2011-02-26 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number "
237 "(%d,%d) out of range at symtab pos %d."),
238 filenum, index, symnum);
239 goto error_return;
240 }
241
242 if (filenum == 0)
243 {
244 if (index < 0)
245 {
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type *temp_type;
252
253 temp_type = rs6000_builtin_type (index, objfile);
254 return &temp_type;
255 }
256
257 /* Type is defined outside of header files.
258 Find it in this object file's type vector. */
259 if (index >= type_vector_length)
260 {
261 old_len = type_vector_length;
262 if (old_len == 0)
263 {
264 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 type_vector = (struct type **)
266 xmalloc (type_vector_length * sizeof (struct type *));
267 }
268 while (index >= type_vector_length)
269 {
270 type_vector_length *= 2;
271 }
272 type_vector = (struct type **)
273 xrealloc ((char *) type_vector,
274 (type_vector_length * sizeof (struct type *)));
275 memset (&type_vector[old_len], 0,
276 (type_vector_length - old_len) * sizeof (struct type *));
277 }
278 return (&type_vector[index]);
279 }
280 else
281 {
282 real_filenum = this_object_header_files[filenum];
283
284 if (real_filenum >= N_HEADER_FILES (objfile))
285 {
286 static struct type *temp_type;
287
288 warning (_("GDB internal error: bad real_filenum"));
289
290 error_return:
291 temp_type = objfile_type (objfile)->builtin_error;
292 return &temp_type;
293 }
294
295 f = HEADER_FILES (objfile) + real_filenum;
296
297 f_orig_length = f->length;
298 if (index >= f_orig_length)
299 {
300 while (index >= f->length)
301 {
302 f->length *= 2;
303 }
304 f->vector = (struct type **)
305 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
306 memset (&f->vector[f_orig_length], 0,
307 (f->length - f_orig_length) * sizeof (struct type *));
308 }
309 return (&f->vector[index]);
310 }
311 }
312
313 /* Make sure there is a type allocated for type numbers TYPENUMS
314 and return the type object.
315 This can create an empty (zeroed) type object.
316 TYPENUMS may be (-1, -1) to return a new type object that is not
317 put into the type vector, and so may not be referred to by number. */
318
319 static struct type *
320 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 {
322 struct type **type_addr;
323
324 if (typenums[0] == -1)
325 {
326 return (alloc_type (objfile));
327 }
328
329 type_addr = dbx_lookup_type (typenums, objfile);
330
331 /* If we are referring to a type not known at all yet,
332 allocate an empty type for it.
333 We will fill it in later if we find out how. */
334 if (*type_addr == 0)
335 {
336 *type_addr = alloc_type (objfile);
337 }
338
339 return (*type_addr);
340 }
341
342 /* for all the stabs in a given stab vector, build appropriate types
343 and fix their symbols in given symbol vector. */
344
345 static void
346 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
347 struct objfile *objfile)
348 {
349 int ii;
350 char *name;
351 char *pp;
352 struct symbol *sym;
353
354 if (stabs)
355 {
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438
439 if (**pp == '(')
440 {
441 (*pp)++;
442 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
443 if (nbits != 0)
444 return -1;
445 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
446 if (nbits != 0)
447 return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 }
456 return 0;
457 }
458 \f
459
460 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
461 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
462 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
463 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464
465 /* Structure for storing pointers to reference definitions for fast lookup
466 during "process_later". */
467
468 struct ref_map
469 {
470 char *stabs;
471 CORE_ADDR value;
472 struct symbol *sym;
473 };
474
475 #define MAX_CHUNK_REFS 100
476 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478
479 static struct ref_map *ref_map;
480
481 /* Ptr to free cell in chunk's linked list. */
482 static int ref_count = 0;
483
484 /* Number of chunks malloced. */
485 static int ref_chunk = 0;
486
487 /* This file maintains a cache of stabs aliases found in the symbol
488 table. If the symbol table changes, this cache must be cleared
489 or we are left holding onto data in invalid obstacks. */
490 void
491 stabsread_clear_cache (void)
492 {
493 ref_count = 0;
494 ref_chunk = 0;
495 }
496
497 /* Create array of pointers mapping refids to symbols and stab strings.
498 Add pointers to reference definition symbols and/or their values as we
499 find them, using their reference numbers as our index.
500 These will be used later when we resolve references. */
501 void
502 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
503 {
504 if (ref_count == 0)
505 ref_chunk = 0;
506 if (refnum >= ref_count)
507 ref_count = refnum + 1;
508 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509 {
510 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
511 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
512
513 ref_map = (struct ref_map *)
514 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
515 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
516 new_chunks * REF_CHUNK_SIZE);
517 ref_chunk += new_chunks;
518 }
519 ref_map[refnum].stabs = stabs;
520 ref_map[refnum].sym = sym;
521 ref_map[refnum].value = value;
522 }
523
524 /* Return defined sym for the reference REFNUM. */
525 struct symbol *
526 ref_search (int refnum)
527 {
528 if (refnum < 0 || refnum > ref_count)
529 return 0;
530 return ref_map[refnum].sym;
531 }
532
533 /* Parse a reference id in STRING and return the resulting
534 reference number. Move STRING beyond the reference id. */
535
536 static int
537 process_reference (char **string)
538 {
539 char *p;
540 int refnum = 0;
541
542 if (**string != '#')
543 return 0;
544
545 /* Advance beyond the initial '#'. */
546 p = *string + 1;
547
548 /* Read number as reference id. */
549 while (*p && isdigit (*p))
550 {
551 refnum = refnum * 10 + *p - '0';
552 p++;
553 }
554 *string = p;
555 return refnum;
556 }
557
558 /* If STRING defines a reference, store away a pointer to the reference
559 definition for later use. Return the reference number. */
560
561 int
562 symbol_reference_defined (char **string)
563 {
564 char *p = *string;
565 int refnum = 0;
566
567 refnum = process_reference (&p);
568
569 /* Defining symbols end in '='. */
570 if (*p == '=')
571 {
572 /* Symbol is being defined here. */
573 *string = p + 1;
574 return refnum;
575 }
576 else
577 {
578 /* Must be a reference. Either the symbol has already been defined,
579 or this is a forward reference to it. */
580 *string = p;
581 return -1;
582 }
583 }
584
585 static int
586 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
587 {
588 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
589
590 if (regno >= gdbarch_num_regs (gdbarch)
591 + gdbarch_num_pseudo_regs (gdbarch))
592 {
593 reg_value_complaint (regno,
594 gdbarch_num_regs (gdbarch)
595 + gdbarch_num_pseudo_regs (gdbarch),
596 SYMBOL_PRINT_NAME (sym));
597
598 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
599 }
600
601 return regno;
602 }
603
604 static const struct symbol_register_ops stab_register_funcs = {
605 stab_reg_to_regnum
606 };
607
608 struct symbol *
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
611 {
612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
613 struct symbol *sym;
614 char *p = (char *) find_name_end (string);
615 int deftype;
616 int synonym = 0;
617 int i;
618 char *new_name = NULL;
619
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
624
625 int nameless;
626
627 /* Ignore syms with empty names. */
628 if (string[0] == 0)
629 return 0;
630
631 /* Ignore old-style symbols from cc -go. */
632 if (p == 0)
633 return 0;
634
635 while (p[1] == ':')
636 {
637 p += 2;
638 p = strchr (p, ':');
639 }
640
641 /* If a nameless stab entry, all we need is the type, not the symbol.
642 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
643 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
644
645 current_symbol = sym = (struct symbol *)
646 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
647 memset (sym, 0, sizeof (struct symbol));
648
649 switch (type & N_TYPE)
650 {
651 case N_TEXT:
652 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
653 break;
654 case N_DATA:
655 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
656 break;
657 case N_BSS:
658 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
659 break;
660 }
661
662 if (processing_gcc_compilation)
663 {
664 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
665 number of bytes occupied by a type or object, which we ignore. */
666 SYMBOL_LINE (sym) = desc;
667 }
668 else
669 {
670 SYMBOL_LINE (sym) = 0; /* unknown */
671 }
672
673 if (is_cplus_marker (string[0]))
674 {
675 /* Special GNU C++ names. */
676 switch (string[1])
677 {
678 case 't':
679 SYMBOL_SET_LINKAGE_NAME (sym, "this");
680 break;
681
682 case 'v': /* $vtbl_ptr_type */
683 goto normal;
684
685 case 'e':
686 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
687 break;
688
689 case '_':
690 /* This was an anonymous type that was never fixed up. */
691 goto normal;
692
693 case 'X':
694 /* SunPRO (3.0 at least) static variable encoding. */
695 if (gdbarch_static_transform_name_p (gdbarch))
696 goto normal;
697 /* ... fall through ... */
698
699 default:
700 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
701 string);
702 goto normal; /* Do *something* with it. */
703 }
704 }
705 else
706 {
707 normal:
708 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
709 if (SYMBOL_LANGUAGE (sym) == language_cplus)
710 {
711 char *name = alloca (p - string + 1);
712
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
716 }
717 if (new_name != NULL)
718 {
719 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
720 xfree (new_name);
721 }
722 else
723 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
724
725 if (SYMBOL_LANGUAGE (sym) == language_cplus)
726 cp_scan_for_anonymous_namespaces (sym);
727
728 }
729 p++;
730
731 /* Determine the type of name being defined. */
732 #if 0
733 /* Getting GDB to correctly skip the symbol on an undefined symbol
734 descriptor and not ever dump core is a very dodgy proposition if
735 we do things this way. I say the acorn RISC machine can just
736 fix their compiler. */
737 /* The Acorn RISC machine's compiler can put out locals that don't
738 start with "234=" or "(3,4)=", so assume anything other than the
739 deftypes we know how to handle is a local. */
740 if (!strchr ("cfFGpPrStTvVXCR", *p))
741 #else
742 if (isdigit (*p) || *p == '(' || *p == '-')
743 #endif
744 deftype = 'l';
745 else
746 deftype = *p++;
747
748 switch (deftype)
749 {
750 case 'c':
751 /* c is a special case, not followed by a type-number.
752 SYMBOL:c=iVALUE for an integer constant symbol.
753 SYMBOL:c=rVALUE for a floating constant symbol.
754 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
755 e.g. "b:c=e6,0" for "const b = blob1"
756 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
757 if (*p != '=')
758 {
759 SYMBOL_CLASS (sym) = LOC_CONST;
760 SYMBOL_TYPE (sym) = error_type (&p, objfile);
761 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
762 add_symbol_to_list (sym, &file_symbols);
763 return sym;
764 }
765 ++p;
766 switch (*p++)
767 {
768 case 'r':
769 {
770 double d = atof (p);
771 gdb_byte *dbl_valu;
772 struct type *dbl_type;
773
774 /* FIXME-if-picky-about-floating-accuracy: Should be using
775 target arithmetic to get the value. real.c in GCC
776 probably has the necessary code. */
777
778 dbl_type = objfile_type (objfile)->builtin_double;
779 dbl_valu =
780 obstack_alloc (&objfile->objfile_obstack,
781 TYPE_LENGTH (dbl_type));
782 store_typed_floating (dbl_valu, dbl_type, d);
783
784 SYMBOL_TYPE (sym) = dbl_type;
785 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
786 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
787 }
788 break;
789 case 'i':
790 {
791 /* Defining integer constants this way is kind of silly,
792 since 'e' constants allows the compiler to give not
793 only the value, but the type as well. C has at least
794 int, long, unsigned int, and long long as constant
795 types; other languages probably should have at least
796 unsigned as well as signed constants. */
797
798 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
799 SYMBOL_VALUE (sym) = atoi (p);
800 SYMBOL_CLASS (sym) = LOC_CONST;
801 }
802 break;
803
804 case 'c':
805 {
806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
807 SYMBOL_VALUE (sym) = atoi (p);
808 SYMBOL_CLASS (sym) = LOC_CONST;
809 }
810 break;
811
812 case 's':
813 {
814 struct type *range_type;
815 int ind = 0;
816 char quote = *p++;
817 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
818 gdb_byte *string_value;
819
820 if (quote != '\'' && quote != '"')
821 {
822 SYMBOL_CLASS (sym) = LOC_CONST;
823 SYMBOL_TYPE (sym) = error_type (&p, objfile);
824 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
825 add_symbol_to_list (sym, &file_symbols);
826 return sym;
827 }
828
829 /* Find matching quote, rejecting escaped quotes. */
830 while (*p && *p != quote)
831 {
832 if (*p == '\\' && p[1] == quote)
833 {
834 string_local[ind] = (gdb_byte) quote;
835 ind++;
836 p += 2;
837 }
838 else if (*p)
839 {
840 string_local[ind] = (gdb_byte) (*p);
841 ind++;
842 p++;
843 }
844 }
845 if (*p != quote)
846 {
847 SYMBOL_CLASS (sym) = LOC_CONST;
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* NULL terminate the string. */
855 string_local[ind] = 0;
856 range_type
857 = create_range_type (NULL,
858 objfile_type (objfile)->builtin_int,
859 0, ind);
860 SYMBOL_TYPE (sym) = create_array_type (NULL,
861 objfile_type (objfile)->builtin_char,
862 range_type);
863 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
864 memcpy (string_value, string_local, ind + 1);
865 p++;
866
867 SYMBOL_VALUE_BYTES (sym) = string_value;
868 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
869 }
870 break;
871
872 case 'e':
873 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
874 can be represented as integral.
875 e.g. "b:c=e6,0" for "const b = blob1"
876 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
877 {
878 SYMBOL_CLASS (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = read_type (&p, objfile);
880
881 if (*p != ',')
882 {
883 SYMBOL_TYPE (sym) = error_type (&p, objfile);
884 break;
885 }
886 ++p;
887
888 /* If the value is too big to fit in an int (perhaps because
889 it is unsigned), or something like that, we silently get
890 a bogus value. The type and everything else about it is
891 correct. Ideally, we should be using whatever we have
892 available for parsing unsigned and long long values,
893 however. */
894 SYMBOL_VALUE (sym) = atoi (p);
895 }
896 break;
897 default:
898 {
899 SYMBOL_CLASS (sym) = LOC_CONST;
900 SYMBOL_TYPE (sym) = error_type (&p, objfile);
901 }
902 }
903 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
904 add_symbol_to_list (sym, &file_symbols);
905 return sym;
906
907 case 'C':
908 /* The name of a caught exception. */
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_LABEL;
911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
912 SYMBOL_VALUE_ADDRESS (sym) = valu;
913 add_symbol_to_list (sym, &local_symbols);
914 break;
915
916 case 'f':
917 /* A static function definition. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_CLASS (sym) = LOC_BLOCK;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 add_symbol_to_list (sym, &file_symbols);
922 /* fall into process_function_types. */
923
924 process_function_types:
925 /* Function result types are described as the result type in stabs.
926 We need to convert this to the function-returning-type-X type
927 in GDB. E.g. "int" is converted to "function returning int". */
928 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
929 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
930
931 /* All functions in C++ have prototypes. Stabs does not offer an
932 explicit way to identify prototyped or unprototyped functions,
933 but both GCC and Sun CC emit stabs for the "call-as" type rather
934 than the "declared-as" type for unprototyped functions, so
935 we treat all functions as if they were prototyped. This is used
936 primarily for promotion when calling the function from GDB. */
937 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
938
939 /* fall into process_prototype_types. */
940
941 process_prototype_types:
942 /* Sun acc puts declared types of arguments here. */
943 if (*p == ';')
944 {
945 struct type *ftype = SYMBOL_TYPE (sym);
946 int nsemi = 0;
947 int nparams = 0;
948 char *p1 = p;
949
950 /* Obtain a worst case guess for the number of arguments
951 by counting the semicolons. */
952 while (*p1)
953 {
954 if (*p1++ == ';')
955 nsemi++;
956 }
957
958 /* Allocate parameter information fields and fill them in. */
959 TYPE_FIELDS (ftype) = (struct field *)
960 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
961 while (*p++ == ';')
962 {
963 struct type *ptype;
964
965 /* A type number of zero indicates the start of varargs.
