* symtab.c (find_pc_symtab): Don't lose if OBJF_REORDERED
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "expression.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "libaout.h"
38 #include "aout/aout64.h"
39 #include "gdb-stabs.h"
40 #include "buildsym.h"
41 #include "complaints.h"
42 #include "demangle.h"
43 #include "language.h"
44
45 #include <ctype.h>
46
47 /* Ask stabsread.h to define the vars it normally declares `extern'. */
48 #define EXTERN /**/
49 #include "stabsread.h" /* Our own declarations */
50 #undef EXTERN
51
52 /* The routines that read and process a complete stabs for a C struct or
53 C++ class pass lists of data member fields and lists of member function
54 fields in an instance of a field_info structure, as defined below.
55 This is part of some reorganization of low level C++ support and is
56 expected to eventually go away... (FIXME) */
57
58 struct field_info
59 {
60 struct nextfield
61 {
62 struct nextfield *next;
63
64 /* This is the raw visibility from the stab. It is not checked
65 for being one of the visibilities we recognize, so code which
66 examines this field better be able to deal. */
67 int visibility;
68
69 struct field field;
70 } *list;
71 struct next_fnfieldlist
72 {
73 struct next_fnfieldlist *next;
74 struct fn_fieldlist fn_fieldlist;
75 } *fnlist;
76 };
77
78 static struct type *
79 dbx_alloc_type PARAMS ((int [2], struct objfile *));
80
81 static long read_huge_number PARAMS ((char **, int, int *));
82
83 static struct type *error_type PARAMS ((char **, struct objfile *));
84
85 static void
86 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
87 struct objfile *));
88
89 static void
90 fix_common_block PARAMS ((struct symbol *, int));
91
92 static int
93 read_type_number PARAMS ((char **, int *));
94
95 static struct type *
96 read_range_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
100
101 static struct type *
102 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
103
104 static struct type *
105 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
106
107 static struct type *
108 rs6000_builtin_type PARAMS ((int));
109
110 static int
111 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
112 struct objfile *));
113
114 static int
115 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
116 struct objfile *));
117
118 static int
119 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
120 struct objfile *));
121
122 static int
123 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
124 struct objfile *));
125
126 static int
127 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
128
129 static int
130 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
131 struct objfile *));
132
133 static struct type *
134 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
135
136 static struct type *
137 read_array_type PARAMS ((char **, struct type *, struct objfile *));
138
139 static struct type **
140 read_args PARAMS ((char **, int, struct objfile *));
141
142 static int
143 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
144 struct objfile *));
145
146 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
147 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
148
149 /* Define this as 1 if a pcc declaration of a char or short argument
150 gives the correct address. Otherwise assume pcc gives the
151 address of the corresponding int, which is not the same on a
152 big-endian machine. */
153
154 #ifndef BELIEVE_PCC_PROMOTION
155 #define BELIEVE_PCC_PROMOTION 0
156 #endif
157
158 struct complaint invalid_cpp_abbrev_complaint =
159 {"invalid C++ abbreviation `%s'", 0, 0};
160
161 struct complaint invalid_cpp_type_complaint =
162 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
163
164 struct complaint member_fn_complaint =
165 {"member function type missing, got '%c'", 0, 0};
166
167 struct complaint const_vol_complaint =
168 {"const/volatile indicator missing, got '%c'", 0, 0};
169
170 struct complaint error_type_complaint =
171 {"debug info mismatch between compiler and debugger", 0, 0};
172
173 struct complaint invalid_member_complaint =
174 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
175
176 struct complaint range_type_base_complaint =
177 {"base type %d of range type is not defined", 0, 0};
178
179 struct complaint reg_value_complaint =
180 {"register number %d too large (max %d) in symbol %s", 0, 0};
181
182 struct complaint vtbl_notfound_complaint =
183 {"virtual function table pointer not found when defining class `%s'", 0, 0};
184
185 struct complaint unrecognized_cplus_name_complaint =
186 {"Unknown C++ symbol name `%s'", 0, 0};
187
188 struct complaint rs6000_builtin_complaint =
189 {"Unknown builtin type %d", 0, 0};
190
191 struct complaint unresolved_sym_chain_complaint =
192 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
193
194 struct complaint stabs_general_complaint =
195 {"%s", 0, 0};
196
197 /* Make a list of forward references which haven't been defined. */
198
199 static struct type **undef_types;
200 static int undef_types_allocated;
201 static int undef_types_length;
202 static struct symbol *current_symbol = NULL;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211 /* FIXME: These probably should be our own types (like rs6000_builtin_type
212 has its own types) rather than builtin_type_*. */
213 static struct type **os9k_type_vector[] = {
214 0,
215 &builtin_type_int,
216 &builtin_type_char,
217 &builtin_type_long,
218 &builtin_type_short,
219 &builtin_type_unsigned_char,
220 &builtin_type_unsigned_short,
221 &builtin_type_unsigned_long,
222 &builtin_type_unsigned_int,
223 &builtin_type_float,
224 &builtin_type_double,
225 &builtin_type_void,
226 &builtin_type_long_double
227 };
228
229 static void os9k_init_type_vector PARAMS ((struct type **));
230
231 static void
232 os9k_init_type_vector(tv)
233 struct type **tv;
234 {
235 int i;
236 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
237 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
238 }
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 struct type **
248 dbx_lookup_type (typenums)
249 int typenums[2];
250 {
251 register int filenum = typenums[0];
252 register int index = typenums[1];
253 unsigned old_len;
254 register int real_filenum;
255 register struct header_file *f;
256 int f_orig_length;
257
258 if (filenum == -1) /* -1,-1 is for temporary types. */
259 return 0;
260
261 if (filenum < 0 || filenum >= n_this_object_header_files)
262 {
263 static struct complaint msg = {"\
264 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
265 0, 0};
266 complain (&msg, filenum, index, symnum);
267 goto error_return;
268 }
269
270 if (filenum == 0)
271 {
272 if (index < 0)
273 {
274 /* Caller wants address of address of type. We think
275 that negative (rs6k builtin) types will never appear as
276 "lvalues", (nor should they), so we stuff the real type
277 pointer into a temp, and return its address. If referenced,
278 this will do the right thing. */
279 static struct type *temp_type;
280
281 temp_type = rs6000_builtin_type(index);
282 return &temp_type;
283 }
284
285 /* Type is defined outside of header files.
286 Find it in this object file's type vector. */
287 if (index >= type_vector_length)
288 {
289 old_len = type_vector_length;
290 if (old_len == 0)
291 {
292 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
293 type_vector = (struct type **)
294 malloc (type_vector_length * sizeof (struct type *));
295 }
296 while (index >= type_vector_length)
297 {
298 type_vector_length *= 2;
299 }
300 type_vector = (struct type **)
301 xrealloc ((char *) type_vector,
302 (type_vector_length * sizeof (struct type *)));
303 memset (&type_vector[old_len], 0,
304 (type_vector_length - old_len) * sizeof (struct type *));
305
306 if (os9k_stabs)
307 /* Deal with OS9000 fundamental types. */
308 os9k_init_type_vector (type_vector);
309 }
310 return (&type_vector[index]);
311 }
312 else
313 {
314 real_filenum = this_object_header_files[filenum];
315
316 if (real_filenum >= n_header_files)
317 {
318 struct type *temp_type;
319 struct type **temp_type_p;
320
321 warning ("GDB internal error: bad real_filenum");
322
323 error_return:
324 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
325 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
326 *temp_type_p = temp_type;
327 return temp_type_p;
328 }
329
330 f = &header_files[real_filenum];
331
332 f_orig_length = f->length;
333 if (index >= f_orig_length)
334 {
335 while (index >= f->length)
336 {
337 f->length *= 2;
338 }
339 f->vector = (struct type **)
340 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
341 memset (&f->vector[f_orig_length], 0,
342 (f->length - f_orig_length) * sizeof (struct type *));
343 }
344 return (&f->vector[index]);
345 }
346 }
347
348 /* Make sure there is a type allocated for type numbers TYPENUMS
349 and return the type object.
350 This can create an empty (zeroed) type object.
351 TYPENUMS may be (-1, -1) to return a new type object that is not
352 put into the type vector, and so may not be referred to by number. */
353
354 static struct type *
355 dbx_alloc_type (typenums, objfile)
356 int typenums[2];
357 struct objfile *objfile;
358 {
359 register struct type **type_addr;
360
361 if (typenums[0] == -1)
362 {
363 return (alloc_type (objfile));
364 }
365
366 type_addr = dbx_lookup_type (typenums);
367
368 /* If we are referring to a type not known at all yet,
369 allocate an empty type for it.
370 We will fill it in later if we find out how. */
371 if (*type_addr == 0)
372 {
373 *type_addr = alloc_type (objfile);
374 }
375
376 return (*type_addr);
377 }
378
379 /* for all the stabs in a given stab vector, build appropriate types
380 and fix their symbols in given symbol vector. */
381
382 static void
383 patch_block_stabs (symbols, stabs, objfile)
384 struct pending *symbols;
385 struct pending_stabs *stabs;
386 struct objfile *objfile;
387 {
388 int ii;
389 char *name;
390 char *pp;
391 struct symbol *sym;
392
393 if (stabs)
394 {
395
396 /* for all the stab entries, find their corresponding symbols and
397 patch their types! */
398
399 for (ii = 0; ii < stabs->count; ++ii)
400 {
401 name = stabs->stab[ii];
402 pp = (char*) strchr (name, ':');
403 while (pp[1] == ':')
404 {
405 pp += 2;
406 pp = (char *)strchr(pp, ':');
407 }
408 sym = find_symbol_in_list (symbols, name, pp-name);
409 if (!sym)
410 {
411 /* FIXME-maybe: it would be nice if we noticed whether
412 the variable was defined *anywhere*, not just whether
413 it is defined in this compilation unit. But neither
414 xlc or GCC seem to need such a definition, and until
415 we do psymtabs (so that the minimal symbols from all
416 compilation units are available now), I'm not sure
417 how to get the information. */
418
419 /* On xcoff, if a global is defined and never referenced,
420 ld will remove it from the executable. There is then
421 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
422 sym = (struct symbol *)
423 obstack_alloc (&objfile->symbol_obstack,
424 sizeof (struct symbol));
425
426 memset (sym, 0, sizeof (struct symbol));
427 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
428 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
429 SYMBOL_NAME (sym) =
430 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
431 pp += 2;
432 if (*(pp-1) == 'F' || *(pp-1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, &global_symbols);
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp-1) == 'F' || *(pp-1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462
463 \f
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (pp, typenums)
474 register char **pp;
475 register int *typenums;
476 {
477 int nbits;
478 if (**pp == '(')
479 {
480 (*pp)++;
481 typenums[0] = read_huge_number (pp, ',', &nbits);
482 if (nbits != 0) return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits);
484 if (nbits != 0) return -1;
485 }
486 else
487 {
488 typenums[0] = 0;
489 typenums[1] = read_huge_number (pp, 0, &nbits);
490 if (nbits != 0) return -1;
491 }
492 return 0;
493 }
494
495 \f
496 #if !defined (REG_STRUCT_HAS_ADDR)
497 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
498 #endif
499
500 /* ARGSUSED */
501 struct symbol *
502 define_symbol (valu, string, desc, type, objfile)
503 CORE_ADDR valu;
504 char *string;
505 int desc;
506 int type;
507 struct objfile *objfile;
508 {
509 register struct symbol *sym;
510 char *p = (char *) strchr (string, ':');
511 int deftype;
512 int synonym = 0;
513 register int i;
514
515 /* We would like to eliminate nameless symbols, but keep their types.
516 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
517 to type 2, but, should not create a symbol to address that type. Since
518 the symbol will be nameless, there is no way any user can refer to it. */
519
520 int nameless;
521
522 /* Ignore syms with empty names. */
523 if (string[0] == 0)
524 return 0;
525
526 /* Ignore old-style symbols from cc -go */
527 if (p == 0)
528 return 0;
529
530 while (p[1] == ':')
531 {
532 p += 2;
533 p = strchr(p, ':');
534 }
535
536 /* If a nameless stab entry, all we need is the type, not the symbol.
537 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
538 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
539
540 current_symbol = sym = (struct symbol *)
541 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
542 memset (sym, 0, sizeof (struct symbol));
543
544 switch (type & N_TYPE)
545 {
546 case N_TEXT:
547 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
548 break;
549 case N_DATA:
550 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
551 break;
552 case N_BSS:
553 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
554 break;
555 }
556
557 if (processing_gcc_compilation)
558 {
559 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
560 number of bytes occupied by a type or object, which we ignore. */
561 SYMBOL_LINE(sym) = desc;
562 }
563 else
564 {
565 SYMBOL_LINE(sym) = 0; /* unknown */
566 }
567
568 if (string[0] == CPLUS_MARKER)
569 {
570 /* Special GNU C++ names. */
571 switch (string[1])
572 {
573 case 't':
574 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
575 &objfile -> symbol_obstack);
576 break;
577
578 case 'v': /* $vtbl_ptr_type */
579 /* Was: SYMBOL_NAME (sym) = "vptr"; */
580 goto normal;
581
582 case 'e':
583 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
584 &objfile -> symbol_obstack);
585 break;
586
587 case '_':
588 /* This was an anonymous type that was never fixed up. */
589 goto normal;
590
591 #ifdef STATIC_TRANSFORM_NAME
592 case 'X':
593 /* SunPRO (3.0 at least) static variable encoding. */
594 goto normal;
595 #endif
596
597 default:
598 complain (&unrecognized_cplus_name_complaint, string);
599 goto normal; /* Do *something* with it */
600 }
601 }
602 else
603 {
604 normal:
605 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
606 SYMBOL_NAME (sym) = (char *)
607 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
608 /* Open-coded memcpy--saves function call time. */
609 /* FIXME: Does it really? Try replacing with simple strcpy and
610 try it on an executable with a large symbol table. */
611 /* FIXME: considering that gcc can open code memcpy anyway, I
612 doubt it. xoxorich. */
613 {
614 register char *p1 = string;
615 register char *p2 = SYMBOL_NAME (sym);
616 while (p1 != p)
617 {
618 *p2++ = *p1++;
619 }
620 *p2++ = '\0';
621 }
622
623 /* If this symbol is from a C++ compilation, then attempt to cache the
624 demangled form for future reference. This is a typical time versus
625 space tradeoff, that was decided in favor of time because it sped up
626 C++ symbol lookups by a factor of about 20. */
627
628 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
629 }
630 p++;
631
632 /* Determine the type of name being defined. */
633 #if 0
634 /* Getting GDB to correctly skip the symbol on an undefined symbol
635 descriptor and not ever dump core is a very dodgy proposition if
636 we do things this way. I say the acorn RISC machine can just
637 fix their compiler. */
638 /* The Acorn RISC machine's compiler can put out locals that don't
639 start with "234=" or "(3,4)=", so assume anything other than the
640 deftypes we know how to handle is a local. */
641 if (!strchr ("cfFGpPrStTvVXCR", *p))
642 #else
643 if (isdigit (*p) || *p == '(' || *p == '-')
644 #endif
645 deftype = 'l';
646 else
647 deftype = *p++;
648
649 switch (deftype)
650 {
651 case 'c':
652 /* c is a special case, not followed by a type-number.
