Merge changes for dos x udi:
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
223
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
226
227 struct type **
228 dbx_lookup_type (typenums)
229 int typenums[2];
230 {
231 register int filenum = typenums[0];
232 register int index = typenums[1];
233 unsigned old_len;
234 register int real_filenum;
235 register struct header_file *f;
236 int f_orig_length;
237
238 if (filenum == -1) /* -1,-1 is for temporary types. */
239 return 0;
240
241 if (filenum < 0 || filenum >= n_this_object_header_files)
242 {
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
245 0, 0};
246 complain (&msg, filenum, index, symnum);
247 goto error_return;
248 }
249
250 if (filenum == 0)
251 {
252 if (index < 0)
253 {
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
260
261 temp_type = rs6000_builtin_type(index);
262 return &temp_type;
263 }
264
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
268 {
269 old_len = type_vector_length;
270 if (old_len == 0)
271 {
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
275 }
276 while (index >= type_vector_length)
277 {
278 type_vector_length *= 2;
279 }
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
285 }
286 return (&type_vector[index]);
287 }
288 else
289 {
290 real_filenum = this_object_header_files[filenum];
291
292 if (real_filenum >= n_header_files)
293 {
294 struct type *temp_type;
295 struct type **temp_type_p;
296
297 warning ("GDB internal error: bad real_filenum");
298
299 error_return:
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
303 return temp_type_p;
304 }
305
306 f = &header_files[real_filenum];
307
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
310 {
311 while (index >= f->length)
312 {
313 f->length *= 2;
314 }
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
319 }
320 return (&f->vector[index]);
321 }
322 }
323
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
329
330 static struct type *
331 dbx_alloc_type (typenums, objfile)
332 int typenums[2];
333 struct objfile *objfile;
334 {
335 register struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
380 if (!sym)
381 {
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
388
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
392 SYMBOL_NAME (sym) =
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
394 pp += 2;
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
396 {
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 add_symbol_to_list (sym, &global_symbols);
408 }
409 else
410 {
411 pp += 2;
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
413 {
414 SYMBOL_TYPE (sym) =
415 lookup_function_type (read_type (&pp, objfile));
416 }
417 else
418 {
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
420 }
421 }
422 }
423 }
424 }
425
426 \f
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
432
433 Returns 0 for success, -1 for error. */
434
435 static int
436 read_type_number (pp, typenums)
437 register char **pp;
438 register int *typenums;
439 {
440 int nbits;
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
454 }
455 return 0;
456 }
457
458 \f
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
463 get this name). */
464
465 static char *type_synonym_name;
466
467 /* ARGSUSED */
468 struct symbol *
469 define_symbol (valu, string, desc, type, objfile)
470 CORE_ADDR valu;
471 char *string;
472 int desc;
473 int type;
474 struct objfile *objfile;
475 {
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
478 int deftype;
479 int synonym = 0;
480 register int i;
481
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
486
487 int nameless;
488
489 /* Ignore syms with empty names. */
490 if (string[0] == 0)
491 return 0;
492
493 /* Ignore old-style symbols from cc -go */
494 if (p == 0)
495 return 0;
496
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
500
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
504
505 if (processing_gcc_compilation)
506 {
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
510 }
511 else
512 {
513 SYMBOL_LINE(sym) = 0; /* unknown */
514 }
515
516 if (string[0] == CPLUS_MARKER)
517 {
518 /* Special GNU C++ names. */
519 switch (string[1])
520 {
521 case 't':
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
524 break;
525
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
528 goto normal;
529
530 case 'e':
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
533 break;
534
535 case '_':
536 /* This was an anonymous type that was never fixed up. */
537 goto normal;
538
539 default:
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
542 }
543 }
544 else
545 {
546 normal:
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded memcpy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
553 /* FIXME: considering that gcc can open code memcpy anyway, I
554 doubt it. xoxorich. */
555 {
556 register char *p1 = string;
557 register char *p2 = SYMBOL_NAME (sym);
558 while (p1 != p)
559 {
560 *p2++ = *p1++;
561 }
562 *p2++ = '\0';
563 }
564
565 /* If this symbol is from a C++ compilation, then attempt to cache the
566 demangled form for future reference. This is a typical time versus
567 space tradeoff, that was decided in favor of time because it sped up
568 C++ symbol lookups by a factor of about 20. */
569
570 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
571 }
572 p++;
573
574 /* Determine the type of name being defined. */
575 #if 0
576 /* Getting GDB to correctly skip the symbol on an undefined symbol
577 descriptor and not ever dump core is a very dodgy proposition if
578 we do things this way. I say the acorn RISC machine can just
579 fix their compiler. */
580 /* The Acorn RISC machine's compiler can put out locals that don't
581 start with "234=" or "(3,4)=", so assume anything other than the
582 deftypes we know how to handle is a local. */
583 if (!strchr ("cfFGpPrStTvVXCR", *p))
584 #else
585 if (isdigit (*p) || *p == '(' || *p == '-')
586 #endif
587 deftype = 'l';
588 else
589 deftype = *p++;
590
591 switch (deftype)
592 {
593 case 'c':
594 /* c is a special case, not followed by a type-number.
595 SYMBOL:c=iVALUE for an integer constant symbol.
596 SYMBOL:c=rVALUE for a floating constant symbol.
597 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
598 e.g. "b:c=e6,0" for "const b = blob1"
599 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 if (*p != '=')
601 {
602 SYMBOL_CLASS (sym) = LOC_CONST;
603 SYMBOL_TYPE (sym) = error_type (&p);
604 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
605 add_symbol_to_list (sym, &file_symbols);
606 return sym;
607 }
608 ++p;
609 switch (*p++)
610 {
611 case 'r':
612 {
613 double d = atof (p);
614 char *dbl_valu;
615
616 /* FIXME-if-picky-about-floating-accuracy: Should be using
617 target arithmetic to get the value. real.c in GCC
618 probably has the necessary code. */
619
620 /* FIXME: lookup_fundamental_type is a hack. We should be
621 creating a type especially for the type of float constants.
622 Problem is, what type should it be?
623
624 Also, what should the name of this type be? Should we
625 be using 'S' constants (see stabs.texinfo) instead? */
626
627 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
628 FT_DBL_PREC_FLOAT);
629 dbl_valu = (char *)
630 obstack_alloc (&objfile -> symbol_obstack,
631 TYPE_LENGTH (SYMBOL_TYPE (sym)));
632 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
633 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
634 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
635 }
636 break;
637 case 'i':
638 {
639 /* Defining integer constants this way is kind of silly,
640 since 'e' constants allows the compiler to give not
641 only the value, but the type as well. C has at least
642 int, long, unsigned int, and long long as constant
643 types; other languages probably should have at least
644 unsigned as well as signed constants. */
645
646 /* We just need one int constant type for all objfiles.
647 It doesn't depend on languages or anything (arguably its
648 name should be a language-specific name for a type of
649 that size, but I'm inclined to say that if the compiler
650 wants a nice name for the type, it can use 'e'). */
651 static struct type *int_const_type;
652
653 /* Yes, this is as long as a *host* int. That is because we
654 use atoi. */
655 if (int_const_type == NULL)
656 int_const_type =
657 init_type (TYPE_CODE_INT,
658 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
659 "integer constant",
660 (struct objfile *)NULL);
661 SYMBOL_TYPE (sym) = int_const_type;
662 SYMBOL_VALUE (sym) = atoi (p);
663 SYMBOL_CLASS (sym) = LOC_CONST;
664 }
665 break;
666 case 'e':
667 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
668 can be represented as integral.
669 e.g. "b:c=e6,0" for "const b = blob1"
670 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
671 {
672 SYMBOL_CLASS (sym) = LOC_CONST;
673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
674
675 if (*p != ',')
676 {
677 SYMBOL_TYPE (sym) = error_type (&p);
678 break;
679 }
680 ++p;
681
682 /* If the value is too big to fit in an int (perhaps because
683 it is unsigned), or something like that, we silently get
684 a bogus value. The type and everything else about it is
685 correct. Ideally, we should be using whatever we have
686 available for parsing unsigned and long long values,
687 however. */
688 SYMBOL_VALUE (sym) = atoi (p);
689 }
690 break;
691 default:
692 {
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 SYMBOL_TYPE (sym) = error_type (&p);
695 }
696 }
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 add_symbol_to_list (sym, &file_symbols);
699 return sym;
700
701 case 'C':
702 /* The name of a caught exception. */
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704 SYMBOL_CLASS (sym) = LOC_LABEL;
705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
706 SYMBOL_VALUE_ADDRESS (sym) = valu;
707 add_symbol_to_list (sym, &local_symbols);
708 break;
709
710 case 'f':
711 /* A static function definition. */
712 SYMBOL_TYPE (sym) = read_type (&p, objfile);
713 SYMBOL_CLASS (sym) = LOC_BLOCK;
714 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
715 add_symbol_to_list (sym, &file_symbols);
716 /* fall into process_function_types. */
717
718 process_function_types:
719 /* Function result types are described as the result type in stabs.
720 We need to convert this to the function-returning-type-X type
721 in GDB. E.g. "int" is converted to "function returning int". */
722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 {
724 #if 0
725 /* This code doesn't work -- it needs to realloc and can't. */
726 /* Attempt to set up to record a function prototype... */
727 struct type *new = alloc_type (objfile);
728
729 /* Generate a template for the type of this function. The
730 types of the arguments will be added as we read the symbol
731 table. */
732 *new = *lookup_function_type (SYMBOL_TYPE(sym));
733 SYMBOL_TYPE(sym) = new;
734 TYPE_OBJFILE (new) = objfile;
735 in_function_type = new;
736 #else
737 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 #endif
739 }
740 /* fall into process_prototype_types */
741
742 process_prototype_types:
743 /* Sun acc puts declared types of arguments here. We don't care
744 about their actual types (FIXME -- we should remember the whole
745 function prototype), but the list may define some new types
746 that we have to remember, so we must scan it now. */
747 while (*p == ';') {
748 p++;
749 read_type (&p, objfile);
750 }
751 break;
752
753 case 'F':
754 /* A global function definition. */
755 SYMBOL_TYPE (sym) = read_type (&p, objfile);
756 SYMBOL_CLASS (sym) = LOC_BLOCK;
757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
758 add_symbol_to_list (sym, &global_symbols);
759 goto process_function_types;
760
761 case 'G':
762 /* For a class G (global) symbol, it appears that the
763 value is not correct. It is necessary to search for the
764 corresponding linker definition to find the value.
765 These definitions appear at the end of the namelist. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 i = hashname (SYMBOL_NAME (sym));
768 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
769 global_sym_chain[i] = sym;
770 SYMBOL_CLASS (sym) = LOC_STATIC;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &global_symbols);
773 break;
774
775 /* This case is faked by a conditional above,
776 when there is no code letter in the dbx data.
777 Dbx data never actually contains 'l'. */
778 case 'l':
779 SYMBOL_TYPE (sym) = read_type (&p, objfile);
780 SYMBOL_CLASS (sym) = LOC_LOCAL;
781 SYMBOL_VALUE (sym) = valu;
782 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
783 add_symbol_to_list (sym, &local_symbols);
784 break;
785
786 case 'p':
787 if (*p == 'F')
788 /* pF is a two-letter code that means a function parameter in Fortran.
