pp != ',')
1782 /* Invalid member type data format. */
1783 return error_type (pp, objfile);
1784 ++*pp;
1785
1786 memtype = read_type (pp, objfile);
1787 type = dbx_alloc_type (typenums, objfile);
1788 smash_to_memberptr_type (type, domain, memtype);
1789 }
1790 else
1791 /* type attribute */
1792 {
1793 char *attr = *pp;
1794 /* Skip to the semicolon. */
1795 while (**pp != ';' && **pp != '\0')
1796 ++(*pp);
1797 if (**pp == '\0')
1798 return error_type (pp, objfile);
1799 else
1800 ++ * pp; /* Skip the semicolon. */
1801
1802 switch (*attr)
1803 {
1804 case 's': /* Size attribute */
1805 type_size = atoi (attr + 1);
1806 if (type_size <= 0)
1807 type_size = -1;
1808 break;
1809
1810 case 'S': /* String attribute */
1811 /* FIXME: check to see if following type is array? */
1812 is_string = 1;
1813 break;
1814
1815 case 'V': /* Vector attribute */
1816 /* FIXME: check to see if following type is array? */
1817 is_vector = 1;
1818 break;
1819
1820 default:
1821 /* Ignore unrecognized type attributes, so future compilers
1822 can invent new ones. */
1823 break;
1824 }
1825 ++*pp;
1826 goto again;
1827 }
1828 break;
1829
1830 case '#': /* Method (class & fn) type */
1831 if ((*pp)[0] == '#')
1832 {
1833 /* We'll get the parameter types from the name. */
1834 struct type *return_type;
1835
1836 (*pp)++;
1837 return_type = read_type (pp, objfile);
1838 if (*(*pp)++ != ';')
1839 complaint (&symfile_complaints,
1840 _("invalid (minimal) member type data format at symtab pos %d."),
1841 symnum);
1842 type = allocate_stub_method (return_type);
1843 if (typenums[0] != -1)
1844 *dbx_lookup_type (typenums) = type;
1845 }
1846 else
1847 {
1848 struct type *domain = read_type (pp, objfile);
1849 struct type *return_type;
1850 struct field *args;
1851 int nargs, varargs;
1852
1853 if (**pp != ',')
1854 /* Invalid member type data format. */
1855 return error_type (pp, objfile);
1856 else
1857 ++(*pp);
1858
1859 return_type = read_type (pp, objfile);
1860 args = read_args (pp, ';', objfile, &nargs, &varargs);
1861 if (args == NULL)
1862 return error_type (pp, objfile);
1863 type = dbx_alloc_type (typenums, objfile);
1864 smash_to_method_type (type, domain, return_type, args,
1865 nargs, varargs);
1866 }
1867 break;
1868
1869 case 'r': /* Range type */
1870 type = read_range_type (pp, typenums, type_size, objfile);
1871 if (typenums[0] != -1)
1872 *dbx_lookup_type (typenums) = type;
1873 break;
1874
1875 case 'b':
1876 {
1877 /* Sun ACC builtin int type */
1878 type = read_sun_builtin_type (pp, typenums, objfile);
1879 if (typenums[0] != -1)
1880 *dbx_lookup_type (typenums) = type;
1881 }
1882 break;
1883
1884 case 'R': /* Sun ACC builtin float type */
1885 type = read_sun_floating_type (pp, typenums, objfile);
1886 if (typenums[0] != -1)
1887 *dbx_lookup_type (typenums) = type;
1888 break;
1889
1890 case 'e': /* Enumeration type */
1891 type = dbx_alloc_type (typenums, objfile);
1892 type = read_enum_type (pp, type, objfile);
1893 if (typenums[0] != -1)
1894 *dbx_lookup_type (typenums) = type;
1895 break;
1896
1897 case 's': /* Struct type */
1898 case 'u': /* Union type */
1899 {
1900 enum type_code type_code = TYPE_CODE_UNDEF;
1901 type = dbx_alloc_type (typenums, objfile);
1902 switch (type_descriptor)
1903 {
1904 case 's':
1905 type_code = TYPE_CODE_STRUCT;
1906 break;
1907 case 'u':
1908 type_code = TYPE_CODE_UNION;
1909 break;
1910 }
1911 type = read_struct_type (pp, type, type_code, objfile);
1912 break;
1913 }
1914
1915 case 'a': /* Array type */
1916 if (**pp != 'r')
1917 return error_type (pp, objfile);
1918 ++*pp;
1919
1920 type = dbx_alloc_type (typenums, objfile);
1921 type = read_array_type (pp, type, objfile);
1922 if (is_string)
1923 TYPE_CODE (type) = TYPE_CODE_STRING;
1924 if (is_vector)
1925 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1926 break;
1927
1928 case 'S': /* Set or bitstring type */
1929 type1 = read_type (pp, objfile);
1930 type = create_set_type ((struct type *) NULL, type1);
1931 if (is_string)
1932 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1933 if (typenums[0] != -1)
1934 *dbx_lookup_type (typenums) = type;
1935 break;
1936
1937 default:
1938 --*pp; /* Go back to the symbol in error */
1939 /* Particularly important if it was \0! */
1940 return error_type (pp, objfile);
1941 }
1942
1943 if (type == 0)
1944 {
1945 warning (_("GDB internal error, type is NULL in stabsread.c."));
1946 return error_type (pp, objfile);
1947 }
1948
1949 /* Size specified in a type attribute overrides any other size. */
1950 if (type_size != -1)
1951 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1952
1953 return type;
1954 }
1955 \f
1956 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1957 Return the proper type node for a given builtin type number. */
1958
1959 static struct type *
1960 rs6000_builtin_type (int typenum)
1961 {
1962 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1963 #define NUMBER_RECOGNIZED 34
1964 /* This includes an empty slot for type number -0. */
1965 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1966 struct type *rettype = NULL;
1967
1968 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1969 {
1970 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1971 return builtin_type_error;
1972 }
1973 if (negative_types[-typenum] != NULL)
1974 return negative_types[-typenum];
1975
1976 #if TARGET_CHAR_BIT != 8
1977 #error This code wrong for TARGET_CHAR_BIT not 8
1978 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1979 that if that ever becomes not true, the correct fix will be to
1980 make the size in the struct type to be in bits, not in units of
1981 TARGET_CHAR_BIT. */
1982 #endif
1983
1984 switch (-typenum)
1985 {
1986 case 1:
1987 /* The size of this and all the other types are fixed, defined
1988 by the debugging format. If there is a type called "int" which
1989 is other than 32 bits, then it should use a new negative type
1990 number (or avoid negative type numbers for that case).
1991 See stabs.texinfo. */
1992 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1993 break;
1994 case 2:
1995 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1996 break;
1997 case 3:
1998 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1999 break;
2000 case 4:
2001 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2002 break;
2003 case 5:
2004 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2005 "unsigned char", NULL);
2006 break;
2007 case 6:
2008 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2009 break;
2010 case 7:
2011 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2012 "unsigned short", NULL);
2013 break;
2014 case 8:
2015 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2016 "unsigned int", NULL);
2017 break;
2018 case 9:
2019 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2020 "unsigned", NULL);
2021 case 10:
2022 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2023 "unsigned long", NULL);
2024 break;
2025 case 11:
2026 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2027 break;
2028 case 12:
2029 /* IEEE single precision (32 bit). */
2030 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2031 break;
2032 case 13:
2033 /* IEEE double precision (64 bit). */
2034 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2035 break;
2036 case 14:
2037 /* This is an IEEE double on the RS/6000, and different machines with
2038 different sizes for "long double" should use different negative
2039 type numbers. See stabs.texinfo. */
2040 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2041 break;
2042 case 15:
2043 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2044 break;
2045 case 16:
2046 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2047 "boolean", NULL);
2048 break;
2049 case 17:
2050 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2051 break;
2052 case 18:
2053 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2054 break;
2055 case 19:
2056 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2057 break;
2058 case 20:
2059 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2060 "character", NULL);
2061 break;
2062 case 21:
2063 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2064 "logical*1", NULL);
2065 break;
2066 case 22:
2067 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2068 "logical*2", NULL);
2069 break;
2070 case 23:
2071 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2072 "logical*4", NULL);
2073 break;
2074 case 24:
2075 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2076 "logical", NULL);
2077 break;
2078 case 25:
2079 /* Complex type consisting of two IEEE single precision values. */
2080 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2081 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2082 NULL);
2083 break;
2084 case 26:
2085 /* Complex type consisting of two IEEE double precision values. */
2086 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2087 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2088 NULL);
2089 break;
2090 case 27:
2091 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2092 break;
2093 case 28:
2094 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2095 break;
2096 case 29:
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2098 break;
2099 case 30:
2100 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2101 break;
2102 case 31:
2103 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2104 break;
2105 case 32:
2106 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2107 "unsigned long long", NULL);
2108 break;
2109 case 33:
2110 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2111 "logical*8", NULL);
2112 break;
2113 case 34:
2114 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2115 break;
2116 }
2117 negative_types[-typenum] = rettype;
2118 return rettype;
2119 }
2120 \f
2121 /* This page contains subroutines of read_type. */
2122
2123 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2124
2125 static void
2126 update_method_name_from_physname (char **old_name, char *physname)
2127 {
2128 char *method_name;
2129
2130 method_name = method_name_from_physname (physname);
2131
2132 if (method_name == NULL)
2133 {
2134 complaint (&symfile_complaints,
2135 _("Method has bad physname %s\n"), physname);
2136 return;
2137 }
2138
2139 if (strcmp (*old_name, method_name) != 0)
2140 {
2141 xfree (*old_name);
2142 *old_name = method_name;
2143 }
2144 else
2145 xfree (method_name);
2146 }
2147
2148 /* Read member function stabs info for C++ classes. The form of each member
2149 function data is:
2150
2151 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2152
2153 An example with two member functions is:
2154
2155 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2156
2157 For the case of overloaded operators, the format is op$::*.funcs, where
2158 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2159 name (such as `+=') and `.' marks the end of the operator name.
