624a4c0f30b6d73544d3cca58221b304ff08e651
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519 }
520
521 /* Return defined sym for the reference REFNUM. */
522 struct symbol *
523 ref_search (int refnum)
524 {
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528 }
529
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
533 static int
534 process_reference (char **string)
535 {
536 char *p;
537 int refnum = 0;
538
539 if (**string != '#')
540 return 0;
541
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553 }
554
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558 int
559 symbol_reference_defined (char **string)
560 {
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
567 if (*p == '=')
568 {
569 /* Symbol is being defined here. */
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580 }
581
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599 }
600
601 static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603 };
604
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
608 {
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
610 struct symbol *sym;
611 char *p = (char *) find_name_end (string);
612 int deftype;
613 int synonym = 0;
614 int i;
615 char *new_name = NULL;
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
634 p += 2;
635 p = strchr (p, ':');
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650 break;
651 case N_DATA:
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653 break;
654 case N_BSS:
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
664 }
665 else
666 {
667 SYMBOL_LINE (sym) = 0; /* unknown */
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
675 case 't':
676 SYMBOL_SET_LINKAGE_NAME
677 (sym, obsavestring ("this", strlen ("this"),
678 &objfile->objfile_obstack));
679 break;
680
681 case 'v': /* $vtbl_ptr_type */
682 goto normal;
683
684 case 'e':
685 SYMBOL_SET_LINKAGE_NAME
686 (sym, obsavestring ("eh_throw", strlen ("eh_throw"),
687 &objfile->objfile_obstack));
688 break;
689
690 case '_':
691 /* This was an anonymous type that was never fixed up. */
692 goto normal;
693
694 case 'X':
695 /* SunPRO (3.0 at least) static variable encoding. */
696 if (gdbarch_static_transform_name_p (gdbarch))
697 goto normal;
698 /* ... fall through ... */
699
700 default:
701 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
702 string);
703 goto normal; /* Do *something* with it */
704 }
705 }
706 else
707 {
708 normal:
709 SYMBOL_LANGUAGE (sym) = current_subfile->language;
710 if (SYMBOL_LANGUAGE (sym) == language_cplus)
711 {
712 char *name = alloca (p - string + 1);
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
716 cp_scan_for_anonymous_namespaces (sym);
717 }
718 if (new_name != NULL)
719 {
720 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), objfile);
721 xfree (new_name);
722 }
723 else
724 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
725 }
726 p++;
727
728 /* Determine the type of name being defined. */
729 #if 0
730 /* Getting GDB to correctly skip the symbol on an undefined symbol
731 descriptor and not ever dump core is a very dodgy proposition if
732 we do things this way. I say the acorn RISC machine can just
733 fix their compiler. */
734 /* The Acorn RISC machine's compiler can put out locals that don't
735 start with "234=" or "(3,4)=", so assume anything other than the
736 deftypes we know how to handle is a local. */
737 if (!strchr ("cfFGpPrStTvVXCR", *p))
738 #else
739 if (isdigit (*p) || *p == '(' || *p == '-')
740 #endif
741 deftype = 'l';
742 else
743 deftype = *p++;
744
745 switch (deftype)
746 {
747 case 'c':
748 /* c is a special case, not followed by a type-number.
749 SYMBOL:c=iVALUE for an integer constant symbol.
750 SYMBOL:c=rVALUE for a floating constant symbol.
751 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
752 e.g. "b:c=e6,0" for "const b = blob1"
753 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
754 if (*p != '=')
755 {
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 SYMBOL_TYPE (sym) = error_type (&p, objfile);
758 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
759 add_symbol_to_list (sym, &file_symbols);
760 return sym;
761 }
762 ++p;
763 switch (*p++)
764 {
765 case 'r':
766 {
767 double d = atof (p);
768 gdb_byte *dbl_valu;
769 struct type *dbl_type;
770
771 /* FIXME-if-picky-about-floating-accuracy: Should be using
772 target arithmetic to get the value. real.c in GCC
773 probably has the necessary code. */
774
775 dbl_type = objfile_type (objfile)->builtin_double;
776 dbl_valu =
777 obstack_alloc (&objfile->objfile_obstack,
778 TYPE_LENGTH (dbl_type));
779 store_typed_floating (dbl_valu, dbl_type, d);
780
781 SYMBOL_TYPE (sym) = dbl_type;
782 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
783 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
784 }
785 break;
786 case 'i':
787 {
788 /* Defining integer constants this way is kind of silly,
789 since 'e' constants allows the compiler to give not
790 only the value, but the type as well. C has at least
791 int, long, unsigned int, and long long as constant
792 types; other languages probably should have at least
793 unsigned as well as signed constants. */
794
795 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
796 SYMBOL_VALUE (sym) = atoi (p);
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 }
799 break;
800 case 'e':
801 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
802 can be represented as integral.
803 e.g. "b:c=e6,0" for "const b = blob1"
804 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
805 {
806 SYMBOL_CLASS (sym) = LOC_CONST;
807 SYMBOL_TYPE (sym) = read_type (&p, objfile);
808
809 if (*p != ',')
810 {
811 SYMBOL_TYPE (sym) = error_type (&p, objfile);
812 break;
813 }
814 ++p;
815
816 /* If the value is too big to fit in an int (perhaps because
817 it is unsigned), or something like that, we silently get
818 a bogus value. The type and everything else about it is
819 correct. Ideally, we should be using whatever we have
820 available for parsing unsigned and long long values,
821 however. */
822 SYMBOL_VALUE (sym) = atoi (p);
823 }
824 break;
825 default:
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 }
830 }
831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832 add_symbol_to_list (sym, &file_symbols);
833 return sym;
834
835 case 'C':
836 /* The name of a caught exception. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_LABEL;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 SYMBOL_VALUE_ADDRESS (sym) = valu;
841 add_symbol_to_list (sym, &local_symbols);
842 break;
843
844 case 'f':
845 /* A static function definition. */
846 SYMBOL_TYPE (sym) = read_type (&p, objfile);
847 SYMBOL_CLASS (sym) = LOC_BLOCK;
848 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
849 add_symbol_to_list (sym, &file_symbols);
850 /* fall into process_function_types. */
851
852 process_function_types:
853 /* Function result types are described as the result type in stabs.
854 We need to convert this to the function-returning-type-X type
855 in GDB. E.g. "int" is converted to "function returning int". */
856 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
857 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
858
859 /* All functions in C++ have prototypes. Stabs does not offer an
860 explicit way to identify prototyped or unprototyped functions,
861 but both GCC and Sun CC emit stabs for the "call-as" type rather
862 than the "declared-as" type for unprototyped functions, so
863 we treat all functions as if they were prototyped. This is used
864 primarily for promotion when calling the function from GDB. */
865 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
866
867 /* fall into process_prototype_types */
868
869 process_prototype_types:
870 /* Sun acc puts declared types of arguments here. */
871 if (*p == ';')
872 {
873 struct type *ftype = SYMBOL_TYPE (sym);
874 int nsemi = 0;
875 int nparams = 0;
876 char *p1 = p;
877
878 /* Obtain a worst case guess for the number of arguments
879 by counting the semicolons. */
880 while (*p1)
881 {
882 if (*p1++ == ';')
883 nsemi++;
884 }
885
886 /* Allocate parameter information fields and fill them in. */
887 TYPE_FIELDS (ftype) = (struct field *)
888 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
889 while (*p++ == ';')
890 {
891 struct type *ptype;
892
893 /* A type number of zero indicates the start of varargs.
894 FIXME: GDB currently ignores vararg functions. */
895 if (p[0] == '0' && p[1] == '\0')
896 break;
897 ptype = read_type (&p, objfile);
898
899 /* The Sun compilers mark integer arguments, which should
900 be promoted to the width of the calling conventions, with
901 a type which references itself. This type is turned into
902 a TYPE_CODE_VOID type by read_type, and we have to turn
903 it back into builtin_int here.
904 FIXME: Do we need a new builtin_promoted_int_arg ? */
905 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
906 ptype = objfile_type (objfile)->builtin_int;
907 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
908 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
909 }
910 TYPE_NFIELDS (ftype) = nparams;
911 TYPE_PROTOTYPED (ftype) = 1;
912 }
913 break;
914
915 case 'F':
916 /* A global function definition. */
917 SYMBOL_TYPE (sym) = read_type (&p, objfile);
918 SYMBOL_CLASS (sym) = LOC_BLOCK;
919 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
920 add_symbol_to_list (sym, &global_symbols);
921 goto process_function_types;
922
923 case 'G':
924 /* For a class G (global) symbol, it appears that the
925 value is not correct. It is necessary to search for the
926 corresponding linker definition to find the value.
927 These definitions appear at the end of the namelist. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_CLASS (sym) = LOC_STATIC;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 /* Don't add symbol references to global_sym_chain.
932 Symbol references don't have valid names and wont't match up with
933 minimal symbols when the global_sym_chain is relocated.
934 We'll fixup symbol references when we fixup the defining symbol. */
935 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
936 {
937 i = hashname (SYMBOL_LINKAGE_NAME (sym));
938 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
939 global_sym_chain[i] = sym;
940 }
941 add_symbol_to_list (sym, &global_symbols);
942 break;
943
944 /* This case is faked by a conditional above,
945 when there is no code letter in the dbx data.
946 Dbx data never actually contains 'l'. */
947 case 's':
948 case 'l':
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
950 SYMBOL_CLASS (sym) = LOC_LOCAL;
951 SYMBOL_VALUE (sym) = valu;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, &local_symbols);
954 break;
955
956 case 'p':
957 if (*p == 'F')
958 /* pF is a two-letter code that means a function parameter in Fortran.
959 The type-number specifies the type of the return value.
960 Translate it into a pointer-to-function type. */
961 {
962 p++;
963 SYMBOL_TYPE (sym)
964 = lookup_pointer_type
965 (lookup_function_type (read_type (&p, objfile)));
966 }
967 else
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969
970 SYMBOL_CLASS (sym) = LOC_ARG;
971 SYMBOL_VALUE (sym) = valu;
972 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
973 SYMBOL_IS_ARGUMENT (sym) = 1;
974 add_symbol_to_list (sym, &local_symbols);
975
976 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
977 {
978 /* On little-endian machines, this crud is never necessary,
979 and, if the extra bytes contain garbage, is harmful. */
980 break;
981 }
982
983 /* If it's gcc-compiled, if it says `short', believe it. */
984 if (processing_gcc_compilation
985 || gdbarch_believe_pcc_promotion (gdbarch))
986 break;
987
988 if (!gdbarch_believe_pcc_promotion (gdbarch))
989 {
990 /* If PCC says a parameter is a short or a char, it is
991 really an int. */
992 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
993 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
994 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
995 {
996 SYMBOL_TYPE (sym) =
997 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
998 ? objfile_type (objfile)->builtin_unsigned_int
999 : objfile_type (objfile)->builtin_int;
1000 }
1001 break;
1002 }
1003
1004 case 'P':
1005 /* acc seems to use P to declare the prototypes of functions that
1006 are referenced by this file. gdb is not prepared to deal
1007 with this extra information. FIXME, it ought to. */
1008 if (type == N_FUN)
1009 {
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 goto process_prototype_types;
1012 }
1013 /*FALLTHROUGH */
1014
1015 case 'R':
1016 /* Parameter which is in a register. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_CLASS (sym) = LOC_REGISTER;
1019 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1020 SYMBOL_IS_ARGUMENT (sym) = 1;
1021 SYMBOL_VALUE (sym) = valu;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &local_symbols);
1024 break;
1025
1026 case 'r':
1027 /* Register variable (either global or local). */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_CLASS (sym) = LOC_REGISTER;
1030 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1031 SYMBOL_VALUE (sym) = valu;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 if (within_function)
1034 {
1035 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1036 the same name to represent an argument passed in a
1037 register. GCC uses 'P' for the same case. So if we find
1038 such a symbol pair we combine it into one 'P' symbol.
1039 For Sun cc we need to do this regardless of
1040 stabs_argument_has_addr, because the compiler puts out
1041 the 'p' symbol even if it never saves the argument onto
1042 the stack.
1043
1044 On most machines, we want to preserve both symbols, so
1045 that we can still get information about what is going on
1046 with the stack (VAX for computing args_printed, using
1047 stack slots instead of saved registers in backtraces,
1048 etc.).
1049
1050 Note that this code illegally combines
1051 main(argc) struct foo argc; { register struct foo argc; }
1052 but this case is considered pathological and causes a warning
1053 from a decent compiler. */
1054
1055 if (local_symbols
1056 && local_symbols->nsyms > 0
1057 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1058 {
1059 struct symbol *prev_sym;
1060 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1061 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1062 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1063 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1064 SYMBOL_LINKAGE_NAME (sym)) == 0)
1065 {
1066 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1067 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1068 /* Use the type from the LOC_REGISTER; that is the type
1069 that is actually in that register. */
1070 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1071 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1072 sym = prev_sym;
1073 break;
1074 }
1075 }
1076 add_symbol_to_list (sym, &local_symbols);
1077 }
1078 else
1079 add_symbol_to_list (sym, &file_symbols);
1080 break;
1081
1082 case 'S':
1083 /* Static symbol at top level of file */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 if (gdbarch_static_transform_name_p (gdbarch)
1088 && gdbarch_static_transform_name (gdbarch,
1089 SYMBOL_LINKAGE_NAME (sym))
1090 != SYMBOL_LINKAGE_NAME (sym))
1091 {
1092 struct minimal_symbol *msym;
1093 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1094 if (msym != NULL)
1095 {
1096 char *new_name = gdbarch_static_transform_name
1097 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1098 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1099 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1100 }
1101 }
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &file_symbols);
1104 break;
1105
1106 case 't':
1107 /* In Ada, there is no distinction between typedef and non-typedef;
1108 any type declaration implicitly has the equivalent of a typedef,
1109 and thus 't' is in fact equivalent to 'Tt'.
1110
1111 Therefore, for Ada units, we check the character immediately
1112 before the 't', and if we do not find a 'T', then make sure to
1113 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1114 will be stored in the VAR_DOMAIN). If the symbol was indeed
1115 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1116 elsewhere, so we don't need to take care of that.
1117
1118 This is important to do, because of forward references:
1119 The cleanup of undefined types stored in undef_types only uses
1120 STRUCT_DOMAIN symbols to perform the replacement. */
1121 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1122
1123 /* Typedef */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125
1126 /* For a nameless type, we don't want a create a symbol, thus we
1127 did not use `sym'. Return without further processing. */
1128 if (nameless)
1129 return NULL;
1130
1131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 /* C++ vagaries: we may have a type which is derived from
1135 a base type which did not have its name defined when the
1136 derived class was output. We fill in the derived class's
1137 base part member's name here in that case. */
1138 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1140 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1141 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1142 {
1143 int j;
1144 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1145 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1146 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1147 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1148 }
1149
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1151 {
1152 /* gcc-2.6 or later (when using -fvtable-thunks)
1153 emits a unique named type for a vtable entry.
