Thu Apr 22 14:50:05 1993 Jim Kingdon (kingdon@cygnus.com)
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 /* Ask stabsread.h to define the vars it normally declares `extern'. */
40 #define EXTERN /**/
41 #include "stabsread.h" /* Our own declarations */
42 #undef EXTERN
43
44 /* The routines that read and process a complete stabs for a C struct or
45 C++ class pass lists of data member fields and lists of member function
46 fields in an instance of a field_info structure, as defined below.
47 This is part of some reorganization of low level C++ support and is
48 expected to eventually go away... (FIXME) */
49
50 struct field_info
51 {
52 struct nextfield
53 {
54 struct nextfield *next;
55 int visibility;
56 struct field field;
57 } *list;
58 struct next_fnfieldlist
59 {
60 struct next_fnfieldlist *next;
61 struct fn_fieldlist fn_fieldlist;
62 } *fnlist;
63 };
64
65 static struct type *
66 dbx_alloc_type PARAMS ((int [2], struct objfile *));
67
68 static void
69 read_huge_number PARAMS ((char **, int, long *, int *));
70
71 static void
72 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
73 struct objfile *));
74
75 static void
76 fix_common_block PARAMS ((struct symbol *, int));
77
78 static struct type *
79 read_range_type PARAMS ((char **, int [2], struct objfile *));
80
81 static struct type *
82 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
83
84 static struct type *
85 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
89
90 static struct type *
91 rs6000_builtin_type PARAMS ((int));
92
93 static int
94 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
95 struct objfile *));
96
97 static int
98 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
99 struct objfile *));
100
101 static int
102 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
103 struct objfile *));
104
105 static int
106 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
107 struct objfile *));
108
109 static int
110 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
111
112 static int
113 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
114 struct objfile *));
115
116 static struct type *
117 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
118
119 static struct type *
120 read_array_type PARAMS ((char **, struct type *, struct objfile *));
121
122 static struct type **
123 read_args PARAMS ((char **, int, struct objfile *));
124
125 static void
126 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
127 struct objfile *));
128
129 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
130 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
131
132 /* Define this as 1 if a pcc declaration of a char or short argument
133 gives the correct address. Otherwise assume pcc gives the
134 address of the corresponding int, which is not the same on a
135 big-endian machine. */
136
137 #ifndef BELIEVE_PCC_PROMOTION
138 #define BELIEVE_PCC_PROMOTION 0
139 #endif
140
141 /* During some calls to read_type (and thus to read_range_type), this
142 contains the name of the type being defined. Range types are only
143 used in C as basic types. We use the name to distinguish the otherwise
144 identical basic types "int" and "long" and their unsigned versions.
145 FIXME, this should disappear with better type management. */
146
147 static char *long_kludge_name;
148
149 #if 0
150 struct complaint dbx_class_complaint =
151 {
152 "encountered DBX-style class variable debugging information.\n\
153 You seem to have compiled your program with \
154 \"g++ -g0\" instead of \"g++ -g\".\n\
155 Therefore GDB will not know about your class variables", 0, 0
156 };
157 #endif
158
159 struct complaint invalid_cpp_abbrev_complaint =
160 {"invalid C++ abbreviation `%s'", 0, 0};
161
162 struct complaint invalid_cpp_type_complaint =
163 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
164
165 struct complaint member_fn_complaint =
166 {"member function type missing, got '%c'", 0, 0};
167
168 struct complaint const_vol_complaint =
169 {"const/volatile indicator missing, got '%c'", 0, 0};
170
171 struct complaint error_type_complaint =
172 {"debug info mismatch between compiler and debugger", 0, 0};
173
174 struct complaint invalid_member_complaint =
175 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
176
177 struct complaint range_type_base_complaint =
178 {"base type %d of range type is not defined", 0, 0};
179
180 struct complaint reg_value_complaint =
181 {"register number too large in symbol %s", 0, 0};
182
183 struct complaint vtbl_notfound_complaint =
184 {"virtual function table pointer not found when defining class `%s'", 0, 0};
185
186 struct complaint unrecognized_cplus_name_complaint =
187 {"Unknown C++ symbol name `%s'", 0, 0};
188
189 struct complaint rs6000_builtin_complaint =
190 {"Unknown builtin type %d", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
205 } while (0)
206
207 \f
208 int
209 hashname (name)
210 char *name;
211 {
212 register char *p = name;
213 register int total = p[0];
214 register int c;
215
216 c = p[1];
217 total += c << 2;
218 if (c)
219 {
220 c = p[2];
221 total += c << 4;
222 if (c)
223 {
224 total += p[3] << 6;
225 }
226 }
227
228 /* Ensure result is positive. */
229 if (total < 0)
230 {
231 total += (1000 << 6);
232 }
233 return (total % HASHSIZE);
234 }
235
236 \f
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
260 filenum, index, symnum);
261
262 if (filenum == 0)
263 {
264 if (index < 0)
265 {
266 /* Caller wants address of address of type. We think
267 that negative (rs6k builtin) types will never appear as
268 "lvalues", (nor should they), so we stuff the real type
269 pointer into a temp, and return its address. If referenced,
270 this will do the right thing. */
271 static struct type *temp_type;
272
273 temp_type = rs6000_builtin_type(index);
274 return &temp_type;
275 }
276
277 /* Type is defined outside of header files.
278 Find it in this object file's type vector. */
279 if (index >= type_vector_length)
280 {
281 old_len = type_vector_length;
282 if (old_len == 0)
283 {
284 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
285 type_vector = (struct type **)
286 malloc (type_vector_length * sizeof (struct type *));
287 }
288 while (index >= type_vector_length)
289 {
290 type_vector_length *= 2;
291 }
292 type_vector = (struct type **)
293 xrealloc ((char *) type_vector,
294 (type_vector_length * sizeof (struct type *)));
295 memset (&type_vector[old_len], 0,
296 (type_vector_length - old_len) * sizeof (struct type *));
297 }
298 return (&type_vector[index]);
299 }
300 else
301 {
302 real_filenum = this_object_header_files[filenum];
303
304 if (real_filenum >= n_header_files)
305 {
306 abort ();
307 }
308
309 f = &header_files[real_filenum];
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (typenums, objfile)
335 int typenums[2];
336 struct objfile *objfile;
337 {
338 register struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* for all the stabs in a given stab vector, build appropriate types
359 and fix their symbols in given symbol vector. */
360
361 static void
362 patch_block_stabs (symbols, stabs, objfile)
363 struct pending *symbols;
364 struct pending_stabs *stabs;
365 struct objfile *objfile;
366 {
367 int ii;
368 char *name;
369 char *pp;
370 struct symbol *sym;
371
372 if (stabs)
373 {
374
375 /* for all the stab entries, find their corresponding symbols and
376 patch their types! */
377
378 for (ii = 0; ii < stabs->count; ++ii)
379 {
380 name = stabs->stab[ii];
381 pp = (char*) strchr (name, ':');
382 sym = find_symbol_in_list (symbols, name, pp-name);
383 if (!sym)
384 {
385 /* On xcoff, if a global is defined and never referenced,
386 ld will remove it from the executable. There is then
387 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
388 sym = (struct symbol *)
389 obstack_alloc (&objfile->symbol_obstack,
390 sizeof (struct symbol));
391
392 memset (sym, 0, sizeof (struct symbol));
393 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
394 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
395 SYMBOL_NAME (sym) =
396 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 /* I don't think the linker does this with functions,
401 so as far as I know this is never executed.
402 But it doesn't hurt to check. */
403 SYMBOL_TYPE (sym) =
404 lookup_function_type (read_type (&pp, objfile));
405 }
406 else
407 {
408 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
409 }
410 add_symbol_to_list (sym, &global_symbols);
411 }
412 else
413 {
414 pp += 2;
415 if (*(pp-1) == 'F' || *(pp-1) == 'f')
416 {
417 SYMBOL_TYPE (sym) =
418 lookup_function_type (read_type (&pp, objfile));
419 }
420 else
421 {
422 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
423 }
424 }
425 }
426 }
427 }
428
429 \f
430 /* Read a number by which a type is referred to in dbx data,
431 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
432 Just a single number N is equivalent to (0,N).
433 Return the two numbers by storing them in the vector TYPENUMS.
434 TYPENUMS will then be used as an argument to dbx_lookup_type. */
435
436 void
437 read_type_number (pp, typenums)
438 register char **pp;
439 register int *typenums;
440 {
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_number (pp, ',');
445 typenums[1] = read_number (pp, ')');
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_number (pp, 0);
451 }
452 }
453
454 \f
455 /* To handle GNU C++ typename abbreviation, we need to be able to
456 fill in a type's name as soon as space for that type is allocated.
457 `type_synonym_name' is the name of the type being allocated.
458 It is cleared as soon as it is used (lest all allocated types
459 get this name). */
460
461 static char *type_synonym_name;
462
463 /* ARGSUSED */
464 struct symbol *
465 define_symbol (valu, string, desc, type, objfile)
466 unsigned int valu;
467 char *string;
468 int desc;
469 int type;
470 struct objfile *objfile;
471 {
472 register struct symbol *sym;
473 char *p = (char *) strchr (string, ':');
474 int deftype;
475 int synonym = 0;
476 register int i;
477 struct type *temptype;
478
479 /* We would like to eliminate nameless symbols, but keep their types.
480 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
481 to type 2, but, should not create a symbol to address that type. Since
482 the symbol will be nameless, there is no way any user can refer to it. */
483
484 int nameless;
485
486 /* Ignore syms with empty names. */
487 if (string[0] == 0)
488 return 0;
489
490 /* Ignore old-style symbols from cc -go */
491 if (p == 0)
492 return 0;
493
494 /* If a nameless stab entry, all we need is the type, not the symbol.
495 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
496 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
497
498 sym = (struct symbol *)
499 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
500 memset (sym, 0, sizeof (struct symbol));
501
502 if (processing_gcc_compilation)
503 {
504 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
505 number of bytes occupied by a type or object, which we ignore. */
506 SYMBOL_LINE(sym) = desc;
507 }
508 else
509 {
510 SYMBOL_LINE(sym) = 0; /* unknown */
511 }
512
513 if (string[0] == CPLUS_MARKER)
514 {
515 /* Special GNU C++ names. */
516 switch (string[1])
517 {
518 case 't':
519 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
520 &objfile -> symbol_obstack);
521 break;
522
523 case 'v': /* $vtbl_ptr_type */
524 /* Was: SYMBOL_NAME (sym) = "vptr"; */
525 goto normal;
526
527 case 'e':
528 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
529 &objfile -> symbol_obstack);
530 break;
531
532 case '_':
533 /* This was an anonymous type that was never fixed up. */
534 goto normal;
535
536 default:
537 complain (unrecognized_cplus_name_complaint, string);
538 goto normal; /* Do *something* with it */
539 }
540 }
541 else
542 {
543 normal:
544 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
545 SYMBOL_NAME (sym) = (char *)
546 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
547 /* Open-coded bcopy--saves function call time. */
548 /* FIXME: Does it really? Try replacing with simple strcpy and
549 try it on an executable with a large symbol table. */
550 {
551 register char *p1 = string;
552 register char *p2 = SYMBOL_NAME (sym);
553 while (p1 != p)
554 {
555 *p2++ = *p1++;
556 }
557 *p2++ = '\0';
558 }
559
560 /* If this symbol is from a C++ compilation, then attempt to cache the
561 demangled form for future reference. This is a typical time versus
562 space tradeoff, that was decided in favor of time because it sped up
563 C++ symbol lookups by a factor of about 20. */
564
565 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
566 }
567 p++;
568
569 /* Determine the type of name being defined. */
570 /* The Acorn RISC machine's compiler can put out locals that don't
571 start with "234=" or "(3,4)=", so assume anything other than the
572 deftypes we know how to handle is a local. */
573 if (!strchr ("cfFGpPrStTvVXCR", *p))
574 deftype = 'l';
575 else
576 deftype = *p++;
577
578 /* c is a special case, not followed by a type-number.