789 The type-number specifies the type of the return value.
790 Translate it into a pointer-to-function type. */
791 {
792 p++;
793 SYMBOL_TYPE (sym)
794 = lookup_pointer_type
795 (lookup_function_type (read_type (&p, objfile)));
796 }
797 else
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 /* Normally this is a parameter, a LOC_ARG. On the i960, it
801 can also be a LOC_LOCAL_ARG depending on symbol type. */
802 #ifndef DBX_PARM_SYMBOL_CLASS
803 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 #endif
805
806 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
807 SYMBOL_VALUE (sym) = valu;
808 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
809 #if 0
810 /* This doesn't work yet. */
811 add_param_to_type (&in_function_type, sym);
812 #endif
813 add_symbol_to_list (sym, &local_symbols);
814
815 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
816 /* On little-endian machines, this crud is never necessary, and,
817 if the extra bytes contain garbage, is harmful. */
818 break;
819 #else /* Big endian. */
820 /* If it's gcc-compiled, if it says `short', believe it. */
821 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
822 break;
823
824 #if !BELIEVE_PCC_PROMOTION
825 {
826 /* This is the signed type which arguments get promoted to. */
827 static struct type *pcc_promotion_type;
828 /* This is the unsigned type which arguments get promoted to. */
829 static struct type *pcc_unsigned_promotion_type;
830
831 /* Call it "int" because this is mainly C lossage. */
832 if (pcc_promotion_type == NULL)
833 pcc_promotion_type =
834 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
835 0, "int", NULL);
836
837 if (pcc_unsigned_promotion_type == NULL)
838 pcc_unsigned_promotion_type =
839 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
840 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
841
842 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
843 /* This macro is defined on machines (e.g. sparc) where
844 we should believe the type of a PCC 'short' argument,
845 but shouldn't believe the address (the address is
846 the address of the corresponding int).
847
848 My guess is that this correction, as opposed to changing
849 the parameter to an 'int' (as done below, for PCC
850 on most machines), is the right thing to do
851 on all machines, but I don't want to risk breaking
852 something that already works. On most PCC machines,
853 the sparc problem doesn't come up because the calling
854 function has to zero the top bytes (not knowing whether
855 the called function wants an int or a short), so there
856 is little practical difference between an int and a short
857 (except perhaps what happens when the GDB user types
858 "print short_arg = 0x10000;").
859
860 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
861 actually produces the correct address (we don't need to fix it
862 up). I made this code adapt so that it will offset the symbol
863 if it was pointing at an int-aligned location and not
864 otherwise. This way you can use the same gdb for 4.0.x and
865 4.1 systems.
866
867 If the parameter is shorter than an int, and is integral
868 (e.g. char, short, or unsigned equivalent), and is claimed to
869 be passed on an integer boundary, don't believe it! Offset the
870 parameter's address to the tail-end of that integer. */
871
872 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
873 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
874 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
875 {
876 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
877 - TYPE_LENGTH (SYMBOL_TYPE (sym));
878 }
879 break;
880
881 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
882
883 /* If PCC says a parameter is a short or a char,
884 it is really an int. */
885 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
886 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
887 {
888 SYMBOL_TYPE (sym) =
889 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
890 ? pcc_unsigned_promotion_type
891 : pcc_promotion_type;
892 }
893 break;
894
895 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
896 }
897 #endif /* !BELIEVE_PCC_PROMOTION. */
898 #endif /* Big endian. */
899
900 case 'P':
901 /* acc seems to use P to delare the prototypes of functions that
902 are referenced by this file. gdb is not prepared to deal
903 with this extra information. FIXME, it ought to. */
904 if (type == N_FUN)
905 {
906 read_type (&p, objfile);
907 goto process_prototype_types;
908 }
909 /*FALLTHROUGH*/
910
911 case 'R':
912 /* Parameter which is in a register. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_REGPARM;
915 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
916 if (SYMBOL_VALUE (sym) >= NUM_REGS)
917 {
918 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
919 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
920 }
921 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'r':
926 /* Register variable (either global or local). */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928 SYMBOL_CLASS (sym) = LOC_REGISTER;
929 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
930 if (SYMBOL_VALUE (sym) >= NUM_REGS)
931 {
932 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
933 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
934 }
935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
936 if (within_function)
937 {
938 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
939 name to represent an argument passed in a register.
940 GCC uses 'P' for the same case. So if we find such a symbol pair
941 we combine it into one 'P' symbol.
942 Note that this code illegally combines
943 main(argc) int argc; { register int argc = 1; }
944 but this case is considered pathological and causes a warning
945 from a decent compiler. */
946 if (local_symbols
947 && local_symbols->nsyms > 0)
948 {
949 struct symbol *prev_sym;
950 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
951 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
952 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
953 {
954 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
955 /* Use the type from the LOC_REGISTER; that is the type
956 that is actually in that register. */
957 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
958 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
959 sym = prev_sym;
960 break;
961 }
962 }
963 add_symbol_to_list (sym, &local_symbols);
964 }
965 else
966 add_symbol_to_list (sym, &file_symbols);
967 break;
968
969 case 'S':
970 /* Static symbol at top level of file */
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
972 SYMBOL_CLASS (sym) = LOC_STATIC;
973 SYMBOL_VALUE_ADDRESS (sym) = valu;
974 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
975 add_symbol_to_list (sym, &file_symbols);
976 break;
977
978 case 't':
979 #if 0
980 /* See comment where long_kludge_name is declared. */
981 /* Here we save the name of the symbol for read_range_type, which
982 ends up reading in the basic types. In stabs, unfortunately there
983 is no distinction between "int" and "long" types except their
984 names. Until we work out a saner type policy (eliminating most
985 builtin types and using the names specified in the files), we
986 save away the name so that far away from here in read_range_type,
987 we can examine it to decide between "int" and "long". FIXME. */
988 long_kludge_name = SYMBOL_NAME (sym);
989 #endif
990 SYMBOL_TYPE (sym) = read_type (&p, objfile);
991
992 /* For a nameless type, we don't want a create a symbol, thus we
993 did not use `sym'. Return without further processing. */
994 if (nameless) return NULL;
995
996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
997 SYMBOL_VALUE (sym) = valu;
998 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
999 /* C++ vagaries: we may have a type which is derived from
1000 a base type which did not have its name defined when the
1001 derived class was output. We fill in the derived class's
1002 base part member's name here in that case. */
1003 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1004 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1005 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1006 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1007 {
1008 int j;
1009 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1010 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1011 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1012 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1013 }
1014
1015 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1016 {
1017 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1018 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1019 {
1020 /* If we are giving a name to a type such as "pointer to
1021 foo" or "function returning foo", we better not set
1022 the TYPE_NAME. If the program contains "typedef char
1023 *caddr_t;", we don't want all variables of type char
1024 * to print as caddr_t. This is not just a
1025 consequence of GDB's type management; PCC and GCC (at
1026 least through version 2.4) both output variables of
1027 either type char * or caddr_t with the type number
1028 defined in the 't' symbol for caddr_t. If a future
1029 compiler cleans this up it GDB is not ready for it
1030 yet, but if it becomes ready we somehow need to
1031 disable this check (without breaking the PCC/GCC2.4
1032 case).
1033
1034 Sigh.
1035
1036 Fortunately, this check seems not to be necessary
1037 for anything except pointers or functions. */
1038 }
1039 else
1040 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1041 }
1042
1043 add_symbol_to_list (sym, &file_symbols);
1044 break;
1045
1046 case 'T':
1047 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1048 by 't' which means we are typedef'ing it as well. */
1049 synonym = *p == 't';
1050
1051 if (synonym)
1052 {
1053 p++;
1054 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1055 strlen (SYMBOL_NAME (sym)),
1056 &objfile -> symbol_obstack);
1057 }
1058
1059 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1060
1061 /* For a nameless type, we don't want a create a symbol, thus we
1062 did not use `sym'. Return without further processing. */
1063 if (nameless) return NULL;
1064
1065 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1066 SYMBOL_VALUE (sym) = valu;
1067 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1068 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1069 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1070 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1071 add_symbol_to_list (sym, &file_symbols);
1072
1073 if (synonym)
1074 {
1075 /* Clone the sym and then modify it. */
1076 register struct symbol *typedef_sym = (struct symbol *)
1077 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1078 *typedef_sym = *sym;
1079 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1080 SYMBOL_VALUE (typedef_sym) = valu;
1081 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1082 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1083 TYPE_NAME (SYMBOL_TYPE (sym))
1084 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1085 add_symbol_to_list (typedef_sym, &file_symbols);
1086 }
1087 break;
1088
1089 case 'V':
1090 /* Static symbol of local scope */
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 SYMBOL_CLASS (sym) = LOC_STATIC;
1093 SYMBOL_VALUE_ADDRESS (sym) = valu;
1094 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1095 add_symbol_to_list (sym, &local_symbols);
1096 break;
1097
1098 case 'v':
1099 /* Reference parameter */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'X':
1108 /* This is used by Sun FORTRAN for "function result value".
1109 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1110 that Pascal uses it too, but when I tried it Pascal used
1111 "x:3" (local symbol) instead. */
1112 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1113 SYMBOL_CLASS (sym) = LOC_LOCAL;
1114 SYMBOL_VALUE (sym) = valu;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &local_symbols);
1117 break;
1118
1119 default:
1120 SYMBOL_TYPE (sym) = error_type (&p);
1121 SYMBOL_CLASS (sym) = LOC_CONST;
1122 SYMBOL_VALUE (sym) = 0;
1123 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1124 add_symbol_to_list (sym, &file_symbols);
1125 break;
1126 }
1127
1128 /* When passing structures to a function, some systems sometimes pass
1129 the address in a register, not the structure itself.
1130
1131 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1132 to LOC_REGPARM_ADDR for structures and unions. */
1133
1134 #if !defined (REG_STRUCT_HAS_ADDR)
1135 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1136 #endif
1137
1138 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1139 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1140 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1141 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1142 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1143
1144 return sym;
1145 }
1146
1147 \f
1148 /* Skip rest of this symbol and return an error type.
1149
1150 General notes on error recovery: error_type always skips to the
1151 end of the symbol (modulo cretinous dbx symbol name continuation).
1152 Thus code like this:
1153
1154 if (*(*pp)++ != ';')
1155 return error_type (pp);
1156
1157 is wrong because if *pp starts out pointing at '\0' (typically as the
1158 result of an earlier error), it will be incremented to point to the
1159 start of the next symbol, which might produce strange results, at least
1160 if you run off the end of the string table. Instead use
1161
1162 if (**pp != ';')
1163 return error_type (pp);
1164 ++*pp;
1165
1166 or
1167
1168 if (**pp != ';')
1169 foo = error_type (pp);
1170 else
1171 ++*pp;
1172
1173 And in case it isn't obvious, the point of all this hair is so the compiler
1174 can define new types and new syntaxes, and old versions of the
1175 debugger will be able to read the new symbol tables. */
1176
1177 static struct type *
1178 error_type (pp)
1179 char **pp;
1180 {
1181 complain (&error_type_complaint);
1182 while (1)
1183 {
1184 /* Skip to end of symbol. */
1185 while (**pp != '\0')
1186 {
1187 (*pp)++;
1188 }
1189
1190 /* Check for and handle cretinous dbx symbol name continuation! */
1191 if ((*pp)[-1] == '\\')
1192 {
1193 *pp = next_symbol_text ();
1194 }
1195 else
1196 {
1197 break;
1198 }
1199 }
1200 return (builtin_type_error);
1201 }
1202
1203 \f
1204 /* Read type information or a type definition; return the type. Even
1205 though this routine accepts either type information or a type
1206 definition, the distinction is relevant--some parts of stabsread.c
1207 assume that type information starts with a digit, '-', or '(' in
1208 deciding whether to call read_type. */
1209
1210 struct type *
1211 read_type (pp, objfile)
1212 register char **pp;
1213 struct objfile *objfile;
1214 {
1215 register struct type *type = 0;
1216 struct type *type1;
1217 int typenums[2];
1218 int xtypenums[2];
1219 char type_descriptor;
1220
1221 /* Size in bits of type if specified by a type attribute, or -1 if
1222 there is no size attribute. */
1223 int type_size = -1;
1224
1225 /* Read type number if present. The type number may be omitted.