653 SYMBOL:c=iVALUE for an integer constant symbol.
654 SYMBOL:c=rVALUE for a floating constant symbol.
655 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
656 e.g. "b:c=e6,0" for "const b = blob1"
657 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
658 if (*p != '=')
659 {
660 SYMBOL_CLASS (sym) = LOC_CONST;
661 SYMBOL_TYPE (sym) = error_type (&p, objfile);
662 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
663 add_symbol_to_list (sym, &file_symbols);
664 return sym;
665 }
666 ++p;
667 switch (*p++)
668 {
669 case 'r':
670 {
671 double d = atof (p);
672 char *dbl_valu;
673
674 /* FIXME-if-picky-about-floating-accuracy: Should be using
675 target arithmetic to get the value. real.c in GCC
676 probably has the necessary code. */
677
678 /* FIXME: lookup_fundamental_type is a hack. We should be
679 creating a type especially for the type of float constants.
680 Problem is, what type should it be?
681
682 Also, what should the name of this type be? Should we
683 be using 'S' constants (see stabs.texinfo) instead? */
684
685 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
686 FT_DBL_PREC_FLOAT);
687 dbl_valu = (char *)
688 obstack_alloc (&objfile -> symbol_obstack,
689 TYPE_LENGTH (SYMBOL_TYPE (sym)));
690 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
691 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
692 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
693 }
694 break;
695 case 'i':
696 {
697 /* Defining integer constants this way is kind of silly,
698 since 'e' constants allows the compiler to give not
699 only the value, but the type as well. C has at least
700 int, long, unsigned int, and long long as constant
701 types; other languages probably should have at least
702 unsigned as well as signed constants. */
703
704 /* We just need one int constant type for all objfiles.
705 It doesn't depend on languages or anything (arguably its
706 name should be a language-specific name for a type of
707 that size, but I'm inclined to say that if the compiler
708 wants a nice name for the type, it can use 'e'). */
709 static struct type *int_const_type;
710
711 /* Yes, this is as long as a *host* int. That is because we
712 use atoi. */
713 if (int_const_type == NULL)
714 int_const_type =
715 init_type (TYPE_CODE_INT,
716 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
717 "integer constant",
718 (struct objfile *)NULL);
719 SYMBOL_TYPE (sym) = int_const_type;
720 SYMBOL_VALUE (sym) = atoi (p);
721 SYMBOL_CLASS (sym) = LOC_CONST;
722 }
723 break;
724 case 'e':
725 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
726 can be represented as integral.
727 e.g. "b:c=e6,0" for "const b = blob1"
728 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
729 {
730 SYMBOL_CLASS (sym) = LOC_CONST;
731 SYMBOL_TYPE (sym) = read_type (&p, objfile);
732
733 if (*p != ',')
734 {
735 SYMBOL_TYPE (sym) = error_type (&p, objfile);
736 break;
737 }
738 ++p;
739
740 /* If the value is too big to fit in an int (perhaps because
741 it is unsigned), or something like that, we silently get
742 a bogus value. The type and everything else about it is
743 correct. Ideally, we should be using whatever we have
744 available for parsing unsigned and long long values,
745 however. */
746 SYMBOL_VALUE (sym) = atoi (p);
747 }
748 break;
749 default:
750 {
751 SYMBOL_CLASS (sym) = LOC_CONST;
752 SYMBOL_TYPE (sym) = error_type (&p, objfile);
753 }
754 }
755 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
756 add_symbol_to_list (sym, &file_symbols);
757 return sym;
758
759 case 'C':
760 /* The name of a caught exception. */
761 SYMBOL_TYPE (sym) = read_type (&p, objfile);
762 SYMBOL_CLASS (sym) = LOC_LABEL;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 SYMBOL_VALUE_ADDRESS (sym) = valu;
765 add_symbol_to_list (sym, &local_symbols);
766 break;
767
768 case 'f':
769 /* A static function definition. */
770 SYMBOL_TYPE (sym) = read_type (&p, objfile);
771 SYMBOL_CLASS (sym) = LOC_BLOCK;
772 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
773 add_symbol_to_list (sym, &file_symbols);
774 /* fall into process_function_types. */
775
776 process_function_types:
777 /* Function result types are described as the result type in stabs.
778 We need to convert this to the function-returning-type-X type
779 in GDB. E.g. "int" is converted to "function returning int". */
780 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
781 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
782 /* fall into process_prototype_types */
783
784 process_prototype_types:
785 /* Sun acc puts declared types of arguments here. We don't care
786 about their actual types (FIXME -- we should remember the whole
787 function prototype), but the list may define some new types
788 that we have to remember, so we must scan it now. */
789 while (*p == ';') {
790 p++;
791 read_type (&p, objfile);
792 }
793 break;
794
795 case 'F':
796 /* A global function definition. */
797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
798 SYMBOL_CLASS (sym) = LOC_BLOCK;
799 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
800 add_symbol_to_list (sym, &global_symbols);
801 goto process_function_types;
802
803 case 'G':
804 /* For a class G (global) symbol, it appears that the
805 value is not correct. It is necessary to search for the
806 corresponding linker definition to find the value.
807 These definitions appear at the end of the namelist. */
808 SYMBOL_TYPE (sym) = read_type (&p, objfile);
809 i = hashname (SYMBOL_NAME (sym));
810 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
811 global_sym_chain[i] = sym;
812 SYMBOL_CLASS (sym) = LOC_STATIC;
813 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
814 add_symbol_to_list (sym, &global_symbols);
815 break;
816
817 /* This case is faked by a conditional above,
818 when there is no code letter in the dbx data.
819 Dbx data never actually contains 'l'. */
820 case 's':
821 case 'l':
822 SYMBOL_TYPE (sym) = read_type (&p, objfile);
823 SYMBOL_CLASS (sym) = LOC_LOCAL;
824 SYMBOL_VALUE (sym) = valu;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &local_symbols);
827 break;
828
829 case 'p':
830 if (*p == 'F')
831 /* pF is a two-letter code that means a function parameter in Fortran.
832 The type-number specifies the type of the return value.
833 Translate it into a pointer-to-function type. */
834 {
835 p++;
836 SYMBOL_TYPE (sym)
837 = lookup_pointer_type
838 (lookup_function_type (read_type (&p, objfile)));
839 }
840 else
841 SYMBOL_TYPE (sym) = read_type (&p, objfile);
842
843 /* Normally this is a parameter, a LOC_ARG. On the i960, it
844 can also be a LOC_LOCAL_ARG depending on symbol type. */
845 #ifndef DBX_PARM_SYMBOL_CLASS
846 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
847 #endif
848
849 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
850 SYMBOL_VALUE (sym) = valu;
851 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
852 add_symbol_to_list (sym, &local_symbols);
853
854 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
855 {
856 /* On little-endian machines, this crud is never necessary,
857 and, if the extra bytes contain garbage, is harmful. */
858 break;
859 }
860
861 /* If it's gcc-compiled, if it says `short', believe it. */
862 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
863 break;
864
865 #if !BELIEVE_PCC_PROMOTION
866 {
867 /* This is the signed type which arguments get promoted to. */
868 static struct type *pcc_promotion_type;
869 /* This is the unsigned type which arguments get promoted to. */
870 static struct type *pcc_unsigned_promotion_type;
871
872 /* Call it "int" because this is mainly C lossage. */
873 if (pcc_promotion_type == NULL)
874 pcc_promotion_type =
875 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
876 0, "int", NULL);
877
878 if (pcc_unsigned_promotion_type == NULL)
879 pcc_unsigned_promotion_type =
880 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
881 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
882
883 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
884 /* This macro is defined on machines (e.g. sparc) where
885 we should believe the type of a PCC 'short' argument,
886 but shouldn't believe the address (the address is
887 the address of the corresponding int).
888
889 My guess is that this correction, as opposed to changing
890 the parameter to an 'int' (as done below, for PCC
891 on most machines), is the right thing to do
892 on all machines, but I don't want to risk breaking
893 something that already works. On most PCC machines,
894 the sparc problem doesn't come up because the calling
895 function has to zero the top bytes (not knowing whether
896 the called function wants an int or a short), so there
897 is little practical difference between an int and a short
898 (except perhaps what happens when the GDB user types
899 "print short_arg = 0x10000;").
900
901 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
902 actually produces the correct address (we don't need to fix it
903 up). I made this code adapt so that it will offset the symbol
904 if it was pointing at an int-aligned location and not
905 otherwise. This way you can use the same gdb for 4.0.x and
906 4.1 systems.
907
908 If the parameter is shorter than an int, and is integral
909 (e.g. char, short, or unsigned equivalent), and is claimed to
910 be passed on an integer boundary, don't believe it! Offset the
911 parameter's address to the tail-end of that integer. */
912
913 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
914 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
915 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
916 {
917 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
918 - TYPE_LENGTH (SYMBOL_TYPE (sym));
919 }
920 break;
921
922 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
923
924 /* If PCC says a parameter is a short or a char,
925 it is really an int. */
926 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
927 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
928 {
929 SYMBOL_TYPE (sym) =
930 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
931 ? pcc_unsigned_promotion_type
932 : pcc_promotion_type;
933 }
934 break;
935
936 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
937 }
938 #endif /* !BELIEVE_PCC_PROMOTION. */
939
940 case 'P':
941 /* acc seems to use P to delare the prototypes of functions that
942 are referenced by this file. gdb is not prepared to deal
943 with this extra information. FIXME, it ought to. */
944 if (type == N_FUN)
945 {
946 read_type (&p, objfile);
947 goto process_prototype_types;
948 }
949 /*FALLTHROUGH*/
950
951 case 'R':
952 /* Parameter which is in a register. */
953 SYMBOL_TYPE (sym) = read_type (&p, objfile);
954 SYMBOL_CLASS (sym) = LOC_REGPARM;
955 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
956 if (SYMBOL_VALUE (sym) >= NUM_REGS)
957 {
958 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
959 SYMBOL_SOURCE_NAME (sym));
960 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
961 }
962 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
963 add_symbol_to_list (sym, &local_symbols);
964 break;
965
966 case 'r':
967 /* Register variable (either global or local). */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGISTER;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
974 SYMBOL_SOURCE_NAME (sym));
975 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
976 }
977 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
978 if (within_function)
979 {
980 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
981 name to represent an argument passed in a register.
982 GCC uses 'P' for the same case. So if we find such a symbol pair
983 we combine it into one 'P' symbol. For Sun cc we need to do this
984 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
985 the 'p' symbol even if it never saves the argument onto the stack.
986
987 On most machines, we want to preserve both symbols, so that
988 we can still get information about what is going on with the
989 stack (VAX for computing args_printed, using stack slots instead
990 of saved registers in backtraces, etc.).
991
992 Note that this code illegally combines
993 main(argc) struct foo argc; { register struct foo argc; }
994 but this case is considered pathological and causes a warning
995 from a decent compiler. */
996
997 if (local_symbols
998 && local_symbols->nsyms > 0
999 #ifndef USE_REGISTER_NOT_ARG
1000 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1001 SYMBOL_TYPE (sym))
1002 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1003 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1004 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1005 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1006 #endif
1007 )
1008 {
1009 struct symbol *prev_sym;
1010 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1011 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1012 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1013 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1014 {
1015 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1016 /* Use the type from the LOC_REGISTER; that is the type
1017 that is actually in that register. */
1018 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1019 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1020 sym = prev_sym;
1021 break;
1022 }
1023 }
1024 add_symbol_to_list (sym, &local_symbols);
1025 }
1026 else
1027 add_symbol_to_list (sym, &file_symbols);
1028 break;
1029
1030 case 'S':
1031 /* Static symbol at top level of file */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_CLASS (sym) = LOC_STATIC;
1034 SYMBOL_VALUE_ADDRESS (sym) = valu;
1035 #ifdef STATIC_TRANSFORM_NAME
1036 if (SYMBOL_NAME (sym)[0] == '$')
1037 {
1038 struct minimal_symbol *msym;
1039 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1040 if (msym != NULL)
1041 {
1042 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1043 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1044 }
1045 }
1046 #endif
1047 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1048 add_symbol_to_list (sym, &file_symbols);
1049 break;
1050
1051 case 't':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053
1054 /* For a nameless type, we don't want a create a symbol, thus we
1055 did not use `sym'. Return without further processing. */
1056 if (nameless) return NULL;
1057
1058 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1059 SYMBOL_VALUE (sym) = valu;
1060 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1061 /* C++ vagaries: we may have a type which is derived from
1062 a base type which did not have its name defined when the
1063 derived class was output. We fill in the derived class's
1064 base part member's name here in that case. */
1065 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1066 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1067 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1068 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1069 {
1070 int j;
1071 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1072 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1073 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1074 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1075 }
1076
1077 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1078 {
1079 /* gcc-2.6 or later (when using -fvtable-thunks)
1080 emits a unique named type for a vtable entry.