579 SYMBOL:c=iVALUE for an integer constant symbol.
580 SYMBOL:c=rVALUE for a floating constant symbol.
581 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
582 e.g. "b:c=e6,0" for "const b = blob1"
583 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
584 if (deftype == 'c')
585 {
586 if (*p++ != '=')
587 error ("Invalid symbol data at symtab pos %d.", symnum);
588 switch (*p++)
589 {
590 case 'r':
591 {
592 double d = atof (p);
593 char *dbl_valu;
594
595 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
596 FT_DBL_PREC_FLOAT);
597 dbl_valu = (char *)
598 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
599 memcpy (dbl_valu, &d, sizeof (double));
600 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
601 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
602 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
603 }
604 break;
605 case 'i':
606 {
607 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
608 FT_INTEGER);
609 SYMBOL_VALUE (sym) = atoi (p);
610 SYMBOL_CLASS (sym) = LOC_CONST;
611 }
612 break;
613 case 'e':
614 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
615 e.g. "b:c=e6,0" for "const b = blob1"
616 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
617 {
618 int typenums[2];
619
620 read_type_number (&p, typenums);
621 if (*p++ != ',')
622 error ("Invalid symbol data: no comma in enum const symbol");
623
624 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
625 SYMBOL_VALUE (sym) = atoi (p);
626 SYMBOL_CLASS (sym) = LOC_CONST;
627 }
628 break;
629 default:
630 error ("Invalid symbol data at symtab pos %d.", symnum);
631 }
632 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
633 add_symbol_to_list (sym, &file_symbols);
634 return sym;
635 }
636
637 /* Now usually comes a number that says which data type,
638 and possibly more stuff to define the type
639 (all of which is handled by read_type) */
640
641 if (deftype == 'p' && *p == 'F')
642 /* pF is a two-letter code that means a function parameter in Fortran.
643 The type-number specifies the type of the return value.
644 Translate it into a pointer-to-function type. */
645 {
646 p++;
647 SYMBOL_TYPE (sym)
648 = lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
649 }
650 else
651 {
652 /* The symbol class letter is followed by a type (typically the
653 type of the symbol, or its return-type, or etc). Read it. */
654
655 synonym = *p == 't';
656
657 if (synonym)
658 {
659 p++;
660 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
661 strlen (SYMBOL_NAME (sym)),
662 &objfile -> symbol_obstack);
663 }
664
665 /* Here we save the name of the symbol for read_range_type, which
666 ends up reading in the basic types. In stabs, unfortunately there
667 is no distinction between "int" and "long" types except their
668 names. Until we work out a saner type policy (eliminating most
669 builtin types and using the names specified in the files), we
670 save away the name so that far away from here in read_range_type,
671 we can examine it to decide between "int" and "long". FIXME. */
672 long_kludge_name = SYMBOL_NAME (sym);
673
674 SYMBOL_TYPE (sym) = read_type (&p, objfile);
675 }
676
677 switch (deftype)
678 {
679 case 'C':
680 /* The name of a caught exception. */
681 SYMBOL_CLASS (sym) = LOC_LABEL;
682 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
683 SYMBOL_VALUE_ADDRESS (sym) = valu;
684 add_symbol_to_list (sym, &local_symbols);
685 break;
686
687 case 'f':
688 /* A static function definition. */
689 SYMBOL_CLASS (sym) = LOC_BLOCK;
690 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
691 add_symbol_to_list (sym, &file_symbols);
692 /* fall into process_function_types. */
693
694 process_function_types:
695 /* Function result types are described as the result type in stabs.
696 We need to convert this to the function-returning-type-X type
697 in GDB. E.g. "int" is converted to "function returning int". */
698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
699 {
700 #if 0
701 /* This code doesn't work -- it needs to realloc and can't. */
702 /* Attempt to set up to record a function prototype... */
703 struct type *new = alloc_type (objfile);
704
705 /* Generate a template for the type of this function. The
706 types of the arguments will be added as we read the symbol
707 table. */
708 *new = *lookup_function_type (SYMBOL_TYPE(sym));
709 SYMBOL_TYPE(sym) = new;
710 TYPE_OBJFILE (new) = objfile;
711 in_function_type = new;
712 #else
713 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
714 #endif
715 }
716 /* fall into process_prototype_types */
717
718 process_prototype_types:
719 /* Sun acc puts declared types of arguments here. We don't care
720 about their actual types (FIXME -- we should remember the whole
721 function prototype), but the list may define some new types
722 that we have to remember, so we must scan it now. */
723 while (*p == ';') {
724 p++;
725 read_type (&p, objfile);
726 }
727 break;
728
729 case 'F':
730 /* A global function definition. */
731 SYMBOL_CLASS (sym) = LOC_BLOCK;
732 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
733 add_symbol_to_list (sym, &global_symbols);
734 goto process_function_types;
735
736 case 'G':
737 /* For a class G (global) symbol, it appears that the
738 value is not correct. It is necessary to search for the
739 corresponding linker definition to find the value.
740 These definitions appear at the end of the namelist. */
741 i = hashname (SYMBOL_NAME (sym));
742 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
743 global_sym_chain[i] = sym;
744 SYMBOL_CLASS (sym) = LOC_STATIC;
745 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
746 add_symbol_to_list (sym, &global_symbols);
747 break;
748
749 /* This case is faked by a conditional above,
750 when there is no code letter in the dbx data.
751 Dbx data never actually contains 'l'. */
752 case 'l':
753 SYMBOL_CLASS (sym) = LOC_LOCAL;
754 SYMBOL_VALUE (sym) = valu;
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &local_symbols);
757 break;
758
759 case 'p':
760 /* Normally this is a parameter, a LOC_ARG. On the i960, it
761 can also be a LOC_LOCAL_ARG depending on symbol type. */
762 #ifndef DBX_PARM_SYMBOL_CLASS
763 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
764 #endif
765 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
766 SYMBOL_VALUE (sym) = valu;
767 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
768 #if 0
769 /* This doesn't work yet. */
770 add_param_to_type (&in_function_type, sym);
771 #endif
772 add_symbol_to_list (sym, &local_symbols);
773
774 /* If it's gcc-compiled, if it says `short', believe it. */
775 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
776 break;
777
778 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
779 /* This macro is defined on machines (e.g. sparc) where
780 we should believe the type of a PCC 'short' argument,
781 but shouldn't believe the address (the address is
782 the address of the corresponding int). Note that
783 this is only different from the BELIEVE_PCC_PROMOTION
784 case on big-endian machines.
785
786 My guess is that this correction, as opposed to changing
787 the parameter to an 'int' (as done below, for PCC
788 on most machines), is the right thing to do
789 on all machines, but I don't want to risk breaking
790 something that already works. On most PCC machines,
791 the sparc problem doesn't come up because the calling
792 function has to zero the top bytes (not knowing whether
793 the called function wants an int or a short), so there
794 is no practical difference between an int and a short
795 (except perhaps what happens when the GDB user types
796 "print short_arg = 0x10000;").
797
798 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
799 actually produces the correct address (we don't need to fix it
800 up). I made this code adapt so that it will offset the symbol
801 if it was pointing at an int-aligned location and not
802 otherwise. This way you can use the same gdb for 4.0.x and
803 4.1 systems.
804
805 If the parameter is shorter than an int, and is integral
806 (e.g. char, short, or unsigned equivalent), and is claimed to
807 be passed on an integer boundary, don't believe it! Offset the
808 parameter's address to the tail-end of that integer. */
809
810 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
811 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
812 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
813 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
814 {
815 SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
816 - TYPE_LENGTH (SYMBOL_TYPE (sym));
817 }
818 break;
819
820 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
821
822 /* If PCC says a parameter is a short or a char,
823 it is really an int. */
824 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
825 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
826 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
827 {
828 SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
829 ? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
830 : temptype;
831 }
832 break;
833
834 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
835
836 case 'R':
837 case 'P':
838 /* acc seems to use P to delare the prototypes of functions that
839 are referenced by this file. gdb is not prepared to deal
840 with this extra information. FIXME, it ought to. */
841 if (type == N_FUN)
842 goto process_prototype_types;
843
844 /* Parameter which is in a register. */
845 SYMBOL_CLASS (sym) = LOC_REGPARM;
846 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
847 if (SYMBOL_VALUE (sym) >= NUM_REGS)
848 {
849 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
850 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
851 }
852 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
853 add_symbol_to_list (sym, &local_symbols);
854 break;
855
856 case 'r':
857 /* Register variable (either global or local). */
858 SYMBOL_CLASS (sym) = LOC_REGISTER;
859 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
860 if (SYMBOL_VALUE (sym) >= NUM_REGS)
861 {
862 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
863 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
864 }
865 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
866 if (within_function)
867 {
868 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
869 name to represent an argument passed in a register.
870 GCC uses 'P' for the same case. So if we find such a symbol pair
871 we combine it into one 'P' symbol.
872 Note that this code illegally combines
873 main(argc) int argc; { register int argc = 1; }
874 but this case is considered pathological and causes a warning
875 from a decent compiler. */
876 if (local_symbols
877 && local_symbols->nsyms > 0)
878 {
879 struct symbol *prev_sym;
880 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
881 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
882 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
883 {
884 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
885 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
886 sym = prev_sym;
887 break;
888 }
889 }
890 add_symbol_to_list (sym, &local_symbols);
891 }
892 else
893 add_symbol_to_list (sym, &file_symbols);
894 break;
895
896 case 'S':
897 /* Static symbol at top level of file */
898 SYMBOL_CLASS (sym) = LOC_STATIC;
899 SYMBOL_VALUE_ADDRESS (sym) = valu;
900 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
901 add_symbol_to_list (sym, &file_symbols);
902 break;
903
904 case 't':
905 /* For a nameless type, we don't want a create a symbol, thus we
906 did not use `sym'. Return without further processing. */
907 if (nameless) return NULL;
908
909 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
910 SYMBOL_VALUE (sym) = valu;
911 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
912 /* C++ vagaries: we may have a type which is derived from
913 a base type which did not have its name defined when the
914 derived class was output. We fill in the derived class's
915 base part member's name here in that case. */
916 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
917 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
918 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
919 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
920 {
921 int j;
922 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
923 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
924 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
925 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
926 }
927
928 add_symbol_to_list (sym, &file_symbols);
929 break;
930
931 case 'T':
932 /* For a nameless type, we don't want a create a symbol, thus we
933 did not use `sym'. Return without further processing. */
934 if (nameless) return NULL;
935
936 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
937 SYMBOL_VALUE (sym) = valu;
938 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
939 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
940 TYPE_NAME (SYMBOL_TYPE (sym))
941 = obconcat (&objfile -> type_obstack, "",
942 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
943 ? "enum "
944 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
945 ? "struct " : "union ")),
946 SYMBOL_NAME (sym));
947 add_symbol_to_list (sym, &file_symbols);
948
949 if (synonym)
950 {
951 /* Clone the sym and then modify it. */
952 register struct symbol *typedef_sym = (struct symbol *)
953 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
954 *typedef_sym = *sym;
955 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
956 SYMBOL_VALUE (typedef_sym) = valu;
957 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
958 add_symbol_to_list (typedef_sym, &file_symbols);
959 }
960 break;
961
962 case 'V':
963 /* Static symbol of local scope */
964 SYMBOL_CLASS (sym) = LOC_STATIC;
965 SYMBOL_VALUE_ADDRESS (sym) = valu;
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &local_symbols);
968 break;
969
970 case 'v':
971 /* Reference parameter */
972 SYMBOL_CLASS (sym) = LOC_REF_ARG;
973 SYMBOL_VALUE (sym) = valu;
974 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
975 add_symbol_to_list (sym, &local_symbols);
976 break;
977
978 case 'X':
979 /* This is used by Sun FORTRAN for "function result value".