1226 for instance in a two-dimensional array declared with type
1227 "ar1;1;10;ar1;1;10;4". */
1228 if ((**pp >= '0' && **pp <= '9')
1229 || **pp == '('
1230 || **pp == '-')
1231 {
1232 if (read_type_number (pp, typenums) != 0)
1233 return error_type (pp);
1234
1235 /* Type is not being defined here. Either it already exists,
1236 or this is a forward reference to it. dbx_alloc_type handles
1237 both cases. */
1238 if (**pp != '=')
1239 return dbx_alloc_type (typenums, objfile);
1240
1241 /* Type is being defined here. */
1242 /* Skip the '='. */
1243 ++(*pp);
1244
1245 while (**pp == '@')
1246 {
1247 char *p = *pp + 1;
1248 /* It might be a type attribute or a member type. */
1249 if (isdigit (*p) || *p == '(' || *p == '-')
1250 /* Member type. */
1251 break;
1252 else
1253 {
1254 /* Type attributes. */
1255 char *attr = p;
1256
1257 /* Skip to the semicolon. */
1258 while (*p != ';' && *p != '\0')
1259 ++p;
1260 *pp = p;
1261 if (*p == '\0')
1262 return error_type (pp);
1263 else
1264 /* Skip the semicolon. */
1265 ++*pp;
1266
1267 switch (*attr)
1268 {
1269 case 's':
1270 type_size = atoi (attr + 1);
1271 if (type_size <= 0)
1272 type_size = -1;
1273 break;
1274 default:
1275 /* Ignore unrecognized type attributes, so future compilers
1276 can invent new ones. */
1277 break;
1278 }
1279 }
1280 }
1281 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1282 ++(*pp);
1283 }
1284 else
1285 {
1286 /* 'typenums=' not present, type is anonymous. Read and return
1287 the definition, but don't put it in the type vector. */
1288 typenums[0] = typenums[1] = -1;
1289 (*pp)++;
1290 }
1291
1292 type_descriptor = (*pp)[-1];
1293 switch (type_descriptor)
1294 {
1295 case 'x':
1296 {
1297 enum type_code code;
1298
1299 /* Used to index through file_symbols. */
1300 struct pending *ppt;
1301 int i;
1302
1303 /* Name including "struct", etc. */
1304 char *type_name;
1305
1306 {
1307 char *from, *to;
1308
1309 /* Set the type code according to the following letter. */
1310 switch ((*pp)[0])
1311 {
1312 case 's':
1313 code = TYPE_CODE_STRUCT;
1314 break;
1315 case 'u':
1316 code = TYPE_CODE_UNION;
1317 break;
1318 case 'e':
1319 code = TYPE_CODE_ENUM;
1320 break;
1321 default:
1322 return error_type (pp);
1323 }
1324
1325 to = type_name = (char *)
1326 obstack_alloc (&objfile -> type_obstack,
1327 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1328
1329 /* Copy the name. */
1330 from = *pp + 1;
1331 while ((*to++ = *from++) != ':')
1332 ;
1333 *--to = '\0';
1334
1335 /* Set the pointer ahead of the name which we just read. */
1336 *pp = from;
1337 }
1338
1339 /* Now check to see whether the type has already been declared. */
1340 /* This is necessary at least in the case where the
1341 program says something like
1342 struct foo bar[5];
1343 The compiler puts out a cross-reference; we better find
1344 set the length of the structure correctly so we can
1345 set the length of the array. */
1346 for (ppt = file_symbols; ppt; ppt = ppt->next)
1347 for (i = 0; i < ppt->nsyms; i++)
1348 {
1349 struct symbol *sym = ppt->symbol[i];
1350
1351 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1352 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1353 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1354 && STREQ (SYMBOL_NAME (sym), type_name))
1355 {
1356 obstack_free (&objfile -> type_obstack, type_name);
1357 type = SYMBOL_TYPE (sym);
1358 return type;
1359 }
1360 }
1361
1362 /* Didn't find the type to which this refers, so we must
1363 be dealing with a forward reference. Allocate a type
1364 structure for it, and keep track of it so we can
1365 fill in the rest of the fields when we get the full
1366 type. */
1367 type = dbx_alloc_type (typenums, objfile);
1368 TYPE_CODE (type) = code;
1369 TYPE_TAG_NAME (type) = type_name;
1370 INIT_CPLUS_SPECIFIC(type);
1371 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1372
1373 add_undefined_type (type);
1374 return type;
1375 }
1376
1377 case '-': /* RS/6000 built-in type */
1378 case '0':
1379 case '1':
1380 case '2':
1381 case '3':
1382 case '4':
1383 case '5':
1384 case '6':
1385 case '7':
1386 case '8':
1387 case '9':
1388 case '(':
1389
1390 (*pp)--;
1391 if (read_type_number (pp, xtypenums) != 0)
1392 return error_type (pp);
1393
1394 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1395 /* It's being defined as itself. That means it is "void". */
1396 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1397 else
1398 {
1399 struct type *xtype = *dbx_lookup_type (xtypenums);
1400
1401 /* This can happen if we had '-' followed by a garbage character,
1402 for example. */
1403 if (xtype == NULL)
1404 return error_type (pp);
1405
1406 /* The type is being defined to another type. So we copy the type.
1407 This loses if we copy a C++ class and so we lose track of how
1408 the names are mangled (but g++ doesn't output stabs like this
1409 now anyway). */
1410
1411 type = alloc_type (objfile);
1412 memcpy (type, xtype, sizeof (struct type));
1413
1414 /* The idea behind clearing the names is that the only purpose
1415 for defining a type to another type is so that the name of
1416 one can be different. So we probably don't need to worry much
1417 about the case where the compiler doesn't give a name to the
1418 new type. */
1419 TYPE_NAME (type) = NULL;
1420 TYPE_TAG_NAME (type) = NULL;
1421 }
1422 if (typenums[0] != -1)
1423 *dbx_lookup_type (typenums) = type;
1424 break;
1425
1426 /* In the following types, we must be sure to overwrite any existing
1427 type that the typenums refer to, rather than allocating a new one
1428 and making the typenums point to the new one. This is because there
1429 may already be pointers to the existing type (if it had been
1430 forward-referenced), and we must change it to a pointer, function,
1431 reference, or whatever, *in-place*. */
1432
1433 case '*':
1434 type1 = read_type (pp, objfile);
1435 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1436 break;
1437
1438 case '&': /* Reference to another type */
1439 type1 = read_type (pp, objfile);
1440 type = make_reference_type (type1, dbx_lookup_type (typenums));
1441 break;
1442
1443 case 'f': /* Function returning another type */
1444 type1 = read_type (pp, objfile);
1445 type = make_function_type (type1, dbx_lookup_type (typenums));
1446 break;
1447
1448 case 'k': /* Const qualifier on some type (Sun) */
1449 type = read_type (pp, objfile);
1450 /* FIXME! For now, we ignore const and volatile qualifiers. */
1451 break;
1452
1453 case 'B': /* Volatile qual on some type (Sun) */
1454 type = read_type (pp, objfile);
1455 /* FIXME! For now, we ignore const and volatile qualifiers. */
1456 break;
1457
1458 /* FIXME -- we should be doing smash_to_XXX types here. */
1459 case '@': /* Member (class & variable) type */
1460 {
1461 struct type *domain = read_type (pp, objfile);
1462 struct type *memtype;
1463
1464 if (**pp != ',')
1465 /* Invalid member type data format. */
1466 return error_type (pp);
1467 ++*pp;
1468
1469 memtype = read_type (pp, objfile);
1470 type = dbx_alloc_type (typenums, objfile);
1471 smash_to_member_type (type, domain, memtype);
1472 }
1473 break;
1474
1475 case '#': /* Method (class & fn) type */
1476 if ((*pp)[0] == '#')
1477 {
1478 /* We'll get the parameter types from the name. */
1479 struct type *return_type;
1480
1481 (*pp)++;
1482 return_type = read_type (pp, objfile);
1483 if (*(*pp)++ != ';')
1484 complain (&invalid_member_complaint, symnum);
1485 type = allocate_stub_method (return_type);
1486 if (typenums[0] != -1)
1487 *dbx_lookup_type (typenums) = type;
1488 }
1489 else
1490 {
1491 struct type *domain = read_type (pp, objfile);
1492 struct type *return_type;
1493 struct type **args;
1494
1495 if (**pp != ',')
1496 /* Invalid member type data format. */
1497 return error_type (pp);
1498 else
1499 ++(*pp);
1500
1501 return_type = read_type (pp, objfile);
1502 args = read_args (pp, ';', objfile);
1503 type = dbx_alloc_type (typenums, objfile);
1504 smash_to_method_type (type, domain, return_type, args);
1505 }
1506 break;
1507
1508 case 'r': /* Range type */
1509 type = read_range_type (pp, typenums, objfile);
1510 if (typenums[0] != -1)
1511 *dbx_lookup_type (typenums) = type;
1512 break;
1513
1514 case 'b': /* Sun ACC builtin int type */
1515 type = read_sun_builtin_type (pp, typenums, objfile);
1516 if (typenums[0] != -1)
1517 *dbx_lookup_type (typenums) = type;
1518 break;
1519
1520 case 'R': /* Sun ACC builtin float type */
1521 type = read_sun_floating_type (pp, typenums, objfile);
1522 if (typenums[0] != -1)
1523 *dbx_lookup_type (typenums) = type;
1524 break;
1525
1526 case 'e': /* Enumeration type */
1527 type = dbx_alloc_type (typenums, objfile);
1528 type = read_enum_type (pp, type, objfile);
1529 if (typenums[0] != -1)
1530 *dbx_lookup_type (typenums) = type;
1531 break;
1532
1533 case 's': /* Struct type */
1534 case 'u': /* Union type */
1535 type = dbx_alloc_type (typenums, objfile);
1536 if (!TYPE_NAME (type))
1537 {
1538 TYPE_NAME (type) = type_synonym_name;
1539 }
1540 type_synonym_name = NULL;
1541 switch (type_descriptor)
1542 {
1543 case 's':
1544 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1545 break;
1546 case 'u':
1547 TYPE_CODE (type) = TYPE_CODE_UNION;
1548 break;
1549 }
1550 type = read_struct_type (pp, type, objfile);
1551 break;
1552
1553 case 'a': /* Array type */
1554 if (**pp != 'r')
1555 return error_type (pp);
1556 ++*pp;
1557
1558 type = dbx_alloc_type (typenums, objfile);
1559 type = read_array_type (pp, type, objfile);
1560 break;
1561
1562 default:
1563 --*pp; /* Go back to the symbol in error */
1564 /* Particularly important if it was \0! */
1565 return error_type (pp);
1566 }
1567
1568 if (type == 0)
1569 {
1570 warning ("GDB internal error, type is NULL in stabsread.c\n");
1571 return error_type (pp);
1572 }
1573
1574 /* Size specified in a type attribute overrides any other size. */
1575 if (type_size != -1)
1576 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1577
1578 return type;
1579 }
1580 \f
1581 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1582 Return the proper type node for a given builtin type number. */
1583
1584 static struct type *
1585 rs6000_builtin_type (typenum)
1586 int typenum;
1587 {
1588 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1589 #define NUMBER_RECOGNIZED 30
1590 /* This includes an empty slot for type number -0. */
1591 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1592 struct type *rettype = NULL;
1593
1594 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1595 {
1596 complain (&rs6000_builtin_complaint, typenum);
1597 return builtin_type_error;
1598 }
1599 if (negative_types[-typenum] != NULL)
1600 return negative_types[-typenum];
1601
1602 #if TARGET_CHAR_BIT != 8
1603 #error This code wrong for TARGET_CHAR_BIT not 8
1604 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1605 that if that ever becomes not true, the correct fix will be to
1606 make the size in the struct type to be in bits, not in units of
1607 TARGET_CHAR_BIT. */
1608 #endif
1609
1610 switch (-typenum)
1611 {
1612 case 1:
1613 /* The size of this and all the other types are fixed, defined
1614 by the debugging format. If there is a type called "int" which
1615 is other than 32 bits, then it should use a new negative type
1616 number (or avoid negative type numbers for that case).