966 FIXME: GDB currently ignores vararg functions. */
967 if (p[0] == '0' && p[1] == '\0')
968 break;
969 ptype = read_type (&p, objfile);
970
971 /* The Sun compilers mark integer arguments, which should
972 be promoted to the width of the calling conventions, with
973 a type which references itself. This type is turned into
974 a TYPE_CODE_VOID type by read_type, and we have to turn
975 it back into builtin_int here.
976 FIXME: Do we need a new builtin_promoted_int_arg ? */
977 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
978 ptype = objfile_type (objfile)->builtin_int;
979 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
980 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
981 }
982 TYPE_NFIELDS (ftype) = nparams;
983 TYPE_PROTOTYPED (ftype) = 1;
984 }
985 break;
986
987 case 'F':
988 /* A global function definition. */
989 SYMBOL_TYPE (sym) = read_type (&p, objfile);
990 SYMBOL_CLASS (sym) = LOC_BLOCK;
991 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
992 add_symbol_to_list (sym, &global_symbols);
993 goto process_function_types;
994
995 case 'G':
996 /* For a class G (global) symbol, it appears that the
997 value is not correct. It is necessary to search for the
998 corresponding linker definition to find the value.
999 These definitions appear at the end of the namelist. */
1000 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1001 SYMBOL_CLASS (sym) = LOC_STATIC;
1002 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1003 /* Don't add symbol references to global_sym_chain.
1004 Symbol references don't have valid names and wont't match up with
1005 minimal symbols when the global_sym_chain is relocated.
1006 We'll fixup symbol references when we fixup the defining symbol. */
1007 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1008 {
1009 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1010 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1011 global_sym_chain[i] = sym;
1012 }
1013 add_symbol_to_list (sym, &global_symbols);
1014 break;
1015
1016 /* This case is faked by a conditional above,
1017 when there is no code letter in the dbx data.
1018 Dbx data never actually contains 'l'. */
1019 case 's':
1020 case 'l':
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_CLASS (sym) = LOC_LOCAL;
1023 SYMBOL_VALUE (sym) = valu;
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 add_symbol_to_list (sym, &local_symbols);
1026 break;
1027
1028 case 'p':
1029 if (*p == 'F')
1030 /* pF is a two-letter code that means a function parameter in Fortran.
1031 The type-number specifies the type of the return value.
1032 Translate it into a pointer-to-function type. */
1033 {
1034 p++;
1035 SYMBOL_TYPE (sym)
1036 = lookup_pointer_type
1037 (lookup_function_type (read_type (&p, objfile)));
1038 }
1039 else
1040 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1041
1042 SYMBOL_CLASS (sym) = LOC_ARG;
1043 SYMBOL_VALUE (sym) = valu;
1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1045 SYMBOL_IS_ARGUMENT (sym) = 1;
1046 add_symbol_to_list (sym, &local_symbols);
1047
1048 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1049 {
1050 /* On little-endian machines, this crud is never necessary,
1051 and, if the extra bytes contain garbage, is harmful. */
1052 break;
1053 }
1054
1055 /* If it's gcc-compiled, if it says `short', believe it. */
1056 if (processing_gcc_compilation
1057 || gdbarch_believe_pcc_promotion (gdbarch))
1058 break;
1059
1060 if (!gdbarch_believe_pcc_promotion (gdbarch))
1061 {
1062 /* If PCC says a parameter is a short or a char, it is
1063 really an int. */
1064 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1065 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1066 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1067 {
1068 SYMBOL_TYPE (sym) =
1069 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1070 ? objfile_type (objfile)->builtin_unsigned_int
1071 : objfile_type (objfile)->builtin_int;
1072 }
1073 break;
1074 }
1075
1076 case 'P':
1077 /* acc seems to use P to declare the prototypes of functions that
1078 are referenced by this file. gdb is not prepared to deal
1079 with this extra information. FIXME, it ought to. */
1080 if (type == N_FUN)
1081 {
1082 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1083 goto process_prototype_types;
1084 }
1085 /*FALLTHROUGH */
1086
1087 case 'R':
1088 /* Parameter which is in a register. */
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1090 SYMBOL_CLASS (sym) = LOC_REGISTER;
1091 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1092 SYMBOL_IS_ARGUMENT (sym) = 1;
1093 SYMBOL_VALUE (sym) = valu;
1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1095 add_symbol_to_list (sym, &local_symbols);
1096 break;
1097
1098 case 'r':
1099 /* Register variable (either global or local). */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REGISTER;
1102 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1103 SYMBOL_VALUE (sym) = valu;
1104 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1105 if (within_function)
1106 {
1107 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1108 the same name to represent an argument passed in a
1109 register. GCC uses 'P' for the same case. So if we find
1110 such a symbol pair we combine it into one 'P' symbol.
1111 For Sun cc we need to do this regardless of
1112 stabs_argument_has_addr, because the compiler puts out
1113 the 'p' symbol even if it never saves the argument onto
1114 the stack.
1115
1116 On most machines, we want to preserve both symbols, so
1117 that we can still get information about what is going on
1118 with the stack (VAX for computing args_printed, using
1119 stack slots instead of saved registers in backtraces,
1120 etc.).
1121
1122 Note that this code illegally combines
1123 main(argc) struct foo argc; { register struct foo argc; }
1124 but this case is considered pathological and causes a warning
1125 from a decent compiler. */
1126
1127 if (local_symbols
1128 && local_symbols->nsyms > 0
1129 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1130 {
1131 struct symbol *prev_sym;
1132
1133 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1134 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1135 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1136 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1137 SYMBOL_LINKAGE_NAME (sym)) == 0)
1138 {
1139 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1140 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1141 /* Use the type from the LOC_REGISTER; that is the type
1142 that is actually in that register. */
1143 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1144 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1145 sym = prev_sym;
1146 break;
1147 }
1148 }
1149 add_symbol_to_list (sym, &local_symbols);
1150 }
1151 else
1152 add_symbol_to_list (sym, &file_symbols);
1153 break;
1154
1155 case 'S':
1156 /* Static symbol at top level of file. */
1157 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1158 SYMBOL_CLASS (sym) = LOC_STATIC;
1159 SYMBOL_VALUE_ADDRESS (sym) = valu;
1160 if (gdbarch_static_transform_name_p (gdbarch)
1161 && gdbarch_static_transform_name (gdbarch,
1162 SYMBOL_LINKAGE_NAME (sym))
1163 != SYMBOL_LINKAGE_NAME (sym))
1164 {
1165 struct minimal_symbol *msym;
1166
1167 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1168 NULL, objfile);
1169 if (msym != NULL)
1170 {
1171 char *new_name = gdbarch_static_transform_name
1172 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1173
1174 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1175 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1176 }
1177 }
1178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1179 add_symbol_to_list (sym, &file_symbols);
1180 break;
1181
1182 case 't':
1183 /* In Ada, there is no distinction between typedef and non-typedef;
1184 any type declaration implicitly has the equivalent of a typedef,
1185 and thus 't' is in fact equivalent to 'Tt'.
1186
1187 Therefore, for Ada units, we check the character immediately
1188 before the 't', and if we do not find a 'T', then make sure to
1189 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1190 will be stored in the VAR_DOMAIN). If the symbol was indeed
1191 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1192 elsewhere, so we don't need to take care of that.
1193
1194 This is important to do, because of forward references:
1195 The cleanup of undefined types stored in undef_types only uses
1196 STRUCT_DOMAIN symbols to perform the replacement. */
1197 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1198
1199 /* Typedef */
1200 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1201
1202 /* For a nameless type, we don't want a create a symbol, thus we
1203 did not use `sym'. Return without further processing. */
1204 if (nameless)
1205 return NULL;
1206
1207 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1208 SYMBOL_VALUE (sym) = valu;
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 /* C++ vagaries: we may have a type which is derived from
1211 a base type which did not have its name defined when the
1212 derived class was output. We fill in the derived class's
1213 base part member's name here in that case. */
1214 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1215 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1216 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1217 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1218 {
1219 int j;
1220
1221 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1222 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1223 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1224 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1225 }
1226
1227 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1228 {
1229 /* gcc-2.6 or later (when using -fvtable-thunks)
1230 emits a unique named type for a vtable entry.
1231 Some gdb code depends on that specific name. */
1232 extern const char vtbl_ptr_name[];
1233
1234 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1235 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1236 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (current_subfile->language == language_pascal)
1275 {
1276 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1277 }
1278 }
1279 else
1280 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1281 }
1282
1283 add_symbol_to_list (sym, &file_symbols);
1284
1285 if (synonym)
1286 {
1287 /* Create the STRUCT_DOMAIN clone. */
1288 struct symbol *struct_sym = (struct symbol *)
1289 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1290
1291 *struct_sym = *sym;
1292 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1293 SYMBOL_VALUE (struct_sym) = valu;
1294 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1295 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1296 TYPE_NAME (SYMBOL_TYPE (sym))
1297 = obconcat (&objfile->objfile_obstack,
1298 SYMBOL_LINKAGE_NAME (sym),
1299 (char *) NULL);
1300 add_symbol_to_list (struct_sym, &file_symbols);
1301 }
1302
1303 break;
1304
1305 case 'T':
1306 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1307 by 't' which means we are typedef'ing it as well. */
1308 synonym = *p == 't';
1309
1310 if (synonym)
1311 p++;
1312
1313 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1314
1315 /* For a nameless type, we don't want a create a symbol, thus we
1316 did not use `sym'. Return without further processing. */
1317 if (nameless)
1318 return NULL;
1319
1320 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1321 SYMBOL_VALUE (sym) = valu;
1322 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1323 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1324 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1325 = obconcat (&objfile->objfile_obstack,
1326 SYMBOL_LINKAGE_NAME (sym),
1327 (char *) NULL);
1328 add_symbol_to_list (sym, &file_symbols);
1329
1330 if (synonym)
1331 {
1332 /* Clone the sym and then modify it. */
1333 struct symbol *typedef_sym = (struct symbol *)
1334 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1335
1336 *typedef_sym = *sym;
1337 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1338 SYMBOL_VALUE (typedef_sym) = valu;
1339 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1340 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1341 TYPE_NAME (SYMBOL_TYPE (sym))
1342 = obconcat (&objfile->objfile_obstack,
1343 SYMBOL_LINKAGE_NAME (sym),
1344 (char *) NULL);
1345 add_symbol_to_list (typedef_sym, &file_symbols);
1346 }
1347 break;
1348
1349 case 'V':
1350 /* Static symbol of local scope. */
1351 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1352 SYMBOL_CLASS (sym) = LOC_STATIC;
1353 SYMBOL_VALUE_ADDRESS (sym) = valu;
1354 if (gdbarch_static_transform_name_p (gdbarch)
1355 && gdbarch_static_transform_name (gdbarch,
1356 SYMBOL_LINKAGE_NAME (sym))
1357 != SYMBOL_LINKAGE_NAME (sym))
1358 {
1359 struct minimal_symbol *msym;
1360
1361 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1362 NULL, objfile);
1363 if (msym != NULL)
1364 {
1365 char *new_name = gdbarch_static_transform_name
1366 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1367
1368 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1369 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1370 }
1371 }
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'v':
1377 /* Reference parameter */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1380 SYMBOL_IS_ARGUMENT (sym) = 1;
1381 SYMBOL_VALUE (sym) = valu;
1382 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1383 add_symbol_to_list (sym, &local_symbols);
1384 break;
1385
1386 case 'a':
1387 /* Reference parameter which is in a register. */
1388 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1389 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1390 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1391 SYMBOL_IS_ARGUMENT (sym) = 1;
1392 SYMBOL_VALUE (sym) = valu;
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, &local_symbols);
1395 break;
1396
1397 case 'X':
1398 /* This is used by Sun FORTRAN for "function result value".
1399 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1400 that Pascal uses it too, but when I tried it Pascal used
1401 "x:3" (local symbol) instead. */
1402 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1403 SYMBOL_CLASS (sym) = LOC_LOCAL;
1404 SYMBOL_VALUE (sym) = valu;
1405 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1406 add_symbol_to_list (sym, &local_symbols);
1407 break;
1408
1409 default:
1410 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1411 SYMBOL_CLASS (sym) = LOC_CONST;
1412 SYMBOL_VALUE (sym) = 0;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, &file_symbols);
1415 break;
1416 }
1417
1418 /* Some systems pass variables of certain types by reference instead
1419 of by value, i.e. they will pass the address of a structure (in a
1420 register or on the stack) instead of the structure itself. */
1421
1422 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1423 && SYMBOL_IS_ARGUMENT (sym))
1424 {
1425 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1426 variables passed in a register). */
1427 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1428 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1429 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1430 and subsequent arguments on SPARC, for example). */
1431 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1432 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1433 }
1434
1435 return sym;
1436 }
1437
1438 /* Skip rest of this symbol and return an error type.
1439
1440 General notes on error recovery: error_type always skips to the
1441 end of the symbol (modulo cretinous dbx symbol name continuation).
1442 Thus code like this:
1443
1444 if (*(*pp)++ != ';')
1445 return error_type (pp, objfile);
1446
1447 is wrong because if *pp starts out pointing at '\0' (typically as the
1448 result of an earlier error), it will be incremented to point to the
1449 start of the next symbol, which might produce strange results, at least
1450 if you run off the end of the string table. Instead use
1451
1452 if (**pp != ';')
1453 return error_type (pp, objfile);
1454 ++*pp;
1455
1456 or
1457
1458 if (**pp != ';')
1459 foo = error_type (pp, objfile);
1460 else
1461 ++*pp;
1462
1463 And in case it isn't obvious, the point of all this hair is so the compiler
1464 can define new types and new syntaxes, and old versions of the
1465 debugger will be able to read the new symbol tables. */
1466
1467 static struct type *
1468 error_type (char **pp, struct objfile *objfile)
1469 {
1470 complaint (&symfile_complaints,
1471 _("couldn't parse type; debugger out of date?"));
1472 while (1)
1473 {
1474 /* Skip to end of symbol. */
1475 while (**pp != '\0')
1476 {
1477 (*pp)++;
1478 }
1479
1480 /* Check for and handle cretinous dbx symbol name continuation! */
1481 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1482 {
1483 *pp = next_symbol_text (objfile);
1484 }
1485 else
1486 {
1487 break;
1488 }
1489 }
1490 return objfile_type (objfile)->builtin_error;
1491 }
1492 \f
1493
1494 /* Read type information or a type definition; return the type. Even
1495 though this routine accepts either type information or a type
1496 definition, the distinction is relevant--some parts of stabsread.c
1497 assume that type information starts with a digit, '-', or '(' in
1498 deciding whether to call read_type. */
1499
1500 static struct type *
1501 read_type (char **pp, struct objfile *objfile)
1502 {
1503 struct type *type = 0;
1504 struct type *type1;
1505 int typenums[2];
1506 char type_descriptor;
1507
1508 /* Size in bits of type if specified by a type attribute, or -1 if
1509 there is no size attribute. */
1510 int type_size = -1;
1511
1512 /* Used to distinguish string and bitstring from char-array and set. */
1513 int is_string = 0;
1514
1515 /* Used to distinguish vector from array. */
1516 int is_vector = 0;
1517
1518 /* Read type number if present. The type number may be omitted.