2160
2161 Returns 1 for success, 0 for failure. */
2162
2163 static int
2164 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2165 struct objfile *objfile)
2166 {
2167 int nfn_fields = 0;
2168 int length = 0;
2169 /* Total number of member functions defined in this class. If the class
2170 defines two `f' functions, and one `g' function, then this will have
2171 the value 3. */
2172 int total_length = 0;
2173 int i;
2174 struct next_fnfield
2175 {
2176 struct next_fnfield *next;
2177 struct fn_field fn_field;
2178 }
2179 *sublist;
2180 struct type *look_ahead_type;
2181 struct next_fnfieldlist *new_fnlist;
2182 struct next_fnfield *new_sublist;
2183 char *main_fn_name;
2184 char *p;
2185
2186 /* Process each list until we find something that is not a member function
2187 or find the end of the functions. */
2188
2189 while (**pp != ';')
2190 {
2191 /* We should be positioned at the start of the function name.
2192 Scan forward to find the first ':' and if it is not the
2193 first of a "::" delimiter, then this is not a member function. */
2194 p = *pp;
2195 while (*p != ':')
2196 {
2197 p++;
2198 }
2199 if (p[1] != ':')
2200 {
2201 break;
2202 }
2203
2204 sublist = NULL;
2205 look_ahead_type = NULL;
2206 length = 0;
2207
2208 new_fnlist = (struct next_fnfieldlist *)
2209 xmalloc (sizeof (struct next_fnfieldlist));
2210 make_cleanup (xfree, new_fnlist);
2211 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2212
2213 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2214 {
2215 /* This is a completely wierd case. In order to stuff in the
2216 names that might contain colons (the usual name delimiter),
2217 Mike Tiemann defined a different name format which is
2218 signalled if the identifier is "op$". In that case, the
2219 format is "op$::XXXX." where XXXX is the name. This is
2220 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2221 /* This lets the user type "break operator+".
2222 We could just put in "+" as the name, but that wouldn't
2223 work for "*". */
2224 static char opname[32] = "op$";
2225 char *o = opname + 3;
2226
2227 /* Skip past '::'. */
2228 *pp = p + 2;
2229
2230 STABS_CONTINUE (pp, objfile);
2231 p = *pp;
2232 while (*p != '.')
2233 {
2234 *o++ = *p++;
2235 }
2236 main_fn_name = savestring (opname, o - opname);
2237 /* Skip past '.' */
2238 *pp = p + 1;
2239 }
2240 else
2241 {
2242 main_fn_name = savestring (*pp, p - *pp);
2243 /* Skip past '::'. */
2244 *pp = p + 2;
2245 }
2246 new_fnlist->fn_fieldlist.name = main_fn_name;
2247
2248 do
2249 {
2250 new_sublist =
2251 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2252 make_cleanup (xfree, new_sublist);
2253 memset (new_sublist, 0, sizeof (struct next_fnfield));
2254
2255 /* Check for and handle cretinous dbx symbol name continuation! */
2256 if (look_ahead_type == NULL)
2257 {
2258 /* Normal case. */
2259 STABS_CONTINUE (pp, objfile);
2260
2261 new_sublist->fn_field.type = read_type (pp, objfile);
2262 if (**pp != ':')
2263 {
2264 /* Invalid symtab info for member function. */
2265 return 0;
2266 }
2267 }
2268 else
2269 {
2270 /* g++ version 1 kludge */
2271 new_sublist->fn_field.type = look_ahead_type;
2272 look_ahead_type = NULL;
2273 }
2274
2275 (*pp)++;
2276 p = *pp;
2277 while (*p != ';')
2278 {
2279 p++;
2280 }
2281
2282 /* If this is just a stub, then we don't have the real name here. */
2283
2284 if (TYPE_STUB (new_sublist->fn_field.type))
2285 {
2286 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2287 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2288 new_sublist->fn_field.is_stub = 1;
2289 }
2290 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2291 *pp = p + 1;
2292
2293 /* Set this member function's visibility fields. */
2294 switch (*(*pp)++)
2295 {
2296 case VISIBILITY_PRIVATE:
2297 new_sublist->fn_field.is_private = 1;
2298 break;
2299 case VISIBILITY_PROTECTED:
2300 new_sublist->fn_field.is_protected = 1;
2301 break;
2302 }
2303
2304 STABS_CONTINUE (pp, objfile);
2305 switch (**pp)
2306 {
2307 case 'A': /* Normal functions. */
2308 new_sublist->fn_field.is_const = 0;
2309 new_sublist->fn_field.is_volatile = 0;
2310 (*pp)++;
2311 break;
2312 case 'B': /* `const' member functions. */
2313 new_sublist->fn_field.is_const = 1;
2314 new_sublist->fn_field.is_volatile = 0;
2315 (*pp)++;
2316 break;
2317 case 'C': /* `volatile' member function. */
2318 new_sublist->fn_field.is_const = 0;
2319 new_sublist->fn_field.is_volatile = 1;
2320 (*pp)++;
2321 break;
2322 case 'D': /* `const volatile' member function. */
2323 new_sublist->fn_field.is_const = 1;
2324 new_sublist->fn_field.is_volatile = 1;
2325 (*pp)++;
2326 break;
2327 case '*': /* File compiled with g++ version 1 -- no info */
2328 case '?':
2329 case '.':
2330 break;
2331 default:
2332 complaint (&symfile_complaints,
2333 _("const/volatile indicator missing, got '%c'"), **pp);
2334 break;
2335 }
2336
2337 switch (*(*pp)++)
2338 {
2339 case '*':
2340 {
2341 int nbits;
2342 /* virtual member function, followed by index.
2343 The sign bit is set to distinguish pointers-to-methods
2344 from virtual function indicies. Since the array is
2345 in words, the quantity must be shifted left by 1
2346 on 16 bit machine, and by 2 on 32 bit machine, forcing
2347 the sign bit out, and usable as a valid index into
2348 the array. Remove the sign bit here. */
2349 new_sublist->fn_field.voffset =
2350 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2351 if (nbits != 0)
2352 return 0;
2353
2354 STABS_CONTINUE (pp, objfile);
2355 if (**pp == ';' || **pp == '\0')
2356 {
2357 /* Must be g++ version 1. */
2358 new_sublist->fn_field.fcontext = 0;
2359 }
2360 else
2361 {
2362 /* Figure out from whence this virtual function came.
2363 It may belong to virtual function table of
2364 one of its baseclasses. */
2365 look_ahead_type = read_type (pp, objfile);
2366 if (**pp == ':')
2367 {
2368 /* g++ version 1 overloaded methods. */
2369 }
2370 else
2371 {
2372 new_sublist->fn_field.fcontext = look_ahead_type;
2373 if (**pp != ';')
2374 {
2375 return 0;
2376 }
2377 else
2378 {
2379 ++*pp;
2380 }
2381 look_ahead_type = NULL;
2382 }
2383 }
2384 break;
2385 }
2386 case '?':
2387 /* static member function. */
2388 {
2389 int slen = strlen (main_fn_name);
2390
2391 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2392
2393 /* For static member functions, we can't tell if they
2394 are stubbed, as they are put out as functions, and not as
2395 methods.
2396 GCC v2 emits the fully mangled name if
2397 dbxout.c:flag_minimal_debug is not set, so we have to
2398 detect a fully mangled physname here and set is_stub
2399 accordingly. Fully mangled physnames in v2 start with
2400 the member function name, followed by two underscores.
2401 GCC v3 currently always emits stubbed member functions,
2402 but with fully mangled physnames, which start with _Z. */
2403 if (!(strncmp (new_sublist->fn_field.physname,
2404 main_fn_name, slen) == 0
2405 && new_sublist->fn_field.physname[slen] == '_'
2406 && new_sublist->fn_field.physname[slen + 1] == '_'))
2407 {
2408 new_sublist->fn_field.is_stub = 1;
2409 }
2410 break;
2411 }
2412
2413 default:
2414 /* error */
2415 complaint (&symfile_complaints,
2416 _("member function type missing, got '%c'"), (*pp)[-1]);
2417 /* Fall through into normal member function. */
2418
2419 case '.':
2420 /* normal member function. */
2421 new_sublist->fn_field.voffset = 0;
2422 new_sublist->fn_field.fcontext = 0;
2423 break;
2424 }
2425
2426 new_sublist->next = sublist;
2427 sublist = new_sublist;
2428 length++;
2429 STABS_CONTINUE (pp, objfile);
2430 }
2431 while (**pp != ';' && **pp != '\0');
2432
2433 (*pp)++;
2434 STABS_CONTINUE (pp, objfile);
2435
2436 /* Skip GCC 3.X member functions which are duplicates of the callable
2437 constructor/destructor. */
2438 if (strcmp (main_fn_name, "__base_ctor") == 0
2439 || strcmp (main_fn_name, "__base_dtor") == 0
2440 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2441 {
2442 xfree (main_fn_name);
2443 }
2444 else
2445 {
2446 int has_stub = 0;
2447 int has_destructor = 0, has_other = 0;
2448 int is_v3 = 0;
2449 struct next_fnfield *tmp_sublist;
2450
2451 /* Various versions of GCC emit various mostly-useless
2452 strings in the name field for special member functions.
2453
2454 For stub methods, we need to defer correcting the name
2455 until we are ready to unstub the method, because the current
2456 name string is used by gdb_mangle_name. The only stub methods
2457 of concern here are GNU v2 operators; other methods have their
2458 names correct (see caveat below).
2459
2460 For non-stub methods, in GNU v3, we have a complete physname.
2461 Therefore we can safely correct the name now. This primarily
2462 affects constructors and destructors, whose name will be
2463 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2464 operators will also have incorrect names; for instance,
2465 "operator int" will be named "operator i" (i.e. the type is
2466 mangled).
2467
2468 For non-stub methods in GNU v2, we have no easy way to
2469 know if we have a complete physname or not. For most
2470 methods the result depends on the platform (if CPLUS_MARKER
2471 can be `$' or `.', it will use minimal debug information, or
2472 otherwise the full physname will be included).
2473
2474 Rather than dealing with this, we take a different approach.
2475 For v3 mangled names, we can use the full physname; for v2,
2476 we use cplus_demangle_opname (which is actually v2 specific),
2477 because the only interesting names are all operators - once again
2478 barring the caveat below. Skip this process if any method in the
2479 group is a stub, to prevent our fouling up the workings of
2480 gdb_mangle_name.
