1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield
*next
;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist
*next
;
83 struct fn_fieldlist fn_fieldlist
;
89 read_one_struct_field (struct field_info
*, char **, char *,
90 struct type
*, struct objfile
*);
92 static struct type
*dbx_alloc_type (int[2], struct objfile
*);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type
*error_type (char **, struct objfile
*);
99 patch_block_stabs (struct pending
*, struct pending_stabs
*,
102 static void fix_common_block (struct symbol
*, int);
104 static int read_type_number (char **, int *);
106 static struct type
*read_type (char **, struct objfile
*);
108 static struct type
*read_range_type (char **, int[2], int, struct objfile
*);
110 static struct type
*read_sun_builtin_type (char **, int[2], struct objfile
*);
112 static struct type
*read_sun_floating_type (char **, int[2],
115 static struct type
*read_enum_type (char **, struct type
*, struct objfile
*);
117 static struct type
*rs6000_builtin_type (int, struct objfile
*);
120 read_member_functions (struct field_info
*, char **, struct type
*,
124 read_struct_fields (struct field_info
*, char **, struct type
*,
128 read_baseclasses (struct field_info
*, char **, struct type
*,
132 read_tilde_fields (struct field_info
*, char **, struct type
*,
135 static int attach_fn_fields_to_type (struct field_info
*, struct type
*);
137 static int attach_fields_to_type (struct field_info
*, struct type
*,
140 static struct type
*read_struct_type (char **, struct type
*,
144 static struct type
*read_array_type (char **, struct type
*,
147 static struct field
*read_args (char **, int, struct objfile
*, int *, int *);
149 static void add_undefined_type (struct type
*, int[2]);
152 read_cpp_abbrev (struct field_info
*, char **, struct type
*,
155 static char *find_name_end (char *name
);
157 static int process_reference (char **string
);
159 void stabsread_clear_cache (void);
161 static const char vptr_name
[] = "_vptr$";
162 static const char vb_name
[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1
)
167 complaint (&symfile_complaints
, _("invalid C++ abbreviation `%s'"), arg1
);
171 reg_value_complaint (int regnum
, int num_regs
, const char *sym
)
173 complaint (&symfile_complaints
,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum
, num_regs
- 1, sym
);
179 stabs_general_complaint (const char *arg1
)
181 complaint (&symfile_complaints
, "%s", arg1
);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type
**undef_types
;
187 static int undef_types_allocated
;
188 static int undef_types_length
;
189 static struct symbol
*current_symbol
= NULL
;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat
*noname_undefs
;
202 static int noname_undefs_allocated
;
203 static int noname_undefs_length
;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type
**
221 dbx_lookup_type (int typenums
[2], struct objfile
*objfile
)
223 int filenum
= typenums
[0];
224 int index
= typenums
[1];
227 struct header_file
*f
;
230 if (filenum
== -1) /* -1,-1 is for temporary types. */
233 if (filenum
< 0 || filenum
>= n_this_object_header_files
)
235 complaint (&symfile_complaints
,
236 _("Invalid symbol data: type number "
237 "(%d,%d) out of range at symtab pos %d."),
238 filenum
, index
, symnum
);
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type
*temp_type
;
253 temp_type
= rs6000_builtin_type (index
, objfile
);
257 /* Type is defined outside of header files.
258 Find it in this object file's type vector. */
259 if (index
>= type_vector_length
)
261 old_len
= type_vector_length
;
264 type_vector_length
= INITIAL_TYPE_VECTOR_LENGTH
;
265 type_vector
= (struct type
**)
266 xmalloc (type_vector_length
* sizeof (struct type
*));
268 while (index
>= type_vector_length
)
270 type_vector_length
*= 2;
272 type_vector
= (struct type
**)
273 xrealloc ((char *) type_vector
,
274 (type_vector_length
* sizeof (struct type
*)));
275 memset (&type_vector
[old_len
], 0,
276 (type_vector_length
- old_len
) * sizeof (struct type
*));
278 return (&type_vector
[index
]);
282 real_filenum
= this_object_header_files
[filenum
];
284 if (real_filenum
>= N_HEADER_FILES (objfile
))
286 static struct type
*temp_type
;
288 warning (_("GDB internal error: bad real_filenum"));
291 temp_type
= objfile_type (objfile
)->builtin_error
;
295 f
= HEADER_FILES (objfile
) + real_filenum
;
297 f_orig_length
= f
->length
;
298 if (index
>= f_orig_length
)
300 while (index
>= f
->length
)
304 f
->vector
= (struct type
**)
305 xrealloc ((char *) f
->vector
, f
->length
* sizeof (struct type
*));
306 memset (&f
->vector
[f_orig_length
], 0,
307 (f
->length
- f_orig_length
) * sizeof (struct type
*));
309 return (&f
->vector
[index
]);
313 /* Make sure there is a type allocated for type numbers TYPENUMS
314 and return the type object.
315 This can create an empty (zeroed) type object.
316 TYPENUMS may be (-1, -1) to return a new type object that is not
317 put into the type vector, and so may not be referred to by number. */
320 dbx_alloc_type (int typenums
[2], struct objfile
*objfile
)
322 struct type
**type_addr
;
324 if (typenums
[0] == -1)
326 return (alloc_type (objfile
));
329 type_addr
= dbx_lookup_type (typenums
, objfile
);
331 /* If we are referring to a type not known at all yet,
332 allocate an empty type for it.
333 We will fill it in later if we find out how. */
336 *type_addr
= alloc_type (objfile
);
342 /* for all the stabs in a given stab vector, build appropriate types
343 and fix their symbols in given symbol vector. */
346 patch_block_stabs (struct pending
*symbols
, struct pending_stabs
*stabs
,
347 struct objfile
*objfile
)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii
= 0; ii
< stabs
->count
; ++ii
)
361 name
= stabs
->stab
[ii
];
362 pp
= (char *) strchr (name
, ':');
363 gdb_assert (pp
); /* Must find a ':' or game's over. */
367 pp
= (char *) strchr (pp
, ':');
369 sym
= find_symbol_in_list (symbols
, name
, pp
- name
);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym
= (struct symbol
*)
384 obstack_alloc (&objfile
->objfile_obstack
,
385 sizeof (struct symbol
));
387 memset (sym
, 0, sizeof (struct symbol
));
388 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
389 SYMBOL_CLASS (sym
) = LOC_OPTIMIZED_OUT
;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym
, obsavestring (name
, pp
- name
,
392 &objfile
->objfile_obstack
));
394 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
400 lookup_function_type (read_type (&pp
, objfile
));
404 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
406 add_symbol_to_list (sym
, &global_symbols
);
411 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
414 lookup_function_type (read_type (&pp
, objfile
));
418 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
432 Returns 0 for success, -1 for error. */
435 read_type_number (char **pp
, int *typenums
)
442 typenums
[0] = read_huge_number (pp
, ',', &nbits
, 0);
445 typenums
[1] = read_huge_number (pp
, ')', &nbits
, 0);
452 typenums
[1] = read_huge_number (pp
, 0, &nbits
, 0);
460 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
461 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
462 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
463 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
465 /* Structure for storing pointers to reference definitions for fast lookup
466 during "process_later". */
475 #define MAX_CHUNK_REFS 100
476 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
479 static struct ref_map
*ref_map
;
481 /* Ptr to free cell in chunk's linked list. */
482 static int ref_count
= 0;
484 /* Number of chunks malloced. */
485 static int ref_chunk
= 0;
487 /* This file maintains a cache of stabs aliases found in the symbol
488 table. If the symbol table changes, this cache must be cleared
489 or we are left holding onto data in invalid obstacks. */
491 stabsread_clear_cache (void)
497 /* Create array of pointers mapping refids to symbols and stab strings.
498 Add pointers to reference definition symbols and/or their values as we
499 find them, using their reference numbers as our index.