1519 for instance in a two-dimensional array declared with type
1520 "ar1;1;10;ar1;1;10;4". */
1521 if ((**pp >= '0' && **pp <= '9')
1522 || **pp == '('
1523 || **pp == '-')
1524 {
1525 if (read_type_number (pp, typenums) != 0)
1526 return error_type (pp, objfile);
1527
1528 if (**pp != '=')
1529 {
1530 /* Type is not being defined here. Either it already
1531 exists, or this is a forward reference to it.
1532 dbx_alloc_type handles both cases. */
1533 type = dbx_alloc_type (typenums, objfile);
1534
1535 /* If this is a forward reference, arrange to complain if it
1536 doesn't get patched up by the time we're done
1537 reading. */
1538 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1539 add_undefined_type (type, typenums);
1540
1541 return type;
1542 }
1543
1544 /* Type is being defined here. */
1545 /* Skip the '='.
1546 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1547 (*pp) += 2;
1548 }
1549 else
1550 {
1551 /* 'typenums=' not present, type is anonymous. Read and return
1552 the definition, but don't put it in the type vector. */
1553 typenums[0] = typenums[1] = -1;
1554 (*pp)++;
1555 }
1556
1557 again:
1558 type_descriptor = (*pp)[-1];
1559 switch (type_descriptor)
1560 {
1561 case 'x':
1562 {
1563 enum type_code code;
1564
1565 /* Used to index through file_symbols. */
1566 struct pending *ppt;
1567 int i;
1568
1569 /* Name including "struct", etc. */
1570 char *type_name;
1571
1572 {
1573 char *from, *to, *p, *q1, *q2;
1574
1575 /* Set the type code according to the following letter. */
1576 switch ((*pp)[0])
1577 {
1578 case 's':
1579 code = TYPE_CODE_STRUCT;
1580 break;
1581 case 'u':
1582 code = TYPE_CODE_UNION;
1583 break;
1584 case 'e':
1585 code = TYPE_CODE_ENUM;
1586 break;
1587 default:
1588 {
1589 /* Complain and keep going, so compilers can invent new
1590 cross-reference types. */
1591 complaint (&symfile_complaints,
1592 _("Unrecognized cross-reference type `%c'"),
1593 (*pp)[0]);
1594 code = TYPE_CODE_STRUCT;
1595 break;
1596 }
1597 }
1598
1599 q1 = strchr (*pp, '<');
1600 p = strchr (*pp, ':');
1601 if (p == NULL)
1602 return error_type (pp, objfile);
1603 if (q1 && p > q1 && p[1] == ':')
1604 {
1605 int nesting_level = 0;
1606
1607 for (q2 = q1; *q2; q2++)
1608 {
1609 if (*q2 == '<')
1610 nesting_level++;
1611 else if (*q2 == '>')
1612 nesting_level--;
1613 else if (*q2 == ':' && nesting_level == 0)
1614 break;
1615 }
1616 p = q2;
1617 if (*p != ':')
1618 return error_type (pp, objfile);
1619 }
1620 type_name = NULL;
1621 if (current_subfile->language == language_cplus)
1622 {
1623 char *new_name, *name = alloca (p - *pp + 1);
1624
1625 memcpy (name, *pp, p - *pp);
1626 name[p - *pp] = '\0';
1627 new_name = cp_canonicalize_string (name);
1628 if (new_name != NULL)
1629 {
1630 type_name = obsavestring (new_name, strlen (new_name),
1631 &objfile->objfile_obstack);
1632 xfree (new_name);
1633 }
1634 }
1635 if (type_name == NULL)
1636 {
1637 to = type_name = (char *)
1638 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1639
1640 /* Copy the name. */
1641 from = *pp + 1;
1642 while (from < p)
1643 *to++ = *from++;
1644 *to = '\0';
1645 }
1646
1647 /* Set the pointer ahead of the name which we just read, and
1648 the colon. */
1649 *pp = p + 1;
1650 }
1651
1652 /* If this type has already been declared, then reuse the same
1653 type, rather than allocating a new one. This saves some
1654 memory. */
1655
1656 for (ppt = file_symbols; ppt; ppt = ppt->next)
1657 for (i = 0; i < ppt->nsyms; i++)
1658 {
1659 struct symbol *sym = ppt->symbol[i];
1660
1661 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1662 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1663 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1664 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1665 {
1666 obstack_free (&objfile->objfile_obstack, type_name);
1667 type = SYMBOL_TYPE (sym);
1668 if (typenums[0] != -1)
1669 *dbx_lookup_type (typenums, objfile) = type;
1670 return type;
1671 }
1672 }
1673
1674 /* Didn't find the type to which this refers, so we must
1675 be dealing with a forward reference. Allocate a type
1676 structure for it, and keep track of it so we can
1677 fill in the rest of the fields when we get the full
1678 type. */
1679 type = dbx_alloc_type (typenums, objfile);
1680 TYPE_CODE (type) = code;
1681 TYPE_TAG_NAME (type) = type_name;
1682 INIT_CPLUS_SPECIFIC (type);
1683 TYPE_STUB (type) = 1;
1684
1685 add_undefined_type (type, typenums);
1686 return type;
1687 }
1688
1689 case '-': /* RS/6000 built-in type */
1690 case '0':
1691 case '1':
1692 case '2':
1693 case '3':
1694 case '4':
1695 case '5':
1696 case '6':
1697 case '7':
1698 case '8':
1699 case '9':
1700 case '(':
1701 (*pp)--;
1702
1703 /* We deal with something like t(1,2)=(3,4)=... which
1704 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1705
1706 /* Allocate and enter the typedef type first.
1707 This handles recursive types. */
1708 type = dbx_alloc_type (typenums, objfile);
1709 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1710 {
1711 struct type *xtype = read_type (pp, objfile);
1712
1713 if (type == xtype)
1714 {
1715 /* It's being defined as itself. That means it is "void". */
1716 TYPE_CODE (type) = TYPE_CODE_VOID;
1717 TYPE_LENGTH (type) = 1;
1718 }
1719 else if (type_size >= 0 || is_string)
1720 {
1721 /* This is the absolute wrong way to construct types. Every
1722 other debug format has found a way around this problem and
1723 the related problems with unnecessarily stubbed types;
1724 someone motivated should attempt to clean up the issue
1725 here as well. Once a type pointed to has been created it
1726 should not be modified.
1727
1728 Well, it's not *absolutely* wrong. Constructing recursive
1729 types (trees, linked lists) necessarily entails modifying
1730 types after creating them. Constructing any loop structure
1731 entails side effects. The Dwarf 2 reader does handle this
1732 more gracefully (it never constructs more than once
1733 instance of a type object, so it doesn't have to copy type
1734 objects wholesale), but it still mutates type objects after
1735 other folks have references to them.
1736
1737 Keep in mind that this circularity/mutation issue shows up
1738 at the source language level, too: C's "incomplete types",
1739 for example. So the proper cleanup, I think, would be to
1740 limit GDB's type smashing to match exactly those required
1741 by the source language. So GDB could have a
1742 "complete_this_type" function, but never create unnecessary
1743 copies of a type otherwise. */
1744 replace_type (type, xtype);
1745 TYPE_NAME (type) = NULL;
1746 TYPE_TAG_NAME (type) = NULL;
1747 }
1748 else
1749 {
1750 TYPE_TARGET_STUB (type) = 1;
1751 TYPE_TARGET_TYPE (type) = xtype;
1752 }
1753 }
1754 break;
1755
1756 /* In the following types, we must be sure to overwrite any existing
1757 type that the typenums refer to, rather than allocating a new one
1758 and making the typenums point to the new one. This is because there
1759 may already be pointers to the existing type (if it had been
1760 forward-referenced), and we must change it to a pointer, function,
1761 reference, or whatever, *in-place*. */
1762
1763 case '*': /* Pointer to another type */
1764 type1 = read_type (pp, objfile);
1765 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1766 break;
1767
1768 case '&': /* Reference to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case 'f': /* Function returning another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'g': /* Prototyped function. (Sun) */
1779 {
1780 /* Unresolved questions:
1781
1782 - According to Sun's ``STABS Interface Manual'', for 'f'
1783 and 'F' symbol descriptors, a `0' in the argument type list
1784 indicates a varargs function. But it doesn't say how 'g'
1785 type descriptors represent that info. Someone with access
1786 to Sun's toolchain should try it out.
1787
1788 - According to the comment in define_symbol (search for
1789 `process_prototype_types:'), Sun emits integer arguments as
1790 types which ref themselves --- like `void' types. Do we
1791 have to deal with that here, too? Again, someone with
1792 access to Sun's toolchain should try it out and let us
1793 know. */
1794
1795 const char *type_start = (*pp) - 1;
1796 struct type *return_type = read_type (pp, objfile);
1797 struct type *func_type
1798 = make_function_type (return_type,
1799 dbx_lookup_type (typenums, objfile));
1800 struct type_list {
1801 struct type *type;
1802 struct type_list *next;
1803 } *arg_types = 0;
1804 int num_args = 0;
1805
1806 while (**pp && **pp != '#')
1807 {
1808 struct type *arg_type = read_type (pp, objfile);
1809 struct type_list *new = alloca (sizeof (*new));
1810 new->type = arg_type;
1811 new->next = arg_types;
1812 arg_types = new;
1813 num_args++;
1814 }
1815 if (**pp == '#')
1816 ++*pp;
1817 else
1818 {
1819 complaint (&symfile_complaints,
1820 _("Prototyped function type didn't "
1821 "end arguments with `#':\n%s"),
1822 type_start);
1823 }
1824
1825 /* If there is just one argument whose type is `void', then
1826 that's just an empty argument list. */
1827 if (arg_types
1828 && ! arg_types->next
1829 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1830 num_args = 0;
1831
1832 TYPE_FIELDS (func_type)
1833 = (struct field *) TYPE_ALLOC (func_type,
1834 num_args * sizeof (struct field));
1835 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1836 {
1837 int i;
1838 struct type_list *t;
1839
1840 /* We stuck each argument type onto the front of the list
1841 when we read it, so the list is reversed. Build the
1842 fields array right-to-left. */
1843 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1844 TYPE_FIELD_TYPE (func_type, i) = t->type;
1845 }
1846 TYPE_NFIELDS (func_type) = num_args;
1847 TYPE_PROTOTYPED (func_type) = 1;
1848
1849 type = func_type;
1850 break;
1851 }
1852
1853 case 'k': /* Const qualifier on some type (Sun) */
1854 type = read_type (pp, objfile);
1855 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1856 dbx_lookup_type (typenums, objfile));
1857 break;
1858
1859 case 'B': /* Volatile qual on some type (Sun) */
1860 type = read_type (pp, objfile);
1861 type = make_cv_type (TYPE_CONST (type), 1, type,
1862 dbx_lookup_type (typenums, objfile));
1863 break;
1864
1865 case '@':
1866 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1867 { /* Member (class & variable) type */
1868 /* FIXME -- we should be doing smash_to_XXX types here. */
1869
1870 struct type *domain = read_type (pp, objfile);
1871 struct type *memtype;
1872
1873 if (**pp != ',')
1874 /* Invalid member type data format. */
1875 return error_type (pp, objfile);
1876 ++*pp;
1877
1878 memtype = read_type (pp, objfile);
1879 type = dbx_alloc_type (typenums, objfile);
1880 smash_to_memberptr_type (type, domain, memtype);
1881 }
1882 else
1883 /* type attribute */
1884 {
1885 char *attr = *pp;
1886
1887 /* Skip to the semicolon. */
1888 while (**pp != ';' && **pp != '\0')
1889 ++(*pp);
1890 if (**pp == '\0')
1891 return error_type (pp, objfile);
1892 else
1893 ++ * pp; /* Skip the semicolon. */
1894
1895 switch (*attr)
1896 {
1897 case 's': /* Size attribute */
1898 type_size = atoi (attr + 1);
1899 if (type_size <= 0)
1900 type_size = -1;
1901 break;
1902
1903 case 'S': /* String attribute */
1904 /* FIXME: check to see if following type is array? */
1905 is_string = 1;
1906 break;
1907
1908 case 'V': /* Vector attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_vector = 1;
1911 break;
1912
1913 default:
1914 /* Ignore unrecognized type attributes, so future compilers
1915 can invent new ones. */
1916 break;
1917 }
1918 ++*pp;
1919 goto again;
1920 }
1921 break;
1922
1923 case '#': /* Method (class & fn) type */
1924 if ((*pp)[0] == '#')
1925 {
1926 /* We'll get the parameter types from the name. */
1927 struct type *return_type;
1928
1929 (*pp)++;
1930 return_type = read_type (pp, objfile);
1931 if (*(*pp)++ != ';')
1932 complaint (&symfile_complaints,
1933 _("invalid (minimal) member type "
1934 "data format at symtab pos %d."),
1935 symnum);
1936 type = allocate_stub_method (return_type);
1937 if (typenums[0] != -1)
1938 *dbx_lookup_type (typenums, objfile) = type;
1939 }
1940 else
1941 {
1942 struct type *domain = read_type (pp, objfile);
1943 struct type *return_type;
1944 struct field *args;
1945 int nargs, varargs;
1946
1947 if (**pp != ',')
1948 /* Invalid member type data format. */
1949 return error_type (pp, objfile);
1950 else
1951 ++(*pp);
1952
1953 return_type = read_type (pp, objfile);
1954 args = read_args (pp, ';', objfile, &nargs, &varargs);
1955 if (args == NULL)
1956 return error_type (pp, objfile);
1957 type = dbx_alloc_type (typenums, objfile);
1958 smash_to_method_type (type, domain, return_type, args,
1959 nargs, varargs);
1960 }
1961 break;
1962
1963 case 'r': /* Range type */
1964 type = read_range_type (pp, typenums, type_size, objfile);
1965 if (typenums[0] != -1)
1966 *dbx_lookup_type (typenums, objfile) = type;
1967 break;
1968
1969 case 'b':
1970 {
1971 /* Sun ACC builtin int type */
1972 type = read_sun_builtin_type (pp, typenums, objfile);
1973 if (typenums[0] != -1)
1974 *dbx_lookup_type (typenums, objfile) = type;
1975 }
1976 break;
1977
1978 case 'R': /* Sun ACC builtin float type */
1979 type = read_sun_floating_type (pp, typenums, objfile);
1980 if (typenums[0] != -1)
1981 *dbx_lookup_type (typenums, objfile) = type;
1982 break;
1983
1984 case 'e': /* Enumeration type */
1985 type = dbx_alloc_type (typenums, objfile);
1986 type = read_enum_type (pp, type, objfile);
1987 if (typenums[0] != -1)
1988 *dbx_lookup_type (typenums, objfile) = type;
1989 break;
1990
1991 case 's': /* Struct type */
1992 case 'u': /* Union type */
1993 {
1994 enum type_code type_code = TYPE_CODE_UNDEF;
1995 type = dbx_alloc_type (typenums, objfile);
1996 switch (type_descriptor)
1997 {
1998 case 's':
1999 type_code = TYPE_CODE_STRUCT;
2000 break;
2001 case 'u':
2002 type_code = TYPE_CODE_UNION;
2003 break;
2004 }
2005 type = read_struct_type (pp, type, type_code, objfile);
2006 break;
2007 }
2008
2009 case 'a': /* Array type */
2010 if (**pp != 'r')
2011 return error_type (pp, objfile);
2012 ++*pp;
2013
2014 type = dbx_alloc_type (typenums, objfile);
2015 type = read_array_type (pp, type, objfile);
2016 if (is_string)
2017 TYPE_CODE (type) = TYPE_CODE_STRING;
2018 if (is_vector)
2019 make_vector_type (type);
2020 break;
2021
2022 case 'S': /* Set or bitstring type */
2023 type1 = read_type (pp, objfile);
2024 type = create_set_type ((struct type *) NULL, type1);
2025 if (is_string)
2026 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2027 if (typenums[0] != -1)
2028 *dbx_lookup_type (typenums, objfile) = type;
2029 break;
2030
2031 default:
2032 --*pp; /* Go back to the symbol in error. */
2033 /* Particularly important if it was \0! */
2034 return error_type (pp, objfile);
2035 }
2036
2037 if (type == 0)
2038 {
2039 warning (_("GDB internal error, type is NULL in stabsread.c."));
2040 return error_type (pp, objfile);
2041 }
2042
2043 /* Size specified in a type attribute overrides any other size. */
2044 if (type_size != -1)
2045 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2046
2047 return type;
2048 }
2049 \f
2050 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2051 Return the proper type node for a given builtin type number. */
2052
2053 static const struct objfile_data *rs6000_builtin_type_data;
2054
2055 static struct type *
2056 rs6000_builtin_type (int typenum, struct objfile *objfile)
2057 {
2058 struct type **negative_types = objfile_data (objfile,
2059 rs6000_builtin_type_data);
2060
2061 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2062 #define NUMBER_RECOGNIZED 34
2063 struct type *rettype = NULL;
2064
2065 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2066 {
2067 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2068 return objfile_type (objfile)->builtin_error;
2069 }
2070
2071 if (!negative_types)
2072 {
2073 /* This includes an empty slot for type number -0. */
2074 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2075 NUMBER_RECOGNIZED + 1, struct type *);
2076 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2077 }
2078
2079 if (negative_types[-typenum] != NULL)
2080 return negative_types[-typenum];
2081
2082 #if TARGET_CHAR_BIT != 8
2083 #error This code wrong for TARGET_CHAR_BIT not 8
2084 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2085 that if that ever becomes not true, the correct fix will be to
2086 make the size in the struct type to be in bits, not in units of
2087 TARGET_CHAR_BIT. */
2088 #endif
2089
2090 switch (-typenum)
2091 {
2092 case 1:
2093 /* The size of this and all the other types are fixed, defined
2094 by the debugging format. If there is a type called "int" which
2095 is other than 32 bits, then it should use a new negative type
2096 number (or avoid negative type numbers for that case).