2481
2482 The caveat: GCC 2.95.x (and earlier?) put constructors and
2483 destructors in the same method group. We need to split this
2484 into two groups, because they should have different names.
2485 So for each method group we check whether it contains both
2486 routines whose physname appears to be a destructor (the physnames
2487 for and destructors are always provided, due to quirks in v2
2488 mangling) and routines whose physname does not appear to be a
2489 destructor. If so then we break up the list into two halves.
2490 Even if the constructors and destructors aren't in the same group
2491 the destructor will still lack the leading tilde, so that also
2492 needs to be fixed.
2493
2494 So, to summarize what we expect and handle here:
2495
2496 Given Given Real Real Action
2497 method name physname physname method name
2498
2499 __opi [none] __opi__3Foo operator int opname
2500 [now or later]
2501 Foo _._3Foo _._3Foo ~Foo separate and
2502 rename
2503 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2504 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2505 */
2506
2507 tmp_sublist = sublist;
2508 while (tmp_sublist != NULL)
2509 {
2510 if (tmp_sublist->fn_field.is_stub)
2511 has_stub = 1;
2512 if (tmp_sublist->fn_field.physname[0] == '_'
2513 && tmp_sublist->fn_field.physname[1] == 'Z')
2514 is_v3 = 1;
2515
2516 if (is_destructor_name (tmp_sublist->fn_field.physname))
2517 has_destructor++;
2518 else
2519 has_other++;
2520
2521 tmp_sublist = tmp_sublist->next;
2522 }
2523
2524 if (has_destructor && has_other)
2525 {
2526 struct next_fnfieldlist *destr_fnlist;
2527 struct next_fnfield *last_sublist;
2528
2529 /* Create a new fn_fieldlist for the destructors. */
2530
2531 destr_fnlist = (struct next_fnfieldlist *)
2532 xmalloc (sizeof (struct next_fnfieldlist));
2533 make_cleanup (xfree, destr_fnlist);
2534 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2535 destr_fnlist->fn_fieldlist.name
2536 = obconcat (&objfile->objfile_obstack, "", "~",
2537 new_fnlist->fn_fieldlist.name);
2538
2539 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2540 obstack_alloc (&objfile->objfile_obstack,
2541 sizeof (struct fn_field) * has_destructor);
2542 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2543 sizeof (struct fn_field) * has_destructor);
2544 tmp_sublist = sublist;
2545 last_sublist = NULL;
2546 i = 0;
2547 while (tmp_sublist != NULL)
2548 {
2549 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2550 {
2551 tmp_sublist = tmp_sublist->next;
2552 continue;
2553 }
2554
2555 destr_fnlist->fn_fieldlist.fn_fields[i++]
2556 = tmp_sublist->fn_field;
2557 if (last_sublist)
2558 last_sublist->next = tmp_sublist->next;
2559 else
2560 sublist = tmp_sublist->next;
2561 last_sublist = tmp_sublist;
2562 tmp_sublist = tmp_sublist->next;
2563 }
2564
2565 destr_fnlist->fn_fieldlist.length = has_destructor;
2566 destr_fnlist->next = fip->fnlist;
2567 fip->fnlist = destr_fnlist;
2568 nfn_fields++;
2569 total_length += has_destructor;
2570 length -= has_destructor;
2571 }
2572 else if (is_v3)
2573 {
2574 /* v3 mangling prevents the use of abbreviated physnames,
2575 so we can do this here. There are stubbed methods in v3
2576 only:
2577 - in -gstabs instead of -gstabs+
2578 - or for static methods, which are output as a function type
2579 instead of a method type. */
2580
2581 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2582 sublist->fn_field.physname);
2583 }
2584 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2585 {
2586 new_fnlist->fn_fieldlist.name =
2587 concat ("~", main_fn_name, (char *)NULL);
2588 xfree (main_fn_name);
2589 }
2590 else if (!has_stub)
2591 {
2592 char dem_opname[256];
2593 int ret;
2594 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2595 dem_opname, DMGL_ANSI);
2596 if (!ret)
2597 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2598 dem_opname, 0);
2599 if (ret)
2600 new_fnlist->fn_fieldlist.name
2601 = obsavestring (dem_opname, strlen (dem_opname),
2602 &objfile->objfile_obstack);
2603 }
2604
2605 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2606 obstack_alloc (&objfile->objfile_obstack,
2607 sizeof (struct fn_field) * length);
2608 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2609 sizeof (struct fn_field) * length);
2610 for (i = length; (i--, sublist); sublist = sublist->next)
2611 {
2612 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2613 }
2614
2615 new_fnlist->fn_fieldlist.length = length;
2616 new_fnlist->next = fip->fnlist;
2617 fip->fnlist = new_fnlist;
2618 nfn_fields++;
2619 total_length += length;
2620 }
2621 }
2622
2623 if (nfn_fields)
2624 {
2625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2626 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2627 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2628 memset (TYPE_FN_FIELDLISTS (type), 0,
2629 sizeof (struct fn_fieldlist) * nfn_fields);
2630 TYPE_NFN_FIELDS (type) = nfn_fields;
2631 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2632 }
2633
2634 return 1;
2635 }
2636
2637 /* Special GNU C++ name.
2638
2639 Returns 1 for success, 0 for failure. "failure" means that we can't
2640 keep parsing and it's time for error_type(). */
2641
2642 static int
2643 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2644 struct objfile *objfile)
2645 {
2646 char *p;
2647 char *name;
2648 char cpp_abbrev;
2649 struct type *context;
2650
2651 p = *pp;
2652 if (*++p == 'v')
2653 {
2654 name = NULL;
2655 cpp_abbrev = *++p;
2656
2657 *pp = p + 1;
2658
2659 /* At this point, *pp points to something like "22:23=*22...",
2660 where the type number before the ':' is the "context" and
2661 everything after is a regular type definition. Lookup the
2662 type, find it's name, and construct the field name. */
2663
2664 context = read_type (pp, objfile);
2665
2666 switch (cpp_abbrev)
2667 {
2668 case 'f': /* $vf -- a virtual function table pointer */
2669 name = type_name_no_tag (context);
2670 if (name == NULL)
2671 {
2672 name = "";
2673 }
2674 fip->list->field.name =
2675 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2676 break;
2677
2678 case 'b': /* $vb -- a virtual bsomethingorother */
2679 name = type_name_no_tag (context);
2680 if (name == NULL)
2681 {
2682 complaint (&symfile_complaints,
2683 _("C++ abbreviated type name unknown at symtab pos %d"),
2684 symnum);
2685 name = "FOO";
2686 }
2687 fip->list->field.name =
2688 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2689 break;
2690
2691 default:
2692 invalid_cpp_abbrev_complaint (*pp);
2693 fip->list->field.name =
2694 obconcat (&objfile->objfile_obstack,
2695 "INVALID_CPLUSPLUS_ABBREV", "", "");
2696 break;
2697 }
2698
2699 /* At this point, *pp points to the ':'. Skip it and read the
2700 field type. */
2701
2702 p = ++(*pp);
2703 if (p[-1] != ':')
2704 {
2705 invalid_cpp_abbrev_complaint (*pp);
2706 return 0;
2707 }
2708 fip->list->field.type = read_type (pp, objfile);
2709 if (**pp == ',')
2710 (*pp)++; /* Skip the comma. */
2711 else
2712 return 0;
2713
2714 {
2715 int nbits;
2716 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2717 0);
2718 if (nbits != 0)
2719 return 0;
2720 }
2721 /* This field is unpacked. */
2722 FIELD_BITSIZE (fip->list->field) = 0;
2723 fip->list->visibility = VISIBILITY_PRIVATE;
2724 }
2725 else
2726 {
2727 invalid_cpp_abbrev_complaint (*pp);
2728 /* We have no idea what syntax an unrecognized abbrev would have, so
2729 better return 0. If we returned 1, we would need to at least advance
2730 *pp to avoid an infinite loop. */
2731 return 0;
2732 }
2733 return 1;
2734 }
2735
2736 static void
2737 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2738 struct type *type, struct objfile *objfile)
2739 {
2740 fip->list->field.name =
2741 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2742 *pp = p + 1;
2743
2744 /* This means we have a visibility for a field coming. */
2745 if (**pp == '/')
2746 {
2747 (*pp)++;
2748 fip->list->visibility = *(*pp)++;
2749 }
2750 else
2751 {
2752 /* normal dbx-style format, no explicit visibility */
2753 fip->list->visibility = VISIBILITY_PUBLIC;
2754 }
2755
2756 fip->list->field.type = read_type (pp, objfile);
2757 if (**pp == ':')
2758 {
2759 p = ++(*pp);
2760 #if 0
2761 /* Possible future hook for nested types. */
2762 if (**pp == '!')
2763 {
2764 fip->list->field.bitpos = (long) -2; /* nested type */
2765 p = ++(*pp);
2766 }
2767 else
2768 ...;
2769 #endif
2770 while (*p != ';')
2771 {
2772 p++;
2773 }
2774 /* Static class member. */
2775 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2776 *pp = p + 1;
2777 return;
2778 }
2779 else if (**pp != ',')
2780 {
2781 /* Bad structure-type format. */
2782 stabs_general_complaint ("bad structure-type format");
2783 return;
2784 }
2785
2786 (*pp)++; /* Skip the comma. */
2787
2788 {
2789 int nbits;
2790 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2791 if (nbits != 0)
2792 {
2793 stabs_general_complaint ("bad structure-type format");
2794 return;
2795 }
2796 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2797 if (nbits != 0)
2798 {
2799 stabs_general_complaint ("bad structure-type format");
2800 return;
2801 }
2802 }
2803
2804 if (FIELD_BITPOS (fip->list->field) == 0
2805 && FIELD_BITSIZE (fip->list->field) == 0)
2806 {
2807 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2808 it is a field which has been optimized out. The correct stab for
2809 this case is to use VISIBILITY_IGNORE, but that is a recent
2810 invention. (2) It is a 0-size array. For example
2811 union { int num; char str[0]; } foo. Printing _("<no value>" for
2812 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2813 will continue to work, and a 0-size array as a whole doesn't
2814 have any contents to print.
2815
2816 I suspect this probably could also happen with gcc -gstabs (not
2817 -gstabs+) for static fields, and perhaps other C++ extensions.
