Add a fall-through comment to stabsread.c
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 struct nextfield
56 {
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65 };
66
67 struct next_fnfieldlist
68 {
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71 };
72
73 /* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
77 expected to eventually go away... (FIXME) */
78
79 struct field_info
80 {
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
83 };
84
85 static void
86 read_one_struct_field (struct field_info *, const char **, const char *,
87 struct type *, struct objfile *);
88
89 static struct type *dbx_alloc_type (int[2], struct objfile *);
90
91 static long read_huge_number (const char **, int, int *, int);
92
93 static struct type *error_type (const char **, struct objfile *);
94
95 static void
96 patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
98
99 static void fix_common_block (struct symbol *, CORE_ADDR);
100
101 static int read_type_number (const char **, int *);
102
103 static struct type *read_type (const char **, struct objfile *);
104
105 static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (const char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, const char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, const char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, const char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, const char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (const char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (const char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, const char **, struct type *,
153 struct objfile *);
154
155 static const char *find_name_end (const char *name);
156
157 static int process_reference (const char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (&symfile_complaints,
253 _("Invalid symbol data: type number "
254 "(%d,%d) out of range at symtab pos %d."),
255 filenum, index, symnum);
256 goto error_return;
257 }
258
259 if (filenum == 0)
260 {
261 if (index < 0)
262 {
263 /* Caller wants address of address of type. We think
264 that negative (rs6k builtin) types will never appear as
265 "lvalues", (nor should they), so we stuff the real type
266 pointer into a temp, and return its address. If referenced,
267 this will do the right thing. */
268 static struct type *temp_type;
269
270 temp_type = rs6000_builtin_type (index, objfile);
271 return &temp_type;
272 }
273
274 /* Type is defined outside of header files.
275 Find it in this object file's type vector. */
276 if (index >= type_vector_length)
277 {
278 old_len = type_vector_length;
279 if (old_len == 0)
280 {
281 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
282 type_vector = XNEWVEC (struct type *, type_vector_length);
283 }
284 while (index >= type_vector_length)
285 {
286 type_vector_length *= 2;
287 }
288 type_vector = (struct type **)
289 xrealloc ((char *) type_vector,
290 (type_vector_length * sizeof (struct type *)));
291 memset (&type_vector[old_len], 0,
292 (type_vector_length - old_len) * sizeof (struct type *));
293 }
294 return (&type_vector[index]);
295 }
296 else
297 {
298 real_filenum = this_object_header_files[filenum];
299
300 if (real_filenum >= N_HEADER_FILES (objfile))
301 {
302 static struct type *temp_type;
303
304 warning (_("GDB internal error: bad real_filenum"));
305
306 error_return:
307 temp_type = objfile_type (objfile)->builtin_error;
308 return &temp_type;
309 }
310
311 f = HEADER_FILES (objfile) + real_filenum;
312
313 f_orig_length = f->length;
314 if (index >= f_orig_length)
315 {
316 while (index >= f->length)
317 {
318 f->length *= 2;
319 }
320 f->vector = (struct type **)
321 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
322 memset (&f->vector[f_orig_length], 0,
323 (f->length - f_orig_length) * sizeof (struct type *));
324 }
325 return (&f->vector[index]);
326 }
327 }
328
329 /* Make sure there is a type allocated for type numbers TYPENUMS
330 and return the type object.
331 This can create an empty (zeroed) type object.
332 TYPENUMS may be (-1, -1) to return a new type object that is not
333 put into the type vector, and so may not be referred to by number. */
334
335 static struct type *
336 dbx_alloc_type (int typenums[2], struct objfile *objfile)
337 {
338 struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums, objfile);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* Allocate a floating-point type of size BITS. */
359
360 static struct type *
361 dbx_init_float_type (struct objfile *objfile, int bits)
362 {
363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
364 const struct floatformat **format;
365 struct type *type;
366
367 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
368 if (format)
369 type = init_float_type (objfile, bits, NULL, format);
370 else
371 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
372
373 return type;
374 }
375
376 /* for all the stabs in a given stab vector, build appropriate types
377 and fix their symbols in given symbol vector. */
378
379 static void
380 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
381 struct objfile *objfile)
382 {
383 int ii;
384 char *name;
385 const char *pp;
386 struct symbol *sym;
387
388 if (stabs)
389 {
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char *) strchr (name, ':');
397 gdb_assert (pp); /* Must find a ':' or game's over. */
398 while (pp[1] == ':')
399 {
400 pp += 2;
401 pp = (char *) strchr (pp, ':');
402 }
403 sym = find_symbol_in_list (symbols, name, pp - name);
404 if (!sym)
405 {
406 /* FIXME-maybe: it would be nice if we noticed whether
407 the variable was defined *anywhere*, not just whether
408 it is defined in this compilation unit. But neither
409 xlc or GCC seem to need such a definition, and until
410 we do psymtabs (so that the minimal symbols from all
411 compilation units are available now), I'm not sure
412 how to get the information. */
413
414 /* On xcoff, if a global is defined and never referenced,
415 ld will remove it from the executable. There is then
416 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
417 sym = allocate_symbol (objfile);
418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
419 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
420 SYMBOL_SET_LINKAGE_NAME
421 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
422 name, pp - name));
423 pp += 2;
424 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
425 {
426 /* I don't think the linker does this with functions,
427 so as far as I know this is never executed.
428 But it doesn't hurt to check. */
429 SYMBOL_TYPE (sym) =
430 lookup_function_type (read_type (&pp, objfile));
431 }
432 else
433 {
434 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
435 }
436 add_symbol_to_list (sym, &global_symbols);
437 }
438 else
439 {
440 pp += 2;
441 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
442 {
443 SYMBOL_TYPE (sym) =
444 lookup_function_type (read_type (&pp, objfile));
445 }
446 else
447 {
448 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
449 }
450 }
451 }
452 }
453 }
454 \f
455
456 /* Read a number by which a type is referred to in dbx data,
457 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
458 Just a single number N is equivalent to (0,N).
459 Return the two numbers by storing them in the vector TYPENUMS.
460 TYPENUMS will then be used as an argument to dbx_lookup_type.
461
462 Returns 0 for success, -1 for error. */
463
464 static int
465 read_type_number (const char **pp, int *typenums)
466 {
467 int nbits;
468
469 if (**pp == '(')
470 {
471 (*pp)++;
472 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
473 if (nbits != 0)
474 return -1;
475 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 }
479 else
480 {
481 typenums[0] = 0;
482 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 return 0;
487 }
488 \f
489
490 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
491 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
492 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
493 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
494
495 /* Structure for storing pointers to reference definitions for fast lookup
496 during "process_later". */
497
498 struct ref_map
499 {
500 const char *stabs;
501 CORE_ADDR value;
502 struct symbol *sym;
503 };
504
505 #define MAX_CHUNK_REFS 100
506 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
507 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
508
509 static struct ref_map *ref_map;
510
511 /* Ptr to free cell in chunk's linked list. */
512 static int ref_count = 0;
513
514 /* Number of chunks malloced. */
515 static int ref_chunk = 0;
516
517 /* This file maintains a cache of stabs aliases found in the symbol
518 table. If the symbol table changes, this cache must be cleared
519 or we are left holding onto data in invalid obstacks. */
520 void
521 stabsread_clear_cache (void)
522 {
523 ref_count = 0;
524 ref_chunk = 0;
525 }
526
527 /* Create array of pointers mapping refids to symbols and stab strings.
528 Add pointers to reference definition symbols and/or their values as we
529 find them, using their reference numbers as our index.
530 These will be used later when we resolve references. */
531 void
532 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
533 {
534 if (ref_count == 0)
535 ref_chunk = 0;
536 if (refnum >= ref_count)
537 ref_count = refnum + 1;
538 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
539 {
540 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
541 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
542
543 ref_map = (struct ref_map *)
544 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
545 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
546 new_chunks * REF_CHUNK_SIZE);
547 ref_chunk += new_chunks;
548 }
549 ref_map[refnum].stabs = stabs;
550 ref_map[refnum].sym = sym;
551 ref_map[refnum].value = value;
552 }
553
554 /* Return defined sym for the reference REFNUM. */
555 struct symbol *
556 ref_search (int refnum)
557 {
558 if (refnum < 0 || refnum > ref_count)
559 return 0;
560 return ref_map[refnum].sym;
561 }
562
563 /* Parse a reference id in STRING and return the resulting
564 reference number. Move STRING beyond the reference id. */
565
566 static int
567 process_reference (const char **string)
568 {
569 const char *p;
570 int refnum = 0;
571
572 if (**string != '#')
573 return 0;
574
575 /* Advance beyond the initial '#'. */
576 p = *string + 1;
577
578 /* Read number as reference id. */
579 while (*p && isdigit (*p))
580 {
581 refnum = refnum * 10 + *p - '0';
582 p++;
583 }
584 *string = p;
585 return refnum;
586 }
587
588 /* If STRING defines a reference, store away a pointer to the reference
589 definition for later use. Return the reference number. */
590
591 int
592 symbol_reference_defined (const char **string)
593 {
594 const char *p = *string;
595 int refnum = 0;
596
597 refnum = process_reference (&p);
598
599 /* Defining symbols end in '='. */
600 if (*p == '=')
601 {
602 /* Symbol is being defined here. */
603 *string = p + 1;
604 return refnum;
605 }
606 else
607 {
608 /* Must be a reference. Either the symbol has already been defined,
609 or this is a forward reference to it. */
610 *string = p;
611 return -1;
612 }
613 }
614
615 static int
616 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
617 {
618 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
619
620 if (regno < 0
621 || regno >= (gdbarch_num_regs (gdbarch)
622 + gdbarch_num_pseudo_regs (gdbarch)))
623 {
624 reg_value_complaint (regno,
625 gdbarch_num_regs (gdbarch)
626 + gdbarch_num_pseudo_regs (gdbarch),
627 SYMBOL_PRINT_NAME (sym));
628
629 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
630 }
631
632 return regno;
633 }
634
635 static const struct symbol_register_ops stab_register_funcs = {
636 stab_reg_to_regnum
637 };
638
639 /* The "aclass" indices for computed symbols. */
640
641 static int stab_register_index;
642 static int stab_regparm_index;
643
644 struct symbol *
645 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
646 struct objfile *objfile)
647 {
648 struct gdbarch *gdbarch = get_objfile_arch (objfile);
649 struct symbol *sym;
650 const char *p = find_name_end (string);
651 int deftype;
652 int synonym = 0;
653 int i;
654
655 /* We would like to eliminate nameless symbols, but keep their types.
656 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
657 to type 2, but, should not create a symbol to address that type. Since
658 the symbol will be nameless, there is no way any user can refer to it. */
659
660 int nameless;
661
662 /* Ignore syms with empty names. */
663 if (string[0] == 0)
664 return 0;
665
666 /* Ignore old-style symbols from cc -go. */
667 if (p == 0)
668 return 0;
669
670 while (p[1] == ':')
671 {
672 p += 2;
673 p = strchr (p, ':');
674 if (p == NULL)
675 {
676 complaint (&symfile_complaints,
677 _("Bad stabs string '%s'"), string);
678 return NULL;
679 }
680 }
681
682 /* If a nameless stab entry, all we need is the type, not the symbol.
683 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
684 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685
686 current_symbol = sym = allocate_symbol (objfile);
687
688 if (processing_gcc_compilation)
689 {
690 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
691 number of bytes occupied by a type or object, which we ignore. */
692 SYMBOL_LINE (sym) = desc;
693 }
694 else
695 {
696 SYMBOL_LINE (sym) = 0; /* unknown */
697 }
698
699 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
700 &objfile->objfile_obstack);
701
702 if (is_cplus_marker (string[0]))
703 {
704 /* Special GNU C++ names. */
705 switch (string[1])
706 {
707 case 't':
708 SYMBOL_SET_LINKAGE_NAME (sym, "this");
709 break;
710
711 case 'v': /* $vtbl_ptr_type */
712 goto normal;
713
714 case 'e':
715 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
716 break;
717
718 case '_':
719 /* This was an anonymous type that was never fixed up. */
720 goto normal;
721
722 case 'X':
723 /* SunPRO (3.0 at least) static variable encoding. */
724 if (gdbarch_static_transform_name_p (gdbarch))
725 goto normal;
726 /* fall through */
727
728 default:
729 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
730 string);
731 goto normal; /* Do *something* with it. */
732 }
733 }
734 else
735 {
736 normal:
737 std::string new_name;
738
739 if (SYMBOL_LANGUAGE (sym) == language_cplus)
740 {
741 char *name = (char *) alloca (p - string + 1);
742
743 memcpy (name, string, p - string);
744 name[p - string] = '\0';
745 new_name = cp_canonicalize_string (name);
746 }
747 if (!new_name.empty ())
748 {
749 SYMBOL_SET_NAMES (sym,
750 new_name.c_str (), new_name.length (),
751 1, objfile);
752 }
753 else
754 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
755
756 if (SYMBOL_LANGUAGE (sym) == language_cplus)
757 cp_scan_for_anonymous_namespaces (sym, objfile);
758
759 }
760 p++;
761
762 /* Determine the type of name being defined. */
763 #if 0
764 /* Getting GDB to correctly skip the symbol on an undefined symbol
765 descriptor and not ever dump core is a very dodgy proposition if
766 we do things this way. I say the acorn RISC machine can just
767 fix their compiler. */
768 /* The Acorn RISC machine's compiler can put out locals that don't
769 start with "234=" or "(3,4)=", so assume anything other than the
770 deftypes we know how to handle is a local. */
771 if (!strchr ("cfFGpPrStTvVXCR", *p))
772 #else
773 if (isdigit (*p) || *p == '(' || *p == '-')
774 #endif
775 deftype = 'l';
776 else
777 deftype = *p++;
778
779 switch (deftype)
780 {
781 case 'c':
782 /* c is a special case, not followed by a type-number.
783 SYMBOL:c=iVALUE for an integer constant symbol.
784 SYMBOL:c=rVALUE for a floating constant symbol.
785 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
786 e.g. "b:c=e6,0" for "const b = blob1"
787 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
788 if (*p != '=')
789 {
790 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
791 SYMBOL_TYPE (sym) = error_type (&p, objfile);
792 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
793 add_symbol_to_list (sym, &file_symbols);
794 return sym;
795 }
796 ++p;
797 switch (*p++)
798 {
799 case 'r':
800 {
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 dbl_type = objfile_type (objfile)->builtin_double;
805 dbl_valu
806 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
807 TYPE_LENGTH (dbl_type));
808
809 target_float_from_string (dbl_valu, dbl_type, std::string (p));
810
811 SYMBOL_TYPE (sym) = dbl_type;
812 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
814 }
815 break;
816 case 'i':
817 {
818 /* Defining integer constants this way is kind of silly,
819 since 'e' constants allows the compiler to give not
820 only the value, but the type as well. C has at least
821 int, long, unsigned int, and long long as constant
822 types; other languages probably should have at least
823 unsigned as well as signed constants. */
824
825 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
826 SYMBOL_VALUE (sym) = atoi (p);
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 }
829 break;
830
831 case 'c':
832 {
833 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
834 SYMBOL_VALUE (sym) = atoi (p);
835 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
836 }
837 break;
838
839 case 's':
840 {
841 struct type *range_type;
842 int ind = 0;
843 char quote = *p++;
844 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
845 gdb_byte *string_value;
846
847 if (quote != '\'' && quote != '"')
848 {
849 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
850 SYMBOL_TYPE (sym) = error_type (&p, objfile);
851 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
852 add_symbol_to_list (sym, &file_symbols);
853 return sym;
854 }
855
856 /* Find matching quote, rejecting escaped quotes. */
857 while (*p && *p != quote)
858 {
859 if (*p == '\\' && p[1] == quote)
860 {
861 string_local[ind] = (gdb_byte) quote;
862 ind++;
863 p += 2;
864 }
865 else if (*p)
866 {
867 string_local[ind] = (gdb_byte) (*p);
868 ind++;
869 p++;
870 }
871 }
872 if (*p != quote)
873 {
874 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
875 SYMBOL_TYPE (sym) = error_type (&p, objfile);
876 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
877 add_symbol_to_list (sym, &file_symbols);
878 return sym;
879 }
880
881 /* NULL terminate the string. */
882 string_local[ind] = 0;
883 range_type
884 = create_static_range_type (NULL,
885 objfile_type (objfile)->builtin_int,
886 0, ind);
887 SYMBOL_TYPE (sym) = create_array_type (NULL,
888 objfile_type (objfile)->builtin_char,
889 range_type);
890 string_value
891 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
892 memcpy (string_value, string_local, ind + 1);
893 p++;
894
895 SYMBOL_VALUE_BYTES (sym) = string_value;
896 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
897 }
898 break;
899
900 case 'e':
901 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
902 can be represented as integral.