2097 See stabs.texinfo. */
2098 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2099 break;
2100 case 2:
2101 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2102 break;
2103 case 3:
2104 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2105 break;
2106 case 4:
2107 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2108 break;
2109 case 5:
2110 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2111 "unsigned char", objfile);
2112 break;
2113 case 6:
2114 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2115 break;
2116 case 7:
2117 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2118 "unsigned short", objfile);
2119 break;
2120 case 8:
2121 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2122 "unsigned int", objfile);
2123 break;
2124 case 9:
2125 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2126 "unsigned", objfile);
2127 case 10:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 "unsigned long", objfile);
2130 break;
2131 case 11:
2132 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
2136 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2137 break;
2138 case 13:
2139 /* IEEE double precision (64 bit). */
2140 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2141 break;
2142 case 14:
2143 /* This is an IEEE double on the RS/6000, and different machines with
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
2146 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2147 break;
2148 case 15:
2149 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2150 break;
2151 case 16:
2152 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2153 "boolean", objfile);
2154 break;
2155 case 17:
2156 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2157 break;
2158 case 18:
2159 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2160 break;
2161 case 19:
2162 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2163 break;
2164 case 20:
2165 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2166 "character", objfile);
2167 break;
2168 case 21:
2169 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2170 "logical*1", objfile);
2171 break;
2172 case 22:
2173 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2174 "logical*2", objfile);
2175 break;
2176 case 23:
2177 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2178 "logical*4", objfile);
2179 break;
2180 case 24:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 "logical", objfile);
2183 break;
2184 case 25:
2185 /* Complex type consisting of two IEEE single precision values. */
2186 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2187 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2188 objfile);
2189 break;
2190 case 26:
2191 /* Complex type consisting of two IEEE double precision values. */
2192 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2193 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2194 objfile);
2195 break;
2196 case 27:
2197 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2198 break;
2199 case 28:
2200 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2201 break;
2202 case 29:
2203 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2204 break;
2205 case 30:
2206 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2207 break;
2208 case 31:
2209 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2210 break;
2211 case 32:
2212 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2213 "unsigned long long", objfile);
2214 break;
2215 case 33:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 "logical*8", objfile);
2218 break;
2219 case 34:
2220 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2221 break;
2222 }
2223 negative_types[-typenum] = rettype;
2224 return rettype;
2225 }
2226 \f
2227 /* This page contains subroutines of read_type. */
2228
2229 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2230
2231 static void
2232 update_method_name_from_physname (char **old_name, char *physname)
2233 {
2234 char *method_name;
2235
2236 method_name = method_name_from_physname (physname);
2237
2238 if (method_name == NULL)
2239 {
2240 complaint (&symfile_complaints,
2241 _("Method has bad physname %s\n"), physname);
2242 return;
2243 }
2244
2245 if (strcmp (*old_name, method_name) != 0)
2246 {
2247 xfree (*old_name);
2248 *old_name = method_name;
2249 }
2250 else
2251 xfree (method_name);
2252 }
2253
2254 /* Read member function stabs info for C++ classes. The form of each member
2255 function data is:
2256
2257 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2258
2259 An example with two member functions is:
2260
2261 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2262
2263 For the case of overloaded operators, the format is op$::*.funcs, where
2264 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2265 name (such as `+=') and `.' marks the end of the operator name.
2266
2267 Returns 1 for success, 0 for failure. */
2268
2269 static int
2270 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2271 struct objfile *objfile)
2272 {
2273 int nfn_fields = 0;
2274 int length = 0;
2275 /* Total number of member functions defined in this class. If the class
2276 defines two `f' functions, and one `g' function, then this will have
2277 the value 3. */
2278 int total_length = 0;
2279 int i;
2280 struct next_fnfield
2281 {
2282 struct next_fnfield *next;
2283 struct fn_field fn_field;
2284 }
2285 *sublist;
2286 struct type *look_ahead_type;
2287 struct next_fnfieldlist *new_fnlist;
2288 struct next_fnfield *new_sublist;
2289 char *main_fn_name;
2290 char *p;
2291
2292 /* Process each list until we find something that is not a member function
2293 or find the end of the functions. */
2294
2295 while (**pp != ';')
2296 {
2297 /* We should be positioned at the start of the function name.
2298 Scan forward to find the first ':' and if it is not the
2299 first of a "::" delimiter, then this is not a member function. */
2300 p = *pp;
2301 while (*p != ':')
2302 {
2303 p++;
2304 }
2305 if (p[1] != ':')
2306 {
2307 break;
2308 }
2309
2310 sublist = NULL;
2311 look_ahead_type = NULL;
2312 length = 0;
2313
2314 new_fnlist = (struct next_fnfieldlist *)
2315 xmalloc (sizeof (struct next_fnfieldlist));
2316 make_cleanup (xfree, new_fnlist);
2317 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2318
2319 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2320 {
2321 /* This is a completely wierd case. In order to stuff in the
2322 names that might contain colons (the usual name delimiter),
2323 Mike Tiemann defined a different name format which is
2324 signalled if the identifier is "op$". In that case, the
2325 format is "op$::XXXX." where XXXX is the name. This is
2326 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2327 /* This lets the user type "break operator+".
2328 We could just put in "+" as the name, but that wouldn't
2329 work for "*". */
2330 static char opname[32] = "op$";
2331 char *o = opname + 3;
2332
2333 /* Skip past '::'. */
2334 *pp = p + 2;
2335
2336 STABS_CONTINUE (pp, objfile);
2337 p = *pp;
2338 while (*p != '.')
2339 {
2340 *o++ = *p++;
2341 }
2342 main_fn_name = savestring (opname, o - opname);
2343 /* Skip past '.' */
2344 *pp = p + 1;
2345 }
2346 else
2347 {
2348 main_fn_name = savestring (*pp, p - *pp);
2349 /* Skip past '::'. */
2350 *pp = p + 2;
2351 }
2352 new_fnlist->fn_fieldlist.name = main_fn_name;
2353
2354 do
2355 {
2356 new_sublist =
2357 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2358 make_cleanup (xfree, new_sublist);
2359 memset (new_sublist, 0, sizeof (struct next_fnfield));
2360
2361 /* Check for and handle cretinous dbx symbol name continuation! */
2362 if (look_ahead_type == NULL)
2363 {
2364 /* Normal case. */
2365 STABS_CONTINUE (pp, objfile);
2366
2367 new_sublist->fn_field.type = read_type (pp, objfile);
2368 if (**pp != ':')
2369 {
2370 /* Invalid symtab info for member function. */
2371 return 0;
2372 }
2373 }
2374 else
2375 {
2376 /* g++ version 1 kludge */
2377 new_sublist->fn_field.type = look_ahead_type;
2378 look_ahead_type = NULL;
2379 }
2380
2381 (*pp)++;
2382 p = *pp;
2383 while (*p != ';')
2384 {
2385 p++;
2386 }
2387
2388 /* If this is just a stub, then we don't have the real name here. */
2389
2390 if (TYPE_STUB (new_sublist->fn_field.type))
2391 {
2392 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2393 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2394 new_sublist->fn_field.is_stub = 1;
2395 }
2396 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2397 *pp = p + 1;
2398
2399 /* Set this member function's visibility fields. */
2400 switch (*(*pp)++)
2401 {
2402 case VISIBILITY_PRIVATE:
2403 new_sublist->fn_field.is_private = 1;
2404 break;
2405 case VISIBILITY_PROTECTED:
2406 new_sublist->fn_field.is_protected = 1;
2407 break;
2408 }
2409
2410 STABS_CONTINUE (pp, objfile);
2411 switch (**pp)
2412 {
2413 case 'A': /* Normal functions. */
2414 new_sublist->fn_field.is_const = 0;
2415 new_sublist->fn_field.is_volatile = 0;
2416 (*pp)++;
2417 break;
2418 case 'B': /* `const' member functions. */
2419 new_sublist->fn_field.is_const = 1;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
2423 case 'C': /* `volatile' member function. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 1;
2426 (*pp)++;
2427 break;
2428 case 'D': /* `const volatile' member function. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
2433 case '*': /* File compiled with g++ version 1 --
2434 no info. */
2435 case '?':
2436 case '.':
2437 break;
2438 default:
2439 complaint (&symfile_complaints,
2440 _("const/volatile indicator missing, got '%c'"),
2441 **pp);
2442 break;
2443 }
2444
2445 switch (*(*pp)++)
2446 {
2447 case '*':
2448 {
2449 int nbits;
2450 /* virtual member function, followed by index.
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
2457 new_sublist->fn_field.voffset =
2458 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2459 if (nbits != 0)
2460 return 0;
2461
2462 STABS_CONTINUE (pp, objfile);
2463 if (**pp == ';' || **pp == '\0')
2464 {
2465 /* Must be g++ version 1. */
2466 new_sublist->fn_field.fcontext = 0;
2467 }
2468 else
2469 {
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type = read_type (pp, objfile);
2474 if (**pp == ':')
2475 {
2476 /* g++ version 1 overloaded methods. */
2477 }
2478 else
2479 {
2480 new_sublist->fn_field.fcontext = look_ahead_type;
2481 if (**pp != ';')
2482 {
2483 return 0;
2484 }
2485 else
2486 {
2487 ++*pp;
2488 }
2489 look_ahead_type = NULL;
2490 }
2491 }
2492 break;
2493 }
2494 case '?':
2495 /* static member function. */
2496 {
2497 int slen = strlen (main_fn_name);
2498
2499 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2500
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2503 methods.
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist->fn_field.physname,
2512 main_fn_name, slen) == 0
2513 && new_sublist->fn_field.physname[slen] == '_'
2514 && new_sublist->fn_field.physname[slen + 1] == '_'))
2515 {
2516 new_sublist->fn_field.is_stub = 1;
2517 }
2518 break;
2519 }
2520
2521 default:
2522 /* error */
2523 complaint (&symfile_complaints,
2524 _("member function type missing, got '%c'"),
2525 (*pp)[-1]);
2526 /* Fall through into normal member function. */
2527
2528 case '.':
2529 /* normal member function. */
2530 new_sublist->fn_field.voffset = 0;
2531 new_sublist->fn_field.fcontext = 0;
2532 break;
2533 }
2534
2535 new_sublist->next = sublist;
2536 sublist = new_sublist;
2537 length++;
2538 STABS_CONTINUE (pp, objfile);
2539 }
2540 while (**pp != ';' && **pp != '\0');
2541
2542 (*pp)++;
2543 STABS_CONTINUE (pp, objfile);
2544
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
2547 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2549 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2550 {
2551 xfree (main_fn_name);
2552 }
2553 else
2554 {
2555 int has_stub = 0;
2556 int has_destructor = 0, has_other = 0;
2557 int is_v3 = 0;
2558 struct next_fnfield *tmp_sublist;
2559
2560 /* Various versions of GCC emit various mostly-useless
2561 strings in the name field for special member functions.
2562
2563 For stub methods, we need to defer correcting the name
2564 until we are ready to unstub the method, because the current
2565 name string is used by gdb_mangle_name. The only stub methods
2566 of concern here are GNU v2 operators; other methods have their
2567 names correct (see caveat below).
2568
2569 For non-stub methods, in GNU v3, we have a complete physname.
2570 Therefore we can safely correct the name now. This primarily
2571 affects constructors and destructors, whose name will be
2572 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2573 operators will also have incorrect names; for instance,
2574 "operator int" will be named "operator i" (i.e. the type is
2575 mangled).
2576
2577 For non-stub methods in GNU v2, we have no easy way to
2578 know if we have a complete physname or not. For most
2579 methods the result depends on the platform (if CPLUS_MARKER
2580 can be `$' or `.', it will use minimal debug information, or
2581 otherwise the full physname will be included).
2582
2583 Rather than dealing with this, we take a different approach.
2584 For v3 mangled names, we can use the full physname; for v2,
2585 we use cplus_demangle_opname (which is actually v2 specific),
2586 because the only interesting names are all operators - once again
2587 barring the caveat below. Skip this process if any method in the
2588 group is a stub, to prevent our fouling up the workings of
2589 gdb_mangle_name.
2590
2591 The caveat: GCC 2.95.x (and earlier?) put constructors and
2592 destructors in the same method group. We need to split this
2593 into two groups, because they should have different names.
2594 So for each method group we check whether it contains both
2595 routines whose physname appears to be a destructor (the physnames
2596 for and destructors are always provided, due to quirks in v2
2597 mangling) and routines whose physname does not appear to be a
2598 destructor. If so then we break up the list into two halves.
2599 Even if the constructors and destructors aren't in the same group
2600 the destructor will still lack the leading tilde, so that also
2601 needs to be fixed.