500 These will be used later when we resolve references. */
502 ref_add (int refnum
, struct symbol
*sym
, char *stabs
, CORE_ADDR value
)
506 if (refnum
>= ref_count
)
507 ref_count
= refnum
+ 1;
508 if (ref_count
> ref_chunk
* MAX_CHUNK_REFS
)
510 int new_slots
= ref_count
- ref_chunk
* MAX_CHUNK_REFS
;
511 int new_chunks
= new_slots
/ MAX_CHUNK_REFS
+ 1;
513 ref_map
= (struct ref_map
*)
514 xrealloc (ref_map
, REF_MAP_SIZE (ref_chunk
+ new_chunks
));
515 memset (ref_map
+ ref_chunk
* MAX_CHUNK_REFS
, 0,
516 new_chunks
* REF_CHUNK_SIZE
);
517 ref_chunk
+= new_chunks
;
519 ref_map
[refnum
].stabs
= stabs
;
520 ref_map
[refnum
].sym
= sym
;
521 ref_map
[refnum
].value
= value
;
524 /* Return defined sym for the reference REFNUM. */
526 ref_search (int refnum
)
528 if (refnum
< 0 || refnum
> ref_count
)
530 return ref_map
[refnum
].sym
;
533 /* Parse a reference id in STRING and return the resulting
534 reference number. Move STRING beyond the reference id. */
537 process_reference (char **string
)
545 /* Advance beyond the initial '#'. */
548 /* Read number as reference id. */
549 while (*p
&& isdigit (*p
))
551 refnum
= refnum
* 10 + *p
- '0';
558 /* If STRING defines a reference, store away a pointer to the reference
559 definition for later use. Return the reference number. */
562 symbol_reference_defined (char **string
)
567 refnum
= process_reference (&p
);
569 /* Defining symbols end in '='. */
572 /* Symbol is being defined here. */
578 /* Must be a reference. Either the symbol has already been defined,
579 or this is a forward reference to it. */
586 stab_reg_to_regnum (struct symbol
*sym
, struct gdbarch
*gdbarch
)
588 int regno
= gdbarch_stab_reg_to_regnum (gdbarch
, SYMBOL_VALUE (sym
));
590 if (regno
>= gdbarch_num_regs (gdbarch
)
591 + gdbarch_num_pseudo_regs (gdbarch
))
593 reg_value_complaint (regno
,
594 gdbarch_num_regs (gdbarch
)
595 + gdbarch_num_pseudo_regs (gdbarch
),
596 SYMBOL_PRINT_NAME (sym
));
598 regno
= gdbarch_sp_regnum (gdbarch
); /* Known safe, though useless. */
604 static const struct symbol_register_ops stab_register_funcs
= {
609 define_symbol (CORE_ADDR valu
, char *string
, int desc
, int type
,
610 struct objfile
*objfile
)
612 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
614 char *p
= (char *) find_name_end (string
);
618 char *new_name
= NULL
;
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
627 /* Ignore syms with empty names. */
631 /* Ignore old-style symbols from cc -go. */
641 /* If a nameless stab entry, all we need is the type, not the symbol.
642 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
643 nameless
= (p
== string
|| ((string
[0] == ' ') && (string
[1] == ':')));
645 current_symbol
= sym
= (struct symbol
*)
646 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
647 memset (sym
, 0, sizeof (struct symbol
));
649 switch (type
& N_TYPE
)
652 SYMBOL_SECTION (sym
) = SECT_OFF_TEXT (objfile
);
655 SYMBOL_SECTION (sym
) = SECT_OFF_DATA (objfile
);
658 SYMBOL_SECTION (sym
) = SECT_OFF_BSS (objfile
);
662 if (processing_gcc_compilation
)
664 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
665 number of bytes occupied by a type or object, which we ignore. */
666 SYMBOL_LINE (sym
) = desc
;
670 SYMBOL_LINE (sym
) = 0; /* unknown */
673 if (is_cplus_marker (string
[0]))
675 /* Special GNU C++ names. */
679 SYMBOL_SET_LINKAGE_NAME (sym
, "this");
682 case 'v': /* $vtbl_ptr_type */
686 SYMBOL_SET_LINKAGE_NAME (sym
, "eh_throw");
690 /* This was an anonymous type that was never fixed up. */
694 /* SunPRO (3.0 at least) static variable encoding. */
695 if (gdbarch_static_transform_name_p (gdbarch
))
697 /* ... fall through ... */
700 complaint (&symfile_complaints
, _("Unknown C++ symbol name `%s'"),
702 goto normal
; /* Do *something* with it. */
708 SYMBOL_SET_LANGUAGE (sym
, current_subfile
->language
);
709 if (SYMBOL_LANGUAGE (sym
) == language_cplus
)
711 char *name
= alloca (p
- string
+ 1);
713 memcpy (name
, string
, p
- string
);
714 name
[p
- string
] = '\0';
715 new_name
= cp_canonicalize_string (name
);
717 if (new_name
!= NULL
)
719 SYMBOL_SET_NAMES (sym
, new_name
, strlen (new_name
), 1, objfile
);
723 SYMBOL_SET_NAMES (sym
, string
, p
- string
, 1, objfile
);
725 if (SYMBOL_LANGUAGE (sym
) == language_cplus
)
726 cp_scan_for_anonymous_namespaces (sym
);
731 /* Determine the type of name being defined. */
733 /* Getting GDB to correctly skip the symbol on an undefined symbol
734 descriptor and not ever dump core is a very dodgy proposition if
735 we do things this way. I say the acorn RISC machine can just
736 fix their compiler. */
737 /* The Acorn RISC machine's compiler can put out locals that don't
738 start with "234=" or "(3,4)=", so assume anything other than the
739 deftypes we know how to handle is a local. */
740 if (!strchr ("cfFGpPrStTvVXCR", *p
))
742 if (isdigit (*p
) || *p
== '(' || *p
== '-')
751 /* c is a special case, not followed by a type-number.
752 SYMBOL:c=iVALUE for an integer constant symbol.
753 SYMBOL:c=rVALUE for a floating constant symbol.
754 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
755 e.g. "b:c=e6,0" for "const b = blob1"
756 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
759 SYMBOL_CLASS (sym
) = LOC_CONST
;
760 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
761 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
762 add_symbol_to_list (sym
, &file_symbols
);
772 struct type
*dbl_type
;
774 /* FIXME-if-picky-about-floating-accuracy: Should be using
775 target arithmetic to get the value. real.c in GCC
776 probably has the necessary code. */
778 dbl_type
= objfile_type (objfile
)->builtin_double
;
780 obstack_alloc (&objfile
->objfile_obstack
,
781 TYPE_LENGTH (dbl_type
));
782 store_typed_floating (dbl_valu
, dbl_type
, d
);
784 SYMBOL_TYPE (sym
) = dbl_type
;
785 SYMBOL_VALUE_BYTES (sym
) = dbl_valu
;
786 SYMBOL_CLASS (sym
) = LOC_CONST_BYTES
;
791 /* Defining integer constants this way is kind of silly,
792 since 'e' constants allows the compiler to give not
793 only the value, but the type as well. C has at least
794 int, long, unsigned int, and long long as constant
795 types; other languages probably should have at least
796 unsigned as well as signed constants. */
798 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_long
;
799 SYMBOL_VALUE (sym
) = atoi (p
);
800 SYMBOL_CLASS (sym
) = LOC_CONST
;
806 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_char
;
807 SYMBOL_VALUE (sym
) = atoi (p
);
808 SYMBOL_CLASS (sym
) = LOC_CONST
;
814 struct type
*range_type
;
817 gdb_byte
*string_local
= (gdb_byte
*) alloca (strlen (p
));
818 gdb_byte
*string_value
;
820 if (quote
!= '\'' && quote
!= '"')
822 SYMBOL_CLASS (sym
) = LOC_CONST
;
823 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
824 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
825 add_symbol_to_list (sym
, &file_symbols
);
829 /* Find matching quote, rejecting escaped quotes. */
830 while (*p
&& *p
!= quote
)
832 if (*p
== '\\' && p
[1] == quote
)
834 string_local
[ind
] = (gdb_byte
) quote
;
840 string_local
[ind
] = (gdb_byte
) (*p
);
847 SYMBOL_CLASS (sym
) = LOC_CONST
;
848 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
849 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
850 add_symbol_to_list (sym
, &file_symbols
);
854 /* NULL terminate the string. */
855 string_local
[ind
] = 0;
857 = create_range_type (NULL
,
858 objfile_type (objfile
)->builtin_int
,
860 SYMBOL_TYPE (sym
) = create_array_type (NULL
,
861 objfile_type (objfile
)->builtin_char
,
863 string_value
= obstack_alloc (&objfile
->objfile_obstack
, ind
+ 1);
864 memcpy (string_value
, string_local
, ind
+ 1);
867 SYMBOL_VALUE_BYTES (sym
) = string_value
;
868 SYMBOL_CLASS (sym
) = LOC_CONST_BYTES
;
873 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
874 can be represented as integral.
875 e.g. "b:c=e6,0" for "const b = blob1"
876 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
878 SYMBOL_CLASS (sym
) = LOC_CONST
;
879 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
883 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
888 /* If the value is too big to fit in an int (perhaps because
889 it is unsigned), or something like that, we silently get
890 a bogus value. The type and everything else about it is
891 correct. Ideally, we should be using whatever we have
892 available for parsing unsigned and long long values,
894 SYMBOL_VALUE (sym
) = atoi (p
);
899 SYMBOL_CLASS (sym
) = LOC_CONST
;
900 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
903 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
904 add_symbol_to_list (sym
, &file_symbols
);
908 /* The name of a caught exception. */
909 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
910 SYMBOL_CLASS (sym
) = LOC_LABEL
;
911 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
912 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
913 add_symbol_to_list (sym
, &local_symbols
);
917 /* A static function definition. */
918 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
919 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
920 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
921 add_symbol_to_list (sym
, &file_symbols
);
922 /* fall into process_function_types. */
924 process_function_types
:
925 /* Function result types are described as the result type in stabs.