2818 Hopefully few people use -gstabs with gdb, since it is intended
2819 for dbx compatibility. */
2820
2821 /* Ignore this field. */
2822 fip->list->visibility = VISIBILITY_IGNORE;
2823 }
2824 else
2825 {
2826 /* Detect an unpacked field and mark it as such.
2827 dbx gives a bit size for all fields.
2828 Note that forward refs cannot be packed,
2829 and treat enums as if they had the width of ints. */
2830
2831 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2832
2833 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2834 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2835 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2836 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2837 {
2838 FIELD_BITSIZE (fip->list->field) = 0;
2839 }
2840 if ((FIELD_BITSIZE (fip->list->field)
2841 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2842 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2843 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2844 )
2845 &&
2846 FIELD_BITPOS (fip->list->field) % 8 == 0)
2847 {
2848 FIELD_BITSIZE (fip->list->field) = 0;
2849 }
2850 }
2851 }
2852
2853
2854 /* Read struct or class data fields. They have the form:
2855
2856 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2857
2858 At the end, we see a semicolon instead of a field.
2859
2860 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2861 a static field.
2862
2863 The optional VISIBILITY is one of:
2864
2865 '/0' (VISIBILITY_PRIVATE)
2866 '/1' (VISIBILITY_PROTECTED)
2867 '/2' (VISIBILITY_PUBLIC)
2868 '/9' (VISIBILITY_IGNORE)
2869
2870 or nothing, for C style fields with public visibility.
2871
2872 Returns 1 for success, 0 for failure. */
2873
2874 static int
2875 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2876 struct objfile *objfile)
2877 {
2878 char *p;
2879 struct nextfield *new;
2880
2881 /* We better set p right now, in case there are no fields at all... */
2882
2883 p = *pp;
2884
2885 /* Read each data member type until we find the terminating ';' at the end of
2886 the data member list, or break for some other reason such as finding the
2887 start of the member function list. */
2888 /* Stab string for structure/union does not end with two ';' in
2889 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2890
2891 while (**pp != ';' && **pp != '\0')
2892 {
2893 STABS_CONTINUE (pp, objfile);
2894 /* Get space to record the next field's data. */
2895 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2896 make_cleanup (xfree, new);
2897 memset (new, 0, sizeof (struct nextfield));
2898 new->next = fip->list;
2899 fip->list = new;
2900
2901 /* Get the field name. */
2902 p = *pp;
2903
2904 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2905 unless the CPLUS_MARKER is followed by an underscore, in
2906 which case it is just the name of an anonymous type, which we
2907 should handle like any other type name. */
2908
2909 if (is_cplus_marker (p[0]) && p[1] != '_')
2910 {
2911 if (!read_cpp_abbrev (fip, pp, type, objfile))
2912 return 0;
2913 continue;
2914 }
2915
2916 /* Look for the ':' that separates the field name from the field
2917 values. Data members are delimited by a single ':', while member
2918 functions are delimited by a pair of ':'s. When we hit the member
2919 functions (if any), terminate scan loop and return. */
2920
2921 while (*p != ':' && *p != '\0')
2922 {
2923 p++;
2924 }
2925 if (*p == '\0')
2926 return 0;
2927
2928 /* Check to see if we have hit the member functions yet. */
2929 if (p[1] == ':')
2930 {
2931 break;
2932 }
2933 read_one_struct_field (fip, pp, p, type, objfile);
2934 }
2935 if (p[0] == ':' && p[1] == ':')
2936 {
2937 /* (the deleted) chill the list of fields: the last entry (at
2938 the head) is a partially constructed entry which we now
2939 scrub. */
2940 fip->list = fip->list->next;
2941 }
2942 return 1;
2943 }
2944 /* *INDENT-OFF* */
2945 /* The stabs for C++ derived classes contain baseclass information which
2946 is marked by a '!' character after the total size. This function is
2947 called when we encounter the baseclass marker, and slurps up all the
2948 baseclass information.
2949
2950 Immediately following the '!' marker is the number of base classes that
2951 the class is derived from, followed by information for each base class.
2952 For each base class, there are two visibility specifiers, a bit offset
2953 to the base class information within the derived class, a reference to
2954 the type for the base class, and a terminating semicolon.
2955
2956 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2957 ^^ ^ ^ ^ ^ ^ ^
2958 Baseclass information marker __________________|| | | | | | |
2959 Number of baseclasses __________________________| | | | | | |
2960 Visibility specifiers (2) ________________________| | | | | |
2961 Offset in bits from start of class _________________| | | | |
2962 Type number for base class ___________________________| | | |
2963 Visibility specifiers (2) _______________________________| | |
2964 Offset in bits from start of class ________________________| |
2965 Type number of base class ____________________________________|
2966
2967 Return 1 for success, 0 for (error-type-inducing) failure. */
2968 /* *INDENT-ON* */
2969
2970
2971
2972 static int
2973 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2974 struct objfile *objfile)
2975 {
2976 int i;
2977 struct nextfield *new;
2978
2979 if (**pp != '!')
2980 {
2981 return 1;
2982 }
2983 else
2984 {
2985 /* Skip the '!' baseclass information marker. */
2986 (*pp)++;
2987 }
2988
2989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2990 {
2991 int nbits;
2992 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2993 if (nbits != 0)
2994 return 0;
2995 }
2996
2997 #if 0
2998 /* Some stupid compilers have trouble with the following, so break
2999 it up into simpler expressions. */
3000 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3001 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3002 #else
3003 {
3004 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3005 char *pointer;
3006
3007 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3008 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3009 }
3010 #endif /* 0 */
3011
3012 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3013
3014 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3015 {
3016 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3017 make_cleanup (xfree, new);
3018 memset (new, 0, sizeof (struct nextfield));
3019 new->next = fip->list;
3020 fip->list = new;
3021 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3022
3023 STABS_CONTINUE (pp, objfile);
3024 switch (**pp)
3025 {
3026 case '0':
3027 /* Nothing to do. */
3028 break;
3029 case '1':
3030 SET_TYPE_FIELD_VIRTUAL (type, i);
3031 break;
3032 default:
3033 /* Unknown character. Complain and treat it as non-virtual. */
3034 {
3035 complaint (&symfile_complaints,
3036 _("Unknown virtual character `%c' for baseclass"), **pp);
3037 }
3038 }
3039 ++(*pp);
3040
3041 new->visibility = *(*pp)++;
3042 switch (new->visibility)
3043 {
3044 case VISIBILITY_PRIVATE:
3045 case VISIBILITY_PROTECTED:
3046 case VISIBILITY_PUBLIC:
3047 break;
3048 default:
3049 /* Bad visibility format. Complain and treat it as
3050 public. */
3051 {
3052 complaint (&symfile_complaints,
3053 _("Unknown visibility `%c' for baseclass"),
3054 new->visibility);
3055 new->visibility = VISIBILITY_PUBLIC;
3056 }
3057 }
3058
3059 {
3060 int nbits;
3061
3062 /* The remaining value is the bit offset of the portion of the object
3063 corresponding to this baseclass. Always zero in the absence of
3064 multiple inheritance. */
3065
3066 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3067 if (nbits != 0)
3068 return 0;
3069 }
3070
3071 /* The last piece of baseclass information is the type of the
3072 base class. Read it, and remember it's type name as this
3073 field's name. */
3074
3075 new->field.type = read_type (pp, objfile);
3076 new->field.name = type_name_no_tag (new->field.type);
3077
3078 /* skip trailing ';' and bump count of number of fields seen */
3079 if (**pp == ';')
3080 (*pp)++;
3081 else
3082 return 0;
3083 }
3084 return 1;
3085 }
3086
3087 /* The tail end of stabs for C++ classes that contain a virtual function
3088 pointer contains a tilde, a %, and a type number.
3089 The type number refers to the base class (possibly this class itself) which
3090 contains the vtable pointer for the current class.
3091
3092 This function is called when we have parsed all the method declarations,
3093 so we can look for the vptr base class info. */
3094
3095 static int
3096 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3097 struct objfile *objfile)
3098 {
3099 char *p;
3100
3101 STABS_CONTINUE (pp, objfile);
3102
3103 /* If we are positioned at a ';', then skip it. */
3104 if (**pp == ';')
3105 {
3106 (*pp)++;
3107 }
3108
3109 if (**pp == '~')
3110 {
3111 (*pp)++;
3112
3113 if (**pp == '=' || **pp == '+' || **pp == '-')
3114 {
3115 /* Obsolete flags that used to indicate the presence
3116 of constructors and/or destructors. */
3117 (*pp)++;
3118 }
3119
3120 /* Read either a '%' or the final ';'. */
3121 if (*(*pp)++ == '%')
3122 {
3123 /* The next number is the type number of the base class
3124 (possibly our own class) which supplies the vtable for
3125 this class. Parse it out, and search that class to find
3126 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3127 and TYPE_VPTR_FIELDNO. */
3128
3129 struct type *t;
3130 int i;
3131
3132 t = read_type (pp, objfile);
3133 p = (*pp)++;
3134 while (*p != '\0' && *p != ';')
3135 {
3136 p++;
3137 }
3138 if (*p == '\0')
3139 {
3140 /* Premature end of symbol. */
3141 return 0;
3142 }
3143
3144 TYPE_VPTR_BASETYPE (type) = t;
3145 if (type == t) /* Our own class provides vtbl ptr */
3146 {
3147 for (i = TYPE_NFIELDS (t) - 1;
3148 i >= TYPE_N_BASECLASSES (t);
3149 --i)
3150 {
3151 char *name = TYPE_FIELD_NAME (t, i);
3152 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3153 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3154 {
3155 TYPE_VPTR_FIELDNO (type) = i;
3156 goto gotit;
3157 }
3158 }
3159 /* Virtual function table field not found. */
3160 complaint (&symfile_complaints,
3161 _("virtual function table pointer not found when defining class `%s'"),
3162 TYPE_NAME (type));
3163 return 0;
3164 }
3165 else
3166 {
3167 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3168 }
3169
3170 gotit:
3171 *pp = p + 1;
3172 }
3173 }
3174 return 1;
3175 }
3176
3177 static int
3178 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3179 {
3180 int n;
3181
3182 for (n = TYPE_NFN_FIELDS (type);
3183 fip->fnlist != NULL;
3184 fip->fnlist = fip->fnlist->next)
3185 {
3186 --n; /* Circumvent Sun3 compiler bug */
3187 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3188 }
3189 return 1;
3190 }
3191
3192 /* Create the vector of fields, and record how big it is.