2602
2603 So, to summarize what we expect and handle here:
2604
2605 Given Given Real Real Action
2606 method name physname physname method name
2607
2608 __opi [none] __opi__3Foo operator int opname
2609 [now or later]
2610 Foo _._3Foo _._3Foo ~Foo separate and
2611 rename
2612 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2613 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2614 */
2615
2616 tmp_sublist = sublist;
2617 while (tmp_sublist != NULL)
2618 {
2619 if (tmp_sublist->fn_field.is_stub)
2620 has_stub = 1;
2621 if (tmp_sublist->fn_field.physname[0] == '_'
2622 && tmp_sublist->fn_field.physname[1] == 'Z')
2623 is_v3 = 1;
2624
2625 if (is_destructor_name (tmp_sublist->fn_field.physname))
2626 has_destructor++;
2627 else
2628 has_other++;
2629
2630 tmp_sublist = tmp_sublist->next;
2631 }
2632
2633 if (has_destructor && has_other)
2634 {
2635 struct next_fnfieldlist *destr_fnlist;
2636 struct next_fnfield *last_sublist;
2637
2638 /* Create a new fn_fieldlist for the destructors. */
2639
2640 destr_fnlist = (struct next_fnfieldlist *)
2641 xmalloc (sizeof (struct next_fnfieldlist));
2642 make_cleanup (xfree, destr_fnlist);
2643 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2644 destr_fnlist->fn_fieldlist.name
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647
2648 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 sizeof (struct fn_field) * has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
2678 total_length += has_destructor;
2679 length -= has_destructor;
2680 }
2681 else if (is_v3)
2682 {
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2685 only:
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
2689
2690 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2691 sublist->fn_field.physname);
2692 }
2693 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2694 {
2695 new_fnlist->fn_fieldlist.name =
2696 concat ("~", main_fn_name, (char *)NULL);
2697 xfree (main_fn_name);
2698 }
2699 else if (!has_stub)
2700 {
2701 char dem_opname[256];
2702 int ret;
2703
2704 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2705 dem_opname, DMGL_ANSI);
2706 if (!ret)
2707 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2708 dem_opname, 0);
2709 if (ret)
2710 new_fnlist->fn_fieldlist.name
2711 = obsavestring (dem_opname, strlen (dem_opname),
2712 &objfile->objfile_obstack);
2713 }
2714
2715 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2716 obstack_alloc (&objfile->objfile_obstack,
2717 sizeof (struct fn_field) * length);
2718 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2719 sizeof (struct fn_field) * length);
2720 for (i = length; (i--, sublist); sublist = sublist->next)
2721 {
2722 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2723 }
2724
2725 new_fnlist->fn_fieldlist.length = length;
2726 new_fnlist->next = fip->fnlist;
2727 fip->fnlist = new_fnlist;
2728 nfn_fields++;
2729 total_length += length;
2730 }
2731 }
2732
2733 if (nfn_fields)
2734 {
2735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2736 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2737 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2738 memset (TYPE_FN_FIELDLISTS (type), 0,
2739 sizeof (struct fn_fieldlist) * nfn_fields);
2740 TYPE_NFN_FIELDS (type) = nfn_fields;
2741 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2742 }
2743
2744 return 1;
2745 }
2746
2747 /* Special GNU C++ name.
2748
2749 Returns 1 for success, 0 for failure. "failure" means that we can't
2750 keep parsing and it's time for error_type(). */
2751
2752 static int
2753 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2754 struct objfile *objfile)
2755 {
2756 char *p;
2757 char *name;
2758 char cpp_abbrev;
2759 struct type *context;
2760
2761 p = *pp;
2762 if (*++p == 'v')
2763 {
2764 name = NULL;
2765 cpp_abbrev = *++p;
2766
2767 *pp = p + 1;
2768
2769 /* At this point, *pp points to something like "22:23=*22...",
2770 where the type number before the ':' is the "context" and
2771 everything after is a regular type definition. Lookup the
2772 type, find it's name, and construct the field name. */
2773
2774 context = read_type (pp, objfile);
2775
2776 switch (cpp_abbrev)
2777 {
2778 case 'f': /* $vf -- a virtual function table pointer */
2779 name = type_name_no_tag (context);
2780 if (name == NULL)
2781 {
2782 name = "";
2783 }
2784 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2785 vptr_name, name, (char *) NULL);
2786 break;
2787
2788 case 'b': /* $vb -- a virtual bsomethingorother */
2789 name = type_name_no_tag (context);
2790 if (name == NULL)
2791 {
2792 complaint (&symfile_complaints,
2793 _("C++ abbreviated type name "
2794 "unknown at symtab pos %d"),
2795 symnum);
2796 name = "FOO";
2797 }
2798 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2799 name, (char *) NULL);
2800 break;
2801
2802 default:
2803 invalid_cpp_abbrev_complaint (*pp);
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2805 "INVALID_CPLUSPLUS_ABBREV",
2806 (char *) NULL);
2807 break;
2808 }
2809
2810 /* At this point, *pp points to the ':'. Skip it and read the
2811 field type. */
2812
2813 p = ++(*pp);
2814 if (p[-1] != ':')
2815 {
2816 invalid_cpp_abbrev_complaint (*pp);
2817 return 0;
2818 }
2819 fip->list->field.type = read_type (pp, objfile);
2820 if (**pp == ',')
2821 (*pp)++; /* Skip the comma. */
2822 else
2823 return 0;
2824
2825 {
2826 int nbits;
2827
2828 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2829 0);
2830 if (nbits != 0)
2831 return 0;
2832 }
2833 /* This field is unpacked. */
2834 FIELD_BITSIZE (fip->list->field) = 0;
2835 fip->list->visibility = VISIBILITY_PRIVATE;
2836 }
2837 else
2838 {
2839 invalid_cpp_abbrev_complaint (*pp);
2840 /* We have no idea what syntax an unrecognized abbrev would have, so
2841 better return 0. If we returned 1, we would need to at least advance
2842 *pp to avoid an infinite loop. */
2843 return 0;
2844 }
2845 return 1;
2846 }
2847
2848 static void
2849 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2850 struct type *type, struct objfile *objfile)
2851 {
2852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2853
2854 fip->list->field.name =
2855 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2856 *pp = p + 1;
2857
2858 /* This means we have a visibility for a field coming. */
2859 if (**pp == '/')
2860 {
2861 (*pp)++;
2862 fip->list->visibility = *(*pp)++;
2863 }
2864 else
2865 {
2866 /* normal dbx-style format, no explicit visibility */
2867 fip->list->visibility = VISIBILITY_PUBLIC;
2868 }
2869
2870 fip->list->field.type = read_type (pp, objfile);
2871 if (**pp == ':')
2872 {
2873 p = ++(*pp);
2874 #if 0
2875 /* Possible future hook for nested types. */
2876 if (**pp == '!')
2877 {
2878 fip->list->field.bitpos = (long) -2; /* nested type */
2879 p = ++(*pp);
2880 }
2881 else
2882 ...;
2883 #endif
2884 while (*p != ';')
2885 {
2886 p++;
2887 }
2888 /* Static class member. */
2889 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2890 *pp = p + 1;
2891 return;
2892 }
2893 else if (**pp != ',')
2894 {
2895 /* Bad structure-type format. */
2896 stabs_general_complaint ("bad structure-type format");
2897 return;
2898 }
2899
2900 (*pp)++; /* Skip the comma. */
2901
2902 {
2903 int nbits;
2904
2905 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2906 if (nbits != 0)
2907 {
2908 stabs_general_complaint ("bad structure-type format");
2909 return;
2910 }
2911 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2912 if (nbits != 0)
2913 {
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917 }
2918
2919 if (FIELD_BITPOS (fip->list->field) == 0
2920 && FIELD_BITSIZE (fip->list->field) == 0)
2921 {
2922 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2923 it is a field which has been optimized out. The correct stab for
2924 this case is to use VISIBILITY_IGNORE, but that is a recent
2925 invention. (2) It is a 0-size array. For example
2926 union { int num; char str[0]; } foo. Printing _("<no value>" for
2927 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2928 will continue to work, and a 0-size array as a whole doesn't
2929 have any contents to print.
2930
2931 I suspect this probably could also happen with gcc -gstabs (not
2932 -gstabs+) for static fields, and perhaps other C++ extensions.
2933 Hopefully few people use -gstabs with gdb, since it is intended
2934 for dbx compatibility. */
2935
2936 /* Ignore this field. */
2937 fip->list->visibility = VISIBILITY_IGNORE;
2938 }
2939 else
2940 {
2941 /* Detect an unpacked field and mark it as such.
2942 dbx gives a bit size for all fields.
2943 Note that forward refs cannot be packed,
2944 and treat enums as if they had the width of ints. */
2945
2946 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2947
2948 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2949 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2950 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2951 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2952 {
2953 FIELD_BITSIZE (fip->list->field) = 0;
2954 }
2955 if ((FIELD_BITSIZE (fip->list->field)
2956 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2957 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2958 && FIELD_BITSIZE (fip->list->field)
2959 == gdbarch_int_bit (gdbarch))
2960 )
2961 &&
2962 FIELD_BITPOS (fip->list->field) % 8 == 0)
2963 {
2964 FIELD_BITSIZE (fip->list->field) = 0;
2965 }
2966 }
2967 }
2968
2969
2970 /* Read struct or class data fields. They have the form:
2971
2972 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2973
2974 At the end, we see a semicolon instead of a field.
2975
2976 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2977 a static field.
2978
2979 The optional VISIBILITY is one of:
2980
2981 '/0' (VISIBILITY_PRIVATE)
2982 '/1' (VISIBILITY_PROTECTED)
2983 '/2' (VISIBILITY_PUBLIC)
2984 '/9' (VISIBILITY_IGNORE)
2985
2986 or nothing, for C style fields with public visibility.
2987
2988 Returns 1 for success, 0 for failure. */
2989
2990 static int
2991 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2992 struct objfile *objfile)
2993 {
2994 char *p;
2995 struct nextfield *new;
2996
2997 /* We better set p right now, in case there are no fields at all... */
2998
2999 p = *pp;
3000
3001 /* Read each data member type until we find the terminating ';' at the end of
3002 the data member list, or break for some other reason such as finding the
3003 start of the member function list. */
3004 /* Stab string for structure/union does not end with two ';' in
3005 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3006
3007 while (**pp != ';' && **pp != '\0')
3008 {
3009 STABS_CONTINUE (pp, objfile);
3010 /* Get space to record the next field's data. */
3011 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3012 make_cleanup (xfree, new);
3013 memset (new, 0, sizeof (struct nextfield));
3014 new->next = fip->list;
3015 fip->list = new;
3016
3017 /* Get the field name. */
3018 p = *pp;
3019
3020 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3021 unless the CPLUS_MARKER is followed by an underscore, in
3022 which case it is just the name of an anonymous type, which we
3023 should handle like any other type name. */
3024
3025 if (is_cplus_marker (p[0]) && p[1] != '_')
3026 {
3027 if (!read_cpp_abbrev (fip, pp, type, objfile))
3028 return 0;
3029 continue;
3030 }
3031
3032 /* Look for the ':' that separates the field name from the field
3033 values. Data members are delimited by a single ':', while member
3034 functions are delimited by a pair of ':'s. When we hit the member
3035 functions (if any), terminate scan loop and return. */
3036
3037 while (*p != ':' && *p != '\0')
3038 {
3039 p++;
3040 }
3041 if (*p == '\0')
3042 return 0;
3043
3044 /* Check to see if we have hit the member functions yet. */
3045 if (p[1] == ':')
3046 {
3047 break;
3048 }
3049 read_one_struct_field (fip, pp, p, type, objfile);
3050 }
3051 if (p[0] == ':' && p[1] == ':')
3052 {
3053 /* (the deleted) chill the list of fields: the last entry (at
3054 the head) is a partially constructed entry which we now
3055 scrub. */
3056 fip->list = fip->list->next;
3057 }
3058 return 1;
3059 }
3060 /* *INDENT-OFF* */
3061 /* The stabs for C++ derived classes contain baseclass information which
3062 is marked by a '!' character after the total size. This function is
3063 called when we encounter the baseclass marker, and slurps up all the
3064 baseclass information.
3065
3066 Immediately following the '!' marker is the number of base classes that
3067 the class is derived from, followed by information for each base class.
3068 For each base class, there are two visibility specifiers, a bit offset
3069 to the base class information within the derived class, a reference to
3070 the type for the base class, and a terminating semicolon.
3071
3072 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3073 ^^ ^ ^ ^ ^ ^ ^
3074 Baseclass information marker __________________|| | | | | | |
3075 Number of baseclasses __________________________| | | | | | |
3076 Visibility specifiers (2) ________________________| | | | | |
3077 Offset in bits from start of class _________________| | | | |
3078 Type number for base class ___________________________| | | |
3079 Visibility specifiers (2) _______________________________| | |
3080 Offset in bits from start of class ________________________| |
3081 Type number of base class ____________________________________|
3082
3083 Return 1 for success, 0 for (error-type-inducing) failure. */
3084 /* *INDENT-ON* */
3085
3086
3087
3088 static int
3089 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3090 struct objfile *objfile)
3091 {
3092 int i;
3093 struct nextfield *new;
3094
3095 if (**pp != '!')
3096 {
3097 return 1;
3098 }
3099 else
3100 {
3101 /* Skip the '!' baseclass information marker. */
3102 (*pp)++;
3103 }
3104
3105 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3106 {
3107 int nbits;
3108
3109 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3110 if (nbits != 0)
3111 return 0;
3112 }
3113
3114 #if 0
3115 /* Some stupid compilers have trouble with the following, so break
3116 it up into simpler expressions. */
3117 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3118 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3119 #else
3120 {
3121 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3122 char *pointer;
3123
3124 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3125 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3126 }
3127 #endif /* 0 */
3128
3129 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3130
3131 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3132 {
3133 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3134 make_cleanup (xfree, new);
3135 memset (new, 0, sizeof (struct nextfield));
3136 new->next = fip->list;
3137 fip->list = new;
3138 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3139 field! */
3140
3141 STABS_CONTINUE (pp, objfile);
3142 switch (**pp)
3143 {
3144 case '0':
3145 /* Nothing to do. */
3146 break;
3147 case '1':
3148 SET_TYPE_FIELD_VIRTUAL (type, i);
3149 break;
3150 default:
3151 /* Unknown character. Complain and treat it as non-virtual. */
3152 {
3153 complaint (&symfile_complaints,
3154 _("Unknown virtual character `%c' for baseclass"),
3155 **pp);
3156 }
3157 }
3158 ++(*pp);
3159
3160 new->visibility = *(*pp)++;
3161 switch (new->visibility)
3162 {
3163 case VISIBILITY_PRIVATE:
3164 case VISIBILITY_PROTECTED:
3165 case VISIBILITY_PUBLIC:
3166 break;
3167 default:
3168 /* Bad visibility format. Complain and treat it as
3169 public. */
3170 {
3171 complaint (&symfile_complaints,
3172 _("Unknown visibility `%c' for baseclass"),
3173 new->visibility);
3174 new->visibility = VISIBILITY_PUBLIC;
3175 }
3176 }
3177
3178 {
3179 int nbits;
3180
3181 /* The remaining value is the bit offset of the portion of the object
3182 corresponding to this baseclass. Always zero in the absence of
3183 multiple inheritance. */
3184
3185 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3186 if (nbits != 0)
3187 return 0;
3188 }
3189
3190 /* The last piece of baseclass information is the type of the
3191 base class. Read it, and remember it's type name as this
3192 field's name. */
3193
3194 new->field.type = read_type (pp, objfile);
3195 new->field.name = type_name_no_tag (new->field.type);
3196
3197 /* Skip trailing ';' and bump count of number of fields seen. */
3198 if (**pp == ';')
3199 (*pp)++;
3200 else
3201 return 0;
3202 }
3203 return 1;
3204 }
3205
3206 /* The tail end of stabs for C++ classes that contain a virtual function
3207 pointer contains a tilde, a %, and a type number.
3208 The type number refers to the base class (possibly this class itself) which
3209 contains the vtable pointer for the current class.