926 We need to convert this to the function-returning-type-X type
927 in GDB. E.g. "int" is converted to "function returning int". */
928 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_FUNC
)
929 SYMBOL_TYPE (sym
) = lookup_function_type (SYMBOL_TYPE (sym
));
931 /* All functions in C++ have prototypes. Stabs does not offer an
932 explicit way to identify prototyped or unprototyped functions,
933 but both GCC and Sun CC emit stabs for the "call-as" type rather
934 than the "declared-as" type for unprototyped functions, so
935 we treat all functions as if they were prototyped. This is used
936 primarily for promotion when calling the function from GDB. */
937 TYPE_PROTOTYPED (SYMBOL_TYPE (sym
)) = 1;
939 /* fall into process_prototype_types. */
941 process_prototype_types
:
942 /* Sun acc puts declared types of arguments here. */
945 struct type
*ftype
= SYMBOL_TYPE (sym
);
950 /* Obtain a worst case guess for the number of arguments
951 by counting the semicolons. */
958 /* Allocate parameter information fields and fill them in. */
959 TYPE_FIELDS (ftype
) = (struct field
*)
960 TYPE_ALLOC (ftype
, nsemi
* sizeof (struct field
));
965 /* A type number of zero indicates the start of varargs.
966 FIXME: GDB currently ignores vararg functions. */
967 if (p
[0] == '0' && p
[1] == '\0')
969 ptype
= read_type (&p
, objfile
);
971 /* The Sun compilers mark integer arguments, which should
972 be promoted to the width of the calling conventions, with
973 a type which references itself. This type is turned into
974 a TYPE_CODE_VOID type by read_type, and we have to turn
975 it back into builtin_int here.
976 FIXME: Do we need a new builtin_promoted_int_arg ? */
977 if (TYPE_CODE (ptype
) == TYPE_CODE_VOID
)
978 ptype
= objfile_type (objfile
)->builtin_int
;
979 TYPE_FIELD_TYPE (ftype
, nparams
) = ptype
;
980 TYPE_FIELD_ARTIFICIAL (ftype
, nparams
++) = 0;
982 TYPE_NFIELDS (ftype
) = nparams
;
983 TYPE_PROTOTYPED (ftype
) = 1;
988 /* A global function definition. */
989 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
990 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
991 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
992 add_symbol_to_list (sym
, &global_symbols
);
993 goto process_function_types
;
996 /* For a class G (global) symbol, it appears that the
997 value is not correct. It is necessary to search for the
998 corresponding linker definition to find the value.
999 These definitions appear at the end of the namelist. */
1000 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1001 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1002 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1003 /* Don't add symbol references to global_sym_chain.
1004 Symbol references don't have valid names and wont't match up with
1005 minimal symbols when the global_sym_chain is relocated.
1006 We'll fixup symbol references when we fixup the defining symbol. */
1007 if (SYMBOL_LINKAGE_NAME (sym
) && SYMBOL_LINKAGE_NAME (sym
)[0] != '#')
1009 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
1010 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
1011 global_sym_chain
[i
] = sym
;
1013 add_symbol_to_list (sym
, &global_symbols
);
1016 /* This case is faked by a conditional above,
1017 when there is no code letter in the dbx data.
1018 Dbx data never actually contains 'l'. */
1021 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1022 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
1023 SYMBOL_VALUE (sym
) = valu
;
1024 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1025 add_symbol_to_list (sym
, &local_symbols
);
1030 /* pF is a two-letter code that means a function parameter in Fortran.
1031 The type-number specifies the type of the return value.
1032 Translate it into a pointer-to-function type. */
1036 = lookup_pointer_type
1037 (lookup_function_type (read_type (&p
, objfile
)));
1040 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1042 SYMBOL_CLASS (sym
) = LOC_ARG
;
1043 SYMBOL_VALUE (sym
) = valu
;
1044 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1045 SYMBOL_IS_ARGUMENT (sym
) = 1;
1046 add_symbol_to_list (sym
, &local_symbols
);
1048 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_BIG
)
1050 /* On little-endian machines, this crud is never necessary,
1051 and, if the extra bytes contain garbage, is harmful. */
1055 /* If it's gcc-compiled, if it says `short', believe it. */
1056 if (processing_gcc_compilation
1057 || gdbarch_believe_pcc_promotion (gdbarch
))
1060 if (!gdbarch_believe_pcc_promotion (gdbarch
))
1062 /* If PCC says a parameter is a short or a char, it is
1064 if (TYPE_LENGTH (SYMBOL_TYPE (sym
))
1065 < gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
1066 && TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_INT
)
1069 TYPE_UNSIGNED (SYMBOL_TYPE (sym
))
1070 ? objfile_type (objfile
)->builtin_unsigned_int
1071 : objfile_type (objfile
)->builtin_int
;
1077 /* acc seems to use P to declare the prototypes of functions that
1078 are referenced by this file. gdb is not prepared to deal
1079 with this extra information. FIXME, it ought to. */
1082 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1083 goto process_prototype_types
;
1088 /* Parameter which is in a register. */
1089 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1090 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1091 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1092 SYMBOL_IS_ARGUMENT (sym
) = 1;
1093 SYMBOL_VALUE (sym
) = valu
;
1094 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1095 add_symbol_to_list (sym
, &local_symbols
);
1099 /* Register variable (either global or local). */
1100 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1101 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1102 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1103 SYMBOL_VALUE (sym
) = valu
;
1104 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1105 if (within_function
)
1107 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1108 the same name to represent an argument passed in a
1109 register. GCC uses 'P' for the same case. So if we find
1110 such a symbol pair we combine it into one 'P' symbol.
1111 For Sun cc we need to do this regardless of
1112 stabs_argument_has_addr, because the compiler puts out
1113 the 'p' symbol even if it never saves the argument onto
1116 On most machines, we want to preserve both symbols, so
1117 that we can still get information about what is going on
1118 with the stack (VAX for computing args_printed, using
1119 stack slots instead of saved registers in backtraces,
1122 Note that this code illegally combines
1123 main(argc) struct foo argc; { register struct foo argc; }
1124 but this case is considered pathological and causes a warning
1125 from a decent compiler. */
1128 && local_symbols
->nsyms
> 0
1129 && gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
)))
1131 struct symbol
*prev_sym
;
1133 prev_sym
= local_symbols
->symbol
[local_symbols
->nsyms
- 1];
1134 if ((SYMBOL_CLASS (prev_sym
) == LOC_REF_ARG
1135 || SYMBOL_CLASS (prev_sym
) == LOC_ARG
)
1136 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym
),
1137 SYMBOL_LINKAGE_NAME (sym
)) == 0)
1139 SYMBOL_CLASS (prev_sym
) = LOC_REGISTER
;
1140 SYMBOL_REGISTER_OPS (prev_sym
) = &stab_register_funcs
;
1141 /* Use the type from the LOC_REGISTER; that is the type
1142 that is actually in that register. */
1143 SYMBOL_TYPE (prev_sym
) = SYMBOL_TYPE (sym
);
1144 SYMBOL_VALUE (prev_sym
) = SYMBOL_VALUE (sym
);
1149 add_symbol_to_list (sym
, &local_symbols
);
1152 add_symbol_to_list (sym
, &file_symbols
);
1156 /* Static symbol at top level of file. */
1157 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1158 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1159 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1160 if (gdbarch_static_transform_name_p (gdbarch
)
1161 && gdbarch_static_transform_name (gdbarch
,
1162 SYMBOL_LINKAGE_NAME (sym
))
1163 != SYMBOL_LINKAGE_NAME (sym
))
1165 struct minimal_symbol
*msym
;
1167 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
),
1171 char *new_name
= gdbarch_static_transform_name
1172 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1174 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1175 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1178 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1179 add_symbol_to_list (sym
, &file_symbols
);
1183 /* In Ada, there is no distinction between typedef and non-typedef;
1184 any type declaration implicitly has the equivalent of a typedef,
1185 and thus 't' is in fact equivalent to 'Tt'.
1187 Therefore, for Ada units, we check the character immediately
1188 before the 't', and if we do not find a 'T', then make sure to
1189 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1190 will be stored in the VAR_DOMAIN). If the symbol was indeed
1191 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1192 elsewhere, so we don't need to take care of that.