1617 See stabs.texinfo. */
1618 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1619 break;
1620 case 2:
1621 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1622 break;
1623 case 3:
1624 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1625 break;
1626 case 4:
1627 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1628 break;
1629 case 5:
1630 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1631 "unsigned char", NULL);
1632 break;
1633 case 6:
1634 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1635 break;
1636 case 7:
1637 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1638 "unsigned short", NULL);
1639 break;
1640 case 8:
1641 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1642 "unsigned int", NULL);
1643 break;
1644 case 9:
1645 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1646 "unsigned", NULL);
1647 case 10:
1648 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1649 "unsigned long", NULL);
1650 break;
1651 case 11:
1652 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1653 break;
1654 case 12:
1655 /* IEEE single precision (32 bit). */
1656 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1657 break;
1658 case 13:
1659 /* IEEE double precision (64 bit). */
1660 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1661 break;
1662 case 14:
1663 /* This is an IEEE double on the RS/6000, and different machines with
1664 different sizes for "long double" should use different negative
1665 type numbers. See stabs.texinfo. */
1666 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1667 break;
1668 case 15:
1669 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1670 break;
1671 case 16:
1672 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1673 break;
1674 case 17:
1675 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1676 break;
1677 case 18:
1678 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1679 break;
1680 case 19:
1681 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1682 break;
1683 case 20:
1684 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1685 "character", NULL);
1686 break;
1687 case 21:
1688 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1689 "logical*1", NULL);
1690 break;
1691 case 22:
1692 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1693 "logical*2", NULL);
1694 break;
1695 case 23:
1696 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1697 "logical*4", NULL);
1698 break;
1699 case 24:
1700 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1701 "logical", NULL);
1702 break;
1703 case 25:
1704 /* Complex type consisting of two IEEE single precision values. */
1705 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1706 break;
1707 case 26:
1708 /* Complex type consisting of two IEEE double precision values. */
1709 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1710 break;
1711 case 27:
1712 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1713 break;
1714 case 28:
1715 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1716 break;
1717 case 29:
1718 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1719 break;
1720 case 30:
1721 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1722 break;
1723 }
1724 negative_types[-typenum] = rettype;
1725 return rettype;
1726 }
1727 \f
1728 /* This page contains subroutines of read_type. */
1729
1730 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1731 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1732 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1733
1734 /* Read member function stabs info for C++ classes. The form of each member
1735 function data is:
1736
1737 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1738
1739 An example with two member functions is:
1740
1741 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1742
1743 For the case of overloaded operators, the format is op$::*.funcs, where
1744 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1745 name (such as `+=') and `.' marks the end of the operator name.
1746
1747 Returns 1 for success, 0 for failure. */
1748
1749 static int
1750 read_member_functions (fip, pp, type, objfile)
1751 struct field_info *fip;
1752 char **pp;
1753 struct type *type;
1754 struct objfile *objfile;
1755 {
1756 int nfn_fields = 0;
1757 int length = 0;
1758 /* Total number of member functions defined in this class. If the class
1759 defines two `f' functions, and one `g' function, then this will have
1760 the value 3. */
1761 int total_length = 0;
1762 int i;
1763 struct next_fnfield
1764 {
1765 struct next_fnfield *next;
1766 struct fn_field fn_field;
1767 } *sublist;
1768 struct type *look_ahead_type;
1769 struct next_fnfieldlist *new_fnlist;
1770 struct next_fnfield *new_sublist;
1771 char *main_fn_name;
1772 register char *p;
1773
1774 /* Process each list until we find something that is not a member function
1775 or find the end of the functions. */
1776
1777 while (**pp != ';')
1778 {
1779 /* We should be positioned at the start of the function name.
1780 Scan forward to find the first ':' and if it is not the
1781 first of a "::" delimiter, then this is not a member function. */
1782 p = *pp;
1783 while (*p != ':')
1784 {
1785 p++;
1786 }
1787 if (p[1] != ':')
1788 {
1789 break;
1790 }
1791
1792 sublist = NULL;
1793 look_ahead_type = NULL;
1794 length = 0;
1795
1796 new_fnlist = (struct next_fnfieldlist *)
1797 xmalloc (sizeof (struct next_fnfieldlist));
1798 make_cleanup (free, new_fnlist);
1799 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1800
1801 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1802 {
1803 /* This is a completely wierd case. In order to stuff in the
1804 names that might contain colons (the usual name delimiter),
1805 Mike Tiemann defined a different name format which is
1806 signalled if the identifier is "op$". In that case, the
1807 format is "op$::XXXX." where XXXX is the name. This is
1808 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1809 /* This lets the user type "break operator+".
1810 We could just put in "+" as the name, but that wouldn't
1811 work for "*". */
1812 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1813 char *o = opname + 3;
1814
1815 /* Skip past '::'. */
1816 *pp = p + 2;
1817
1818 STABS_CONTINUE (pp);
1819 p = *pp;
1820 while (*p != '.')
1821 {
1822 *o++ = *p++;
1823 }
1824 main_fn_name = savestring (opname, o - opname);
1825 /* Skip past '.' */
1826 *pp = p + 1;
1827 }
1828 else
1829 {
1830 main_fn_name = savestring (*pp, p - *pp);
1831 /* Skip past '::'. */
1832 *pp = p + 2;
1833 }
1834 new_fnlist -> fn_fieldlist.name = main_fn_name;
1835
1836 do
1837 {
1838 new_sublist =
1839 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1840 make_cleanup (free, new_sublist);
1841 memset (new_sublist, 0, sizeof (struct next_fnfield));
1842
1843 /* Check for and handle cretinous dbx symbol name continuation! */
1844 if (look_ahead_type == NULL)
1845 {
1846 /* Normal case. */
1847 STABS_CONTINUE (pp);
1848
1849 new_sublist -> fn_field.type = read_type (pp, objfile);
1850 if (**pp != ':')
1851 {
1852 /* Invalid symtab info for member function. */
1853 return 0;
1854 }
1855 }
1856 else
1857 {
1858 /* g++ version 1 kludge */
1859 new_sublist -> fn_field.type = look_ahead_type;
1860 look_ahead_type = NULL;
1861 }
1862
1863 (*pp)++;
1864 p = *pp;
1865 while (*p != ';')
1866 {
1867 p++;
1868 }
1869
1870 /* If this is just a stub, then we don't have the real name here. */
1871
1872 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1873 {
1874 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1875 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1876 new_sublist -> fn_field.is_stub = 1;
1877 }
1878 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1879 *pp = p + 1;
1880
1881 /* Set this member function's visibility fields. */
1882 switch (*(*pp)++)
1883 {
1884 case VISIBILITY_PRIVATE:
1885 new_sublist -> fn_field.is_private = 1;
1886 break;
1887 case VISIBILITY_PROTECTED:
1888 new_sublist -> fn_field.is_protected = 1;
1889 break;
1890 }
1891
1892 STABS_CONTINUE (pp);
1893 switch (**pp)
1894 {
1895 case 'A': /* Normal functions. */
1896 new_sublist -> fn_field.is_const = 0;
1897 new_sublist -> fn_field.is_volatile = 0;
1898 (*pp)++;
1899 break;
1900 case 'B': /* `const' member functions. */
1901 new_sublist -> fn_field.is_const = 1;
1902 new_sublist -> fn_field.is_volatile = 0;
1903 (*pp)++;
1904 break;
1905 case 'C': /* `volatile' member function. */
1906 new_sublist -> fn_field.is_const = 0;
1907 new_sublist -> fn_field.is_volatile = 1;
1908 (*pp)++;
1909 break;
1910 case 'D': /* `const volatile' member function. */
1911 new_sublist -> fn_field.is_const = 1;
1912 new_sublist -> fn_field.is_volatile = 1;
1913 (*pp)++;
1914 break;
1915 case '*': /* File compiled with g++ version 1 -- no info */
1916 case '?':
1917 case '.':
1918 break;
1919 default:
1920 complain (&const_vol_complaint, **pp);
1921 break;
1922 }
1923
1924 switch (*(*pp)++)
1925 {
1926 case '*':
1927 {
1928 int nbits;
1929 /* virtual member function, followed by index.
1930 The sign bit is set to distinguish pointers-to-methods
1931 from virtual function indicies. Since the array is
1932 in words, the quantity must be shifted left by 1
1933 on 16 bit machine, and by 2 on 32 bit machine, forcing
1934 the sign bit out, and usable as a valid index into
1935 the array. Remove the sign bit here. */
1936 new_sublist -> fn_field.voffset =
1937 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1938 if (nbits != 0)
1939 return 0;
1940
1941 STABS_CONTINUE (pp);
1942 if (**pp == ';' || **pp == '\0')
1943 {
1944 /* Must be g++ version 1. */
1945 new_sublist -> fn_field.fcontext = 0;
1946 }
1947 else
1948 {
1949 /* Figure out from whence this virtual function came.
1950 It may belong to virtual function table of
1951 one of its baseclasses. */
1952 look_ahead_type = read_type (pp, objfile);
1953 if (**pp == ':')
1954 {
1955 /* g++ version 1 overloaded methods. */
1956 }
1957 else
1958 {
1959 new_sublist -> fn_field.fcontext = look_ahead_type;
1960 if (**pp != ';')
1961 {
1962 return 0;
1963 }
1964 else
1965 {
1966 ++*pp;
1967 }
1968 look_ahead_type = NULL;
1969 }
1970 }
1971 break;
1972 }
1973 case '?':
1974 /* static member function. */
1975 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1976 if (strncmp (new_sublist -> fn_field.physname,
1977 main_fn_name, strlen (main_fn_name)))
1978 {
1979 new_sublist -> fn_field.is_stub = 1;
1980 }
1981 break;
1982
1983 default:
1984 /* error */
1985 complain (&member_fn_complaint, (*pp)[-1]);
1986 /* Fall through into normal member function. */
1987
1988 case '.':
1989 /* normal member function. */
1990 new_sublist -> fn_field.voffset = 0;
1991 new_sublist -> fn_field.fcontext = 0;
1992 break;
1993 }
1994
1995 new_sublist -> next = sublist;
1996 sublist = new_sublist;
1997 length++;
1998 STABS_CONTINUE (pp);
1999 }
2000 while (**pp != ';' && **pp != '\0');
2001
2002 (*pp)++;
2003
2004 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2005 obstack_alloc (&objfile -> type_obstack,
2006 sizeof (struct fn_field) * length);
2007 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2008 sizeof (struct fn_field) * length);
2009 for (i = length; (i--, sublist); sublist = sublist -> next)
2010 {
2011 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2012 }
2013
2014 new_fnlist -> fn_fieldlist.length = length;
2015 new_fnlist -> next = fip -> fnlist;
2016 fip -> fnlist = new_fnlist;
2017 nfn_fields++;
2018 total_length += length;
2019 STABS_CONTINUE (pp);
2020 }
2021
2022 if (nfn_fields)
2023 {
2024 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2025 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2026 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2027 memset (TYPE_FN_FIELDLISTS (type), 0,
2028 sizeof (struct fn_fieldlist) * nfn_fields);
2029 TYPE_NFN_FIELDS (type) = nfn_fields;
2030 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2031 }
2032
2033 return 1;
2034 }
2035
2036 /* Special GNU C++ name.