3210
3211 This function is called when we have parsed all the method declarations,
3212 so we can look for the vptr base class info. */
3213
3214 static int
3215 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3216 struct objfile *objfile)
3217 {
3218 char *p;
3219
3220 STABS_CONTINUE (pp, objfile);
3221
3222 /* If we are positioned at a ';', then skip it. */
3223 if (**pp == ';')
3224 {
3225 (*pp)++;
3226 }
3227
3228 if (**pp == '~')
3229 {
3230 (*pp)++;
3231
3232 if (**pp == '=' || **pp == '+' || **pp == '-')
3233 {
3234 /* Obsolete flags that used to indicate the presence
3235 of constructors and/or destructors. */
3236 (*pp)++;
3237 }
3238
3239 /* Read either a '%' or the final ';'. */
3240 if (*(*pp)++ == '%')
3241 {
3242 /* The next number is the type number of the base class
3243 (possibly our own class) which supplies the vtable for
3244 this class. Parse it out, and search that class to find
3245 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3246 and TYPE_VPTR_FIELDNO. */
3247
3248 struct type *t;
3249 int i;
3250
3251 t = read_type (pp, objfile);
3252 p = (*pp)++;
3253 while (*p != '\0' && *p != ';')
3254 {
3255 p++;
3256 }
3257 if (*p == '\0')
3258 {
3259 /* Premature end of symbol. */
3260 return 0;
3261 }
3262
3263 TYPE_VPTR_BASETYPE (type) = t;
3264 if (type == t) /* Our own class provides vtbl ptr. */
3265 {
3266 for (i = TYPE_NFIELDS (t) - 1;
3267 i >= TYPE_N_BASECLASSES (t);
3268 --i)
3269 {
3270 char *name = TYPE_FIELD_NAME (t, i);
3271
3272 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3273 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3274 {
3275 TYPE_VPTR_FIELDNO (type) = i;
3276 goto gotit;
3277 }
3278 }
3279 /* Virtual function table field not found. */
3280 complaint (&symfile_complaints,
3281 _("virtual function table pointer "
3282 "not found when defining class `%s'"),
3283 TYPE_NAME (type));
3284 return 0;
3285 }
3286 else
3287 {
3288 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3289 }
3290
3291 gotit:
3292 *pp = p + 1;
3293 }
3294 }
3295 return 1;
3296 }
3297
3298 static int
3299 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3300 {
3301 int n;
3302
3303 for (n = TYPE_NFN_FIELDS (type);
3304 fip->fnlist != NULL;
3305 fip->fnlist = fip->fnlist->next)
3306 {
3307 --n; /* Circumvent Sun3 compiler bug. */
3308 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3309 }
3310 return 1;
3311 }
3312
3313 /* Create the vector of fields, and record how big it is.
3314 We need this info to record proper virtual function table information
3315 for this class's virtual functions. */
3316
3317 static int
3318 attach_fields_to_type (struct field_info *fip, struct type *type,
3319 struct objfile *objfile)
3320 {
3321 int nfields = 0;
3322 int non_public_fields = 0;
3323 struct nextfield *scan;
3324
3325 /* Count up the number of fields that we have, as well as taking note of
3326 whether or not there are any non-public fields, which requires us to
3327 allocate and build the private_field_bits and protected_field_bits
3328 bitfields. */
3329
3330 for (scan = fip->list; scan != NULL; scan = scan->next)
3331 {
3332 nfields++;
3333 if (scan->visibility != VISIBILITY_PUBLIC)
3334 {
3335 non_public_fields++;
3336 }
3337 }
3338
3339 /* Now we know how many fields there are, and whether or not there are any
3340 non-public fields. Record the field count, allocate space for the
3341 array of fields, and create blank visibility bitfields if necessary. */
3342
3343 TYPE_NFIELDS (type) = nfields;
3344 TYPE_FIELDS (type) = (struct field *)
3345 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3346 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3347
3348 if (non_public_fields)
3349 {
3350 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3351
3352 TYPE_FIELD_PRIVATE_BITS (type) =
3353 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3354 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3355
3356 TYPE_FIELD_PROTECTED_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3359
3360 TYPE_FIELD_IGNORE_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3363 }
3364
3365 /* Copy the saved-up fields into the field vector. Start from the
3366 head of the list, adding to the tail of the field array, so that
3367 they end up in the same order in the array in which they were
3368 added to the list. */
3369
3370 while (nfields-- > 0)
3371 {
3372 TYPE_FIELD (type, nfields) = fip->list->field;
3373 switch (fip->list->visibility)
3374 {
3375 case VISIBILITY_PRIVATE:
3376 SET_TYPE_FIELD_PRIVATE (type, nfields);
3377 break;
3378
3379 case VISIBILITY_PROTECTED:
3380 SET_TYPE_FIELD_PROTECTED (type, nfields);
3381 break;
3382
3383 case VISIBILITY_IGNORE:
3384 SET_TYPE_FIELD_IGNORE (type, nfields);
3385 break;
3386
3387 case VISIBILITY_PUBLIC:
3388 break;
3389
3390 default:
3391 /* Unknown visibility. Complain and treat it as public. */
3392 {
3393 complaint (&symfile_complaints,
3394 _("Unknown visibility `%c' for field"),
3395 fip->list->visibility);
3396 }
3397 break;
3398 }
3399 fip->list = fip->list->next;
3400 }
3401 return 1;
3402 }
3403
3404
3405 /* Complain that the compiler has emitted more than one definition for the
3406 structure type TYPE. */
3407 static void
3408 complain_about_struct_wipeout (struct type *type)
3409 {
3410 char *name = "";
3411 char *kind = "";
3412
3413 if (TYPE_TAG_NAME (type))
3414 {
3415 name = TYPE_TAG_NAME (type);
3416 switch (TYPE_CODE (type))
3417 {
3418 case TYPE_CODE_STRUCT: kind = "struct "; break;
3419 case TYPE_CODE_UNION: kind = "union "; break;
3420 case TYPE_CODE_ENUM: kind = "enum "; break;
3421 default: kind = "";
3422 }
3423 }
3424 else if (TYPE_NAME (type))
3425 {
3426 name = TYPE_NAME (type);
3427 kind = "";
3428 }
3429 else
3430 {
3431 name = "<unknown>";
3432 kind = "";
3433 }
3434
3435 complaint (&symfile_complaints,
3436 _("struct/union type gets multiply defined: %s%s"), kind, name);
3437 }
3438
3439 /* Set the length for all variants of a same main_type, which are
3440 connected in the closed chain.
3441
3442 This is something that needs to be done when a type is defined *after*
3443 some cross references to this type have already been read. Consider
3444 for instance the following scenario where we have the following two
3445 stabs entries:
3446
3447 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3448 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3449
3450 A stubbed version of type dummy is created while processing the first
3451 stabs entry. The length of that type is initially set to zero, since
3452 it is unknown at this point. Also, a "constant" variation of type
3453 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3454 the stabs line).
3455
3456 The second stabs entry allows us to replace the stubbed definition
3457 with the real definition. However, we still need to adjust the length
3458 of the "constant" variation of that type, as its length was left
3459 untouched during the main type replacement... */
3460
3461 static void
3462 set_length_in_type_chain (struct type *type)
3463 {
3464 struct type *ntype = TYPE_CHAIN (type);
3465
3466 while (ntype != type)
3467 {
3468 if (TYPE_LENGTH(ntype) == 0)
3469 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3470 else
3471 complain_about_struct_wipeout (ntype);
3472 ntype = TYPE_CHAIN (ntype);
3473 }
3474 }
3475
3476 /* Read the description of a structure (or union type) and return an object
3477 describing the type.
3478
3479 PP points to a character pointer that points to the next unconsumed token
3480 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3481 *PP will point to "4a:1,0,32;;".
3482
3483 TYPE points to an incomplete type that needs to be filled in.
3484
3485 OBJFILE points to the current objfile from which the stabs information is
3486 being read. (Note that it is redundant in that TYPE also contains a pointer
3487 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3488 */
3489
3490 static struct type *
3491 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3492 struct objfile *objfile)
3493 {
3494 struct cleanup *back_to;
3495 struct field_info fi;
3496
3497 fi.list = NULL;
3498 fi.fnlist = NULL;
3499
3500 /* When describing struct/union/class types in stabs, G++ always drops
3501 all qualifications from the name. So if you've got:
3502 struct A { ... struct B { ... }; ... };
3503 then G++ will emit stabs for `struct A::B' that call it simply
3504 `struct B'. Obviously, if you've got a real top-level definition for
3505 `struct B', or other nested definitions, this is going to cause
3506 problems.
3507
3508 Obviously, GDB can't fix this by itself, but it can at least avoid
3509 scribbling on existing structure type objects when new definitions
3510 appear. */
3511 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3512 || TYPE_STUB (type)))
3513 {
3514 complain_about_struct_wipeout (type);
3515
3516 /* It's probably best to return the type unchanged. */
3517 return type;
3518 }
3519
3520 back_to = make_cleanup (null_cleanup, 0);
3521
3522 INIT_CPLUS_SPECIFIC (type);
3523 TYPE_CODE (type) = type_code;
3524 TYPE_STUB (type) = 0;
3525
3526 /* First comes the total size in bytes. */
3527
3528 {
3529 int nbits;
3530
3531 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3532 if (nbits != 0)
3533 return error_type (pp, objfile);
3534 set_length_in_type_chain (type);
3535 }
3536
3537 /* Now read the baseclasses, if any, read the regular C struct or C++
3538 class member fields, attach the fields to the type, read the C++
3539 member functions, attach them to the type, and then read any tilde
3540 field (baseclass specifier for the class holding the main vtable). */
3541
3542 if (!read_baseclasses (&fi, pp, type, objfile)
3543 || !read_struct_fields (&fi, pp, type, objfile)
3544 || !attach_fields_to_type (&fi, type, objfile)
3545 || !read_member_functions (&fi, pp, type, objfile)
3546 || !attach_fn_fields_to_type (&fi, type)
3547 || !read_tilde_fields (&fi, pp, type, objfile))
3548 {
3549 type = error_type (pp, objfile);
3550 }
3551
3552 do_cleanups (back_to);
3553 return (type);
3554 }
3555
3556 /* Read a definition of an array type,
3557 and create and return a suitable type object.
3558 Also creates a range type which represents the bounds of that
3559 array. */
3560
3561 static struct type *
3562 read_array_type (char **pp, struct type *type,
3563 struct objfile *objfile)
3564 {
3565 struct type *index_type, *element_type, *range_type;
3566 int lower, upper;
3567 int adjustable = 0;
3568 int nbits;
3569
3570 /* Format of an array type:
3571 "ar<index type>;lower;upper;<array_contents_type>".
3572 OS9000: "arlower,upper;<array_contents_type>".
3573
3574 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3575 for these, produce a type like float[][]. */
3576
3577 {
3578 index_type = read_type (pp, objfile);
3579 if (**pp != ';')
3580 /* Improper format of array type decl. */
3581 return error_type (pp, objfile);
3582 ++*pp;
3583 }
3584
3585 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3586 {
3587 (*pp)++;
3588 adjustable = 1;
3589 }
3590 lower = read_huge_number (pp, ';', &nbits, 0);
3591
3592 if (nbits != 0)
3593 return error_type (pp, objfile);
3594
3595 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3596 {
3597 (*pp)++;
3598 adjustable = 1;
3599 }
3600 upper = read_huge_number (pp, ';', &nbits, 0);
3601 if (nbits != 0)
3602 return error_type (pp, objfile);
3603
3604 element_type = read_type (pp, objfile);
3605
3606 if (adjustable)
3607 {
3608 lower = 0;
3609 upper = -1;
3610 }
3611
3612 range_type =
3613 create_range_type ((struct type *) NULL, index_type, lower, upper);
3614 type = create_array_type (type, element_type, range_type);
3615
3616 return type;
3617 }
3618
3619
3620 /* Read a definition of an enumeration type,
3621 and create and return a suitable type object.
3622 Also defines the symbols that represent the values of the type. */
3623
3624 static struct type *
3625 read_enum_type (char **pp, struct type *type,
3626 struct objfile *objfile)
3627 {
3628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3629 char *p;
3630 char *name;
3631 long n;
3632 struct symbol *sym;
3633 int nsyms = 0;
3634 struct pending **symlist;
3635 struct pending *osyms, *syms;
3636 int o_nsyms;
3637 int nbits;
3638 int unsigned_enum = 1;
3639
3640 #if 0
3641 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3642 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3643 to do? For now, force all enum values to file scope. */
3644 if (within_function)
3645 symlist = &local_symbols;
3646 else
3647 #endif
3648 symlist = &file_symbols;
3649 osyms = *symlist;
3650 o_nsyms = osyms ? osyms->nsyms : 0;
3651
3652 /* The aix4 compiler emits an extra field before the enum members;
3653 my guess is it's a type of some sort. Just ignore it. */
3654 if (**pp == '-')
3655 {
3656 /* Skip over the type. */
3657 while (**pp != ':')
3658 (*pp)++;
3659
3660 /* Skip over the colon. */
3661 (*pp)++;
3662 }
3663
3664 /* Read the value-names and their values.
3665 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3666 A semicolon or comma instead of a NAME means the end. */
3667 while (**pp && **pp != ';' && **pp != ',')
3668 {
3669 STABS_CONTINUE (pp, objfile);
3670 p = *pp;
3671 while (*p != ':')
3672 p++;
3673 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3674 *pp = p + 1;
3675 n = read_huge_number (pp, ',', &nbits, 0);
3676 if (nbits != 0)
3677 return error_type (pp, objfile);
3678
3679 sym = (struct symbol *)
3680 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3681 memset (sym, 0, sizeof (struct symbol));
3682 SYMBOL_SET_LINKAGE_NAME (sym, name);
3683 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3684 SYMBOL_CLASS (sym) = LOC_CONST;
3685 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3686 SYMBOL_VALUE (sym) = n;
3687 if (n < 0)
3688 unsigned_enum = 0;
3689 add_symbol_to_list (sym, symlist);
3690 nsyms++;
3691 }
3692
3693 if (**pp == ';')
3694 (*pp)++; /* Skip the semicolon. */
3695
3696 /* Now fill in the fields of the type-structure. */
3697
3698 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3699 set_length_in_type_chain (type);
3700 TYPE_CODE (type) = TYPE_CODE_ENUM;
3701 TYPE_STUB (type) = 0;
3702 if (unsigned_enum)
3703 TYPE_UNSIGNED (type) = 1;
3704 TYPE_NFIELDS (type) = nsyms;
3705 TYPE_FIELDS (type) = (struct field *)
3706 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3707 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3708
3709 /* Find the symbols for the values and put them into the type.
3710 The symbols can be found in the symlist that we put them on
3711 to cause them to be defined. osyms contains the old value
3712 of that symlist; everything up to there was defined by us. */
3713 /* Note that we preserve the order of the enum constants, so
3714 that in something like "enum {FOO, LAST_THING=FOO}" we print
3715 FOO, not LAST_THING. */
3716
3717 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3718 {
3719 int last = syms == osyms ? o_nsyms : 0;
3720 int j = syms->nsyms;
3721
3722 for (; --j >= last; --n)
3723 {
3724 struct symbol *xsym = syms->symbol[j];
3725
3726 SYMBOL_TYPE (xsym) = type;
3727 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3728 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3729 TYPE_FIELD_BITSIZE (type, n) = 0;
3730 }
3731 if (syms == osyms)
3732 break;
3733 }
3734
3735 return type;
3736 }
3737
3738 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3739 typedefs in every file (for int, long, etc):
3740
3741 type = b <signed> <width> <format type>; <offset>; <nbits>
3742 signed = u or s.
3743 optional format type = c or b for char or boolean.
3744 offset = offset from high order bit to start bit of type.
3745 width is # bytes in object of this type, nbits is # bits in type.