1194 This is important to do, because of forward references:
1195 The cleanup of undefined types stored in undef_types only uses
1196 STRUCT_DOMAIN symbols to perform the replacement. */
1197 synonym
= (SYMBOL_LANGUAGE (sym
) == language_ada
&& p
[-2] != 'T');
1200 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1202 /* For a nameless type, we don't want a create a symbol, thus we
1203 did not use `sym'. Return without further processing. */
1207 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1208 SYMBOL_VALUE (sym
) = valu
;
1209 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1210 /* C++ vagaries: we may have a type which is derived from
1211 a base type which did not have its name defined when the
1212 derived class was output. We fill in the derived class's
1213 base part member's name here in that case. */
1214 if (TYPE_NAME (SYMBOL_TYPE (sym
)) != NULL
)
1215 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_STRUCT
1216 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_UNION
)
1217 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)))
1221 for (j
= TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)) - 1; j
>= 0; j
--)
1222 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) == 0)
1223 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) =
1224 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym
), j
));
1227 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == NULL
)
1229 /* gcc-2.6 or later (when using -fvtable-thunks)
1230 emits a unique named type for a vtable entry.
1231 Some gdb code depends on that specific name. */
1232 extern const char vtbl_ptr_name
[];
1234 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_PTR
1235 && strcmp (SYMBOL_LINKAGE_NAME (sym
), vtbl_ptr_name
))
1236 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_FUNC
)
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1261 typedef char *caddr_t;
1273 /* Pascal accepts names for pointer types. */
1274 if (current_subfile
->language
== language_pascal
)
1276 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1280 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1283 add_symbol_to_list (sym
, &file_symbols
);
1287 /* Create the STRUCT_DOMAIN clone. */
1288 struct symbol
*struct_sym
= (struct symbol
*)
1289 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1292 SYMBOL_CLASS (struct_sym
) = LOC_TYPEDEF
;
1293 SYMBOL_VALUE (struct_sym
) = valu
;
1294 SYMBOL_DOMAIN (struct_sym
) = STRUCT_DOMAIN
;
1295 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1296 TYPE_NAME (SYMBOL_TYPE (sym
))
1297 = obconcat (&objfile
->objfile_obstack
,
1298 SYMBOL_LINKAGE_NAME (sym
),
1300 add_symbol_to_list (struct_sym
, &file_symbols
);
1306 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1307 by 't' which means we are typedef'ing it as well. */
1308 synonym
= *p
== 't';
1313 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1315 /* For a nameless type, we don't want a create a symbol, thus we
1316 did not use `sym'. Return without further processing. */
1320 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1321 SYMBOL_VALUE (sym
) = valu
;
1322 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
1323 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym
)) == 0)
1324 TYPE_TAG_NAME (SYMBOL_TYPE (sym
))
1325 = obconcat (&objfile
->objfile_obstack
,
1326 SYMBOL_LINKAGE_NAME (sym
),
1328 add_symbol_to_list (sym
, &file_symbols
);
1332 /* Clone the sym and then modify it. */
1333 struct symbol
*typedef_sym
= (struct symbol
*)
1334 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1336 *typedef_sym
= *sym
;
1337 SYMBOL_CLASS (typedef_sym
) = LOC_TYPEDEF
;
1338 SYMBOL_VALUE (typedef_sym
) = valu
;
1339 SYMBOL_DOMAIN (typedef_sym
) = VAR_DOMAIN
;
1340 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1341 TYPE_NAME (SYMBOL_TYPE (sym
))
1342 = obconcat (&objfile
->objfile_obstack
,
1343 SYMBOL_LINKAGE_NAME (sym
),
1345 add_symbol_to_list (typedef_sym
, &file_symbols
);
1350 /* Static symbol of local scope. */
1351 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1352 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1353 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1354 if (gdbarch_static_transform_name_p (gdbarch
)
1355 && gdbarch_static_transform_name (gdbarch
,
1356 SYMBOL_LINKAGE_NAME (sym
))
1357 != SYMBOL_LINKAGE_NAME (sym
))
1359 struct minimal_symbol
*msym
;
1361 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
),
1365 char *new_name
= gdbarch_static_transform_name
1366 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1368 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1369 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1372 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1373 add_symbol_to_list (sym
, &local_symbols
);
1377 /* Reference parameter */
1378 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1379 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1380 SYMBOL_IS_ARGUMENT (sym
) = 1;
1381 SYMBOL_VALUE (sym
) = valu
;
1382 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1383 add_symbol_to_list (sym
, &local_symbols
);
1387 /* Reference parameter which is in a register. */
1388 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1389 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1390 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1391 SYMBOL_IS_ARGUMENT (sym
) = 1;
1392 SYMBOL_VALUE (sym
) = valu
;
1393 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1394 add_symbol_to_list (sym
, &local_symbols
);
1398 /* This is used by Sun FORTRAN for "function result value".
1399 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1400 that Pascal uses it too, but when I tried it Pascal used
1401 "x:3" (local symbol) instead. */
1402 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1403 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
1404 SYMBOL_VALUE (sym
) = valu
;
1405 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1406 add_symbol_to_list (sym
, &local_symbols
);
1410 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
1411 SYMBOL_CLASS (sym
) = LOC_CONST
;
1412 SYMBOL_VALUE (sym
) = 0;
1413 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1414 add_symbol_to_list (sym
, &file_symbols
);
1418 /* Some systems pass variables of certain types by reference instead
1419 of by value, i.e. they will pass the address of a structure (in a
1420 register or on the stack) instead of the structure itself. */
1422 if (gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
))
1423 && SYMBOL_IS_ARGUMENT (sym
))
1425 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1426 variables passed in a register). */
1427 if (SYMBOL_CLASS (sym
) == LOC_REGISTER
)
1428 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1429 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1430 and subsequent arguments on SPARC, for example). */
1431 else if (SYMBOL_CLASS (sym
) == LOC_ARG
)
1432 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1438 /* Skip rest of this symbol and return an error type.
1440 General notes on error recovery: error_type always skips to the
1441 end of the symbol (modulo cretinous dbx symbol name continuation).
1442 Thus code like this:
1444 if (*(*pp)++ != ';')
1445 return error_type (pp, objfile);
1447 is wrong because if *pp starts out pointing at '\0' (typically as the
1448 result of an earlier error), it will be incremented to point to the
1449 start of the next symbol, which might produce strange results, at least
1450 if you run off the end of the string table. Instead use
1453 return error_type (pp, objfile);
1459 foo = error_type (pp, objfile);
1463 And in case it isn't obvious, the point of all this hair is so the compiler
1464 can define new types and new syntaxes, and old versions of the
1465 debugger will be able to read the new symbol tables. */
1467 static struct type
*
1468 error_type (char **pp
, struct objfile
*objfile
)
1470 complaint (&symfile_complaints
,
1471 _("couldn't parse type; debugger out of date?"));
1474 /* Skip to end of symbol. */
1475 while (**pp
!= '\0')
1480 /* Check for and handle cretinous dbx symbol name continuation! */
1481 if ((*pp
)[-1] == '\\' || (*pp
)[-1] == '?')
1483 *pp
= next_symbol_text (objfile
);
1490 return objfile_type (objfile
)->builtin_error
;
1494 /* Read type information or a type definition; return the type. Even
1495 though this routine accepts either type information or a type
1496 definition, the distinction is relevant--some parts of stabsread.c
1497 assume that type information starts with a digit, '-', or '(' in
1498 deciding whether to call read_type. */
1500 static struct type
*
1501 read_type (char **pp
, struct objfile
*objfile
)
1503 struct type
*type
= 0;
1506 char type_descriptor
;
1508 /* Size in bits of type if specified by a type attribute, or -1 if
1509 there is no size attribute. */
1512 /* Used to distinguish string and bitstring from char-array and set. */
1515 /* Used to distinguish vector from array. */
1518 /* Read type number if present. The type number may be omitted.
1519 for instance in a two-dimensional array declared with type
1520 "ar1;1;10;ar1;1;10;4". */
1521 if ((**pp
>= '0' && **pp
<= '9')
1525 if (read_type_number (pp
, typenums
) != 0)
1526 return error_type (pp
, objfile
);
1530 /* Type is not being defined here. Either it already
1531 exists, or this is a forward reference to it.