2037
2038 Returns 1 for success, 0 for failure. "failure" means that we can't
2039 keep parsing and it's time for error_type(). */
2040
2041 static int
2042 read_cpp_abbrev (fip, pp, type, objfile)
2043 struct field_info *fip;
2044 char **pp;
2045 struct type *type;
2046 struct objfile *objfile;
2047 {
2048 register char *p;
2049 char *name;
2050 char cpp_abbrev;
2051 struct type *context;
2052
2053 p = *pp;
2054 if (*++p == 'v')
2055 {
2056 name = NULL;
2057 cpp_abbrev = *++p;
2058
2059 *pp = p + 1;
2060
2061 /* At this point, *pp points to something like "22:23=*22...",
2062 where the type number before the ':' is the "context" and
2063 everything after is a regular type definition. Lookup the
2064 type, find it's name, and construct the field name. */
2065
2066 context = read_type (pp, objfile);
2067
2068 switch (cpp_abbrev)
2069 {
2070 case 'f': /* $vf -- a virtual function table pointer */
2071 fip->list->field.name =
2072 obconcat (&objfile->type_obstack, vptr_name, "", "");
2073 break;
2074
2075 case 'b': /* $vb -- a virtual bsomethingorother */
2076 name = type_name_no_tag (context);
2077 if (name == NULL)
2078 {
2079 complain (&invalid_cpp_type_complaint, symnum);
2080 name = "FOO";
2081 }
2082 fip->list->field.name =
2083 obconcat (&objfile->type_obstack, vb_name, name, "");
2084 break;
2085
2086 default:
2087 complain (&invalid_cpp_abbrev_complaint, *pp);
2088 fip->list->field.name =
2089 obconcat (&objfile->type_obstack,
2090 "INVALID_CPLUSPLUS_ABBREV", "", "");
2091 break;
2092 }
2093
2094 /* At this point, *pp points to the ':'. Skip it and read the
2095 field type. */
2096
2097 p = ++(*pp);
2098 if (p[-1] != ':')
2099 {
2100 complain (&invalid_cpp_abbrev_complaint, *pp);
2101 return 0;
2102 }
2103 fip->list->field.type = read_type (pp, objfile);
2104 if (**pp == ',')
2105 (*pp)++; /* Skip the comma. */
2106 else
2107 return 0;
2108
2109 {
2110 int nbits;
2111 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2112 if (nbits != 0)
2113 return 0;
2114 }
2115 /* This field is unpacked. */
2116 fip->list->field.bitsize = 0;
2117 fip->list->visibility = VISIBILITY_PRIVATE;
2118 }
2119 else
2120 {
2121 complain (&invalid_cpp_abbrev_complaint, *pp);
2122 /* We have no idea what syntax an unrecognized abbrev would have, so
2123 better return 0. If we returned 1, we would need to at least advance
2124 *pp to avoid an infinite loop. */
2125 return 0;
2126 }
2127 return 1;
2128 }
2129
2130 static void
2131 read_one_struct_field (fip, pp, p, type, objfile)
2132 struct field_info *fip;
2133 char **pp;
2134 char *p;
2135 struct type *type;
2136 struct objfile *objfile;
2137 {
2138 fip -> list -> field.name =
2139 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2140 *pp = p + 1;
2141
2142 /* This means we have a visibility for a field coming. */
2143 if (**pp == '/')
2144 {
2145 (*pp)++;
2146 fip -> list -> visibility = *(*pp)++;
2147 switch (fip -> list -> visibility)
2148 {
2149 case VISIBILITY_PRIVATE:
2150 case VISIBILITY_PROTECTED:
2151 break;
2152
2153 case VISIBILITY_PUBLIC:
2154 /* Nothing to do */
2155 break;
2156
2157 default:
2158 /* Unknown visibility specifier. */
2159 complain (&stabs_general_complaint,
2160 "unknown visibility specifier");
2161 return;
2162 break;
2163 }
2164 }
2165 else
2166 {
2167 /* normal dbx-style format, no explicit visibility */
2168 fip -> list -> visibility = VISIBILITY_PUBLIC;
2169 }
2170
2171 fip -> list -> field.type = read_type (pp, objfile);
2172 if (**pp == ':')
2173 {
2174 p = ++(*pp);
2175 #if 0
2176 /* Possible future hook for nested types. */
2177 if (**pp == '!')
2178 {
2179 fip -> list -> field.bitpos = (long)-2; /* nested type */
2180 p = ++(*pp);
2181 }
2182 else
2183 #endif
2184 {
2185 /* Static class member. */
2186 fip -> list -> field.bitpos = (long) -1;
2187 }
2188 while (*p != ';')
2189 {
2190 p++;
2191 }
2192 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2193 *pp = p + 1;
2194 return;
2195 }
2196 else if (**pp != ',')
2197 {
2198 /* Bad structure-type format. */
2199 complain (&stabs_general_complaint, "bad structure-type format");
2200 return;
2201 }
2202
2203 (*pp)++; /* Skip the comma. */
2204
2205 {
2206 int nbits;
2207 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2208 if (nbits != 0)
2209 {
2210 complain (&stabs_general_complaint, "bad structure-type format");
2211 return;
2212 }
2213 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2214 if (nbits != 0)
2215 {
2216 complain (&stabs_general_complaint, "bad structure-type format");
2217 return;
2218 }
2219 }
2220 #if 0
2221 /* FIXME-tiemann: Can't the compiler put out something which
2222 lets us distinguish these? (or maybe just not put out anything
2223 for the field). What is the story here? What does the compiler
2224 really do? Also, patch gdb.texinfo for this case; I document
2225 it as a possible problem there. Search for "DBX-style". */
2226
2227 /* This is wrong because this is identical to the symbols
2228 produced for GCC 0-size arrays. For example:
2229 typedef union {
2230 int num;
2231 char str[0];
2232 } foo;
2233 The code which dumped core in such circumstances should be
2234 fixed not to dump core. */
2235
2236 /* g++ -g0 can put out bitpos & bitsize zero for a static
2237 field. This does not give us any way of getting its
2238 class, so we can't know its name. But we can just
2239 ignore the field so we don't dump core and other nasty
2240 stuff. */
2241 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2242 {
2243 complain (&dbx_class_complaint);
2244 /* Ignore this field. */
2245 fip -> list = fip -> list -> next;
2246 }
2247 else
2248 #endif /* 0 */
2249 {
2250 /* Detect an unpacked field and mark it as such.
2251 dbx gives a bit size for all fields.
2252 Note that forward refs cannot be packed,
2253 and treat enums as if they had the width of ints. */
2254
2255 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2256 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2257 {
2258 fip -> list -> field.bitsize = 0;
2259 }
2260 if ((fip -> list -> field.bitsize
2261 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2262 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2263 && (fip -> list -> field.bitsize
2264 == TARGET_INT_BIT)
2265 )
2266 )
2267 &&
2268 fip -> list -> field.bitpos % 8 == 0)
2269 {
2270 fip -> list -> field.bitsize = 0;
2271 }
2272 }
2273 }
2274
2275
2276 /* Read struct or class data fields. They have the form:
2277
2278 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2279
2280 At the end, we see a semicolon instead of a field.
2281
2282 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2283 a static field.
2284
2285 The optional VISIBILITY is one of:
2286
2287 '/0' (VISIBILITY_PRIVATE)
2288 '/1' (VISIBILITY_PROTECTED)
2289 '/2' (VISIBILITY_PUBLIC)
2290
2291 or nothing, for C style fields with public visibility.
2292
2293 Returns 1 for success, 0 for failure. */
2294
2295 static int
2296 read_struct_fields (fip, pp, type, objfile)
2297 struct field_info *fip;
2298 char **pp;
2299 struct type *type;
2300 struct objfile *objfile;
2301 {
2302 register char *p;
2303 struct nextfield *new;
2304
2305 /* We better set p right now, in case there are no fields at all... */
2306
2307 p = *pp;
2308
2309 /* Read each data member type until we find the terminating ';' at the end of
2310 the data member list, or break for some other reason such as finding the
2311 start of the member function list. */
2312
2313 while (**pp != ';')
2314 {
2315 STABS_CONTINUE (pp);
2316 /* Get space to record the next field's data. */
2317 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2318 make_cleanup (free, new);
2319 memset (new, 0, sizeof (struct nextfield));
2320 new -> next = fip -> list;
2321 fip -> list = new;
2322
2323 /* Get the field name. */
2324 p = *pp;
2325 /* If is starts with CPLUS_MARKER it is a special abbreviation, unless
2326 the CPLUS_MARKER is followed by an underscore, in which case it is
2327 just the name of an anonymous type, which we should handle like any
2328 other type name. */
2329 if (*p == CPLUS_MARKER && p[1] != '_')
2330 {
2331 if (!read_cpp_abbrev (fip, pp, type, objfile))
2332 return 0;
2333 continue;
2334 }
2335
2336 /* Look for the ':' that separates the field name from the field
2337 values. Data members are delimited by a single ':', while member
2338 functions are delimited by a pair of ':'s. When we hit the member
2339 functions (if any), terminate scan loop and return. */
2340
2341 while (*p != ':' && *p != '\0')
2342 {
2343 p++;
2344 }
2345 if (*p == '\0')
2346 return 0;
2347
2348 /* Check to see if we have hit the member functions yet. */
2349 if (p[1] == ':')
2350 {
2351 break;
2352 }
2353 read_one_struct_field (fip, pp, p, type, objfile);
2354 }
2355 if (p[1] == ':')
2356 {
2357 /* chill the list of fields: the last entry (at the head) is a
2358 partially constructed entry which we now scrub. */
2359 fip -> list = fip -> list -> next;
2360 }
2361 return 1;
2362 }
2363
2364 /* The stabs for C++ derived classes contain baseclass information which
2365 is marked by a '!' character after the total size. This function is
2366 called when we encounter the baseclass marker, and slurps up all the
2367 baseclass information.
2368
2369 Immediately following the '!' marker is the number of base classes that
2370 the class is derived from, followed by information for each base class.
2371 For each base class, there are two visibility specifiers, a bit offset
2372 to the base class information within the derived class, a reference to
2373 the type for the base class, and a terminating semicolon.
2374
2375 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2376 ^^ ^ ^ ^ ^ ^ ^
2377 Baseclass information marker __________________|| | | | | | |
2378 Number of baseclasses __________________________| | | | | | |
2379 Visibility specifiers (2) ________________________| | | | | |
2380 Offset in bits from start of class _________________| | | | |
2381 Type number for base class ___________________________| | | |
2382 Visibility specifiers (2) _______________________________| | |
2383 Offset in bits from start of class ________________________| |
2384 Type number of base class ____________________________________|
2385
2386 Return 1 for success, 0 for (error-type-inducing) failure. */
2387
2388 static int
2389 read_baseclasses (fip, pp, type, objfile)
2390 struct field_info *fip;
2391 char **pp;
2392 struct type *type;
2393 struct objfile *objfile;
2394 {
2395 int i;
2396 struct nextfield *new;
2397
2398 if (**pp != '!')
2399 {
2400 return 1;
2401 }
2402 else
2403 {
2404 /* Skip the '!' baseclass information marker. */
2405 (*pp)++;
2406 }
2407
2408 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2409 {
2410 int nbits;
2411 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2412 if (nbits != 0)
2413 return 0;
2414 }
2415
2416 #if 0
2417 /* Some stupid compilers have trouble with the following, so break
2418 it up into simpler expressions. */
2419 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2420 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2421 #else
2422 {
2423 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2424 char *pointer;
2425
2426 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2427 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2428 }
2429 #endif /* 0 */
2430
2431 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2432
2433 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2434 {
2435 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2436 make_cleanup (free, new);
2437 memset (new, 0, sizeof (struct nextfield));
2438 new -> next = fip -> list;
2439 fip -> list = new;
2440 new -> field.bitsize = 0; /* this should be an unpacked field! */
2441
2442 STABS_CONTINUE (pp);
2443 switch (*(*pp)++)
2444 {
2445 case '0':
2446 /* Nothing to do. */
2447 break;
2448 case '1':
2449 SET_TYPE_FIELD_VIRTUAL (type, i);
2450 break;
2451 default:
2452 /* Bad visibility format. */
2453 return 0;
2454 }
2455
2456 new -> visibility = *(*pp)++;
2457 switch (new -> visibility)
2458 {
2459 case VISIBILITY_PRIVATE:
2460 case VISIBILITY_PROTECTED:
2461 case VISIBILITY_PUBLIC:
2462 break;
2463 default:
2464 /* Bad visibility format. */
2465 return 0;
2466 }
2467
2468 {
2469 int nbits;
2470
2471 /* The remaining value is the bit offset of the portion of the object
2472 corresponding to this baseclass. Always zero in the absence of
2473 multiple inheritance. */
2474
2475 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2476 if (nbits != 0)
2477 return 0;
2478 }
2479
2480 /* The last piece of baseclass information is the type of the
2481 base class. Read it, and remember it's type name as this
2482 field's name. */
2483
2484 new -> field.type = read_type (pp, objfile);
2485 new -> field.name = type_name_no_tag (new -> field.type);
2486
2487 /* skip trailing ';' and bump count of number of fields seen */
2488 if (**pp == ';')
2489 (*pp)++;
2490 else
2491 return 0;
2492 }
2493 return 1;
2494 }
2495
2496 /* The tail end of stabs for C++ classes that contain a virtual function
2497 pointer contains a tilde, a %, and a type number.