3193 We need this info to record proper virtual function table information
3194 for this class's virtual functions. */
3195
3196 static int
3197 attach_fields_to_type (struct field_info *fip, struct type *type,
3198 struct objfile *objfile)
3199 {
3200 int nfields = 0;
3201 int non_public_fields = 0;
3202 struct nextfield *scan;
3203
3204 /* Count up the number of fields that we have, as well as taking note of
3205 whether or not there are any non-public fields, which requires us to
3206 allocate and build the private_field_bits and protected_field_bits
3207 bitfields. */
3208
3209 for (scan = fip->list; scan != NULL; scan = scan->next)
3210 {
3211 nfields++;
3212 if (scan->visibility != VISIBILITY_PUBLIC)
3213 {
3214 non_public_fields++;
3215 }
3216 }
3217
3218 /* Now we know how many fields there are, and whether or not there are any
3219 non-public fields. Record the field count, allocate space for the
3220 array of fields, and create blank visibility bitfields if necessary. */
3221
3222 TYPE_NFIELDS (type) = nfields;
3223 TYPE_FIELDS (type) = (struct field *)
3224 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3225 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3226
3227 if (non_public_fields)
3228 {
3229 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3230
3231 TYPE_FIELD_PRIVATE_BITS (type) =
3232 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3233 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3234
3235 TYPE_FIELD_PROTECTED_BITS (type) =
3236 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3237 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3238
3239 TYPE_FIELD_IGNORE_BITS (type) =
3240 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3241 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3242 }
3243
3244 /* Copy the saved-up fields into the field vector. Start from the head
3245 of the list, adding to the tail of the field array, so that they end
3246 up in the same order in the array in which they were added to the list. */
3247
3248 while (nfields-- > 0)
3249 {
3250 TYPE_FIELD (type, nfields) = fip->list->field;
3251 switch (fip->list->visibility)
3252 {
3253 case VISIBILITY_PRIVATE:
3254 SET_TYPE_FIELD_PRIVATE (type, nfields);
3255 break;
3256
3257 case VISIBILITY_PROTECTED:
3258 SET_TYPE_FIELD_PROTECTED (type, nfields);
3259 break;
3260
3261 case VISIBILITY_IGNORE:
3262 SET_TYPE_FIELD_IGNORE (type, nfields);
3263 break;
3264
3265 case VISIBILITY_PUBLIC:
3266 break;
3267
3268 default:
3269 /* Unknown visibility. Complain and treat it as public. */
3270 {
3271 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3272 fip->list->visibility);
3273 }
3274 break;
3275 }
3276 fip->list = fip->list->next;
3277 }
3278 return 1;
3279 }
3280
3281
3282 /* Complain that the compiler has emitted more than one definition for the
3283 structure type TYPE. */
3284 static void
3285 complain_about_struct_wipeout (struct type *type)
3286 {
3287 char *name = "";
3288 char *kind = "";
3289
3290 if (TYPE_TAG_NAME (type))
3291 {
3292 name = TYPE_TAG_NAME (type);
3293 switch (TYPE_CODE (type))
3294 {
3295 case TYPE_CODE_STRUCT: kind = "struct "; break;
3296 case TYPE_CODE_UNION: kind = "union "; break;
3297 case TYPE_CODE_ENUM: kind = "enum "; break;
3298 default: kind = "";
3299 }
3300 }
3301 else if (TYPE_NAME (type))
3302 {
3303 name = TYPE_NAME (type);
3304 kind = "";
3305 }
3306 else
3307 {
3308 name = "<unknown>";
3309 kind = "";
3310 }
3311
3312 complaint (&symfile_complaints,
3313 _("struct/union type gets multiply defined: %s%s"), kind, name);
3314 }
3315
3316
3317 /* Read the description of a structure (or union type) and return an object
3318 describing the type.
3319
3320 PP points to a character pointer that points to the next unconsumed token
3321 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3322 *PP will point to "4a:1,0,32;;".
3323
3324 TYPE points to an incomplete type that needs to be filled in.
3325
3326 OBJFILE points to the current objfile from which the stabs information is
3327 being read. (Note that it is redundant in that TYPE also contains a pointer
3328 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3329 */
3330
3331 static struct type *
3332 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3333 struct objfile *objfile)
3334 {
3335 struct cleanup *back_to;
3336 struct field_info fi;
3337
3338 fi.list = NULL;
3339 fi.fnlist = NULL;
3340
3341 /* When describing struct/union/class types in stabs, G++ always drops
3342 all qualifications from the name. So if you've got:
3343 struct A { ... struct B { ... }; ... };
3344 then G++ will emit stabs for `struct A::B' that call it simply
3345 `struct B'. Obviously, if you've got a real top-level definition for
3346 `struct B', or other nested definitions, this is going to cause
3347 problems.
3348
3349 Obviously, GDB can't fix this by itself, but it can at least avoid
3350 scribbling on existing structure type objects when new definitions
3351 appear. */
3352 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3353 || TYPE_STUB (type)))
3354 {
3355 complain_about_struct_wipeout (type);
3356
3357 /* It's probably best to return the type unchanged. */
3358 return type;
3359 }
3360
3361 back_to = make_cleanup (null_cleanup, 0);
3362
3363 INIT_CPLUS_SPECIFIC (type);
3364 TYPE_CODE (type) = type_code;
3365 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3366
3367 /* First comes the total size in bytes. */
3368
3369 {
3370 int nbits;
3371 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3372 if (nbits != 0)
3373 return error_type (pp, objfile);
3374 }
3375
3376 /* Now read the baseclasses, if any, read the regular C struct or C++
3377 class member fields, attach the fields to the type, read the C++
3378 member functions, attach them to the type, and then read any tilde
3379 field (baseclass specifier for the class holding the main vtable). */
3380
3381 if (!read_baseclasses (&fi, pp, type, objfile)
3382 || !read_struct_fields (&fi, pp, type, objfile)
3383 || !attach_fields_to_type (&fi, type, objfile)
3384 || !read_member_functions (&fi, pp, type, objfile)
3385 || !attach_fn_fields_to_type (&fi, type)
3386 || !read_tilde_fields (&fi, pp, type, objfile))
3387 {
3388 type = error_type (pp, objfile);
3389 }
3390
3391 do_cleanups (back_to);
3392 return (type);
3393 }
3394
3395 /* Read a definition of an array type,
3396 and create and return a suitable type object.
3397 Also creates a range type which represents the bounds of that
3398 array. */
3399
3400 static struct type *
3401 read_array_type (char **pp, struct type *type,
3402 struct objfile *objfile)
3403 {
3404 struct type *index_type, *element_type, *range_type;
3405 int lower, upper;
3406 int adjustable = 0;
3407 int nbits;
3408
3409 /* Format of an array type:
3410 "ar<index type>;lower;upper;<array_contents_type>".
3411 OS9000: "arlower,upper;<array_contents_type>".
3412
3413 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3414 for these, produce a type like float[][]. */
3415
3416 {
3417 index_type = read_type (pp, objfile);
3418 if (**pp != ';')
3419 /* Improper format of array type decl. */
3420 return error_type (pp, objfile);
3421 ++*pp;
3422 }
3423
3424 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3425 {
3426 (*pp)++;
3427 adjustable = 1;
3428 }
3429 lower = read_huge_number (pp, ';', &nbits, 0);
3430
3431 if (nbits != 0)
3432 return error_type (pp, objfile);
3433
3434 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3435 {
3436 (*pp)++;
3437 adjustable = 1;
3438 }
3439 upper = read_huge_number (pp, ';', &nbits, 0);
3440 if (nbits != 0)
3441 return error_type (pp, objfile);
3442
3443 element_type = read_type (pp, objfile);
3444
3445 if (adjustable)
3446 {
3447 lower = 0;
3448 upper = -1;
3449 }
3450
3451 range_type =
3452 create_range_type ((struct type *) NULL, index_type, lower, upper);
3453 type = create_array_type (type, element_type, range_type);
3454
3455 return type;
3456 }
3457
3458
3459 /* Read a definition of an enumeration type,
3460 and create and return a suitable type object.
3461 Also defines the symbols that represent the values of the type. */
3462
3463 static struct type *
3464 read_enum_type (char **pp, struct type *type,
3465 struct objfile *objfile)
3466 {
3467 char *p;
3468 char *name;
3469 long n;
3470 struct symbol *sym;
3471 int nsyms = 0;
3472 struct pending **symlist;
3473 struct pending *osyms, *syms;
3474 int o_nsyms;
3475 int nbits;
3476 int unsigned_enum = 1;
3477
3478 #if 0
3479 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3480 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3481 to do? For now, force all enum values to file scope. */
3482 if (within_function)
3483 symlist = &local_symbols;
3484 else
3485 #endif
3486 symlist = &file_symbols;
3487 osyms = *symlist;
3488 o_nsyms = osyms ? osyms->nsyms : 0;
3489
3490 /* The aix4 compiler emits an extra field before the enum members;
3491 my guess is it's a type of some sort. Just ignore it. */
3492 if (**pp == '-')
3493 {
3494 /* Skip over the type. */
3495 while (**pp != ':')
3496 (*pp)++;
3497
3498 /* Skip over the colon. */
3499 (*pp)++;
3500 }
3501
3502 /* Read the value-names and their values.
3503 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3504 A semicolon or comma instead of a NAME means the end. */
3505 while (**pp && **pp != ';' && **pp != ',')
3506 {
3507 STABS_CONTINUE (pp, objfile);
3508 p = *pp;
3509 while (*p != ':')
3510 p++;
3511 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3512 *pp = p + 1;
3513 n = read_huge_number (pp, ',', &nbits, 0);
3514 if (nbits != 0)
3515 return error_type (pp, objfile);
3516
3517 sym = (struct symbol *)
3518 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3519 memset (sym, 0, sizeof (struct symbol));
3520 DEPRECATED_SYMBOL_NAME (sym) = name;
3521 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3522 SYMBOL_CLASS (sym) = LOC_CONST;
3523 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3524 SYMBOL_VALUE (sym) = n;
3525 if (n < 0)
3526 unsigned_enum = 0;
3527 add_symbol_to_list (sym, symlist);
3528 nsyms++;
3529 }
3530
3531 if (**pp == ';')
3532 (*pp)++; /* Skip the semicolon. */
3533
3534 /* Now fill in the fields of the type-structure. */
3535
3536 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3537 TYPE_CODE (type) = TYPE_CODE_ENUM;
3538 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3539 if (unsigned_enum)
3540 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3541 TYPE_NFIELDS (type) = nsyms;
3542 TYPE_FIELDS (type) = (struct field *)
3543 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3544 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3545
3546 /* Find the symbols for the values and put them into the type.