1154 Some gdb code depends on that specific name. */
1155 extern const char vtbl_ptr_name[];
1156
1157 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1158 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1159 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1160 {
1161 /* If we are giving a name to a type such as "pointer to
1162 foo" or "function returning foo", we better not set
1163 the TYPE_NAME. If the program contains "typedef char
1164 *caddr_t;", we don't want all variables of type char
1165 * to print as caddr_t. This is not just a
1166 consequence of GDB's type management; PCC and GCC (at
1167 least through version 2.4) both output variables of
1168 either type char * or caddr_t with the type number
1169 defined in the 't' symbol for caddr_t. If a future
1170 compiler cleans this up it GDB is not ready for it
1171 yet, but if it becomes ready we somehow need to
1172 disable this check (without breaking the PCC/GCC2.4
1173 case).
1174
1175 Sigh.
1176
1177 Fortunately, this check seems not to be necessary
1178 for anything except pointers or functions. */
1179 /* ezannoni: 2000-10-26. This seems to apply for
1180 versions of gcc older than 2.8. This was the original
1181 problem: with the following code gdb would tell that
1182 the type for name1 is caddr_t, and func is char()
1183 typedef char *caddr_t;
1184 char *name2;
1185 struct x
1186 {
1187 char *name1;
1188 } xx;
1189 char *func()
1190 {
1191 }
1192 main () {}
1193 */
1194
1195 /* Pascal accepts names for pointer types. */
1196 if (current_subfile->language == language_pascal)
1197 {
1198 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1199 }
1200 }
1201 else
1202 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1203 }
1204
1205 add_symbol_to_list (sym, &file_symbols);
1206
1207 if (synonym)
1208 {
1209 /* Create the STRUCT_DOMAIN clone. */
1210 struct symbol *struct_sym = (struct symbol *)
1211 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1212
1213 *struct_sym = *sym;
1214 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (struct_sym) = valu;
1216 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1217 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1218 TYPE_NAME (SYMBOL_TYPE (sym))
1219 = obconcat (&objfile->objfile_obstack, "", "",
1220 SYMBOL_LINKAGE_NAME (sym));
1221 add_symbol_to_list (struct_sym, &file_symbols);
1222 }
1223
1224 break;
1225
1226 case 'T':
1227 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1228 by 't' which means we are typedef'ing it as well. */
1229 synonym = *p == 't';
1230
1231 if (synonym)
1232 p++;
1233
1234 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1235
1236 /* For a nameless type, we don't want a create a symbol, thus we
1237 did not use `sym'. Return without further processing. */
1238 if (nameless)
1239 return NULL;
1240
1241 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1242 SYMBOL_VALUE (sym) = valu;
1243 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1244 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1245 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1246 = obconcat (&objfile->objfile_obstack, "", "",
1247 SYMBOL_LINKAGE_NAME (sym));
1248 add_symbol_to_list (sym, &file_symbols);
1249
1250 if (synonym)
1251 {
1252 /* Clone the sym and then modify it. */
1253 struct symbol *typedef_sym = (struct symbol *)
1254 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1255 *typedef_sym = *sym;
1256 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1257 SYMBOL_VALUE (typedef_sym) = valu;
1258 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1260 TYPE_NAME (SYMBOL_TYPE (sym))
1261 = obconcat (&objfile->objfile_obstack, "", "",
1262 SYMBOL_LINKAGE_NAME (sym));
1263 add_symbol_to_list (typedef_sym, &file_symbols);
1264 }
1265 break;
1266
1267 case 'V':
1268 /* Static symbol of local scope */
1269 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1270 SYMBOL_CLASS (sym) = LOC_STATIC;
1271 SYMBOL_VALUE_ADDRESS (sym) = valu;
1272 if (gdbarch_static_transform_name_p (gdbarch)
1273 && gdbarch_static_transform_name (gdbarch,
1274 SYMBOL_LINKAGE_NAME (sym))
1275 != SYMBOL_LINKAGE_NAME (sym))
1276 {
1277 struct minimal_symbol *msym;
1278 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1279 if (msym != NULL)
1280 {
1281 char *new_name = gdbarch_static_transform_name
1282 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1283 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1284 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1285 }
1286 }
1287 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1288 add_symbol_to_list (sym, &local_symbols);
1289 break;
1290
1291 case 'v':
1292 /* Reference parameter */
1293 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1294 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1295 SYMBOL_IS_ARGUMENT (sym) = 1;
1296 SYMBOL_VALUE (sym) = valu;
1297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1298 add_symbol_to_list (sym, &local_symbols);
1299 break;
1300
1301 case 'a':
1302 /* Reference parameter which is in a register. */
1303 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1304 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1305 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1306 SYMBOL_IS_ARGUMENT (sym) = 1;
1307 SYMBOL_VALUE (sym) = valu;
1308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1309 add_symbol_to_list (sym, &local_symbols);
1310 break;
1311
1312 case 'X':
1313 /* This is used by Sun FORTRAN for "function result value".
1314 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1315 that Pascal uses it too, but when I tried it Pascal used
1316 "x:3" (local symbol) instead. */
1317 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1318 SYMBOL_CLASS (sym) = LOC_LOCAL;
1319 SYMBOL_VALUE (sym) = valu;
1320 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1321 add_symbol_to_list (sym, &local_symbols);
1322 break;
1323
1324 default:
1325 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1326 SYMBOL_CLASS (sym) = LOC_CONST;
1327 SYMBOL_VALUE (sym) = 0;
1328 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1329 add_symbol_to_list (sym, &file_symbols);
1330 break;
1331 }
1332
1333 /* Some systems pass variables of certain types by reference instead
1334 of by value, i.e. they will pass the address of a structure (in a
1335 register or on the stack) instead of the structure itself. */
1336
1337 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1338 && SYMBOL_IS_ARGUMENT (sym))
1339 {
1340 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1341 variables passed in a register). */
1342 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1343 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1344 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1345 and subsequent arguments on SPARC, for example). */
1346 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1347 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1348 }
1349
1350 return sym;
1351 }
1352
1353 /* Skip rest of this symbol and return an error type.
1354
1355 General notes on error recovery: error_type always skips to the
1356 end of the symbol (modulo cretinous dbx symbol name continuation).
1357 Thus code like this:
1358
1359 if (*(*pp)++ != ';')
1360 return error_type (pp, objfile);
1361
1362 is wrong because if *pp starts out pointing at '\0' (typically as the
1363 result of an earlier error), it will be incremented to point to the
1364 start of the next symbol, which might produce strange results, at least
1365 if you run off the end of the string table. Instead use
1366
1367 if (**pp != ';')
1368 return error_type (pp, objfile);
1369 ++*pp;
1370
1371 or
1372
1373 if (**pp != ';')
1374 foo = error_type (pp, objfile);
1375 else
1376 ++*pp;
1377
1378 And in case it isn't obvious, the point of all this hair is so the compiler
1379 can define new types and new syntaxes, and old versions of the
1380 debugger will be able to read the new symbol tables. */
1381
1382 static struct type *
1383 error_type (char **pp, struct objfile *objfile)
1384 {
1385 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1386 while (1)
1387 {
1388 /* Skip to end of symbol. */
1389 while (**pp != '\0')
1390 {
1391 (*pp)++;
1392 }
1393
1394 /* Check for and handle cretinous dbx symbol name continuation! */
1395 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1396 {
1397 *pp = next_symbol_text (objfile);
1398 }
1399 else
1400 {
1401 break;
1402 }
1403 }
1404 return objfile_type (objfile)->builtin_error;
1405 }
1406 \f
1407
1408 /* Read type information or a type definition; return the type. Even
1409 though this routine accepts either type information or a type
1410 definition, the distinction is relevant--some parts of stabsread.c
1411 assume that type information starts with a digit, '-', or '(' in
1412 deciding whether to call read_type. */
1413
1414 static struct type *
1415 read_type (char **pp, struct objfile *objfile)
1416 {
1417 struct type *type = 0;
1418 struct type *type1;
1419 int typenums[2];
1420 char type_descriptor;
1421
1422 /* Size in bits of type if specified by a type attribute, or -1 if
1423 there is no size attribute. */
1424 int type_size = -1;
1425
1426 /* Used to distinguish string and bitstring from char-array and set. */
1427 int is_string = 0;
1428
1429 /* Used to distinguish vector from array. */
1430 int is_vector = 0;
1431
1432 /* Read type number if present. The type number may be omitted.
1433 for instance in a two-dimensional array declared with type
1434 "ar1;1;10;ar1;1;10;4". */
1435 if ((**pp >= '0' && **pp <= '9')
1436 || **pp == '('
1437 || **pp == '-')
1438 {
1439 if (read_type_number (pp, typenums) != 0)
1440 return error_type (pp, objfile);
1441
1442 if (**pp != '=')
1443 {
1444 /* Type is not being defined here. Either it already
1445 exists, or this is a forward reference to it.
1446 dbx_alloc_type handles both cases. */
1447 type = dbx_alloc_type (typenums, objfile);
1448
1449 /* If this is a forward reference, arrange to complain if it
1450 doesn't get patched up by the time we're done
1451 reading. */
1452 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1453 add_undefined_type (type, typenums);
1454
1455 return type;
1456 }
1457
1458 /* Type is being defined here. */
1459 /* Skip the '='.
1460 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1461 (*pp) += 2;
1462 }
1463 else
1464 {
1465 /* 'typenums=' not present, type is anonymous. Read and return
1466 the definition, but don't put it in the type vector. */
1467 typenums[0] = typenums[1] = -1;
1468 (*pp)++;
1469 }
1470
1471 again:
1472 type_descriptor = (*pp)[-1];
1473 switch (type_descriptor)
1474 {
1475 case 'x':
1476 {
1477 enum type_code code;
1478
1479 /* Used to index through file_symbols. */
1480 struct pending *ppt;
1481 int i;
1482
1483 /* Name including "struct", etc. */
1484 char *type_name;
1485
1486 {
1487 char *from, *to, *p, *q1, *q2;
1488
1489 /* Set the type code according to the following letter. */
1490 switch ((*pp)[0])
1491 {
1492 case 's':
1493 code = TYPE_CODE_STRUCT;
1494 break;
1495 case 'u':
1496 code = TYPE_CODE_UNION;
1497 break;
1498 case 'e':
1499 code = TYPE_CODE_ENUM;
1500 break;
1501 default:
1502 {
1503 /* Complain and keep going, so compilers can invent new
1504 cross-reference types. */
1505 complaint (&symfile_complaints,
1506 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1507 code = TYPE_CODE_STRUCT;
1508 break;
1509 }
1510 }
1511
1512 q1 = strchr (*pp, '<');
1513 p = strchr (*pp, ':');
1514 if (p == NULL)
1515 return error_type (pp, objfile);
1516 if (q1 && p > q1 && p[1] == ':')
1517 {
1518 int nesting_level = 0;
1519 for (q2 = q1; *q2; q2++)
1520 {
1521 if (*q2 == '<')
1522 nesting_level++;
1523 else if (*q2 == '>')
1524 nesting_level--;
1525 else if (*q2 == ':' && nesting_level == 0)
1526 break;
1527 }
1528 p = q2;
1529 if (*p != ':')
1530 return error_type (pp, objfile);
1531 }
1532 type_name = NULL;
1533 if (current_subfile->language == language_cplus)
1534 {
1535 char *new_name, *name = alloca (p - *pp + 1);
1536 memcpy (name, *pp, p - *pp);
1537 name[p - *pp] = '\0';
1538 new_name = cp_canonicalize_string (name);
1539 if (new_name != NULL)
1540 {
1541 type_name = obsavestring (new_name, strlen (new_name),
1542 &objfile->objfile_obstack);
1543 xfree (new_name);
1544 }
1545 }
1546 if (type_name == NULL)
1547 {
1548 to = type_name =
1549 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1550
1551 /* Copy the name. */
1552 from = *pp + 1;
1553 while (from < p)
1554 *to++ = *from++;
1555 *to = '\0';
1556 }
1557
1558 /* Set the pointer ahead of the name which we just read, and
1559 the colon. */
1560 *pp = p + 1;
1561 }
1562
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1565 memory. */
1566
1567 for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 for (i = 0; i < ppt->nsyms; i++)
1569 {
1570 struct symbol *sym = ppt->symbol[i];
1571
1572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1576 {
1577 obstack_free (&objfile->objfile_obstack, type_name);
1578 type = SYMBOL_TYPE (sym);
1579 if (typenums[0] != -1)
1580 *dbx_lookup_type (typenums, objfile) = type;
1581 return type;
1582 }
1583 }
1584
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1589 type. */
1590 type = dbx_alloc_type (typenums, objfile);
1591 TYPE_CODE (type) = code;
1592 TYPE_TAG_NAME (type) = type_name;
1593 INIT_CPLUS_SPECIFIC (type);
1594 TYPE_STUB (type) = 1;
1595
1596 add_undefined_type (type, typenums);
1597 return type;
1598 }
1599
1600 case '-': /* RS/6000 built-in type */
1601 case '0':
1602 case '1':
1603 case '2':
1604 case '3':
1605 case '4':
1606 case '5':
1607 case '6':
1608 case '7':
1609 case '8':
1610 case '9':
1611 case '(':
1612 (*pp)--;
1613
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type = dbx_alloc_type (typenums, objfile);
1620 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621 {
1622 struct type *xtype = read_type (pp, objfile);
1623 if (type == xtype)
1624 {
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type) = TYPE_CODE_VOID;
1627 TYPE_LENGTH (type) = 1;
1628 }
1629 else if (type_size >= 0 || is_string)
1630 {
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1637
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1646
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type, xtype);
1655 TYPE_NAME (type) = NULL;
1656 TYPE_TAG_NAME (type) = NULL;
1657 }
1658 else
1659 {
1660 TYPE_TARGET_STUB (type) = 1;
1661 TYPE_TARGET_TYPE (type) = xtype;
1662 }
1663 }
1664 break;
1665
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1672
1673 case '*': /* Pointer to another type */
1674 type1 = read_type (pp, objfile);
1675 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1676 break;
1677
1678 case '&': /* Reference to another type */
1679 type1 = read_type (pp, objfile);
1680 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1681 break;
1682
1683 case 'f': /* Function returning another type */
1684 type1 = read_type (pp, objfile);
1685 type = make_function_type (type1, dbx_lookup_type (typenums, objfile),
1686 objfile);
1687 break;
1688
1689 case 'g': /* Prototyped function. (Sun) */
1690 {
1691 /* Unresolved questions:
1692
1693 - According to Sun's ``STABS Interface Manual'', for 'f'
1694 and 'F' symbol descriptors, a `0' in the argument type list
1695 indicates a varargs function. But it doesn't say how 'g'
1696 type descriptors represent that info. Someone with access
1697 to Sun's toolchain should try it out.