1081 Some gdb code depends on that specific name. */
1082 extern const char vtbl_ptr_name[];
1083
1084 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1085 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1086 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1087 {
1088 /* If we are giving a name to a type such as "pointer to
1089 foo" or "function returning foo", we better not set
1090 the TYPE_NAME. If the program contains "typedef char
1091 *caddr_t;", we don't want all variables of type char
1092 * to print as caddr_t. This is not just a
1093 consequence of GDB's type management; PCC and GCC (at
1094 least through version 2.4) both output variables of
1095 either type char * or caddr_t with the type number
1096 defined in the 't' symbol for caddr_t. If a future
1097 compiler cleans this up it GDB is not ready for it
1098 yet, but if it becomes ready we somehow need to
1099 disable this check (without breaking the PCC/GCC2.4
1100 case).
1101
1102 Sigh.
1103
1104 Fortunately, this check seems not to be necessary
1105 for anything except pointers or functions. */
1106 }
1107 else
1108 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1109 }
1110
1111 add_symbol_to_list (sym, &file_symbols);
1112 break;
1113
1114 case 'T':
1115 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1116 by 't' which means we are typedef'ing it as well. */
1117 synonym = *p == 't';
1118
1119 if (synonym)
1120 p++;
1121 /* The semantics of C++ state that "struct foo { ... }" also defines
1122 a typedef for "foo". Unfortunately, cfront never makes the typedef
1123 when translating C++ into C. We make the typedef here so that
1124 "ptype foo" works as expected for cfront translated code. */
1125 else if (current_subfile->language == language_cplus)
1126 synonym = 1;
1127
1128 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1129
1130 /* For a nameless type, we don't want a create a symbol, thus we
1131 did not use `sym'. Return without further processing. */
1132 if (nameless) return NULL;
1133
1134 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1135 SYMBOL_VALUE (sym) = valu;
1136 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1137 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1138 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1139 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1140 add_symbol_to_list (sym, &file_symbols);
1141
1142 if (synonym)
1143 {
1144 /* Clone the sym and then modify it. */
1145 register struct symbol *typedef_sym = (struct symbol *)
1146 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1147 *typedef_sym = *sym;
1148 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1149 SYMBOL_VALUE (typedef_sym) = valu;
1150 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1151 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1152 TYPE_NAME (SYMBOL_TYPE (sym))
1153 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1154 add_symbol_to_list (typedef_sym, &file_symbols);
1155 }
1156 break;
1157
1158 case 'V':
1159 /* Static symbol of local scope */
1160 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1161 SYMBOL_CLASS (sym) = LOC_STATIC;
1162 SYMBOL_VALUE_ADDRESS (sym) = valu;
1163 #ifdef STATIC_TRANSFORM_NAME
1164 if (SYMBOL_NAME (sym)[0] == '$')
1165 {
1166 struct minimal_symbol *msym;
1167 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1168 if (msym != NULL)
1169 {
1170 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1171 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1172 }
1173 }
1174 #endif
1175 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1176 if (os9k_stabs)
1177 add_symbol_to_list (sym, &global_symbols);
1178 else
1179 add_symbol_to_list (sym, &local_symbols);
1180 break;
1181
1182 case 'v':
1183 /* Reference parameter */
1184 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1185 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1186 SYMBOL_VALUE (sym) = valu;
1187 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1188 add_symbol_to_list (sym, &local_symbols);
1189 break;
1190
1191 case 'a':
1192 /* Reference parameter which is in a register. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1195 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1196 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1197 {
1198 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1199 SYMBOL_SOURCE_NAME (sym));
1200 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1201 }
1202 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1203 add_symbol_to_list (sym, &local_symbols);
1204 break;
1205
1206 case 'X':
1207 /* This is used by Sun FORTRAN for "function result value".
1208 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1209 that Pascal uses it too, but when I tried it Pascal used
1210 "x:3" (local symbol) instead. */
1211 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1212 SYMBOL_CLASS (sym) = LOC_LOCAL;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1215 add_symbol_to_list (sym, &local_symbols);
1216 break;
1217
1218 default:
1219 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1220 SYMBOL_CLASS (sym) = LOC_CONST;
1221 SYMBOL_VALUE (sym) = 0;
1222 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1223 add_symbol_to_list (sym, &file_symbols);
1224 break;
1225 }
1226
1227 /* When passing structures to a function, some systems sometimes pass
1228 the address in a register, not the structure itself. */
1229
1230 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1231 SYMBOL_TYPE (sym))
1232 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1233 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1234 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1235 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET)))
1236 {
1237 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to
1238 convert LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
1239 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1240 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1241 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1242 subsequent arguments on the sparc, for example). */
1243 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1244 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1245 }
1246
1247 return sym;
1248 }
1249
1250 \f
1251 /* Skip rest of this symbol and return an error type.
1252
1253 General notes on error recovery: error_type always skips to the
1254 end of the symbol (modulo cretinous dbx symbol name continuation).
1255 Thus code like this:
1256
1257 if (*(*pp)++ != ';')
1258 return error_type (pp, objfile);
1259
1260 is wrong because if *pp starts out pointing at '\0' (typically as the
1261 result of an earlier error), it will be incremented to point to the
1262 start of the next symbol, which might produce strange results, at least
1263 if you run off the end of the string table. Instead use
1264
1265 if (**pp != ';')
1266 return error_type (pp, objfile);
1267 ++*pp;
1268
1269 or
1270
1271 if (**pp != ';')
1272 foo = error_type (pp, objfile);
1273 else
1274 ++*pp;
1275
1276 And in case it isn't obvious, the point of all this hair is so the compiler
1277 can define new types and new syntaxes, and old versions of the
1278 debugger will be able to read the new symbol tables. */
1279
1280 static struct type *
1281 error_type (pp, objfile)
1282 char **pp;
1283 struct objfile *objfile;
1284 {
1285 complain (&error_type_complaint);
1286 while (1)
1287 {
1288 /* Skip to end of symbol. */
1289 while (**pp != '\0')
1290 {
1291 (*pp)++;
1292 }
1293
1294 /* Check for and handle cretinous dbx symbol name continuation! */
1295 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1296 {
1297 *pp = next_symbol_text (objfile);
1298 }
1299 else
1300 {
1301 break;
1302 }
1303 }
1304 return (builtin_type_error);
1305 }
1306
1307 \f
1308 /* Read type information or a type definition; return the type. Even
1309 though this routine accepts either type information or a type
1310 definition, the distinction is relevant--some parts of stabsread.c
1311 assume that type information starts with a digit, '-', or '(' in
1312 deciding whether to call read_type. */
1313
1314 struct type *
1315 read_type (pp, objfile)
1316 register char **pp;
1317 struct objfile *objfile;
1318 {
1319 register struct type *type = 0;
1320 struct type *type1;
1321 int typenums[2];
1322 int xtypenums[2];
1323 char type_descriptor;
1324
1325 /* Size in bits of type if specified by a type attribute, or -1 if
1326 there is no size attribute. */
1327 int type_size = -1;
1328
1329 /* Used to distinguish string and bitstring from char-array and set. */
1330 int is_string = 0;
1331
1332 /* Read type number if present. The type number may be omitted.
1333 for instance in a two-dimensional array declared with type
1334 "ar1;1;10;ar1;1;10;4". */
1335 if ((**pp >= '0' && **pp <= '9')
1336 || **pp == '('
1337 || **pp == '-')
1338 {
1339 if (read_type_number (pp, typenums) != 0)
1340 return error_type (pp, objfile);
1341
1342 /* Type is not being defined here. Either it already exists,
1343 or this is a forward reference to it. dbx_alloc_type handles
1344 both cases. */
1345 if (**pp != '=')
1346 return dbx_alloc_type (typenums, objfile);
1347
1348 /* Type is being defined here. */
1349 /* Skip the '='. */
1350 ++(*pp);
1351
1352 while (**pp == '@')
1353 {
1354 char *p = *pp + 1;
1355 /* It might be a type attribute or a member type. */
1356 if (isdigit (*p) || *p == '(' || *p == '-')
1357 /* Member type. */
1358 break;
1359 else
1360 {
1361 /* Type attributes. */
1362 char *attr = p;
1363
1364 /* Skip to the semicolon. */
1365 while (*p != ';' && *p != '\0')
1366 ++p;
1367 *pp = p;
1368 if (*p == '\0')
1369 return error_type (pp, objfile);
1370 else
1371 /* Skip the semicolon. */
1372 ++*pp;
1373
1374 switch (*attr)
1375 {
1376 case 's':
1377 type_size = atoi (attr + 1);
1378 if (type_size <= 0)
1379 type_size = -1;
1380 break;
1381
1382 case 'S':
1383 is_string = 1;
1384 break;
1385
1386 default:
1387 /* Ignore unrecognized type attributes, so future compilers
1388 can invent new ones. */
1389 break;
1390 }
1391 }
1392 }
1393 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1394 ++(*pp);
1395 }
1396 else
1397 {
1398 /* 'typenums=' not present, type is anonymous. Read and return
1399 the definition, but don't put it in the type vector. */
1400 typenums[0] = typenums[1] = -1;
1401 (*pp)++;
1402 }
1403
1404 type_descriptor = (*pp)[-1];
1405 switch (type_descriptor)
1406 {
1407 case 'x':
1408 {
1409 enum type_code code;
1410
1411 /* Used to index through file_symbols. */
1412 struct pending *ppt;
1413 int i;
1414
1415 /* Name including "struct", etc. */
1416 char *type_name;
1417
1418 {
1419 char *from, *to, *p, *q1, *q2;
1420
1421 /* Set the type code according to the following letter. */
1422 switch ((*pp)[0])
1423 {
1424 case 's':
1425 code = TYPE_CODE_STRUCT;
1426 break;
1427 case 'u':
1428 code = TYPE_CODE_UNION;
1429 break;
1430 case 'e':
1431 code = TYPE_CODE_ENUM;
1432 break;
1433 default:
1434 {
1435 /* Complain and keep going, so compilers can invent new
1436 cross-reference types. */
1437 static struct complaint msg =
1438 {"Unrecognized cross-reference type `%c'", 0, 0};
1439 complain (&msg, (*pp)[0]);
1440 code = TYPE_CODE_STRUCT;
1441 break;
1442 }
1443 }
1444
1445 q1 = strchr(*pp, '<');
1446 p = strchr(*pp, ':');
1447 if (p == NULL)
1448 return error_type (pp, objfile);
1449 while (q1 && p > q1 && p[1] == ':')
1450 {
1451 q2 = strchr(q1, '>');
1452 if (!q2 || q2 < p)
1453 break;
1454 p += 2;
1455 p = strchr(p, ':');
1456 if (p == NULL)
1457 return error_type (pp, objfile);
1458 }
1459 to = type_name =
1460 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1461
1462 /* Copy the name. */
1463 from = *pp + 1;
1464 while (from < p)
1465 *to++ = *from++;
1466 *to = '\0';
1467
1468 /* Set the pointer ahead of the name which we just read, and
1469 the colon. */
1470 *pp = from + 1;
1471 }
1472
1473 /* Now check to see whether the type has already been
1474 declared. This was written for arrays of cross-referenced
1475 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1476 sure it is not necessary anymore. But it might be a good
1477 idea, to save a little memory. */
1478
1479 for (ppt = file_symbols; ppt; ppt = ppt->next)
1480 for (i = 0; i < ppt->nsyms; i++)
1481 {
1482 struct symbol *sym = ppt->symbol[i];
1483
1484 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1485 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1486 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1487 && STREQ (SYMBOL_NAME (sym), type_name))
1488 {
1489 obstack_free (&objfile -> type_obstack, type_name);
1490 type = SYMBOL_TYPE (sym);
1491 return type;
1492 }
1493 }
1494
1495 /* Didn't find the type to which this refers, so we must
1496 be dealing with a forward reference. Allocate a type
1497 structure for it, and keep track of it so we can
1498 fill in the rest of the fields when we get the full
1499 type. */
1500 type = dbx_alloc_type (typenums, objfile);
1501 TYPE_CODE (type) = code;
1502 TYPE_TAG_NAME (type) = type_name;
1503 INIT_CPLUS_SPECIFIC(type);
1504 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1505
1506 add_undefined_type (type);
1507 return type;
1508 }
1509
1510 case '-': /* RS/6000 built-in type */
1511 case '0':
1512 case '1':
1513 case '2':
1514 case '3':
1515 case '4':
1516 case '5':
1517 case '6':
1518 case '7':
1519 case '8':
1520 case '9':
1521 case '(':
1522
1523 {
1524 char *pp_saved;
1525
1526 (*pp)--;
1527 pp_saved = *pp;
1528
1529 /* Peek ahead at the number to detect void. */
1530 if (read_type_number (pp, xtypenums) != 0)
1531 return error_type (pp, objfile);
1532
1533 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1534 /* It's being defined as itself. That means it is "void". */
1535 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1536 else
1537 {
1538 struct type *xtype;
1539
1540 /* Go back to the number and have read_type get it. This means
1541 that we can deal with something like t(1,2)=(3,4)=... which
1542 the Lucid compiler uses. */
1543 *pp = pp_saved;
1544 xtype = read_type (pp, objfile);
1545
1546 /* The type is being defined to another type. So we copy the type.
1547 This loses if we copy a C++ class and so we lose track of how
1548 the names are mangled (but g++ doesn't output stabs like this
1549 now anyway). */
1550
1551 type = alloc_type (objfile);
1552 if (SYMBOL_LINE (current_symbol) == 0)
1553 {
1554 *type = *xtype;
1555 /* The idea behind clearing the names is that the only purpose
1556 for defining a type to another type is so that the name of
1557 one can be different. So we probably don't need to worry
1558 much about the case where the compiler doesn't give a name
1559 to the new type. */
1560 TYPE_NAME (type) = NULL;
1561 TYPE_TAG_NAME (type) = NULL;
1562 }
1563 else
1564 {
1565 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1566 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1567 TYPE_TARGET_TYPE (type) = xtype;
1568 }
1569 }
1570 if (typenums[0] != -1)
1571 *dbx_lookup_type (typenums) = type;
1572 break;
1573 }
1574
1575 /* In the following types, we must be sure to overwrite any existing
1576 type that the typenums refer to, rather than allocating a new one
1577 and making the typenums point to the new one. This is because there
1578 may already be pointers to the existing type (if it had been
1579 forward-referenced), and we must change it to a pointer, function,
1580 reference, or whatever, *in-place*. */
1581
1582 case '*':
1583 type1 = read_type (pp, objfile);
1584 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1585 break;
1586
1587 case '&': /* Reference to another type */
1588 type1 = read_type (pp, objfile);
1589 type = make_reference_type (type1, dbx_lookup_type (typenums));
1590 break;
1591
1592 case 'f': /* Function returning another type */
1593 if (os9k_stabs && **pp == '(')
1594 {
1595 /* Function prototype; parse it.