980 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
981 that Pascal uses it too, but when I tried it Pascal used
982 "x:3" (local symbol) instead. */
983 SYMBOL_CLASS (sym) = LOC_LOCAL;
984 SYMBOL_VALUE (sym) = valu;
985 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
986 add_symbol_to_list (sym, &local_symbols);
987 break;
988
989 default:
990 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
991 }
992
993 /* When passing structures to a function, some systems sometimes pass
994 the address in a register, not the structure itself.
995
996 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
997 to LOC_REGPARM_ADDR for structures and unions. */
998
999 #if !defined (REG_STRUCT_HAS_ADDR)
1000 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1001 #endif
1002
1003 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1004 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1005 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1006 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1007 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1008
1009 return sym;
1010 }
1011
1012 \f
1013 /* Skip rest of this symbol and return an error type.
1014
1015 General notes on error recovery: error_type always skips to the
1016 end of the symbol (modulo cretinous dbx symbol name continuation).
1017 Thus code like this:
1018
1019 if (*(*pp)++ != ';')
1020 return error_type (pp);
1021
1022 is wrong because if *pp starts out pointing at '\0' (typically as the
1023 result of an earlier error), it will be incremented to point to the
1024 start of the next symbol, which might produce strange results, at least
1025 if you run off the end of the string table. Instead use
1026
1027 if (**pp != ';')
1028 return error_type (pp);
1029 ++*pp;
1030
1031 or
1032
1033 if (**pp != ';')
1034 foo = error_type (pp);
1035 else
1036 ++*pp;
1037
1038 And in case it isn't obvious, the point of all this hair is so the compiler
1039 can define new types and new syntaxes, and old versions of the
1040 debugger will be able to read the new symbol tables. */
1041
1042 struct type *
1043 error_type (pp)
1044 char **pp;
1045 {
1046 complain (&error_type_complaint);
1047 while (1)
1048 {
1049 /* Skip to end of symbol. */
1050 while (**pp != '\0')
1051 {
1052 (*pp)++;
1053 }
1054
1055 /* Check for and handle cretinous dbx symbol name continuation! */
1056 if ((*pp)[-1] == '\\')
1057 {
1058 *pp = next_symbol_text ();
1059 }
1060 else
1061 {
1062 break;
1063 }
1064 }
1065 return (builtin_type_error);
1066 }
1067
1068 \f
1069 /* Read a dbx type reference or definition;
1070 return the type that is meant.
1071 This can be just a number, in which case it references
1072 a type already defined and placed in type_vector.
1073 Or the number can be followed by an =, in which case
1074 it means to define a new type according to the text that
1075 follows the =. */
1076
1077 struct type *
1078 read_type (pp, objfile)
1079 register char **pp;
1080 struct objfile *objfile;
1081 {
1082 register struct type *type = 0;
1083 struct type *type1;
1084 int typenums[2];
1085 int xtypenums[2];
1086 char type_descriptor;
1087
1088 /* Read type number if present. The type number may be omitted.
1089 for instance in a two-dimensional array declared with type
1090 "ar1;1;10;ar1;1;10;4". */
1091 if ((**pp >= '0' && **pp <= '9')
1092 || **pp == '(')
1093 {
1094 read_type_number (pp, typenums);
1095
1096 /* Type is not being defined here. Either it already exists,
1097 or this is a forward reference to it. dbx_alloc_type handles
1098 both cases. */
1099 if (**pp != '=')
1100 return dbx_alloc_type (typenums, objfile);
1101
1102 /* Type is being defined here. */
1103 #if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
1104 {
1105 struct type *tt;
1106
1107 /* if such a type already exists, this is an unnecessary duplication
1108 of the stab string, which is common in (RS/6000) xlc generated
1109 objects. In that case, simply return NULL and let the caller take
1110 care of it. */
1111
1112 tt = *dbx_lookup_type (typenums);
1113 if (tt && tt->length && tt->code)
1114 return NULL;
1115 }
1116 #endif
1117
1118 *pp += 2;
1119 }
1120 else
1121 {
1122 /* 'typenums=' not present, type is anonymous. Read and return
1123 the definition, but don't put it in the type vector. */
1124 typenums[0] = typenums[1] = -1;
1125 (*pp)++;
1126 }
1127
1128 type_descriptor = (*pp)[-1];
1129 switch (type_descriptor)
1130 {
1131 case 'x':
1132 {
1133 enum type_code code;
1134
1135 /* Used to index through file_symbols. */
1136 struct pending *ppt;
1137 int i;
1138
1139 /* Name including "struct", etc. */
1140 char *type_name;
1141
1142 /* Name without "struct", etc. */
1143 char *type_name_only;
1144
1145 {
1146 char *prefix;
1147 char *from, *to;
1148
1149 /* Set the type code according to the following letter. */
1150 switch ((*pp)[0])
1151 {
1152 case 's':
1153 code = TYPE_CODE_STRUCT;
1154 prefix = "struct ";
1155 break;
1156 case 'u':
1157 code = TYPE_CODE_UNION;
1158 prefix = "union ";
1159 break;
1160 case 'e':
1161 code = TYPE_CODE_ENUM;
1162 prefix = "enum ";
1163 break;
1164 default:
1165 return error_type (pp);
1166 }
1167
1168 to = type_name = (char *)
1169 obstack_alloc (&objfile -> type_obstack,
1170 (strlen (prefix) +
1171 ((char *) strchr (*pp, ':') - (*pp)) + 1));
1172
1173 /* Copy the prefix. */
1174 from = prefix;
1175 while ((*to++ = *from++) != '\0')
1176 ;
1177 to--;
1178
1179 type_name_only = to;
1180
1181 /* Copy the name. */
1182 from = *pp + 1;
1183 while ((*to++ = *from++) != ':')
1184 ;
1185 *--to = '\0';
1186
1187 /* Set the pointer ahead of the name which we just read. */
1188 *pp = from;
1189
1190 #if 0
1191 /* The following hack is clearly wrong, because it doesn't
1192 check whether we are in a baseclass. I tried to reproduce
1193 the case that it is trying to fix, but I couldn't get
1194 g++ to put out a cross reference to a basetype. Perhaps
1195 it doesn't do it anymore. */
1196 /* Note: for C++, the cross reference may be to a base type which
1197 has not yet been seen. In this case, we skip to the comma,
1198 which will mark the end of the base class name. (The ':'
1199 at the end of the base class name will be skipped as well.)
1200 But sometimes (ie. when the cross ref is the last thing on
1201 the line) there will be no ','. */
1202 from = (char *) strchr (*pp, ',');
1203 if (from)
1204 *pp = from;
1205 #endif /* 0 */
1206 }
1207
1208 /* Now check to see whether the type has already been declared. */
1209 /* This is necessary at least in the case where the
1210 program says something like
1211 struct foo bar[5];
1212 The compiler puts out a cross-reference; we better find
1213 set the length of the structure correctly so we can
1214 set the length of the array. */
1215 for (ppt = file_symbols; ppt; ppt = ppt->next)
1216 for (i = 0; i < ppt->nsyms; i++)
1217 {
1218 struct symbol *sym = ppt->symbol[i];
1219
1220 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1221 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1222 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1223 && STREQ (SYMBOL_NAME (sym), type_name_only))
1224 {
1225 obstack_free (&objfile -> type_obstack, type_name);
1226 type = SYMBOL_TYPE (sym);
1227 return type;
1228 }
1229 }
1230
1231 /* Didn't find the type to which this refers, so we must
1232 be dealing with a forward reference. Allocate a type
1233 structure for it, and keep track of it so we can
1234 fill in the rest of the fields when we get the full
1235 type. */
1236 type = dbx_alloc_type (typenums, objfile);
1237 TYPE_CODE (type) = code;
1238 TYPE_NAME (type) = type_name;
1239 INIT_CPLUS_SPECIFIC(type);
1240 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1241
1242 add_undefined_type (type);
1243 return type;
1244 }
1245
1246 case '-': /* RS/6000 built-in type */
1247 case '0':
1248 case '1':
1249 case '2':
1250 case '3':
1251 case '4':
1252 case '5':
1253 case '6':
1254 case '7':
1255 case '8':
1256 case '9':
1257 case '(':
1258 (*pp)--;
1259 read_type_number (pp, xtypenums);
1260 type = *dbx_lookup_type (xtypenums);
1261 if (type == 0)
1262 type = lookup_fundamental_type (objfile, FT_VOID);
1263 if (typenums[0] != -1)
1264 *dbx_lookup_type (typenums) = type;
1265 break;
1266
1267 /* In the following types, we must be sure to overwrite any existing
1268 type that the typenums refer to, rather than allocating a new one
1269 and making the typenums point to the new one. This is because there
1270 may already be pointers to the existing type (if it had been
1271 forward-referenced), and we must change it to a pointer, function,
1272 reference, or whatever, *in-place*. */
1273
1274 case '*':
1275 type1 = read_type (pp, objfile);
1276 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1277 break;
1278
1279 case '&': /* Reference to another type */
1280 type1 = read_type (pp, objfile);
1281 type = make_reference_type (type1, dbx_lookup_type (typenums));
1282 break;
1283
1284 case 'f': /* Function returning another type */
1285 type1 = read_type (pp, objfile);
1286 type = make_function_type (type1, dbx_lookup_type (typenums));
1287 break;
1288
1289 case 'k': /* Const qualifier on some type (Sun) */
1290 type = read_type (pp, objfile);
1291 /* FIXME! For now, we ignore const and volatile qualifiers. */
1292 break;
1293
1294 case 'B': /* Volatile qual on some type (Sun) */
1295 type = read_type (pp, objfile);
1296 /* FIXME! For now, we ignore const and volatile qualifiers. */
1297 break;
1298
1299 /* FIXME -- we should be doing smash_to_XXX types here. */
1300 case '@': /* Member (class & variable) type */
1301 {
1302 struct type *domain = read_type (pp, objfile);
1303 struct type *memtype;
1304
1305 if (**pp != ',')
1306 /* Invalid member type data format. */
1307 return error_type (pp);
1308 ++*pp;
1309
1310 memtype = read_type (pp, objfile);
1311 type = dbx_alloc_type (typenums, objfile);
1312 smash_to_member_type (type, domain, memtype);
1313 }
1314 break;
1315
1316 case '#': /* Method (class & fn) type */
1317 if ((*pp)[0] == '#')
1318 {
1319 /* We'll get the parameter types from the name. */
1320 struct type *return_type;
1321
1322 (*pp)++;
1323 return_type = read_type (pp, objfile);
1324 if (*(*pp)++ != ';')
1325 complain (&invalid_member_complaint, symnum);
1326 type = allocate_stub_method (return_type);
1327 if (typenums[0] != -1)
1328 *dbx_lookup_type (typenums) = type;
1329 }
1330 else
1331 {
1332 struct type *domain = read_type (pp, objfile);
1333 struct type *return_type;
1334 struct type **args;
1335
1336 if (*(*pp)++ != ',')
1337 error ("invalid member type data format, at symtab pos %d.",
1338 symnum);
1339
1340 return_type = read_type (pp, objfile);
1341 args = read_args (pp, ';', objfile);
1342 type = dbx_alloc_type (typenums, objfile);
1343 smash_to_method_type (type, domain, return_type, args);
1344 }
1345 break;
1346
1347 case 'r': /* Range type */
1348 type = read_range_type (pp, typenums, objfile);
1349 if (typenums[0] != -1)
1350 *dbx_lookup_type (typenums) = type;
1351 break;
1352
1353 case 'b': /* Sun ACC builtin int type */
1354 type = read_sun_builtin_type (pp, typenums, objfile);
1355 if (typenums[0] != -1)
1356 *dbx_lookup_type (typenums) = type;
1357 break;
1358
1359 case 'R': /* Sun ACC builtin float type */
1360 type = read_sun_floating_type (pp, typenums, objfile);
1361 if (typenums[0] != -1)
1362 *dbx_lookup_type (typenums) = type;
1363 break;
1364
1365 case 'e': /* Enumeration type */
1366 type = dbx_alloc_type (typenums, objfile);