1698
1699 - According to the comment in define_symbol (search for
1700 `process_prototype_types:'), Sun emits integer arguments as
1701 types which ref themselves --- like `void' types. Do we
1702 have to deal with that here, too? Again, someone with
1703 access to Sun's toolchain should try it out and let us
1704 know. */
1705
1706 const char *type_start = (*pp) - 1;
1707 struct type *return_type = read_type (pp, objfile);
1708 struct type *func_type
1709 = make_function_type (return_type,
1710 dbx_lookup_type (typenums, objfile), objfile);
1711 struct type_list {
1712 struct type *type;
1713 struct type_list *next;
1714 } *arg_types = 0;
1715 int num_args = 0;
1716
1717 while (**pp && **pp != '#')
1718 {
1719 struct type *arg_type = read_type (pp, objfile);
1720 struct type_list *new = alloca (sizeof (*new));
1721 new->type = arg_type;
1722 new->next = arg_types;
1723 arg_types = new;
1724 num_args++;
1725 }
1726 if (**pp == '#')
1727 ++*pp;
1728 else
1729 {
1730 complaint (&symfile_complaints,
1731 _("Prototyped function type didn't end arguments with `#':\n%s"),
1732 type_start);
1733 }
1734
1735 /* If there is just one argument whose type is `void', then
1736 that's just an empty argument list. */
1737 if (arg_types
1738 && ! arg_types->next
1739 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1740 num_args = 0;
1741
1742 TYPE_FIELDS (func_type)
1743 = (struct field *) TYPE_ALLOC (func_type,
1744 num_args * sizeof (struct field));
1745 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1746 {
1747 int i;
1748 struct type_list *t;
1749
1750 /* We stuck each argument type onto the front of the list
1751 when we read it, so the list is reversed. Build the
1752 fields array right-to-left. */
1753 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1754 TYPE_FIELD_TYPE (func_type, i) = t->type;
1755 }
1756 TYPE_NFIELDS (func_type) = num_args;
1757 TYPE_PROTOTYPED (func_type) = 1;
1758
1759 type = func_type;
1760 break;
1761 }
1762
1763 case 'k': /* Const qualifier on some type (Sun) */
1764 type = read_type (pp, objfile);
1765 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1766 dbx_lookup_type (typenums, objfile));
1767 break;
1768
1769 case 'B': /* Volatile qual on some type (Sun) */
1770 type = read_type (pp, objfile);
1771 type = make_cv_type (TYPE_CONST (type), 1, type,
1772 dbx_lookup_type (typenums, objfile));
1773 break;
1774
1775 case '@':
1776 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1777 { /* Member (class & variable) type */
1778 /* FIXME -- we should be doing smash_to_XXX types here. */
1779
1780 struct type *domain = read_type (pp, objfile);
1781 struct type *memtype;
1782
1783 if (**pp != ',')
1784 /* Invalid member type data format. */
1785 return error_type (pp, objfile);
1786 ++*pp;
1787
1788 memtype = read_type (pp, objfile);
1789 type = dbx_alloc_type (typenums, objfile);
1790 smash_to_memberptr_type (type, domain, memtype);
1791 }
1792 else
1793 /* type attribute */
1794 {
1795 char *attr = *pp;
1796 /* Skip to the semicolon. */
1797 while (**pp != ';' && **pp != '\0')
1798 ++(*pp);
1799 if (**pp == '\0')
1800 return error_type (pp, objfile);
1801 else
1802 ++ * pp; /* Skip the semicolon. */
1803
1804 switch (*attr)
1805 {
1806 case 's': /* Size attribute */
1807 type_size = atoi (attr + 1);
1808 if (type_size <= 0)
1809 type_size = -1;
1810 break;
1811
1812 case 'S': /* String attribute */
1813 /* FIXME: check to see if following type is array? */
1814 is_string = 1;
1815 break;
1816
1817 case 'V': /* Vector attribute */
1818 /* FIXME: check to see if following type is array? */
1819 is_vector = 1;
1820 break;
1821
1822 default:
1823 /* Ignore unrecognized type attributes, so future compilers
1824 can invent new ones. */
1825 break;
1826 }
1827 ++*pp;
1828 goto again;
1829 }
1830 break;
1831
1832 case '#': /* Method (class & fn) type */
1833 if ((*pp)[0] == '#')
1834 {
1835 /* We'll get the parameter types from the name. */
1836 struct type *return_type;
1837
1838 (*pp)++;
1839 return_type = read_type (pp, objfile);
1840 if (*(*pp)++ != ';')
1841 complaint (&symfile_complaints,
1842 _("invalid (minimal) member type data format at symtab pos %d."),
1843 symnum);
1844 type = allocate_stub_method (return_type);
1845 if (typenums[0] != -1)
1846 *dbx_lookup_type (typenums, objfile) = type;
1847 }
1848 else
1849 {
1850 struct type *domain = read_type (pp, objfile);
1851 struct type *return_type;
1852 struct field *args;
1853 int nargs, varargs;
1854
1855 if (**pp != ',')
1856 /* Invalid member type data format. */
1857 return error_type (pp, objfile);
1858 else
1859 ++(*pp);
1860
1861 return_type = read_type (pp, objfile);
1862 args = read_args (pp, ';', objfile, &nargs, &varargs);
1863 if (args == NULL)
1864 return error_type (pp, objfile);
1865 type = dbx_alloc_type (typenums, objfile);
1866 smash_to_method_type (type, domain, return_type, args,
1867 nargs, varargs);
1868 }
1869 break;
1870
1871 case 'r': /* Range type */
1872 type = read_range_type (pp, typenums, type_size, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums, objfile) = type;
1875 break;
1876
1877 case 'b':
1878 {
1879 /* Sun ACC builtin int type */
1880 type = read_sun_builtin_type (pp, typenums, objfile);
1881 if (typenums[0] != -1)
1882 *dbx_lookup_type (typenums, objfile) = type;
1883 }
1884 break;
1885
1886 case 'R': /* Sun ACC builtin float type */
1887 type = read_sun_floating_type (pp, typenums, objfile);
1888 if (typenums[0] != -1)
1889 *dbx_lookup_type (typenums, objfile) = type;
1890 break;
1891
1892 case 'e': /* Enumeration type */
1893 type = dbx_alloc_type (typenums, objfile);
1894 type = read_enum_type (pp, type, objfile);
1895 if (typenums[0] != -1)
1896 *dbx_lookup_type (typenums, objfile) = type;
1897 break;
1898
1899 case 's': /* Struct type */
1900 case 'u': /* Union type */
1901 {
1902 enum type_code type_code = TYPE_CODE_UNDEF;
1903 type = dbx_alloc_type (typenums, objfile);
1904 switch (type_descriptor)
1905 {
1906 case 's':
1907 type_code = TYPE_CODE_STRUCT;
1908 break;
1909 case 'u':
1910 type_code = TYPE_CODE_UNION;
1911 break;
1912 }
1913 type = read_struct_type (pp, type, type_code, objfile);
1914 break;
1915 }
1916
1917 case 'a': /* Array type */
1918 if (**pp != 'r')
1919 return error_type (pp, objfile);
1920 ++*pp;
1921
1922 type = dbx_alloc_type (typenums, objfile);
1923 type = read_array_type (pp, type, objfile);
1924 if (is_string)
1925 TYPE_CODE (type) = TYPE_CODE_STRING;
1926 if (is_vector)
1927 make_vector_type (type);
1928 break;
1929
1930 case 'S': /* Set or bitstring type */
1931 type1 = read_type (pp, objfile);
1932 type = create_set_type ((struct type *) NULL, type1);
1933 if (is_string)
1934 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1935 if (typenums[0] != -1)
1936 *dbx_lookup_type (typenums, objfile) = type;
1937 break;
1938
1939 default:
1940 --*pp; /* Go back to the symbol in error */
1941 /* Particularly important if it was \0! */
1942 return error_type (pp, objfile);
1943 }
1944
1945 if (type == 0)
1946 {
1947 warning (_("GDB internal error, type is NULL in stabsread.c."));
1948 return error_type (pp, objfile);
1949 }
1950
1951 /* Size specified in a type attribute overrides any other size. */
1952 if (type_size != -1)
1953 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1954
1955 return type;
1956 }
1957 \f
1958 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1959 Return the proper type node for a given builtin type number. */
1960
1961 static const struct objfile_data *rs6000_builtin_type_data;
1962
1963 static struct type *
1964 rs6000_builtin_type (int typenum, struct objfile *objfile)
1965 {
1966 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
1967
1968 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1969 #define NUMBER_RECOGNIZED 34
1970 struct type *rettype = NULL;
1971
1972 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1973 {
1974 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1975 return objfile_type (objfile)->builtin_error;
1976 }
1977
1978 if (!negative_types)
1979 {
1980 /* This includes an empty slot for type number -0. */
1981 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
1982 NUMBER_RECOGNIZED + 1, struct type *);
1983 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
1984 }
1985
1986 if (negative_types[-typenum] != NULL)
1987 return negative_types[-typenum];
1988
1989 #if TARGET_CHAR_BIT != 8
1990 #error This code wrong for TARGET_CHAR_BIT not 8
1991 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1992 that if that ever becomes not true, the correct fix will be to
1993 make the size in the struct type to be in bits, not in units of
1994 TARGET_CHAR_BIT. */
1995 #endif
1996
1997 switch (-typenum)
1998 {
1999 case 1:
2000 /* The size of this and all the other types are fixed, defined
2001 by the debugging format. If there is a type called "int" which
2002 is other than 32 bits, then it should use a new negative type
2003 number (or avoid negative type numbers for that case).
2004 See stabs.texinfo. */
2005 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2006 break;
2007 case 2:
2008 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2009 break;
2010 case 3:
2011 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2012 break;
2013 case 4:
2014 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2015 break;
2016 case 5:
2017 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2018 "unsigned char", objfile);
2019 break;
2020 case 6:
2021 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2022 break;
2023 case 7:
2024 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2025 "unsigned short", objfile);
2026 break;
2027 case 8:
2028 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2029 "unsigned int", objfile);
2030 break;
2031 case 9:
2032 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2033 "unsigned", objfile);
2034 case 10:
2035 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2036 "unsigned long", objfile);
2037 break;
2038 case 11:
2039 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2040 break;
2041 case 12:
2042 /* IEEE single precision (32 bit). */
2043 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2044 break;
2045 case 13:
2046 /* IEEE double precision (64 bit). */
2047 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2048 break;
2049 case 14:
2050 /* This is an IEEE double on the RS/6000, and different machines with
2051 different sizes for "long double" should use different negative
2052 type numbers. See stabs.texinfo. */
2053 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2054 break;
2055 case 15:
2056 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2057 break;
2058 case 16:
2059 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2060 "boolean", objfile);
2061 break;
2062 case 17:
2063 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2064 break;
2065 case 18:
2066 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2067 break;
2068 case 19:
2069 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2070 break;
2071 case 20:
2072 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2073 "character", objfile);
2074 break;
2075 case 21:
2076 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2077 "logical*1", objfile);
2078 break;
2079 case 22:
2080 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2081 "logical*2", objfile);
2082 break;
2083 case 23:
2084 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2085 "logical*4", objfile);
2086 break;
2087 case 24:
2088 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2089 "logical", objfile);
2090 break;
2091 case 25:
2092 /* Complex type consisting of two IEEE single precision values. */
2093 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2094 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2095 objfile);
2096 break;
2097 case 26:
2098 /* Complex type consisting of two IEEE double precision values. */
2099 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2100 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2101 objfile);
2102 break;
2103 case 27:
2104 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2105 break;
2106 case 28:
2107 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2108 break;
2109 case 29:
2110 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2111 break;
2112 case 30:
2113 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2114 break;
2115 case 31:
2116 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2117 break;
2118 case 32:
2119 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2120 "unsigned long long", objfile);
2121 break;
2122 case 33:
2123 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2124 "logical*8", objfile);
2125 break;
2126 case 34:
2127 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2128 break;
2129 }
2130 negative_types[-typenum] = rettype;
2131 return rettype;
2132 }
2133 \f
2134 /* This page contains subroutines of read_type. */
2135
2136 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2137
2138 static void
2139 update_method_name_from_physname (char **old_name, char *physname)
2140 {
2141 char *method_name;
2142
2143 method_name = method_name_from_physname (physname);
2144
2145 if (method_name == NULL)
2146 {
2147 complaint (&symfile_complaints,
2148 _("Method has bad physname %s\n"), physname);
2149 return;
2150 }
2151
2152 if (strcmp (*old_name, method_name) != 0)
2153 {
2154 xfree (*old_name);
2155 *old_name = method_name;
2156 }
2157 else
2158 xfree (method_name);
2159 }
2160
2161 /* Read member function stabs info for C++ classes. The form of each member
2162 function data is:
2163
2164 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2165
2166 An example with two member functions is:
2167
2168 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2169
2170 For the case of overloaded operators, the format is op$::*.funcs, where
2171 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2172 name (such as `+=') and `.' marks the end of the operator name.
2173
2174 Returns 1 for success, 0 for failure. */
2175
2176 static int
2177 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2178 struct objfile *objfile)
2179 {
2180 int nfn_fields = 0;
2181 int length = 0;
2182 /* Total number of member functions defined in this class. If the class
2183 defines two `f' functions, and one `g' function, then this will have
2184 the value 3. */
2185 int total_length = 0;
2186 int i;
2187 struct next_fnfield
2188 {
2189 struct next_fnfield *next;
2190 struct fn_field fn_field;
2191 }
2192 *sublist;
2193 struct type *look_ahead_type;
2194 struct next_fnfieldlist *new_fnlist;
2195 struct next_fnfield *new_sublist;
2196 char *main_fn_name;
2197 char *p;
2198
2199 /* Process each list until we find something that is not a member function
2200 or find the end of the functions. */
2201
2202 while (**pp != ';')
2203 {
2204 /* We should be positioned at the start of the function name.