1596 We must conditionalize this on os9k_stabs because otherwise
1597 it could be confused with a Sun-style (1,3) typenumber
1598 (I think). */
1599 struct type *t;
1600 ++*pp;
1601 while (**pp != ')')
1602 {
1603 t = read_type(pp, objfile);
1604 if (**pp == ',') ++*pp;
1605 }
1606 }
1607 type1 = read_type (pp, objfile);
1608 type = make_function_type (type1, dbx_lookup_type (typenums));
1609 break;
1610
1611 case 'k': /* Const qualifier on some type (Sun) */
1612 case 'c': /* Const qualifier on some type (OS9000) */
1613 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1614 only accept 'c' in the os9k_stabs case. */
1615 if (type_descriptor == 'c' && !os9k_stabs)
1616 return error_type (pp, objfile);
1617 type = read_type (pp, objfile);
1618 /* FIXME! For now, we ignore const and volatile qualifiers. */
1619 break;
1620
1621 case 'B': /* Volatile qual on some type (Sun) */
1622 case 'i': /* Volatile qual on some type (OS9000) */
1623 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1624 only accept 'i' in the os9k_stabs case. */
1625 if (type_descriptor == 'i' && !os9k_stabs)
1626 return error_type (pp, objfile);
1627 type = read_type (pp, objfile);
1628 /* FIXME! For now, we ignore const and volatile qualifiers. */
1629 break;
1630
1631 /* FIXME -- we should be doing smash_to_XXX types here. */
1632 case '@': /* Member (class & variable) type */
1633 {
1634 struct type *domain = read_type (pp, objfile);
1635 struct type *memtype;
1636
1637 if (**pp != ',')
1638 /* Invalid member type data format. */
1639 return error_type (pp, objfile);
1640 ++*pp;
1641
1642 memtype = read_type (pp, objfile);
1643 type = dbx_alloc_type (typenums, objfile);
1644 smash_to_member_type (type, domain, memtype);
1645 }
1646 break;
1647
1648 case '#': /* Method (class & fn) type */
1649 if ((*pp)[0] == '#')
1650 {
1651 /* We'll get the parameter types from the name. */
1652 struct type *return_type;
1653
1654 (*pp)++;
1655 return_type = read_type (pp, objfile);
1656 if (*(*pp)++ != ';')
1657 complain (&invalid_member_complaint, symnum);
1658 type = allocate_stub_method (return_type);
1659 if (typenums[0] != -1)
1660 *dbx_lookup_type (typenums) = type;
1661 }
1662 else
1663 {
1664 struct type *domain = read_type (pp, objfile);
1665 struct type *return_type;
1666 struct type **args;
1667
1668 if (**pp != ',')
1669 /* Invalid member type data format. */
1670 return error_type (pp, objfile);
1671 else
1672 ++(*pp);
1673
1674 return_type = read_type (pp, objfile);
1675 args = read_args (pp, ';', objfile);
1676 type = dbx_alloc_type (typenums, objfile);
1677 smash_to_method_type (type, domain, return_type, args);
1678 }
1679 break;
1680
1681 case 'r': /* Range type */
1682 type = read_range_type (pp, typenums, objfile);
1683 if (typenums[0] != -1)
1684 *dbx_lookup_type (typenums) = type;
1685 break;
1686
1687 case 'b':
1688 if (os9k_stabs)
1689 /* Const and volatile qualified type. */
1690 type = read_type (pp, objfile);
1691 else
1692 {
1693 /* Sun ACC builtin int type */
1694 type = read_sun_builtin_type (pp, typenums, objfile);
1695 if (typenums[0] != -1)
1696 *dbx_lookup_type (typenums) = type;
1697 }
1698 break;
1699
1700 case 'R': /* Sun ACC builtin float type */
1701 type = read_sun_floating_type (pp, typenums, objfile);
1702 if (typenums[0] != -1)
1703 *dbx_lookup_type (typenums) = type;
1704 break;
1705
1706 case 'e': /* Enumeration type */
1707 type = dbx_alloc_type (typenums, objfile);
1708 type = read_enum_type (pp, type, objfile);
1709 if (typenums[0] != -1)
1710 *dbx_lookup_type (typenums) = type;
1711 break;
1712
1713 case 's': /* Struct type */
1714 case 'u': /* Union type */
1715 type = dbx_alloc_type (typenums, objfile);
1716 switch (type_descriptor)
1717 {
1718 case 's':
1719 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1720 break;
1721 case 'u':
1722 TYPE_CODE (type) = TYPE_CODE_UNION;
1723 break;
1724 }
1725 type = read_struct_type (pp, type, objfile);
1726 break;
1727
1728 case 'a': /* Array type */
1729 if (**pp != 'r')
1730 return error_type (pp, objfile);
1731 ++*pp;
1732
1733 type = dbx_alloc_type (typenums, objfile);
1734 type = read_array_type (pp, type, objfile);
1735 if (is_string)
1736 TYPE_CODE (type) = TYPE_CODE_STRING;
1737 break;
1738
1739 case 'S':
1740 type1 = read_type (pp, objfile);
1741 type = create_set_type ((struct type*) NULL, type1);
1742 if (is_string)
1743 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1744 if (typenums[0] != -1)
1745 *dbx_lookup_type (typenums) = type;
1746 break;
1747
1748 default:
1749 --*pp; /* Go back to the symbol in error */
1750 /* Particularly important if it was \0! */
1751 return error_type (pp, objfile);
1752 }
1753
1754 if (type == 0)
1755 {
1756 warning ("GDB internal error, type is NULL in stabsread.c\n");
1757 return error_type (pp, objfile);
1758 }
1759
1760 /* Size specified in a type attribute overrides any other size. */
1761 if (type_size != -1)
1762 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1763
1764 return type;
1765 }
1766 \f
1767 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1768 Return the proper type node for a given builtin type number. */
1769
1770 static struct type *
1771 rs6000_builtin_type (typenum)
1772 int typenum;
1773 {
1774 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1775 #define NUMBER_RECOGNIZED 34
1776 /* This includes an empty slot for type number -0. */
1777 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1778 struct type *rettype = NULL;
1779
1780 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1781 {
1782 complain (&rs6000_builtin_complaint, typenum);
1783 return builtin_type_error;
1784 }
1785 if (negative_types[-typenum] != NULL)
1786 return negative_types[-typenum];
1787
1788 #if TARGET_CHAR_BIT != 8
1789 #error This code wrong for TARGET_CHAR_BIT not 8
1790 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1791 that if that ever becomes not true, the correct fix will be to
1792 make the size in the struct type to be in bits, not in units of
1793 TARGET_CHAR_BIT. */
1794 #endif
1795
1796 switch (-typenum)
1797 {
1798 case 1:
1799 /* The size of this and all the other types are fixed, defined
1800 by the debugging format. If there is a type called "int" which
1801 is other than 32 bits, then it should use a new negative type
1802 number (or avoid negative type numbers for that case).
1803 See stabs.texinfo. */
1804 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1805 break;
1806 case 2:
1807 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1808 break;
1809 case 3:
1810 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1811 break;
1812 case 4:
1813 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1814 break;
1815 case 5:
1816 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1817 "unsigned char", NULL);
1818 break;
1819 case 6:
1820 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1821 break;
1822 case 7:
1823 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1824 "unsigned short", NULL);
1825 break;
1826 case 8:
1827 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1828 "unsigned int", NULL);
1829 break;
1830 case 9:
1831 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1832 "unsigned", NULL);
1833 case 10:
1834 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1835 "unsigned long", NULL);
1836 break;
1837 case 11:
1838 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1839 break;
1840 case 12:
1841 /* IEEE single precision (32 bit). */
1842 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1843 break;
1844 case 13:
1845 /* IEEE double precision (64 bit). */
1846 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1847 break;
1848 case 14:
1849 /* This is an IEEE double on the RS/6000, and different machines with
1850 different sizes for "long double" should use different negative
1851 type numbers. See stabs.texinfo. */
1852 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1853 break;
1854 case 15:
1855 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1856 break;
1857 case 16:
1858 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1859 break;
1860 case 17:
1861 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1862 break;
1863 case 18:
1864 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1865 break;
1866 case 19:
1867 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1868 break;
1869 case 20:
1870 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1871 "character", NULL);
1872 break;
1873 case 21:
1874 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1875 "logical*1", NULL);
1876 break;
1877 case 22:
1878 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1879 "logical*2", NULL);
1880 break;
1881 case 23:
1882 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1883 "logical*4", NULL);
1884 break;
1885 case 24:
1886 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1887 "logical", NULL);
1888 break;
1889 case 25:
1890 /* Complex type consisting of two IEEE single precision values. */
1891 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1892 break;
1893 case 26:
1894 /* Complex type consisting of two IEEE double precision values. */
1895 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1896 break;
1897 case 27:
1898 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1899 break;
1900 case 28:
1901 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1902 break;
1903 case 29:
1904 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1905 break;
1906 case 30:
1907 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1908 break;
1909 case 31:
1910 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
1911 break;
1912 case 32:
1913 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1914 "unsigned long long", NULL);
1915 break;
1916 case 33:
1917 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
1918 "logical*8", NULL);
1919 break;
1920 case 34:
1921 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
1922 break;
1923 }
1924 negative_types[-typenum] = rettype;
1925 return rettype;
1926 }
1927 \f
1928 /* This page contains subroutines of read_type. */
1929
1930 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1931 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1932 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1933 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1934
1935 /* Read member function stabs info for C++ classes. The form of each member
1936 function data is:
1937
1938 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1939
1940 An example with two member functions is:
1941
1942 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1943
1944 For the case of overloaded operators, the format is op$::*.funcs, where
1945 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1946 name (such as `+=') and `.' marks the end of the operator name.
1947
1948 Returns 1 for success, 0 for failure. */
1949
1950 static int
1951 read_member_functions (fip, pp, type, objfile)
1952 struct field_info *fip;
1953 char **pp;
1954 struct type *type;
1955 struct objfile *objfile;
1956 {
1957 int nfn_fields = 0;
1958 int length = 0;
1959 /* Total number of member functions defined in this class. If the class
1960 defines two `f' functions, and one `g' function, then this will have
1961 the value 3. */
1962 int total_length = 0;
1963 int i;
1964 struct next_fnfield
1965 {
1966 struct next_fnfield *next;
1967 struct fn_field fn_field;
1968 } *sublist;
1969 struct type *look_ahead_type;
1970 struct next_fnfieldlist *new_fnlist;
1971 struct next_fnfield *new_sublist;
1972 char *main_fn_name;
1973 register char *p;
1974
1975 /* Process each list until we find something that is not a member function
1976 or find the end of the functions. */
1977
1978 while (**pp != ';')
1979 {
1980 /* We should be positioned at the start of the function name.
1981 Scan forward to find the first ':' and if it is not the
1982 first of a "::" delimiter, then this is not a member function. */
1983 p = *pp;
1984 while (*p != ':')
1985 {
1986 p++;
1987 }
1988 if (p[1] != ':')
1989 {
1990 break;
1991 }
1992
1993 sublist = NULL;
1994 look_ahead_type = NULL;
1995 length = 0;
1996
1997 new_fnlist = (struct next_fnfieldlist *)
1998 xmalloc (sizeof (struct next_fnfieldlist));
1999 make_cleanup (free, new_fnlist);
2000 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2001
2002 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
2003 {
2004 /* This is a completely wierd case. In order to stuff in the
2005 names that might contain colons (the usual name delimiter),
2006 Mike Tiemann defined a different name format which is
2007 signalled if the identifier is "op$". In that case, the
2008 format is "op$::XXXX." where XXXX is the name. This is
2009 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2010 /* This lets the user type "break operator+".
2011 We could just put in "+" as the name, but that wouldn't
2012 work for "*". */
2013 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2014 char *o = opname + 3;
2015
2016 /* Skip past '::'. */
2017 *pp = p + 2;
2018
2019 STABS_CONTINUE (pp, objfile);
2020 p = *pp;
2021 while (*p != '.')