1367 type = read_enum_type (pp, type, objfile);
1368 *dbx_lookup_type (typenums) = type;
1369 break;
1370
1371 case 's': /* Struct type */
1372 case 'u': /* Union type */
1373 type = dbx_alloc_type (typenums, objfile);
1374 if (!TYPE_NAME (type))
1375 {
1376 TYPE_NAME (type) = type_synonym_name;
1377 }
1378 type_synonym_name = NULL;
1379 switch (type_descriptor)
1380 {
1381 case 's':
1382 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1383 break;
1384 case 'u':
1385 TYPE_CODE (type) = TYPE_CODE_UNION;
1386 break;
1387 }
1388 type = read_struct_type (pp, type, objfile);
1389 break;
1390
1391 case 'a': /* Array type */
1392 if (**pp != 'r')
1393 return error_type (pp);
1394 ++*pp;
1395
1396 type = dbx_alloc_type (typenums, objfile);
1397 type = read_array_type (pp, type, objfile);
1398 break;
1399
1400 default:
1401 --*pp; /* Go back to the symbol in error */
1402 /* Particularly important if it was \0! */
1403 return error_type (pp);
1404 }
1405
1406 if (type == 0)
1407 abort ();
1408
1409 return type;
1410 }
1411 \f
1412 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1413 Return the proper type node for a given builtin type number. */
1414
1415 static struct type *
1416 rs6000_builtin_type (typenum)
1417 int typenum;
1418 {
1419 /* default types are defined in dbxstclass.h. */
1420 switch (-typenum) {
1421 case 1:
1422 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1423 case 2:
1424 return lookup_fundamental_type (current_objfile, FT_CHAR);
1425 case 3:
1426 return lookup_fundamental_type (current_objfile, FT_SHORT);
1427 case 4:
1428 return lookup_fundamental_type (current_objfile, FT_LONG);
1429 case 5:
1430 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
1431 case 6:
1432 return lookup_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1433 case 7:
1434 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
1435 case 8:
1436 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1437 case 9:
1438 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1439 case 10:
1440 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
1441 case 11:
1442 return lookup_fundamental_type (current_objfile, FT_VOID);
1443 case 12:
1444 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1445 case 13:
1446 return lookup_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
1447 case 14:
1448 return lookup_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
1449 case 15:
1450 /* requires a builtin `integer' */
1451 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1452 case 16:
1453 return lookup_fundamental_type (current_objfile, FT_BOOLEAN);
1454 case 17:
1455 /* requires builtin `short real' */
1456 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1457 case 18:
1458 /* requires builtin `real' */
1459 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1460 default:
1461 complain (rs6000_builtin_complaint, typenum);
1462 return NULL;
1463 }
1464 }
1465 \f
1466 /* This page contains subroutines of read_type. */
1467
1468 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1469 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1470 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1471
1472 /* Read member function stabs info for C++ classes. The form of each member
1473 function data is:
1474
1475 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1476
1477 An example with two member functions is:
1478
1479 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1480
1481 For the case of overloaded operators, the format is op$::*.funcs, where
1482 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1483 name (such as `+=') and `.' marks the end of the operator name. */
1484
1485 static int
1486 read_member_functions (fip, pp, type, objfile)
1487 struct field_info *fip;
1488 char **pp;
1489 struct type *type;
1490 struct objfile *objfile;
1491 {
1492 int nfn_fields = 0;
1493 int length = 0;
1494 /* Total number of member functions defined in this class. If the class
1495 defines two `f' functions, and one `g' function, then this will have
1496 the value 3. */
1497 int total_length = 0;
1498 int i;
1499 struct next_fnfield
1500 {
1501 struct next_fnfield *next;
1502 struct fn_field fn_field;
1503 } *sublist;
1504 struct type *look_ahead_type;
1505 struct next_fnfieldlist *new_fnlist;
1506 struct next_fnfield *new_sublist;
1507 char *main_fn_name;
1508 register char *p;
1509
1510 /* Process each list until we find something that is not a member function
1511 or find the end of the functions. */
1512
1513 while (**pp != ';')
1514 {
1515 /* We should be positioned at the start of the function name.
1516 Scan forward to find the first ':' and if it is not the
1517 first of a "::" delimiter, then this is not a member function. */
1518 p = *pp;
1519 while (*p != ':')
1520 {
1521 p++;
1522 }
1523 if (p[1] != ':')
1524 {
1525 break;
1526 }
1527
1528 sublist = NULL;
1529 look_ahead_type = NULL;
1530 length = 0;
1531
1532 new_fnlist = (struct next_fnfieldlist *)
1533 xmalloc (sizeof (struct next_fnfieldlist));
1534 make_cleanup (free, new_fnlist);
1535 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1536
1537 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1538 {
1539 /* This is a completely wierd case. In order to stuff in the
1540 names that might contain colons (the usual name delimiter),
1541 Mike Tiemann defined a different name format which is
1542 signalled if the identifier is "op$". In that case, the
1543 format is "op$::XXXX." where XXXX is the name. This is
1544 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1545 /* This lets the user type "break operator+".
1546 We could just put in "+" as the name, but that wouldn't
1547 work for "*". */
1548 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1549 char *o = opname + 3;
1550
1551 /* Skip past '::'. */
1552 *pp = p + 2;
1553
1554 STABS_CONTINUE (pp);
1555 p = *pp;
1556 while (*p != '.')
1557 {
1558 *o++ = *p++;
1559 }
1560 main_fn_name = savestring (opname, o - opname);
1561 /* Skip past '.' */
1562 *pp = p + 1;
1563 }
1564 else
1565 {
1566 main_fn_name = savestring (*pp, p - *pp);
1567 /* Skip past '::'. */
1568 *pp = p + 2;
1569 }
1570 new_fnlist -> fn_fieldlist.name = main_fn_name;
1571
1572 do
1573 {
1574 new_sublist =
1575 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1576 make_cleanup (free, new_sublist);
1577 memset (new_sublist, 0, sizeof (struct next_fnfield));
1578
1579 /* Check for and handle cretinous dbx symbol name continuation! */
1580 if (look_ahead_type == NULL)
1581 {
1582 /* Normal case. */
1583 STABS_CONTINUE (pp);
1584
1585 new_sublist -> fn_field.type = read_type (pp, objfile);
1586 if (**pp != ':')
1587 {
1588 /* Invalid symtab info for member function. */
1589 return 0;
1590 }
1591 }
1592 else
1593 {
1594 /* g++ version 1 kludge */
1595 new_sublist -> fn_field.type = look_ahead_type;
1596 look_ahead_type = NULL;
1597 }
1598
1599 (*pp)++;
1600 p = *pp;
1601 while (*p != ';')
1602 {
1603 p++;
1604 }
1605
1606 /* If this is just a stub, then we don't have the real name here. */
1607
1608 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1609 {
1610 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1611 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1612 new_sublist -> fn_field.is_stub = 1;
1613 }
1614 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1615 *pp = p + 1;
1616
1617 /* Set this member function's visibility fields. */
1618 switch (*(*pp)++)
1619 {
1620 case VISIBILITY_PRIVATE:
1621 new_sublist -> fn_field.is_private = 1;
1622 break;
1623 case VISIBILITY_PROTECTED:
1624 new_sublist -> fn_field.is_protected = 1;
1625 break;
1626 }
1627
1628 STABS_CONTINUE (pp);
1629 switch (**pp)
1630 {
1631 case 'A': /* Normal functions. */
1632 new_sublist -> fn_field.is_const = 0;
1633 new_sublist -> fn_field.is_volatile = 0;
1634 (*pp)++;
1635 break;
1636 case 'B': /* `const' member functions. */
1637 new_sublist -> fn_field.is_const = 1;
1638 new_sublist -> fn_field.is_volatile = 0;
1639 (*pp)++;
1640 break;
1641 case 'C': /* `volatile' member function. */
1642 new_sublist -> fn_field.is_const = 0;
1643 new_sublist -> fn_field.is_volatile = 1;
1644 (*pp)++;
1645 break;
1646 case 'D': /* `const volatile' member function. */
1647 new_sublist -> fn_field.is_const = 1;
1648 new_sublist -> fn_field.is_volatile = 1;
1649 (*pp)++;
1650 break;
1651 case '*': /* File compiled with g++ version 1 -- no info */
1652 case '?':
1653 case '.':
1654 break;
1655 default:
1656 complain (&const_vol_complaint, **pp);
1657 break;
1658 }
1659
1660 switch (*(*pp)++)
1661 {
1662 case '*':
1663 /* virtual member function, followed by index.
1664 The sign bit is set to distinguish pointers-to-methods
1665 from virtual function indicies. Since the array is
1666 in words, the quantity must be shifted left by 1
1667 on 16 bit machine, and by 2 on 32 bit machine, forcing
1668 the sign bit out, and usable as a valid index into
1669 the array. Remove the sign bit here. */
1670 new_sublist -> fn_field.voffset =
1671 (0x7fffffff & read_number (pp, ';')) + 2;
1672
1673 STABS_CONTINUE (pp);
1674 if (**pp == ';' || **pp == '\0')
1675 {
1676 /* Must be g++ version 1. */
1677 new_sublist -> fn_field.fcontext = 0;
1678 }
1679 else
1680 {
1681 /* Figure out from whence this virtual function came.
1682 It may belong to virtual function table of
1683 one of its baseclasses. */
1684 look_ahead_type = read_type (pp, objfile);
1685 if (**pp == ':')
1686 {
1687 /* g++ version 1 overloaded methods. */
1688 }
1689 else
1690 {
1691 new_sublist -> fn_field.fcontext = look_ahead_type;
1692 if (**pp != ';')
1693 {
1694 return 0;
1695 }
1696 else
1697 {
1698 ++*pp;
1699 }
1700 look_ahead_type = NULL;
1701 }
1702 }
1703 break;
1704
1705 case '?':
1706 /* static member function. */
1707 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1708 if (strncmp (new_sublist -> fn_field.physname,
1709 main_fn_name, strlen (main_fn_name)))
1710 {
1711 new_sublist -> fn_field.is_stub = 1;
1712 }
1713 break;
1714
1715 default:
1716 /* error */
1717 complain (&member_fn_complaint, (*pp)[-1]);
1718 /* Fall through into normal member function. */
1719
1720 case '.':
1721 /* normal member function. */
1722 new_sublist -> fn_field.voffset = 0;
1723 new_sublist -> fn_field.fcontext = 0;
1724 break;
1725 }
1726
1727 new_sublist -> next = sublist;
1728 sublist = new_sublist;
1729 length++;
1730 STABS_CONTINUE (pp);
1731 }
1732 while (**pp != ';' && **pp != '\0');
1733
1734 (*pp)++;
1735
1736 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1737 obstack_alloc (&objfile -> type_obstack,
1738 sizeof (struct fn_field) * length);
1739 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1740 sizeof (struct fn_field) * length);
1741 for (i = length; (i--, sublist); sublist = sublist -> next)
1742 {
1743 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1744 }
1745
1746 new_fnlist -> fn_fieldlist.length = length;
1747 new_fnlist -> next = fip -> fnlist;
1748 fip -> fnlist = new_fnlist;
1749 nfn_fields++;
1750 total_length += length;
1751 STABS_CONTINUE (pp);
1752 }
1753
1754 if (nfn_fields)
1755 {
1756 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1757 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1758 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1759 memset (TYPE_FN_FIELDLISTS (type), 0,
1760 sizeof (struct fn_fieldlist) * nfn_fields);
1761 TYPE_NFN_FIELDS (type) = nfn_fields;
1762 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1763 }
1764
1765 return 1;
1766 }
1767
1768 /* Special GNU C++ name.