3547 The symbols can be found in the symlist that we put them on
3548 to cause them to be defined. osyms contains the old value
3549 of that symlist; everything up to there was defined by us. */
3550 /* Note that we preserve the order of the enum constants, so
3551 that in something like "enum {FOO, LAST_THING=FOO}" we print
3552 FOO, not LAST_THING. */
3553
3554 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3555 {
3556 int last = syms == osyms ? o_nsyms : 0;
3557 int j = syms->nsyms;
3558 for (; --j >= last; --n)
3559 {
3560 struct symbol *xsym = syms->symbol[j];
3561 SYMBOL_TYPE (xsym) = type;
3562 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3563 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3564 TYPE_FIELD_BITSIZE (type, n) = 0;
3565 }
3566 if (syms == osyms)
3567 break;
3568 }
3569
3570 return type;
3571 }
3572
3573 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3574 typedefs in every file (for int, long, etc):
3575
3576 type = b <signed> <width> <format type>; <offset>; <nbits>
3577 signed = u or s.
3578 optional format type = c or b for char or boolean.
3579 offset = offset from high order bit to start bit of type.
3580 width is # bytes in object of this type, nbits is # bits in type.
3581
3582 The width/offset stuff appears to be for small objects stored in
3583 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3584 FIXME. */
3585
3586 static struct type *
3587 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3588 {
3589 int type_bits;
3590 int nbits;
3591 int signed_type;
3592 enum type_code code = TYPE_CODE_INT;
3593
3594 switch (**pp)
3595 {
3596 case 's':
3597 signed_type = 1;
3598 break;
3599 case 'u':
3600 signed_type = 0;
3601 break;
3602 default:
3603 return error_type (pp, objfile);
3604 }
3605 (*pp)++;
3606
3607 /* For some odd reason, all forms of char put a c here. This is strange
3608 because no other type has this honor. We can safely ignore this because
3609 we actually determine 'char'acterness by the number of bits specified in
3610 the descriptor.
3611 Boolean forms, e.g Fortran logical*X, put a b here. */
3612
3613 if (**pp == 'c')
3614 (*pp)++;
3615 else if (**pp == 'b')
3616 {
3617 code = TYPE_CODE_BOOL;
3618 (*pp)++;
3619 }
3620
3621 /* The first number appears to be the number of bytes occupied
3622 by this type, except that unsigned short is 4 instead of 2.
3623 Since this information is redundant with the third number,
3624 we will ignore it. */
3625 read_huge_number (pp, ';', &nbits, 0);
3626 if (nbits != 0)
3627 return error_type (pp, objfile);
3628
3629 /* The second number is always 0, so ignore it too. */
3630 read_huge_number (pp, ';', &nbits, 0);
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633
3634 /* The third number is the number of bits for this type. */
3635 type_bits = read_huge_number (pp, 0, &nbits, 0);
3636 if (nbits != 0)
3637 return error_type (pp, objfile);
3638 /* The type *should* end with a semicolon. If it are embedded
3639 in a larger type the semicolon may be the only way to know where
3640 the type ends. If this type is at the end of the stabstring we
3641 can deal with the omitted semicolon (but we don't have to like
3642 it). Don't bother to complain(), Sun's compiler omits the semicolon
3643 for "void". */
3644 if (**pp == ';')
3645 ++(*pp);
3646
3647 if (type_bits == 0)
3648 return init_type (TYPE_CODE_VOID, 1,
3649 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3650 objfile);
3651 else
3652 return init_type (code,
3653 type_bits / TARGET_CHAR_BIT,
3654 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3655 objfile);
3656 }
3657
3658 static struct type *
3659 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3660 {
3661 int nbits;
3662 int details;
3663 int nbytes;
3664 struct type *rettype;
3665
3666 /* The first number has more details about the type, for example
3667 FN_COMPLEX. */
3668 details = read_huge_number (pp, ';', &nbits, 0);
3669 if (nbits != 0)
3670 return error_type (pp, objfile);
3671
3672 /* The second number is the number of bytes occupied by this type */
3673 nbytes = read_huge_number (pp, ';', &nbits, 0);
3674 if (nbits != 0)
3675 return error_type (pp, objfile);
3676
3677 if (details == NF_COMPLEX || details == NF_COMPLEX16
3678 || details == NF_COMPLEX32)
3679 {
3680 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3681 TYPE_TARGET_TYPE (rettype)
3682 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3683 return rettype;
3684 }
3685
3686 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3687 }
3688
3689 /* Read a number from the string pointed to by *PP.
3690 The value of *PP is advanced over the number.
3691 If END is nonzero, the character that ends the
3692 number must match END, or an error happens;
3693 and that character is skipped if it does match.
3694 If END is zero, *PP is left pointing to that character.
3695
3696 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3697 the number is represented in an octal representation, assume that
3698 it is represented in a 2's complement representation with a size of
3699 TWOS_COMPLEMENT_BITS.
3700
3701 If the number fits in a long, set *BITS to 0 and return the value.
3702 If not, set *BITS to be the number of bits in the number and return 0.
3703
3704 If encounter garbage, set *BITS to -1 and return 0. */
3705
3706 static long
3707 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3708 {
3709 char *p = *pp;
3710 int sign = 1;
3711 int sign_bit;
3712 long n = 0;
3713 long sn = 0;
3714 int radix = 10;
3715 char overflow = 0;
3716 int nbits = 0;
3717 int c;
3718 long upper_limit;
3719 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3720
3721 if (*p == '-')
3722 {
3723 sign = -1;
3724 p++;
3725 }
3726
3727 /* Leading zero means octal. GCC uses this to output values larger
3728 than an int (because that would be hard in decimal). */
3729 if (*p == '0')
3730 {
3731 radix = 8;
3732 p++;
3733 }
3734
3735 upper_limit = LONG_MAX / radix;
3736
3737 while ((c = *p++) >= '0' && c < ('0' + radix))
3738 {
3739 if (n <= upper_limit)
3740 {
3741 if (twos_complement_representation)
3742 {
3743 /* Octal, signed, twos complement representation. In this case,
3744 sn is the signed value, n is the corresponding absolute
3745 value. signed_bit is the position of the sign bit in the
3746 first three bits. */
3747 if (sn == 0)
3748 {
3749 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3750 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3751 }
3752 else
3753 {
3754 sn *= radix;
3755 sn += c - '0';
3756 }
3757
3758 if (sn < 0)
3759 n = -sn;
3760 }
3761 else
3762 {
3763 /* unsigned representation */
3764 n *= radix;
3765 n += c - '0'; /* FIXME this overflows anyway */
3766 }
3767 }
3768 else
3769 overflow = 1;
3770
3771 /* This depends on large values being output in octal, which is
3772 what GCC does. */
3773 if (radix == 8)
3774 {
3775 if (nbits == 0)
3776 {
3777 if (c == '0')
3778 /* Ignore leading zeroes. */
3779 ;
3780 else if (c == '1')
3781 nbits = 1;
3782 else if (c == '2' || c == '3')
3783 nbits = 2;
3784 else
3785 nbits = 3;
3786 }
3787 else
3788 nbits += 3;
3789 }
3790 }
3791 if (end)
3792 {
3793 if (c && c != end)
3794 {
3795 if (bits != NULL)
3796 *bits = -1;
3797 return 0;
3798 }
3799 }
3800 else
3801 --p;
3802
3803 *pp = p;
3804 if (overflow)
3805 {
3806 if (nbits == 0)
3807 {
3808 /* Large decimal constants are an error (because it is hard to
3809 count how many bits are in them). */
3810 if (bits != NULL)
3811 *bits = -1;
3812 return 0;
3813 }
3814
3815 /* -0x7f is the same as 0x80. So deal with it by adding one to
3816 the number of bits. */
3817 if (sign == -1)
3818 ++nbits;
3819 if (bits)
3820 *bits = nbits;
3821 }
3822 else
3823 {
3824 if (bits)
3825 *bits = 0;
3826 if (twos_complement_representation)
3827 return sn;
3828 else
3829 return n * sign;
3830 }
3831 /* It's *BITS which has the interesting information. */
3832 return 0;
3833 }
3834
3835 static struct type *
3836 read_range_type (char **pp, int typenums[2], int type_size,
3837 struct objfile *objfile)
3838 {
3839 char *orig_pp = *pp;
3840 int rangenums[2];
3841 long n2, n3;
3842 int n2bits, n3bits;
3843 int self_subrange;
3844 struct type *result_type;
3845 struct type *index_type = NULL;
3846
3847 /* First comes a type we are a subrange of.