2022 {
2023 *o++ = *p++;
2024 }
2025 main_fn_name = savestring (opname, o - opname);
2026 /* Skip past '.' */
2027 *pp = p + 1;
2028 }
2029 else
2030 {
2031 main_fn_name = savestring (*pp, p - *pp);
2032 /* Skip past '::'. */
2033 *pp = p + 2;
2034 }
2035 new_fnlist -> fn_fieldlist.name = main_fn_name;
2036
2037 do
2038 {
2039 new_sublist =
2040 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2041 make_cleanup (free, new_sublist);
2042 memset (new_sublist, 0, sizeof (struct next_fnfield));
2043
2044 /* Check for and handle cretinous dbx symbol name continuation! */
2045 if (look_ahead_type == NULL)
2046 {
2047 /* Normal case. */
2048 STABS_CONTINUE (pp, objfile);
2049
2050 new_sublist -> fn_field.type = read_type (pp, objfile);
2051 if (**pp != ':')
2052 {
2053 /* Invalid symtab info for member function. */
2054 return 0;
2055 }
2056 }
2057 else
2058 {
2059 /* g++ version 1 kludge */
2060 new_sublist -> fn_field.type = look_ahead_type;
2061 look_ahead_type = NULL;
2062 }
2063
2064 (*pp)++;
2065 p = *pp;
2066 while (*p != ';')
2067 {
2068 p++;
2069 }
2070
2071 /* If this is just a stub, then we don't have the real name here. */
2072
2073 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2074 {
2075 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2076 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2077 new_sublist -> fn_field.is_stub = 1;
2078 }
2079 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2080 *pp = p + 1;
2081
2082 /* Set this member function's visibility fields. */
2083 switch (*(*pp)++)
2084 {
2085 case VISIBILITY_PRIVATE:
2086 new_sublist -> fn_field.is_private = 1;
2087 break;
2088 case VISIBILITY_PROTECTED:
2089 new_sublist -> fn_field.is_protected = 1;
2090 break;
2091 }
2092
2093 STABS_CONTINUE (pp, objfile);
2094 switch (**pp)
2095 {
2096 case 'A': /* Normal functions. */
2097 new_sublist -> fn_field.is_const = 0;
2098 new_sublist -> fn_field.is_volatile = 0;
2099 (*pp)++;
2100 break;
2101 case 'B': /* `const' member functions. */
2102 new_sublist -> fn_field.is_const = 1;
2103 new_sublist -> fn_field.is_volatile = 0;
2104 (*pp)++;
2105 break;
2106 case 'C': /* `volatile' member function. */
2107 new_sublist -> fn_field.is_const = 0;
2108 new_sublist -> fn_field.is_volatile = 1;
2109 (*pp)++;
2110 break;
2111 case 'D': /* `const volatile' member function. */
2112 new_sublist -> fn_field.is_const = 1;
2113 new_sublist -> fn_field.is_volatile = 1;
2114 (*pp)++;
2115 break;
2116 case '*': /* File compiled with g++ version 1 -- no info */
2117 case '?':
2118 case '.':
2119 break;
2120 default:
2121 complain (&const_vol_complaint, **pp);
2122 break;
2123 }
2124
2125 switch (*(*pp)++)
2126 {
2127 case '*':
2128 {
2129 int nbits;
2130 /* virtual member function, followed by index.
2131 The sign bit is set to distinguish pointers-to-methods
2132 from virtual function indicies. Since the array is
2133 in words, the quantity must be shifted left by 1
2134 on 16 bit machine, and by 2 on 32 bit machine, forcing
2135 the sign bit out, and usable as a valid index into
2136 the array. Remove the sign bit here. */
2137 new_sublist -> fn_field.voffset =
2138 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2139 if (nbits != 0)
2140 return 0;
2141
2142 STABS_CONTINUE (pp, objfile);
2143 if (**pp == ';' || **pp == '\0')
2144 {
2145 /* Must be g++ version 1. */
2146 new_sublist -> fn_field.fcontext = 0;
2147 }
2148 else
2149 {
2150 /* Figure out from whence this virtual function came.
2151 It may belong to virtual function table of
2152 one of its baseclasses. */
2153 look_ahead_type = read_type (pp, objfile);
2154 if (**pp == ':')
2155 {
2156 /* g++ version 1 overloaded methods. */
2157 }
2158 else
2159 {
2160 new_sublist -> fn_field.fcontext = look_ahead_type;
2161 if (**pp != ';')
2162 {
2163 return 0;
2164 }
2165 else
2166 {
2167 ++*pp;
2168 }
2169 look_ahead_type = NULL;
2170 }
2171 }
2172 break;
2173 }
2174 case '?':
2175 /* static member function. */
2176 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2177 if (strncmp (new_sublist -> fn_field.physname,
2178 main_fn_name, strlen (main_fn_name)))
2179 {
2180 new_sublist -> fn_field.is_stub = 1;
2181 }
2182 break;
2183
2184 default:
2185 /* error */
2186 complain (&member_fn_complaint, (*pp)[-1]);
2187 /* Fall through into normal member function. */
2188
2189 case '.':
2190 /* normal member function. */
2191 new_sublist -> fn_field.voffset = 0;
2192 new_sublist -> fn_field.fcontext = 0;
2193 break;
2194 }
2195
2196 new_sublist -> next = sublist;
2197 sublist = new_sublist;
2198 length++;
2199 STABS_CONTINUE (pp, objfile);
2200 }
2201 while (**pp != ';' && **pp != '\0');
2202
2203 (*pp)++;
2204
2205 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2206 obstack_alloc (&objfile -> type_obstack,
2207 sizeof (struct fn_field) * length);
2208 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2209 sizeof (struct fn_field) * length);
2210 for (i = length; (i--, sublist); sublist = sublist -> next)
2211 {
2212 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2213 }
2214
2215 new_fnlist -> fn_fieldlist.length = length;
2216 new_fnlist -> next = fip -> fnlist;
2217 fip -> fnlist = new_fnlist;
2218 nfn_fields++;
2219 total_length += length;
2220 STABS_CONTINUE (pp, objfile);
2221 }
2222
2223 if (nfn_fields)
2224 {
2225 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2226 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2227 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2228 memset (TYPE_FN_FIELDLISTS (type), 0,
2229 sizeof (struct fn_fieldlist) * nfn_fields);
2230 TYPE_NFN_FIELDS (type) = nfn_fields;
2231 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2232 }
2233
2234 return 1;
2235 }
2236
2237 /* Special GNU C++ name.
2238
2239 Returns 1 for success, 0 for failure. "failure" means that we can't
2240 keep parsing and it's time for error_type(). */
2241
2242 static int
2243 read_cpp_abbrev (fip, pp, type, objfile)
2244 struct field_info *fip;
2245 char **pp;
2246 struct type *type;
2247 struct objfile *objfile;
2248 {
2249 register char *p;
2250 char *name;
2251 char cpp_abbrev;
2252 struct type *context;
2253
2254 p = *pp;
2255 if (*++p == 'v')
2256 {
2257 name = NULL;
2258 cpp_abbrev = *++p;
2259
2260 *pp = p + 1;
2261
2262 /* At this point, *pp points to something like "22:23=*22...",
2263 where the type number before the ':' is the "context" and
2264 everything after is a regular type definition. Lookup the
2265 type, find it's name, and construct the field name. */
2266
2267 context = read_type (pp, objfile);
2268
2269 switch (cpp_abbrev)
2270 {
2271 case 'f': /* $vf -- a virtual function table pointer */
2272 fip->list->field.name =
2273 obconcat (&objfile->type_obstack, vptr_name, "", "");
2274 break;
2275
2276 case 'b': /* $vb -- a virtual bsomethingorother */
2277 name = type_name_no_tag (context);
2278 if (name == NULL)
2279 {
2280 complain (&invalid_cpp_type_complaint, symnum);
2281 name = "FOO";
2282 }
2283 fip->list->field.name =
2284 obconcat (&objfile->type_obstack, vb_name, name, "");
2285 break;
2286
2287 default:
2288 complain (&invalid_cpp_abbrev_complaint, *pp);
2289 fip->list->field.name =
2290 obconcat (&objfile->type_obstack,
2291 "INVALID_CPLUSPLUS_ABBREV", "", "");
2292 break;
2293 }
2294
2295 /* At this point, *pp points to the ':'. Skip it and read the
2296 field type. */
2297
2298 p = ++(*pp);
2299 if (p[-1] != ':')
2300 {
2301 complain (&invalid_cpp_abbrev_complaint, *pp);
2302 return 0;
2303 }
2304 fip->list->field.type = read_type (pp, objfile);
2305 if (**pp == ',')
2306 (*pp)++; /* Skip the comma. */
2307 else
2308 return 0;
2309
2310 {
2311 int nbits;
2312 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2313 if (nbits != 0)
2314 return 0;
2315 }
2316 /* This field is unpacked. */
2317 fip->list->field.bitsize = 0;
2318 fip->list->visibility = VISIBILITY_PRIVATE;
2319 }
2320 else
2321 {
2322 complain (&invalid_cpp_abbrev_complaint, *pp);
2323 /* We have no idea what syntax an unrecognized abbrev would have, so
2324 better return 0. If we returned 1, we would need to at least advance
2325 *pp to avoid an infinite loop. */
2326 return 0;
2327 }
2328 return 1;
2329 }
2330
2331 static void
2332 read_one_struct_field (fip, pp, p, type, objfile)
2333 struct field_info *fip;
2334 char **pp;
2335 char *p;
2336 struct type *type;
2337 struct objfile *objfile;
2338 {
2339 /* The following is code to work around cfront generated stabs.
2340 The stabs contains full mangled name for each field.
2341 We try to demangle the name and extract the field name out of it.
2342 */
2343 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
2344 {
2345 char save_p;
2346 char *dem, *dem_p;
2347 save_p = *p;
2348 *p = '\0';
2349 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
2350 if (dem != NULL)
2351 {
2352 dem_p = strrchr (dem, ':');
2353 if (dem_p != 0 && *(dem_p-1)==':')
2354 dem_p++;
2355 fip->list->field.name =
2356 obsavestring (dem_p, strlen(dem_p), &objfile -> type_obstack);
2357 }
2358 else
2359 {
2360 fip->list->field.name =
2361 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2362 }
2363 *p = save_p;
2364 }
2365 /* end of code for cfront work around */
2366
2367 else
2368 fip -> list -> field.name =
2369 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2370 *pp = p + 1;
2371
2372 /* This means we have a visibility for a field coming. */
2373 if (**pp == '/')
2374 {
2375 (*pp)++;
2376 fip -> list -> visibility = *(*pp)++;
2377 }
2378 else
2379 {
2380 /* normal dbx-style format, no explicit visibility */
2381 fip -> list -> visibility = VISIBILITY_PUBLIC;
2382 }
2383
2384 fip -> list -> field.type = read_type (pp, objfile);
2385 if (**pp == ':')
2386 {
2387 p = ++(*pp);
2388 #if 0
2389 /* Possible future hook for nested types. */
2390 if (**pp == '!')
2391 {
2392 fip -> list -> field.bitpos = (long)-2; /* nested type */
2393 p = ++(*pp);
2394 }
2395 else
2396 #endif
2397 {
2398 /* Static class member. */
2399 fip -> list -> field.bitpos = (long) -1;
2400 }
2401 while (*p != ';')
2402 {
2403 p++;
2404 }
2405 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407 return;
2408 }
2409 else if (**pp != ',')
2410 {
2411 /* Bad structure-type format. */
2412 complain (&stabs_general_complaint, "bad structure-type format");
2413 return;
2414 }
2415
2416 (*pp)++; /* Skip the comma. */
2417
2418 {
2419 int nbits;
2420 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2421 if (nbits != 0)
2422 {
2423 complain (&stabs_general_complaint, "bad structure-type format");
2424 return;
2425 }
2426 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2427 if (nbits != 0)
2428 {
2429 complain (&stabs_general_complaint, "bad structure-type format");
2430 return;
2431 }
2432 }
2433
2434 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2435 {
2436 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2437 it is a field which has been optimized out. The correct stab for
2438 this case is to use VISIBILITY_IGNORE, but that is a recent
2439 invention. (2) It is a 0-size array. For example
2440 union { int num; char str[0]; } foo. Printing "<no value>" for
2441 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2442 will continue to work, and a 0-size array as a whole doesn't
2443 have any contents to print.
2444
2445 I suspect this probably could also happen with gcc -gstabs (not
2446 -gstabs+) for static fields, and perhaps other C++ extensions.
2447 Hopefully few people use -gstabs with gdb, since it is intended
2448 for dbx compatibility. */
2449
2450 /* Ignore this field. */
2451 fip -> list-> visibility = VISIBILITY_IGNORE;
2452 }
2453 else
2454 {
2455 /* Detect an unpacked field and mark it as such.
2456 dbx gives a bit size for all fields.
2457 Note that forward refs cannot be packed,
2458 and treat enums as if they had the width of ints. */
2459
2460 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2461 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2462 {
2463 fip -> list -> field.bitsize = 0;
2464 }
2465 if ((fip -> list -> field.bitsize
2466 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2467 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2468 && (fip -> list -> field.bitsize
2469 == TARGET_INT_BIT)
2470 )
2471 )
2472 &&
2473 fip -> list -> field.bitpos % 8 == 0)
2474 {
2475 fip -> list -> field.bitsize = 0;
2476 }
2477 }
2478 }
2479
2480
2481 /* Read struct or class data fields. They have the form:
2482
2483 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2484
2485 At the end, we see a semicolon instead of a field.
2486
2487 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2488 a static field.
2489
2490 The optional VISIBILITY is one of:
2491
2492 '/0' (VISIBILITY_PRIVATE)
2493 '/1' (VISIBILITY_PROTECTED)
2494 '/2' (VISIBILITY_PUBLIC)
2495 '/9' (VISIBILITY_IGNORE)
2496
2497 or nothing, for C style fields with public visibility.
2498
2499 Returns 1 for success, 0 for failure. */
2500
2501 static int
2502 read_struct_fields (fip, pp, type, objfile)
2503 struct field_info *fip;
2504 char **pp;
2505 struct type *type;
2506 struct objfile *objfile;
2507 {
2508 register char *p;
2509 struct nextfield *new;
2510
2511 /* We better set p right now, in case there are no fields at all... */
2512
2513 p = *pp;
2514
2515 /* Read each data member type until we find the terminating ';' at the end of
2516 the data member list, or break for some other reason such as finding the
2517 start of the member function list. */
2518
2519 while (**pp != ';')
2520 {
2521 if (os9k_stabs && **pp == ',') break;
2522 STABS_CONTINUE (pp, objfile);
2523 /* Get space to record the next field's data. */
2524 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2525 make_cleanup (free, new);
2526 memset (new, 0, sizeof (struct nextfield));
2527 new -> next = fip -> list;
2528 fip -> list = new;
2529
2530 /* Get the field name. */
2531 p = *pp;
2532
2533 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2534 unless the CPLUS_MARKER is followed by an underscore, in
2535 which case it is just the name of an anonymous type, which we
2536 should handle like any other type name. We accept either '$'
2537 or '.', because a field name can never contain one of these
2538 characters except as a CPLUS_MARKER (we probably should be
2539 doing that in most parts of GDB). */
2540
2541 if ((*p == '$' || *p == '.') && p[1] != '_')
2542 {
2543 if (!read_cpp_abbrev (fip, pp, type, objfile))
2544 return 0;
2545 continue;
2546 }
2547
2548 /* Look for the ':' that separates the field name from the field
2549 values. Data members are delimited by a single ':', while member
2550 functions are delimited by a pair of ':'s. When we hit the member
2551 functions (if any), terminate scan loop and return. */
2552
2553 while (*p != ':' && *p != '\0')
2554 {
2555 p++;
2556 }
2557 if (*p == '\0')
2558 return 0;
2559
2560 /* Check to see if we have hit the member functions yet. */
2561 if (p[1] == ':')
2562 {
2563 break;
2564 }
2565 read_one_struct_field (fip, pp, p, type, objfile);
2566 }
2567 if (p[0] == ':' && p[1] == ':')
2568 {
2569 /* chill the list of fields: the last entry (at the head) is a
2570 partially constructed entry which we now scrub. */
2571 fip -> list = fip -> list -> next;
2572 }
2573 return 1;
2574 }
2575
2576 /* The stabs for C++ derived classes contain baseclass information which
2577 is marked by a '!' character after the total size. This function is
2578 called when we encounter the baseclass marker, and slurps up all the
2579 baseclass information.