2205 Scan forward to find the first ':' and if it is not the
2206 first of a "::" delimiter, then this is not a member function. */
2207 p = *pp;
2208 while (*p != ':')
2209 {
2210 p++;
2211 }
2212 if (p[1] != ':')
2213 {
2214 break;
2215 }
2216
2217 sublist = NULL;
2218 look_ahead_type = NULL;
2219 length = 0;
2220
2221 new_fnlist = (struct next_fnfieldlist *)
2222 xmalloc (sizeof (struct next_fnfieldlist));
2223 make_cleanup (xfree, new_fnlist);
2224 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2225
2226 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2227 {
2228 /* This is a completely wierd case. In order to stuff in the
2229 names that might contain colons (the usual name delimiter),
2230 Mike Tiemann defined a different name format which is
2231 signalled if the identifier is "op$". In that case, the
2232 format is "op$::XXXX." where XXXX is the name. This is
2233 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2234 /* This lets the user type "break operator+".
2235 We could just put in "+" as the name, but that wouldn't
2236 work for "*". */
2237 static char opname[32] = "op$";
2238 char *o = opname + 3;
2239
2240 /* Skip past '::'. */
2241 *pp = p + 2;
2242
2243 STABS_CONTINUE (pp, objfile);
2244 p = *pp;
2245 while (*p != '.')
2246 {
2247 *o++ = *p++;
2248 }
2249 main_fn_name = savestring (opname, o - opname);
2250 /* Skip past '.' */
2251 *pp = p + 1;
2252 }
2253 else
2254 {
2255 main_fn_name = savestring (*pp, p - *pp);
2256 /* Skip past '::'. */
2257 *pp = p + 2;
2258 }
2259 new_fnlist->fn_fieldlist.name = main_fn_name;
2260
2261 do
2262 {
2263 new_sublist =
2264 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2265 make_cleanup (xfree, new_sublist);
2266 memset (new_sublist, 0, sizeof (struct next_fnfield));
2267
2268 /* Check for and handle cretinous dbx symbol name continuation! */
2269 if (look_ahead_type == NULL)
2270 {
2271 /* Normal case. */
2272 STABS_CONTINUE (pp, objfile);
2273
2274 new_sublist->fn_field.type = read_type (pp, objfile);
2275 if (**pp != ':')
2276 {
2277 /* Invalid symtab info for member function. */
2278 return 0;
2279 }
2280 }
2281 else
2282 {
2283 /* g++ version 1 kludge */
2284 new_sublist->fn_field.type = look_ahead_type;
2285 look_ahead_type = NULL;
2286 }
2287
2288 (*pp)++;
2289 p = *pp;
2290 while (*p != ';')
2291 {
2292 p++;
2293 }
2294
2295 /* If this is just a stub, then we don't have the real name here. */
2296
2297 if (TYPE_STUB (new_sublist->fn_field.type))
2298 {
2299 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2300 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2301 new_sublist->fn_field.is_stub = 1;
2302 }
2303 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2304 *pp = p + 1;
2305
2306 /* Set this member function's visibility fields. */
2307 switch (*(*pp)++)
2308 {
2309 case VISIBILITY_PRIVATE:
2310 new_sublist->fn_field.is_private = 1;
2311 break;
2312 case VISIBILITY_PROTECTED:
2313 new_sublist->fn_field.is_protected = 1;
2314 break;
2315 }
2316
2317 STABS_CONTINUE (pp, objfile);
2318 switch (**pp)
2319 {
2320 case 'A': /* Normal functions. */
2321 new_sublist->fn_field.is_const = 0;
2322 new_sublist->fn_field.is_volatile = 0;
2323 (*pp)++;
2324 break;
2325 case 'B': /* `const' member functions. */
2326 new_sublist->fn_field.is_const = 1;
2327 new_sublist->fn_field.is_volatile = 0;
2328 (*pp)++;
2329 break;
2330 case 'C': /* `volatile' member function. */
2331 new_sublist->fn_field.is_const = 0;
2332 new_sublist->fn_field.is_volatile = 1;
2333 (*pp)++;
2334 break;
2335 case 'D': /* `const volatile' member function. */
2336 new_sublist->fn_field.is_const = 1;
2337 new_sublist->fn_field.is_volatile = 1;
2338 (*pp)++;
2339 break;
2340 case '*': /* File compiled with g++ version 1 -- no info */
2341 case '?':
2342 case '.':
2343 break;
2344 default:
2345 complaint (&symfile_complaints,
2346 _("const/volatile indicator missing, got '%c'"), **pp);
2347 break;
2348 }
2349
2350 switch (*(*pp)++)
2351 {
2352 case '*':
2353 {
2354 int nbits;
2355 /* virtual member function, followed by index.
2356 The sign bit is set to distinguish pointers-to-methods
2357 from virtual function indicies. Since the array is
2358 in words, the quantity must be shifted left by 1
2359 on 16 bit machine, and by 2 on 32 bit machine, forcing
2360 the sign bit out, and usable as a valid index into
2361 the array. Remove the sign bit here. */
2362 new_sublist->fn_field.voffset =
2363 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2364 if (nbits != 0)
2365 return 0;
2366
2367 STABS_CONTINUE (pp, objfile);
2368 if (**pp == ';' || **pp == '\0')
2369 {
2370 /* Must be g++ version 1. */
2371 new_sublist->fn_field.fcontext = 0;
2372 }
2373 else
2374 {
2375 /* Figure out from whence this virtual function came.
2376 It may belong to virtual function table of
2377 one of its baseclasses. */
2378 look_ahead_type = read_type (pp, objfile);
2379 if (**pp == ':')
2380 {
2381 /* g++ version 1 overloaded methods. */
2382 }
2383 else
2384 {
2385 new_sublist->fn_field.fcontext = look_ahead_type;
2386 if (**pp != ';')
2387 {
2388 return 0;
2389 }
2390 else
2391 {
2392 ++*pp;
2393 }
2394 look_ahead_type = NULL;
2395 }
2396 }
2397 break;
2398 }
2399 case '?':
2400 /* static member function. */
2401 {
2402 int slen = strlen (main_fn_name);
2403
2404 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2405
2406 /* For static member functions, we can't tell if they
2407 are stubbed, as they are put out as functions, and not as
2408 methods.
2409 GCC v2 emits the fully mangled name if
2410 dbxout.c:flag_minimal_debug is not set, so we have to
2411 detect a fully mangled physname here and set is_stub
2412 accordingly. Fully mangled physnames in v2 start with
2413 the member function name, followed by two underscores.
2414 GCC v3 currently always emits stubbed member functions,
2415 but with fully mangled physnames, which start with _Z. */
2416 if (!(strncmp (new_sublist->fn_field.physname,
2417 main_fn_name, slen) == 0
2418 && new_sublist->fn_field.physname[slen] == '_'
2419 && new_sublist->fn_field.physname[slen + 1] == '_'))
2420 {
2421 new_sublist->fn_field.is_stub = 1;
2422 }
2423 break;
2424 }
2425
2426 default:
2427 /* error */
2428 complaint (&symfile_complaints,
2429 _("member function type missing, got '%c'"), (*pp)[-1]);
2430 /* Fall through into normal member function. */
2431
2432 case '.':
2433 /* normal member function. */
2434 new_sublist->fn_field.voffset = 0;
2435 new_sublist->fn_field.fcontext = 0;
2436 break;
2437 }
2438
2439 new_sublist->next = sublist;
2440 sublist = new_sublist;
2441 length++;
2442 STABS_CONTINUE (pp, objfile);
2443 }
2444 while (**pp != ';' && **pp != '\0');
2445
2446 (*pp)++;
2447 STABS_CONTINUE (pp, objfile);
2448
2449 /* Skip GCC 3.X member functions which are duplicates of the callable
2450 constructor/destructor. */
2451 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2452 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2453 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2454 {
2455 xfree (main_fn_name);
2456 }
2457 else
2458 {
2459 int has_stub = 0;
2460 int has_destructor = 0, has_other = 0;
2461 int is_v3 = 0;
2462 struct next_fnfield *tmp_sublist;
2463
2464 /* Various versions of GCC emit various mostly-useless
2465 strings in the name field for special member functions.
2466
2467 For stub methods, we need to defer correcting the name
2468 until we are ready to unstub the method, because the current
2469 name string is used by gdb_mangle_name. The only stub methods
2470 of concern here are GNU v2 operators; other methods have their
2471 names correct (see caveat below).
2472
2473 For non-stub methods, in GNU v3, we have a complete physname.
2474 Therefore we can safely correct the name now. This primarily
2475 affects constructors and destructors, whose name will be
2476 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2477 operators will also have incorrect names; for instance,
2478 "operator int" will be named "operator i" (i.e. the type is
2479 mangled).
2480
2481 For non-stub methods in GNU v2, we have no easy way to
2482 know if we have a complete physname or not. For most
2483 methods the result depends on the platform (if CPLUS_MARKER
2484 can be `$' or `.', it will use minimal debug information, or
2485 otherwise the full physname will be included).
2486
2487 Rather than dealing with this, we take a different approach.
2488 For v3 mangled names, we can use the full physname; for v2,
2489 we use cplus_demangle_opname (which is actually v2 specific),
2490 because the only interesting names are all operators - once again
2491 barring the caveat below. Skip this process if any method in the
2492 group is a stub, to prevent our fouling up the workings of
2493 gdb_mangle_name.
2494
2495 The caveat: GCC 2.95.x (and earlier?) put constructors and
2496 destructors in the same method group. We need to split this
2497 into two groups, because they should have different names.
2498 So for each method group we check whether it contains both
2499 routines whose physname appears to be a destructor (the physnames
2500 for and destructors are always provided, due to quirks in v2
2501 mangling) and routines whose physname does not appear to be a
2502 destructor. If so then we break up the list into two halves.
2503 Even if the constructors and destructors aren't in the same group
2504 the destructor will still lack the leading tilde, so that also
2505 needs to be fixed.
2506
2507 So, to summarize what we expect and handle here:
2508
2509 Given Given Real Real Action
2510 method name physname physname method name
2511
2512 __opi [none] __opi__3Foo operator int opname
2513 [now or later]
2514 Foo _._3Foo _._3Foo ~Foo separate and
2515 rename
2516 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2517 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2518 */
2519
2520 tmp_sublist = sublist;
2521 while (tmp_sublist != NULL)
2522 {
2523 if (tmp_sublist->fn_field.is_stub)
2524 has_stub = 1;
2525 if (tmp_sublist->fn_field.physname[0] == '_'
2526 && tmp_sublist->fn_field.physname[1] == 'Z')
2527 is_v3 = 1;
2528
2529 if (is_destructor_name (tmp_sublist->fn_field.physname))
2530 has_destructor++;
2531 else
2532 has_other++;
2533
2534 tmp_sublist = tmp_sublist->next;
2535 }
2536
2537 if (has_destructor && has_other)
2538 {
2539 struct next_fnfieldlist *destr_fnlist;
2540 struct next_fnfield *last_sublist;
2541
2542 /* Create a new fn_fieldlist for the destructors. */
2543
2544 destr_fnlist = (struct next_fnfieldlist *)
2545 xmalloc (sizeof (struct next_fnfieldlist));
2546 make_cleanup (xfree, destr_fnlist);
2547 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2548 destr_fnlist->fn_fieldlist.name
2549 = obconcat (&objfile->objfile_obstack, "", "~",
2550 new_fnlist->fn_fieldlist.name);
2551
2552 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2553 obstack_alloc (&objfile->objfile_obstack,
2554 sizeof (struct fn_field) * has_destructor);
2555 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2556 sizeof (struct fn_field) * has_destructor);
2557 tmp_sublist = sublist;
2558 last_sublist = NULL;
2559 i = 0;
2560 while (tmp_sublist != NULL)
2561 {
2562 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2563 {
2564 tmp_sublist = tmp_sublist->next;
2565 continue;
2566 }
2567
2568 destr_fnlist->fn_fieldlist.fn_fields[i++]
2569 = tmp_sublist->fn_field;
2570 if (last_sublist)
2571 last_sublist->next = tmp_sublist->next;
2572 else
2573 sublist = tmp_sublist->next;
2574 last_sublist = tmp_sublist;
2575 tmp_sublist = tmp_sublist->next;
2576 }
2577
2578 destr_fnlist->fn_fieldlist.length = has_destructor;
2579 destr_fnlist->next = fip->fnlist;
2580 fip->fnlist = destr_fnlist;
2581 nfn_fields++;
2582 total_length += has_destructor;
2583 length -= has_destructor;
2584 }
2585 else if (is_v3)
2586 {
2587 /* v3 mangling prevents the use of abbreviated physnames,
2588 so we can do this here. There are stubbed methods in v3
2589 only:
2590 - in -gstabs instead of -gstabs+
2591 - or for static methods, which are output as a function type
2592 instead of a method type. */
2593
2594 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2595 sublist->fn_field.physname);
2596 }
2597 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2598 {
2599 new_fnlist->fn_fieldlist.name =
2600 concat ("~", main_fn_name, (char *)NULL);
2601 xfree (main_fn_name);
2602 }
2603 else if (!has_stub)
2604 {
2605 char dem_opname[256];
2606 int ret;
2607 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2608 dem_opname, DMGL_ANSI);
2609 if (!ret)
2610 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2611 dem_opname, 0);
2612 if (ret)
2613 new_fnlist->fn_fieldlist.name
2614 = obsavestring (dem_opname, strlen (dem_opname),
2615 &objfile->objfile_obstack);
2616 }
2617
2618 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2619 obstack_alloc (&objfile->objfile_obstack,
2620 sizeof (struct fn_field) * length);
2621 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2622 sizeof (struct fn_field) * length);
2623 for (i = length; (i--, sublist); sublist = sublist->next)
2624 {
2625 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2626 }
2627
2628 new_fnlist->fn_fieldlist.length = length;
2629 new_fnlist->next = fip->fnlist;
2630 fip->fnlist = new_fnlist;
2631 nfn_fields++;
2632 total_length += length;
2633 }
2634 }
2635
2636 if (nfn_fields)
2637 {
2638 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2639 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2640 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2641 memset (TYPE_FN_FIELDLISTS (type), 0,
2642 sizeof (struct fn_fieldlist) * nfn_fields);
2643 TYPE_NFN_FIELDS (type) = nfn_fields;
2644 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2645 }
2646
2647 return 1;
2648 }
2649
2650 /* Special GNU C++ name.