903 e.g. "b:c=e6,0" for "const b = blob1"
904 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908
909 if (*p != ',')
910 {
911 SYMBOL_TYPE (sym) = error_type (&p, objfile);
912 break;
913 }
914 ++p;
915
916 /* If the value is too big to fit in an int (perhaps because
917 it is unsigned), or something like that, we silently get
918 a bogus value. The type and everything else about it is
919 correct. Ideally, we should be using whatever we have
920 available for parsing unsigned and long long values,
921 however. */
922 SYMBOL_VALUE (sym) = atoi (p);
923 }
924 break;
925 default:
926 {
927 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
928 SYMBOL_TYPE (sym) = error_type (&p, objfile);
929 }
930 }
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &file_symbols);
933 return sym;
934
935 case 'C':
936 /* The name of a caught exception. */
937 SYMBOL_TYPE (sym) = read_type (&p, objfile);
938 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
939 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
940 SYMBOL_VALUE_ADDRESS (sym) = valu;
941 add_symbol_to_list (sym, &local_symbols);
942 break;
943
944 case 'f':
945 /* A static function definition. */
946 SYMBOL_TYPE (sym) = read_type (&p, objfile);
947 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &file_symbols);
950 /* fall into process_function_types. */
951
952 process_function_types:
953 /* Function result types are described as the result type in stabs.
954 We need to convert this to the function-returning-type-X type
955 in GDB. E.g. "int" is converted to "function returning int". */
956 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
957 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
958
959 /* All functions in C++ have prototypes. Stabs does not offer an
960 explicit way to identify prototyped or unprototyped functions,
961 but both GCC and Sun CC emit stabs for the "call-as" type rather
962 than the "declared-as" type for unprototyped functions, so
963 we treat all functions as if they were prototyped. This is used
964 primarily for promotion when calling the function from GDB. */
965 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
966
967 /* fall into process_prototype_types. */
968
969 process_prototype_types:
970 /* Sun acc puts declared types of arguments here. */
971 if (*p == ';')
972 {
973 struct type *ftype = SYMBOL_TYPE (sym);
974 int nsemi = 0;
975 int nparams = 0;
976 const char *p1 = p;
977
978 /* Obtain a worst case guess for the number of arguments
979 by counting the semicolons. */
980 while (*p1)
981 {
982 if (*p1++ == ';')
983 nsemi++;
984 }
985
986 /* Allocate parameter information fields and fill them in. */
987 TYPE_FIELDS (ftype) = (struct field *)
988 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
989 while (*p++ == ';')
990 {
991 struct type *ptype;
992
993 /* A type number of zero indicates the start of varargs.
994 FIXME: GDB currently ignores vararg functions. */
995 if (p[0] == '0' && p[1] == '\0')
996 break;
997 ptype = read_type (&p, objfile);
998
999 /* The Sun compilers mark integer arguments, which should
1000 be promoted to the width of the calling conventions, with
1001 a type which references itself. This type is turned into
1002 a TYPE_CODE_VOID type by read_type, and we have to turn
1003 it back into builtin_int here.
1004 FIXME: Do we need a new builtin_promoted_int_arg ? */
1005 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1006 ptype = objfile_type (objfile)->builtin_int;
1007 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1008 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1009 }
1010 TYPE_NFIELDS (ftype) = nparams;
1011 TYPE_PROTOTYPED (ftype) = 1;
1012 }
1013 break;
1014
1015 case 'F':
1016 /* A global function definition. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1019 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1020 add_symbol_to_list (sym, &global_symbols);
1021 goto process_function_types;
1022
1023 case 'G':
1024 /* For a class G (global) symbol, it appears that the
1025 value is not correct. It is necessary to search for the
1026 corresponding linker definition to find the value.
1027 These definitions appear at the end of the namelist. */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1030 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031 /* Don't add symbol references to global_sym_chain.
1032 Symbol references don't have valid names and wont't match up with
1033 minimal symbols when the global_sym_chain is relocated.
1034 We'll fixup symbol references when we fixup the defining symbol. */
1035 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1036 {
1037 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1038 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1039 global_sym_chain[i] = sym;
1040 }
1041 add_symbol_to_list (sym, &global_symbols);
1042 break;
1043
1044 /* This case is faked by a conditional above,
1045 when there is no code letter in the dbx data.
1046 Dbx data never actually contains 'l'. */
1047 case 's':
1048 case 'l':
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1051 SYMBOL_VALUE (sym) = valu;
1052 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1053 add_symbol_to_list (sym, &local_symbols);
1054 break;
1055
1056 case 'p':
1057 if (*p == 'F')
1058 /* pF is a two-letter code that means a function parameter in Fortran.
1059 The type-number specifies the type of the return value.
1060 Translate it into a pointer-to-function type. */
1061 {
1062 p++;
1063 SYMBOL_TYPE (sym)
1064 = lookup_pointer_type
1065 (lookup_function_type (read_type (&p, objfile)));
1066 }
1067 else
1068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1069
1070 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1071 SYMBOL_VALUE (sym) = valu;
1072 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1073 SYMBOL_IS_ARGUMENT (sym) = 1;
1074 add_symbol_to_list (sym, &local_symbols);
1075
1076 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1077 {
1078 /* On little-endian machines, this crud is never necessary,
1079 and, if the extra bytes contain garbage, is harmful. */
1080 break;
1081 }
1082
1083 /* If it's gcc-compiled, if it says `short', believe it. */
1084 if (processing_gcc_compilation
1085 || gdbarch_believe_pcc_promotion (gdbarch))
1086 break;
1087
1088 if (!gdbarch_believe_pcc_promotion (gdbarch))
1089 {
1090 /* If PCC says a parameter is a short or a char, it is
1091 really an int. */
1092 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1093 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1094 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1095 {
1096 SYMBOL_TYPE (sym) =
1097 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1098 ? objfile_type (objfile)->builtin_unsigned_int
1099 : objfile_type (objfile)->builtin_int;
1100 }
1101 break;
1102 }
1103 /* Fall through. */
1104
1105 case 'P':
1106 /* acc seems to use P to declare the prototypes of functions that
1107 are referenced by this file. gdb is not prepared to deal
1108 with this extra information. FIXME, it ought to. */
1109 if (type == N_FUN)
1110 {
1111 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1112 goto process_prototype_types;
1113 }
1114 /*FALLTHROUGH */
1115
1116 case 'R':
1117 /* Parameter which is in a register. */
1118 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1119 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1120 SYMBOL_IS_ARGUMENT (sym) = 1;
1121 SYMBOL_VALUE (sym) = valu;
1122 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1123 add_symbol_to_list (sym, &local_symbols);
1124 break;
1125
1126 case 'r':
1127 /* Register variable (either global or local). */
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1130 SYMBOL_VALUE (sym) = valu;
1131 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1132 if (within_function)
1133 {
1134 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1135 the same name to represent an argument passed in a
1136 register. GCC uses 'P' for the same case. So if we find
1137 such a symbol pair we combine it into one 'P' symbol.
1138 For Sun cc we need to do this regardless of
1139 stabs_argument_has_addr, because the compiler puts out
1140 the 'p' symbol even if it never saves the argument onto
1141 the stack.
1142
1143 On most machines, we want to preserve both symbols, so
1144 that we can still get information about what is going on
1145 with the stack (VAX for computing args_printed, using
1146 stack slots instead of saved registers in backtraces,
1147 etc.).
1148
1149 Note that this code illegally combines
1150 main(argc) struct foo argc; { register struct foo argc; }
1151 but this case is considered pathological and causes a warning
1152 from a decent compiler. */
1153
1154 if (local_symbols
1155 && local_symbols->nsyms > 0
1156 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1157 {
1158 struct symbol *prev_sym;
1159
1160 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1161 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1162 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1163 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1164 SYMBOL_LINKAGE_NAME (sym)) == 0)
1165 {
1166 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1167 /* Use the type from the LOC_REGISTER; that is the type
1168 that is actually in that register. */
1169 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1170 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1171 sym = prev_sym;
1172 break;
1173 }
1174 }
1175 add_symbol_to_list (sym, &local_symbols);
1176 }
1177 else
1178 add_symbol_to_list (sym, &file_symbols);
1179 break;
1180
1181 case 'S':
1182 /* Static symbol at top level of file. */
1183 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1184 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1185 SYMBOL_VALUE_ADDRESS (sym) = valu;
1186 if (gdbarch_static_transform_name_p (gdbarch)
1187 && gdbarch_static_transform_name (gdbarch,
1188 SYMBOL_LINKAGE_NAME (sym))
1189 != SYMBOL_LINKAGE_NAME (sym))
1190 {
1191 struct bound_minimal_symbol msym;
1192
1193 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1194 NULL, objfile);
1195 if (msym.minsym != NULL)
1196 {
1197 const char *new_name = gdbarch_static_transform_name
1198 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1199
1200 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1201 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1202 }
1203 }
1204 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1205 add_symbol_to_list (sym, &file_symbols);
1206 break;
1207
1208 case 't':
1209 /* In Ada, there is no distinction between typedef and non-typedef;
1210 any type declaration implicitly has the equivalent of a typedef,
1211 and thus 't' is in fact equivalent to 'Tt'.
1212
1213 Therefore, for Ada units, we check the character immediately
1214 before the 't', and if we do not find a 'T', then make sure to
1215 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1216 will be stored in the VAR_DOMAIN). If the symbol was indeed
1217 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1218 elsewhere, so we don't need to take care of that.
1219
1220 This is important to do, because of forward references:
1221 The cleanup of undefined types stored in undef_types only uses
1222 STRUCT_DOMAIN symbols to perform the replacement. */
1223 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1224
1225 /* Typedef */
1226 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1227
1228 /* For a nameless type, we don't want a create a symbol, thus we
1229 did not use `sym'. Return without further processing. */
1230 if (nameless)
1231 return NULL;
1232
1233 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1234 SYMBOL_VALUE (sym) = valu;
1235 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1236 /* C++ vagaries: we may have a type which is derived from
1237 a base type which did not have its name defined when the
1238 derived class was output. We fill in the derived class's
1239 base part member's name here in that case. */
1240 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1243 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1244 {
1245 int j;
1246
1247 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1248 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1249 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1250 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1251 }
1252
1253 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1254 {
1255 /* gcc-2.6 or later (when using -fvtable-thunks)
1256 emits a unique named type for a vtable entry.
1257 Some gdb code depends on that specific name. */
1258 extern const char vtbl_ptr_name[];
1259
1260 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1261 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1262 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1263 {
1264 /* If we are giving a name to a type such as "pointer to
1265 foo" or "function returning foo", we better not set
1266 the TYPE_NAME. If the program contains "typedef char
1267 *caddr_t;", we don't want all variables of type char
1268 * to print as caddr_t. This is not just a
1269 consequence of GDB's type management; PCC and GCC (at
1270 least through version 2.4) both output variables of
1271 either type char * or caddr_t with the type number
1272 defined in the 't' symbol for caddr_t. If a future
1273 compiler cleans this up it GDB is not ready for it
1274 yet, but if it becomes ready we somehow need to
1275 disable this check (without breaking the PCC/GCC2.4
1276 case).
1277
1278 Sigh.
1279
1280 Fortunately, this check seems not to be necessary
1281 for anything except pointers or functions. */
1282 /* ezannoni: 2000-10-26. This seems to apply for
1283 versions of gcc older than 2.8. This was the original
1284 problem: with the following code gdb would tell that
1285 the type for name1 is caddr_t, and func is char().
1286
1287 typedef char *caddr_t;
1288 char *name2;
1289 struct x
1290 {
1291 char *name1;
1292 } xx;
1293 char *func()
1294 {
1295 }
1296 main () {}
1297 */
1298
1299 /* Pascal accepts names for pointer types. */
1300 if (current_subfile->language == language_pascal)
1301 {
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1303 }
1304 }
1305 else
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1307 }
1308
1309 add_symbol_to_list (sym, &file_symbols);
1310
1311 if (synonym)
1312 {
1313 /* Create the STRUCT_DOMAIN clone. */
1314 struct symbol *struct_sym = allocate_symbol (objfile);
1315
1316 *struct_sym = *sym;
1317 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1318 SYMBOL_VALUE (struct_sym) = valu;
1319 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1320 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1321 TYPE_NAME (SYMBOL_TYPE (sym))
1322 = obconcat (&objfile->objfile_obstack,
1323 SYMBOL_LINKAGE_NAME (sym),
1324 (char *) NULL);
1325 add_symbol_to_list (struct_sym, &file_symbols);
1326 }
1327
1328 break;
1329
1330 case 'T':
1331 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1332 by 't' which means we are typedef'ing it as well. */
1333 synonym = *p == 't';
1334
1335 if (synonym)
1336 p++;
1337
1338 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1339
1340 /* For a nameless type, we don't want a create a symbol, thus we
1341 did not use `sym'. Return without further processing. */
1342 if (nameless)
1343 return NULL;
1344
1345 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1348 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1349 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1350 = obconcat (&objfile->objfile_obstack,
1351 SYMBOL_LINKAGE_NAME (sym),
1352 (char *) NULL);
1353 add_symbol_to_list (sym, &file_symbols);
1354
1355 if (synonym)
1356 {
1357 /* Clone the sym and then modify it. */
1358 struct symbol *typedef_sym = allocate_symbol (objfile);
1359
1360 *typedef_sym = *sym;
1361 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1362 SYMBOL_VALUE (typedef_sym) = valu;
1363 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1364 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1365 TYPE_NAME (SYMBOL_TYPE (sym))
1366 = obconcat (&objfile->objfile_obstack,
1367 SYMBOL_LINKAGE_NAME (sym),
1368 (char *) NULL);
1369 add_symbol_to_list (typedef_sym, &file_symbols);
1370 }
1371 break;
1372
1373 case 'V':
1374 /* Static symbol of local scope. */
1375 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1376 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1377 SYMBOL_VALUE_ADDRESS (sym) = valu;
1378 if (gdbarch_static_transform_name_p (gdbarch)
1379 && gdbarch_static_transform_name (gdbarch,
1380 SYMBOL_LINKAGE_NAME (sym))
1381 != SYMBOL_LINKAGE_NAME (sym))
1382 {
1383 struct bound_minimal_symbol msym;
1384
1385 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1386 NULL, objfile);
1387 if (msym.minsym != NULL)
1388 {
1389 const char *new_name = gdbarch_static_transform_name
1390 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1391
1392 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1393 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1394 }
1395 }
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'v':
1401 /* Reference parameter */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1404 SYMBOL_IS_ARGUMENT (sym) = 1;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &local_symbols);
1408 break;
1409
1410 case 'a':
1411 /* Reference parameter which is in a register. */
1412 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1413 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1414 SYMBOL_IS_ARGUMENT (sym) = 1;
1415 SYMBOL_VALUE (sym) = valu;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &local_symbols);
1418 break;
1419
1420 case 'X':
1421 /* This is used by Sun FORTRAN for "function result value".