2580
2581 Immediately following the '!' marker is the number of base classes that
2582 the class is derived from, followed by information for each base class.
2583 For each base class, there are two visibility specifiers, a bit offset
2584 to the base class information within the derived class, a reference to
2585 the type for the base class, and a terminating semicolon.
2586
2587 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2588 ^^ ^ ^ ^ ^ ^ ^
2589 Baseclass information marker __________________|| | | | | | |
2590 Number of baseclasses __________________________| | | | | | |
2591 Visibility specifiers (2) ________________________| | | | | |
2592 Offset in bits from start of class _________________| | | | |
2593 Type number for base class ___________________________| | | |
2594 Visibility specifiers (2) _______________________________| | |
2595 Offset in bits from start of class ________________________| |
2596 Type number of base class ____________________________________|
2597
2598 Return 1 for success, 0 for (error-type-inducing) failure. */
2599
2600 static int
2601 read_baseclasses (fip, pp, type, objfile)
2602 struct field_info *fip;
2603 char **pp;
2604 struct type *type;
2605 struct objfile *objfile;
2606 {
2607 int i;
2608 struct nextfield *new;
2609
2610 if (**pp != '!')
2611 {
2612 return 1;
2613 }
2614 else
2615 {
2616 /* Skip the '!' baseclass information marker. */
2617 (*pp)++;
2618 }
2619
2620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2621 {
2622 int nbits;
2623 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2624 if (nbits != 0)
2625 return 0;
2626 }
2627
2628 #if 0
2629 /* Some stupid compilers have trouble with the following, so break
2630 it up into simpler expressions. */
2631 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2632 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2633 #else
2634 {
2635 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2636 char *pointer;
2637
2638 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2639 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2640 }
2641 #endif /* 0 */
2642
2643 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2644
2645 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2646 {
2647 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2648 make_cleanup (free, new);
2649 memset (new, 0, sizeof (struct nextfield));
2650 new -> next = fip -> list;
2651 fip -> list = new;
2652 new -> field.bitsize = 0; /* this should be an unpacked field! */
2653
2654 STABS_CONTINUE (pp, objfile);
2655 switch (**pp)
2656 {
2657 case '0':
2658 /* Nothing to do. */
2659 break;
2660 case '1':
2661 SET_TYPE_FIELD_VIRTUAL (type, i);
2662 break;
2663 default:
2664 /* Unknown character. Complain and treat it as non-virtual. */
2665 {
2666 static struct complaint msg = {
2667 "Unknown virtual character `%c' for baseclass", 0, 0};
2668 complain (&msg, **pp);
2669 }
2670 }
2671 ++(*pp);
2672
2673 new -> visibility = *(*pp)++;
2674 switch (new -> visibility)
2675 {
2676 case VISIBILITY_PRIVATE:
2677 case VISIBILITY_PROTECTED:
2678 case VISIBILITY_PUBLIC:
2679 break;
2680 default:
2681 /* Bad visibility format. Complain and treat it as
2682 public. */
2683 {
2684 static struct complaint msg = {
2685 "Unknown visibility `%c' for baseclass", 0, 0};
2686 complain (&msg, new -> visibility);
2687 new -> visibility = VISIBILITY_PUBLIC;
2688 }
2689 }
2690
2691 {
2692 int nbits;
2693
2694 /* The remaining value is the bit offset of the portion of the object
2695 corresponding to this baseclass. Always zero in the absence of
2696 multiple inheritance. */
2697
2698 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2699 if (nbits != 0)
2700 return 0;
2701 }
2702
2703 /* The last piece of baseclass information is the type of the
2704 base class. Read it, and remember it's type name as this
2705 field's name. */
2706
2707 new -> field.type = read_type (pp, objfile);
2708 new -> field.name = type_name_no_tag (new -> field.type);
2709
2710 /* skip trailing ';' and bump count of number of fields seen */
2711 if (**pp == ';')
2712 (*pp)++;
2713 else
2714 return 0;
2715 }
2716 return 1;
2717 }
2718
2719 /* The tail end of stabs for C++ classes that contain a virtual function
2720 pointer contains a tilde, a %, and a type number.
2721 The type number refers to the base class (possibly this class itself) which
2722 contains the vtable pointer for the current class.
2723
2724 This function is called when we have parsed all the method declarations,
2725 so we can look for the vptr base class info. */
2726
2727 static int
2728 read_tilde_fields (fip, pp, type, objfile)
2729 struct field_info *fip;
2730 char **pp;
2731 struct type *type;
2732 struct objfile *objfile;
2733 {
2734 register char *p;
2735
2736 STABS_CONTINUE (pp, objfile);
2737
2738 /* If we are positioned at a ';', then skip it. */
2739 if (**pp == ';')
2740 {
2741 (*pp)++;
2742 }
2743
2744 if (**pp == '~')
2745 {
2746 (*pp)++;
2747
2748 if (**pp == '=' || **pp == '+' || **pp == '-')
2749 {
2750 /* Obsolete flags that used to indicate the presence
2751 of constructors and/or destructors. */
2752 (*pp)++;
2753 }
2754
2755 /* Read either a '%' or the final ';'. */
2756 if (*(*pp)++ == '%')
2757 {
2758 /* The next number is the type number of the base class
2759 (possibly our own class) which supplies the vtable for
2760 this class. Parse it out, and search that class to find
2761 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2762 and TYPE_VPTR_FIELDNO. */
2763
2764 struct type *t;
2765 int i;
2766
2767 t = read_type (pp, objfile);
2768 p = (*pp)++;
2769 while (*p != '\0' && *p != ';')
2770 {
2771 p++;
2772 }
2773 if (*p == '\0')
2774 {
2775 /* Premature end of symbol. */
2776 return 0;
2777 }
2778
2779 TYPE_VPTR_BASETYPE (type) = t;
2780 if (type == t) /* Our own class provides vtbl ptr */
2781 {
2782 for (i = TYPE_NFIELDS (t) - 1;
2783 i >= TYPE_N_BASECLASSES (t);
2784 --i)
2785 {
2786 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2787 sizeof (vptr_name) - 1))
2788 {
2789 TYPE_VPTR_FIELDNO (type) = i;
2790 goto gotit;
2791 }
2792 }
2793 /* Virtual function table field not found. */
2794 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2795 return 0;
2796 }
2797 else
2798 {
2799 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2800 }
2801
2802 gotit:
2803 *pp = p + 1;
2804 }
2805 }
2806 return 1;
2807 }
2808
2809 static int
2810 attach_fn_fields_to_type (fip, type)
2811 struct field_info *fip;
2812 register struct type *type;
2813 {
2814 register int n;
2815
2816 for (n = TYPE_NFN_FIELDS (type);
2817 fip -> fnlist != NULL;
2818 fip -> fnlist = fip -> fnlist -> next)
2819 {
2820 --n; /* Circumvent Sun3 compiler bug */
2821 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2822 }
2823 return 1;
2824 }
2825
2826 /* Create the vector of fields, and record how big it is.
2827 We need this info to record proper virtual function table information
2828 for this class's virtual functions. */
2829
2830 static int
2831 attach_fields_to_type (fip, type, objfile)
2832 struct field_info *fip;
2833 register struct type *type;
2834 struct objfile *objfile;
2835 {
2836 register int nfields = 0;
2837 register int non_public_fields = 0;
2838 register struct nextfield *scan;
2839
2840 /* Count up the number of fields that we have, as well as taking note of
2841 whether or not there are any non-public fields, which requires us to
2842 allocate and build the private_field_bits and protected_field_bits
2843 bitfields. */
2844
2845 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2846 {
2847 nfields++;
2848 if (scan -> visibility != VISIBILITY_PUBLIC)
2849 {
2850 non_public_fields++;
2851 }
2852 }
2853
2854 /* Now we know how many fields there are, and whether or not there are any
2855 non-public fields. Record the field count, allocate space for the
2856 array of fields, and create blank visibility bitfields if necessary. */
2857
2858 TYPE_NFIELDS (type) = nfields;
2859 TYPE_FIELDS (type) = (struct field *)
2860 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2861 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2862
2863 if (non_public_fields)
2864 {
2865 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2866
2867 TYPE_FIELD_PRIVATE_BITS (type) =
2868 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2869 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2870
2871 TYPE_FIELD_PROTECTED_BITS (type) =
2872 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2873 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2874
2875 TYPE_FIELD_IGNORE_BITS (type) =
2876 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2877 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2878 }
2879
2880 /* Copy the saved-up fields into the field vector. Start from the head
2881 of the list, adding to the tail of the field array, so that they end
2882 up in the same order in the array in which they were added to the list. */
2883
2884 while (nfields-- > 0)
2885 {
2886 TYPE_FIELD (type, nfields) = fip -> list -> field;
2887 switch (fip -> list -> visibility)
2888 {
2889 case VISIBILITY_PRIVATE:
2890 SET_TYPE_FIELD_PRIVATE (type, nfields);
2891 break;
2892
2893 case VISIBILITY_PROTECTED:
2894 SET_TYPE_FIELD_PROTECTED (type, nfields);
2895 break;
2896
2897 case VISIBILITY_IGNORE:
2898 SET_TYPE_FIELD_IGNORE (type, nfields);
2899 break;
2900
2901 case VISIBILITY_PUBLIC:
2902 break;
2903
2904 default:
2905 /* Unknown visibility. Complain and treat it as public. */
2906 {
2907 static struct complaint msg = {
2908 "Unknown visibility `%c' for field", 0, 0};
2909 complain (&msg, fip -> list -> visibility);
2910 }
2911 break;
2912 }
2913 fip -> list = fip -> list -> next;
2914 }
2915 return 1;
2916 }
2917
2918 /* Read the description of a structure (or union type) and return an object
2919 describing the type.
2920
2921 PP points to a character pointer that points to the next unconsumed token
2922 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2923 *PP will point to "4a:1,0,32;;".
2924
2925 TYPE points to an incomplete type that needs to be filled in.
2926
2927 OBJFILE points to the current objfile from which the stabs information is
2928 being read. (Note that it is redundant in that TYPE also contains a pointer
2929 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2930 */
2931
2932 static struct type *
2933 read_struct_type (pp, type, objfile)
2934 char **pp;
2935 struct type *type;
2936 struct objfile *objfile;
2937 {
2938 struct cleanup *back_to;
2939 struct field_info fi;
2940
2941 fi.list = NULL;
2942 fi.fnlist = NULL;
2943
2944 back_to = make_cleanup (null_cleanup, 0);
2945
2946 INIT_CPLUS_SPECIFIC (type);
2947 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2948
2949 /* First comes the total size in bytes. */
2950
2951 {
2952 int nbits;
2953 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2954 if (nbits != 0)
2955 return error_type (pp, objfile);
2956 }
2957
2958 /* Now read the baseclasses, if any, read the regular C struct or C++
2959 class member fields, attach the fields to the type, read the C++
2960 member functions, attach them to the type, and then read any tilde
2961 field (baseclass specifier for the class holding the main vtable). */
2962
2963 if (!read_baseclasses (&fi, pp, type, objfile)
2964 || !read_struct_fields (&fi, pp, type, objfile)
2965 || !attach_fields_to_type (&fi, type, objfile)
2966 || !read_member_functions (&fi, pp, type, objfile)
2967 || !attach_fn_fields_to_type (&fi, type)
2968 || !read_tilde_fields (&fi, pp, type, objfile))
2969 {
2970 type = error_type (pp, objfile);
2971 }
2972
2973 do_cleanups (back_to);
2974 return (type);
2975 }
2976
2977 /* Read a definition of an array type,
2978 and create and return a suitable type object.
2979 Also creates a range type which represents the bounds of that
2980 array. */
2981
2982 static struct type *
2983 read_array_type (pp, type, objfile)
2984 register char **pp;
2985 register struct type *type;
2986 struct objfile *objfile;
2987 {
2988 struct type *index_type, *element_type, *range_type;
2989 int lower, upper;
2990 int adjustable = 0;
2991 int nbits;
2992
2993 /* Format of an array type:
2994 "ar<index type>;lower;upper;<array_contents_type>".
2995 OS9000: "arlower,upper;<array_contents_type>".
2996
2997 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2998 for these, produce a type like float[][]. */
2999
3000 if (os9k_stabs)
3001 index_type = builtin_type_int;
3002 else
3003 {
3004 index_type = read_type (pp, objfile);
3005 if (**pp != ';')
3006 /* Improper format of array type decl. */
3007 return error_type (pp, objfile);
3008 ++*pp;
3009 }
3010
3011 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3012 {
3013 (*pp)++;
3014 adjustable = 1;
3015 }
3016 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
3017 if (nbits != 0)
3018 return error_type (pp, objfile);
3019
3020 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3021 {
3022 (*pp)++;
3023 adjustable = 1;
3024 }
3025 upper = read_huge_number (pp, ';', &nbits);
3026 if (nbits != 0)
3027 return error_type (pp, objfile);
3028
3029 element_type = read_type (pp, objfile);
3030
3031 if (adjustable)
3032 {
3033 lower = 0;
3034 upper = -1;
3035 }
3036
3037 range_type =
3038 create_range_type ((struct type *) NULL, index_type, lower, upper);
3039 type = create_array_type (type, element_type, range_type);
3040
3041 return type;
3042 }
3043
3044
3045 /* Read a definition of an enumeration type,
3046 and create and return a suitable type object.