2498 The type number refers to the base class (possibly this class itself) which
2499 contains the vtable pointer for the current class.
2500
2501 This function is called when we have parsed all the method declarations,
2502 so we can look for the vptr base class info. */
2503
2504 static int
2505 read_tilde_fields (fip, pp, type, objfile)
2506 struct field_info *fip;
2507 char **pp;
2508 struct type *type;
2509 struct objfile *objfile;
2510 {
2511 register char *p;
2512
2513 STABS_CONTINUE (pp);
2514
2515 /* If we are positioned at a ';', then skip it. */
2516 if (**pp == ';')
2517 {
2518 (*pp)++;
2519 }
2520
2521 if (**pp == '~')
2522 {
2523 (*pp)++;
2524
2525 if (**pp == '=' || **pp == '+' || **pp == '-')
2526 {
2527 /* Obsolete flags that used to indicate the presence
2528 of constructors and/or destructors. */
2529 (*pp)++;
2530 }
2531
2532 /* Read either a '%' or the final ';'. */
2533 if (*(*pp)++ == '%')
2534 {
2535 /* The next number is the type number of the base class
2536 (possibly our own class) which supplies the vtable for
2537 this class. Parse it out, and search that class to find
2538 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2539 and TYPE_VPTR_FIELDNO. */
2540
2541 struct type *t;
2542 int i;
2543
2544 t = read_type (pp, objfile);
2545 p = (*pp)++;
2546 while (*p != '\0' && *p != ';')
2547 {
2548 p++;
2549 }
2550 if (*p == '\0')
2551 {
2552 /* Premature end of symbol. */
2553 return 0;
2554 }
2555
2556 TYPE_VPTR_BASETYPE (type) = t;
2557 if (type == t) /* Our own class provides vtbl ptr */
2558 {
2559 for (i = TYPE_NFIELDS (t) - 1;
2560 i >= TYPE_N_BASECLASSES (t);
2561 --i)
2562 {
2563 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2564 sizeof (vptr_name) - 1))
2565 {
2566 TYPE_VPTR_FIELDNO (type) = i;
2567 goto gotit;
2568 }
2569 }
2570 /* Virtual function table field not found. */
2571 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2572 return 0;
2573 }
2574 else
2575 {
2576 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2577 }
2578
2579 gotit:
2580 *pp = p + 1;
2581 }
2582 }
2583 return 1;
2584 }
2585
2586 static int
2587 attach_fn_fields_to_type (fip, type)
2588 struct field_info *fip;
2589 register struct type *type;
2590 {
2591 register int n;
2592
2593 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2594 {
2595 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2596 {
2597 /* @@ Memory leak on objfile -> type_obstack? */
2598 return 0;
2599 }
2600 TYPE_NFN_FIELDS_TOTAL (type) +=
2601 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2602 }
2603
2604 for (n = TYPE_NFN_FIELDS (type);
2605 fip -> fnlist != NULL;
2606 fip -> fnlist = fip -> fnlist -> next)
2607 {
2608 --n; /* Circumvent Sun3 compiler bug */
2609 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2610 }
2611 return 1;
2612 }
2613
2614 /* Create the vector of fields, and record how big it is.
2615 We need this info to record proper virtual function table information
2616 for this class's virtual functions. */
2617
2618 static int
2619 attach_fields_to_type (fip, type, objfile)
2620 struct field_info *fip;
2621 register struct type *type;
2622 struct objfile *objfile;
2623 {
2624 register int nfields = 0;
2625 register int non_public_fields = 0;
2626 register struct nextfield *scan;
2627
2628 /* Count up the number of fields that we have, as well as taking note of
2629 whether or not there are any non-public fields, which requires us to
2630 allocate and build the private_field_bits and protected_field_bits
2631 bitfields. */
2632
2633 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2634 {
2635 nfields++;
2636 if (scan -> visibility != VISIBILITY_PUBLIC)
2637 {
2638 non_public_fields++;
2639 }
2640 }
2641
2642 /* Now we know how many fields there are, and whether or not there are any
2643 non-public fields. Record the field count, allocate space for the
2644 array of fields, and create blank visibility bitfields if necessary. */
2645
2646 TYPE_NFIELDS (type) = nfields;
2647 TYPE_FIELDS (type) = (struct field *)
2648 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2649 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2650
2651 if (non_public_fields)
2652 {
2653 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2654
2655 TYPE_FIELD_PRIVATE_BITS (type) =
2656 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2657 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2658
2659 TYPE_FIELD_PROTECTED_BITS (type) =
2660 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2661 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2662 }
2663
2664 /* Copy the saved-up fields into the field vector. Start from the head
2665 of the list, adding to the tail of the field array, so that they end
2666 up in the same order in the array in which they were added to the list. */
2667
2668 while (nfields-- > 0)
2669 {
2670 TYPE_FIELD (type, nfields) = fip -> list -> field;
2671 switch (fip -> list -> visibility)
2672 {
2673 case VISIBILITY_PRIVATE:
2674 SET_TYPE_FIELD_PRIVATE (type, nfields);
2675 break;
2676
2677 case VISIBILITY_PROTECTED:
2678 SET_TYPE_FIELD_PROTECTED (type, nfields);
2679 break;
2680
2681 case VISIBILITY_PUBLIC:
2682 break;
2683
2684 default:
2685 /* Should warn about this unknown visibility? */
2686 break;
2687 }
2688 fip -> list = fip -> list -> next;
2689 }
2690 return 1;
2691 }
2692
2693 /* Read the description of a structure (or union type) and return an object
2694 describing the type.
2695
2696 PP points to a character pointer that points to the next unconsumed token
2697 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2698 *PP will point to "4a:1,0,32;;".
2699
2700 TYPE points to an incomplete type that needs to be filled in.
2701
2702 OBJFILE points to the current objfile from which the stabs information is
2703 being read. (Note that it is redundant in that TYPE also contains a pointer
2704 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2705 */
2706
2707 static struct type *
2708 read_struct_type (pp, type, objfile)
2709 char **pp;
2710 struct type *type;
2711 struct objfile *objfile;
2712 {
2713 struct cleanup *back_to;
2714 struct field_info fi;
2715
2716 fi.list = NULL;
2717 fi.fnlist = NULL;
2718
2719 back_to = make_cleanup (null_cleanup, 0);
2720
2721 INIT_CPLUS_SPECIFIC (type);
2722 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2723
2724 /* First comes the total size in bytes. */
2725
2726 {
2727 int nbits;
2728 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2729 if (nbits != 0)
2730 return error_type (pp);
2731 }
2732
2733 /* Now read the baseclasses, if any, read the regular C struct or C++
2734 class member fields, attach the fields to the type, read the C++
2735 member functions, attach them to the type, and then read any tilde
2736 field (baseclass specifier for the class holding the main vtable). */
2737
2738 if (!read_baseclasses (&fi, pp, type, objfile)
2739 || !read_struct_fields (&fi, pp, type, objfile)
2740 || !attach_fields_to_type (&fi, type, objfile)
2741 || !read_member_functions (&fi, pp, type, objfile)
2742 || !attach_fn_fields_to_type (&fi, type)
2743 || !read_tilde_fields (&fi, pp, type, objfile))
2744 {
2745 do_cleanups (back_to);
2746 return (error_type (pp));
2747 }
2748
2749 do_cleanups (back_to);
2750 return (type);
2751 }
2752
2753 /* Read a definition of an array type,
2754 and create and return a suitable type object.
2755 Also creates a range type which represents the bounds of that
2756 array. */
2757
2758 static struct type *
2759 read_array_type (pp, type, objfile)
2760 register char **pp;
2761 register struct type *type;
2762 struct objfile *objfile;
2763 {
2764 struct type *index_type, *element_type, *range_type;
2765 int lower, upper;
2766 int adjustable = 0;
2767 int nbits;
2768
2769 /* Format of an array type:
2770 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2771 to handle this.
2772
2773 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2774 for these, produce a type like float[][]. */
2775
2776 index_type = read_type (pp, objfile);
2777 if (**pp != ';')
2778 /* Improper format of array type decl. */
2779 return error_type (pp);
2780 ++*pp;
2781
2782 if (!(**pp >= '0' && **pp <= '9'))
2783 {
2784 (*pp)++;
2785 adjustable = 1;
2786 }
2787 lower = read_huge_number (pp, ';', &nbits);
2788 if (nbits != 0)
2789 return error_type (pp);
2790
2791 if (!(**pp >= '0' && **pp <= '9'))
2792 {
2793 (*pp)++;
2794 adjustable = 1;
2795 }
2796 upper = read_huge_number (pp, ';', &nbits);
2797 if (nbits != 0)
2798 return error_type (pp);
2799
2800 element_type = read_type (pp, objfile);
2801
2802 if (adjustable)
2803 {
2804 lower = 0;
2805 upper = -1;
2806 }
2807
2808 range_type =
2809 create_range_type ((struct type *) NULL, index_type, lower, upper);
2810 type = create_array_type (type, element_type, range_type);
2811
2812 /* If we have an array whose element type is not yet known, but whose
2813 bounds *are* known, record it to be adjusted at the end of the file. */
2814
2815 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2816 {
2817 add_undefined_type (type);
2818 }
2819
2820 return type;
2821 }
2822
2823
2824 /* Read a definition of an enumeration type,
2825 and create and return a suitable type object.
2826 Also defines the symbols that represent the values of the type. */
2827
2828 static struct type *
2829 read_enum_type (pp, type, objfile)
2830 register char **pp;
2831 register struct type *type;
2832 struct objfile *objfile;
2833 {
2834 register char *p;
2835 char *name;
2836 register long n;
2837 register struct symbol *sym;
2838 int nsyms = 0;
2839 struct pending **symlist;
2840 struct pending *osyms, *syms;
2841 int o_nsyms;
2842
2843 #if 0
2844 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2845 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2846 to do? For now, force all enum values to file scope. */
2847 if (within_function)
2848 symlist = &local_symbols;
2849 else
2850 #endif
2851 symlist = &file_symbols;
2852 osyms = *symlist;
2853 o_nsyms = osyms ? osyms->nsyms : 0;
2854
2855 /* Read the value-names and their values.
2856 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2857 A semicolon or comma instead of a NAME means the end. */
2858 while (**pp && **pp != ';' && **pp != ',')
2859 {
2860 int nbits;
2861 STABS_CONTINUE (pp);
2862 p = *pp;
2863 while (*p != ':') p++;
2864 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2865 *pp = p + 1;
2866 n = read_huge_number (pp, ',', &nbits);
2867 if (nbits != 0)
2868 return error_type (pp);
2869
2870 sym = (struct symbol *)
2871 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2872 memset (sym, 0, sizeof (struct symbol));
2873 SYMBOL_NAME (sym) = name;
2874 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2875 SYMBOL_CLASS (sym) = LOC_CONST;
2876 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2877 SYMBOL_VALUE (sym) = n;
2878 add_symbol_to_list (sym, symlist);
2879 nsyms++;
2880 }
2881
2882 if (**pp == ';')
2883 (*pp)++; /* Skip the semicolon. */
2884
2885 /* Now fill in the fields of the type-structure. */
2886
2887 TYPE_LENGTH (type) = sizeof (int);
2888 TYPE_CODE (type) = TYPE_CODE_ENUM;
2889 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2890 TYPE_NFIELDS (type) = nsyms;
2891 TYPE_FIELDS (type) = (struct field *)
2892 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2893 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2894
2895 /* Find the symbols for the values and put them into the type.