1422 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1423 that Pascal uses it too, but when I tried it Pascal used
1424 "x:3" (local symbol) instead. */
1425 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1426 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1427 SYMBOL_VALUE (sym) = valu;
1428 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1429 add_symbol_to_list (sym, &local_symbols);
1430 break;
1431
1432 default:
1433 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1434 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1435 SYMBOL_VALUE (sym) = 0;
1436 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1437 add_symbol_to_list (sym, &file_symbols);
1438 break;
1439 }
1440
1441 /* Some systems pass variables of certain types by reference instead
1442 of by value, i.e. they will pass the address of a structure (in a
1443 register or on the stack) instead of the structure itself. */
1444
1445 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1446 && SYMBOL_IS_ARGUMENT (sym))
1447 {
1448 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1449 variables passed in a register). */
1450 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1451 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1452 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1453 and subsequent arguments on SPARC, for example). */
1454 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1455 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1456 }
1457
1458 return sym;
1459 }
1460
1461 /* Skip rest of this symbol and return an error type.
1462
1463 General notes on error recovery: error_type always skips to the
1464 end of the symbol (modulo cretinous dbx symbol name continuation).
1465 Thus code like this:
1466
1467 if (*(*pp)++ != ';')
1468 return error_type (pp, objfile);
1469
1470 is wrong because if *pp starts out pointing at '\0' (typically as the
1471 result of an earlier error), it will be incremented to point to the
1472 start of the next symbol, which might produce strange results, at least
1473 if you run off the end of the string table. Instead use
1474
1475 if (**pp != ';')
1476 return error_type (pp, objfile);
1477 ++*pp;
1478
1479 or
1480
1481 if (**pp != ';')
1482 foo = error_type (pp, objfile);
1483 else
1484 ++*pp;
1485
1486 And in case it isn't obvious, the point of all this hair is so the compiler
1487 can define new types and new syntaxes, and old versions of the
1488 debugger will be able to read the new symbol tables. */
1489
1490 static struct type *
1491 error_type (const char **pp, struct objfile *objfile)
1492 {
1493 complaint (&symfile_complaints,
1494 _("couldn't parse type; debugger out of date?"));
1495 while (1)
1496 {
1497 /* Skip to end of symbol. */
1498 while (**pp != '\0')
1499 {
1500 (*pp)++;
1501 }
1502
1503 /* Check for and handle cretinous dbx symbol name continuation! */
1504 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1505 {
1506 *pp = next_symbol_text (objfile);
1507 }
1508 else
1509 {
1510 break;
1511 }
1512 }
1513 return objfile_type (objfile)->builtin_error;
1514 }
1515 \f
1516
1517 /* Read type information or a type definition; return the type. Even
1518 though this routine accepts either type information or a type
1519 definition, the distinction is relevant--some parts of stabsread.c
1520 assume that type information starts with a digit, '-', or '(' in
1521 deciding whether to call read_type. */
1522
1523 static struct type *
1524 read_type (const char **pp, struct objfile *objfile)
1525 {
1526 struct type *type = 0;
1527 struct type *type1;
1528 int typenums[2];
1529 char type_descriptor;
1530
1531 /* Size in bits of type if specified by a type attribute, or -1 if
1532 there is no size attribute. */
1533 int type_size = -1;
1534
1535 /* Used to distinguish string and bitstring from char-array and set. */
1536 int is_string = 0;
1537
1538 /* Used to distinguish vector from array. */
1539 int is_vector = 0;
1540
1541 /* Read type number if present. The type number may be omitted.
1542 for instance in a two-dimensional array declared with type
1543 "ar1;1;10;ar1;1;10;4". */
1544 if ((**pp >= '0' && **pp <= '9')
1545 || **pp == '('
1546 || **pp == '-')
1547 {
1548 if (read_type_number (pp, typenums) != 0)
1549 return error_type (pp, objfile);
1550
1551 if (**pp != '=')
1552 {
1553 /* Type is not being defined here. Either it already
1554 exists, or this is a forward reference to it.
1555 dbx_alloc_type handles both cases. */
1556 type = dbx_alloc_type (typenums, objfile);
1557
1558 /* If this is a forward reference, arrange to complain if it
1559 doesn't get patched up by the time we're done
1560 reading. */
1561 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1562 add_undefined_type (type, typenums);
1563
1564 return type;
1565 }
1566
1567 /* Type is being defined here. */
1568 /* Skip the '='.
1569 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1570 (*pp) += 2;
1571 }
1572 else
1573 {
1574 /* 'typenums=' not present, type is anonymous. Read and return
1575 the definition, but don't put it in the type vector. */
1576 typenums[0] = typenums[1] = -1;
1577 (*pp)++;
1578 }
1579
1580 again:
1581 type_descriptor = (*pp)[-1];
1582 switch (type_descriptor)
1583 {
1584 case 'x':
1585 {
1586 enum type_code code;
1587
1588 /* Used to index through file_symbols. */
1589 struct pending *ppt;
1590 int i;
1591
1592 /* Name including "struct", etc. */
1593 char *type_name;
1594
1595 {
1596 const char *from, *p, *q1, *q2;
1597
1598 /* Set the type code according to the following letter. */
1599 switch ((*pp)[0])
1600 {
1601 case 's':
1602 code = TYPE_CODE_STRUCT;
1603 break;
1604 case 'u':
1605 code = TYPE_CODE_UNION;
1606 break;
1607 case 'e':
1608 code = TYPE_CODE_ENUM;
1609 break;
1610 default:
1611 {
1612 /* Complain and keep going, so compilers can invent new
1613 cross-reference types. */
1614 complaint (&symfile_complaints,
1615 _("Unrecognized cross-reference type `%c'"),
1616 (*pp)[0]);
1617 code = TYPE_CODE_STRUCT;
1618 break;
1619 }
1620 }
1621
1622 q1 = strchr (*pp, '<');
1623 p = strchr (*pp, ':');
1624 if (p == NULL)
1625 return error_type (pp, objfile);
1626 if (q1 && p > q1 && p[1] == ':')
1627 {
1628 int nesting_level = 0;
1629
1630 for (q2 = q1; *q2; q2++)
1631 {
1632 if (*q2 == '<')
1633 nesting_level++;
1634 else if (*q2 == '>')
1635 nesting_level--;
1636 else if (*q2 == ':' && nesting_level == 0)
1637 break;
1638 }
1639 p = q2;
1640 if (*p != ':')
1641 return error_type (pp, objfile);
1642 }
1643 type_name = NULL;
1644 if (current_subfile->language == language_cplus)
1645 {
1646 char *name = (char *) alloca (p - *pp + 1);
1647
1648 memcpy (name, *pp, p - *pp);
1649 name[p - *pp] = '\0';
1650
1651 std::string new_name = cp_canonicalize_string (name);
1652 if (!new_name.empty ())
1653 {
1654 type_name
1655 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1656 new_name.c_str (),
1657 new_name.length ());
1658 }
1659 }
1660 if (type_name == NULL)
1661 {
1662 char *to = type_name = (char *)
1663 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1664
1665 /* Copy the name. */
1666 from = *pp + 1;
1667 while (from < p)
1668 *to++ = *from++;
1669 *to = '\0';
1670 }
1671
1672 /* Set the pointer ahead of the name which we just read, and
1673 the colon. */
1674 *pp = p + 1;
1675 }
1676
1677 /* If this type has already been declared, then reuse the same
1678 type, rather than allocating a new one. This saves some
1679 memory. */
1680
1681 for (ppt = file_symbols; ppt; ppt = ppt->next)
1682 for (i = 0; i < ppt->nsyms; i++)
1683 {
1684 struct symbol *sym = ppt->symbol[i];
1685
1686 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1687 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1688 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1689 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1690 {
1691 obstack_free (&objfile->objfile_obstack, type_name);
1692 type = SYMBOL_TYPE (sym);
1693 if (typenums[0] != -1)
1694 *dbx_lookup_type (typenums, objfile) = type;
1695 return type;
1696 }
1697 }
1698
1699 /* Didn't find the type to which this refers, so we must
1700 be dealing with a forward reference. Allocate a type
1701 structure for it, and keep track of it so we can
1702 fill in the rest of the fields when we get the full
1703 type. */
1704 type = dbx_alloc_type (typenums, objfile);
1705 TYPE_CODE (type) = code;
1706 TYPE_TAG_NAME (type) = type_name;
1707 INIT_CPLUS_SPECIFIC (type);
1708 TYPE_STUB (type) = 1;
1709
1710 add_undefined_type (type, typenums);
1711 return type;
1712 }
1713
1714 case '-': /* RS/6000 built-in type */
1715 case '0':
1716 case '1':
1717 case '2':
1718 case '3':
1719 case '4':
1720 case '5':
1721 case '6':
1722 case '7':
1723 case '8':
1724 case '9':
1725 case '(':
1726 (*pp)--;
1727
1728 /* We deal with something like t(1,2)=(3,4)=... which
1729 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1730
1731 /* Allocate and enter the typedef type first.
1732 This handles recursive types. */
1733 type = dbx_alloc_type (typenums, objfile);
1734 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1735 {
1736 struct type *xtype = read_type (pp, objfile);
1737
1738 if (type == xtype)
1739 {
1740 /* It's being defined as itself. That means it is "void". */
1741 TYPE_CODE (type) = TYPE_CODE_VOID;
1742 TYPE_LENGTH (type) = 1;
1743 }
1744 else if (type_size >= 0 || is_string)
1745 {
1746 /* This is the absolute wrong way to construct types. Every
1747 other debug format has found a way around this problem and
1748 the related problems with unnecessarily stubbed types;
1749 someone motivated should attempt to clean up the issue
1750 here as well. Once a type pointed to has been created it
1751 should not be modified.
1752
1753 Well, it's not *absolutely* wrong. Constructing recursive
1754 types (trees, linked lists) necessarily entails modifying
1755 types after creating them. Constructing any loop structure
1756 entails side effects. The Dwarf 2 reader does handle this
1757 more gracefully (it never constructs more than once
1758 instance of a type object, so it doesn't have to copy type
1759 objects wholesale), but it still mutates type objects after
1760 other folks have references to them.
1761
1762 Keep in mind that this circularity/mutation issue shows up
1763 at the source language level, too: C's "incomplete types",
1764 for example. So the proper cleanup, I think, would be to
1765 limit GDB's type smashing to match exactly those required
1766 by the source language. So GDB could have a
1767 "complete_this_type" function, but never create unnecessary
1768 copies of a type otherwise. */
1769 replace_type (type, xtype);
1770 TYPE_NAME (type) = NULL;
1771 TYPE_TAG_NAME (type) = NULL;
1772 }
1773 else
1774 {
1775 TYPE_TARGET_STUB (type) = 1;
1776 TYPE_TARGET_TYPE (type) = xtype;
1777 }
1778 }
1779 break;
1780
1781 /* In the following types, we must be sure to overwrite any existing
1782 type that the typenums refer to, rather than allocating a new one
1783 and making the typenums point to the new one. This is because there
1784 may already be pointers to the existing type (if it had been
1785 forward-referenced), and we must change it to a pointer, function,
1786 reference, or whatever, *in-place*. */
1787
1788 case '*': /* Pointer to another type */
1789 type1 = read_type (pp, objfile);
1790 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1791 break;
1792
1793 case '&': /* Reference to another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1796 TYPE_CODE_REF);
1797 break;
1798
1799 case 'f': /* Function returning another type */
1800 type1 = read_type (pp, objfile);
1801 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1802 break;
1803
1804 case 'g': /* Prototyped function. (Sun) */
1805 {
1806 /* Unresolved questions:
1807
1808 - According to Sun's ``STABS Interface Manual'', for 'f'
1809 and 'F' symbol descriptors, a `0' in the argument type list
1810 indicates a varargs function. But it doesn't say how 'g'
1811 type descriptors represent that info. Someone with access
1812 to Sun's toolchain should try it out.