1769 FIXME: Still need to properly handle parse error conditions. */
1770
1771 static void
1772 read_cpp_abbrev (fip, pp, type, objfile)
1773 struct field_info *fip;
1774 char **pp;
1775 struct type *type;
1776 struct objfile *objfile;
1777 {
1778 register char *p;
1779 const char *prefix;
1780 char *name;
1781 char cpp_abbrev;
1782 struct type *context;
1783
1784 p = *pp;
1785 if (*++p == 'v')
1786 {
1787 name = NULL;
1788 cpp_abbrev = *++p;
1789
1790 *pp = p + 1;
1791
1792 /* At this point, *pp points to something like "22:23=*22...",
1793 where the type number before the ':' is the "context" and
1794 everything after is a regular type definition. Lookup the
1795 type, find it's name, and construct the field name. */
1796
1797 context = read_type (pp, objfile);
1798
1799 switch (cpp_abbrev)
1800 {
1801 case 'f': /* $vf -- a virtual function table pointer */
1802 fip->list->field.name =
1803 obconcat (&objfile->type_obstack, vptr_name, "", "");
1804 break;
1805
1806 case 'b': /* $vb -- a virtual bsomethingorother */
1807 name = type_name_no_tag (context);
1808 if (name == NULL)
1809 {
1810 complain (&invalid_cpp_type_complaint, symnum);
1811 name = "FOO";
1812 }
1813 fip->list->field.name =
1814 obconcat (&objfile->type_obstack, vb_name, name, "");
1815 break;
1816
1817 default:
1818 complain (&invalid_cpp_abbrev_complaint, *pp);
1819 fip->list->field.name =
1820 obconcat (&objfile->type_obstack,
1821 "INVALID_CPLUSPLUS_ABBREV", "", "");
1822 break;
1823 }
1824
1825 /* At this point, *pp points to the ':'. Skip it and read the
1826 field type. */
1827
1828 p = ++(*pp);
1829 if (p[-1] != ':')
1830 {
1831 complain (&invalid_cpp_abbrev_complaint, *pp);
1832 }
1833 fip->list->field.type = read_type (pp, objfile);
1834 (*pp)++; /* Skip the comma. */
1835 fip->list->field.bitpos = read_number (pp, ';');
1836 /* This field is unpacked. */
1837 fip->list->field.bitsize = 0;
1838 fip->list->visibility = VISIBILITY_PRIVATE;
1839 }
1840 else if (*p == '_')
1841 {
1842 /* GNU C++ anonymous type. */
1843 complain (&stabs_general_complaint, "g++ anonymous type $_ not handled");
1844 }
1845 else
1846 {
1847 complain (&invalid_cpp_abbrev_complaint, *pp);
1848 }
1849 }
1850
1851 static void
1852 read_one_struct_field (fip, pp, p, type, objfile)
1853 struct field_info *fip;
1854 char **pp;
1855 char *p;
1856 struct type *type;
1857 struct objfile *objfile;
1858 {
1859 fip -> list -> field.name =
1860 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
1861 *pp = p + 1;
1862
1863 /* This means we have a visibility for a field coming. */
1864 if (**pp == '/')
1865 {
1866 (*pp)++;
1867 fip -> list -> visibility = *(*pp)++;
1868 switch (fip -> list -> visibility)
1869 {
1870 case VISIBILITY_PRIVATE:
1871 case VISIBILITY_PROTECTED:
1872 break;
1873
1874 case VISIBILITY_PUBLIC:
1875 /* Nothing to do */
1876 break;
1877
1878 default:
1879 /* Unknown visibility specifier. */
1880 complain (&stabs_general_complaint,
1881 "unknown visibility specifier");
1882 return;
1883 break;
1884 }
1885 }
1886 else
1887 {
1888 /* normal dbx-style format, no explicit visibility */
1889 fip -> list -> visibility = VISIBILITY_PUBLIC;
1890 }
1891
1892 fip -> list -> field.type = read_type (pp, objfile);
1893 if (**pp == ':')
1894 {
1895 p = ++(*pp);
1896 #if 0
1897 /* Possible future hook for nested types. */
1898 if (**pp == '!')
1899 {
1900 fip -> list -> field.bitpos = (long)-2; /* nested type */
1901 p = ++(*pp);
1902 }
1903 else
1904 #endif
1905 {
1906 /* Static class member. */
1907 fip -> list -> field.bitpos = (long) -1;
1908 }
1909 while (*p != ';')
1910 {
1911 p++;
1912 }
1913 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
1914 *pp = p + 1;
1915 return;
1916 }
1917 else if (**pp != ',')
1918 {
1919 /* Bad structure-type format. */
1920 complain (&stabs_general_complaint, "bad structure-type format");
1921 return;
1922 }
1923
1924 (*pp)++; /* Skip the comma. */
1925 fip -> list -> field.bitpos = read_number (pp, ',');
1926 fip -> list -> field.bitsize = read_number (pp, ';');
1927
1928 #if 0
1929 /* FIXME-tiemann: Can't the compiler put out something which
1930 lets us distinguish these? (or maybe just not put out anything
1931 for the field). What is the story here? What does the compiler
1932 really do? Also, patch gdb.texinfo for this case; I document
1933 it as a possible problem there. Search for "DBX-style". */
1934
1935 /* This is wrong because this is identical to the symbols
1936 produced for GCC 0-size arrays. For example:
1937 typedef union {
1938 int num;
1939 char str[0];
1940 } foo;
1941 The code which dumped core in such circumstances should be
1942 fixed not to dump core. */
1943
1944 /* g++ -g0 can put out bitpos & bitsize zero for a static
1945 field. This does not give us any way of getting its
1946 class, so we can't know its name. But we can just
1947 ignore the field so we don't dump core and other nasty
1948 stuff. */
1949 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
1950 {
1951 complain (&dbx_class_complaint);
1952 /* Ignore this field. */
1953 fip -> list = fip -> list -> next;
1954 }
1955 else
1956 #endif /* 0 */
1957 {
1958 /* Detect an unpacked field and mark it as such.
1959 dbx gives a bit size for all fields.
1960 Note that forward refs cannot be packed,
1961 and treat enums as if they had the width of ints. */
1962
1963 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
1964 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
1965 {
1966 fip -> list -> field.bitsize = 0;
1967 }
1968 if ((fip -> list -> field.bitsize
1969 == 8 * TYPE_LENGTH (fip -> list -> field.type)
1970 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
1971 && (fip -> list -> field.bitsize
1972 == 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
1973 )
1974 )
1975 &&
1976 fip -> list -> field.bitpos % 8 == 0)
1977 {
1978 fip -> list -> field.bitsize = 0;
1979 }
1980 }
1981 }
1982
1983
1984 /* Read struct or class data fields. They have the form:
1985
1986 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
1987
1988 At the end, we see a semicolon instead of a field.
1989
1990 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
1991 a static field.
1992
1993 The optional VISIBILITY is one of:
1994
1995 '/0' (VISIBILITY_PRIVATE)
1996 '/1' (VISIBILITY_PROTECTED)
1997 '/2' (VISIBILITY_PUBLIC)
1998
1999 or nothing, for C style fields with public visibility. */
2000
2001 static int
2002 read_struct_fields (fip, pp, type, objfile)
2003 struct field_info *fip;
2004 char **pp;
2005 struct type *type;
2006 struct objfile *objfile;
2007 {
2008 register char *p;
2009 struct nextfield *new;
2010
2011 /* We better set p right now, in case there are no fields at all... */
2012
2013 p = *pp;
2014
2015 /* Read each data member type until we find the terminating ';' at the end of
2016 the data member list, or break for some other reason such as finding the
2017 start of the member function list. */
2018
2019 while (**pp != ';')
2020 {
2021 STABS_CONTINUE (pp);
2022 /* Get space to record the next field's data. */
2023 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2024 make_cleanup (free, new);
2025 memset (new, 0, sizeof (struct nextfield));
2026 new -> next = fip -> list;
2027 fip -> list = new;
2028
2029 /* Get the field name. */
2030 p = *pp;
2031 if (*p == CPLUS_MARKER)
2032 {
2033 read_cpp_abbrev (fip, pp, type, objfile);
2034 continue;
2035 }
2036
2037 /* Look for the ':' that separates the field name from the field
2038 values. Data members are delimited by a single ':', while member
2039 functions are delimited by a pair of ':'s. When we hit the member
2040 functions (if any), terminate scan loop and return. */
2041
2042 while (*p != ':')
2043 {
2044 p++;
2045 }
2046
2047 /* Check to see if we have hit the member functions yet. */
2048 if (p[1] == ':')
2049 {
2050 break;
2051 }
2052 read_one_struct_field (fip, pp, p, type, objfile);
2053 }
2054 if (p[1] == ':')
2055 {
2056 /* chill the list of fields: the last entry (at the head) is a
2057 partially constructed entry which we now scrub. */
2058 fip -> list = fip -> list -> next;
2059 }
2060 return 1;
2061 }
2062
2063 /* The stabs for C++ derived classes contain baseclass information which
2064 is marked by a '!' character after the total size. This function is
2065 called when we encounter the baseclass marker, and slurps up all the
2066 baseclass information.
2067
2068 Immediately following the '!' marker is the number of base classes that
2069 the class is derived from, followed by information for each base class.
2070 For each base class, there are two visibility specifiers, a bit offset
2071 to the base class information within the derived class, a reference to
2072 the type for the base class, and a terminating semicolon.
2073
2074 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2075 ^^ ^ ^ ^ ^ ^ ^
2076 Baseclass information marker __________________|| | | | | | |
2077 Number of baseclasses __________________________| | | | | | |
2078 Visibility specifiers (2) ________________________| | | | | |
2079 Offset in bits from start of class _________________| | | | |
2080 Type number for base class ___________________________| | | |
2081 Visibility specifiers (2) _______________________________| | |
2082 Offset in bits from start of class ________________________| |
2083 Type number of base class ____________________________________|
2084 */
2085
2086 static int
2087 read_baseclasses (fip, pp, type, objfile)
2088 struct field_info *fip;
2089 char **pp;
2090 struct type *type;
2091 struct objfile *objfile;
2092 {
2093 int i;
2094 struct nextfield *new;
2095
2096 if (**pp != '!')
2097 {
2098 return 1;
2099 }
2100 else
2101 {
2102 /* Skip the '!' baseclass information marker. */
2103 (*pp)++;
2104 }
2105
2106 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2107 TYPE_N_BASECLASSES (type) = read_number (pp, ',');
2108
2109 #if 0
2110 /* Some stupid compilers have trouble with the following, so break
2111 it up into simpler expressions. */
2112 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2113 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2114 #else
2115 {
2116 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2117 char *pointer;
2118
2119 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2120 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2121 }
2122 #endif /* 0 */
2123
2124 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2125
2126 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2127 {
2128 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2129 make_cleanup (free, new);
2130 memset (new, 0, sizeof (struct nextfield));
2131 new -> next = fip -> list;
2132 fip -> list = new;
2133 new -> field.bitsize = 0; /* this should be an unpacked field! */
2134
2135 STABS_CONTINUE (pp);
2136 switch (*(*pp)++)
2137 {
2138 case '0':
2139 /* Nothing to do. */
2140 break;
2141 case '1':
2142 SET_TYPE_FIELD_VIRTUAL (type, i);
2143 break;
2144 default:
2145 /* Bad visibility format. */
2146 return 0;
2147 }
2148
2149 new -> visibility = *(*pp)++;
2150 switch (new -> visibility)
2151 {
2152 case VISIBILITY_PRIVATE:
2153 case VISIBILITY_PROTECTED:
2154 case VISIBILITY_PUBLIC:
2155 break;
2156 default:
2157 /* Bad visibility format. */
2158 return 0;
2159 }
2160
2161 /* The remaining value is the bit offset of the portion of the object
2162 corresponding to this baseclass. Always zero in the absence of
2163 multiple inheritance. */
2164
2165 new -> field.bitpos = read_number (pp, ',');
2166
2167 /* The last piece of baseclass information is the type of the base
2168 class. Read it, and remember it's type name as this field's name. */
2169
2170 new -> field.type = read_type (pp, objfile);
2171 new -> field.name = type_name_no_tag (new -> field.type);
2172
2173 /* skip trailing ';' and bump count of number of fields seen */
2174 (*pp)++;
2175 }
2176 return 1;
2177 }
2178
2179 /* The tail end of stabs for C++ classes that contain a virtual function
2180 pointer contains a tilde, a %, and a type number.