3746
3747 The width/offset stuff appears to be for small objects stored in
3748 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3749 FIXME. */
3750
3751 static struct type *
3752 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3753 {
3754 int type_bits;
3755 int nbits;
3756 int signed_type;
3757 enum type_code code = TYPE_CODE_INT;
3758
3759 switch (**pp)
3760 {
3761 case 's':
3762 signed_type = 1;
3763 break;
3764 case 'u':
3765 signed_type = 0;
3766 break;
3767 default:
3768 return error_type (pp, objfile);
3769 }
3770 (*pp)++;
3771
3772 /* For some odd reason, all forms of char put a c here. This is strange
3773 because no other type has this honor. We can safely ignore this because
3774 we actually determine 'char'acterness by the number of bits specified in
3775 the descriptor.
3776 Boolean forms, e.g Fortran logical*X, put a b here. */
3777
3778 if (**pp == 'c')
3779 (*pp)++;
3780 else if (**pp == 'b')
3781 {
3782 code = TYPE_CODE_BOOL;
3783 (*pp)++;
3784 }
3785
3786 /* The first number appears to be the number of bytes occupied
3787 by this type, except that unsigned short is 4 instead of 2.
3788 Since this information is redundant with the third number,
3789 we will ignore it. */
3790 read_huge_number (pp, ';', &nbits, 0);
3791 if (nbits != 0)
3792 return error_type (pp, objfile);
3793
3794 /* The second number is always 0, so ignore it too. */
3795 read_huge_number (pp, ';', &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798
3799 /* The third number is the number of bits for this type. */
3800 type_bits = read_huge_number (pp, 0, &nbits, 0);
3801 if (nbits != 0)
3802 return error_type (pp, objfile);
3803 /* The type *should* end with a semicolon. If it are embedded
3804 in a larger type the semicolon may be the only way to know where
3805 the type ends. If this type is at the end of the stabstring we
3806 can deal with the omitted semicolon (but we don't have to like
3807 it). Don't bother to complain(), Sun's compiler omits the semicolon
3808 for "void". */
3809 if (**pp == ';')
3810 ++(*pp);
3811
3812 if (type_bits == 0)
3813 return init_type (TYPE_CODE_VOID, 1,
3814 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3815 objfile);
3816 else
3817 return init_type (code,
3818 type_bits / TARGET_CHAR_BIT,
3819 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3820 objfile);
3821 }
3822
3823 static struct type *
3824 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3825 {
3826 int nbits;
3827 int details;
3828 int nbytes;
3829 struct type *rettype;
3830
3831 /* The first number has more details about the type, for example
3832 FN_COMPLEX. */
3833 details = read_huge_number (pp, ';', &nbits, 0);
3834 if (nbits != 0)
3835 return error_type (pp, objfile);
3836
3837 /* The second number is the number of bytes occupied by this type. */
3838 nbytes = read_huge_number (pp, ';', &nbits, 0);
3839 if (nbits != 0)
3840 return error_type (pp, objfile);
3841
3842 if (details == NF_COMPLEX || details == NF_COMPLEX16
3843 || details == NF_COMPLEX32)
3844 {
3845 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3846 TYPE_TARGET_TYPE (rettype)
3847 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3848 return rettype;
3849 }
3850
3851 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3852 }
3853
3854 /* Read a number from the string pointed to by *PP.
3855 The value of *PP is advanced over the number.
3856 If END is nonzero, the character that ends the
3857 number must match END, or an error happens;
3858 and that character is skipped if it does match.
3859 If END is zero, *PP is left pointing to that character.
3860
3861 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3862 the number is represented in an octal representation, assume that
3863 it is represented in a 2's complement representation with a size of
3864 TWOS_COMPLEMENT_BITS.
3865
3866 If the number fits in a long, set *BITS to 0 and return the value.
3867 If not, set *BITS to be the number of bits in the number and return 0.
3868
3869 If encounter garbage, set *BITS to -1 and return 0. */
3870
3871 static long
3872 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3873 {
3874 char *p = *pp;
3875 int sign = 1;
3876 int sign_bit = 0;
3877 long n = 0;
3878 int radix = 10;
3879 char overflow = 0;
3880 int nbits = 0;
3881 int c;
3882 long upper_limit;
3883 int twos_complement_representation = 0;
3884
3885 if (*p == '-')
3886 {
3887 sign = -1;
3888 p++;
3889 }
3890
3891 /* Leading zero means octal. GCC uses this to output values larger
3892 than an int (because that would be hard in decimal). */
3893 if (*p == '0')
3894 {
3895 radix = 8;
3896 p++;
3897 }
3898
3899 /* Skip extra zeros. */
3900 while (*p == '0')
3901 p++;
3902
3903 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3904 {
3905 /* Octal, possibly signed. Check if we have enough chars for a
3906 negative number. */
3907
3908 size_t len;
3909 char *p1 = p;
3910
3911 while ((c = *p1) >= '0' && c < '8')
3912 p1++;
3913
3914 len = p1 - p;
3915 if (len > twos_complement_bits / 3
3916 || (twos_complement_bits % 3 == 0
3917 && len == twos_complement_bits / 3))
3918 {
3919 /* Ok, we have enough characters for a signed value, check
3920 for signness by testing if the sign bit is set. */
3921 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3922 c = *p - '0';
3923 if (c & (1 << sign_bit))
3924 {
3925 /* Definitely signed. */
3926 twos_complement_representation = 1;
3927 sign = -1;
3928 }
3929 }
3930 }
3931
3932 upper_limit = LONG_MAX / radix;
3933
3934 while ((c = *p++) >= '0' && c < ('0' + radix))
3935 {
3936 if (n <= upper_limit)
3937 {
3938 if (twos_complement_representation)
3939 {
3940 /* Octal, signed, twos complement representation. In
3941 this case, n is the corresponding absolute value. */
3942 if (n == 0)
3943 {
3944 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3945
3946 n = -sn;
3947 }
3948 else
3949 {
3950 n *= radix;
3951 n -= c - '0';
3952 }
3953 }
3954 else
3955 {
3956 /* unsigned representation */
3957 n *= radix;
3958 n += c - '0'; /* FIXME this overflows anyway. */
3959 }
3960 }
3961 else
3962 overflow = 1;
3963
3964 /* This depends on large values being output in octal, which is
3965 what GCC does. */
3966 if (radix == 8)
3967 {
3968 if (nbits == 0)
3969 {
3970 if (c == '0')
3971 /* Ignore leading zeroes. */
3972 ;
3973 else if (c == '1')
3974 nbits = 1;
3975 else if (c == '2' || c == '3')
3976 nbits = 2;
3977 else
3978 nbits = 3;
3979 }
3980 else
3981 nbits += 3;
3982 }
3983 }
3984 if (end)
3985 {
3986 if (c && c != end)
3987 {
3988 if (bits != NULL)
3989 *bits = -1;
3990 return 0;
3991 }
3992 }
3993 else
3994 --p;
3995
3996 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3997 {
3998 /* We were supposed to parse a number with maximum
3999 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4000 if (bits != NULL)
4001 *bits = -1;
4002 return 0;
4003 }
4004
4005 *pp = p;
4006 if (overflow)
4007 {
4008 if (nbits == 0)
4009 {
4010 /* Large decimal constants are an error (because it is hard to
4011 count how many bits are in them). */
4012 if (bits != NULL)
4013 *bits = -1;
4014 return 0;
4015 }
4016
4017 /* -0x7f is the same as 0x80. So deal with it by adding one to
4018 the number of bits. Two's complement represention octals
4019 can't have a '-' in front. */
4020 if (sign == -1 && !twos_complement_representation)
4021 ++nbits;
4022 if (bits)
4023 *bits = nbits;
4024 }
4025 else
4026 {
4027 if (bits)
4028 *bits = 0;
4029 return n * sign;
4030 }
4031 /* It's *BITS which has the interesting information. */
4032 return 0;
4033 }
4034
4035 static struct type *
4036 read_range_type (char **pp, int typenums[2], int type_size,
4037 struct objfile *objfile)
4038 {
4039 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4040 char *orig_pp = *pp;
4041 int rangenums[2];
4042 long n2, n3;
4043 int n2bits, n3bits;
4044 int self_subrange;
4045 struct type *result_type;
4046 struct type *index_type = NULL;
4047
4048 /* First comes a type we are a subrange of.
4049 In C it is usually 0, 1 or the type being defined. */
4050 if (read_type_number (pp, rangenums) != 0)
4051 return error_type (pp, objfile);
4052 self_subrange = (rangenums[0] == typenums[0] &&
4053 rangenums[1] == typenums[1]);
4054
4055 if (**pp == '=')
4056 {
4057 *pp = orig_pp;
4058 index_type = read_type (pp, objfile);
4059 }
4060
4061 /* A semicolon should now follow; skip it. */
4062 if (**pp == ';')
4063 (*pp)++;
4064
4065 /* The remaining two operands are usually lower and upper bounds
4066 of the range. But in some special cases they mean something else. */
4067 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4068 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4069
4070 if (n2bits == -1 || n3bits == -1)
4071 return error_type (pp, objfile);
4072
4073 if (index_type)
4074 goto handle_true_range;
4075
4076 /* If limits are huge, must be large integral type. */
4077 if (n2bits != 0 || n3bits != 0)
4078 {
4079 char got_signed = 0;
4080 char got_unsigned = 0;
4081 /* Number of bits in the type. */
4082 int nbits = 0;
4083
4084 /* If a type size attribute has been specified, the bounds of
4085 the range should fit in this size. If the lower bounds needs
4086 more bits than the upper bound, then the type is signed. */
4087 if (n2bits <= type_size && n3bits <= type_size)
4088 {
4089 if (n2bits == type_size && n2bits > n3bits)
4090 got_signed = 1;
4091 else
4092 got_unsigned = 1;
4093 nbits = type_size;
4094 }
4095 /* Range from 0 to <large number> is an unsigned large integral type. */
4096 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4097 {
4098 got_unsigned = 1;
4099 nbits = n3bits;
4100 }
4101 /* Range from <large number> to <large number>-1 is a large signed
4102 integral type. Take care of the case where <large number> doesn't
4103 fit in a long but <large number>-1 does. */
4104 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4105 || (n2bits != 0 && n3bits == 0
4106 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4107 && n3 == LONG_MAX))
4108 {
4109 got_signed = 1;
4110 nbits = n2bits;
4111 }
4112
4113 if (got_signed || got_unsigned)
4114 {
4115 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4116 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4117 objfile);
4118 }
4119 else
4120 return error_type (pp, objfile);
4121 }
4122
4123 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4124 if (self_subrange && n2 == 0 && n3 == 0)
4125 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4126
4127 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4128 is the width in bytes.
4129
4130 Fortran programs appear to use this for complex types also. To
4131 distinguish between floats and complex, g77 (and others?) seem
4132 to use self-subranges for the complexes, and subranges of int for
4133 the floats.
4134
4135 Also note that for complexes, g77 sets n2 to the size of one of
4136 the member floats, not the whole complex beast. My guess is that
4137 this was to work well with pre-COMPLEX versions of gdb. */
4138
4139 if (n3 == 0 && n2 > 0)
4140 {
4141 struct type *float_type
4142 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4143
4144 if (self_subrange)
4145 {
4146 struct type *complex_type =
4147 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4148
4149 TYPE_TARGET_TYPE (complex_type) = float_type;
4150 return complex_type;
4151 }
4152 else
4153 return float_type;
4154 }
4155
4156 /* If the upper bound is -1, it must really be an unsigned integral. */
4157
4158 else if (n2 == 0 && n3 == -1)
4159 {
4160 int bits = type_size;
4161
4162 if (bits <= 0)
4163 {
4164 /* We don't know its size. It is unsigned int or unsigned
4165 long. GCC 2.3.3 uses this for long long too, but that is
4166 just a GDB 3.5 compatibility hack. */
4167 bits = gdbarch_int_bit (gdbarch);
4168 }
4169
4170 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4171 TYPE_FLAG_UNSIGNED, NULL, objfile);
4172 }
4173
4174 /* Special case: char is defined (Who knows why) as a subrange of
4175 itself with range 0-127. */
4176 else if (self_subrange && n2 == 0 && n3 == 127)
4177 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4178
4179 /* We used to do this only for subrange of self or subrange of int. */
4180 else if (n2 == 0)
4181 {
4182 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4183 "unsigned long", and we already checked for that,
4184 so don't need to test for it here. */
4185
4186 if (n3 < 0)
4187 /* n3 actually gives the size. */
4188 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4189 NULL, objfile);
4190
4191 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4192 unsigned n-byte integer. But do require n to be a power of
4193 two; we don't want 3- and 5-byte integers flying around. */
4194 {
4195 int bytes;
4196 unsigned long bits;
4197
4198 bits = n3;
4199 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4200 bits >>= 8;
4201 if (bits == 0
4202 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4203 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4204 objfile);
4205 }
4206 }
4207 /* I think this is for Convex "long long". Since I don't know whether
4208 Convex sets self_subrange, I also accept that particular size regardless
4209 of self_subrange. */
4210 else if (n3 == 0 && n2 < 0
4211 && (self_subrange
4212 || n2 == -gdbarch_long_long_bit
4213 (gdbarch) / TARGET_CHAR_BIT))
4214 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4215 else if (n2 == -n3 - 1)
4216 {
4217 if (n3 == 0x7f)
4218 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4219 if (n3 == 0x7fff)
4220 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4221 if (n3 == 0x7fffffff)
4222 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4223 }
4224
4225 /* We have a real range type on our hands. Allocate space and
4226 return a real pointer. */
4227 handle_true_range:
4228
4229 if (self_subrange)
4230 index_type = objfile_type (objfile)->builtin_int;
4231 else
4232 index_type = *dbx_lookup_type (rangenums, objfile);
4233 if (index_type == NULL)
4234 {
4235 /* Does this actually ever happen? Is that why we are worrying
4236 about dealing with it rather than just calling error_type? */
4237
4238 complaint (&symfile_complaints,
4239 _("base type %d of range type is not defined"), rangenums[1]);
4240
4241 index_type = objfile_type (objfile)->builtin_int;
4242 }
4243
4244 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4245 return (result_type);
4246 }
4247
4248 /* Read in an argument list. This is a list of types, separated by commas
4249 and terminated with END. Return the list of types read in, or NULL
4250 if there is an error. */
4251
4252 static struct field *
4253 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4254 int *varargsp)
4255 {
4256 /* FIXME! Remove this arbitrary limit! */
4257 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4258 int n = 0, i;
4259 struct field *rval;
4260
4261 while (**pp != end)
4262 {
4263 if (**pp != ',')
4264 /* Invalid argument list: no ','. */
4265 return NULL;
4266 (*pp)++;
4267 STABS_CONTINUE (pp, objfile);
4268 types[n++] = read_type (pp, objfile);
4269 }
4270 (*pp)++; /* get past `end' (the ':' character). */
4271
4272 if (n == 0)
4273 {
4274 /* We should read at least the THIS parameter here. Some broken stabs
4275 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4276 have been present ";-16,(0,43)" reference instead. This way the
4277 excessive ";" marker prematurely stops the parameters parsing. */
4278
4279 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4280 *varargsp = 0;
4281 }
4282 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4283 *varargsp = 1;
4284 else
4285 {
4286 n--;
4287 *varargsp = 0;
4288 }
4289
4290 rval = (struct field *) xmalloc (n * sizeof (struct field));
4291 memset (rval, 0, n * sizeof (struct field));
4292 for (i = 0; i < n; i++)
4293 rval[i].type = types[i];
4294 *nargsp = n;
4295 return rval;
4296 }
4297 \f
4298 /* Common block handling. */
4299
4300 /* List of symbols declared since the last BCOMM. This list is a tail
4301 of local_symbols. When ECOMM is seen, the symbols on the list
4302 are noted so their proper addresses can be filled in later,
4303 using the common block base address gotten from the assembler
4304 stabs. */
4305
4306 static struct pending *common_block;
4307 static int common_block_i;
4308
4309 /* Name of the current common block. We get it from the BCOMM instead of the
4310 ECOMM to match IBM documentation (even though IBM puts the name both places
4311 like everyone else). */
4312 static char *common_block_name;
4313
4314 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4315 to remain after this function returns. */
4316
4317 void
4318 common_block_start (char *name, struct objfile *objfile)
4319 {
4320 if (common_block_name != NULL)
4321 {
4322 complaint (&symfile_complaints,
4323 _("Invalid symbol data: common block within common block"));
4324 }
4325 common_block = local_symbols;
4326 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4327 common_block_name = obsavestring (name, strlen (name),
4328 &objfile->objfile_obstack);
4329 }
4330
4331 /* Process a N_ECOMM symbol. */
4332
4333 void
4334 common_block_end (struct objfile *objfile)
4335 {
4336 /* Symbols declared since the BCOMM are to have the common block
4337 start address added in when we know it. common_block and
4338 common_block_i point to the first symbol after the BCOMM in
4339 the local_symbols list; copy the list and hang it off the
4340 symbol for the common block name for later fixup. */
4341 int i;
4342 struct symbol *sym;
4343 struct pending *new = 0;
4344 struct pending *next;
4345 int j;
4346
4347 if (common_block_name == NULL)
4348 {
4349 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4350 return;
4351 }
4352
4353 sym = (struct symbol *)
4354 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4355 memset (sym, 0, sizeof (struct symbol));
4356 /* Note: common_block_name already saved on objfile_obstack. */
4357 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4358 SYMBOL_CLASS (sym) = LOC_BLOCK;
4359
4360 /* Now we copy all the symbols which have been defined since the BCOMM. */
4361
4362 /* Copy all the struct pendings before common_block. */
4363 for (next = local_symbols;
4364 next != NULL && next != common_block;
4365 next = next->next)
4366 {
4367 for (j = 0; j < next->nsyms; j++)
4368 add_symbol_to_list (next->symbol[j], &new);
4369 }
4370
4371 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4372 NULL, it means copy all the local symbols (which we already did
4373 above). */
4374
4375 if (common_block != NULL)
4376 for (j = common_block_i; j < common_block->nsyms; j++)
4377 add_symbol_to_list (common_block->symbol[j], &new);
4378
4379 SYMBOL_TYPE (sym) = (struct type *) new;
4380
4381 /* Should we be putting local_symbols back to what it was?