1813
1814 - According to the comment in define_symbol (search for
1815 `process_prototype_types:'), Sun emits integer arguments as
1816 types which ref themselves --- like `void' types. Do we
1817 have to deal with that here, too? Again, someone with
1818 access to Sun's toolchain should try it out and let us
1819 know. */
1820
1821 const char *type_start = (*pp) - 1;
1822 struct type *return_type = read_type (pp, objfile);
1823 struct type *func_type
1824 = make_function_type (return_type,
1825 dbx_lookup_type (typenums, objfile));
1826 struct type_list {
1827 struct type *type;
1828 struct type_list *next;
1829 } *arg_types = 0;
1830 int num_args = 0;
1831
1832 while (**pp && **pp != '#')
1833 {
1834 struct type *arg_type = read_type (pp, objfile);
1835 struct type_list *newobj = XALLOCA (struct type_list);
1836 newobj->type = arg_type;
1837 newobj->next = arg_types;
1838 arg_types = newobj;
1839 num_args++;
1840 }
1841 if (**pp == '#')
1842 ++*pp;
1843 else
1844 {
1845 complaint (&symfile_complaints,
1846 _("Prototyped function type didn't "
1847 "end arguments with `#':\n%s"),
1848 type_start);
1849 }
1850
1851 /* If there is just one argument whose type is `void', then
1852 that's just an empty argument list. */
1853 if (arg_types
1854 && ! arg_types->next
1855 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1856 num_args = 0;
1857
1858 TYPE_FIELDS (func_type)
1859 = (struct field *) TYPE_ALLOC (func_type,
1860 num_args * sizeof (struct field));
1861 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1862 {
1863 int i;
1864 struct type_list *t;
1865
1866 /* We stuck each argument type onto the front of the list
1867 when we read it, so the list is reversed. Build the
1868 fields array right-to-left. */
1869 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1870 TYPE_FIELD_TYPE (func_type, i) = t->type;
1871 }
1872 TYPE_NFIELDS (func_type) = num_args;
1873 TYPE_PROTOTYPED (func_type) = 1;
1874
1875 type = func_type;
1876 break;
1877 }
1878
1879 case 'k': /* Const qualifier on some type (Sun) */
1880 type = read_type (pp, objfile);
1881 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1882 dbx_lookup_type (typenums, objfile));
1883 break;
1884
1885 case 'B': /* Volatile qual on some type (Sun) */
1886 type = read_type (pp, objfile);
1887 type = make_cv_type (TYPE_CONST (type), 1, type,
1888 dbx_lookup_type (typenums, objfile));
1889 break;
1890
1891 case '@':
1892 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1893 { /* Member (class & variable) type */
1894 /* FIXME -- we should be doing smash_to_XXX types here. */
1895
1896 struct type *domain = read_type (pp, objfile);
1897 struct type *memtype;
1898
1899 if (**pp != ',')
1900 /* Invalid member type data format. */
1901 return error_type (pp, objfile);
1902 ++*pp;
1903
1904 memtype = read_type (pp, objfile);
1905 type = dbx_alloc_type (typenums, objfile);
1906 smash_to_memberptr_type (type, domain, memtype);
1907 }
1908 else
1909 /* type attribute */
1910 {
1911 const char *attr = *pp;
1912
1913 /* Skip to the semicolon. */
1914 while (**pp != ';' && **pp != '\0')
1915 ++(*pp);
1916 if (**pp == '\0')
1917 return error_type (pp, objfile);
1918 else
1919 ++ * pp; /* Skip the semicolon. */
1920
1921 switch (*attr)
1922 {
1923 case 's': /* Size attribute */
1924 type_size = atoi (attr + 1);
1925 if (type_size <= 0)
1926 type_size = -1;
1927 break;
1928
1929 case 'S': /* String attribute */
1930 /* FIXME: check to see if following type is array? */
1931 is_string = 1;
1932 break;
1933
1934 case 'V': /* Vector attribute */
1935 /* FIXME: check to see if following type is array? */
1936 is_vector = 1;
1937 break;
1938
1939 default:
1940 /* Ignore unrecognized type attributes, so future compilers
1941 can invent new ones. */
1942 break;
1943 }
1944 ++*pp;
1945 goto again;
1946 }
1947 break;
1948
1949 case '#': /* Method (class & fn) type */
1950 if ((*pp)[0] == '#')
1951 {
1952 /* We'll get the parameter types from the name. */
1953 struct type *return_type;
1954
1955 (*pp)++;
1956 return_type = read_type (pp, objfile);
1957 if (*(*pp)++ != ';')
1958 complaint (&symfile_complaints,
1959 _("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1961 symnum);
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1965 }
1966 else
1967 {
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1970 struct field *args;
1971 int nargs, varargs;
1972
1973 if (**pp != ',')
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1976 else
1977 ++(*pp);
1978
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1981 if (args == NULL)
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1985 nargs, varargs);
1986 }
1987 break;
1988
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 break;
1994
1995 case 'b':
1996 {
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 }
2002 break;
2003
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2008 break;
2009
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2015 break;
2016
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2019 {
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2023 {
2024 case 's':
2025 type_code = TYPE_CODE_STRUCT;
2026 break;
2027 case 'u':
2028 type_code = TYPE_CODE_UNION;
2029 break;
2030 }
2031 type = read_struct_type (pp, type, type_code, objfile);
2032 break;
2033 }
2034
2035 case 'a': /* Array type */
2036 if (**pp != 'r')
2037 return error_type (pp, objfile);
2038 ++*pp;
2039
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2042 if (is_string)
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2044 if (is_vector)
2045 make_vector_type (type);
2046 break;
2047
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2053 break;
2054
2055 default:
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2059 }
2060
2061 if (type == 0)
2062 {
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2065 }
2066
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2070
2071 return type;
2072 }
2073 \f
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2076
2077 static const struct objfile_data *rs6000_builtin_type_data;
2078
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 {
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2084
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2088
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2090 {
2091 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2093 }
2094
2095 if (!negative_types)
2096 {
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2101 }
2102
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2105
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2111 TARGET_CHAR_BIT. */
2112 #endif
2113
2114 switch (-typenum)
2115 {
2116 case 1:
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2123 break;
2124 case 2:
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2127 break;
2128 case 3:
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2130 break;
2131 case 4:
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2133 break;
2134 case 5:
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2136 break;
2137 case 6:
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2139 break;
2140 case 7:
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2142 break;
2143 case 8:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2145 break;
2146 case 9:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2148 break;
2149 case 10:
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2151 break;
2152 case 11:
2153 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2154 break;
2155 case 12:
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2159 break;
2160 case 13:
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2164 break;
2165 case 14:
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2171 break;
2172 case 15:
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2174 break;
2175 case 16:
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2177 break;
2178 case 17:
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2181 break;
2182 case 18:
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2185 break;
2186 case 19:
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2188 break;
2189 case 20:
2190 rettype = init_character_type (objfile, 8, 1, "character");
2191 break;
2192 case 21:
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2194 break;
2195 case 22:
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2197 break;
2198 case 23:
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2200 break;
2201 case 24:
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2203 break;
2204 case 25:
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2208 break;
2209 case 26:
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2213 break;
2214 case 27:
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2216 break;
2217 case 28:
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2219 break;
2220 case 29:
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2222 break;
2223 case 30:
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2225 break;
2226 case 31:
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2228 break;
2229 case 32:
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2231 break;
2232 case 33:
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2234 break;
2235 case 34:
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2237 break;
2238 }
2239 negative_types[-typenum] = rettype;
2240 return rettype;
2241 }
2242 \f
2243 /* This page contains subroutines of read_type. */
2244
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2247
2248 static char *
2249 stabs_method_name_from_physname (const char *physname)
2250 {
2251 char *method_name;
2252
2253 method_name = method_name_from_physname (physname);
2254
2255 if (method_name == NULL)
2256 {
2257 complaint (&symfile_complaints,
2258 _("Method has bad physname %s\n"), physname);
2259 return NULL;
2260 }
2261
2262 return method_name;
2263 }
2264
2265 /* Read member function stabs info for C++ classes. The form of each member
2266 function data is:
2267
2268 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2269
2270 An example with two member functions is:
2271
2272 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2273
2274 For the case of overloaded operators, the format is op$::*.funcs, where
2275 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2276 name (such as `+=') and `.' marks the end of the operator name.
2277
2278 Returns 1 for success, 0 for failure. */
2279
2280 static int
2281 read_member_functions (struct field_info *fip, const char **pp,
2282 struct type *type, struct objfile *objfile)
2283 {
2284 int nfn_fields = 0;
2285 int length = 0;
2286 int i;
2287 struct next_fnfield
2288 {
2289 struct next_fnfield *next;
2290 struct fn_field fn_field;
2291 }
2292 *sublist;
2293 struct type *look_ahead_type;
2294 struct next_fnfieldlist *new_fnlist;
2295 struct next_fnfield *new_sublist;
2296 char *main_fn_name;
2297 const char *p;
2298
2299 /* Process each list until we find something that is not a member function
2300 or find the end of the functions. */
2301
2302 while (**pp != ';')
2303 {
2304 /* We should be positioned at the start of the function name.
2305 Scan forward to find the first ':' and if it is not the
2306 first of a "::" delimiter, then this is not a member function. */
2307 p = *pp;
2308 while (*p != ':')
2309 {
2310 p++;
2311 }
2312 if (p[1] != ':')
2313 {
2314 break;
2315 }
2316
2317 sublist = NULL;
2318 look_ahead_type = NULL;
2319 length = 0;
2320
2321 new_fnlist = XCNEW (struct next_fnfieldlist);
2322 make_cleanup (xfree, new_fnlist);
2323
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 {
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2334 work for "*". */
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2337
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340
2341 STABS_CONTINUE (pp, objfile);
2342 p = *pp;
2343 while (*p != '.')
2344 {
2345 *o++ = *p++;
2346 }
2347 main_fn_name = savestring (opname, o - opname);
2348 /* Skip past '.' */
2349 *pp = p + 1;
2350 }
2351 else
2352 {
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2355 *pp = p + 2;
2356 }
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2358
2359 do
2360 {
2361 new_sublist = XCNEW (struct next_fnfield);
2362 make_cleanup (xfree, new_sublist);
2363
2364 /* Check for and handle cretinous dbx symbol name continuation! */
2365 if (look_ahead_type == NULL)
2366 {
2367 /* Normal case. */
2368 STABS_CONTINUE (pp, objfile);
2369
2370 new_sublist->fn_field.type = read_type (pp, objfile);
2371 if (**pp != ':')
2372 {
2373 /* Invalid symtab info for member function. */
2374 return 0;
2375 }
2376 }
2377 else
2378 {
2379 /* g++ version 1 kludge */
2380 new_sublist->fn_field.type = look_ahead_type;
2381 look_ahead_type = NULL;
2382 }
2383
2384 (*pp)++;
2385 p = *pp;
2386 while (*p != ';')
2387 {
2388 p++;
2389 }
2390
2391 /* These are methods, not functions. */
2392 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2393 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2394 else
2395 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2396 == TYPE_CODE_METHOD);
2397
2398 /* If this is just a stub, then we don't have the real name here. */
2399 if (TYPE_STUB (new_sublist->fn_field.type))
2400 {
2401 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2402 set_type_self_type (new_sublist->fn_field.type, type);
2403 new_sublist->fn_field.is_stub = 1;
2404 }
2405
2406 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2407 *pp = p + 1;
2408
2409 /* Set this member function's visibility fields. */
2410 switch (*(*pp)++)
2411 {
2412 case VISIBILITY_PRIVATE:
2413 new_sublist->fn_field.is_private = 1;
2414 break;
2415 case VISIBILITY_PROTECTED:
2416 new_sublist->fn_field.is_protected = 1;
2417 break;
2418 }
2419
2420 STABS_CONTINUE (pp, objfile);
2421 switch (**pp)
2422 {
2423 case 'A': /* Normal functions. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
2428 case 'B': /* `const' member functions. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 0;
2431 (*pp)++;
2432 break;
2433 case 'C': /* `volatile' member function. */
2434 new_sublist->fn_field.is_const = 0;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
2438 case 'D': /* `const volatile' member function. */
2439 new_sublist->fn_field.is_const = 1;
2440 new_sublist->fn_field.is_volatile = 1;
2441 (*pp)++;
2442 break;
2443 case '*': /* File compiled with g++ version 1 --
2444 no info. */
2445 case '?':
2446 case '.':
2447 break;
2448 default:
2449 complaint (&symfile_complaints,
2450 _("const/volatile indicator missing, got '%c'"),
2451 **pp);
2452 break;
2453 }
2454
2455 switch (*(*pp)++)
2456 {
2457 case '*':
2458 {
2459 int nbits;
2460 /* virtual member function, followed by index.
2461 The sign bit is set to distinguish pointers-to-methods
2462 from virtual function indicies. Since the array is
2463 in words, the quantity must be shifted left by 1
2464 on 16 bit machine, and by 2 on 32 bit machine, forcing
2465 the sign bit out, and usable as a valid index into
2466 the array. Remove the sign bit here. */
2467 new_sublist->fn_field.voffset =
2468 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2469 if (nbits != 0)
2470 return 0;
2471
2472 STABS_CONTINUE (pp, objfile);
2473 if (**pp == ';' || **pp == '\0')
2474 {
2475 /* Must be g++ version 1. */
2476 new_sublist->fn_field.fcontext = 0;
2477 }
2478 else
2479 {
2480 /* Figure out from whence this virtual function came.
2481 It may belong to virtual function table of
2482 one of its baseclasses. */
2483 look_ahead_type = read_type (pp, objfile);
2484 if (**pp == ':')
2485 {
2486 /* g++ version 1 overloaded methods. */
2487 }
2488 else
2489 {
2490 new_sublist->fn_field.fcontext = look_ahead_type;
2491 if (**pp != ';')
2492 {
2493 return 0;
2494 }
2495 else
2496 {
2497 ++*pp;
2498 }
2499 look_ahead_type = NULL;
2500 }
2501 }
2502 break;
2503 }
2504 case '?':
2505 /* static member function. */
2506 {
2507 int slen = strlen (main_fn_name);
2508
2509 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2510
2511 /* For static member functions, we can't tell if they
2512 are stubbed, as they are put out as functions, and not as
2513 methods.
2514 GCC v2 emits the fully mangled name if
2515 dbxout.c:flag_minimal_debug is not set, so we have to
2516 detect a fully mangled physname here and set is_stub
2517 accordingly. Fully mangled physnames in v2 start with
2518 the member function name, followed by two underscores.
2519 GCC v3 currently always emits stubbed member functions,
2520 but with fully mangled physnames, which start with _Z. */
2521 if (!(strncmp (new_sublist->fn_field.physname,
2522 main_fn_name, slen) == 0
2523 && new_sublist->fn_field.physname[slen] == '_'
2524 && new_sublist->fn_field.physname[slen + 1] == '_'))
2525 {
2526 new_sublist->fn_field.is_stub = 1;
2527 }
2528 break;
2529 }
2530
2531 default:
2532 /* error */
2533 complaint (&symfile_complaints,
2534 _("member function type missing, got '%c'"),
2535 (*pp)[-1]);
2536 /* Normal member function. */
2537 /* Fall through. */
2538
2539 case '.':
2540 /* normal member function. */
2541 new_sublist->fn_field.voffset = 0;
2542 new_sublist->fn_field.fcontext = 0;
2543 break;
2544 }
2545
2546 new_sublist->next = sublist;
2547 sublist = new_sublist;
2548 length++;
2549 STABS_CONTINUE (pp, objfile);
2550 }
2551 while (**pp != ';' && **pp != '\0');
2552
2553 (*pp)++;
2554 STABS_CONTINUE (pp, objfile);
2555
2556 /* Skip GCC 3.X member functions which are duplicates of the callable
2557 constructor/destructor. */
2558 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2559 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2560 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2561 {
2562 xfree (main_fn_name);
2563 }
2564 else
2565 {
2566 int has_stub = 0;
2567 int has_destructor = 0, has_other = 0;
2568 int is_v3 = 0;
2569 struct next_fnfield *tmp_sublist;
2570
2571 /* Various versions of GCC emit various mostly-useless
2572 strings in the name field for special member functions.
2573
2574 For stub methods, we need to defer correcting the name
2575 until we are ready to unstub the method, because the current
2576 name string is used by gdb_mangle_name. The only stub methods
2577 of concern here are GNU v2 operators; other methods have their
2578 names correct (see caveat below).
2579
2580 For non-stub methods, in GNU v3, we have a complete physname.
2581 Therefore we can safely correct the name now. This primarily
2582 affects constructors and destructors, whose name will be
2583 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2584 operators will also have incorrect names; for instance,
2585 "operator int" will be named "operator i" (i.e. the type is
2586 mangled).
2587
2588 For non-stub methods in GNU v2, we have no easy way to
2589 know if we have a complete physname or not. For most
2590 methods the result depends on the platform (if CPLUS_MARKER
2591 can be `$' or `.', it will use minimal debug information, or
2592 otherwise the full physname will be included).
2593
2594 Rather than dealing with this, we take a different approach.
2595 For v3 mangled names, we can use the full physname; for v2,
2596 we use cplus_demangle_opname (which is actually v2 specific),
2597 because the only interesting names are all operators - once again
2598 barring the caveat below. Skip this process if any method in the
2599 group is a stub, to prevent our fouling up the workings of
2600 gdb_mangle_name.
2601
2602 The caveat: GCC 2.95.x (and earlier?) put constructors and
2603 destructors in the same method group. We need to split this
2604 into two groups, because they should have different names.
2605 So for each method group we check whether it contains both
2606 routines whose physname appears to be a destructor (the physnames
2607 for and destructors are always provided, due to quirks in v2
2608 mangling) and routines whose physname does not appear to be a
2609 destructor. If so then we break up the list into two halves.
2610 Even if the constructors and destructors aren't in the same group
2611 the destructor will still lack the leading tilde, so that also
2612 needs to be fixed.