2181 The type number refers to the base class (possibly this class itself) which
2182 contains the vtable pointer for the current class.
2183
2184 This function is called when we have parsed all the method declarations,
2185 so we can look for the vptr base class info. */
2186
2187 static int
2188 read_tilde_fields (fip, pp, type, objfile)
2189 struct field_info *fip;
2190 char **pp;
2191 struct type *type;
2192 struct objfile *objfile;
2193 {
2194 register char *p;
2195
2196 STABS_CONTINUE (pp);
2197
2198 /* If we are positioned at a ';', then skip it. */
2199 if (**pp == ';')
2200 {
2201 (*pp)++;
2202 }
2203
2204 if (**pp == '~')
2205 {
2206 (*pp)++;
2207
2208 if (**pp == '=' || **pp == '+' || **pp == '-')
2209 {
2210 /* Obsolete flags that used to indicate the presence
2211 of constructors and/or destructors. */
2212 (*pp)++;
2213 }
2214
2215 /* Read either a '%' or the final ';'. */
2216 if (*(*pp)++ == '%')
2217 {
2218 /* The next number is the type number of the base class
2219 (possibly our own class) which supplies the vtable for
2220 this class. Parse it out, and search that class to find
2221 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2222 and TYPE_VPTR_FIELDNO. */
2223
2224 struct type *t;
2225 int i;
2226
2227 t = read_type (pp, objfile);
2228 p = (*pp)++;
2229 while (*p != '\0' && *p != ';')
2230 {
2231 p++;
2232 }
2233 if (*p == '\0')
2234 {
2235 /* Premature end of symbol. */
2236 return 0;
2237 }
2238
2239 TYPE_VPTR_BASETYPE (type) = t;
2240 if (type == t) /* Our own class provides vtbl ptr */
2241 {
2242 for (i = TYPE_NFIELDS (t) - 1;
2243 i >= TYPE_N_BASECLASSES (t);
2244 --i)
2245 {
2246 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2247 sizeof (vptr_name) - 1))
2248 {
2249 TYPE_VPTR_FIELDNO (type) = i;
2250 goto gotit;
2251 }
2252 }
2253 /* Virtual function table field not found. */
2254 complain (vtbl_notfound_complaint, TYPE_NAME (type));
2255 return 0;
2256 }
2257 else
2258 {
2259 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2260 }
2261
2262 gotit:
2263 *pp = p + 1;
2264 }
2265 }
2266 return 1;
2267 }
2268
2269 static int
2270 attach_fn_fields_to_type (fip, type)
2271 struct field_info *fip;
2272 register struct type *type;
2273 {
2274 register int n;
2275
2276 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2277 {
2278 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2279 {
2280 /* @@ Memory leak on objfile -> type_obstack? */
2281 return 0;
2282 }
2283 TYPE_NFN_FIELDS_TOTAL (type) +=
2284 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2285 }
2286
2287 for (n = TYPE_NFN_FIELDS (type);
2288 fip -> fnlist != NULL;
2289 fip -> fnlist = fip -> fnlist -> next)
2290 {
2291 --n; /* Circumvent Sun3 compiler bug */
2292 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2293 }
2294 return 1;
2295 }
2296
2297 /* Create the vector of fields, and record how big it is.
2298 We need this info to record proper virtual function table information
2299 for this class's virtual functions. */
2300
2301 static int
2302 attach_fields_to_type (fip, type, objfile)
2303 struct field_info *fip;
2304 register struct type *type;
2305 struct objfile *objfile;
2306 {
2307 register int nfields = 0;
2308 register int non_public_fields = 0;
2309 register struct nextfield *scan;
2310
2311 /* Count up the number of fields that we have, as well as taking note of
2312 whether or not there are any non-public fields, which requires us to
2313 allocate and build the private_field_bits and protected_field_bits
2314 bitfields. */
2315
2316 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2317 {
2318 nfields++;
2319 if (scan -> visibility != VISIBILITY_PUBLIC)
2320 {
2321 non_public_fields++;
2322 }
2323 }
2324
2325 /* Now we know how many fields there are, and whether or not there are any
2326 non-public fields. Record the field count, allocate space for the
2327 array of fields, and create blank visibility bitfields if necessary. */
2328
2329 TYPE_NFIELDS (type) = nfields;
2330 TYPE_FIELDS (type) = (struct field *)
2331 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2332 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2333
2334 if (non_public_fields)
2335 {
2336 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2337
2338 TYPE_FIELD_PRIVATE_BITS (type) =
2339 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2340 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2341
2342 TYPE_FIELD_PROTECTED_BITS (type) =
2343 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2344 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2345 }
2346
2347 /* Copy the saved-up fields into the field vector. Start from the head
2348 of the list, adding to the tail of the field array, so that they end
2349 up in the same order in the array in which they were added to the list. */
2350
2351 while (nfields-- > 0)
2352 {
2353 TYPE_FIELD (type, nfields) = fip -> list -> field;
2354 switch (fip -> list -> visibility)
2355 {
2356 case VISIBILITY_PRIVATE:
2357 SET_TYPE_FIELD_PRIVATE (type, nfields);
2358 break;
2359
2360 case VISIBILITY_PROTECTED:
2361 SET_TYPE_FIELD_PROTECTED (type, nfields);
2362 break;
2363
2364 case VISIBILITY_PUBLIC:
2365 break;
2366
2367 default:
2368 /* Should warn about this unknown visibility? */
2369 break;
2370 }
2371 fip -> list = fip -> list -> next;
2372 }
2373 return 1;
2374 }
2375
2376 /* Read the description of a structure (or union type) and return an object
2377 describing the type.
2378
2379 PP points to a character pointer that points to the next unconsumed token
2380 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2381 *PP will point to "4a:1,0,32;;".
2382
2383 TYPE points to an incomplete type that needs to be filled in.
2384
2385 OBJFILE points to the current objfile from which the stabs information is
2386 being read. (Note that it is redundant in that TYPE also contains a pointer
2387 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2388 */
2389
2390 static struct type *
2391 read_struct_type (pp, type, objfile)
2392 char **pp;
2393 struct type *type;
2394 struct objfile *objfile;
2395 {
2396 struct cleanup *back_to;
2397 struct field_info fi;
2398
2399 fi.list = NULL;
2400 fi.fnlist = NULL;
2401
2402 back_to = make_cleanup (null_cleanup, 0);
2403
2404 INIT_CPLUS_SPECIFIC (type);
2405 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2406
2407 /* First comes the total size in bytes. */
2408
2409 TYPE_LENGTH (type) = read_number (pp, 0);
2410
2411 /* Now read the baseclasses, if any, read the regular C struct or C++
2412 class member fields, attach the fields to the type, read the C++
2413 member functions, attach them to the type, and then read any tilde
2414 field (baseclass specifier for the class holding the main vtable). */
2415
2416 if (!read_baseclasses (&fi, pp, type, objfile)
2417 || !read_struct_fields (&fi, pp, type, objfile)
2418 || !attach_fields_to_type (&fi, type, objfile)
2419 || !read_member_functions (&fi, pp, type, objfile)
2420 || !attach_fn_fields_to_type (&fi, type)
2421 || !read_tilde_fields (&fi, pp, type, objfile))
2422 {
2423 do_cleanups (back_to);
2424 return (error_type (pp));
2425 }
2426
2427 do_cleanups (back_to);
2428 return (type);
2429 }
2430
2431 /* Read a definition of an array type,
2432 and create and return a suitable type object.
2433 Also creates a range type which represents the bounds of that
2434 array. */
2435
2436 static struct type *
2437 read_array_type (pp, type, objfile)
2438 register char **pp;
2439 register struct type *type;
2440 struct objfile *objfile;
2441 {
2442 struct type *index_type, *element_type, *range_type;
2443 int lower, upper;
2444 int adjustable = 0;
2445
2446 /* Format of an array type:
2447 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2448 to handle this.
2449
2450 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2451 for these, produce a type like float[][]. */
2452
2453 index_type = read_type (pp, objfile);
2454 if (**pp != ';')
2455 /* Improper format of array type decl. */
2456 return error_type (pp);
2457 ++*pp;
2458
2459 if (!(**pp >= '0' && **pp <= '9'))
2460 {
2461 (*pp)++;
2462 adjustable = 1;
2463 }
2464 lower = read_number (pp, ';');
2465
2466 if (!(**pp >= '0' && **pp <= '9'))
2467 {
2468 (*pp)++;
2469 adjustable = 1;
2470 }
2471 upper = read_number (pp, ';');
2472
2473 element_type = read_type (pp, objfile);
2474
2475 if (adjustable)
2476 {
2477 lower = 0;
2478 upper = -1;
2479 }
2480
2481 range_type =
2482 create_range_type ((struct type *) NULL, index_type, lower, upper);
2483 type = create_array_type (type, element_type, range_type);
2484
2485 /* If we have an array whose element type is not yet known, but whose
2486 bounds *are* known, record it to be adjusted at the end of the file. */
2487
2488 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2489 {
2490 add_undefined_type (type);
2491 }
2492
2493 return type;
2494 }
2495
2496
2497 /* Read a definition of an enumeration type,
2498 and create and return a suitable type object.
2499 Also defines the symbols that represent the values of the type. */
2500
2501 static struct type *
2502 read_enum_type (pp, type, objfile)
2503 register char **pp;
2504 register struct type *type;
2505 struct objfile *objfile;
2506 {
2507 register char *p;
2508 char *name;
2509 register long n;
2510 register struct symbol *sym;
2511 int nsyms = 0;
2512 struct pending **symlist;
2513 struct pending *osyms, *syms;
2514 int o_nsyms;
2515
2516 #if 0
2517 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2518 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2519 to do? For now, force all enum values to file scope. */
2520 if (within_function)
2521 symlist = &local_symbols;
2522 else
2523 #endif
2524 symlist = &file_symbols;
2525 osyms = *symlist;
2526 o_nsyms = osyms ? osyms->nsyms : 0;
2527
2528 /* Read the value-names and their values.
2529 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2530 A semicolon or comma instead of a NAME means the end. */
2531 while (**pp && **pp != ';' && **pp != ',')
2532 {
2533 STABS_CONTINUE (pp);
2534 p = *pp;
2535 while (*p != ':') p++;
2536 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2537 *pp = p + 1;
2538 n = read_number (pp, ',');
2539
2540 sym = (struct symbol *)
2541 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2542 memset (sym, 0, sizeof (struct symbol));
2543 SYMBOL_NAME (sym) = name;
2544 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2545 SYMBOL_CLASS (sym) = LOC_CONST;
2546 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2547 SYMBOL_VALUE (sym) = n;
2548 add_symbol_to_list (sym, symlist);
2549 nsyms++;
2550 }
2551
2552 if (**pp == ';')
2553 (*pp)++; /* Skip the semicolon. */
2554
2555 /* Now fill in the fields of the type-structure. */
2556
2557 TYPE_LENGTH (type) = sizeof (int);
2558 TYPE_CODE (type) = TYPE_CODE_ENUM;
2559 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2560 TYPE_NFIELDS (type) = nsyms;
2561 TYPE_FIELDS (type) = (struct field *)
2562 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2563 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2564
2565 /* Find the symbols for the values and put them into the type.