2651
2652 Returns 1 for success, 0 for failure. "failure" means that we can't
2653 keep parsing and it's time for error_type(). */
2654
2655 static int
2656 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2657 struct objfile *objfile)
2658 {
2659 char *p;
2660 char *name;
2661 char cpp_abbrev;
2662 struct type *context;
2663
2664 p = *pp;
2665 if (*++p == 'v')
2666 {
2667 name = NULL;
2668 cpp_abbrev = *++p;
2669
2670 *pp = p + 1;
2671
2672 /* At this point, *pp points to something like "22:23=*22...",
2673 where the type number before the ':' is the "context" and
2674 everything after is a regular type definition. Lookup the
2675 type, find it's name, and construct the field name. */
2676
2677 context = read_type (pp, objfile);
2678
2679 switch (cpp_abbrev)
2680 {
2681 case 'f': /* $vf -- a virtual function table pointer */
2682 name = type_name_no_tag (context);
2683 if (name == NULL)
2684 {
2685 name = "";
2686 }
2687 fip->list->field.name =
2688 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2689 break;
2690
2691 case 'b': /* $vb -- a virtual bsomethingorother */
2692 name = type_name_no_tag (context);
2693 if (name == NULL)
2694 {
2695 complaint (&symfile_complaints,
2696 _("C++ abbreviated type name unknown at symtab pos %d"),
2697 symnum);
2698 name = "FOO";
2699 }
2700 fip->list->field.name =
2701 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2702 break;
2703
2704 default:
2705 invalid_cpp_abbrev_complaint (*pp);
2706 fip->list->field.name =
2707 obconcat (&objfile->objfile_obstack,
2708 "INVALID_CPLUSPLUS_ABBREV", "", "");
2709 break;
2710 }
2711
2712 /* At this point, *pp points to the ':'. Skip it and read the
2713 field type. */
2714
2715 p = ++(*pp);
2716 if (p[-1] != ':')
2717 {
2718 invalid_cpp_abbrev_complaint (*pp);
2719 return 0;
2720 }
2721 fip->list->field.type = read_type (pp, objfile);
2722 if (**pp == ',')
2723 (*pp)++; /* Skip the comma. */
2724 else
2725 return 0;
2726
2727 {
2728 int nbits;
2729 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2730 0);
2731 if (nbits != 0)
2732 return 0;
2733 }
2734 /* This field is unpacked. */
2735 FIELD_BITSIZE (fip->list->field) = 0;
2736 fip->list->visibility = VISIBILITY_PRIVATE;
2737 }
2738 else
2739 {
2740 invalid_cpp_abbrev_complaint (*pp);
2741 /* We have no idea what syntax an unrecognized abbrev would have, so
2742 better return 0. If we returned 1, we would need to at least advance
2743 *pp to avoid an infinite loop. */
2744 return 0;
2745 }
2746 return 1;
2747 }
2748
2749 static void
2750 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2751 struct type *type, struct objfile *objfile)
2752 {
2753 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2754
2755 fip->list->field.name =
2756 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2757 *pp = p + 1;
2758
2759 /* This means we have a visibility for a field coming. */
2760 if (**pp == '/')
2761 {
2762 (*pp)++;
2763 fip->list->visibility = *(*pp)++;
2764 }
2765 else
2766 {
2767 /* normal dbx-style format, no explicit visibility */
2768 fip->list->visibility = VISIBILITY_PUBLIC;
2769 }
2770
2771 fip->list->field.type = read_type (pp, objfile);
2772 if (**pp == ':')
2773 {
2774 p = ++(*pp);
2775 #if 0
2776 /* Possible future hook for nested types. */
2777 if (**pp == '!')
2778 {
2779 fip->list->field.bitpos = (long) -2; /* nested type */
2780 p = ++(*pp);
2781 }
2782 else
2783 ...;
2784 #endif
2785 while (*p != ';')
2786 {
2787 p++;
2788 }
2789 /* Static class member. */
2790 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2791 *pp = p + 1;
2792 return;
2793 }
2794 else if (**pp != ',')
2795 {
2796 /* Bad structure-type format. */
2797 stabs_general_complaint ("bad structure-type format");
2798 return;
2799 }
2800
2801 (*pp)++; /* Skip the comma. */
2802
2803 {
2804 int nbits;
2805 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2806 if (nbits != 0)
2807 {
2808 stabs_general_complaint ("bad structure-type format");
2809 return;
2810 }
2811 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2812 if (nbits != 0)
2813 {
2814 stabs_general_complaint ("bad structure-type format");
2815 return;
2816 }
2817 }
2818
2819 if (FIELD_BITPOS (fip->list->field) == 0
2820 && FIELD_BITSIZE (fip->list->field) == 0)
2821 {
2822 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2823 it is a field which has been optimized out. The correct stab for
2824 this case is to use VISIBILITY_IGNORE, but that is a recent
2825 invention. (2) It is a 0-size array. For example
2826 union { int num; char str[0]; } foo. Printing _("<no value>" for
2827 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2828 will continue to work, and a 0-size array as a whole doesn't
2829 have any contents to print.
2830
2831 I suspect this probably could also happen with gcc -gstabs (not
2832 -gstabs+) for static fields, and perhaps other C++ extensions.
2833 Hopefully few people use -gstabs with gdb, since it is intended
2834 for dbx compatibility. */
2835
2836 /* Ignore this field. */
2837 fip->list->visibility = VISIBILITY_IGNORE;
2838 }
2839 else
2840 {
2841 /* Detect an unpacked field and mark it as such.
2842 dbx gives a bit size for all fields.
2843 Note that forward refs cannot be packed,
2844 and treat enums as if they had the width of ints. */
2845
2846 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2847
2848 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2849 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2850 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2851 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2852 {
2853 FIELD_BITSIZE (fip->list->field) = 0;
2854 }
2855 if ((FIELD_BITSIZE (fip->list->field)
2856 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2857 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2858 && FIELD_BITSIZE (fip->list->field)
2859 == gdbarch_int_bit (gdbarch))
2860 )
2861 &&
2862 FIELD_BITPOS (fip->list->field) % 8 == 0)
2863 {
2864 FIELD_BITSIZE (fip->list->field) = 0;
2865 }
2866 }
2867 }
2868
2869
2870 /* Read struct or class data fields. They have the form:
2871
2872 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2873
2874 At the end, we see a semicolon instead of a field.
2875
2876 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2877 a static field.
2878
2879 The optional VISIBILITY is one of:
2880
2881 '/0' (VISIBILITY_PRIVATE)
2882 '/1' (VISIBILITY_PROTECTED)
2883 '/2' (VISIBILITY_PUBLIC)
2884 '/9' (VISIBILITY_IGNORE)
2885
2886 or nothing, for C style fields with public visibility.
2887
2888 Returns 1 for success, 0 for failure. */
2889
2890 static int
2891 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2892 struct objfile *objfile)
2893 {
2894 char *p;
2895 struct nextfield *new;
2896
2897 /* We better set p right now, in case there are no fields at all... */
2898
2899 p = *pp;
2900
2901 /* Read each data member type until we find the terminating ';' at the end of
2902 the data member list, or break for some other reason such as finding the
2903 start of the member function list. */
2904 /* Stab string for structure/union does not end with two ';' in
2905 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2906
2907 while (**pp != ';' && **pp != '\0')
2908 {
2909 STABS_CONTINUE (pp, objfile);
2910 /* Get space to record the next field's data. */
2911 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2912 make_cleanup (xfree, new);
2913 memset (new, 0, sizeof (struct nextfield));
2914 new->next = fip->list;
2915 fip->list = new;
2916
2917 /* Get the field name. */
2918 p = *pp;
2919
2920 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2921 unless the CPLUS_MARKER is followed by an underscore, in
2922 which case it is just the name of an anonymous type, which we
2923 should handle like any other type name. */
2924
2925 if (is_cplus_marker (p[0]) && p[1] != '_')
2926 {
2927 if (!read_cpp_abbrev (fip, pp, type, objfile))
2928 return 0;
2929 continue;
2930 }
2931
2932 /* Look for the ':' that separates the field name from the field
2933 values. Data members are delimited by a single ':', while member
2934 functions are delimited by a pair of ':'s. When we hit the member
2935 functions (if any), terminate scan loop and return. */
2936
2937 while (*p != ':' && *p != '\0')
2938 {
2939 p++;
2940 }
2941 if (*p == '\0')
2942 return 0;
2943
2944 /* Check to see if we have hit the member functions yet. */
2945 if (p[1] == ':')
2946 {
2947 break;
2948 }
2949 read_one_struct_field (fip, pp, p, type, objfile);
2950 }
2951 if (p[0] == ':' && p[1] == ':')
2952 {
2953 /* (the deleted) chill the list of fields: the last entry (at
2954 the head) is a partially constructed entry which we now
2955 scrub. */
2956 fip->list = fip->list->next;
2957 }
2958 return 1;
2959 }
2960 /* *INDENT-OFF* */
2961 /* The stabs for C++ derived classes contain baseclass information which
2962 is marked by a '!' character after the total size. This function is
2963 called when we encounter the baseclass marker, and slurps up all the
2964 baseclass information.
2965
2966 Immediately following the '!' marker is the number of base classes that
2967 the class is derived from, followed by information for each base class.
2968 For each base class, there are two visibility specifiers, a bit offset
2969 to the base class information within the derived class, a reference to
2970 the type for the base class, and a terminating semicolon.
2971
2972 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2973 ^^ ^ ^ ^ ^ ^ ^
2974 Baseclass information marker __________________|| | | | | | |
2975 Number of baseclasses __________________________| | | | | | |
2976 Visibility specifiers (2) ________________________| | | | | |
2977 Offset in bits from start of class _________________| | | | |
2978 Type number for base class ___________________________| | | |
2979 Visibility specifiers (2) _______________________________| | |
2980 Offset in bits from start of class ________________________| |
2981 Type number of base class ____________________________________|
2982
2983 Return 1 for success, 0 for (error-type-inducing) failure. */
2984 /* *INDENT-ON* */
2985
2986
2987
2988 static int
2989 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2990 struct objfile *objfile)
2991 {
2992 int i;
2993 struct nextfield *new;
2994
2995 if (**pp != '!')
2996 {
2997 return 1;
2998 }
2999 else
3000 {
3001 /* Skip the '!' baseclass information marker. */
3002 (*pp)++;
3003 }
3004
3005 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3006 {
3007 int nbits;
3008 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3009 if (nbits != 0)
3010 return 0;
3011 }
3012
3013 #if 0
3014 /* Some stupid compilers have trouble with the following, so break
3015 it up into simpler expressions. */
3016 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3017 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3018 #else
3019 {
3020 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3021 char *pointer;
3022
3023 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3024 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3025 }
3026 #endif /* 0 */
3027
3028 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3029
3030 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3031 {
3032 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3033 make_cleanup (xfree, new);
3034 memset (new, 0, sizeof (struct nextfield));
3035 new->next = fip->list;
3036 fip->list = new;
3037 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3038
3039 STABS_CONTINUE (pp, objfile);
3040 switch (**pp)
3041 {
3042 case '0':
3043 /* Nothing to do. */
3044 break;
3045 case '1':
3046 SET_TYPE_FIELD_VIRTUAL (type, i);
3047 break;
3048 default:
3049 /* Unknown character. Complain and treat it as non-virtual. */
3050 {
3051 complaint (&symfile_complaints,
3052 _("Unknown virtual character `%c' for baseclass"), **pp);
3053 }
3054 }
3055 ++(*pp);
3056
3057 new->visibility = *(*pp)++;
3058 switch (new->visibility)
3059 {
3060 case VISIBILITY_PRIVATE:
3061 case VISIBILITY_PROTECTED:
3062 case VISIBILITY_PUBLIC:
3063 break;
3064 default:
3065 /* Bad visibility format. Complain and treat it as
3066 public. */
3067 {
3068 complaint (&symfile_complaints,
3069 _("Unknown visibility `%c' for baseclass"),
3070 new->visibility);
3071 new->visibility = VISIBILITY_PUBLIC;
3072 }
3073 }
3074
3075 {
3076 int nbits;
3077
3078 /* The remaining value is the bit offset of the portion of the object
3079 corresponding to this baseclass. Always zero in the absence of
3080 multiple inheritance. */
3081
3082 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3083 if (nbits != 0)
3084 return 0;
3085 }
3086
3087 /* The last piece of baseclass information is the type of the
3088 base class. Read it, and remember it's type name as this
3089 field's name. */
3090
3091 new->field.type = read_type (pp, objfile);
3092 new->field.name = type_name_no_tag (new->field.type);
3093
3094 /* skip trailing ';' and bump count of number of fields seen */
3095 if (**pp == ';')
3096 (*pp)++;
3097 else
3098 return 0;
3099 }
3100 return 1;
3101 }
3102
3103 /* The tail end of stabs for C++ classes that contain a virtual function
3104 pointer contains a tilde, a %, and a type number.
3105 The type number refers to the base class (possibly this class itself) which
3106 contains the vtable pointer for the current class.
3107
3108 This function is called when we have parsed all the method declarations,
3109 so we can look for the vptr base class info. */
3110
3111 static int
3112 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3113 struct objfile *objfile)
3114 {
3115 char *p;
3116
3117 STABS_CONTINUE (pp, objfile);
3118
3119 /* If we are positioned at a ';', then skip it. */
3120 if (**pp == ';')
3121 {
3122 (*pp)++;
3123 }
3124
3125 if (**pp == '~')
3126 {
3127 (*pp)++;
3128
3129 if (**pp == '=' || **pp == '+' || **pp == '-')
3130 {
3131 /* Obsolete flags that used to indicate the presence
3132 of constructors and/or destructors. */
3133 (*pp)++;
3134 }
3135
3136 /* Read either a '%' or the final ';'. */
3137 if (*(*pp)++ == '%')
3138 {
3139 /* The next number is the type number of the base class
3140 (possibly our own class) which supplies the vtable for
3141 this class. Parse it out, and search that class to find
3142 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3143 and TYPE_VPTR_FIELDNO. */
3144
3145 struct type *t;
3146 int i;
3147
3148 t = read_type (pp, objfile);
3149 p = (*pp)++;
3150 while (*p != '\0' && *p != ';')
3151 {
3152 p++;
3153 }
3154 if (*p == '\0')
3155 {
3156 /* Premature end of symbol. */
3157 return 0;
3158 }
3159
3160 TYPE_VPTR_BASETYPE (type) = t;
3161 if (type == t) /* Our own class provides vtbl ptr */
3162 {
3163 for (i = TYPE_NFIELDS (t) - 1;
3164 i >= TYPE_N_BASECLASSES (t);
3165 --i)
3166 {
3167 char *name = TYPE_FIELD_NAME (t, i);
3168 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3169 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3170 {
3171 TYPE_VPTR_FIELDNO (type) = i;
3172 goto gotit;
3173 }
3174 }
3175 /* Virtual function table field not found. */
3176 complaint (&symfile_complaints,
3177 _("virtual function table pointer not found when defining class `%s'"),
3178 TYPE_NAME (type));
3179 return 0;
3180 }
3181 else
3182 {
3183 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3184 }
3185
3186 gotit:
3187 *pp = p + 1;
3188 }
3189 }
3190 return 1;
3191 }
3192
3193 static int
3194 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3195 {
3196 int n;
3197
3198 for (n = TYPE_NFN_FIELDS (type);
3199 fip->fnlist != NULL;
3200 fip->fnlist = fip->fnlist->next)
3201 {
3202 --n; /* Circumvent Sun3 compiler bug */
3203 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3204 }
3205 return 1;
3206 }
3207
3208 /* Create the vector of fields, and record how big it is.