2613
2614 So, to summarize what we expect and handle here:
2615
2616 Given Given Real Real Action
2617 method name physname physname method name
2618
2619 __opi [none] __opi__3Foo operator int opname
2620 [now or later]
2621 Foo _._3Foo _._3Foo ~Foo separate and
2622 rename
2623 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2624 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2625 */
2626
2627 tmp_sublist = sublist;
2628 while (tmp_sublist != NULL)
2629 {
2630 if (tmp_sublist->fn_field.is_stub)
2631 has_stub = 1;
2632 if (tmp_sublist->fn_field.physname[0] == '_'
2633 && tmp_sublist->fn_field.physname[1] == 'Z')
2634 is_v3 = 1;
2635
2636 if (is_destructor_name (tmp_sublist->fn_field.physname))
2637 has_destructor++;
2638 else
2639 has_other++;
2640
2641 tmp_sublist = tmp_sublist->next;
2642 }
2643
2644 if (has_destructor && has_other)
2645 {
2646 struct next_fnfieldlist *destr_fnlist;
2647 struct next_fnfield *last_sublist;
2648
2649 /* Create a new fn_fieldlist for the destructors. */
2650
2651 destr_fnlist = XCNEW (struct next_fnfieldlist);
2652 make_cleanup (xfree, destr_fnlist);
2653
2654 destr_fnlist->fn_fieldlist.name
2655 = obconcat (&objfile->objfile_obstack, "~",
2656 new_fnlist->fn_fieldlist.name, (char *) NULL);
2657
2658 destr_fnlist->fn_fieldlist.fn_fields =
2659 XOBNEWVEC (&objfile->objfile_obstack,
2660 struct fn_field, has_destructor);
2661 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2662 sizeof (struct fn_field) * has_destructor);
2663 tmp_sublist = sublist;
2664 last_sublist = NULL;
2665 i = 0;
2666 while (tmp_sublist != NULL)
2667 {
2668 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2669 {
2670 tmp_sublist = tmp_sublist->next;
2671 continue;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.fn_fields[i++]
2675 = tmp_sublist->fn_field;
2676 if (last_sublist)
2677 last_sublist->next = tmp_sublist->next;
2678 else
2679 sublist = tmp_sublist->next;
2680 last_sublist = tmp_sublist;
2681 tmp_sublist = tmp_sublist->next;
2682 }
2683
2684 destr_fnlist->fn_fieldlist.length = has_destructor;
2685 destr_fnlist->next = fip->fnlist;
2686 fip->fnlist = destr_fnlist;
2687 nfn_fields++;
2688 length -= has_destructor;
2689 }
2690 else if (is_v3)
2691 {
2692 /* v3 mangling prevents the use of abbreviated physnames,
2693 so we can do this here. There are stubbed methods in v3
2694 only:
2695 - in -gstabs instead of -gstabs+
2696 - or for static methods, which are output as a function type
2697 instead of a method type. */
2698 char *new_method_name =
2699 stabs_method_name_from_physname (sublist->fn_field.physname);
2700
2701 if (new_method_name != NULL
2702 && strcmp (new_method_name,
2703 new_fnlist->fn_fieldlist.name) != 0)
2704 {
2705 new_fnlist->fn_fieldlist.name = new_method_name;
2706 xfree (main_fn_name);
2707 }
2708 else
2709 xfree (new_method_name);
2710 }
2711 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2712 {
2713 new_fnlist->fn_fieldlist.name =
2714 obconcat (&objfile->objfile_obstack,
2715 "~", main_fn_name, (char *)NULL);
2716 xfree (main_fn_name);
2717 }
2718 else if (!has_stub)
2719 {
2720 char dem_opname[256];
2721 int ret;
2722
2723 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2724 dem_opname, DMGL_ANSI);
2725 if (!ret)
2726 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2727 dem_opname, 0);
2728 if (ret)
2729 new_fnlist->fn_fieldlist.name
2730 = ((const char *)
2731 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2732 strlen (dem_opname)));
2733 xfree (main_fn_name);
2734 }
2735
2736 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2737 obstack_alloc (&objfile->objfile_obstack,
2738 sizeof (struct fn_field) * length);
2739 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2740 sizeof (struct fn_field) * length);
2741 for (i = length; (i--, sublist); sublist = sublist->next)
2742 {
2743 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2744 }
2745
2746 new_fnlist->fn_fieldlist.length = length;
2747 new_fnlist->next = fip->fnlist;
2748 fip->fnlist = new_fnlist;
2749 nfn_fields++;
2750 }
2751 }
2752
2753 if (nfn_fields)
2754 {
2755 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2756 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2757 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2758 memset (TYPE_FN_FIELDLISTS (type), 0,
2759 sizeof (struct fn_fieldlist) * nfn_fields);
2760 TYPE_NFN_FIELDS (type) = nfn_fields;
2761 }
2762
2763 return 1;
2764 }
2765
2766 /* Special GNU C++ name.
2767
2768 Returns 1 for success, 0 for failure. "failure" means that we can't
2769 keep parsing and it's time for error_type(). */
2770
2771 static int
2772 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2773 struct objfile *objfile)
2774 {
2775 const char *p;
2776 const char *name;
2777 char cpp_abbrev;
2778 struct type *context;
2779
2780 p = *pp;
2781 if (*++p == 'v')
2782 {
2783 name = NULL;
2784 cpp_abbrev = *++p;
2785
2786 *pp = p + 1;
2787
2788 /* At this point, *pp points to something like "22:23=*22...",
2789 where the type number before the ':' is the "context" and
2790 everything after is a regular type definition. Lookup the
2791 type, find it's name, and construct the field name. */
2792
2793 context = read_type (pp, objfile);
2794
2795 switch (cpp_abbrev)
2796 {
2797 case 'f': /* $vf -- a virtual function table pointer */
2798 name = type_name_no_tag (context);
2799 if (name == NULL)
2800 {
2801 name = "";
2802 }
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 vptr_name, name, (char *) NULL);
2805 break;
2806
2807 case 'b': /* $vb -- a virtual bsomethingorother */
2808 name = type_name_no_tag (context);
2809 if (name == NULL)
2810 {
2811 complaint (&symfile_complaints,
2812 _("C++ abbreviated type name "
2813 "unknown at symtab pos %d"),
2814 symnum);
2815 name = "FOO";
2816 }
2817 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2818 name, (char *) NULL);
2819 break;
2820
2821 default:
2822 invalid_cpp_abbrev_complaint (*pp);
2823 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2824 "INVALID_CPLUSPLUS_ABBREV",
2825 (char *) NULL);
2826 break;
2827 }
2828
2829 /* At this point, *pp points to the ':'. Skip it and read the
2830 field type. */
2831
2832 p = ++(*pp);
2833 if (p[-1] != ':')
2834 {
2835 invalid_cpp_abbrev_complaint (*pp);
2836 return 0;
2837 }
2838 fip->list->field.type = read_type (pp, objfile);
2839 if (**pp == ',')
2840 (*pp)++; /* Skip the comma. */
2841 else
2842 return 0;
2843
2844 {
2845 int nbits;
2846
2847 SET_FIELD_BITPOS (fip->list->field,
2848 read_huge_number (pp, ';', &nbits, 0));
2849 if (nbits != 0)
2850 return 0;
2851 }
2852 /* This field is unpacked. */
2853 FIELD_BITSIZE (fip->list->field) = 0;
2854 fip->list->visibility = VISIBILITY_PRIVATE;
2855 }
2856 else
2857 {
2858 invalid_cpp_abbrev_complaint (*pp);
2859 /* We have no idea what syntax an unrecognized abbrev would have, so
2860 better return 0. If we returned 1, we would need to at least advance
2861 *pp to avoid an infinite loop. */
2862 return 0;
2863 }
2864 return 1;
2865 }
2866
2867 static void
2868 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2869 struct type *type, struct objfile *objfile)
2870 {
2871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2872
2873 fip->list->field.name
2874 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2875 *pp = p + 1;
2876
2877 /* This means we have a visibility for a field coming. */
2878 if (**pp == '/')
2879 {
2880 (*pp)++;
2881 fip->list->visibility = *(*pp)++;
2882 }
2883 else
2884 {
2885 /* normal dbx-style format, no explicit visibility */
2886 fip->list->visibility = VISIBILITY_PUBLIC;
2887 }
2888
2889 fip->list->field.type = read_type (pp, objfile);
2890 if (**pp == ':')
2891 {
2892 p = ++(*pp);
2893 #if 0
2894 /* Possible future hook for nested types. */
2895 if (**pp == '!')
2896 {
2897 fip->list->field.bitpos = (long) -2; /* nested type */
2898 p = ++(*pp);
2899 }
2900 else
2901 ...;
2902 #endif
2903 while (*p != ';')
2904 {
2905 p++;
2906 }
2907 /* Static class member. */
2908 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2909 *pp = p + 1;
2910 return;
2911 }
2912 else if (**pp != ',')
2913 {
2914 /* Bad structure-type format. */
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918
2919 (*pp)++; /* Skip the comma. */
2920
2921 {
2922 int nbits;
2923
2924 SET_FIELD_BITPOS (fip->list->field,
2925 read_huge_number (pp, ',', &nbits, 0));
2926 if (nbits != 0)
2927 {
2928 stabs_general_complaint ("bad structure-type format");
2929 return;
2930 }
2931 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2932 if (nbits != 0)
2933 {
2934 stabs_general_complaint ("bad structure-type format");
2935 return;
2936 }
2937 }
2938
2939 if (FIELD_BITPOS (fip->list->field) == 0
2940 && FIELD_BITSIZE (fip->list->field) == 0)
2941 {
2942 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2943 it is a field which has been optimized out. The correct stab for
2944 this case is to use VISIBILITY_IGNORE, but that is a recent
2945 invention. (2) It is a 0-size array. For example
2946 union { int num; char str[0]; } foo. Printing _("<no value>" for
2947 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2948 will continue to work, and a 0-size array as a whole doesn't
2949 have any contents to print.
2950
2951 I suspect this probably could also happen with gcc -gstabs (not
2952 -gstabs+) for static fields, and perhaps other C++ extensions.
2953 Hopefully few people use -gstabs with gdb, since it is intended
2954 for dbx compatibility. */
2955
2956 /* Ignore this field. */
2957 fip->list->visibility = VISIBILITY_IGNORE;
2958 }
2959 else
2960 {
2961 /* Detect an unpacked field and mark it as such.
2962 dbx gives a bit size for all fields.
2963 Note that forward refs cannot be packed,
2964 and treat enums as if they had the width of ints. */
2965
2966 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2967
2968 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2969 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2970 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2971 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
2975 if ((FIELD_BITSIZE (fip->list->field)
2976 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2977 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2978 && FIELD_BITSIZE (fip->list->field)
2979 == gdbarch_int_bit (gdbarch))
2980 )
2981 &&
2982 FIELD_BITPOS (fip->list->field) % 8 == 0)
2983 {
2984 FIELD_BITSIZE (fip->list->field) = 0;
2985 }
2986 }
2987 }
2988
2989
2990 /* Read struct or class data fields. They have the form:
2991
2992 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2993
2994 At the end, we see a semicolon instead of a field.
2995
2996 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2997 a static field.
2998
2999 The optional VISIBILITY is one of:
3000
3001 '/0' (VISIBILITY_PRIVATE)
3002 '/1' (VISIBILITY_PROTECTED)
3003 '/2' (VISIBILITY_PUBLIC)
3004 '/9' (VISIBILITY_IGNORE)
3005
3006 or nothing, for C style fields with public visibility.
3007
3008 Returns 1 for success, 0 for failure. */
3009
3010 static int
3011 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
3012 struct objfile *objfile)
3013 {
3014 const char *p;
3015 struct nextfield *newobj;
3016
3017 /* We better set p right now, in case there are no fields at all... */
3018
3019 p = *pp;
3020
3021 /* Read each data member type until we find the terminating ';' at the end of
3022 the data member list, or break for some other reason such as finding the
3023 start of the member function list. */
3024 /* Stab string for structure/union does not end with two ';' in
3025 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3026
3027 while (**pp != ';' && **pp != '\0')
3028 {
3029 STABS_CONTINUE (pp, objfile);
3030 /* Get space to record the next field's data. */
3031 newobj = XCNEW (struct nextfield);
3032 make_cleanup (xfree, newobj);
3033
3034 newobj->next = fip->list;
3035 fip->list = newobj;
3036
3037 /* Get the field name. */
3038 p = *pp;
3039
3040 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3041 unless the CPLUS_MARKER is followed by an underscore, in
3042 which case it is just the name of an anonymous type, which we
3043 should handle like any other type name. */
3044
3045 if (is_cplus_marker (p[0]) && p[1] != '_')
3046 {
3047 if (!read_cpp_abbrev (fip, pp, type, objfile))
3048 return 0;
3049 continue;
3050 }
3051
3052 /* Look for the ':' that separates the field name from the field
3053 values. Data members are delimited by a single ':', while member
3054 functions are delimited by a pair of ':'s. When we hit the member
3055 functions (if any), terminate scan loop and return. */
3056
3057 while (*p != ':' && *p != '\0')
3058 {
3059 p++;
3060 }
3061 if (*p == '\0')
3062 return 0;
3063
3064 /* Check to see if we have hit the member functions yet. */
3065 if (p[1] == ':')
3066 {
3067 break;
3068 }
3069 read_one_struct_field (fip, pp, p, type, objfile);
3070 }
3071 if (p[0] == ':' && p[1] == ':')
3072 {
3073 /* (the deleted) chill the list of fields: the last entry (at
3074 the head) is a partially constructed entry which we now
3075 scrub. */
3076 fip->list = fip->list->next;
3077 }
3078 return 1;
3079 }
3080 /* *INDENT-OFF* */
3081 /* The stabs for C++ derived classes contain baseclass information which
3082 is marked by a '!' character after the total size. This function is
3083 called when we encounter the baseclass marker, and slurps up all the
3084 baseclass information.
3085
3086 Immediately following the '!' marker is the number of base classes that
3087 the class is derived from, followed by information for each base class.
3088 For each base class, there are two visibility specifiers, a bit offset
3089 to the base class information within the derived class, a reference to
3090 the type for the base class, and a terminating semicolon.
3091
3092 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3093 ^^ ^ ^ ^ ^ ^ ^
3094 Baseclass information marker __________________|| | | | | | |
3095 Number of baseclasses __________________________| | | | | | |
3096 Visibility specifiers (2) ________________________| | | | | |
3097 Offset in bits from start of class _________________| | | | |
3098 Type number for base class ___________________________| | | |
3099 Visibility specifiers (2) _______________________________| | |
3100 Offset in bits from start of class ________________________| |
3101 Type number of base class ____________________________________|
3102
3103 Return 1 for success, 0 for (error-type-inducing) failure. */
3104 /* *INDENT-ON* */
3105
3106
3107
3108 static int
3109 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3110 struct objfile *objfile)
3111 {
3112 int i;
3113 struct nextfield *newobj;
3114
3115 if (**pp != '!')
3116 {
3117 return 1;
3118 }
3119 else
3120 {
3121 /* Skip the '!' baseclass information marker. */
3122 (*pp)++;
3123 }
3124
3125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3126 {
3127 int nbits;
3128
3129 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3130 if (nbits != 0)
3131 return 0;
3132 }
3133
3134 #if 0
3135 /* Some stupid compilers have trouble with the following, so break
3136 it up into simpler expressions. */
3137 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3138 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3139 #else
3140 {
3141 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3142 char *pointer;
3143
3144 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3145 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3146 }
3147 #endif /* 0 */
3148
3149 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3150
3151 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3152 {
3153 newobj = XCNEW (struct nextfield);
3154 make_cleanup (xfree, newobj);
3155
3156 newobj->next = fip->list;
3157 fip->list = newobj;
3158 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3159 field! */
3160
3161 STABS_CONTINUE (pp, objfile);
3162 switch (**pp)
3163 {
3164 case '0':
3165 /* Nothing to do. */
3166 break;
3167 case '1':
3168 SET_TYPE_FIELD_VIRTUAL (type, i);
3169 break;
3170 default:
3171 /* Unknown character. Complain and treat it as non-virtual. */
3172 {
3173 complaint (&symfile_complaints,
3174 _("Unknown virtual character `%c' for baseclass"),
3175 **pp);
3176 }
3177 }
3178 ++(*pp);
3179
3180 newobj->visibility = *(*pp)++;
3181 switch (newobj->visibility)
3182 {
3183 case VISIBILITY_PRIVATE:
3184 case VISIBILITY_PROTECTED:
3185 case VISIBILITY_PUBLIC:
3186 break;
3187 default:
3188 /* Bad visibility format. Complain and treat it as
3189 public. */
3190 {
3191 complaint (&symfile_complaints,
3192 _("Unknown visibility `%c' for baseclass"),
3193 newobj->visibility);
3194 newobj->visibility = VISIBILITY_PUBLIC;
3195 }
3196 }
3197
3198 {
3199 int nbits;
3200
3201 /* The remaining value is the bit offset of the portion of the object
3202 corresponding to this baseclass. Always zero in the absence of
3203 multiple inheritance. */
3204
3205 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3206 if (nbits != 0)
3207 return 0;
3208 }
3209
3210 /* The last piece of baseclass information is the type of the
3211 base class. Read it, and remember it's type name as this
3212 field's name. */
3213
3214 newobj->field.type = read_type (pp, objfile);
3215 newobj->field.name = type_name_no_tag (newobj->field.type);
3216
3217 /* Skip trailing ';' and bump count of number of fields seen. */
3218 if (**pp == ';')
3219 (*pp)++;
3220 else
3221 return 0;
3222 }
3223 return 1;
3224 }
3225
3226 /* The tail end of stabs for C++ classes that contain a virtual function
3227 pointer contains a tilde, a %, and a type number.