3848 In C it is usually 0, 1 or the type being defined. */
3849 if (read_type_number (pp, rangenums) != 0)
3850 return error_type (pp, objfile);
3851 self_subrange = (rangenums[0] == typenums[0] &&
3852 rangenums[1] == typenums[1]);
3853
3854 if (**pp == '=')
3855 {
3856 *pp = orig_pp;
3857 index_type = read_type (pp, objfile);
3858 }
3859
3860 /* A semicolon should now follow; skip it. */
3861 if (**pp == ';')
3862 (*pp)++;
3863
3864 /* The remaining two operands are usually lower and upper bounds
3865 of the range. But in some special cases they mean something else. */
3866 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3867 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3868
3869 if (n2bits == -1 || n3bits == -1)
3870 return error_type (pp, objfile);
3871
3872 if (index_type)
3873 goto handle_true_range;
3874
3875 /* If limits are huge, must be large integral type. */
3876 if (n2bits != 0 || n3bits != 0)
3877 {
3878 char got_signed = 0;
3879 char got_unsigned = 0;
3880 /* Number of bits in the type. */
3881 int nbits = 0;
3882
3883 /* If a type size attribute has been specified, the bounds of
3884 the range should fit in this size. If the lower bounds needs
3885 more bits than the upper bound, then the type is signed. */
3886 if (n2bits <= type_size && n3bits <= type_size)
3887 {
3888 if (n2bits == type_size && n2bits > n3bits)
3889 got_signed = 1;
3890 else
3891 got_unsigned = 1;
3892 nbits = type_size;
3893 }
3894 /* Range from 0 to <large number> is an unsigned large integral type. */
3895 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3896 {
3897 got_unsigned = 1;
3898 nbits = n3bits;
3899 }
3900 /* Range from <large number> to <large number>-1 is a large signed
3901 integral type. Take care of the case where <large number> doesn't
3902 fit in a long but <large number>-1 does. */
3903 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3904 || (n2bits != 0 && n3bits == 0
3905 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3906 && n3 == LONG_MAX))
3907 {
3908 got_signed = 1;
3909 nbits = n2bits;
3910 }
3911
3912 if (got_signed || got_unsigned)
3913 {
3914 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3915 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3916 objfile);
3917 }
3918 else
3919 return error_type (pp, objfile);
3920 }
3921
3922 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3923 if (self_subrange && n2 == 0 && n3 == 0)
3924 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3925
3926 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3927 is the width in bytes.
3928
3929 Fortran programs appear to use this for complex types also. To
3930 distinguish between floats and complex, g77 (and others?) seem
3931 to use self-subranges for the complexes, and subranges of int for
3932 the floats.
3933
3934 Also note that for complexes, g77 sets n2 to the size of one of
3935 the member floats, not the whole complex beast. My guess is that
3936 this was to work well with pre-COMPLEX versions of gdb. */
3937
3938 if (n3 == 0 && n2 > 0)
3939 {
3940 struct type *float_type
3941 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3942
3943 if (self_subrange)
3944 {
3945 struct type *complex_type =
3946 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3947 TYPE_TARGET_TYPE (complex_type) = float_type;
3948 return complex_type;
3949 }
3950 else
3951 return float_type;
3952 }
3953
3954 /* If the upper bound is -1, it must really be an unsigned int. */
3955
3956 else if (n2 == 0 && n3 == -1)
3957 {
3958 /* It is unsigned int or unsigned long. */
3959 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3960 compatibility hack. */
3961 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3962 TYPE_FLAG_UNSIGNED, NULL, objfile);
3963 }
3964
3965 /* Special case: char is defined (Who knows why) as a subrange of
3966 itself with range 0-127. */
3967 else if (self_subrange && n2 == 0 && n3 == 127)
3968 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3969
3970 /* We used to do this only for subrange of self or subrange of int. */
3971 else if (n2 == 0)
3972 {
3973 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3974 "unsigned long", and we already checked for that,
3975 so don't need to test for it here. */
3976
3977 if (n3 < 0)
3978 /* n3 actually gives the size. */
3979 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3980 NULL, objfile);
3981
3982 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3983 unsigned n-byte integer. But do require n to be a power of
3984 two; we don't want 3- and 5-byte integers flying around. */
3985 {
3986 int bytes;
3987 unsigned long bits;
3988
3989 bits = n3;
3990 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3991 bits >>= 8;
3992 if (bits == 0
3993 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3994 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3995 objfile);
3996 }
3997 }
3998 /* I think this is for Convex "long long". Since I don't know whether
3999 Convex sets self_subrange, I also accept that particular size regardless
4000 of self_subrange. */
4001 else if (n3 == 0 && n2 < 0
4002 && (self_subrange
4003 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4004 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4005 else if (n2 == -n3 - 1)
4006 {
4007 if (n3 == 0x7f)
4008 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4009 if (n3 == 0x7fff)
4010 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4011 if (n3 == 0x7fffffff)
4012 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4013 }
4014
4015 /* We have a real range type on our hands. Allocate space and
4016 return a real pointer. */
4017 handle_true_range:
4018
4019 if (self_subrange)
4020 index_type = builtin_type_int;
4021 else
4022 index_type = *dbx_lookup_type (rangenums);
4023 if (index_type == NULL)
4024 {
4025 /* Does this actually ever happen? Is that why we are worrying
4026 about dealing with it rather than just calling error_type? */
4027
4028 static struct type *range_type_index;
4029
4030 complaint (&symfile_complaints,
4031 _("base type %d of range type is not defined"), rangenums[1]);
4032 if (range_type_index == NULL)
4033 range_type_index =
4034 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4035 0, "range type index type", NULL);
4036 index_type = range_type_index;
4037 }
4038
4039 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4040 return (result_type);
4041 }
4042
4043 /* Read in an argument list. This is a list of types, separated by commas
4044 and terminated with END. Return the list of types read in, or NULL
4045 if there is an error. */
4046
4047 static struct field *
4048 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4049 int *varargsp)
4050 {
4051 /* FIXME! Remove this arbitrary limit! */
4052 struct type *types[1024]; /* allow for fns of 1023 parameters */
4053 int n = 0, i;
4054 struct field *rval;
4055
4056 while (**pp != end)
4057 {
4058 if (**pp != ',')
4059 /* Invalid argument list: no ','. */
4060 return NULL;
4061 (*pp)++;
4062 STABS_CONTINUE (pp, objfile);
4063 types[n++] = read_type (pp, objfile);
4064 }
4065 (*pp)++; /* get past `end' (the ':' character) */
4066
4067 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4068 *varargsp = 1;
4069 else
4070 {
4071 n--;
4072 *varargsp = 0;
4073 }
4074
4075 rval = (struct field *) xmalloc (n * sizeof (struct field));
4076 memset (rval, 0, n * sizeof (struct field));
4077 for (i = 0; i < n; i++)
4078 rval[i].type = types[i];
4079 *nargsp = n;
4080 return rval;
4081 }
4082 \f
4083 /* Common block handling. */
4084
4085 /* List of symbols declared since the last BCOMM. This list is a tail
4086 of local_symbols. When ECOMM is seen, the symbols on the list
4087 are noted so their proper addresses can be filled in later,
4088 using the common block base address gotten from the assembler
4089 stabs. */
4090
4091 static struct pending *common_block;
4092 static int common_block_i;
4093
4094 /* Name of the current common block. We get it from the BCOMM instead of the
4095 ECOMM to match IBM documentation (even though IBM puts the name both places
4096 like everyone else). */
4097 static char *common_block_name;
4098
4099 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4100 to remain after this function returns. */
4101
4102 void
4103 common_block_start (char *name, struct objfile *objfile)
4104 {
4105 if (common_block_name != NULL)
4106 {
4107 complaint (&symfile_complaints,
4108 _("Invalid symbol data: common block within common block"));
4109 }
4110 common_block = local_symbols;
4111 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4112 common_block_name = obsavestring (name, strlen (name),
4113 &objfile->objfile_obstack);
4114 }
4115
4116 /* Process a N_ECOMM symbol. */
4117
4118 void
4119 common_block_end (struct objfile *objfile)
4120 {
4121 /* Symbols declared since the BCOMM are to have the common block
4122 start address added in when we know it. common_block and
4123 common_block_i point to the first symbol after the BCOMM in
4124 the local_symbols list; copy the list and hang it off the
4125 symbol for the common block name for later fixup. */
4126 int i;
4127 struct symbol *sym;
4128 struct pending *new = 0;
4129 struct pending *next;
4130 int j;
4131
4132 if (common_block_name == NULL)
4133 {
4134 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4135 return;
4136 }
4137
4138 sym = (struct symbol *)
4139 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4140 memset (sym, 0, sizeof (struct symbol));
4141 /* Note: common_block_name already saved on objfile_obstack */
4142 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4143 SYMBOL_CLASS (sym) = LOC_BLOCK;
4144
4145 /* Now we copy all the symbols which have been defined since the BCOMM. */
4146
4147 /* Copy all the struct pendings before common_block. */
4148 for (next = local_symbols;
4149 next != NULL && next != common_block;
4150 next = next->next)
4151 {
4152 for (j = 0; j < next->nsyms; j++)
4153 add_symbol_to_list (next->symbol[j], &new);
4154 }
4155
4156 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4157 NULL, it means copy all the local symbols (which we already did
4158 above). */
4159
4160 if (common_block != NULL)
4161 for (j = common_block_i; j < common_block->nsyms; j++)
4162 add_symbol_to_list (common_block->symbol[j], &new);
4163
4164 SYMBOL_TYPE (sym) = (struct type *) new;
4165
4166 /* Should we be putting local_symbols back to what it was?
4167 Does it matter? */
4168
4169 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4170 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4171 global_sym_chain[i] = sym;
4172 common_block_name = NULL;
4173 }
4174
4175 /* Add a common block's start address to the offset of each symbol
4176 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4177 the common block name). */
4178
4179 static void
4180 fix_common_block (struct symbol *sym, int valu)
4181 {
4182 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4183 for (; next; next = next->next)
4184 {
4185 int j;
4186 for (j = next->nsyms - 1; j >= 0; j--)
4187 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4188 }
4189 }
4190 \f
4191
4192
4193 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4194 See add_undefined_type for more details. */
4195
4196 static void
4197 add_undefined_type_noname (struct type *type, int typenums[2])
4198 {
4199 struct nat nat;
4200
4201 nat.typenums[0] = typenums [0];
4202 nat.typenums[1] = typenums [1];
4203 nat.type = type;
4204
4205 if (noname_undefs_length == noname_undefs_allocated)
4206 {
4207 noname_undefs_allocated *= 2;
4208 noname_undefs = (struct nat *)
4209 xrealloc ((char *) noname_undefs,
4210 noname_undefs_allocated * sizeof (struct nat));
4211 }
4212 noname_undefs[noname_undefs_length++] = nat;
4213 }
4214
4215 /* Add TYPE to the UNDEF_TYPES vector.
4216 See add_undefined_type for more details. */
4217
4218 static void
4219 add_undefined_type_1 (struct type *type)
4220 {
4221 if (undef_types_length == undef_types_allocated)
4222 {
4223 undef_types_allocated *= 2;
4224 undef_types = (struct type **)
4225 xrealloc ((char *) undef_types,
4226 undef_types_allocated * sizeof (struct type *));
4227 }
4228 undef_types[undef_types_length++] = type;
4229 }
4230
4231 /* What about types defined as forward references inside of a small lexical
4232 scope? */
4233 /* Add a type to the list of undefined types to be checked through
4234 once this file has been read in.