3209 We need this info to record proper virtual function table information
3210 for this class's virtual functions. */
3211
3212 static int
3213 attach_fields_to_type (struct field_info *fip, struct type *type,
3214 struct objfile *objfile)
3215 {
3216 int nfields = 0;
3217 int non_public_fields = 0;
3218 struct nextfield *scan;
3219
3220 /* Count up the number of fields that we have, as well as taking note of
3221 whether or not there are any non-public fields, which requires us to
3222 allocate and build the private_field_bits and protected_field_bits
3223 bitfields. */
3224
3225 for (scan = fip->list; scan != NULL; scan = scan->next)
3226 {
3227 nfields++;
3228 if (scan->visibility != VISIBILITY_PUBLIC)
3229 {
3230 non_public_fields++;
3231 }
3232 }
3233
3234 /* Now we know how many fields there are, and whether or not there are any
3235 non-public fields. Record the field count, allocate space for the
3236 array of fields, and create blank visibility bitfields if necessary. */
3237
3238 TYPE_NFIELDS (type) = nfields;
3239 TYPE_FIELDS (type) = (struct field *)
3240 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3241 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3242
3243 if (non_public_fields)
3244 {
3245 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3246
3247 TYPE_FIELD_PRIVATE_BITS (type) =
3248 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3249 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3250
3251 TYPE_FIELD_PROTECTED_BITS (type) =
3252 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3253 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3254
3255 TYPE_FIELD_IGNORE_BITS (type) =
3256 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3257 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3258 }
3259
3260 /* Copy the saved-up fields into the field vector. Start from the head
3261 of the list, adding to the tail of the field array, so that they end
3262 up in the same order in the array in which they were added to the list. */
3263
3264 while (nfields-- > 0)
3265 {
3266 TYPE_FIELD (type, nfields) = fip->list->field;
3267 switch (fip->list->visibility)
3268 {
3269 case VISIBILITY_PRIVATE:
3270 SET_TYPE_FIELD_PRIVATE (type, nfields);
3271 break;
3272
3273 case VISIBILITY_PROTECTED:
3274 SET_TYPE_FIELD_PROTECTED (type, nfields);
3275 break;
3276
3277 case VISIBILITY_IGNORE:
3278 SET_TYPE_FIELD_IGNORE (type, nfields);
3279 break;
3280
3281 case VISIBILITY_PUBLIC:
3282 break;
3283
3284 default:
3285 /* Unknown visibility. Complain and treat it as public. */
3286 {
3287 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3288 fip->list->visibility);
3289 }
3290 break;
3291 }
3292 fip->list = fip->list->next;
3293 }
3294 return 1;
3295 }
3296
3297
3298 /* Complain that the compiler has emitted more than one definition for the
3299 structure type TYPE. */
3300 static void
3301 complain_about_struct_wipeout (struct type *type)
3302 {
3303 char *name = "";
3304 char *kind = "";
3305
3306 if (TYPE_TAG_NAME (type))
3307 {
3308 name = TYPE_TAG_NAME (type);
3309 switch (TYPE_CODE (type))
3310 {
3311 case TYPE_CODE_STRUCT: kind = "struct "; break;
3312 case TYPE_CODE_UNION: kind = "union "; break;
3313 case TYPE_CODE_ENUM: kind = "enum "; break;
3314 default: kind = "";
3315 }
3316 }
3317 else if (TYPE_NAME (type))
3318 {
3319 name = TYPE_NAME (type);
3320 kind = "";
3321 }
3322 else
3323 {
3324 name = "<unknown>";
3325 kind = "";
3326 }
3327
3328 complaint (&symfile_complaints,
3329 _("struct/union type gets multiply defined: %s%s"), kind, name);
3330 }
3331
3332
3333 /* Read the description of a structure (or union type) and return an object
3334 describing the type.
3335
3336 PP points to a character pointer that points to the next unconsumed token
3337 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3338 *PP will point to "4a:1,0,32;;".
3339
3340 TYPE points to an incomplete type that needs to be filled in.
3341
3342 OBJFILE points to the current objfile from which the stabs information is
3343 being read. (Note that it is redundant in that TYPE also contains a pointer
3344 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3345 */
3346
3347 static struct type *
3348 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3349 struct objfile *objfile)
3350 {
3351 struct cleanup *back_to;
3352 struct field_info fi;
3353
3354 fi.list = NULL;
3355 fi.fnlist = NULL;
3356
3357 /* When describing struct/union/class types in stabs, G++ always drops
3358 all qualifications from the name. So if you've got:
3359 struct A { ... struct B { ... }; ... };
3360 then G++ will emit stabs for `struct A::B' that call it simply
3361 `struct B'. Obviously, if you've got a real top-level definition for
3362 `struct B', or other nested definitions, this is going to cause
3363 problems.
3364
3365 Obviously, GDB can't fix this by itself, but it can at least avoid
3366 scribbling on existing structure type objects when new definitions
3367 appear. */
3368 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3369 || TYPE_STUB (type)))
3370 {
3371 complain_about_struct_wipeout (type);
3372
3373 /* It's probably best to return the type unchanged. */
3374 return type;
3375 }
3376
3377 back_to = make_cleanup (null_cleanup, 0);
3378
3379 INIT_CPLUS_SPECIFIC (type);
3380 TYPE_CODE (type) = type_code;
3381 TYPE_STUB (type) = 0;
3382
3383 /* First comes the total size in bytes. */
3384
3385 {
3386 int nbits;
3387 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3388 if (nbits != 0)
3389 return error_type (pp, objfile);
3390 }
3391
3392 /* Now read the baseclasses, if any, read the regular C struct or C++
3393 class member fields, attach the fields to the type, read the C++
3394 member functions, attach them to the type, and then read any tilde
3395 field (baseclass specifier for the class holding the main vtable). */
3396
3397 if (!read_baseclasses (&fi, pp, type, objfile)
3398 || !read_struct_fields (&fi, pp, type, objfile)
3399 || !attach_fields_to_type (&fi, type, objfile)
3400 || !read_member_functions (&fi, pp, type, objfile)
3401 || !attach_fn_fields_to_type (&fi, type)
3402 || !read_tilde_fields (&fi, pp, type, objfile))
3403 {
3404 type = error_type (pp, objfile);
3405 }
3406
3407 do_cleanups (back_to);
3408 return (type);
3409 }
3410
3411 /* Read a definition of an array type,
3412 and create and return a suitable type object.
3413 Also creates a range type which represents the bounds of that
3414 array. */
3415
3416 static struct type *
3417 read_array_type (char **pp, struct type *type,
3418 struct objfile *objfile)
3419 {
3420 struct type *index_type, *element_type, *range_type;
3421 int lower, upper;
3422 int adjustable = 0;
3423 int nbits;
3424
3425 /* Format of an array type:
3426 "ar<index type>;lower;upper;<array_contents_type>".
3427 OS9000: "arlower,upper;<array_contents_type>".
3428
3429 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3430 for these, produce a type like float[][]. */
3431
3432 {
3433 index_type = read_type (pp, objfile);
3434 if (**pp != ';')
3435 /* Improper format of array type decl. */
3436 return error_type (pp, objfile);
3437 ++*pp;
3438 }
3439
3440 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3441 {
3442 (*pp)++;
3443 adjustable = 1;
3444 }
3445 lower = read_huge_number (pp, ';', &nbits, 0);
3446
3447 if (nbits != 0)
3448 return error_type (pp, objfile);
3449
3450 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3451 {
3452 (*pp)++;
3453 adjustable = 1;
3454 }
3455 upper = read_huge_number (pp, ';', &nbits, 0);
3456 if (nbits != 0)
3457 return error_type (pp, objfile);
3458
3459 element_type = read_type (pp, objfile);
3460
3461 if (adjustable)
3462 {
3463 lower = 0;
3464 upper = -1;
3465 }
3466
3467 range_type =
3468 create_range_type ((struct type *) NULL, index_type, lower, upper);
3469 type = create_array_type (type, element_type, range_type);
3470
3471 return type;
3472 }
3473
3474
3475 /* Read a definition of an enumeration type,
3476 and create and return a suitable type object.
3477 Also defines the symbols that represent the values of the type. */
3478
3479 static struct type *
3480 read_enum_type (char **pp, struct type *type,
3481 struct objfile *objfile)
3482 {
3483 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3484 char *p;
3485 char *name;
3486 long n;
3487 struct symbol *sym;
3488 int nsyms = 0;
3489 struct pending **symlist;
3490 struct pending *osyms, *syms;
3491 int o_nsyms;
3492 int nbits;
3493 int unsigned_enum = 1;
3494
3495 #if 0
3496 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3497 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3498 to do? For now, force all enum values to file scope. */
3499 if (within_function)
3500 symlist = &local_symbols;
3501 else
3502 #endif
3503 symlist = &file_symbols;
3504 osyms = *symlist;
3505 o_nsyms = osyms ? osyms->nsyms : 0;
3506
3507 /* The aix4 compiler emits an extra field before the enum members;
3508 my guess is it's a type of some sort. Just ignore it. */
3509 if (**pp == '-')
3510 {
3511 /* Skip over the type. */
3512 while (**pp != ':')
3513 (*pp)++;
3514
3515 /* Skip over the colon. */
3516 (*pp)++;
3517 }
3518
3519 /* Read the value-names and their values.
3520 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3521 A semicolon or comma instead of a NAME means the end. */
3522 while (**pp && **pp != ';' && **pp != ',')
3523 {
3524 STABS_CONTINUE (pp, objfile);
3525 p = *pp;
3526 while (*p != ':')
3527 p++;
3528 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3529 *pp = p + 1;
3530 n = read_huge_number (pp, ',', &nbits, 0);
3531 if (nbits != 0)
3532 return error_type (pp, objfile);
3533
3534 sym = (struct symbol *)
3535 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3536 memset (sym, 0, sizeof (struct symbol));
3537 SYMBOL_SET_LINKAGE_NAME (sym, name);
3538 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3539 SYMBOL_CLASS (sym) = LOC_CONST;
3540 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3541 SYMBOL_VALUE (sym) = n;
3542 if (n < 0)
3543 unsigned_enum = 0;
3544 add_symbol_to_list (sym, symlist);
3545 nsyms++;
3546 }
3547
3548 if (**pp == ';')
3549 (*pp)++; /* Skip the semicolon. */
3550
3551 /* Now fill in the fields of the type-structure. */
3552
3553 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3554 TYPE_CODE (type) = TYPE_CODE_ENUM;
3555 TYPE_STUB (type) = 0;
3556 if (unsigned_enum)
3557 TYPE_UNSIGNED (type) = 1;
3558 TYPE_NFIELDS (type) = nsyms;
3559 TYPE_FIELDS (type) = (struct field *)
3560 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3561 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3562
3563 /* Find the symbols for the values and put them into the type.
3564 The symbols can be found in the symlist that we put them on
3565 to cause them to be defined. osyms contains the old value
3566 of that symlist; everything up to there was defined by us. */
3567 /* Note that we preserve the order of the enum constants, so
3568 that in something like "enum {FOO, LAST_THING=FOO}" we print
3569 FOO, not LAST_THING. */
3570
3571 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3572 {
3573 int last = syms == osyms ? o_nsyms : 0;
3574 int j = syms->nsyms;
3575 for (; --j >= last; --n)
3576 {
3577 struct symbol *xsym = syms->symbol[j];
3578 SYMBOL_TYPE (xsym) = type;
3579 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3580 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3581 TYPE_FIELD_BITSIZE (type, n) = 0;
3582 }
3583 if (syms == osyms)
3584 break;
3585 }
3586
3587 return type;
3588 }
3589
3590 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3591 typedefs in every file (for int, long, etc):
3592
3593 type = b <signed> <width> <format type>; <offset>; <nbits>
3594 signed = u or s.
3595 optional format type = c or b for char or boolean.
3596 offset = offset from high order bit to start bit of type.
3597 width is # bytes in object of this type, nbits is # bits in type.
3598
3599 The width/offset stuff appears to be for small objects stored in
3600 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3601 FIXME. */
3602
3603 static struct type *
3604 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3605 {
3606 int type_bits;
3607 int nbits;
3608 int signed_type;
3609 enum type_code code = TYPE_CODE_INT;
3610
3611 switch (**pp)
3612 {
3613 case 's':
3614 signed_type = 1;
3615 break;
3616 case 'u':
3617 signed_type = 0;
3618 break;
3619 default:
3620 return error_type (pp, objfile);
3621 }
3622 (*pp)++;
3623
3624 /* For some odd reason, all forms of char put a c here. This is strange
3625 because no other type has this honor. We can safely ignore this because
3626 we actually determine 'char'acterness by the number of bits specified in
3627 the descriptor.
3628 Boolean forms, e.g Fortran logical*X, put a b here. */
3629
3630 if (**pp == 'c')
3631 (*pp)++;
3632 else if (**pp == 'b')
3633 {
3634 code = TYPE_CODE_BOOL;
3635 (*pp)++;
3636 }
3637
3638 /* The first number appears to be the number of bytes occupied
3639 by this type, except that unsigned short is 4 instead of 2.