3228 The type number refers to the base class (possibly this class itself) which
3229 contains the vtable pointer for the current class.
3230
3231 This function is called when we have parsed all the method declarations,
3232 so we can look for the vptr base class info. */
3233
3234 static int
3235 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3236 struct objfile *objfile)
3237 {
3238 const char *p;
3239
3240 STABS_CONTINUE (pp, objfile);
3241
3242 /* If we are positioned at a ';', then skip it. */
3243 if (**pp == ';')
3244 {
3245 (*pp)++;
3246 }
3247
3248 if (**pp == '~')
3249 {
3250 (*pp)++;
3251
3252 if (**pp == '=' || **pp == '+' || **pp == '-')
3253 {
3254 /* Obsolete flags that used to indicate the presence
3255 of constructors and/or destructors. */
3256 (*pp)++;
3257 }
3258
3259 /* Read either a '%' or the final ';'. */
3260 if (*(*pp)++ == '%')
3261 {
3262 /* The next number is the type number of the base class
3263 (possibly our own class) which supplies the vtable for
3264 this class. Parse it out, and search that class to find
3265 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3266 and TYPE_VPTR_FIELDNO. */
3267
3268 struct type *t;
3269 int i;
3270
3271 t = read_type (pp, objfile);
3272 p = (*pp)++;
3273 while (*p != '\0' && *p != ';')
3274 {
3275 p++;
3276 }
3277 if (*p == '\0')
3278 {
3279 /* Premature end of symbol. */
3280 return 0;
3281 }
3282
3283 set_type_vptr_basetype (type, t);
3284 if (type == t) /* Our own class provides vtbl ptr. */
3285 {
3286 for (i = TYPE_NFIELDS (t) - 1;
3287 i >= TYPE_N_BASECLASSES (t);
3288 --i)
3289 {
3290 const char *name = TYPE_FIELD_NAME (t, i);
3291
3292 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3293 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3294 {
3295 set_type_vptr_fieldno (type, i);
3296 goto gotit;
3297 }
3298 }
3299 /* Virtual function table field not found. */
3300 complaint (&symfile_complaints,
3301 _("virtual function table pointer "
3302 "not found when defining class `%s'"),
3303 TYPE_NAME (type));
3304 return 0;
3305 }
3306 else
3307 {
3308 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3309 }
3310
3311 gotit:
3312 *pp = p + 1;
3313 }
3314 }
3315 return 1;
3316 }
3317
3318 static int
3319 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3320 {
3321 int n;
3322
3323 for (n = TYPE_NFN_FIELDS (type);
3324 fip->fnlist != NULL;
3325 fip->fnlist = fip->fnlist->next)
3326 {
3327 --n; /* Circumvent Sun3 compiler bug. */
3328 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3329 }
3330 return 1;
3331 }
3332
3333 /* Create the vector of fields, and record how big it is.
3334 We need this info to record proper virtual function table information
3335 for this class's virtual functions. */
3336
3337 static int
3338 attach_fields_to_type (struct field_info *fip, struct type *type,
3339 struct objfile *objfile)
3340 {
3341 int nfields = 0;
3342 int non_public_fields = 0;
3343 struct nextfield *scan;
3344
3345 /* Count up the number of fields that we have, as well as taking note of
3346 whether or not there are any non-public fields, which requires us to
3347 allocate and build the private_field_bits and protected_field_bits
3348 bitfields. */
3349
3350 for (scan = fip->list; scan != NULL; scan = scan->next)
3351 {
3352 nfields++;
3353 if (scan->visibility != VISIBILITY_PUBLIC)
3354 {
3355 non_public_fields++;
3356 }
3357 }
3358
3359 /* Now we know how many fields there are, and whether or not there are any
3360 non-public fields. Record the field count, allocate space for the
3361 array of fields, and create blank visibility bitfields if necessary. */
3362
3363 TYPE_NFIELDS (type) = nfields;
3364 TYPE_FIELDS (type) = (struct field *)
3365 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3366 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3367
3368 if (non_public_fields)
3369 {
3370 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3371
3372 TYPE_FIELD_PRIVATE_BITS (type) =
3373 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3374 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3375
3376 TYPE_FIELD_PROTECTED_BITS (type) =
3377 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3378 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3379
3380 TYPE_FIELD_IGNORE_BITS (type) =
3381 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3382 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3383 }
3384
3385 /* Copy the saved-up fields into the field vector. Start from the
3386 head of the list, adding to the tail of the field array, so that
3387 they end up in the same order in the array in which they were
3388 added to the list. */
3389
3390 while (nfields-- > 0)
3391 {
3392 TYPE_FIELD (type, nfields) = fip->list->field;
3393 switch (fip->list->visibility)
3394 {
3395 case VISIBILITY_PRIVATE:
3396 SET_TYPE_FIELD_PRIVATE (type, nfields);
3397 break;
3398
3399 case VISIBILITY_PROTECTED:
3400 SET_TYPE_FIELD_PROTECTED (type, nfields);
3401 break;
3402
3403 case VISIBILITY_IGNORE:
3404 SET_TYPE_FIELD_IGNORE (type, nfields);
3405 break;
3406
3407 case VISIBILITY_PUBLIC:
3408 break;
3409
3410 default:
3411 /* Unknown visibility. Complain and treat it as public. */
3412 {
3413 complaint (&symfile_complaints,
3414 _("Unknown visibility `%c' for field"),
3415 fip->list->visibility);
3416 }
3417 break;
3418 }
3419 fip->list = fip->list->next;
3420 }
3421 return 1;
3422 }
3423
3424
3425 /* Complain that the compiler has emitted more than one definition for the
3426 structure type TYPE. */
3427 static void
3428 complain_about_struct_wipeout (struct type *type)
3429 {
3430 const char *name = "";
3431 const char *kind = "";
3432
3433 if (TYPE_TAG_NAME (type))
3434 {
3435 name = TYPE_TAG_NAME (type);
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_STRUCT: kind = "struct "; break;
3439 case TYPE_CODE_UNION: kind = "union "; break;
3440 case TYPE_CODE_ENUM: kind = "enum "; break;
3441 default: kind = "";
3442 }
3443 }
3444 else if (TYPE_NAME (type))
3445 {
3446 name = TYPE_NAME (type);
3447 kind = "";
3448 }
3449 else
3450 {
3451 name = "<unknown>";
3452 kind = "";
3453 }
3454
3455 complaint (&symfile_complaints,
3456 _("struct/union type gets multiply defined: %s%s"), kind, name);
3457 }
3458
3459 /* Set the length for all variants of a same main_type, which are
3460 connected in the closed chain.
3461
3462 This is something that needs to be done when a type is defined *after*
3463 some cross references to this type have already been read. Consider
3464 for instance the following scenario where we have the following two
3465 stabs entries:
3466
3467 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3468 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3469
3470 A stubbed version of type dummy is created while processing the first
3471 stabs entry. The length of that type is initially set to zero, since
3472 it is unknown at this point. Also, a "constant" variation of type
3473 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3474 the stabs line).
3475
3476 The second stabs entry allows us to replace the stubbed definition
3477 with the real definition. However, we still need to adjust the length
3478 of the "constant" variation of that type, as its length was left
3479 untouched during the main type replacement... */
3480
3481 static void
3482 set_length_in_type_chain (struct type *type)
3483 {
3484 struct type *ntype = TYPE_CHAIN (type);
3485
3486 while (ntype != type)
3487 {
3488 if (TYPE_LENGTH(ntype) == 0)
3489 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3490 else
3491 complain_about_struct_wipeout (ntype);
3492 ntype = TYPE_CHAIN (ntype);
3493 }
3494 }
3495
3496 /* Read the description of a structure (or union type) and return an object
3497 describing the type.
3498
3499 PP points to a character pointer that points to the next unconsumed token
3500 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3501 *PP will point to "4a:1,0,32;;".
3502
3503 TYPE points to an incomplete type that needs to be filled in.
3504
3505 OBJFILE points to the current objfile from which the stabs information is
3506 being read. (Note that it is redundant in that TYPE also contains a pointer
3507 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3508 */
3509
3510 static struct type *
3511 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3512 struct objfile *objfile)
3513 {
3514 struct cleanup *back_to;
3515 struct field_info fi;
3516
3517 fi.list = NULL;
3518 fi.fnlist = NULL;
3519
3520 /* When describing struct/union/class types in stabs, G++ always drops
3521 all qualifications from the name. So if you've got:
3522 struct A { ... struct B { ... }; ... };
3523 then G++ will emit stabs for `struct A::B' that call it simply
3524 `struct B'. Obviously, if you've got a real top-level definition for
3525 `struct B', or other nested definitions, this is going to cause
3526 problems.
3527
3528 Obviously, GDB can't fix this by itself, but it can at least avoid
3529 scribbling on existing structure type objects when new definitions
3530 appear. */
3531 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3532 || TYPE_STUB (type)))
3533 {
3534 complain_about_struct_wipeout (type);
3535
3536 /* It's probably best to return the type unchanged. */
3537 return type;
3538 }
3539
3540 back_to = make_cleanup (null_cleanup, 0);
3541
3542 INIT_CPLUS_SPECIFIC (type);
3543 TYPE_CODE (type) = type_code;
3544 TYPE_STUB (type) = 0;
3545
3546 /* First comes the total size in bytes. */
3547
3548 {
3549 int nbits;
3550
3551 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3552 if (nbits != 0)
3553 {
3554 do_cleanups (back_to);
3555 return error_type (pp, objfile);
3556 }
3557 set_length_in_type_chain (type);
3558 }
3559
3560 /* Now read the baseclasses, if any, read the regular C struct or C++
3561 class member fields, attach the fields to the type, read the C++
3562 member functions, attach them to the type, and then read any tilde
3563 field (baseclass specifier for the class holding the main vtable). */
3564
3565 if (!read_baseclasses (&fi, pp, type, objfile)
3566 || !read_struct_fields (&fi, pp, type, objfile)
3567 || !attach_fields_to_type (&fi, type, objfile)
3568 || !read_member_functions (&fi, pp, type, objfile)
3569 || !attach_fn_fields_to_type (&fi, type)
3570 || !read_tilde_fields (&fi, pp, type, objfile))
3571 {
3572 type = error_type (pp, objfile);
3573 }
3574
3575 do_cleanups (back_to);
3576 return (type);
3577 }
3578
3579 /* Read a definition of an array type,
3580 and create and return a suitable type object.
3581 Also creates a range type which represents the bounds of that
3582 array. */
3583
3584 static struct type *
3585 read_array_type (const char **pp, struct type *type,
3586 struct objfile *objfile)
3587 {
3588 struct type *index_type, *element_type, *range_type;
3589 int lower, upper;
3590 int adjustable = 0;
3591 int nbits;
3592
3593 /* Format of an array type:
3594 "ar<index type>;lower;upper;<array_contents_type>".
3595 OS9000: "arlower,upper;<array_contents_type>".
3596
3597 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3598 for these, produce a type like float[][]. */
3599
3600 {
3601 index_type = read_type (pp, objfile);
3602 if (**pp != ';')
3603 /* Improper format of array type decl. */
3604 return error_type (pp, objfile);
3605 ++*pp;
3606 }
3607
3608 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3609 {
3610 (*pp)++;
3611 adjustable = 1;
3612 }
3613 lower = read_huge_number (pp, ';', &nbits, 0);
3614
3615 if (nbits != 0)
3616 return error_type (pp, objfile);
3617
3618 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3619 {
3620 (*pp)++;
3621 adjustable = 1;
3622 }
3623 upper = read_huge_number (pp, ';', &nbits, 0);
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
3626
3627 element_type = read_type (pp, objfile);
3628
3629 if (adjustable)
3630 {
3631 lower = 0;
3632 upper = -1;
3633 }
3634
3635 range_type =
3636 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3637 type = create_array_type (type, element_type, range_type);
3638
3639 return type;
3640 }
3641
3642
3643 /* Read a definition of an enumeration type,
3644 and create and return a suitable type object.
3645 Also defines the symbols that represent the values of the type. */
3646
3647 static struct type *
3648 read_enum_type (const char **pp, struct type *type,
3649 struct objfile *objfile)
3650 {
3651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3652 const char *p;
3653 char *name;
3654 long n;
3655 struct symbol *sym;
3656 int nsyms = 0;
3657 struct pending **symlist;
3658 struct pending *osyms, *syms;
3659 int o_nsyms;
3660 int nbits;
3661 int unsigned_enum = 1;
3662
3663 #if 0
3664 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3665 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3666 to do? For now, force all enum values to file scope. */
3667 if (within_function)
3668 symlist = &local_symbols;
3669 else
3670 #endif
3671 symlist = &file_symbols;
3672 osyms = *symlist;
3673 o_nsyms = osyms ? osyms->nsyms : 0;
3674
3675 /* The aix4 compiler emits an extra field before the enum members;
3676 my guess is it's a type of some sort. Just ignore it. */
3677 if (**pp == '-')
3678 {
3679 /* Skip over the type. */
3680 while (**pp != ':')
3681 (*pp)++;
3682
3683 /* Skip over the colon. */
3684 (*pp)++;
3685 }
3686
3687 /* Read the value-names and their values.
3688 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3689 A semicolon or comma instead of a NAME means the end. */
3690 while (**pp && **pp != ';' && **pp != ',')
3691 {
3692 STABS_CONTINUE (pp, objfile);
3693 p = *pp;
3694 while (*p != ':')
3695 p++;
3696 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3697 *pp = p + 1;
3698 n = read_huge_number (pp, ',', &nbits, 0);
3699 if (nbits != 0)
3700 return error_type (pp, objfile);
3701
3702 sym = allocate_symbol (objfile);
3703 SYMBOL_SET_LINKAGE_NAME (sym, name);
3704 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3705 &objfile->objfile_obstack);
3706 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3708 SYMBOL_VALUE (sym) = n;
3709 if (n < 0)
3710 unsigned_enum = 0;
3711 add_symbol_to_list (sym, symlist);
3712 nsyms++;
3713 }
3714
3715 if (**pp == ';')
3716 (*pp)++; /* Skip the semicolon. */
3717
3718 /* Now fill in the fields of the type-structure. */
3719
3720 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3721 set_length_in_type_chain (type);
3722 TYPE_CODE (type) = TYPE_CODE_ENUM;
3723 TYPE_STUB (type) = 0;
3724 if (unsigned_enum)
3725 TYPE_UNSIGNED (type) = 1;
3726 TYPE_NFIELDS (type) = nsyms;
3727 TYPE_FIELDS (type) = (struct field *)
3728 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3729 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3730
3731 /* Find the symbols for the values and put them into the type.
3732 The symbols can be found in the symlist that we put them on
3733 to cause them to be defined. osyms contains the old value
3734 of that symlist; everything up to there was defined by us. */
3735 /* Note that we preserve the order of the enum constants, so
3736 that in something like "enum {FOO, LAST_THING=FOO}" we print
3737 FOO, not LAST_THING. */
3738
3739 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3740 {
3741 int last = syms == osyms ? o_nsyms : 0;
3742 int j = syms->nsyms;
3743
3744 for (; --j >= last; --n)
3745 {
3746 struct symbol *xsym = syms->symbol[j];
3747
3748 SYMBOL_TYPE (xsym) = type;
3749 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3750 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3751 TYPE_FIELD_BITSIZE (type, n) = 0;
3752 }
3753 if (syms == osyms)
3754 break;
3755 }
3756
3757 return type;
3758 }
3759
3760 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3761 typedefs in every file (for int, long, etc):
3762
3763 type = b <signed> <width> <format type>; <offset>; <nbits>
3764 signed = u or s.