4235
4236 In practice, we actually maintain two such lists: The first list
4237 (UNDEF_TYPES) is used for types whose name has been provided, and
4238 concerns forward references (eg 'xs' or 'xu' forward references);
4239 the second list (NONAME_UNDEFS) is used for types whose name is
4240 unknown at creation time, because they were referenced through
4241 their type number before the actual type was declared.
4242 This function actually adds the given type to the proper list. */
4243
4244 static void
4245 add_undefined_type (struct type *type, int typenums[2])
4246 {
4247 if (TYPE_TAG_NAME (type) == NULL)
4248 add_undefined_type_noname (type, typenums);
4249 else
4250 add_undefined_type_1 (type);
4251 }
4252
4253 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4254
4255 void
4256 cleanup_undefined_types_noname (void)
4257 {
4258 int i;
4259
4260 for (i = 0; i < noname_undefs_length; i++)
4261 {
4262 struct nat nat = noname_undefs[i];
4263 struct type **type;
4264
4265 type = dbx_lookup_type (nat.typenums);
4266 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4267 replace_type (nat.type, *type);
4268 }
4269
4270 noname_undefs_length = 0;
4271 }
4272
4273 /* Go through each undefined type, see if it's still undefined, and fix it
4274 up if possible. We have two kinds of undefined types:
4275
4276 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4277 Fix: update array length using the element bounds
4278 and the target type's length.
4279 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4280 yet defined at the time a pointer to it was made.
4281 Fix: Do a full lookup on the struct/union tag. */
4282
4283 void
4284 cleanup_undefined_types_1 (void)
4285 {
4286 struct type **type;
4287
4288 for (type = undef_types; type < undef_types + undef_types_length; type++)
4289 {
4290 switch (TYPE_CODE (*type))
4291 {
4292
4293 case TYPE_CODE_STRUCT:
4294 case TYPE_CODE_UNION:
4295 case TYPE_CODE_ENUM:
4296 {
4297 /* Check if it has been defined since. Need to do this here
4298 as well as in check_typedef to deal with the (legitimate in
4299 C though not C++) case of several types with the same name
4300 in different source files. */
4301 if (TYPE_STUB (*type))
4302 {
4303 struct pending *ppt;
4304 int i;
4305 /* Name of the type, without "struct" or "union" */
4306 char *typename = TYPE_TAG_NAME (*type);
4307
4308 if (typename == NULL)
4309 {
4310 complaint (&symfile_complaints, _("need a type name"));
4311 break;
4312 }
4313 for (ppt = file_symbols; ppt; ppt = ppt->next)
4314 {
4315 for (i = 0; i < ppt->nsyms; i++)
4316 {
4317 struct symbol *sym = ppt->symbol[i];
4318
4319 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4320 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4321 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4322 TYPE_CODE (*type))
4323 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4324 replace_type (*type, SYMBOL_TYPE (sym));
4325 }
4326 }
4327 }
4328 }
4329 break;
4330
4331 default:
4332 {
4333 complaint (&symfile_complaints,
4334 _("forward-referenced types left unresolved, "
4335 "type code %d."),
4336 TYPE_CODE (*type));
4337 }
4338 break;
4339 }
4340 }
4341
4342 undef_types_length = 0;
4343 }
4344
4345 /* Try to fix all the undefined types we ecountered while processing
4346 this unit. */
4347
4348 void
4349 cleanup_undefined_types (void)
4350 {
4351 cleanup_undefined_types_1 ();
4352 cleanup_undefined_types_noname ();
4353 }
4354
4355 /* Scan through all of the global symbols defined in the object file,
4356 assigning values to the debugging symbols that need to be assigned
4357 to. Get these symbols from the minimal symbol table. */
4358
4359 void
4360 scan_file_globals (struct objfile *objfile)
4361 {
4362 int hash;
4363 struct minimal_symbol *msymbol;
4364 struct symbol *sym, *prev;
4365 struct objfile *resolve_objfile;
4366
4367 /* SVR4 based linkers copy referenced global symbols from shared
4368 libraries to the main executable.
4369 If we are scanning the symbols for a shared library, try to resolve
4370 them from the minimal symbols of the main executable first. */
4371
4372 if (symfile_objfile && objfile != symfile_objfile)
4373 resolve_objfile = symfile_objfile;
4374 else
4375 resolve_objfile = objfile;
4376
4377 while (1)
4378 {
4379 /* Avoid expensive loop through all minimal symbols if there are
4380 no unresolved symbols. */
4381 for (hash = 0; hash < HASHSIZE; hash++)
4382 {
4383 if (global_sym_chain[hash])
4384 break;
4385 }
4386 if (hash >= HASHSIZE)
4387 return;
4388
4389 for (msymbol = resolve_objfile->msymbols;
4390 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4391 msymbol++)
4392 {
4393 QUIT;
4394
4395 /* Skip static symbols. */
4396 switch (MSYMBOL_TYPE (msymbol))
4397 {
4398 case mst_file_text:
4399 case mst_file_data:
4400 case mst_file_bss:
4401 continue;
4402 default:
4403 break;
4404 }
4405
4406 prev = NULL;
4407
4408 /* Get the hash index and check all the symbols
4409 under that hash index. */
4410
4411 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4412
4413 for (sym = global_sym_chain[hash]; sym;)
4414 {
4415 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4416 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4417 {
4418 /* Splice this symbol out of the hash chain and
4419 assign the value we have to it. */
4420 if (prev)
4421 {
4422 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4423 }
4424 else
4425 {
4426 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4427 }
4428
4429 /* Check to see whether we need to fix up a common block. */
4430 /* Note: this code might be executed several times for
4431 the same symbol if there are multiple references. */
4432 if (sym)
4433 {
4434 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4435 {
4436 fix_common_block (sym,
4437 SYMBOL_VALUE_ADDRESS (msymbol));
4438 }
4439 else
4440 {
4441 SYMBOL_VALUE_ADDRESS (sym)
4442 = SYMBOL_VALUE_ADDRESS (msymbol);
4443 }
4444 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4445 }
4446
4447 if (prev)
4448 {
4449 sym = SYMBOL_VALUE_CHAIN (prev);
4450 }
4451 else
4452 {
4453 sym = global_sym_chain[hash];
4454 }
4455 }
4456 else
4457 {
4458 prev = sym;
4459 sym = SYMBOL_VALUE_CHAIN (sym);
4460 }
4461 }
4462 }
4463 if (resolve_objfile == objfile)
4464 break;
4465 resolve_objfile = objfile;
4466 }
4467
4468 /* Change the storage class of any remaining unresolved globals to
4469 LOC_UNRESOLVED and remove them from the chain. */
4470 for (hash = 0; hash < HASHSIZE; hash++)
4471 {
4472 sym = global_sym_chain[hash];
4473 while (sym)
4474 {
4475 prev = sym;
4476 sym = SYMBOL_VALUE_CHAIN (sym);
4477
4478 /* Change the symbol address from the misleading chain value
4479 to address zero. */
4480 SYMBOL_VALUE_ADDRESS (prev) = 0;
4481
4482 /* Complain about unresolved common block symbols. */
4483 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4484 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4485 else
4486 complaint (&symfile_complaints,
4487 _("%s: common block `%s' from global_sym_chain unresolved"),
4488 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4489 }
4490 }
4491 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4492 }
4493
4494 /* Initialize anything that needs initializing when starting to read
4495 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4496 to a psymtab. */
4497
4498 void
4499 stabsread_init (void)
4500 {
4501 }
4502
4503 /* Initialize anything that needs initializing when a completely new
4504 symbol file is specified (not just adding some symbols from another
4505 file, e.g. a shared library). */
4506
4507 void
4508 stabsread_new_init (void)
4509 {
4510 /* Empty the hash table of global syms looking for values. */
4511 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4512 }
4513
4514 /* Initialize anything that needs initializing at the same time as
4515 start_symtab() is called. */
4516
4517 void
4518 start_stabs (void)
4519 {
4520 global_stabs = NULL; /* AIX COFF */
4521 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4522 n_this_object_header_files = 1;
4523 type_vector_length = 0;
4524 type_vector = (struct type **) 0;
4525
4526 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4527 common_block_name = NULL;
4528 }
4529
4530 /* Call after end_symtab() */
4531
4532 void
4533 end_stabs (void)
4534 {
4535 if (type_vector)
4536 {
4537 xfree (type_vector);
4538 }
4539 type_vector = 0;
4540 type_vector_length = 0;
4541 previous_stab_code = 0;
4542 }
4543
4544 void
4545 finish_global_stabs (struct objfile *objfile)
4546 {
4547 if (global_stabs)
4548 {
4549 patch_block_stabs (global_symbols, global_stabs, objfile);
4550 xfree (global_stabs);
4551 global_stabs = NULL;
4552 }
4553 }
4554
4555 /* Find the end of the name, delimited by a ':', but don't match
4556 ObjC symbols which look like -[Foo bar::]:bla. */
4557 static char *
4558 find_name_end (char *name)
4559 {
4560 char *s = name;
4561 if (s[0] == '-' || *s == '+')
4562 {
4563 /* Must be an ObjC method symbol. */
4564 if (s[1] != '[')
4565 {
4566 error (_("invalid symbol name \"%s\""), name);
4567 }
4568 s = strchr (s, ']');
4569 if (s == NULL)
4570 {
4571 error (_("invalid symbol name \"%s\""), name);
4572 }
4573 return strchr (s, ':');
4574 }
4575 else
4576 {
4577 return strchr (s, ':');
4578 }
4579 }
4580
4581 /* Initializer for this module */
4582
4583 void
4584 _initialize_stabsread (void)
4585 {
4586 undef_types_allocated = 20;
4587 undef_types_length = 0;
4588 undef_types = (struct type **)
4589 xmalloc (undef_types_allocated * sizeof (struct type *));
4590
4591 noname_undefs_allocated = 20;
4592 noname_undefs_length = 0;
4593 noname_undefs = (struct nat *)
4594 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4595 }
This page took 0.130404 seconds and 4 git commands to generate.