1532 dbx_alloc_type handles both cases. */
1533 type
= dbx_alloc_type (typenums
, objfile
);
1535 /* If this is a forward reference, arrange to complain if it
1536 doesn't get patched up by the time we're done
1538 if (TYPE_CODE (type
) == TYPE_CODE_UNDEF
)
1539 add_undefined_type (type
, typenums
);
1544 /* Type is being defined here. */
1546 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 /* 'typenums=' not present, type is anonymous. Read and return
1552 the definition, but don't put it in the type vector. */
1553 typenums
[0] = typenums
[1] = -1;
1558 type_descriptor
= (*pp
)[-1];
1559 switch (type_descriptor
)
1563 enum type_code code
;
1565 /* Used to index through file_symbols. */
1566 struct pending
*ppt
;
1569 /* Name including "struct", etc. */
1573 char *from
, *to
, *p
, *q1
, *q2
;
1575 /* Set the type code according to the following letter. */
1579 code
= TYPE_CODE_STRUCT
;
1582 code
= TYPE_CODE_UNION
;
1585 code
= TYPE_CODE_ENUM
;
1589 /* Complain and keep going, so compilers can invent new
1590 cross-reference types. */
1591 complaint (&symfile_complaints
,
1592 _("Unrecognized cross-reference type `%c'"),
1594 code
= TYPE_CODE_STRUCT
;
1599 q1
= strchr (*pp
, '<');
1600 p
= strchr (*pp
, ':');
1602 return error_type (pp
, objfile
);
1603 if (q1
&& p
> q1
&& p
[1] == ':')
1605 int nesting_level
= 0;
1607 for (q2
= q1
; *q2
; q2
++)
1611 else if (*q2
== '>')
1613 else if (*q2
== ':' && nesting_level
== 0)
1618 return error_type (pp
, objfile
);
1621 if (current_subfile
->language
== language_cplus
)
1623 char *new_name
, *name
= alloca (p
- *pp
+ 1);
1625 memcpy (name
, *pp
, p
- *pp
);
1626 name
[p
- *pp
] = '\0';
1627 new_name
= cp_canonicalize_string (name
);
1628 if (new_name
!= NULL
)
1630 type_name
= obsavestring (new_name
, strlen (new_name
),
1631 &objfile
->objfile_obstack
);
1635 if (type_name
== NULL
)
1637 to
= type_name
= (char *)
1638 obstack_alloc (&objfile
->objfile_obstack
, p
- *pp
+ 1);
1640 /* Copy the name. */
1647 /* Set the pointer ahead of the name which we just read, and
1652 /* If this type has already been declared, then reuse the same
1653 type, rather than allocating a new one. This saves some
1656 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
1657 for (i
= 0; i
< ppt
->nsyms
; i
++)
1659 struct symbol
*sym
= ppt
->symbol
[i
];
1661 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
1662 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
1663 && (TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
1664 && strcmp (SYMBOL_LINKAGE_NAME (sym
), type_name
) == 0)
1666 obstack_free (&objfile
->objfile_obstack
, type_name
);
1667 type
= SYMBOL_TYPE (sym
);
1668 if (typenums
[0] != -1)
1669 *dbx_lookup_type (typenums
, objfile
) = type
;
1674 /* Didn't find the type to which this refers, so we must
1675 be dealing with a forward reference. Allocate a type
1676 structure for it, and keep track of it so we can
1677 fill in the rest of the fields when we get the full
1679 type
= dbx_alloc_type (typenums
, objfile
);
1680 TYPE_CODE (type
) = code
;
1681 TYPE_TAG_NAME (type
) = type_name
;
1682 INIT_CPLUS_SPECIFIC (type
);
1683 TYPE_STUB (type
) = 1;
1685 add_undefined_type (type
, typenums
);
1689 case '-': /* RS/6000 built-in type */
1703 /* We deal with something like t(1,2)=(3,4)=... which
1704 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1706 /* Allocate and enter the typedef type first.
1707 This handles recursive types. */
1708 type
= dbx_alloc_type (typenums
, objfile
);
1709 TYPE_CODE (type
) = TYPE_CODE_TYPEDEF
;
1711 struct type
*xtype
= read_type (pp
, objfile
);
1715 /* It's being defined as itself. That means it is "void". */
1716 TYPE_CODE (type
) = TYPE_CODE_VOID
;
1717 TYPE_LENGTH (type
) = 1;
1719 else if (type_size
>= 0 || is_string
)
1721 /* This is the absolute wrong way to construct types. Every
1722 other debug format has found a way around this problem and
1723 the related problems with unnecessarily stubbed types;
1724 someone motivated should attempt to clean up the issue
1725 here as well. Once a type pointed to has been created it
1726 should not be modified.
1728 Well, it's not *absolutely* wrong. Constructing recursive
1729 types (trees, linked lists) necessarily entails modifying
1730 types after creating them. Constructing any loop structure
1731 entails side effects. The Dwarf 2 reader does handle this
1732 more gracefully (it never constructs more than once
1733 instance of a type object, so it doesn't have to copy type
1734 objects wholesale), but it still mutates type objects after
1735 other folks have references to them.
1737 Keep in mind that this circularity/mutation issue shows up
1738 at the source language level, too: C's "incomplete types",
1739 for example. So the proper cleanup, I think, would be to
1740 limit GDB's type smashing to match exactly those required
1741 by the source language. So GDB could have a
1742 "complete_this_type" function, but never create unnecessary
1743 copies of a type otherwise. */
1744 replace_type (type
, xtype
);
1745 TYPE_NAME (type
) = NULL
;
1746 TYPE_TAG_NAME (type
) = NULL
;
1750 TYPE_TARGET_STUB (type
) = 1;
1751 TYPE_TARGET_TYPE (type
) = xtype
;
1756 /* In the following types, we must be sure to overwrite any existing
1757 type that the typenums refer to, rather than allocating a new one
1758 and making the typenums point to the new one. This is because there
1759 may already be pointers to the existing type (if it had been
1760 forward-referenced), and we must change it to a pointer, function,
1761 reference, or whatever, *in-place*. */
1763 case '*': /* Pointer to another type */
1764 type1
= read_type (pp
, objfile
);
1765 type
= make_pointer_type (type1
, dbx_lookup_type (typenums
, objfile
));
1768 case '&': /* Reference to another type */
1769 type1
= read_type (pp
, objfile
);
1770 type
= make_reference_type (type1
, dbx_lookup_type (typenums
, objfile
));
1773 case 'f': /* Function returning another type */
1774 type1
= read_type (pp
, objfile
);
1775 type
= make_function_type (type1
, dbx_lookup_type (typenums
, objfile
));
1778 case 'g': /* Prototyped function. (Sun) */
1780 /* Unresolved questions:
1782 - According to Sun's ``STABS Interface Manual'', for 'f'
1783 and 'F' symbol descriptors, a `0' in the argument type list
1784 indicates a varargs function. But it doesn't say how 'g'
1785 type descriptors represent that info. Someone with access
1786 to Sun's toolchain should try it out.