3765 optional format type = c or b for char or boolean.
3766 offset = offset from high order bit to start bit of type.
3767 width is # bytes in object of this type, nbits is # bits in type.
3768
3769 The width/offset stuff appears to be for small objects stored in
3770 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3771 FIXME. */
3772
3773 static struct type *
3774 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3775 {
3776 int type_bits;
3777 int nbits;
3778 int unsigned_type;
3779 int boolean_type = 0;
3780
3781 switch (**pp)
3782 {
3783 case 's':
3784 unsigned_type = 0;
3785 break;
3786 case 'u':
3787 unsigned_type = 1;
3788 break;
3789 default:
3790 return error_type (pp, objfile);
3791 }
3792 (*pp)++;
3793
3794 /* For some odd reason, all forms of char put a c here. This is strange
3795 because no other type has this honor. We can safely ignore this because
3796 we actually determine 'char'acterness by the number of bits specified in
3797 the descriptor.
3798 Boolean forms, e.g Fortran logical*X, put a b here. */
3799
3800 if (**pp == 'c')
3801 (*pp)++;
3802 else if (**pp == 'b')
3803 {
3804 boolean_type = 1;
3805 (*pp)++;
3806 }
3807
3808 /* The first number appears to be the number of bytes occupied
3809 by this type, except that unsigned short is 4 instead of 2.
3810 Since this information is redundant with the third number,
3811 we will ignore it. */
3812 read_huge_number (pp, ';', &nbits, 0);
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
3816 /* The second number is always 0, so ignore it too. */
3817 read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 /* The third number is the number of bits for this type. */
3822 type_bits = read_huge_number (pp, 0, &nbits, 0);
3823 if (nbits != 0)
3824 return error_type (pp, objfile);
3825 /* The type *should* end with a semicolon. If it are embedded
3826 in a larger type the semicolon may be the only way to know where
3827 the type ends. If this type is at the end of the stabstring we
3828 can deal with the omitted semicolon (but we don't have to like
3829 it). Don't bother to complain(), Sun's compiler omits the semicolon
3830 for "void". */
3831 if (**pp == ';')
3832 ++(*pp);
3833
3834 if (type_bits == 0)
3835 {
3836 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3837 TARGET_CHAR_BIT, NULL);
3838 if (unsigned_type)
3839 TYPE_UNSIGNED (type) = 1;
3840 return type;
3841 }
3842
3843 if (boolean_type)
3844 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3845 else
3846 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3847 }
3848
3849 static struct type *
3850 read_sun_floating_type (const char **pp, int typenums[2],
3851 struct objfile *objfile)
3852 {
3853 int nbits;
3854 int details;
3855 int nbytes;
3856 struct type *rettype;
3857
3858 /* The first number has more details about the type, for example
3859 FN_COMPLEX. */
3860 details = read_huge_number (pp, ';', &nbits, 0);
3861 if (nbits != 0)
3862 return error_type (pp, objfile);
3863
3864 /* The second number is the number of bytes occupied by this type. */
3865 nbytes = read_huge_number (pp, ';', &nbits, 0);
3866 if (nbits != 0)
3867 return error_type (pp, objfile);
3868
3869 nbits = nbytes * TARGET_CHAR_BIT;
3870
3871 if (details == NF_COMPLEX || details == NF_COMPLEX16
3872 || details == NF_COMPLEX32)
3873 {
3874 rettype = dbx_init_float_type (objfile, nbits / 2);
3875 return init_complex_type (objfile, NULL, rettype);
3876 }
3877
3878 return dbx_init_float_type (objfile, nbits);
3879 }
3880
3881 /* Read a number from the string pointed to by *PP.
3882 The value of *PP is advanced over the number.
3883 If END is nonzero, the character that ends the
3884 number must match END, or an error happens;
3885 and that character is skipped if it does match.
3886 If END is zero, *PP is left pointing to that character.
3887
3888 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3889 the number is represented in an octal representation, assume that
3890 it is represented in a 2's complement representation with a size of
3891 TWOS_COMPLEMENT_BITS.
3892
3893 If the number fits in a long, set *BITS to 0 and return the value.
3894 If not, set *BITS to be the number of bits in the number and return 0.
3895
3896 If encounter garbage, set *BITS to -1 and return 0. */
3897
3898 static long
3899 read_huge_number (const char **pp, int end, int *bits,
3900 int twos_complement_bits)
3901 {
3902 const char *p = *pp;
3903 int sign = 1;
3904 int sign_bit = 0;
3905 long n = 0;
3906 int radix = 10;
3907 char overflow = 0;
3908 int nbits = 0;
3909 int c;
3910 long upper_limit;
3911 int twos_complement_representation = 0;
3912
3913 if (*p == '-')
3914 {
3915 sign = -1;
3916 p++;
3917 }
3918
3919 /* Leading zero means octal. GCC uses this to output values larger
3920 than an int (because that would be hard in decimal). */
3921 if (*p == '0')
3922 {
3923 radix = 8;
3924 p++;
3925 }
3926
3927 /* Skip extra zeros. */
3928 while (*p == '0')
3929 p++;
3930
3931 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3932 {
3933 /* Octal, possibly signed. Check if we have enough chars for a
3934 negative number. */
3935
3936 size_t len;
3937 const char *p1 = p;
3938
3939 while ((c = *p1) >= '0' && c < '8')
3940 p1++;
3941
3942 len = p1 - p;
3943 if (len > twos_complement_bits / 3
3944 || (twos_complement_bits % 3 == 0
3945 && len == twos_complement_bits / 3))
3946 {
3947 /* Ok, we have enough characters for a signed value, check
3948 for signness by testing if the sign bit is set. */
3949 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3950 c = *p - '0';
3951 if (c & (1 << sign_bit))
3952 {
3953 /* Definitely signed. */
3954 twos_complement_representation = 1;
3955 sign = -1;
3956 }
3957 }
3958 }
3959
3960 upper_limit = LONG_MAX / radix;
3961
3962 while ((c = *p++) >= '0' && c < ('0' + radix))
3963 {
3964 if (n <= upper_limit)
3965 {
3966 if (twos_complement_representation)
3967 {
3968 /* Octal, signed, twos complement representation. In
3969 this case, n is the corresponding absolute value. */
3970 if (n == 0)
3971 {
3972 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3973
3974 n = -sn;
3975 }
3976 else
3977 {
3978 n *= radix;
3979 n -= c - '0';
3980 }
3981 }
3982 else
3983 {
3984 /* unsigned representation */
3985 n *= radix;
3986 n += c - '0'; /* FIXME this overflows anyway. */
3987 }
3988 }
3989 else
3990 overflow = 1;
3991
3992 /* This depends on large values being output in octal, which is
3993 what GCC does. */
3994 if (radix == 8)
3995 {
3996 if (nbits == 0)
3997 {
3998 if (c == '0')
3999 /* Ignore leading zeroes. */
4000 ;
4001 else if (c == '1')
4002 nbits = 1;
4003 else if (c == '2' || c == '3')
4004 nbits = 2;
4005 else
4006 nbits = 3;
4007 }
4008 else
4009 nbits += 3;
4010 }
4011 }
4012 if (end)
4013 {
4014 if (c && c != end)
4015 {
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
4020 }
4021 else
4022 --p;
4023
4024 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4025 {
4026 /* We were supposed to parse a number with maximum
4027 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4028 if (bits != NULL)
4029 *bits = -1;
4030 return 0;
4031 }
4032
4033 *pp = p;
4034 if (overflow)
4035 {
4036 if (nbits == 0)
4037 {
4038 /* Large decimal constants are an error (because it is hard to
4039 count how many bits are in them). */
4040 if (bits != NULL)
4041 *bits = -1;
4042 return 0;
4043 }
4044
4045 /* -0x7f is the same as 0x80. So deal with it by adding one to
4046 the number of bits. Two's complement represention octals
4047 can't have a '-' in front. */
4048 if (sign == -1 && !twos_complement_representation)
4049 ++nbits;
4050 if (bits)
4051 *bits = nbits;
4052 }
4053 else
4054 {
4055 if (bits)
4056 *bits = 0;
4057 return n * sign;
4058 }
4059 /* It's *BITS which has the interesting information. */
4060 return 0;
4061 }
4062
4063 static struct type *
4064 read_range_type (const char **pp, int typenums[2], int type_size,
4065 struct objfile *objfile)
4066 {
4067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4068 const char *orig_pp = *pp;
4069 int rangenums[2];
4070 long n2, n3;
4071 int n2bits, n3bits;
4072 int self_subrange;
4073 struct type *result_type;
4074 struct type *index_type = NULL;
4075
4076 /* First comes a type we are a subrange of.
4077 In C it is usually 0, 1 or the type being defined. */
4078 if (read_type_number (pp, rangenums) != 0)
4079 return error_type (pp, objfile);
4080 self_subrange = (rangenums[0] == typenums[0] &&
4081 rangenums[1] == typenums[1]);
4082
4083 if (**pp == '=')
4084 {
4085 *pp = orig_pp;
4086 index_type = read_type (pp, objfile);
4087 }
4088
4089 /* A semicolon should now follow; skip it. */
4090 if (**pp == ';')
4091 (*pp)++;
4092
4093 /* The remaining two operands are usually lower and upper bounds
4094 of the range. But in some special cases they mean something else. */
4095 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4096 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4097
4098 if (n2bits == -1 || n3bits == -1)
4099 return error_type (pp, objfile);
4100
4101 if (index_type)
4102 goto handle_true_range;
4103
4104 /* If limits are huge, must be large integral type. */
4105 if (n2bits != 0 || n3bits != 0)
4106 {
4107 char got_signed = 0;
4108 char got_unsigned = 0;
4109 /* Number of bits in the type. */
4110 int nbits = 0;
4111
4112 /* If a type size attribute has been specified, the bounds of
4113 the range should fit in this size. If the lower bounds needs
4114 more bits than the upper bound, then the type is signed. */
4115 if (n2bits <= type_size && n3bits <= type_size)
4116 {
4117 if (n2bits == type_size && n2bits > n3bits)
4118 got_signed = 1;
4119 else
4120 got_unsigned = 1;
4121 nbits = type_size;
4122 }
4123 /* Range from 0 to <large number> is an unsigned large integral type. */
4124 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4125 {
4126 got_unsigned = 1;
4127 nbits = n3bits;
4128 }
4129 /* Range from <large number> to <large number>-1 is a large signed
4130 integral type. Take care of the case where <large number> doesn't
4131 fit in a long but <large number>-1 does. */
4132 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4133 || (n2bits != 0 && n3bits == 0
4134 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4135 && n3 == LONG_MAX))
4136 {
4137 got_signed = 1;
4138 nbits = n2bits;
4139 }
4140
4141 if (got_signed || got_unsigned)
4142 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4143 else
4144 return error_type (pp, objfile);
4145 }
4146
4147 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4148 if (self_subrange && n2 == 0 && n3 == 0)
4149 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4150
4151 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4152 is the width in bytes.
4153
4154 Fortran programs appear to use this for complex types also. To
4155 distinguish between floats and complex, g77 (and others?) seem
4156 to use self-subranges for the complexes, and subranges of int for
4157 the floats.
4158
4159 Also note that for complexes, g77 sets n2 to the size of one of
4160 the member floats, not the whole complex beast. My guess is that
4161 this was to work well with pre-COMPLEX versions of gdb. */
4162
4163 if (n3 == 0 && n2 > 0)
4164 {
4165 struct type *float_type
4166 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4167
4168 if (self_subrange)
4169 return init_complex_type (objfile, NULL, float_type);
4170 else
4171 return float_type;
4172 }
4173
4174 /* If the upper bound is -1, it must really be an unsigned integral. */
4175
4176 else if (n2 == 0 && n3 == -1)
4177 {
4178 int bits = type_size;
4179
4180 if (bits <= 0)
4181 {
4182 /* We don't know its size. It is unsigned int or unsigned
4183 long. GCC 2.3.3 uses this for long long too, but that is
4184 just a GDB 3.5 compatibility hack. */
4185 bits = gdbarch_int_bit (gdbarch);
4186 }
4187
4188 return init_integer_type (objfile, bits, 1, NULL);
4189 }
4190
4191 /* Special case: char is defined (Who knows why) as a subrange of
4192 itself with range 0-127. */
4193 else if (self_subrange && n2 == 0 && n3 == 127)
4194 {
4195 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4196 0, NULL);
4197 TYPE_NOSIGN (type) = 1;
4198 return type;
4199 }
4200 /* We used to do this only for subrange of self or subrange of int. */
4201 else if (n2 == 0)
4202 {
4203 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4204 "unsigned long", and we already checked for that,
4205 so don't need to test for it here. */
4206
4207 if (n3 < 0)
4208 /* n3 actually gives the size. */
4209 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4210
4211 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4212 unsigned n-byte integer. But do require n to be a power of
4213 two; we don't want 3- and 5-byte integers flying around. */
4214 {
4215 int bytes;
4216 unsigned long bits;
4217
4218 bits = n3;
4219 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4220 bits >>= 8;
4221 if (bits == 0
4222 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4223 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4224 }
4225 }
4226 /* I think this is for Convex "long long". Since I don't know whether
4227 Convex sets self_subrange, I also accept that particular size regardless
4228 of self_subrange. */
4229 else if (n3 == 0 && n2 < 0
4230 && (self_subrange
4231 || n2 == -gdbarch_long_long_bit
4232 (gdbarch) / TARGET_CHAR_BIT))
4233 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4234 else if (n2 == -n3 - 1)
4235 {
4236 if (n3 == 0x7f)
4237 return init_integer_type (objfile, 8, 0, NULL);
4238 if (n3 == 0x7fff)
4239 return init_integer_type (objfile, 16, 0, NULL);
4240 if (n3 == 0x7fffffff)
4241 return init_integer_type (objfile, 32, 0, NULL);
4242 }
4243
4244 /* We have a real range type on our hands. Allocate space and
4245 return a real pointer. */
4246 handle_true_range:
4247
4248 if (self_subrange)
4249 index_type = objfile_type (objfile)->builtin_int;
4250 else
4251 index_type = *dbx_lookup_type (rangenums, objfile);
4252 if (index_type == NULL)
4253 {
4254 /* Does this actually ever happen? Is that why we are worrying
4255 about dealing with it rather than just calling error_type? */
4256
4257 complaint (&symfile_complaints,
4258 _("base type %d of range type is not defined"), rangenums[1]);
4259
4260 index_type = objfile_type (objfile)->builtin_int;
4261 }
4262
4263 result_type
4264 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4265 return (result_type);
4266 }
4267
4268 /* Read in an argument list. This is a list of types, separated by commas
4269 and terminated with END. Return the list of types read in, or NULL
4270 if there is an error. */
4271
4272 static struct field *
4273 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4274 int *varargsp)
4275 {
4276 /* FIXME! Remove this arbitrary limit! */
4277 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4278 int n = 0, i;
4279 struct field *rval;
4280
4281 while (**pp != end)
4282 {
4283 if (**pp != ',')
4284 /* Invalid argument list: no ','. */
4285 return NULL;
4286 (*pp)++;
4287 STABS_CONTINUE (pp, objfile);
4288 types[n++] = read_type (pp, objfile);
4289 }
4290 (*pp)++; /* get past `end' (the ':' character). */
4291
4292 if (n == 0)
4293 {
4294 /* We should read at least the THIS parameter here. Some broken stabs
4295 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4296 have been present ";-16,(0,43)" reference instead. This way the
4297 excessive ";" marker prematurely stops the parameters parsing. */
4298
4299 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4300 *varargsp = 0;
4301 }
4302 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4303 *varargsp = 1;
4304 else
4305 {
4306 n--;
4307 *varargsp = 0;
4308 }
4309
4310 rval = XCNEWVEC (struct field, n);
4311 for (i = 0; i < n; i++)
4312 rval[i].type = types[i];
4313 *nargsp = n;
4314 return rval;
4315 }
4316 \f
4317 /* Common block handling. */
4318
4319 /* List of symbols declared since the last BCOMM. This list is a tail
4320 of local_symbols. When ECOMM is seen, the symbols on the list
4321 are noted so their proper addresses can be filled in later,
4322 using the common block base address gotten from the assembler
4323 stabs. */
4324
4325 static struct pending *common_block;
4326 static int common_block_i;
4327
4328 /* Name of the current common block. We get it from the BCOMM instead of the
4329 ECOMM to match IBM documentation (even though IBM puts the name both places
4330 like everyone else). */
4331 static char *common_block_name;
4332
4333 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4334 to remain after this function returns. */
4335
4336 void
4337 common_block_start (const char *name, struct objfile *objfile)
4338 {
4339 if (common_block_name != NULL)
4340 {
4341 complaint (&symfile_complaints,
4342 _("Invalid symbol data: common block within common block"));
4343 }
4344 common_block = local_symbols;
4345 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4346 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4347 strlen (name));
4348 }
4349
4350 /* Process a N_ECOMM symbol. */
4351
4352 void
4353 common_block_end (struct objfile *objfile)
4354 {
4355 /* Symbols declared since the BCOMM are to have the common block
4356 start address added in when we know it. common_block and
4357 common_block_i point to the first symbol after the BCOMM in
4358 the local_symbols list; copy the list and hang it off the
4359 symbol for the common block name for later fixup. */
4360 int i;
4361 struct symbol *sym;
4362 struct pending *newobj = 0;
4363 struct pending *next;
4364 int j;
4365
4366 if (common_block_name == NULL)
4367 {
4368 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4369 return;
4370 }
4371
4372 sym = allocate_symbol (objfile);
4373 /* Note: common_block_name already saved on objfile_obstack. */
4374 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4375 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4376
4377 /* Now we copy all the symbols which have been defined since the BCOMM. */
4378
4379 /* Copy all the struct pendings before common_block. */
4380 for (next = local_symbols;
4381 next != NULL && next != common_block;
4382 next = next->next)
4383 {
4384 for (j = 0; j < next->nsyms; j++)
4385 add_symbol_to_list (next->symbol[j], &newobj);
4386 }
4387
4388 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4389 NULL, it means copy all the local symbols (which we already did
4390 above). */
4391
4392 if (common_block != NULL)
4393 for (j = common_block_i; j < common_block->nsyms; j++)
4394 add_symbol_to_list (common_block->symbol[j], &newobj);
4395
4396 SYMBOL_TYPE (sym) = (struct type *) newobj;
4397
4398 /* Should we be putting local_symbols back to what it was?