2896 The symbols can be found in the symlist that we put them on
2897 to cause them to be defined. osyms contains the old value
2898 of that symlist; everything up to there was defined by us. */
2899 /* Note that we preserve the order of the enum constants, so
2900 that in something like "enum {FOO, LAST_THING=FOO}" we print
2901 FOO, not LAST_THING. */
2902
2903 for (syms = *symlist, n = 0; syms; syms = syms->next)
2904 {
2905 int j = 0;
2906 if (syms == osyms)
2907 j = o_nsyms;
2908 for (; j < syms->nsyms; j++,n++)
2909 {
2910 struct symbol *xsym = syms->symbol[j];
2911 SYMBOL_TYPE (xsym) = type;
2912 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2913 TYPE_FIELD_VALUE (type, n) = 0;
2914 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2915 TYPE_FIELD_BITSIZE (type, n) = 0;
2916 }
2917 if (syms == osyms)
2918 break;
2919 }
2920
2921 #if 0
2922 /* This screws up perfectly good C programs with enums. FIXME. */
2923 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2924 if(TYPE_NFIELDS(type) == 2 &&
2925 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2926 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2927 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2928 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2929 TYPE_CODE(type) = TYPE_CODE_BOOL;
2930 #endif
2931
2932 return type;
2933 }
2934
2935 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2936 typedefs in every file (for int, long, etc):
2937
2938 type = b <signed> <width>; <offset>; <nbits>
2939 signed = u or s. Possible c in addition to u or s (for char?).
2940 offset = offset from high order bit to start bit of type.
2941 width is # bytes in object of this type, nbits is # bits in type.
2942
2943 The width/offset stuff appears to be for small objects stored in
2944 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2945 FIXME. */
2946
2947 static struct type *
2948 read_sun_builtin_type (pp, typenums, objfile)
2949 char **pp;
2950 int typenums[2];
2951 struct objfile *objfile;
2952 {
2953 int type_bits;
2954 int nbits;
2955 int signed_type;
2956
2957 switch (**pp)
2958 {
2959 case 's':
2960 signed_type = 1;
2961 break;
2962 case 'u':
2963 signed_type = 0;
2964 break;
2965 default:
2966 return error_type (pp);
2967 }
2968 (*pp)++;
2969
2970 /* For some odd reason, all forms of char put a c here. This is strange
2971 because no other type has this honor. We can safely ignore this because
2972 we actually determine 'char'acterness by the number of bits specified in
2973 the descriptor. */
2974
2975 if (**pp == 'c')
2976 (*pp)++;
2977
2978 /* The first number appears to be the number of bytes occupied
2979 by this type, except that unsigned short is 4 instead of 2.
2980 Since this information is redundant with the third number,
2981 we will ignore it. */
2982 read_huge_number (pp, ';', &nbits);
2983 if (nbits != 0)
2984 return error_type (pp);
2985
2986 /* The second number is always 0, so ignore it too. */
2987 read_huge_number (pp, ';', &nbits);
2988 if (nbits != 0)
2989 return error_type (pp);
2990
2991 /* The third number is the number of bits for this type. */
2992 type_bits = read_huge_number (pp, 0, &nbits);
2993 if (nbits != 0)
2994 return error_type (pp);
2995
2996 #if 0
2997 /* FIXME. Here we should just be able to make a type of the right
2998 number of bits and signedness. FIXME. */
2999
3000 if (type_bits == TARGET_LONG_LONG_BIT)
3001 return (lookup_fundamental_type (objfile,
3002 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
3003
3004 if (type_bits == TARGET_INT_BIT)
3005 {
3006 /* FIXME -- the only way to distinguish `int' from `long'
3007 is to look at its name! */
3008 if (signed_type)
3009 {
3010 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3011 return lookup_fundamental_type (objfile, FT_LONG);
3012 else
3013 return lookup_fundamental_type (objfile, FT_INTEGER);
3014 }
3015 else
3016 {
3017 if (long_kludge_name
3018 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3019 long_kludge_name[9] == 'l' /* long */)
3020 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3021 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
3022 else
3023 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
3024 }
3025 }
3026
3027 if (type_bits == TARGET_SHORT_BIT)
3028 return (lookup_fundamental_type (objfile,
3029 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
3030
3031 if (type_bits == TARGET_CHAR_BIT)
3032 return (lookup_fundamental_type (objfile,
3033 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
3034
3035 if (type_bits == 0)
3036 return lookup_fundamental_type (objfile, FT_VOID);
3037
3038 return error_type (pp);
3039 #else
3040 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3041 type_bits / TARGET_CHAR_BIT,
3042 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3043 objfile);
3044 #endif
3045 }
3046
3047 static struct type *
3048 read_sun_floating_type (pp, typenums, objfile)
3049 char **pp;
3050 int typenums[2];
3051 struct objfile *objfile;
3052 {
3053 int nbits;
3054 int details;
3055 int nbytes;
3056
3057 /* The first number has more details about the type, for example
3058 FN_COMPLEX. */
3059 details = read_huge_number (pp, ';', &nbits);
3060 if (nbits != 0)
3061 return error_type (pp);
3062
3063 /* The second number is the number of bytes occupied by this type */
3064 nbytes = read_huge_number (pp, ';', &nbits);
3065 if (nbits != 0)
3066 return error_type (pp);
3067
3068 if (details == NF_COMPLEX || details == NF_COMPLEX16
3069 || details == NF_COMPLEX32)
3070 /* This is a type we can't handle, but we do know the size.
3071 We also will be able to give it a name. */
3072 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3073
3074 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3075 }
3076
3077 /* Read a number from the string pointed to by *PP.
3078 The value of *PP is advanced over the number.
3079 If END is nonzero, the character that ends the
3080 number must match END, or an error happens;
3081 and that character is skipped if it does match.
3082 If END is zero, *PP is left pointing to that character.
3083
3084 If the number fits in a long, set *BITS to 0 and return the value.
3085 If not, set *BITS to be the number of bits in the number and return 0.
3086
3087 If encounter garbage, set *BITS to -1 and return 0. */
3088
3089 static long
3090 read_huge_number (pp, end, bits)
3091 char **pp;
3092 int end;
3093 int *bits;
3094 {
3095 char *p = *pp;
3096 int sign = 1;
3097 long n = 0;
3098 int radix = 10;
3099 char overflow = 0;
3100 int nbits = 0;
3101 int c;
3102 long upper_limit;
3103
3104 if (*p == '-')
3105 {
3106 sign = -1;
3107 p++;
3108 }
3109
3110 /* Leading zero means octal. GCC uses this to output values larger
3111 than an int (because that would be hard in decimal). */
3112 if (*p == '0')
3113 {
3114 radix = 8;
3115 p++;
3116 }
3117
3118 upper_limit = LONG_MAX / radix;
3119 while ((c = *p++) >= '0' && c < ('0' + radix))
3120 {
3121 if (n <= upper_limit)
3122 {
3123 n *= radix;
3124 n += c - '0'; /* FIXME this overflows anyway */
3125 }
3126 else
3127 overflow = 1;
3128
3129 /* This depends on large values being output in octal, which is
3130 what GCC does. */
3131 if (radix == 8)
3132 {
3133 if (nbits == 0)
3134 {
3135 if (c == '0')
3136 /* Ignore leading zeroes. */
3137 ;
3138 else if (c == '1')
3139 nbits = 1;
3140 else if (c == '2' || c == '3')
3141 nbits = 2;
3142 else
3143 nbits = 3;
3144 }
3145 else
3146 nbits += 3;
3147 }
3148 }
3149 if (end)
3150 {
3151 if (c && c != end)
3152 {
3153 if (bits != NULL)
3154 *bits = -1;
3155 return 0;
3156 }
3157 }
3158 else
3159 --p;
3160
3161 *pp = p;
3162 if (overflow)
3163 {
3164 if (nbits == 0)
3165 {
3166 /* Large decimal constants are an error (because it is hard to
3167 count how many bits are in them). */
3168 if (bits != NULL)
3169 *bits = -1;
3170 return 0;
3171 }
3172
3173 /* -0x7f is the same as 0x80. So deal with it by adding one to
3174 the number of bits. */
3175 if (sign == -1)
3176 ++nbits;
3177 if (bits)
3178 *bits = nbits;
3179 }
3180 else
3181 {
3182 if (bits)
3183 *bits = 0;
3184 return n * sign;
3185 }
3186 /* It's *BITS which has the interesting information. */
3187 return 0;
3188 }
3189
3190 static struct type *
3191 read_range_type (pp, typenums, objfile)
3192 char **pp;
3193 int typenums[2];
3194 struct objfile *objfile;
3195 {
3196 int rangenums[2];
3197 long n2, n3;
3198 int n2bits, n3bits;
3199 int self_subrange;
3200 struct type *result_type;
3201 struct type *index_type;
3202
3203 /* First comes a type we are a subrange of.
3204 In C it is usually 0, 1 or the type being defined. */
3205 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3206 not just a type number. */
3207 if (read_type_number (pp, rangenums) != 0)
3208 return error_type (pp);
3209 self_subrange = (rangenums[0] == typenums[0] &&
3210 rangenums[1] == typenums[1]);
3211
3212 /* A semicolon should now follow; skip it. */
3213 if (**pp == ';')
3214 (*pp)++;
3215
3216 /* The remaining two operands are usually lower and upper bounds
3217 of the range. But in some special cases they mean something else. */
3218 n2 = read_huge_number (pp, ';', &n2bits);
3219 n3 = read_huge_number (pp, ';', &n3bits);
3220
3221 if (n2bits == -1 || n3bits == -1)
3222 return error_type (pp);
3223
3224 /* If limits are huge, must be large integral type. */
3225 if (n2bits != 0 || n3bits != 0)
3226 {
3227 char got_signed = 0;
3228 char got_unsigned = 0;
3229 /* Number of bits in the type. */
3230 int nbits = 0;
3231
3232 /* Range from 0 to <large number> is an unsigned large integral type. */
3233 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3234 {
3235 got_unsigned = 1;
3236 nbits = n3bits;
3237 }
3238 /* Range from <large number> to <large number>-1 is a large signed
3239 integral type. Take care of the case where <large number> doesn't
3240 fit in a long but <large number>-1 does. */
3241 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3242 || (n2bits != 0 && n3bits == 0
3243 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3244 && n3 == LONG_MAX))
3245 {
3246 got_signed = 1;
3247 nbits = n2bits;
3248 }
3249
3250 if (got_signed || got_unsigned)
3251 {
3252 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3253 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3254 objfile);
3255 }
3256 else
3257 return error_type (pp);
3258 }
3259
3260 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3261 if (self_subrange && n2 == 0 && n3 == 0)
3262 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3263
3264 /* If n3 is zero and n2 is not, we want a floating type,
3265 and n2 is the width in bytes.
3266
3267 Fortran programs appear to use this for complex types also,
3268 and they give no way to distinguish between double and single-complex!