1788 - According to the comment in define_symbol (search for
1789 `process_prototype_types:'), Sun emits integer arguments as
1790 types which ref themselves --- like `void' types. Do we
1791 have to deal with that here, too? Again, someone with
1792 access to Sun's toolchain should try it out and let us
1795 const char *type_start
= (*pp
) - 1;
1796 struct type
*return_type
= read_type (pp
, objfile
);
1797 struct type
*func_type
1798 = make_function_type (return_type
,
1799 dbx_lookup_type (typenums
, objfile
));
1802 struct type_list
*next
;
1806 while (**pp
&& **pp
!= '#')
1808 struct type
*arg_type
= read_type (pp
, objfile
);
1809 struct type_list
*new = alloca (sizeof (*new));
1810 new->type
= arg_type
;
1811 new->next
= arg_types
;
1819 complaint (&symfile_complaints
,
1820 _("Prototyped function type didn't "
1821 "end arguments with `#':\n%s"),
1825 /* If there is just one argument whose type is `void', then
1826 that's just an empty argument list. */
1828 && ! arg_types
->next
1829 && TYPE_CODE (arg_types
->type
) == TYPE_CODE_VOID
)
1832 TYPE_FIELDS (func_type
)
1833 = (struct field
*) TYPE_ALLOC (func_type
,
1834 num_args
* sizeof (struct field
));
1835 memset (TYPE_FIELDS (func_type
), 0, num_args
* sizeof (struct field
));
1838 struct type_list
*t
;
1840 /* We stuck each argument type onto the front of the list
1841 when we read it, so the list is reversed. Build the
1842 fields array right-to-left. */
1843 for (t
= arg_types
, i
= num_args
- 1; t
; t
= t
->next
, i
--)
1844 TYPE_FIELD_TYPE (func_type
, i
) = t
->type
;
1846 TYPE_NFIELDS (func_type
) = num_args
;
1847 TYPE_PROTOTYPED (func_type
) = 1;
1853 case 'k': /* Const qualifier on some type (Sun) */
1854 type
= read_type (pp
, objfile
);
1855 type
= make_cv_type (1, TYPE_VOLATILE (type
), type
,
1856 dbx_lookup_type (typenums
, objfile
));
1859 case 'B': /* Volatile qual on some type (Sun) */
1860 type
= read_type (pp
, objfile
);
1861 type
= make_cv_type (TYPE_CONST (type
), 1, type
,
1862 dbx_lookup_type (typenums
, objfile
));
1866 if (isdigit (**pp
) || **pp
== '(' || **pp
== '-')
1867 { /* Member (class & variable) type */
1868 /* FIXME -- we should be doing smash_to_XXX types here. */
1870 struct type
*domain
= read_type (pp
, objfile
);
1871 struct type
*memtype
;
1874 /* Invalid member type data format. */
1875 return error_type (pp
, objfile
);
1878 memtype
= read_type (pp
, objfile
);
1879 type
= dbx_alloc_type (typenums
, objfile
);
1880 smash_to_memberptr_type (type
, domain
, memtype
);
1883 /* type attribute */
1887 /* Skip to the semicolon. */
1888 while (**pp
!= ';' && **pp
!= '\0')
1891 return error_type (pp
, objfile
);
1893 ++ * pp
; /* Skip the semicolon. */
1897 case 's': /* Size attribute */
1898 type_size
= atoi (attr
+ 1);
1903 case 'S': /* String attribute */
1904 /* FIXME: check to see if following type is array? */
1908 case 'V': /* Vector attribute */
1909 /* FIXME: check to see if following type is array? */
1914 /* Ignore unrecognized type attributes, so future compilers
1915 can invent new ones. */
1923 case '#': /* Method (class & fn) type */
1924 if ((*pp
)[0] == '#')
1926 /* We'll get the parameter types from the name. */
1927 struct type
*return_type
;
1930 return_type
= read_type (pp
, objfile
);
1931 if (*(*pp
)++ != ';')
1932 complaint (&symfile_complaints
,
1933 _("invalid (minimal) member type "
1934 "data format at symtab pos %d."),
1936 type
= allocate_stub_method (return_type
);
1937 if (typenums
[0] != -1)
1938 *dbx_lookup_type (typenums
, objfile
) = type
;
1942 struct type
*domain
= read_type (pp
, objfile
);
1943 struct type
*return_type
;
1948 /* Invalid member type data format. */
1949 return error_type (pp
, objfile
);
1953 return_type
= read_type (pp
, objfile
);
1954 args
= read_args (pp
, ';', objfile
, &nargs
, &varargs
);
1956 return error_type (pp
, objfile
);
1957 type
= dbx_alloc_type (typenums
, objfile
);
1958 smash_to_method_type (type
, domain
, return_type
, args
,
1963 case 'r': /* Range type */
1964 type
= read_range_type (pp
, typenums
, type_size
, objfile
);
1965 if (typenums
[0] != -1)
1966 *dbx_lookup_type (typenums
, objfile
) = type
;
1971 /* Sun ACC builtin int type */
1972 type
= read_sun_builtin_type (pp
, typenums
, objfile
);
1973 if (typenums
[0] != -1)
1974 *dbx_lookup_type (typenums
, objfile
) = type
;
1978 case 'R': /* Sun ACC builtin float type */
1979 type
= read_sun_floating_type (pp
, typenums
, objfile
);
1980 if (typenums
[0] != -1)
1981 *dbx_lookup_type (typenums
, objfile
) = type
;
1984 case 'e': /* Enumeration type */
1985 type
= dbx_alloc_type (typenums
, objfile
);
1986 type
= read_enum_type (pp
, type
, objfile
);
1987 if (typenums
[0] != -1)
1988 *dbx_lookup_type (typenums
, objfile
) = type
;
1991 case 's': /* Struct type */
1992 case 'u': /* Union type */
1994 enum type_code type_code
= TYPE_CODE_UNDEF
;
1995 type
= dbx_alloc_type (typenums
, objfile
);
1996 switch (type_descriptor
)
1999 type_code
= TYPE_CODE_STRUCT
;
2002 type_code
= TYPE_CODE_UNION
;
2005 type
= read_struct_type (pp
, type
, type_code
, objfile
);
2009 case 'a': /* Array type */
2011 return error_type (pp
, objfile
);
2014 type
= dbx_alloc_type (typenums
, objfile
);
2015 type
= read_array_type (pp
, type
, objfile
);
2017 TYPE_CODE (type
) = TYPE_CODE_STRING
;
2019 make_vector_type (type
);
2022 case 'S': /* Set or bitstring type */
2023 type1
= read_type (pp
, objfile
);
2024 type
= create_set_type ((struct type
*) NULL
, type1
);
2026 TYPE_CODE (type
) = TYPE_CODE_BITSTRING
;
2027 if (typenums
[0] != -1)
2028 *dbx_lookup_type (typenums
, objfile
) = type
;
2032 --*pp
; /* Go back to the symbol in error. */
2033 /* Particularly important if it was \0! */
2034 return error_type (pp
, objfile
);
2039 warning (_("GDB internal error, type is NULL in stabsread.c."));
2040 return error_type (pp
, objfile
);
2043 /* Size specified in a type attribute overrides any other size. */
2044 if (type_size
!= -1)
2045 TYPE_LENGTH (type
) = (type_size
+ TARGET_CHAR_BIT
- 1) / TARGET_CHAR_BIT
;
2050 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2051 Return the proper type node for a given builtin type number. */
2053 static const struct objfile_data
*rs6000_builtin_type_data
;
2055 static struct type
*
2056 rs6000_builtin_type (int typenum
, struct objfile
*objfile
)
2058 struct type
**negative_types
= objfile_data (objfile
,
2059 rs6000_builtin_type_data
);
2061 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2062 #define NUMBER_RECOGNIZED 34
2063 struct type
*rettype
= NULL
;
2065 if (typenum
>= 0 || typenum
< -NUMBER_RECOGNIZED
)
2067 complaint (&symfile_complaints
, _("Unknown builtin type %d"), typenum
);
2068 return objfile_type (objfile
)->builtin_error
;
2071 if (!negative_types
)
2073 /* This includes an empty slot for type number -0. */
2074 negative_types
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
2075 NUMBER_RECOGNIZED
+ 1, struct type
*);
2076 set_objfile_data (objfile
, rs6000_builtin_type_data
, negative_types
);
2079 if (negative_types
[-typenum
] != NULL
)
2080 return negative_types
[-typenum
];
2082 #if TARGET_CHAR_BIT != 8
2083 #error This code wrong for TARGET_CHAR_BIT not 8
2084 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2085 that if that ever becomes not true, the correct fix will be to
2086 make the size in the struct type to be in bits, not in units of
2093 /* The size of this and all the other types are fixed, defined
2094 by the debugging format. If there is a type called "int" which
2095 is other than 32 bits, then it should use a new negative type
2096 number (or avoid negative type numbers for that case).
2097 See stabs.texinfo. */
2098 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "int", objfile
);
2101 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "char", objfile
);
2104 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "short", objfile
);
2107 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "long", objfile
);
2110 rettype
= init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_UNSIGNED
,
2111 "unsigned char", objfile
);
2114 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "signed char", objfile
);
2117 rettype
= init_type (TYPE_CODE_INT
, 2, TYPE_FLAG_UNSIGNED
,
2118 "unsigned short", objfile
);
2121 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2122 "unsigned int", objfile
);
2125 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2126 "unsigned", objfile
);
2128 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2129 "unsigned long", objfile
);
2132 rettype
= init_type (TYPE_CODE_VOID
, 1, 0, "void", objfile
);
2135 /* IEEE single precision (32 bit). */
2136 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "float", objfile
);
2139 /* IEEE double precision (64 bit). */
2140 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "double", objfile
);
2143 /* This is an IEEE double on the RS/6000, and different machines with
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
2146 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "long double", objfile
);
2149 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer", objfile
);
2152 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2153 "boolean", objfile
);
2156 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "short real", objfile
);
2159 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "real", objfile
);
2162 rettype
= init_type (TYPE_CODE_ERROR
, 0, 0, "stringptr", objfile
);
2165 rettype
= init_type (TYPE_CODE_CHAR
, 1, TYPE_FLAG_UNSIGNED
,
2166 "character", objfile
);
2169 rettype
= init_type (TYPE_CODE_BOOL
, 1, TYPE_FLAG_UNSIGNED
,
2170 "logical*1", objfile
);
2173 rettype
= init_type (TYPE_CODE_BOOL
, 2, TYPE_FLAG_UNSIGNED
,
2174 "logical*2", objfile
);
2177 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2178 "logical*4", objfile
);
2181 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2182 "logical", objfile
);
2185 /* Complex type consisting of two IEEE single precision values. */
2186 rettype
= init_type (TYPE_CODE_COMPLEX
, 8, 0, "complex", objfile
);
2187 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 4, 0, "float",
2191 /* Complex type consisting of two IEEE double precision values. */
2192 rettype
= init_type (TYPE_CODE_COMPLEX
, 16, 0, "double complex", NULL
);
2193 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 8, 0, "double",
2197 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "integer*1", objfile
);
2200 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "integer*2", objfile
);
2203 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer*4", objfile
);
2206 rettype
= init_type (TYPE_CODE_CHAR
, 2, 0, "wchar", objfile
);
2209 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "long long", objfile
);
2212 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2213 "unsigned long long", objfile
);
2216 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2217 "logical*8", objfile
);
2220 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "integer*8", objfile
);
2223 negative_types
[-typenum
] = rettype
;
2227 /* This page contains subroutines of read_type. */
2229 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2232 update_method_name_from_physname (char **old_name
, char *physname
)
2236 method_name
= method_name_from_physname (physname
);
2238 if (method_name
== NULL
)
2240 complaint (&symfile_complaints
,
2241 _("Method has bad physname %s\n"), physname
);
2245 if (strcmp (*old_name
, method_name
) != 0)
2248 *old_name
= method_name
;
2251 xfree (method_name
);
2254 /* Read member function stabs info for C++ classes. The form of each member
2257 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2259 An example with two member functions is:
2261 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2263 For the case of overloaded operators, the format is op$::*.funcs, where
2264 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2265 name (such as `+=') and `.' marks the end of the operator name.