2566 The symbols can be found in the symlist that we put them on
2567 to cause them to be defined. osyms contains the old value
2568 of that symlist; everything up to there was defined by us. */
2569 /* Note that we preserve the order of the enum constants, so
2570 that in something like "enum {FOO, LAST_THING=FOO}" we print
2571 FOO, not LAST_THING. */
2572
2573 for (syms = *symlist, n = 0; syms; syms = syms->next)
2574 {
2575 int j = 0;
2576 if (syms == osyms)
2577 j = o_nsyms;
2578 for (; j < syms->nsyms; j++,n++)
2579 {
2580 struct symbol *xsym = syms->symbol[j];
2581 SYMBOL_TYPE (xsym) = type;
2582 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2583 TYPE_FIELD_VALUE (type, n) = 0;
2584 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2585 TYPE_FIELD_BITSIZE (type, n) = 0;
2586 }
2587 if (syms == osyms)
2588 break;
2589 }
2590
2591 #if 0
2592 /* This screws up perfectly good C programs with enums. FIXME. */
2593 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2594 if(TYPE_NFIELDS(type) == 2 &&
2595 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2596 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2597 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2598 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2599 TYPE_CODE(type) = TYPE_CODE_BOOL;
2600 #endif
2601
2602 return type;
2603 }
2604
2605 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2606 typedefs in every file (for int, long, etc):
2607
2608 type = b <signed> <width>; <offset>; <nbits>
2609 signed = u or s. Possible c in addition to u or s (for char?).
2610 offset = offset from high order bit to start bit of type.
2611 width is # bytes in object of this type, nbits is # bits in type.
2612
2613 The width/offset stuff appears to be for small objects stored in
2614 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2615 FIXME. */
2616
2617 static struct type *
2618 read_sun_builtin_type (pp, typenums, objfile)
2619 char **pp;
2620 int typenums[2];
2621 struct objfile *objfile;
2622 {
2623 int nbits;
2624 int signed_type;
2625
2626 switch (**pp)
2627 {
2628 case 's':
2629 signed_type = 1;
2630 break;
2631 case 'u':
2632 signed_type = 0;
2633 break;
2634 default:
2635 return error_type (pp);
2636 }
2637 (*pp)++;
2638
2639 /* For some odd reason, all forms of char put a c here. This is strange
2640 because no other type has this honor. We can safely ignore this because
2641 we actually determine 'char'acterness by the number of bits specified in
2642 the descriptor. */
2643
2644 if (**pp == 'c')
2645 (*pp)++;
2646
2647 /* The first number appears to be the number of bytes occupied
2648 by this type, except that unsigned short is 4 instead of 2.
2649 Since this information is redundant with the third number,
2650 we will ignore it. */
2651 read_number (pp, ';');
2652
2653 /* The second number is always 0, so ignore it too. */
2654 read_number (pp, ';');
2655
2656 /* The third number is the number of bits for this type. */
2657 nbits = read_number (pp, 0);
2658
2659 /* FIXME. Here we should just be able to make a type of the right
2660 number of bits and signedness. FIXME. */
2661
2662 if (nbits == TARGET_LONG_LONG_BIT)
2663 return (lookup_fundamental_type (objfile,
2664 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2665
2666 if (nbits == TARGET_INT_BIT)
2667 {
2668 /* FIXME -- the only way to distinguish `int' from `long'
2669 is to look at its name! */
2670 if (signed_type)
2671 {
2672 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2673 return lookup_fundamental_type (objfile, FT_LONG);
2674 else
2675 return lookup_fundamental_type (objfile, FT_INTEGER);
2676 }
2677 else
2678 {
2679 if (long_kludge_name
2680 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2681 long_kludge_name[9] == 'l' /* long */)
2682 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2683 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2684 else
2685 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2686 }
2687 }
2688
2689 if (nbits == TARGET_SHORT_BIT)
2690 return (lookup_fundamental_type (objfile,
2691 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2692
2693 if (nbits == TARGET_CHAR_BIT)
2694 return (lookup_fundamental_type (objfile,
2695 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2696
2697 if (nbits == 0)
2698 return lookup_fundamental_type (objfile, FT_VOID);
2699
2700 return error_type (pp);
2701 }
2702
2703 static struct type *
2704 read_sun_floating_type (pp, typenums, objfile)
2705 char **pp;
2706 int typenums[2];
2707 struct objfile *objfile;
2708 {
2709 int nbytes;
2710
2711 /* The first number has more details about the type, for example
2712 FN_COMPLEX. See the sun stab.h. */
2713 read_number (pp, ';');
2714
2715 /* The second number is the number of bytes occupied by this type */
2716 nbytes = read_number (pp, ';');
2717
2718 if (**pp != 0)
2719 return error_type (pp);
2720
2721 if (nbytes == TARGET_FLOAT_BIT / TARGET_CHAR_BIT)
2722 return lookup_fundamental_type (objfile, FT_FLOAT);
2723
2724 if (nbytes == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT)
2725 return lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
2726
2727 if (nbytes == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
2728 return lookup_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
2729
2730 return error_type (pp);
2731 }
2732
2733 /* Read a number from the string pointed to by *PP.
2734 The value of *PP is advanced over the number.
2735 If END is nonzero, the character that ends the
2736 number must match END, or an error happens;
2737 and that character is skipped if it does match.
2738 If END is zero, *PP is left pointing to that character.
2739
2740 If the number fits in a long, set *VALUE and set *BITS to 0.
2741 If not, set *BITS to be the number of bits in the number.
2742
2743 If encounter garbage, set *BITS to -1. */
2744
2745 static void
2746 read_huge_number (pp, end, valu, bits)
2747 char **pp;
2748 int end;
2749 long *valu;
2750 int *bits;
2751 {
2752 char *p = *pp;
2753 int sign = 1;
2754 long n = 0;
2755 int radix = 10;
2756 char overflow = 0;
2757 int nbits = 0;
2758 int c;
2759 long upper_limit;
2760
2761 if (*p == '-')
2762 {
2763 sign = -1;
2764 p++;
2765 }
2766
2767 /* Leading zero means octal. GCC uses this to output values larger
2768 than an int (because that would be hard in decimal). */
2769 if (*p == '0')
2770 {
2771 radix = 8;
2772 p++;
2773 }
2774
2775 upper_limit = LONG_MAX / radix;
2776 while ((c = *p++) >= '0' && c <= ('0' + radix))
2777 {
2778 if (n <= upper_limit)
2779 {
2780 n *= radix;
2781 n += c - '0'; /* FIXME this overflows anyway */
2782 }
2783 else
2784 overflow = 1;
2785
2786 /* This depends on large values being output in octal, which is
2787 what GCC does. */
2788 if (radix == 8)
2789 {
2790 if (nbits == 0)
2791 {
2792 if (c == '0')
2793 /* Ignore leading zeroes. */
2794 ;
2795 else if (c == '1')
2796 nbits = 1;
2797 else if (c == '2' || c == '3')
2798 nbits = 2;
2799 else
2800 nbits = 3;
2801 }
2802 else
2803 nbits += 3;
2804 }
2805 }
2806 if (end)
2807 {
2808 if (c && c != end)
2809 {
2810 if (bits != NULL)
2811 *bits = -1;
2812 return;
2813 }
2814 }
2815 else
2816 --p;
2817
2818 *pp = p;
2819 if (overflow)
2820 {
2821 if (nbits == 0)
2822 {
2823 /* Large decimal constants are an error (because it is hard to
2824 count how many bits are in them). */
2825 if (bits != NULL)
2826 *bits = -1;
2827 return;
2828 }
2829
2830 /* -0x7f is the same as 0x80. So deal with it by adding one to
2831 the number of bits. */
2832 if (sign == -1)
2833 ++nbits;
2834 if (bits)
2835 *bits = nbits;
2836 }
2837 else
2838 {
2839 if (valu)
2840 *valu = n * sign;
2841 if (bits)
2842 *bits = 0;
2843 }
2844 }
2845
2846 static struct type *
2847 read_range_type (pp, typenums, objfile)
2848 char **pp;
2849 int typenums[2];
2850 struct objfile *objfile;
2851 {
2852 int rangenums[2];
2853 long n2, n3;
2854 int n2bits, n3bits;
2855 int self_subrange;
2856 struct type *result_type;
2857 struct type *index_type;
2858
2859 /* First comes a type we are a subrange of.
2860 In C it is usually 0, 1 or the type being defined. */
2861 read_type_number (pp, rangenums);
2862 self_subrange = (rangenums[0] == typenums[0] &&
2863 rangenums[1] == typenums[1]);
2864
2865 /* A semicolon should now follow; skip it. */
2866 if (**pp == ';')
2867 (*pp)++;
2868
2869 /* The remaining two operands are usually lower and upper bounds
2870 of the range. But in some special cases they mean something else. */
2871 read_huge_number (pp, ';', &n2, &n2bits);
2872 read_huge_number (pp, ';', &n3, &n3bits);
2873
2874 if (n2bits == -1 || n3bits == -1)
2875 return error_type (pp);
2876
2877 /* If limits are huge, must be large integral type. */
2878 if (n2bits != 0 || n3bits != 0)
2879 {
2880 char got_signed = 0;
2881 char got_unsigned = 0;
2882 /* Number of bits in the type. */
2883 int nbits;
2884
2885 /* Range from 0 to <large number> is an unsigned large integral type. */
2886 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
2887 {
2888 got_unsigned = 1;
2889 nbits = n3bits;
2890 }
2891 /* Range from <large number> to <large number>-1 is a large signed
2892 integral type. */
2893 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
2894 {
2895 got_signed = 1;
2896 nbits = n2bits;
2897 }
2898
2899 /* Check for "long long". */
2900 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
2901 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
2902 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
2903 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2904
2905 if (got_signed || got_unsigned)
2906 {
2907 result_type = alloc_type (objfile);
2908 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
2909 TYPE_CODE (result_type) = TYPE_CODE_INT;
2910 if (got_unsigned)
2911 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
2912 return result_type;
2913 }
2914 else
2915 return error_type (pp);
2916 }
2917
2918 /* A type defined as a subrange of itself, with bounds both 0, is void. */
2919 if (self_subrange && n2 == 0 && n3 == 0)
2920 return (lookup_fundamental_type (objfile, FT_VOID));
2921
2922 /* If n3 is zero and n2 is not, we want a floating type,
2923 and n2 is the width in bytes.
2924
2925 Fortran programs appear to use this for complex types also,
2926 and they give no way to distinguish between double and single-complex!
2927 We don't have complex types, so we would lose on all fortran files!
2928 So return type `double' for all of those. It won't work right
2929 for the complex values, but at least it makes the file loadable.