4382 Does it matter? */
4383
4384 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4385 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4386 global_sym_chain[i] = sym;
4387 common_block_name = NULL;
4388 }
4389
4390 /* Add a common block's start address to the offset of each symbol
4391 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4392 the common block name). */
4393
4394 static void
4395 fix_common_block (struct symbol *sym, int valu)
4396 {
4397 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4398
4399 for (; next; next = next->next)
4400 {
4401 int j;
4402
4403 for (j = next->nsyms - 1; j >= 0; j--)
4404 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4405 }
4406 }
4407 \f
4408
4409
4410 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4411 See add_undefined_type for more details. */
4412
4413 static void
4414 add_undefined_type_noname (struct type *type, int typenums[2])
4415 {
4416 struct nat nat;
4417
4418 nat.typenums[0] = typenums [0];
4419 nat.typenums[1] = typenums [1];
4420 nat.type = type;
4421
4422 if (noname_undefs_length == noname_undefs_allocated)
4423 {
4424 noname_undefs_allocated *= 2;
4425 noname_undefs = (struct nat *)
4426 xrealloc ((char *) noname_undefs,
4427 noname_undefs_allocated * sizeof (struct nat));
4428 }
4429 noname_undefs[noname_undefs_length++] = nat;
4430 }
4431
4432 /* Add TYPE to the UNDEF_TYPES vector.
4433 See add_undefined_type for more details. */
4434
4435 static void
4436 add_undefined_type_1 (struct type *type)
4437 {
4438 if (undef_types_length == undef_types_allocated)
4439 {
4440 undef_types_allocated *= 2;
4441 undef_types = (struct type **)
4442 xrealloc ((char *) undef_types,
4443 undef_types_allocated * sizeof (struct type *));
4444 }
4445 undef_types[undef_types_length++] = type;
4446 }
4447
4448 /* What about types defined as forward references inside of a small lexical
4449 scope? */
4450 /* Add a type to the list of undefined types to be checked through
4451 once this file has been read in.
4452
4453 In practice, we actually maintain two such lists: The first list
4454 (UNDEF_TYPES) is used for types whose name has been provided, and
4455 concerns forward references (eg 'xs' or 'xu' forward references);
4456 the second list (NONAME_UNDEFS) is used for types whose name is
4457 unknown at creation time, because they were referenced through
4458 their type number before the actual type was declared.
4459 This function actually adds the given type to the proper list. */
4460
4461 static void
4462 add_undefined_type (struct type *type, int typenums[2])
4463 {
4464 if (TYPE_TAG_NAME (type) == NULL)
4465 add_undefined_type_noname (type, typenums);
4466 else
4467 add_undefined_type_1 (type);
4468 }
4469
4470 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4471
4472 static void
4473 cleanup_undefined_types_noname (struct objfile *objfile)
4474 {
4475 int i;
4476
4477 for (i = 0; i < noname_undefs_length; i++)
4478 {
4479 struct nat nat = noname_undefs[i];
4480 struct type **type;
4481
4482 type = dbx_lookup_type (nat.typenums, objfile);
4483 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4484 {
4485 /* The instance flags of the undefined type are still unset,
4486 and needs to be copied over from the reference type.
4487 Since replace_type expects them to be identical, we need
4488 to set these flags manually before hand. */
4489 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4490 replace_type (nat.type, *type);
4491 }
4492 }
4493
4494 noname_undefs_length = 0;
4495 }
4496
4497 /* Go through each undefined type, see if it's still undefined, and fix it
4498 up if possible. We have two kinds of undefined types:
4499
4500 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4501 Fix: update array length using the element bounds
4502 and the target type's length.
4503 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4504 yet defined at the time a pointer to it was made.
4505 Fix: Do a full lookup on the struct/union tag. */
4506
4507 static void
4508 cleanup_undefined_types_1 (void)
4509 {
4510 struct type **type;
4511
4512 /* Iterate over every undefined type, and look for a symbol whose type
4513 matches our undefined type. The symbol matches if:
4514 1. It is a typedef in the STRUCT domain;
4515 2. It has the same name, and same type code;
4516 3. The instance flags are identical.
4517
4518 It is important to check the instance flags, because we have seen
4519 examples where the debug info contained definitions such as:
4520
4521 "foo_t:t30=B31=xefoo_t:"
4522
4523 In this case, we have created an undefined type named "foo_t" whose
4524 instance flags is null (when processing "xefoo_t"), and then created
4525 another type with the same name, but with different instance flags
4526 ('B' means volatile). I think that the definition above is wrong,
4527 since the same type cannot be volatile and non-volatile at the same
4528 time, but we need to be able to cope with it when it happens. The
4529 approach taken here is to treat these two types as different. */
4530
4531 for (type = undef_types; type < undef_types + undef_types_length; type++)
4532 {
4533 switch (TYPE_CODE (*type))
4534 {
4535
4536 case TYPE_CODE_STRUCT:
4537 case TYPE_CODE_UNION:
4538 case TYPE_CODE_ENUM:
4539 {
4540 /* Check if it has been defined since. Need to do this here
4541 as well as in check_typedef to deal with the (legitimate in
4542 C though not C++) case of several types with the same name
4543 in different source files. */
4544 if (TYPE_STUB (*type))
4545 {
4546 struct pending *ppt;
4547 int i;
4548 /* Name of the type, without "struct" or "union". */
4549 char *typename = TYPE_TAG_NAME (*type);
4550
4551 if (typename == NULL)
4552 {
4553 complaint (&symfile_complaints, _("need a type name"));
4554 break;
4555 }
4556 for (ppt = file_symbols; ppt; ppt = ppt->next)
4557 {
4558 for (i = 0; i < ppt->nsyms; i++)
4559 {
4560 struct symbol *sym = ppt->symbol[i];
4561
4562 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4563 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4564 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4565 TYPE_CODE (*type))
4566 && (TYPE_INSTANCE_FLAGS (*type) ==
4567 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4568 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4569 typename) == 0)
4570 replace_type (*type, SYMBOL_TYPE (sym));
4571 }
4572 }
4573 }
4574 }
4575 break;
4576
4577 default:
4578 {
4579 complaint (&symfile_complaints,
4580 _("forward-referenced types left unresolved, "
4581 "type code %d."),
4582 TYPE_CODE (*type));
4583 }
4584 break;
4585 }
4586 }
4587
4588 undef_types_length = 0;
4589 }
4590
4591 /* Try to fix all the undefined types we ecountered while processing
4592 this unit. */
4593
4594 void
4595 cleanup_undefined_types (struct objfile *objfile)
4596 {
4597 cleanup_undefined_types_1 ();
4598 cleanup_undefined_types_noname (objfile);
4599 }
4600
4601 /* Scan through all of the global symbols defined in the object file,
4602 assigning values to the debugging symbols that need to be assigned
4603 to. Get these symbols from the minimal symbol table. */
4604
4605 void
4606 scan_file_globals (struct objfile *objfile)
4607 {
4608 int hash;
4609 struct minimal_symbol *msymbol;
4610 struct symbol *sym, *prev;
4611 struct objfile *resolve_objfile;
4612
4613 /* SVR4 based linkers copy referenced global symbols from shared
4614 libraries to the main executable.
4615 If we are scanning the symbols for a shared library, try to resolve
4616 them from the minimal symbols of the main executable first. */
4617
4618 if (symfile_objfile && objfile != symfile_objfile)
4619 resolve_objfile = symfile_objfile;
4620 else
4621 resolve_objfile = objfile;
4622
4623 while (1)
4624 {
4625 /* Avoid expensive loop through all minimal symbols if there are
4626 no unresolved symbols. */
4627 for (hash = 0; hash < HASHSIZE; hash++)
4628 {
4629 if (global_sym_chain[hash])
4630 break;
4631 }
4632 if (hash >= HASHSIZE)
4633 return;
4634
4635 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4636 {
4637 QUIT;
4638
4639 /* Skip static symbols. */
4640 switch (MSYMBOL_TYPE (msymbol))
4641 {
4642 case mst_file_text:
4643 case mst_file_data:
4644 case mst_file_bss:
4645 continue;
4646 default:
4647 break;
4648 }
4649
4650 prev = NULL;
4651
4652 /* Get the hash index and check all the symbols
4653 under that hash index. */
4654
4655 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4656
4657 for (sym = global_sym_chain[hash]; sym;)
4658 {
4659 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4660 SYMBOL_LINKAGE_NAME (sym)) == 0)
4661 {
4662 /* Splice this symbol out of the hash chain and
4663 assign the value we have to it. */
4664 if (prev)
4665 {
4666 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4667 }
4668 else
4669 {
4670 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4671 }
4672
4673 /* Check to see whether we need to fix up a common block. */
4674 /* Note: this code might be executed several times for
4675 the same symbol if there are multiple references. */
4676 if (sym)
4677 {
4678 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4679 {
4680 fix_common_block (sym,
4681 SYMBOL_VALUE_ADDRESS (msymbol));
4682 }
4683 else
4684 {
4685 SYMBOL_VALUE_ADDRESS (sym)
4686 = SYMBOL_VALUE_ADDRESS (msymbol);
4687 }
4688 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4689 }
4690
4691 if (prev)
4692 {
4693 sym = SYMBOL_VALUE_CHAIN (prev);
4694 }
4695 else
4696 {
4697 sym = global_sym_chain[hash];
4698 }
4699 }
4700 else
4701 {
4702 prev = sym;
4703 sym = SYMBOL_VALUE_CHAIN (sym);
4704 }
4705 }
4706 }
4707 if (resolve_objfile == objfile)
4708 break;
4709 resolve_objfile = objfile;
4710 }
4711
4712 /* Change the storage class of any remaining unresolved globals to
4713 LOC_UNRESOLVED and remove them from the chain. */
4714 for (hash = 0; hash < HASHSIZE; hash++)
4715 {
4716 sym = global_sym_chain[hash];
4717 while (sym)
4718 {
4719 prev = sym;
4720 sym = SYMBOL_VALUE_CHAIN (sym);
4721
4722 /* Change the symbol address from the misleading chain value
4723 to address zero. */
4724 SYMBOL_VALUE_ADDRESS (prev) = 0;
4725
4726 /* Complain about unresolved common block symbols. */
4727 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4728 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4729 else
4730 complaint (&symfile_complaints,
4731 _("%s: common block `%s' from "
4732 "global_sym_chain unresolved"),
4733 objfile->name, SYMBOL_PRINT_NAME (prev));
4734 }
4735 }
4736 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4737 }
4738
4739 /* Initialize anything that needs initializing when starting to read
4740 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4741 to a psymtab. */
4742
4743 void
4744 stabsread_init (void)
4745 {
4746 }
4747
4748 /* Initialize anything that needs initializing when a completely new
4749 symbol file is specified (not just adding some symbols from another
4750 file, e.g. a shared library). */
4751
4752 void
4753 stabsread_new_init (void)
4754 {
4755 /* Empty the hash table of global syms looking for values. */
4756 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4757 }
4758
4759 /* Initialize anything that needs initializing at the same time as
4760 start_symtab() is called. */
4761
4762 void
4763 start_stabs (void)
4764 {
4765 global_stabs = NULL; /* AIX COFF */
4766 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4767 n_this_object_header_files = 1;
4768 type_vector_length = 0;
4769 type_vector = (struct type **) 0;
4770
4771 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4772 common_block_name = NULL;
4773 }
4774
4775 /* Call after end_symtab(). */
4776
4777 void
4778 end_stabs (void)
4779 {
4780 if (type_vector)
4781 {
4782 xfree (type_vector);
4783 }
4784 type_vector = 0;
4785 type_vector_length = 0;
4786 previous_stab_code = 0;
4787 }
4788
4789 void
4790 finish_global_stabs (struct objfile *objfile)
4791 {
4792 if (global_stabs)
4793 {
4794 patch_block_stabs (global_symbols, global_stabs, objfile);
4795 xfree (global_stabs);
4796 global_stabs = NULL;
4797 }
4798 }
4799
4800 /* Find the end of the name, delimited by a ':', but don't match
4801 ObjC symbols which look like -[Foo bar::]:bla. */
4802 static char *
4803 find_name_end (char *name)
4804 {
4805 char *s = name;
4806
4807 if (s[0] == '-' || *s == '+')
4808 {
4809 /* Must be an ObjC method symbol. */
4810 if (s[1] != '[')
4811 {
4812 error (_("invalid symbol name \"%s\""), name);
4813 }
4814 s = strchr (s, ']');
4815 if (s == NULL)
4816 {
4817 error (_("invalid symbol name \"%s\""), name);
4818 }
4819 return strchr (s, ':');
4820 }
4821 else
4822 {
4823 return strchr (s, ':');
4824 }
4825 }
4826
4827 /* Initializer for this module. */
4828
4829 void
4830 _initialize_stabsread (void)
4831 {
4832 rs6000_builtin_type_data = register_objfile_data ();
4833
4834 undef_types_allocated = 20;
4835 undef_types_length = 0;
4836 undef_types = (struct type **)
4837 xmalloc (undef_types_allocated * sizeof (struct type *));
4838
4839 noname_undefs_allocated = 20;
4840 noname_undefs_length = 0;
4841 noname_undefs = (struct nat *)
4842 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4843 }
This page took 0.207921 seconds and 4 git commands to generate.