2267 Returns 1 for success, 0 for failure. */
2270 read_member_functions (struct field_info
*fip
, char **pp
, struct type
*type
,
2271 struct objfile
*objfile
)
2275 /* Total number of member functions defined in this class. If the class
2276 defines two `f' functions, and one `g' function, then this will have
2278 int total_length
= 0;
2282 struct next_fnfield
*next
;
2283 struct fn_field fn_field
;
2286 struct type
*look_ahead_type
;
2287 struct next_fnfieldlist
*new_fnlist
;
2288 struct next_fnfield
*new_sublist
;
2292 /* Process each list until we find something that is not a member function
2293 or find the end of the functions. */
2297 /* We should be positioned at the start of the function name.
2298 Scan forward to find the first ':' and if it is not the
2299 first of a "::" delimiter, then this is not a member function. */
2311 look_ahead_type
= NULL
;
2314 new_fnlist
= (struct next_fnfieldlist
*)
2315 xmalloc (sizeof (struct next_fnfieldlist
));
2316 make_cleanup (xfree
, new_fnlist
);
2317 memset (new_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2319 if ((*pp
)[0] == 'o' && (*pp
)[1] == 'p' && is_cplus_marker ((*pp
)[2]))
2321 /* This is a completely wierd case. In order to stuff in the
2322 names that might contain colons (the usual name delimiter),
2323 Mike Tiemann defined a different name format which is
2324 signalled if the identifier is "op$". In that case, the
2325 format is "op$::XXXX." where XXXX is the name. This is
2326 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2327 /* This lets the user type "break operator+".
2328 We could just put in "+" as the name, but that wouldn't
2330 static char opname
[32] = "op$";
2331 char *o
= opname
+ 3;
2333 /* Skip past '::'. */
2336 STABS_CONTINUE (pp
, objfile
);
2342 main_fn_name
= savestring (opname
, o
- opname
);
2348 main_fn_name
= savestring (*pp
, p
- *pp
);
2349 /* Skip past '::'. */
2352 new_fnlist
->fn_fieldlist
.name
= main_fn_name
;
2357 (struct next_fnfield
*) xmalloc (sizeof (struct next_fnfield
));
2358 make_cleanup (xfree
, new_sublist
);
2359 memset (new_sublist
, 0, sizeof (struct next_fnfield
));
2361 /* Check for and handle cretinous dbx symbol name continuation! */
2362 if (look_ahead_type
== NULL
)
2365 STABS_CONTINUE (pp
, objfile
);
2367 new_sublist
->fn_field
.type
= read_type (pp
, objfile
);
2370 /* Invalid symtab info for member function. */
2376 /* g++ version 1 kludge */
2377 new_sublist
->fn_field
.type
= look_ahead_type
;
2378 look_ahead_type
= NULL
;
2388 /* If this is just a stub, then we don't have the real name here. */
2390 if (TYPE_STUB (new_sublist
->fn_field
.type
))
2392 if (!TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
))
2393 TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
) = type
;
2394 new_sublist
->fn_field
.is_stub
= 1;
2396 new_sublist
->fn_field
.physname
= savestring (*pp
, p
- *pp
);
2399 /* Set this member function's visibility fields. */
2402 case VISIBILITY_PRIVATE
:
2403 new_sublist
->fn_field
.is_private
= 1;
2405 case VISIBILITY_PROTECTED
:
2406 new_sublist
->fn_field
.is_protected
= 1;
2410 STABS_CONTINUE (pp
, objfile
);
2413 case 'A': /* Normal functions. */
2414 new_sublist
->fn_field
.is_const
= 0;
2415 new_sublist
->fn_field
.is_volatile
= 0;
2418 case 'B': /* `const' member functions. */
2419 new_sublist
->fn_field
.is_const
= 1;
2420 new_sublist
->fn_field
.is_volatile
= 0;
2423 case 'C': /* `volatile' member function. */
2424 new_sublist
->fn_field
.is_const
= 0;
2425 new_sublist
->fn_field
.is_volatile
= 1;
2428 case 'D': /* `const volatile' member function. */
2429 new_sublist
->fn_field
.is_const
= 1;
2430 new_sublist
->fn_field
.is_volatile
= 1;
2433 case '*': /* File compiled with g++ version 1 --
2439 complaint (&symfile_complaints
,
2440 _("const/volatile indicator missing, got '%c'"),
2450 /* virtual member function, followed by index.
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
2457 new_sublist
->fn_field
.voffset
=
2458 (0x7fffffff & read_huge_number (pp
, ';', &nbits
, 0)) + 2;
2462 STABS_CONTINUE (pp
, objfile
);
2463 if (**pp
== ';' || **pp
== '\0')
2465 /* Must be g++ version 1. */
2466 new_sublist
->fn_field
.fcontext
= 0;
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type
= read_type (pp
, objfile
);
2476 /* g++ version 1 overloaded methods. */
2480 new_sublist
->fn_field
.fcontext
= look_ahead_type
;
2489 look_ahead_type
= NULL
;
2495 /* static member function. */
2497 int slen
= strlen (main_fn_name
);
2499 new_sublist
->fn_field
.voffset
= VOFFSET_STATIC
;
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist
->fn_field
.physname
,
2512 main_fn_name
, slen
) == 0
2513 && new_sublist
->fn_field
.physname
[slen
] == '_'
2514 && new_sublist
->fn_field
.physname
[slen
+ 1] == '_'))
2516 new_sublist
->fn_field
.is_stub
= 1;
2523 complaint (&symfile_complaints
,
2524 _("member function type missing, got '%c'"),
2526 /* Fall through into normal member function. */
2529 /* normal member function. */
2530 new_sublist
->fn_field
.voffset
= 0;
2531 new_sublist
->fn_field
.fcontext
= 0;
2535 new_sublist
->next
= sublist
;
2536 sublist
= new_sublist
;
2538 STABS_CONTINUE (pp
, objfile
);
2540 while (**pp
!= ';' && **pp
!= '\0');
2543 STABS_CONTINUE (pp
, objfile
);
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
2547 if (strcmp_iw (main_fn_name
, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name
, "__base_dtor ") == 0
2549 || strcmp (main_fn_name
, "__deleting_dtor") == 0)
2551 xfree (main_fn_name
);
2556 int has_destructor
= 0, has_other
= 0;
2558 struct next_fnfield
*tmp_sublist
;
2560 /* Various versions of GCC emit various mostly-useless
2561 strings in the name field for special member functions.
2563 For stub methods, we need to defer correcting the name
2564 until we are ready to unstub the method, because the current
2565 name string is used by gdb_mangle_name. The only stub methods
2566 of concern here are GNU v2 operators; other methods have their
2567 names correct (see caveat below).
2569 For non-stub methods, in GNU v3, we have a complete physname.
2570 Therefore we can safely correct the name now. This primarily
2571 affects constructors and destructors, whose name will be
2572 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2573 operators will also have incorrect names; for instance,
2574 "operator int" will be named "operator i" (i.e. the type is
2577 For non-stub methods in GNU v2, we have no easy way to
2578 know if we have a complete physname or not. For most
2579 methods the result depends on the platform (if CPLUS_MARKER
2580 can be `$' or `.', it will use minimal debug information, or
2581 otherwise the full physname will be included).