2930
2931 FIXME, we may be able to distinguish these by their names. FIXME. */
2932
2933 if (n3 == 0 && n2 > 0)
2934 {
2935 if (n2 == sizeof (float))
2936 return (lookup_fundamental_type (objfile, FT_FLOAT));
2937 return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
2938 }
2939
2940 /* If the upper bound is -1, it must really be an unsigned int. */
2941
2942 else if (n2 == 0 && n3 == -1)
2943 {
2944 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2945 long' is to look at its name! */
2946 if (
2947 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2948 long_kludge_name[9] == 'l' /* long */)
2949 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2950 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2951 else
2952 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2953 }
2954
2955 /* Special case: char is defined (Who knows why) as a subrange of
2956 itself with range 0-127. */
2957 else if (self_subrange && n2 == 0 && n3 == 127)
2958 return (lookup_fundamental_type (objfile, FT_CHAR));
2959
2960 /* Assumptions made here: Subrange of self is equivalent to subrange
2961 of int. FIXME: Host and target type-sizes assumed the same. */
2962 /* FIXME: This is the *only* place in GDB that depends on comparing
2963 some type to a builtin type with ==. Fix it! */
2964 else if (n2 == 0
2965 && (self_subrange ||
2966 *dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
2967 {
2968 /* an unsigned type */
2969 #ifdef LONG_LONG
2970 if (n3 == - sizeof (long long))
2971 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2972 #endif
2973 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2974 long' is to look at its name! */
2975 if (n3 == (unsigned long)~0L &&
2976 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2977 long_kludge_name[9] == 'l' /* long */)
2978 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2979 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2980 if (n3 == (unsigned int)~0L)
2981 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2982 if (n3 == (unsigned short)~0L)
2983 return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
2984 if (n3 == (unsigned char)~0L)
2985 return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
2986 }
2987 #ifdef LONG_LONG
2988 else if (n3 == 0 && n2 == -sizeof (long long))
2989 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
2990 #endif
2991 else if (n2 == -n3 -1)
2992 {
2993 /* a signed type */
2994 /* FIXME -- the only way to distinguish `int' from `long' is to look
2995 at its name! */
2996 if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
2997 long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2998 return (lookup_fundamental_type (objfile, FT_LONG));
2999 if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
3000 return (lookup_fundamental_type (objfile, FT_INTEGER));
3001 if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
3002 return (lookup_fundamental_type (objfile, FT_SHORT));
3003 if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
3004 return (lookup_fundamental_type (objfile, FT_SIGNED_CHAR));
3005 }
3006
3007 /* We have a real range type on our hands. Allocate space and
3008 return a real pointer. */
3009
3010 /* At this point I don't have the faintest idea how to deal with
3011 a self_subrange type; I'm going to assume that this is used
3012 as an idiom, and that all of them are special cases. So . . . */
3013 if (self_subrange)
3014 return error_type (pp);
3015
3016 index_type = *dbx_lookup_type (rangenums);
3017 if (index_type == NULL)
3018 {
3019 complain (&range_type_base_complaint, rangenums[1]);
3020 index_type = lookup_fundamental_type (objfile, FT_INTEGER);
3021 }
3022
3023 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3024 return (result_type);
3025 }
3026
3027 /* Read a number from the string pointed to by *PP.
3028 The value of *PP is advanced over the number.
3029 If END is nonzero, the character that ends the
3030 number must match END, or an error happens;
3031 and that character is skipped if it does match.
3032 If END is zero, *PP is left pointing to that character. */
3033
3034 long
3035 read_number (pp, end)
3036 char **pp;
3037 int end;
3038 {
3039 register char *p = *pp;
3040 register long n = 0;
3041 register int c;
3042 int sign = 1;
3043
3044 /* Handle an optional leading minus sign. */
3045
3046 if (*p == '-')
3047 {
3048 sign = -1;
3049 p++;
3050 }
3051
3052 /* Read the digits, as far as they go. */
3053
3054 while ((c = *p++) >= '0' && c <= '9')
3055 {
3056 n *= 10;
3057 n += c - '0';
3058 }
3059 if (end)
3060 {
3061 if (c && c != end)
3062 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
3063 }
3064 else
3065 --p;
3066
3067 *pp = p;
3068 return n * sign;
3069 }
3070
3071 /* Read in an argument list. This is a list of types, separated by commas
3072 and terminated with END. Return the list of types read in, or (struct type
3073 **)-1 if there is an error. */
3074
3075 static struct type **
3076 read_args (pp, end, objfile)
3077 char **pp;
3078 int end;
3079 struct objfile *objfile;
3080 {
3081 /* FIXME! Remove this arbitrary limit! */
3082 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3083 int n = 0;
3084
3085 while (**pp != end)
3086 {
3087 if (**pp != ',')
3088 /* Invalid argument list: no ','. */
3089 return (struct type **)-1;
3090 (*pp)++;
3091 STABS_CONTINUE (pp);
3092 types[n++] = read_type (pp, objfile);
3093 }
3094 (*pp)++; /* get past `end' (the ':' character) */
3095
3096 if (n == 1)
3097 {
3098 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3099 }
3100 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3101 {
3102 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3103 memset (rval + n, 0, sizeof (struct type *));
3104 }
3105 else
3106 {
3107 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3108 }
3109 memcpy (rval, types, n * sizeof (struct type *));
3110 return rval;
3111 }
3112
3113 /* Add a common block's start address to the offset of each symbol
3114 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3115 the common block name). */
3116
3117 static void
3118 fix_common_block (sym, valu)
3119 struct symbol *sym;
3120 int valu;
3121 {
3122 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3123 for ( ; next; next = next->next)
3124 {
3125 register int j;
3126 for (j = next->nsyms - 1; j >= 0; j--)
3127 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3128 }
3129 }
3130
3131
3132 \f
3133 /* What about types defined as forward references inside of a small lexical
3134 scope? */
3135 /* Add a type to the list of undefined types to be checked through
3136 once this file has been read in. */
3137
3138 void
3139 add_undefined_type (type)
3140 struct type *type;
3141 {
3142 if (undef_types_length == undef_types_allocated)
3143 {
3144 undef_types_allocated *= 2;
3145 undef_types = (struct type **)
3146 xrealloc ((char *) undef_types,
3147 undef_types_allocated * sizeof (struct type *));
3148 }
3149 undef_types[undef_types_length++] = type;
3150 }
3151
3152 /* Go through each undefined type, see if it's still undefined, and fix it
3153 up if possible. We have two kinds of undefined types:
3154
3155 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3156 Fix: update array length using the element bounds
3157 and the target type's length.
3158 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3159 yet defined at the time a pointer to it was made.
3160 Fix: Do a full lookup on the struct/union tag. */
3161 void
3162 cleanup_undefined_types ()
3163 {
3164 struct type **type;
3165
3166 for (type = undef_types; type < undef_types + undef_types_length; type++)
3167 {
3168 switch (TYPE_CODE (*type))
3169 {
3170
3171 case TYPE_CODE_STRUCT:
3172 case TYPE_CODE_UNION:
3173 case TYPE_CODE_ENUM:
3174 {
3175 /* Check if it has been defined since. */
3176 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3177 {
3178 struct pending *ppt;
3179 int i;
3180 /* Name of the type, without "struct" or "union" */
3181 char *typename = TYPE_NAME (*type);
3182
3183 if (!strncmp (typename, "struct ", 7))
3184 typename += 7;
3185 if (!strncmp (typename, "union ", 6))
3186 typename += 6;
3187 if (!strncmp (typename, "enum ", 5))
3188 typename += 5;
3189
3190 for (ppt = file_symbols; ppt; ppt = ppt->next)
3191 {
3192 for (i = 0; i < ppt->nsyms; i++)
3193 {
3194 struct symbol *sym = ppt->symbol[i];
3195
3196 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3197 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3198 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3199 TYPE_CODE (*type))
3200 && STREQ (SYMBOL_NAME (sym), typename))
3201 {
3202 memcpy (*type, SYMBOL_TYPE (sym),
3203 sizeof (struct type));
3204 }
3205 }
3206 }
3207 }
3208 }
3209 break;
3210
3211 case TYPE_CODE_ARRAY:
3212 {
3213 struct type *range_type;
3214 int lower, upper;
3215
3216 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3217 goto badtype;
3218 if (TYPE_NFIELDS (*type) != 1)
3219 goto badtype;
3220 range_type = TYPE_FIELD_TYPE (*type, 0);
3221 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3222 goto badtype;
3223
3224 /* Now recompute the length of the array type, based on its
3225 number of elements and the target type's length. */
3226 lower = TYPE_FIELD_BITPOS (range_type, 0);
3227 upper = TYPE_FIELD_BITPOS (range_type, 1);
3228 TYPE_LENGTH (*type) = (upper - lower + 1)
3229 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3230 }
3231 break;
3232
3233 default:
3234 badtype:
3235 error ("GDB internal error. cleanup_undefined_types with bad type %d.", TYPE_CODE (*type));
3236 break;
3237 }
3238 }
3239 undef_types_length = 0;
3240 }
3241
3242 /* Scan through all of the global symbols defined in the object file,
3243 assigning values to the debugging symbols that need to be assigned
3244 to. Get these symbols from the minimal symbol table. */
3245
3246 void
3247 scan_file_globals (objfile)
3248 struct objfile *objfile;
3249 {
3250 int hash;
3251 struct minimal_symbol *msymbol;
3252 struct symbol *sym, *prev;
3253
3254 if (objfile->msymbols == 0) /* Beware the null file. */
3255 return;
3256
3257 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3258 {
3259 QUIT;
3260
3261 prev = NULL;
3262
3263 /* Get the hash index and check all the symbols
3264 under that hash index. */
3265
3266 hash = hashname (SYMBOL_NAME (msymbol));
3267
3268 for (sym = global_sym_chain[hash]; sym;)
3269 {
3270 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3271 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3272 {
3273 /* Splice this symbol out of the hash chain and
3274 assign the value we have to it. */
3275 if (prev)
3276 {
3277 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3278 }
3279 else
3280 {
3281 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3282 }
3283
3284 /* Check to see whether we need to fix up a common block. */
3285 /* Note: this code might be executed several times for
3286 the same symbol if there are multiple references. */
3287
3288 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3289 {
3290 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3291 }
3292 else
3293 {
3294 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3295 }
3296
3297 if (prev)
3298 {
3299 sym = SYMBOL_VALUE_CHAIN (prev);
3300 }
3301 else
3302 {
3303 sym = global_sym_chain[hash];
3304 }
3305 }
3306 else
3307 {
3308 prev = sym;
3309 sym = SYMBOL_VALUE_CHAIN (sym);
3310 }
3311 }
3312 }
3313 }
3314
3315 /* Initialize anything that needs initializing when starting to read
3316 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3317 to a psymtab. */
3318
3319 void
3320 stabsread_init ()
3321 {
3322 }
3323
3324 /* Initialize anything that needs initializing when a completely new
3325 symbol file is specified (not just adding some symbols from another
3326 file, e.g. a shared library). */
3327
3328 void
3329 stabsread_new_init ()
3330 {
3331 /* Empty the hash table of global syms looking for values. */
3332 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3333 }
3334
3335 /* Initialize anything that needs initializing at the same time as
3336 start_symtab() is called. */
3337
3338 void start_stabs ()
3339 {
3340 global_stabs = NULL; /* AIX COFF */
3341 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3342 n_this_object_header_files = 1;
3343 type_vector_length = 0;
3344 type_vector = (struct type **) 0;
3345 }
3346
3347 /* Call after end_symtab() */
3348
3349 void end_stabs ()
3350 {
3351 if (type_vector)
3352 {
3353 free ((char *) type_vector);
3354 }
3355 type_vector = 0;
3356 type_vector_length = 0;
3357 previous_stab_code = 0;
3358 }
3359
3360 void
3361 finish_global_stabs (objfile)
3362 struct objfile *objfile;
3363 {
3364 if (global_stabs)
3365 {
3366 patch_block_stabs (global_symbols, global_stabs, objfile);
3367 free ((PTR) global_stabs);
3368 global_stabs = NULL;
3369 }
3370 }
3371
3372 /* Initializer for this module */
3373
3374 void
3375 _initialize_stabsread ()
3376 {
3377 undef_types_allocated = 20;
3378 undef_types_length = 0;
3379 undef_types = (struct type **)
3380 xmalloc (undef_types_allocated * sizeof (struct type *));
3381 }
This page took 0.100621 seconds and 4 git commands to generate.