3640 Since this information is redundant with the third number,
3641 we will ignore it. */
3642 read_huge_number (pp, ';', &nbits, 0);
3643 if (nbits != 0)
3644 return error_type (pp, objfile);
3645
3646 /* The second number is always 0, so ignore it too. */
3647 read_huge_number (pp, ';', &nbits, 0);
3648 if (nbits != 0)
3649 return error_type (pp, objfile);
3650
3651 /* The third number is the number of bits for this type. */
3652 type_bits = read_huge_number (pp, 0, &nbits, 0);
3653 if (nbits != 0)
3654 return error_type (pp, objfile);
3655 /* The type *should* end with a semicolon. If it are embedded
3656 in a larger type the semicolon may be the only way to know where
3657 the type ends. If this type is at the end of the stabstring we
3658 can deal with the omitted semicolon (but we don't have to like
3659 it). Don't bother to complain(), Sun's compiler omits the semicolon
3660 for "void". */
3661 if (**pp == ';')
3662 ++(*pp);
3663
3664 if (type_bits == 0)
3665 return init_type (TYPE_CODE_VOID, 1,
3666 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3667 objfile);
3668 else
3669 return init_type (code,
3670 type_bits / TARGET_CHAR_BIT,
3671 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3672 objfile);
3673 }
3674
3675 static struct type *
3676 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3677 {
3678 int nbits;
3679 int details;
3680 int nbytes;
3681 struct type *rettype;
3682
3683 /* The first number has more details about the type, for example
3684 FN_COMPLEX. */
3685 details = read_huge_number (pp, ';', &nbits, 0);
3686 if (nbits != 0)
3687 return error_type (pp, objfile);
3688
3689 /* The second number is the number of bytes occupied by this type */
3690 nbytes = read_huge_number (pp, ';', &nbits, 0);
3691 if (nbits != 0)
3692 return error_type (pp, objfile);
3693
3694 if (details == NF_COMPLEX || details == NF_COMPLEX16
3695 || details == NF_COMPLEX32)
3696 {
3697 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3698 TYPE_TARGET_TYPE (rettype)
3699 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3700 return rettype;
3701 }
3702
3703 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3704 }
3705
3706 /* Read a number from the string pointed to by *PP.
3707 The value of *PP is advanced over the number.
3708 If END is nonzero, the character that ends the
3709 number must match END, or an error happens;
3710 and that character is skipped if it does match.
3711 If END is zero, *PP is left pointing to that character.
3712
3713 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3714 the number is represented in an octal representation, assume that
3715 it is represented in a 2's complement representation with a size of
3716 TWOS_COMPLEMENT_BITS.
3717
3718 If the number fits in a long, set *BITS to 0 and return the value.
3719 If not, set *BITS to be the number of bits in the number and return 0.
3720
3721 If encounter garbage, set *BITS to -1 and return 0. */
3722
3723 static long
3724 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3725 {
3726 char *p = *pp;
3727 int sign = 1;
3728 int sign_bit = 0;
3729 long n = 0;
3730 int radix = 10;
3731 char overflow = 0;
3732 int nbits = 0;
3733 int c;
3734 long upper_limit;
3735 int twos_complement_representation = 0;
3736
3737 if (*p == '-')
3738 {
3739 sign = -1;
3740 p++;
3741 }
3742
3743 /* Leading zero means octal. GCC uses this to output values larger
3744 than an int (because that would be hard in decimal). */
3745 if (*p == '0')
3746 {
3747 radix = 8;
3748 p++;
3749 }
3750
3751 /* Skip extra zeros. */
3752 while (*p == '0')
3753 p++;
3754
3755 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3756 {
3757 /* Octal, possibly signed. Check if we have enough chars for a
3758 negative number. */
3759
3760 size_t len;
3761 char *p1 = p;
3762 while ((c = *p1) >= '0' && c < '8')
3763 p1++;
3764
3765 len = p1 - p;
3766 if (len > twos_complement_bits / 3
3767 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3768 {
3769 /* Ok, we have enough characters for a signed value, check
3770 for signness by testing if the sign bit is set. */
3771 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3772 c = *p - '0';
3773 if (c & (1 << sign_bit))
3774 {
3775 /* Definitely signed. */
3776 twos_complement_representation = 1;
3777 sign = -1;
3778 }
3779 }
3780 }
3781
3782 upper_limit = LONG_MAX / radix;
3783
3784 while ((c = *p++) >= '0' && c < ('0' + radix))
3785 {
3786 if (n <= upper_limit)
3787 {
3788 if (twos_complement_representation)
3789 {
3790 /* Octal, signed, twos complement representation. In
3791 this case, n is the corresponding absolute value. */
3792 if (n == 0)
3793 {
3794 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3795 n = -sn;
3796 }
3797 else
3798 {
3799 n *= radix;
3800 n -= c - '0';
3801 }
3802 }
3803 else
3804 {
3805 /* unsigned representation */
3806 n *= radix;
3807 n += c - '0'; /* FIXME this overflows anyway */
3808 }
3809 }
3810 else
3811 overflow = 1;
3812
3813 /* This depends on large values being output in octal, which is
3814 what GCC does. */
3815 if (radix == 8)
3816 {
3817 if (nbits == 0)
3818 {
3819 if (c == '0')
3820 /* Ignore leading zeroes. */
3821 ;
3822 else if (c == '1')
3823 nbits = 1;
3824 else if (c == '2' || c == '3')
3825 nbits = 2;
3826 else
3827 nbits = 3;
3828 }
3829 else
3830 nbits += 3;
3831 }
3832 }
3833 if (end)
3834 {
3835 if (c && c != end)
3836 {
3837 if (bits != NULL)
3838 *bits = -1;
3839 return 0;
3840 }
3841 }
3842 else
3843 --p;
3844
3845 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3846 {
3847 /* We were supposed to parse a number with maximum
3848 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3849 if (bits != NULL)
3850 *bits = -1;
3851 return 0;
3852 }
3853
3854 *pp = p;
3855 if (overflow)
3856 {
3857 if (nbits == 0)
3858 {
3859 /* Large decimal constants are an error (because it is hard to
3860 count how many bits are in them). */
3861 if (bits != NULL)
3862 *bits = -1;
3863 return 0;
3864 }
3865
3866 /* -0x7f is the same as 0x80. So deal with it by adding one to
3867 the number of bits. Two's complement represention octals
3868 can't have a '-' in front. */
3869 if (sign == -1 && !twos_complement_representation)
3870 ++nbits;
3871 if (bits)
3872 *bits = nbits;
3873 }
3874 else
3875 {
3876 if (bits)
3877 *bits = 0;
3878 return n * sign;
3879 }
3880 /* It's *BITS which has the interesting information. */
3881 return 0;
3882 }
3883
3884 static struct type *
3885 read_range_type (char **pp, int typenums[2], int type_size,
3886 struct objfile *objfile)
3887 {
3888 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3889 char *orig_pp = *pp;
3890 int rangenums[2];
3891 long n2, n3;
3892 int n2bits, n3bits;
3893 int self_subrange;
3894 struct type *result_type;
3895 struct type *index_type = NULL;
3896
3897 /* First comes a type we are a subrange of.
3898 In C it is usually 0, 1 or the type being defined. */
3899 if (read_type_number (pp, rangenums) != 0)
3900 return error_type (pp, objfile);
3901 self_subrange = (rangenums[0] == typenums[0] &&
3902 rangenums[1] == typenums[1]);
3903
3904 if (**pp == '=')
3905 {
3906 *pp = orig_pp;
3907 index_type = read_type (pp, objfile);
3908 }
3909
3910 /* A semicolon should now follow; skip it. */
3911 if (**pp == ';')
3912 (*pp)++;
3913
3914 /* The remaining two operands are usually lower and upper bounds
3915 of the range. But in some special cases they mean something else. */
3916 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3917 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3918
3919 if (n2bits == -1 || n3bits == -1)
3920 return error_type (pp, objfile);
3921
3922 if (index_type)
3923 goto handle_true_range;
3924
3925 /* If limits are huge, must be large integral type. */
3926 if (n2bits != 0 || n3bits != 0)
3927 {
3928 char got_signed = 0;
3929 char got_unsigned = 0;
3930 /* Number of bits in the type. */
3931 int nbits = 0;
3932
3933 /* If a type size attribute has been specified, the bounds of
3934 the range should fit in this size. If the lower bounds needs
3935 more bits than the upper bound, then the type is signed. */
3936 if (n2bits <= type_size && n3bits <= type_size)
3937 {
3938 if (n2bits == type_size && n2bits > n3bits)
3939 got_signed = 1;
3940 else
3941 got_unsigned = 1;
3942 nbits = type_size;
3943 }
3944 /* Range from 0 to <large number> is an unsigned large integral type. */
3945 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3946 {
3947 got_unsigned = 1;
3948 nbits = n3bits;
3949 }
3950 /* Range from <large number> to <large number>-1 is a large signed
3951 integral type. Take care of the case where <large number> doesn't
3952 fit in a long but <large number>-1 does. */
3953 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3954 || (n2bits != 0 && n3bits == 0
3955 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3956 && n3 == LONG_MAX))
3957 {
3958 got_signed = 1;
3959 nbits = n2bits;
3960 }
3961
3962 if (got_signed || got_unsigned)
3963 {
3964 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3965 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3966 objfile);
3967 }
3968 else
3969 return error_type (pp, objfile);
3970 }
3971
3972 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3973 if (self_subrange && n2 == 0 && n3 == 0)
3974 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3975
3976 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3977 is the width in bytes.
3978
3979 Fortran programs appear to use this for complex types also. To
3980 distinguish between floats and complex, g77 (and others?) seem
3981 to use self-subranges for the complexes, and subranges of int for
3982 the floats.
3983
3984 Also note that for complexes, g77 sets n2 to the size of one of
3985 the member floats, not the whole complex beast. My guess is that
3986 this was to work well with pre-COMPLEX versions of gdb. */
3987
3988 if (n3 == 0 && n2 > 0)
3989 {
3990 struct type *float_type
3991 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3992
3993 if (self_subrange)
3994 {
3995 struct type *complex_type =
3996 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3997 TYPE_TARGET_TYPE (complex_type) = float_type;
3998 return complex_type;
3999 }
4000 else
4001 return float_type;
4002 }
4003
4004 /* If the upper bound is -1, it must really be an unsigned integral. */
4005
4006 else if (n2 == 0 && n3 == -1)
4007 {
4008 int bits = type_size;
4009 if (bits <= 0)
4010 {
4011 /* We don't know its size. It is unsigned int or unsigned
4012 long. GCC 2.3.3 uses this for long long too, but that is
4013 just a GDB 3.5 compatibility hack. */
4014 bits = gdbarch_int_bit (gdbarch);
4015 }
4016
4017 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4018 TYPE_FLAG_UNSIGNED, NULL, objfile);
4019 }
4020
4021 /* Special case: char is defined (Who knows why) as a subrange of
4022 itself with range 0-127. */
4023 else if (self_subrange && n2 == 0 && n3 == 127)
4024 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4025
4026 /* We used to do this only for subrange of self or subrange of int. */
4027 else if (n2 == 0)
4028 {
4029 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4030 "unsigned long", and we already checked for that,
4031 so don't need to test for it here. */
4032
4033 if (n3 < 0)
4034 /* n3 actually gives the size. */
4035 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4036 NULL, objfile);
4037
4038 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4039 unsigned n-byte integer. But do require n to be a power of
4040 two; we don't want 3- and 5-byte integers flying around. */
4041 {
4042 int bytes;
4043 unsigned long bits;
4044
4045 bits = n3;
4046 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4047 bits >>= 8;
4048 if (bits == 0
4049 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4050 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4051 objfile);
4052 }
4053 }
4054 /* I think this is for Convex "long long". Since I don't know whether
4055 Convex sets self_subrange, I also accept that particular size regardless
4056 of self_subrange. */
4057 else if (n3 == 0 && n2 < 0
4058 && (self_subrange
4059 || n2 == -gdbarch_long_long_bit
4060 (gdbarch) / TARGET_CHAR_BIT))
4061 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4062 else if (n2 == -n3 - 1)
4063 {
4064 if (n3 == 0x7f)
4065 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4066 if (n3 == 0x7fff)
4067 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4068 if (n3 == 0x7fffffff)
4069 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4070 }
4071
4072 /* We have a real range type on our hands. Allocate space and
4073 return a real pointer. */
4074 handle_true_range:
4075
4076 if (self_subrange)
4077 index_type = objfile_type (objfile)->builtin_int;
4078 else
4079 index_type = *dbx_lookup_type (rangenums, objfile);
4080 if (index_type == NULL)
4081 {
4082 /* Does this actually ever happen? Is that why we are worrying
4083 about dealing with it rather than just calling error_type? */
4084
4085 complaint (&symfile_complaints,
4086 _("base type %d of range type is not defined"), rangenums[1]);
4087
4088 index_type = objfile_type (objfile)->builtin_int;
4089 }
4090
4091 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4092 return (result_type);
4093 }
4094
4095 /* Read in an argument list. This is a list of types, separated by commas
4096 and terminated with END. Return the list of types read in, or NULL
4097 if there is an error. */
4098
4099 static struct field *
4100 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4101 int *varargsp)
4102 {
4103 /* FIXME! Remove this arbitrary limit! */
4104 struct type *types[1024]; /* allow for fns of 1023 parameters */
4105 int n = 0, i;
4106 struct field *rval;
4107
4108 while (**pp != end)
4109 {
4110 if (**pp != ',')
4111 /* Invalid argument list: no ','. */
4112 return NULL;
4113 (*pp)++;
4114 STABS_CONTINUE (pp, objfile);
4115 types[n++] = read_type (pp, objfile);
4116 }
4117 (*pp)++; /* get past `end' (the ':' character) */
4118
4119 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4120 *varargsp = 1;
4121 else
4122 {
4123 n--;
4124 *varargsp = 0;
4125 }
4126
4127 rval = (struct field *) xmalloc (n * sizeof (struct field));
4128 memset (rval, 0, n * sizeof (struct field));
4129 for (i = 0; i < n; i++)
4130 rval[i].type = types[i];
4131 *nargsp = n;
4132 return rval;
4133 }
4134 \f
4135 /* Common block handling. */
4136
4137 /* List of symbols declared since the last BCOMM. This list is a tail
4138 of local_symbols. When ECOMM is seen, the symbols on the list
4139 are noted so their proper addresses can be filled in later,
4140 using the common block base address gotten from the assembler
4141 stabs. */
4142
4143 static struct pending *common_block;
4144 static int common_block_i;
4145
4146 /* Name of the current common block. We get it from the BCOMM instead of the
4147 ECOMM to match IBM documentation (even though IBM puts the name both places
4148 like everyone else). */
4149 static char *common_block_name;
4150
4151 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4152 to remain after this function returns. */
4153
4154 void
4155 common_block_start (char *name, struct objfile *objfile)
4156 {
4157 if (common_block_name != NULL)
4158 {
4159 complaint (&symfile_complaints,
4160 _("Invalid symbol data: common block within common block"));
4161 }
4162 common_block = local_symbols;
4163 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4164 common_block_name = obsavestring (name, strlen (name),
4165 &objfile->objfile_obstack);
4166 }
4167
4168 /* Process a N_ECOMM symbol. */
4169
4170 void
4171 common_block_end (struct objfile *objfile)
4172 {
4173 /* Symbols declared since the BCOMM are to have the common block
4174 start address added in when we know it. common_block and
4175 common_block_i point to the first symbol after the BCOMM in
4176 the local_symbols list; copy the list and hang it off the
4177 symbol for the common block name for later fixup. */
4178 int i;
4179 struct symbol *sym;
4180 struct pending *new = 0;
4181 struct pending *next;
4182 int j;
4183
4184 if (common_block_name == NULL)
4185 {
4186 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4187 return;
4188 }
4189
4190 sym = (struct symbol *)
4191 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4192 memset (sym, 0, sizeof (struct symbol));
4193 /* Note: common_block_name already saved on objfile_obstack */
4194 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4195 SYMBOL_CLASS (sym) = LOC_BLOCK;
4196
4197 /* Now we copy all the symbols which have been defined since the BCOMM. */
4198
4199 /* Copy all the struct pendings before common_block. */
4200 for (next = local_symbols;
4201 next != NULL && next != common_block;
4202 next = next->next)
4203 {
4204 for (j = 0; j < next->nsyms; j++)
4205 add_symbol_to_list (next->symbol[j], &new);
4206 }
4207
4208 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4209 NULL, it means copy all the local symbols (which we already did
4210 above). */
4211
4212 if (common_block != NULL)
4213 for (j = common_block_i; j < common_block->nsyms; j++)
4214 add_symbol_to_list (common_block->symbol[j], &new);
4215
4216 SYMBOL_TYPE (sym) = (struct type *) new;
4217
4218 /* Should we be putting local_symbols back to what it was?