3047 Also defines the symbols that represent the values of the type. */
3048
3049 static struct type *
3050 read_enum_type (pp, type, objfile)
3051 register char **pp;
3052 register struct type *type;
3053 struct objfile *objfile;
3054 {
3055 register char *p;
3056 char *name;
3057 register long n;
3058 register struct symbol *sym;
3059 int nsyms = 0;
3060 struct pending **symlist;
3061 struct pending *osyms, *syms;
3062 int o_nsyms;
3063 int nbits;
3064 int unsigned_enum = 1;
3065
3066 #if 0
3067 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3068 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3069 to do? For now, force all enum values to file scope. */
3070 if (within_function)
3071 symlist = &local_symbols;
3072 else
3073 #endif
3074 symlist = &file_symbols;
3075 osyms = *symlist;
3076 o_nsyms = osyms ? osyms->nsyms : 0;
3077
3078 if (os9k_stabs)
3079 {
3080 /* Size. Perhaps this does not have to be conditionalized on
3081 os9k_stabs (assuming the name of an enum constant can't start
3082 with a digit). */
3083 read_huge_number (pp, 0, &nbits);
3084 if (nbits != 0)
3085 return error_type (pp, objfile);
3086 }
3087
3088 /* The aix4 compiler emits an extra field before the enum members;
3089 my guess is it's a type of some sort. Just ignore it. */
3090 if (**pp == '-')
3091 {
3092 /* Skip over the type. */
3093 while (**pp != ':')
3094 (*pp)++;
3095
3096 /* Skip over the colon. */
3097 (*pp)++;
3098 }
3099
3100 /* Read the value-names and their values.
3101 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3102 A semicolon or comma instead of a NAME means the end. */
3103 while (**pp && **pp != ';' && **pp != ',')
3104 {
3105 STABS_CONTINUE (pp, objfile);
3106 p = *pp;
3107 while (*p != ':') p++;
3108 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3109 *pp = p + 1;
3110 n = read_huge_number (pp, ',', &nbits);
3111 if (nbits != 0)
3112 return error_type (pp, objfile);
3113
3114 sym = (struct symbol *)
3115 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3116 memset (sym, 0, sizeof (struct symbol));
3117 SYMBOL_NAME (sym) = name;
3118 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3119 SYMBOL_CLASS (sym) = LOC_CONST;
3120 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3121 SYMBOL_VALUE (sym) = n;
3122 if (n < 0)
3123 unsigned_enum = 0;
3124 add_symbol_to_list (sym, symlist);
3125 nsyms++;
3126 }
3127
3128 if (**pp == ';')
3129 (*pp)++; /* Skip the semicolon. */
3130
3131 /* Now fill in the fields of the type-structure. */
3132
3133 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3134 TYPE_CODE (type) = TYPE_CODE_ENUM;
3135 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3136 if (unsigned_enum)
3137 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3138 TYPE_NFIELDS (type) = nsyms;
3139 TYPE_FIELDS (type) = (struct field *)
3140 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3141 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3142
3143 /* Find the symbols for the values and put them into the type.
3144 The symbols can be found in the symlist that we put them on
3145 to cause them to be defined. osyms contains the old value
3146 of that symlist; everything up to there was defined by us. */
3147 /* Note that we preserve the order of the enum constants, so
3148 that in something like "enum {FOO, LAST_THING=FOO}" we print
3149 FOO, not LAST_THING. */
3150
3151 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3152 {
3153 int last = syms == osyms ? o_nsyms : 0;
3154 int j = syms->nsyms;
3155 for (; --j >= last; --n)
3156 {
3157 struct symbol *xsym = syms->symbol[j];
3158 SYMBOL_TYPE (xsym) = type;
3159 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3160 TYPE_FIELD_VALUE (type, n) = 0;
3161 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3162 TYPE_FIELD_BITSIZE (type, n) = 0;
3163 }
3164 if (syms == osyms)
3165 break;
3166 }
3167
3168 return type;
3169 }
3170
3171 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3172 typedefs in every file (for int, long, etc):
3173
3174 type = b <signed> <width>; <offset>; <nbits>
3175 signed = u or s. Possible c in addition to u or s (for char?).
3176 offset = offset from high order bit to start bit of type.
3177 width is # bytes in object of this type, nbits is # bits in type.
3178
3179 The width/offset stuff appears to be for small objects stored in
3180 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3181 FIXME. */
3182
3183 static struct type *
3184 read_sun_builtin_type (pp, typenums, objfile)
3185 char **pp;
3186 int typenums[2];
3187 struct objfile *objfile;
3188 {
3189 int type_bits;
3190 int nbits;
3191 int signed_type;
3192
3193 switch (**pp)
3194 {
3195 case 's':
3196 signed_type = 1;
3197 break;
3198 case 'u':
3199 signed_type = 0;
3200 break;
3201 default:
3202 return error_type (pp, objfile);
3203 }
3204 (*pp)++;
3205
3206 /* For some odd reason, all forms of char put a c here. This is strange
3207 because no other type has this honor. We can safely ignore this because
3208 we actually determine 'char'acterness by the number of bits specified in
3209 the descriptor. */
3210
3211 if (**pp == 'c')
3212 (*pp)++;
3213
3214 /* The first number appears to be the number of bytes occupied
3215 by this type, except that unsigned short is 4 instead of 2.
3216 Since this information is redundant with the third number,
3217 we will ignore it. */
3218 read_huge_number (pp, ';', &nbits);
3219 if (nbits != 0)
3220 return error_type (pp, objfile);
3221
3222 /* The second number is always 0, so ignore it too. */
3223 read_huge_number (pp, ';', &nbits);
3224 if (nbits != 0)
3225 return error_type (pp, objfile);
3226
3227 /* The third number is the number of bits for this type. */
3228 type_bits = read_huge_number (pp, 0, &nbits);
3229 if (nbits != 0)
3230 return error_type (pp, objfile);
3231 /* The type *should* end with a semicolon. If it are embedded
3232 in a larger type the semicolon may be the only way to know where
3233 the type ends. If this type is at the end of the stabstring we
3234 can deal with the omitted semicolon (but we don't have to like
3235 it). Don't bother to complain(), Sun's compiler omits the semicolon
3236 for "void". */
3237 if (**pp == ';')
3238 ++(*pp);
3239
3240 if (type_bits == 0)
3241 return init_type (TYPE_CODE_VOID, 1,
3242 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3243 objfile);
3244 else
3245 return init_type (TYPE_CODE_INT,
3246 type_bits / TARGET_CHAR_BIT,
3247 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3248 objfile);
3249 }
3250
3251 static struct type *
3252 read_sun_floating_type (pp, typenums, objfile)
3253 char **pp;
3254 int typenums[2];
3255 struct objfile *objfile;
3256 {
3257 int nbits;
3258 int details;
3259 int nbytes;
3260
3261 /* The first number has more details about the type, for example
3262 FN_COMPLEX. */
3263 details = read_huge_number (pp, ';', &nbits);
3264 if (nbits != 0)
3265 return error_type (pp, objfile);
3266
3267 /* The second number is the number of bytes occupied by this type */
3268 nbytes = read_huge_number (pp, ';', &nbits);
3269 if (nbits != 0)
3270 return error_type (pp, objfile);
3271
3272 if (details == NF_COMPLEX || details == NF_COMPLEX16
3273 || details == NF_COMPLEX32)
3274 /* This is a type we can't handle, but we do know the size.
3275 We also will be able to give it a name. */
3276 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3277
3278 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3279 }
3280
3281 /* Read a number from the string pointed to by *PP.
3282 The value of *PP is advanced over the number.
3283 If END is nonzero, the character that ends the
3284 number must match END, or an error happens;
3285 and that character is skipped if it does match.
3286 If END is zero, *PP is left pointing to that character.
3287
3288 If the number fits in a long, set *BITS to 0 and return the value.
3289 If not, set *BITS to be the number of bits in the number and return 0.
3290
3291 If encounter garbage, set *BITS to -1 and return 0. */
3292
3293 static long
3294 read_huge_number (pp, end, bits)
3295 char **pp;
3296 int end;
3297 int *bits;
3298 {
3299 char *p = *pp;
3300 int sign = 1;
3301 long n = 0;
3302 int radix = 10;
3303 char overflow = 0;
3304 int nbits = 0;
3305 int c;
3306 long upper_limit;
3307
3308 if (*p == '-')
3309 {
3310 sign = -1;
3311 p++;
3312 }
3313
3314 /* Leading zero means octal. GCC uses this to output values larger
3315 than an int (because that would be hard in decimal). */
3316 if (*p == '0')
3317 {
3318 radix = 8;
3319 p++;
3320 }
3321
3322 if (os9k_stabs)
3323 upper_limit = ULONG_MAX / radix;
3324 else
3325 upper_limit = LONG_MAX / radix;
3326
3327 while ((c = *p++) >= '0' && c < ('0' + radix))
3328 {
3329 if (n <= upper_limit)
3330 {
3331 n *= radix;
3332 n += c - '0'; /* FIXME this overflows anyway */
3333 }
3334 else
3335 overflow = 1;
3336
3337 /* This depends on large values being output in octal, which is
3338 what GCC does. */
3339 if (radix == 8)
3340 {
3341 if (nbits == 0)
3342 {
3343 if (c == '0')
3344 /* Ignore leading zeroes. */
3345 ;
3346 else if (c == '1')
3347 nbits = 1;
3348 else if (c == '2' || c == '3')
3349 nbits = 2;
3350 else
3351 nbits = 3;
3352 }
3353 else
3354 nbits += 3;
3355 }
3356 }
3357 if (end)
3358 {
3359 if (c && c != end)
3360 {
3361 if (bits != NULL)
3362 *bits = -1;
3363 return 0;
3364 }
3365 }
3366 else
3367 --p;
3368
3369 *pp = p;
3370 if (overflow)
3371 {
3372 if (nbits == 0)
3373 {
3374 /* Large decimal constants are an error (because it is hard to
3375 count how many bits are in them). */
3376 if (bits != NULL)
3377 *bits = -1;
3378 return 0;
3379 }
3380
3381 /* -0x7f is the same as 0x80. So deal with it by adding one to
3382 the number of bits. */
3383 if (sign == -1)
3384 ++nbits;
3385 if (bits)
3386 *bits = nbits;
3387 }
3388 else
3389 {
3390 if (bits)
3391 *bits = 0;
3392 return n * sign;
3393 }
3394 /* It's *BITS which has the interesting information. */
3395 return 0;
3396 }
3397
3398 static struct type *
3399 read_range_type (pp, typenums, objfile)
3400 char **pp;
3401 int typenums[2];
3402 struct objfile *objfile;
3403 {
3404 char *orig_pp = *pp;
3405 int rangenums[2];
3406 long n2, n3;
3407 int n2bits, n3bits;
3408 int self_subrange;
3409 struct type *result_type;
3410 struct type *index_type = NULL;
3411
3412 /* First comes a type we are a subrange of.
3413 In C it is usually 0, 1 or the type being defined. */
3414 if (read_type_number (pp, rangenums) != 0)
3415 return error_type (pp, objfile);
3416 self_subrange = (rangenums[0] == typenums[0] &&
3417 rangenums[1] == typenums[1]);
3418
3419 if (**pp == '=')
3420 {
3421 *pp = orig_pp;
3422 index_type = read_type (pp, objfile);
3423 }
3424
3425 /* A semicolon should now follow; skip it. */
3426 if (**pp == ';')
3427 (*pp)++;
3428
3429 /* The remaining two operands are usually lower and upper bounds
3430 of the range. But in some special cases they mean something else. */
3431 n2 = read_huge_number (pp, ';', &n2bits);
3432 n3 = read_huge_number (pp, ';', &n3bits);
3433
3434 if (n2bits == -1 || n3bits == -1)
3435 return error_type (pp, objfile);
3436
3437 if (index_type)
3438 goto handle_true_range;
3439
3440 /* If limits are huge, must be large integral type. */
3441 if (n2bits != 0 || n3bits != 0)
3442 {
3443 char got_signed = 0;
3444 char got_unsigned = 0;
3445 /* Number of bits in the type. */
3446 int nbits = 0;
3447
3448 /* Range from 0 to <large number> is an unsigned large integral type. */
3449 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3450 {
3451 got_unsigned = 1;
3452 nbits = n3bits;
3453 }
3454 /* Range from <large number> to <large number>-1 is a large signed
3455 integral type. Take care of the case where <large number> doesn't
3456 fit in a long but <large number>-1 does. */
3457 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3458 || (n2bits != 0 && n3bits == 0
3459 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3460 && n3 == LONG_MAX))
3461 {
3462 got_signed = 1;
3463 nbits = n2bits;
3464 }
3465
3466 if (got_signed || got_unsigned)
3467 {
3468 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3469 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3470 objfile);
3471 }
3472 else
3473 return error_type (pp, objfile);
3474 }
3475
3476 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3477 if (self_subrange && n2 == 0 && n3 == 0)
3478 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3479
3480 /* If n3 is zero and n2 is positive, we want a floating type,
3481 and n2 is the width in bytes.
3482
3483 Fortran programs appear to use this for complex types also,
3484 and they give no way to distinguish between double and single-complex!