3269
3270 GDB does not have complex types.
3271
3272 Just return the complex as a float of that size. It won't work right
3273 for the complex values, but at least it makes the file loadable. */
3274
3275 if (n3 == 0 && n2 > 0)
3276 {
3277 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3278 }
3279
3280 /* If the upper bound is -1, it must really be an unsigned int. */
3281
3282 else if (n2 == 0 && n3 == -1)
3283 {
3284 /* It is unsigned int or unsigned long. */
3285 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3286 compatibility hack. */
3287 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3288 TYPE_FLAG_UNSIGNED, NULL, objfile);
3289 }
3290
3291 /* Special case: char is defined (Who knows why) as a subrange of
3292 itself with range 0-127. */
3293 else if (self_subrange && n2 == 0 && n3 == 127)
3294 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3295
3296 /* We used to do this only for subrange of self or subrange of int. */
3297 else if (n2 == 0)
3298 {
3299 if (n3 < 0)
3300 /* n3 actually gives the size. */
3301 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3302 NULL, objfile);
3303 if (n3 == 0xff)
3304 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3305 if (n3 == 0xffff)
3306 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3307
3308 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3309 "unsigned long", and we already checked for that,
3310 so don't need to test for it here. */
3311 }
3312 /* I think this is for Convex "long long". Since I don't know whether
3313 Convex sets self_subrange, I also accept that particular size regardless
3314 of self_subrange. */
3315 else if (n3 == 0 && n2 < 0
3316 && (self_subrange
3317 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3318 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3319 else if (n2 == -n3 -1)
3320 {
3321 if (n3 == 0x7f)
3322 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3323 if (n3 == 0x7fff)
3324 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3325 if (n3 == 0x7fffffff)
3326 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3327 }
3328
3329 /* We have a real range type on our hands. Allocate space and
3330 return a real pointer. */
3331
3332 /* At this point I don't have the faintest idea how to deal with
3333 a self_subrange type; I'm going to assume that this is used
3334 as an idiom, and that all of them are special cases. So . . . */
3335 if (self_subrange)
3336 return error_type (pp);
3337
3338 index_type = *dbx_lookup_type (rangenums);
3339 if (index_type == NULL)
3340 {
3341 /* Does this actually ever happen? Is that why we are worrying
3342 about dealing with it rather than just calling error_type? */
3343
3344 static struct type *range_type_index;
3345
3346 complain (&range_type_base_complaint, rangenums[1]);
3347 if (range_type_index == NULL)
3348 range_type_index =
3349 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3350 0, "range type index type", NULL);
3351 index_type = range_type_index;
3352 }
3353
3354 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3355 return (result_type);
3356 }
3357
3358 /* Read in an argument list. This is a list of types, separated by commas
3359 and terminated with END. Return the list of types read in, or (struct type
3360 **)-1 if there is an error. */
3361
3362 static struct type **
3363 read_args (pp, end, objfile)
3364 char **pp;
3365 int end;
3366 struct objfile *objfile;
3367 {
3368 /* FIXME! Remove this arbitrary limit! */
3369 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3370 int n = 0;
3371
3372 while (**pp != end)
3373 {
3374 if (**pp != ',')
3375 /* Invalid argument list: no ','. */
3376 return (struct type **)-1;
3377 (*pp)++;
3378 STABS_CONTINUE (pp);
3379 types[n++] = read_type (pp, objfile);
3380 }
3381 (*pp)++; /* get past `end' (the ':' character) */
3382
3383 if (n == 1)
3384 {
3385 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3386 }
3387 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3388 {
3389 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3390 memset (rval + n, 0, sizeof (struct type *));
3391 }
3392 else
3393 {
3394 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3395 }
3396 memcpy (rval, types, n * sizeof (struct type *));
3397 return rval;
3398 }
3399 \f
3400 /* Common block handling. */
3401
3402 /* List of symbols declared since the last BCOMM. This list is a tail
3403 of local_symbols. When ECOMM is seen, the symbols on the list
3404 are noted so their proper addresses can be filled in later,
3405 using the common block base address gotten from the assembler
3406 stabs. */
3407
3408 static struct pending *common_block;
3409 static int common_block_i;
3410
3411 /* Name of the current common block. We get it from the BCOMM instead of the
3412 ECOMM to match IBM documentation (even though IBM puts the name both places
3413 like everyone else). */
3414 static char *common_block_name;
3415
3416 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3417 to remain after this function returns. */
3418
3419 void
3420 common_block_start (name, objfile)
3421 char *name;
3422 struct objfile *objfile;
3423 {
3424 if (common_block_name != NULL)
3425 {
3426 static struct complaint msg = {
3427 "Invalid symbol data: common block within common block",
3428 0, 0};
3429 complain (&msg);
3430 }
3431 common_block = local_symbols;
3432 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3433 common_block_name = obsavestring (name, strlen (name),
3434 &objfile -> symbol_obstack);
3435 }
3436
3437 /* Process a N_ECOMM symbol. */
3438
3439 void
3440 common_block_end (objfile)
3441 struct objfile *objfile;
3442 {
3443 /* Symbols declared since the BCOMM are to have the common block
3444 start address added in when we know it. common_block and
3445 common_block_i point to the first symbol after the BCOMM in
3446 the local_symbols list; copy the list and hang it off the
3447 symbol for the common block name for later fixup. */
3448 int i;
3449 struct symbol *sym;
3450 struct pending *new = 0;
3451 struct pending *next;
3452 int j;
3453
3454 if (common_block_name == NULL)
3455 {
3456 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3457 complain (&msg);
3458 return;
3459 }
3460
3461 sym = (struct symbol *)
3462 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3463 memset (sym, 0, sizeof (struct symbol));
3464 SYMBOL_NAME (sym) = common_block_name;
3465 SYMBOL_CLASS (sym) = LOC_BLOCK;
3466
3467 /* Now we copy all the symbols which have been defined since the BCOMM. */
3468
3469 /* Copy all the struct pendings before common_block. */
3470 for (next = local_symbols;
3471 next != NULL && next != common_block;
3472 next = next->next)
3473 {
3474 for (j = 0; j < next->nsyms; j++)
3475 add_symbol_to_list (next->symbol[j], &new);
3476 }
3477
3478 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3479 NULL, it means copy all the local symbols (which we already did
3480 above). */
3481
3482 if (common_block != NULL)
3483 for (j = common_block_i; j < common_block->nsyms; j++)
3484 add_symbol_to_list (common_block->symbol[j], &new);
3485
3486 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3487
3488 /* Should we be putting local_symbols back to what it was?
3489 Does it matter? */
3490
3491 i = hashname (SYMBOL_NAME (sym));
3492 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3493 global_sym_chain[i] = sym;
3494 common_block_name = NULL;
3495 }
3496
3497 /* Add a common block's start address to the offset of each symbol
3498 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3499 the common block name). */
3500
3501 static void
3502 fix_common_block (sym, valu)
3503 struct symbol *sym;
3504 int valu;
3505 {
3506 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3507 for ( ; next; next = next->next)
3508 {
3509 register int j;
3510 for (j = next->nsyms - 1; j >= 0; j--)
3511 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3512 }
3513 }
3514
3515
3516 \f
3517 /* What about types defined as forward references inside of a small lexical
3518 scope? */
3519 /* Add a type to the list of undefined types to be checked through
3520 once this file has been read in. */
3521
3522 void
3523 add_undefined_type (type)
3524 struct type *type;
3525 {
3526 if (undef_types_length == undef_types_allocated)
3527 {
3528 undef_types_allocated *= 2;
3529 undef_types = (struct type **)
3530 xrealloc ((char *) undef_types,
3531 undef_types_allocated * sizeof (struct type *));
3532 }
3533 undef_types[undef_types_length++] = type;
3534 }
3535
3536 /* Go through each undefined type, see if it's still undefined, and fix it
3537 up if possible. We have two kinds of undefined types:
3538
3539 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3540 Fix: update array length using the element bounds
3541 and the target type's length.
3542 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3543 yet defined at the time a pointer to it was made.
3544 Fix: Do a full lookup on the struct/union tag. */
3545 void
3546 cleanup_undefined_types ()
3547 {
3548 struct type **type;
3549
3550 for (type = undef_types; type < undef_types + undef_types_length; type++)
3551 {
3552 switch (TYPE_CODE (*type))
3553 {
3554
3555 case TYPE_CODE_STRUCT:
3556 case TYPE_CODE_UNION:
3557 case TYPE_CODE_ENUM:
3558 {
3559 /* Check if it has been defined since. */
3560 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3561 {
3562 struct pending *ppt;
3563 int i;
3564 /* Name of the type, without "struct" or "union" */
3565 char *typename = TYPE_TAG_NAME (*type);
3566
3567 if (typename == NULL)
3568 {
3569 static struct complaint msg = {"need a type name", 0, 0};
3570 complain (&msg);
3571 break;
3572 }
3573 for (ppt = file_symbols; ppt; ppt = ppt->next)
3574 {
3575 for (i = 0; i < ppt->nsyms; i++)
3576 {
3577 struct symbol *sym = ppt->symbol[i];
3578
3579 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3580 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3581 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3582 TYPE_CODE (*type))
3583 && STREQ (SYMBOL_NAME (sym), typename))
3584 {
3585 memcpy (*type, SYMBOL_TYPE (sym),
3586 sizeof (struct type));
3587 }
3588 }
3589 }
3590 }
3591 }
3592 break;
3593
3594 case TYPE_CODE_ARRAY:
3595 {
3596 struct type *range_type;
3597 int lower, upper;
3598
3599 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3600 goto badtype;
3601 if (TYPE_NFIELDS (*type) != 1)
3602 goto badtype;
3603 range_type = TYPE_FIELD_TYPE (*type, 0);
3604 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3605 goto badtype;
3606
3607 /* Now recompute the length of the array type, based on its
3608 number of elements and the target type's length. */
3609 lower = TYPE_FIELD_BITPOS (range_type, 0);
3610 upper = TYPE_FIELD_BITPOS (range_type, 1);
3611 TYPE_LENGTH (*type) = (upper - lower + 1)
3612 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3613 }
3614 break;
3615
3616 default:
3617 badtype:
3618 {
3619 static struct complaint msg = {"\
3620 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3621 complain (&msg, TYPE_CODE (*type));
3622 }
3623 break;
3624 }
3625 }
3626 undef_types_length = 0;
3627 }
3628
3629 /* Scan through all of the global symbols defined in the object file,
3630 assigning values to the debugging symbols that need to be assigned
3631 to. Get these symbols from the minimal symbol table. */
3632
3633 void
3634 scan_file_globals (objfile)
3635 struct objfile *objfile;
3636 {
3637 int hash;
3638 struct minimal_symbol *msymbol;
3639 struct symbol *sym, *prev;
3640
3641 if (objfile->msymbols == 0) /* Beware the null file. */
3642 return;
3643
3644 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3645 {
3646 QUIT;
3647
3648 prev = NULL;
3649
3650 /* Get the hash index and check all the symbols
3651 under that hash index. */
3652
3653 hash = hashname (SYMBOL_NAME (msymbol));
3654
3655 for (sym = global_sym_chain[hash]; sym;)
3656 {
3657 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3658 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3659 {
3660 /* Splice this symbol out of the hash chain and
3661 assign the value we have to it. */
3662 if (prev)
3663 {
3664 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3665 }
3666 else
3667 {
3668 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3669 }
3670
3671 /* Check to see whether we need to fix up a common block. */
3672 /* Note: this code might be executed several times for
3673 the same symbol if there are multiple references. */
3674
3675 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3676 {
3677 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3678 }
3679 else
3680 {
3681 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3682 }
3683
3684 if (prev)
3685 {
3686 sym = SYMBOL_VALUE_CHAIN (prev);
3687 }
3688 else
3689 {
3690 sym = global_sym_chain[hash];
3691 }
3692 }
3693 else
3694 {
3695 prev = sym;
3696 sym = SYMBOL_VALUE_CHAIN (sym);
3697 }
3698 }
3699 }
3700 }
3701
3702 /* Initialize anything that needs initializing when starting to read
3703 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3704 to a psymtab. */
3705
3706 void
3707 stabsread_init ()
3708 {
3709 }
3710
3711 /* Initialize anything that needs initializing when a completely new
3712 symbol file is specified (not just adding some symbols from another
3713 file, e.g. a shared library). */
3714
3715 void
3716 stabsread_new_init ()
3717 {
3718 /* Empty the hash table of global syms looking for values. */
3719 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3720 }
3721
3722 /* Initialize anything that needs initializing at the same time as
3723 start_symtab() is called. */
3724
3725 void start_stabs ()
3726 {
3727 global_stabs = NULL; /* AIX COFF */
3728 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3729 n_this_object_header_files = 1;
3730 type_vector_length = 0;
3731 type_vector = (struct type **) 0;
3732
3733 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3734 common_block_name = NULL;
3735 }
3736
3737 /* Call after end_symtab() */
3738
3739 void end_stabs ()
3740 {
3741 if (type_vector)
3742 {
3743 free ((char *) type_vector);
3744 }
3745 type_vector = 0;
3746 type_vector_length = 0;
3747 previous_stab_code = 0;
3748 }
3749
3750 void
3751 finish_global_stabs (objfile)
3752 struct objfile *objfile;
3753 {
3754 if (global_stabs)
3755 {
3756 patch_block_stabs (global_symbols, global_stabs, objfile);
3757 free ((PTR) global_stabs);
3758 global_stabs = NULL;
3759 }
3760 }
3761
3762 /* Initializer for this module */
3763
3764 void
3765 _initialize_stabsread ()
3766 {
3767 undef_types_allocated = 20;
3768 undef_types_length = 0;
3769 undef_types = (struct type **)
3770 xmalloc (undef_types_allocated * sizeof (struct type *));
3771 }
This page took 0.112105 seconds and 4 git commands to generate.