4219 Does it matter? */
4220
4221 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4222 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4223 global_sym_chain[i] = sym;
4224 common_block_name = NULL;
4225 }
4226
4227 /* Add a common block's start address to the offset of each symbol
4228 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4229 the common block name). */
4230
4231 static void
4232 fix_common_block (struct symbol *sym, int valu)
4233 {
4234 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4235 for (; next; next = next->next)
4236 {
4237 int j;
4238 for (j = next->nsyms - 1; j >= 0; j--)
4239 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4240 }
4241 }
4242 \f
4243
4244
4245 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4246 See add_undefined_type for more details. */
4247
4248 static void
4249 add_undefined_type_noname (struct type *type, int typenums[2])
4250 {
4251 struct nat nat;
4252
4253 nat.typenums[0] = typenums [0];
4254 nat.typenums[1] = typenums [1];
4255 nat.type = type;
4256
4257 if (noname_undefs_length == noname_undefs_allocated)
4258 {
4259 noname_undefs_allocated *= 2;
4260 noname_undefs = (struct nat *)
4261 xrealloc ((char *) noname_undefs,
4262 noname_undefs_allocated * sizeof (struct nat));
4263 }
4264 noname_undefs[noname_undefs_length++] = nat;
4265 }
4266
4267 /* Add TYPE to the UNDEF_TYPES vector.
4268 See add_undefined_type for more details. */
4269
4270 static void
4271 add_undefined_type_1 (struct type *type)
4272 {
4273 if (undef_types_length == undef_types_allocated)
4274 {
4275 undef_types_allocated *= 2;
4276 undef_types = (struct type **)
4277 xrealloc ((char *) undef_types,
4278 undef_types_allocated * sizeof (struct type *));
4279 }
4280 undef_types[undef_types_length++] = type;
4281 }
4282
4283 /* What about types defined as forward references inside of a small lexical
4284 scope? */
4285 /* Add a type to the list of undefined types to be checked through
4286 once this file has been read in.
4287
4288 In practice, we actually maintain two such lists: The first list
4289 (UNDEF_TYPES) is used for types whose name has been provided, and
4290 concerns forward references (eg 'xs' or 'xu' forward references);
4291 the second list (NONAME_UNDEFS) is used for types whose name is
4292 unknown at creation time, because they were referenced through
4293 their type number before the actual type was declared.
4294 This function actually adds the given type to the proper list. */
4295
4296 static void
4297 add_undefined_type (struct type *type, int typenums[2])
4298 {
4299 if (TYPE_TAG_NAME (type) == NULL)
4300 add_undefined_type_noname (type, typenums);
4301 else
4302 add_undefined_type_1 (type);
4303 }
4304
4305 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4306
4307 static void
4308 cleanup_undefined_types_noname (struct objfile *objfile)
4309 {
4310 int i;
4311
4312 for (i = 0; i < noname_undefs_length; i++)
4313 {
4314 struct nat nat = noname_undefs[i];
4315 struct type **type;
4316
4317 type = dbx_lookup_type (nat.typenums, objfile);
4318 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4319 {
4320 /* The instance flags of the undefined type are still unset,
4321 and needs to be copied over from the reference type.
4322 Since replace_type expects them to be identical, we need
4323 to set these flags manually before hand. */
4324 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4325 replace_type (nat.type, *type);
4326 }
4327 }
4328
4329 noname_undefs_length = 0;
4330 }
4331
4332 /* Go through each undefined type, see if it's still undefined, and fix it
4333 up if possible. We have two kinds of undefined types:
4334
4335 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4336 Fix: update array length using the element bounds
4337 and the target type's length.
4338 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4339 yet defined at the time a pointer to it was made.
4340 Fix: Do a full lookup on the struct/union tag. */
4341
4342 static void
4343 cleanup_undefined_types_1 (void)
4344 {
4345 struct type **type;
4346
4347 /* Iterate over every undefined type, and look for a symbol whose type
4348 matches our undefined type. The symbol matches if:
4349 1. It is a typedef in the STRUCT domain;
4350 2. It has the same name, and same type code;
4351 3. The instance flags are identical.
4352
4353 It is important to check the instance flags, because we have seen
4354 examples where the debug info contained definitions such as:
4355
4356 "foo_t:t30=B31=xefoo_t:"
4357
4358 In this case, we have created an undefined type named "foo_t" whose
4359 instance flags is null (when processing "xefoo_t"), and then created
4360 another type with the same name, but with different instance flags
4361 ('B' means volatile). I think that the definition above is wrong,
4362 since the same type cannot be volatile and non-volatile at the same
4363 time, but we need to be able to cope with it when it happens. The
4364 approach taken here is to treat these two types as different. */
4365
4366 for (type = undef_types; type < undef_types + undef_types_length; type++)
4367 {
4368 switch (TYPE_CODE (*type))
4369 {
4370
4371 case TYPE_CODE_STRUCT:
4372 case TYPE_CODE_UNION:
4373 case TYPE_CODE_ENUM:
4374 {
4375 /* Check if it has been defined since. Need to do this here
4376 as well as in check_typedef to deal with the (legitimate in
4377 C though not C++) case of several types with the same name
4378 in different source files. */
4379 if (TYPE_STUB (*type))
4380 {
4381 struct pending *ppt;
4382 int i;
4383 /* Name of the type, without "struct" or "union" */
4384 char *typename = TYPE_TAG_NAME (*type);
4385
4386 if (typename == NULL)
4387 {
4388 complaint (&symfile_complaints, _("need a type name"));
4389 break;
4390 }
4391 for (ppt = file_symbols; ppt; ppt = ppt->next)
4392 {
4393 for (i = 0; i < ppt->nsyms; i++)
4394 {
4395 struct symbol *sym = ppt->symbol[i];
4396
4397 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4398 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4399 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4400 TYPE_CODE (*type))
4401 && (TYPE_INSTANCE_FLAGS (*type) ==
4402 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4403 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4404 typename) == 0)
4405 replace_type (*type, SYMBOL_TYPE (sym));
4406 }
4407 }
4408 }
4409 }
4410 break;
4411
4412 default:
4413 {
4414 complaint (&symfile_complaints,
4415 _("forward-referenced types left unresolved, "
4416 "type code %d."),
4417 TYPE_CODE (*type));
4418 }
4419 break;
4420 }
4421 }
4422
4423 undef_types_length = 0;
4424 }
4425
4426 /* Try to fix all the undefined types we ecountered while processing
4427 this unit. */
4428
4429 void
4430 cleanup_undefined_types (struct objfile *objfile)
4431 {
4432 cleanup_undefined_types_1 ();
4433 cleanup_undefined_types_noname (objfile);
4434 }
4435
4436 /* Scan through all of the global symbols defined in the object file,
4437 assigning values to the debugging symbols that need to be assigned
4438 to. Get these symbols from the minimal symbol table. */
4439
4440 void
4441 scan_file_globals (struct objfile *objfile)
4442 {
4443 int hash;
4444 struct minimal_symbol *msymbol;
4445 struct symbol *sym, *prev;
4446 struct objfile *resolve_objfile;
4447
4448 /* SVR4 based linkers copy referenced global symbols from shared
4449 libraries to the main executable.
4450 If we are scanning the symbols for a shared library, try to resolve
4451 them from the minimal symbols of the main executable first. */
4452
4453 if (symfile_objfile && objfile != symfile_objfile)
4454 resolve_objfile = symfile_objfile;
4455 else
4456 resolve_objfile = objfile;
4457
4458 while (1)
4459 {
4460 /* Avoid expensive loop through all minimal symbols if there are
4461 no unresolved symbols. */
4462 for (hash = 0; hash < HASHSIZE; hash++)
4463 {
4464 if (global_sym_chain[hash])
4465 break;
4466 }
4467 if (hash >= HASHSIZE)
4468 return;
4469
4470 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4471 {
4472 QUIT;
4473
4474 /* Skip static symbols. */
4475 switch (MSYMBOL_TYPE (msymbol))
4476 {
4477 case mst_file_text:
4478 case mst_file_data:
4479 case mst_file_bss:
4480 continue;
4481 default:
4482 break;
4483 }
4484
4485 prev = NULL;
4486
4487 /* Get the hash index and check all the symbols
4488 under that hash index. */
4489
4490 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4491
4492 for (sym = global_sym_chain[hash]; sym;)
4493 {
4494 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4495 SYMBOL_LINKAGE_NAME (sym)) == 0)
4496 {
4497 /* Splice this symbol out of the hash chain and
4498 assign the value we have to it. */
4499 if (prev)
4500 {
4501 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4502 }
4503 else
4504 {
4505 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4506 }
4507
4508 /* Check to see whether we need to fix up a common block. */
4509 /* Note: this code might be executed several times for
4510 the same symbol if there are multiple references. */
4511 if (sym)
4512 {
4513 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4514 {
4515 fix_common_block (sym,
4516 SYMBOL_VALUE_ADDRESS (msymbol));
4517 }
4518 else
4519 {
4520 SYMBOL_VALUE_ADDRESS (sym)
4521 = SYMBOL_VALUE_ADDRESS (msymbol);
4522 }
4523 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4524 }
4525
4526 if (prev)
4527 {
4528 sym = SYMBOL_VALUE_CHAIN (prev);
4529 }
4530 else
4531 {
4532 sym = global_sym_chain[hash];
4533 }
4534 }
4535 else
4536 {
4537 prev = sym;
4538 sym = SYMBOL_VALUE_CHAIN (sym);
4539 }
4540 }
4541 }
4542 if (resolve_objfile == objfile)
4543 break;
4544 resolve_objfile = objfile;
4545 }
4546
4547 /* Change the storage class of any remaining unresolved globals to
4548 LOC_UNRESOLVED and remove them from the chain. */
4549 for (hash = 0; hash < HASHSIZE; hash++)
4550 {
4551 sym = global_sym_chain[hash];
4552 while (sym)
4553 {
4554 prev = sym;
4555 sym = SYMBOL_VALUE_CHAIN (sym);
4556
4557 /* Change the symbol address from the misleading chain value
4558 to address zero. */
4559 SYMBOL_VALUE_ADDRESS (prev) = 0;
4560
4561 /* Complain about unresolved common block symbols. */
4562 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4563 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4564 else
4565 complaint (&symfile_complaints,
4566 _("%s: common block `%s' from global_sym_chain unresolved"),
4567 objfile->name, SYMBOL_PRINT_NAME (prev));
4568 }
4569 }
4570 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4571 }
4572
4573 /* Initialize anything that needs initializing when starting to read
4574 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4575 to a psymtab. */
4576
4577 void
4578 stabsread_init (void)
4579 {
4580 }
4581
4582 /* Initialize anything that needs initializing when a completely new
4583 symbol file is specified (not just adding some symbols from another
4584 file, e.g. a shared library). */
4585
4586 void
4587 stabsread_new_init (void)
4588 {
4589 /* Empty the hash table of global syms looking for values. */
4590 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4591 }
4592
4593 /* Initialize anything that needs initializing at the same time as
4594 start_symtab() is called. */
4595
4596 void
4597 start_stabs (void)
4598 {
4599 global_stabs = NULL; /* AIX COFF */
4600 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4601 n_this_object_header_files = 1;
4602 type_vector_length = 0;
4603 type_vector = (struct type **) 0;
4604
4605 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4606 common_block_name = NULL;
4607 }
4608
4609 /* Call after end_symtab() */
4610
4611 void
4612 end_stabs (void)
4613 {
4614 if (type_vector)
4615 {
4616 xfree (type_vector);
4617 }
4618 type_vector = 0;
4619 type_vector_length = 0;
4620 previous_stab_code = 0;
4621 }
4622
4623 void
4624 finish_global_stabs (struct objfile *objfile)
4625 {
4626 if (global_stabs)
4627 {
4628 patch_block_stabs (global_symbols, global_stabs, objfile);
4629 xfree (global_stabs);
4630 global_stabs = NULL;
4631 }
4632 }
4633
4634 /* Find the end of the name, delimited by a ':', but don't match
4635 ObjC symbols which look like -[Foo bar::]:bla. */
4636 static char *
4637 find_name_end (char *name)
4638 {
4639 char *s = name;
4640 if (s[0] == '-' || *s == '+')
4641 {
4642 /* Must be an ObjC method symbol. */
4643 if (s[1] != '[')
4644 {
4645 error (_("invalid symbol name \"%s\""), name);
4646 }
4647 s = strchr (s, ']');
4648 if (s == NULL)
4649 {
4650 error (_("invalid symbol name \"%s\""), name);
4651 }
4652 return strchr (s, ':');
4653 }
4654 else
4655 {
4656 return strchr (s, ':');
4657 }
4658 }
4659
4660 /* Initializer for this module */
4661
4662 void
4663 _initialize_stabsread (void)
4664 {
4665 rs6000_builtin_type_data = register_objfile_data ();
4666
4667 undef_types_allocated = 20;
4668 undef_types_length = 0;
4669 undef_types = (struct type **)
4670 xmalloc (undef_types_allocated * sizeof (struct type *));
4671
4672 noname_undefs_allocated = 20;
4673 noname_undefs_length = 0;
4674 noname_undefs = (struct nat *)
4675 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4676 }
This page took 0.166049 seconds and 4 git commands to generate.