3485
3486 GDB does not have complex types.
3487
3488 Just return the complex as a float of that size. It won't work right
3489 for the complex values, but at least it makes the file loadable. */
3490
3491 if (n3 == 0 && n2 > 0)
3492 {
3493 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3494 }
3495
3496 /* If the upper bound is -1, it must really be an unsigned int. */
3497
3498 else if (n2 == 0 && n3 == -1)
3499 {
3500 /* It is unsigned int or unsigned long. */
3501 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3502 compatibility hack. */
3503 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3504 TYPE_FLAG_UNSIGNED, NULL, objfile);
3505 }
3506
3507 /* Special case: char is defined (Who knows why) as a subrange of
3508 itself with range 0-127. */
3509 else if (self_subrange && n2 == 0 && n3 == 127)
3510 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3511
3512 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
3513 && SYMBOL_LINE (current_symbol) > 0)
3514 goto handle_true_range;
3515
3516 /* We used to do this only for subrange of self or subrange of int. */
3517 else if (n2 == 0)
3518 {
3519 if (n3 < 0)
3520 /* n3 actually gives the size. */
3521 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3522 NULL, objfile);
3523 if (n3 == 0xff)
3524 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3525 if (n3 == 0xffff)
3526 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3527
3528 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3529 "unsigned long", and we already checked for that,
3530 so don't need to test for it here. */
3531 }
3532 /* I think this is for Convex "long long". Since I don't know whether
3533 Convex sets self_subrange, I also accept that particular size regardless
3534 of self_subrange. */
3535 else if (n3 == 0 && n2 < 0
3536 && (self_subrange
3537 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3538 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3539 else if (n2 == -n3 -1)
3540 {
3541 if (n3 == 0x7f)
3542 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3543 if (n3 == 0x7fff)
3544 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3545 if (n3 == 0x7fffffff)
3546 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3547 }
3548
3549 /* We have a real range type on our hands. Allocate space and
3550 return a real pointer. */
3551 handle_true_range:
3552
3553 /* At this point I don't have the faintest idea how to deal with
3554 a self_subrange type; I'm going to assume that this is used
3555 as an idiom, and that all of them are special cases. So . . . */
3556 if (self_subrange)
3557 return error_type (pp, objfile);
3558
3559 index_type = *dbx_lookup_type (rangenums);
3560 if (index_type == NULL)
3561 {
3562 /* Does this actually ever happen? Is that why we are worrying
3563 about dealing with it rather than just calling error_type? */
3564
3565 static struct type *range_type_index;
3566
3567 complain (&range_type_base_complaint, rangenums[1]);
3568 if (range_type_index == NULL)
3569 range_type_index =
3570 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3571 0, "range type index type", NULL);
3572 index_type = range_type_index;
3573 }
3574
3575 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3576 return (result_type);
3577 }
3578
3579 /* Read in an argument list. This is a list of types, separated by commas
3580 and terminated with END. Return the list of types read in, or (struct type
3581 **)-1 if there is an error. */
3582
3583 static struct type **
3584 read_args (pp, end, objfile)
3585 char **pp;
3586 int end;
3587 struct objfile *objfile;
3588 {
3589 /* FIXME! Remove this arbitrary limit! */
3590 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3591 int n = 0;
3592
3593 while (**pp != end)
3594 {
3595 if (**pp != ',')
3596 /* Invalid argument list: no ','. */
3597 return (struct type **)-1;
3598 (*pp)++;
3599 STABS_CONTINUE (pp, objfile);
3600 types[n++] = read_type (pp, objfile);
3601 }
3602 (*pp)++; /* get past `end' (the ':' character) */
3603
3604 if (n == 1)
3605 {
3606 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3607 }
3608 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3609 {
3610 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3611 memset (rval + n, 0, sizeof (struct type *));
3612 }
3613 else
3614 {
3615 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3616 }
3617 memcpy (rval, types, n * sizeof (struct type *));
3618 return rval;
3619 }
3620 \f
3621 /* Common block handling. */
3622
3623 /* List of symbols declared since the last BCOMM. This list is a tail
3624 of local_symbols. When ECOMM is seen, the symbols on the list
3625 are noted so their proper addresses can be filled in later,
3626 using the common block base address gotten from the assembler
3627 stabs. */
3628
3629 static struct pending *common_block;
3630 static int common_block_i;
3631
3632 /* Name of the current common block. We get it from the BCOMM instead of the
3633 ECOMM to match IBM documentation (even though IBM puts the name both places
3634 like everyone else). */
3635 static char *common_block_name;
3636
3637 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3638 to remain after this function returns. */
3639
3640 void
3641 common_block_start (name, objfile)
3642 char *name;
3643 struct objfile *objfile;
3644 {
3645 if (common_block_name != NULL)
3646 {
3647 static struct complaint msg = {
3648 "Invalid symbol data: common block within common block",
3649 0, 0};
3650 complain (&msg);
3651 }
3652 common_block = local_symbols;
3653 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3654 common_block_name = obsavestring (name, strlen (name),
3655 &objfile -> symbol_obstack);
3656 }
3657
3658 /* Process a N_ECOMM symbol. */
3659
3660 void
3661 common_block_end (objfile)
3662 struct objfile *objfile;
3663 {
3664 /* Symbols declared since the BCOMM are to have the common block
3665 start address added in when we know it. common_block and
3666 common_block_i point to the first symbol after the BCOMM in
3667 the local_symbols list; copy the list and hang it off the
3668 symbol for the common block name for later fixup. */
3669 int i;
3670 struct symbol *sym;
3671 struct pending *new = 0;
3672 struct pending *next;
3673 int j;
3674
3675 if (common_block_name == NULL)
3676 {
3677 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3678 complain (&msg);
3679 return;
3680 }
3681
3682 sym = (struct symbol *)
3683 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3684 memset (sym, 0, sizeof (struct symbol));
3685 SYMBOL_NAME (sym) = common_block_name;
3686 SYMBOL_CLASS (sym) = LOC_BLOCK;
3687
3688 /* Now we copy all the symbols which have been defined since the BCOMM. */
3689
3690 /* Copy all the struct pendings before common_block. */
3691 for (next = local_symbols;
3692 next != NULL && next != common_block;
3693 next = next->next)
3694 {
3695 for (j = 0; j < next->nsyms; j++)
3696 add_symbol_to_list (next->symbol[j], &new);
3697 }
3698
3699 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3700 NULL, it means copy all the local symbols (which we already did
3701 above). */
3702
3703 if (common_block != NULL)
3704 for (j = common_block_i; j < common_block->nsyms; j++)
3705 add_symbol_to_list (common_block->symbol[j], &new);
3706
3707 SYMBOL_TYPE (sym) = (struct type *) new;
3708
3709 /* Should we be putting local_symbols back to what it was?
3710 Does it matter? */
3711
3712 i = hashname (SYMBOL_NAME (sym));
3713 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3714 global_sym_chain[i] = sym;
3715 common_block_name = NULL;
3716 }
3717
3718 /* Add a common block's start address to the offset of each symbol
3719 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3720 the common block name). */
3721
3722 static void
3723 fix_common_block (sym, valu)
3724 struct symbol *sym;
3725 int valu;
3726 {
3727 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3728 for ( ; next; next = next->next)
3729 {
3730 register int j;
3731 for (j = next->nsyms - 1; j >= 0; j--)
3732 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3733 }
3734 }
3735
3736
3737 \f
3738 /* What about types defined as forward references inside of a small lexical
3739 scope? */
3740 /* Add a type to the list of undefined types to be checked through
3741 once this file has been read in. */
3742
3743 void
3744 add_undefined_type (type)
3745 struct type *type;
3746 {
3747 if (undef_types_length == undef_types_allocated)
3748 {
3749 undef_types_allocated *= 2;
3750 undef_types = (struct type **)
3751 xrealloc ((char *) undef_types,
3752 undef_types_allocated * sizeof (struct type *));
3753 }
3754 undef_types[undef_types_length++] = type;
3755 }
3756
3757 /* Go through each undefined type, see if it's still undefined, and fix it
3758 up if possible. We have two kinds of undefined types:
3759
3760 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3761 Fix: update array length using the element bounds
3762 and the target type's length.
3763 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3764 yet defined at the time a pointer to it was made.
3765 Fix: Do a full lookup on the struct/union tag. */
3766 void
3767 cleanup_undefined_types ()
3768 {
3769 struct type **type;
3770
3771 for (type = undef_types; type < undef_types + undef_types_length; type++)
3772 {
3773 switch (TYPE_CODE (*type))
3774 {
3775
3776 case TYPE_CODE_STRUCT:
3777 case TYPE_CODE_UNION:
3778 case TYPE_CODE_ENUM:
3779 {
3780 /* Check if it has been defined since. Need to do this here
3781 as well as in check_typedef to deal with the (legitimate in
3782 C though not C++) case of several types with the same name
3783 in different source files. */
3784 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3785 {
3786 struct pending *ppt;
3787 int i;
3788 /* Name of the type, without "struct" or "union" */
3789 char *typename = TYPE_TAG_NAME (*type);
3790
3791 if (typename == NULL)
3792 {
3793 static struct complaint msg = {"need a type name", 0, 0};
3794 complain (&msg);
3795 break;
3796 }
3797 for (ppt = file_symbols; ppt; ppt = ppt->next)
3798 {
3799 for (i = 0; i < ppt->nsyms; i++)
3800 {
3801 struct symbol *sym = ppt->symbol[i];
3802
3803 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3804 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3805 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3806 TYPE_CODE (*type))
3807 && STREQ (SYMBOL_NAME (sym), typename))
3808 {
3809 memcpy (*type, SYMBOL_TYPE (sym),
3810 sizeof (struct type));
3811 }
3812 }
3813 }
3814 }
3815 }
3816 break;
3817
3818 default:
3819 badtype:
3820 {
3821 static struct complaint msg = {"\
3822 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3823 complain (&msg, TYPE_CODE (*type));
3824 }
3825 break;
3826 }
3827 }
3828
3829 undef_types_length = 0;
3830 }
3831
3832 /* Scan through all of the global symbols defined in the object file,
3833 assigning values to the debugging symbols that need to be assigned
3834 to. Get these symbols from the minimal symbol table. */
3835
3836 void
3837 scan_file_globals (objfile)
3838 struct objfile *objfile;
3839 {
3840 int hash;
3841 struct minimal_symbol *msymbol;
3842 struct symbol *sym, *prev;
3843
3844 /* Avoid expensive loop through all minimal symbols if there are
3845 no unresolved symbols. */
3846 for (hash = 0; hash < HASHSIZE; hash++)
3847 {
3848 if (global_sym_chain[hash])
3849 break;
3850 }
3851 if (hash >= HASHSIZE)
3852 return;
3853
3854 for (msymbol = objfile -> msymbols;
3855 msymbol && SYMBOL_NAME (msymbol) != NULL;
3856 msymbol++)
3857 {
3858 QUIT;
3859
3860 /* Skip static symbols. */
3861 switch (MSYMBOL_TYPE (msymbol))
3862 {
3863 case mst_file_text:
3864 case mst_file_data:
3865 case mst_file_bss:
3866 continue;
3867 default:
3868 break;
3869 }
3870
3871 prev = NULL;
3872
3873 /* Get the hash index and check all the symbols
3874 under that hash index. */
3875
3876 hash = hashname (SYMBOL_NAME (msymbol));
3877
3878 for (sym = global_sym_chain[hash]; sym;)
3879 {
3880 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3881 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3882 {
3883 /* Splice this symbol out of the hash chain and
3884 assign the value we have to it. */
3885 if (prev)
3886 {
3887 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3888 }
3889 else
3890 {
3891 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3892 }
3893
3894 /* Check to see whether we need to fix up a common block. */
3895 /* Note: this code might be executed several times for
3896 the same symbol if there are multiple references. */
3897
3898 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3899 {
3900 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3901 }
3902 else
3903 {
3904 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3905 }
3906
3907 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3908
3909 if (prev)
3910 {
3911 sym = SYMBOL_VALUE_CHAIN (prev);
3912 }
3913 else
3914 {
3915 sym = global_sym_chain[hash];
3916 }
3917 }
3918 else
3919 {
3920 prev = sym;
3921 sym = SYMBOL_VALUE_CHAIN (sym);
3922 }
3923 }
3924 }
3925
3926 /* Change the storage class of any remaining unresolved globals to
3927 LOC_UNRESOLVED and remove them from the chain. */
3928 for (hash = 0; hash < HASHSIZE; hash++)
3929 {
3930 sym = global_sym_chain[hash];
3931 while (sym)
3932 {
3933 prev = sym;
3934 sym = SYMBOL_VALUE_CHAIN (sym);
3935
3936 /* Change the symbol address from the misleading chain value
3937 to address zero. */
3938 SYMBOL_VALUE_ADDRESS (prev) = 0;
3939
3940 /* Complain about unresolved common block symbols. */
3941 if (SYMBOL_CLASS (prev) == LOC_STATIC)
3942 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
3943 else
3944 complain (&unresolved_sym_chain_complaint,
3945 objfile->name, SYMBOL_NAME (prev));
3946 }
3947 }
3948 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3949 }
3950
3951 /* Initialize anything that needs initializing when starting to read
3952 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3953 to a psymtab. */
3954
3955 void
3956 stabsread_init ()
3957 {
3958 }
3959
3960 /* Initialize anything that needs initializing when a completely new
3961 symbol file is specified (not just adding some symbols from another
3962 file, e.g. a shared library). */
3963
3964 void
3965 stabsread_new_init ()
3966 {
3967 /* Empty the hash table of global syms looking for values. */
3968 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3969 }
3970
3971 /* Initialize anything that needs initializing at the same time as
3972 start_symtab() is called. */
3973
3974 void start_stabs ()
3975 {
3976 global_stabs = NULL; /* AIX COFF */
3977 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3978 n_this_object_header_files = 1;
3979 type_vector_length = 0;
3980 type_vector = (struct type **) 0;
3981
3982 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3983 common_block_name = NULL;
3984
3985 os9k_stabs = 0;
3986 }
3987
3988 /* Call after end_symtab() */
3989
3990 void end_stabs ()
3991 {
3992 if (type_vector)
3993 {
3994 free ((char *) type_vector);
3995 }
3996 type_vector = 0;
3997 type_vector_length = 0;
3998 previous_stab_code = 0;
3999 }
4000
4001 void
4002 finish_global_stabs (objfile)
4003 struct objfile *objfile;
4004 {
4005 if (global_stabs)
4006 {
4007 patch_block_stabs (global_symbols, global_stabs, objfile);
4008 free ((PTR) global_stabs);
4009 global_stabs = NULL;
4010 }
4011 }
4012
4013 /* Initializer for this module */
4014
4015 void
4016 _initialize_stabsread ()
4017 {
4018 undef_types_allocated = 20;
4019 undef_types_length = 0;
4020 undef_types = (struct type **)
4021 xmalloc (undef_types_allocated * sizeof (struct type *));
4022 }
This page took 0.11263 seconds and 4 git commands to generate.