4399 Does it matter? */
4400
4401 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4402 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4403 global_sym_chain[i] = sym;
4404 common_block_name = NULL;
4405 }
4406
4407 /* Add a common block's start address to the offset of each symbol
4408 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4409 the common block name). */
4410
4411 static void
4412 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4413 {
4414 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4415
4416 for (; next; next = next->next)
4417 {
4418 int j;
4419
4420 for (j = next->nsyms - 1; j >= 0; j--)
4421 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4422 }
4423 }
4424 \f
4425
4426
4427 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4428 See add_undefined_type for more details. */
4429
4430 static void
4431 add_undefined_type_noname (struct type *type, int typenums[2])
4432 {
4433 struct nat nat;
4434
4435 nat.typenums[0] = typenums [0];
4436 nat.typenums[1] = typenums [1];
4437 nat.type = type;
4438
4439 if (noname_undefs_length == noname_undefs_allocated)
4440 {
4441 noname_undefs_allocated *= 2;
4442 noname_undefs = (struct nat *)
4443 xrealloc ((char *) noname_undefs,
4444 noname_undefs_allocated * sizeof (struct nat));
4445 }
4446 noname_undefs[noname_undefs_length++] = nat;
4447 }
4448
4449 /* Add TYPE to the UNDEF_TYPES vector.
4450 See add_undefined_type for more details. */
4451
4452 static void
4453 add_undefined_type_1 (struct type *type)
4454 {
4455 if (undef_types_length == undef_types_allocated)
4456 {
4457 undef_types_allocated *= 2;
4458 undef_types = (struct type **)
4459 xrealloc ((char *) undef_types,
4460 undef_types_allocated * sizeof (struct type *));
4461 }
4462 undef_types[undef_types_length++] = type;
4463 }
4464
4465 /* What about types defined as forward references inside of a small lexical
4466 scope? */
4467 /* Add a type to the list of undefined types to be checked through
4468 once this file has been read in.
4469
4470 In practice, we actually maintain two such lists: The first list
4471 (UNDEF_TYPES) is used for types whose name has been provided, and
4472 concerns forward references (eg 'xs' or 'xu' forward references);
4473 the second list (NONAME_UNDEFS) is used for types whose name is
4474 unknown at creation time, because they were referenced through
4475 their type number before the actual type was declared.
4476 This function actually adds the given type to the proper list. */
4477
4478 static void
4479 add_undefined_type (struct type *type, int typenums[2])
4480 {
4481 if (TYPE_TAG_NAME (type) == NULL)
4482 add_undefined_type_noname (type, typenums);
4483 else
4484 add_undefined_type_1 (type);
4485 }
4486
4487 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4488
4489 static void
4490 cleanup_undefined_types_noname (struct objfile *objfile)
4491 {
4492 int i;
4493
4494 for (i = 0; i < noname_undefs_length; i++)
4495 {
4496 struct nat nat = noname_undefs[i];
4497 struct type **type;
4498
4499 type = dbx_lookup_type (nat.typenums, objfile);
4500 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4501 {
4502 /* The instance flags of the undefined type are still unset,
4503 and needs to be copied over from the reference type.
4504 Since replace_type expects them to be identical, we need
4505 to set these flags manually before hand. */
4506 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4507 replace_type (nat.type, *type);
4508 }
4509 }
4510
4511 noname_undefs_length = 0;
4512 }
4513
4514 /* Go through each undefined type, see if it's still undefined, and fix it
4515 up if possible. We have two kinds of undefined types:
4516
4517 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4518 Fix: update array length using the element bounds
4519 and the target type's length.
4520 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4521 yet defined at the time a pointer to it was made.
4522 Fix: Do a full lookup on the struct/union tag. */
4523
4524 static void
4525 cleanup_undefined_types_1 (void)
4526 {
4527 struct type **type;
4528
4529 /* Iterate over every undefined type, and look for a symbol whose type
4530 matches our undefined type. The symbol matches if:
4531 1. It is a typedef in the STRUCT domain;
4532 2. It has the same name, and same type code;
4533 3. The instance flags are identical.
4534
4535 It is important to check the instance flags, because we have seen
4536 examples where the debug info contained definitions such as:
4537
4538 "foo_t:t30=B31=xefoo_t:"
4539
4540 In this case, we have created an undefined type named "foo_t" whose
4541 instance flags is null (when processing "xefoo_t"), and then created
4542 another type with the same name, but with different instance flags
4543 ('B' means volatile). I think that the definition above is wrong,
4544 since the same type cannot be volatile and non-volatile at the same
4545 time, but we need to be able to cope with it when it happens. The
4546 approach taken here is to treat these two types as different. */
4547
4548 for (type = undef_types; type < undef_types + undef_types_length; type++)
4549 {
4550 switch (TYPE_CODE (*type))
4551 {
4552
4553 case TYPE_CODE_STRUCT:
4554 case TYPE_CODE_UNION:
4555 case TYPE_CODE_ENUM:
4556 {
4557 /* Check if it has been defined since. Need to do this here
4558 as well as in check_typedef to deal with the (legitimate in
4559 C though not C++) case of several types with the same name
4560 in different source files. */
4561 if (TYPE_STUB (*type))
4562 {
4563 struct pending *ppt;
4564 int i;
4565 /* Name of the type, without "struct" or "union". */
4566 const char *type_name = TYPE_TAG_NAME (*type);
4567
4568 if (type_name == NULL)
4569 {
4570 complaint (&symfile_complaints, _("need a type name"));
4571 break;
4572 }
4573 for (ppt = file_symbols; ppt; ppt = ppt->next)
4574 {
4575 for (i = 0; i < ppt->nsyms; i++)
4576 {
4577 struct symbol *sym = ppt->symbol[i];
4578
4579 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4580 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4581 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4582 TYPE_CODE (*type))
4583 && (TYPE_INSTANCE_FLAGS (*type) ==
4584 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4585 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4586 type_name) == 0)
4587 replace_type (*type, SYMBOL_TYPE (sym));
4588 }
4589 }
4590 }
4591 }
4592 break;
4593
4594 default:
4595 {
4596 complaint (&symfile_complaints,
4597 _("forward-referenced types left unresolved, "
4598 "type code %d."),
4599 TYPE_CODE (*type));
4600 }
4601 break;
4602 }
4603 }
4604
4605 undef_types_length = 0;
4606 }
4607
4608 /* Try to fix all the undefined types we ecountered while processing
4609 this unit. */
4610
4611 void
4612 cleanup_undefined_stabs_types (struct objfile *objfile)
4613 {
4614 cleanup_undefined_types_1 ();
4615 cleanup_undefined_types_noname (objfile);
4616 }
4617
4618 /* Scan through all of the global symbols defined in the object file,
4619 assigning values to the debugging symbols that need to be assigned
4620 to. Get these symbols from the minimal symbol table. */
4621
4622 void
4623 scan_file_globals (struct objfile *objfile)
4624 {
4625 int hash;
4626 struct minimal_symbol *msymbol;
4627 struct symbol *sym, *prev;
4628 struct objfile *resolve_objfile;
4629
4630 /* SVR4 based linkers copy referenced global symbols from shared
4631 libraries to the main executable.
4632 If we are scanning the symbols for a shared library, try to resolve
4633 them from the minimal symbols of the main executable first. */
4634
4635 if (symfile_objfile && objfile != symfile_objfile)
4636 resolve_objfile = symfile_objfile;
4637 else
4638 resolve_objfile = objfile;
4639
4640 while (1)
4641 {
4642 /* Avoid expensive loop through all minimal symbols if there are
4643 no unresolved symbols. */
4644 for (hash = 0; hash < HASHSIZE; hash++)
4645 {
4646 if (global_sym_chain[hash])
4647 break;
4648 }
4649 if (hash >= HASHSIZE)
4650 return;
4651
4652 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4653 {
4654 QUIT;
4655
4656 /* Skip static symbols. */
4657 switch (MSYMBOL_TYPE (msymbol))
4658 {
4659 case mst_file_text:
4660 case mst_file_data:
4661 case mst_file_bss:
4662 continue;
4663 default:
4664 break;
4665 }
4666
4667 prev = NULL;
4668
4669 /* Get the hash index and check all the symbols
4670 under that hash index. */
4671
4672 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4673
4674 for (sym = global_sym_chain[hash]; sym;)
4675 {
4676 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4677 SYMBOL_LINKAGE_NAME (sym)) == 0)
4678 {
4679 /* Splice this symbol out of the hash chain and
4680 assign the value we have to it. */
4681 if (prev)
4682 {
4683 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4684 }
4685 else
4686 {
4687 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4688 }
4689
4690 /* Check to see whether we need to fix up a common block. */
4691 /* Note: this code might be executed several times for
4692 the same symbol if there are multiple references. */
4693 if (sym)
4694 {
4695 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4696 {
4697 fix_common_block (sym,
4698 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4699 msymbol));
4700 }
4701 else
4702 {
4703 SYMBOL_VALUE_ADDRESS (sym)
4704 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4705 }
4706 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4707 }
4708
4709 if (prev)
4710 {
4711 sym = SYMBOL_VALUE_CHAIN (prev);
4712 }
4713 else
4714 {
4715 sym = global_sym_chain[hash];
4716 }
4717 }
4718 else
4719 {
4720 prev = sym;
4721 sym = SYMBOL_VALUE_CHAIN (sym);
4722 }
4723 }
4724 }
4725 if (resolve_objfile == objfile)
4726 break;
4727 resolve_objfile = objfile;
4728 }
4729
4730 /* Change the storage class of any remaining unresolved globals to
4731 LOC_UNRESOLVED and remove them from the chain. */
4732 for (hash = 0; hash < HASHSIZE; hash++)
4733 {
4734 sym = global_sym_chain[hash];
4735 while (sym)
4736 {
4737 prev = sym;
4738 sym = SYMBOL_VALUE_CHAIN (sym);
4739
4740 /* Change the symbol address from the misleading chain value
4741 to address zero. */
4742 SYMBOL_VALUE_ADDRESS (prev) = 0;
4743
4744 /* Complain about unresolved common block symbols. */
4745 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4746 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4747 else
4748 complaint (&symfile_complaints,
4749 _("%s: common block `%s' from "
4750 "global_sym_chain unresolved"),
4751 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4752 }
4753 }
4754 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4755 }
4756
4757 /* Initialize anything that needs initializing when starting to read
4758 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4759 to a psymtab. */
4760
4761 void
4762 stabsread_init (void)
4763 {
4764 }
4765
4766 /* Initialize anything that needs initializing when a completely new
4767 symbol file is specified (not just adding some symbols from another
4768 file, e.g. a shared library). */
4769
4770 void
4771 stabsread_new_init (void)
4772 {
4773 /* Empty the hash table of global syms looking for values. */
4774 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4775 }
4776
4777 /* Initialize anything that needs initializing at the same time as
4778 start_symtab() is called. */
4779
4780 void
4781 start_stabs (void)
4782 {
4783 global_stabs = NULL; /* AIX COFF */
4784 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4785 n_this_object_header_files = 1;
4786 type_vector_length = 0;
4787 type_vector = (struct type **) 0;
4788
4789 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4790 common_block_name = NULL;
4791 }
4792
4793 /* Call after end_symtab(). */
4794
4795 void
4796 end_stabs (void)
4797 {
4798 if (type_vector)
4799 {
4800 xfree (type_vector);
4801 }
4802 type_vector = 0;
4803 type_vector_length = 0;
4804 previous_stab_code = 0;
4805 }
4806
4807 void
4808 finish_global_stabs (struct objfile *objfile)
4809 {
4810 if (global_stabs)
4811 {
4812 patch_block_stabs (global_symbols, global_stabs, objfile);
4813 xfree (global_stabs);
4814 global_stabs = NULL;
4815 }
4816 }
4817
4818 /* Find the end of the name, delimited by a ':', but don't match
4819 ObjC symbols which look like -[Foo bar::]:bla. */
4820 static const char *
4821 find_name_end (const char *name)
4822 {
4823 const char *s = name;
4824
4825 if (s[0] == '-' || *s == '+')
4826 {
4827 /* Must be an ObjC method symbol. */
4828 if (s[1] != '[')
4829 {
4830 error (_("invalid symbol name \"%s\""), name);
4831 }
4832 s = strchr (s, ']');
4833 if (s == NULL)
4834 {
4835 error (_("invalid symbol name \"%s\""), name);
4836 }
4837 return strchr (s, ':');
4838 }
4839 else
4840 {
4841 return strchr (s, ':');
4842 }
4843 }
4844
4845 /* Initializer for this module. */
4846
4847 void
4848 _initialize_stabsread (void)
4849 {
4850 rs6000_builtin_type_data = register_objfile_data ();
4851
4852 undef_types_allocated = 20;
4853 undef_types_length = 0;
4854 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4855
4856 noname_undefs_allocated = 20;
4857 noname_undefs_length = 0;
4858 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4859
4860 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4861 &stab_register_funcs);
4862 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4863 &stab_register_funcs);
4864 }
This page took 0.154532 seconds and 4 git commands to generate.