2583 Rather than dealing with this, we take a different approach.
2584 For v3 mangled names, we can use the full physname; for v2,
2585 we use cplus_demangle_opname (which is actually v2 specific),
2586 because the only interesting names are all operators - once again
2587 barring the caveat below. Skip this process if any method in the
2588 group is a stub, to prevent our fouling up the workings of
2591 The caveat: GCC 2.95.x (and earlier?) put constructors and
2592 destructors in the same method group. We need to split this
2593 into two groups, because they should have different names.
2594 So for each method group we check whether it contains both
2595 routines whose physname appears to be a destructor (the physnames
2596 for and destructors are always provided, due to quirks in v2
2597 mangling) and routines whose physname does not appear to be a
2598 destructor. If so then we break up the list into two halves.
2599 Even if the constructors and destructors aren't in the same group
2600 the destructor will still lack the leading tilde, so that also
2603 So, to summarize what we expect and handle here:
2605 Given Given Real Real Action
2606 method name physname physname method name
2608 __opi [none] __opi__3Foo operator int opname
2610 Foo _._3Foo _._3Foo ~Foo separate and
2612 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2613 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2616 tmp_sublist
= sublist
;
2617 while (tmp_sublist
!= NULL
)
2619 if (tmp_sublist
->fn_field
.is_stub
)
2621 if (tmp_sublist
->fn_field
.physname
[0] == '_'
2622 && tmp_sublist
->fn_field
.physname
[1] == 'Z')
2625 if (is_destructor_name (tmp_sublist
->fn_field
.physname
))
2630 tmp_sublist
= tmp_sublist
->next
;
2633 if (has_destructor
&& has_other
)
2635 struct next_fnfieldlist
*destr_fnlist
;
2636 struct next_fnfield
*last_sublist
;
2638 /* Create a new fn_fieldlist for the destructors. */
2640 destr_fnlist
= (struct next_fnfieldlist
*)
2641 xmalloc (sizeof (struct next_fnfieldlist
));
2642 make_cleanup (xfree
, destr_fnlist
);
2643 memset (destr_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2644 destr_fnlist
->fn_fieldlist
.name
2645 = obconcat (&objfile
->objfile_obstack
, "~",
2646 new_fnlist
->fn_fieldlist
.name
, (char *) NULL
);
2648 destr_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2649 obstack_alloc (&objfile
->objfile_obstack
,
2650 sizeof (struct fn_field
) * has_destructor
);
2651 memset (destr_fnlist
->fn_fieldlist
.fn_fields
, 0,
2652 sizeof (struct fn_field
) * has_destructor
);
2653 tmp_sublist
= sublist
;
2654 last_sublist
= NULL
;
2656 while (tmp_sublist
!= NULL
)
2658 if (!is_destructor_name (tmp_sublist
->fn_field
.physname
))
2660 tmp_sublist
= tmp_sublist
->next
;
2664 destr_fnlist
->fn_fieldlist
.fn_fields
[i
++]
2665 = tmp_sublist
->fn_field
;
2667 last_sublist
->next
= tmp_sublist
->next
;
2669 sublist
= tmp_sublist
->next
;
2670 last_sublist
= tmp_sublist
;
2671 tmp_sublist
= tmp_sublist
->next
;
2674 destr_fnlist
->fn_fieldlist
.length
= has_destructor
;
2675 destr_fnlist
->next
= fip
->fnlist
;
2676 fip
->fnlist
= destr_fnlist
;
2678 total_length
+= has_destructor
;
2679 length
-= has_destructor
;
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
2690 update_method_name_from_physname (&new_fnlist
->fn_fieldlist
.name
,
2691 sublist
->fn_field
.physname
);
2693 else if (has_destructor
&& new_fnlist
->fn_fieldlist
.name
[0] != '~')
2695 new_fnlist
->fn_fieldlist
.name
=
2696 concat ("~", main_fn_name
, (char *)NULL
);
2697 xfree (main_fn_name
);
2701 char dem_opname
[256];
2704 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2705 dem_opname
, DMGL_ANSI
);
2707 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2710 new_fnlist
->fn_fieldlist
.name
2711 = obsavestring (dem_opname
, strlen (dem_opname
),
2712 &objfile
->objfile_obstack
);
2715 new_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2716 obstack_alloc (&objfile
->objfile_obstack
,
2717 sizeof (struct fn_field
) * length
);
2718 memset (new_fnlist
->fn_fieldlist
.fn_fields
, 0,
2719 sizeof (struct fn_field
) * length
);
2720 for (i
= length
; (i
--, sublist
); sublist
= sublist
->next
)
2722 new_fnlist
->fn_fieldlist
.fn_fields
[i
] = sublist
->fn_field
;
2725 new_fnlist
->fn_fieldlist
.length
= length
;
2726 new_fnlist
->next
= fip
->fnlist
;
2727 fip
->fnlist
= new_fnlist
;
2729 total_length
+= length
;
2735 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
2736 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
2737 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * nfn_fields
);
2738 memset (TYPE_FN_FIELDLISTS (type
), 0,
2739 sizeof (struct fn_fieldlist
) * nfn_fields
);
2740 TYPE_NFN_FIELDS (type
) = nfn_fields
;
2741 TYPE_NFN_FIELDS_TOTAL (type
) = total_length
;
2747 /* Special GNU C++ name.
2749 Returns 1 for success, 0 for failure. "failure" means that we can't
2750 keep parsing and it's time for error_type(). */
2753 read_cpp_abbrev (struct field_info
*fip
, char **pp
, struct type
*type
,
2754 struct objfile
*objfile
)
2759 struct type
*context
;
2769 /* At this point, *pp points to something like "22:23=*22...",
2770 where the type number before the ':' is the "context" and
2771 everything after is a regular type definition. Lookup the
2772 type, find it's name, and construct the field name. */
2774 context
= read_type (pp
, objfile
);
2778 case 'f': /* $vf -- a virtual function table pointer */
2779 name
= type_name_no_tag (context
);
2784 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
,
2785 vptr_name
, name
, (char *) NULL
);
2788 case 'b': /* $vb -- a virtual bsomethingorother */
2789 name
= type_name_no_tag (context
);
2792 complaint (&symfile_complaints
,
2793 _("C++ abbreviated type name "
2794 "unknown at symtab pos %d"),
2798 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
, vb_name
,
2799 name
, (char *) NULL
);
2803 invalid_cpp_abbrev_complaint (*pp
);
2804 fip
->list
->field
.name
= obconcat (&objfile
->objfile_obstack
,
2805 "INVALID_CPLUSPLUS_ABBREV",
2810 /* At this point, *pp points to the ':'. Skip it and read the
2816 invalid_cpp_abbrev_complaint (*pp
);
2819 fip
->list
->field
.type
= read_type (pp
, objfile
);
2821 (*pp
)++; /* Skip the comma. */
2828 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
,
2833 /* This field is unpacked. */
2834 FIELD_BITSIZE (fip
->list
->field
) = 0;
2835 fip
->list
->visibility
= VISIBILITY_PRIVATE
;
2839 invalid_cpp_abbrev_complaint (*pp
);
2840 /* We have no idea what syntax an unrecognized abbrev would have, so
2841 better return 0. If we returned 1, we would need to at least advance
2842 *pp to avoid an infinite loop. */
2849 read_one_struct_field (struct field_info
*fip
, char **pp
, char *p
,
2850 struct type
*type
, struct objfile
*objfile
)
2852 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
2854 fip
->list
->field
.name
=
2855 obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
2858 /* This means we have a visibility for a field coming. */
2862 fip
->list
->visibility
= *(*pp
)++;
2866 /* normal dbx-style format, no explicit visibility */
2867 fip
->list
->visibility
= VISIBILITY_PUBLIC
;
2870 fip
->list
->field
.type
= read_type (pp
, objfile
);
2875 /* Possible future hook for nested types. */
2878 fip
->list
->field
.bitpos
= (long) -2; /* nested type */
2888 /* Static class member. */
2889 SET_FIELD_PHYSNAME (fip
->list
->field
, savestring (*pp
, p
- *pp
));
2893 else if (**pp
!= ',')
2895 /* Bad structure-type format. */
2896 stabs_general_complaint ("bad structure-type format");
2900 (*pp
)++; /* Skip the comma. */
2905 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ',', &nbits
, 0);
2908 stabs_general_complaint ("bad structure-type format");
2911 FIELD_BITSIZE (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
, 0);
2914 stabs_general_complaint ("bad structure-type format");
2919 if (FIELD_BITPOS (fip
->list
->field
) == 0
2920 && FIELD_BITSIZE (fip
->list
->field
) == 0)
2922 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2923 it is a field which has been optimized out. The correct stab for
2924 this case is to use VISIBILITY_IGNORE, but that is a recent
2925 invention. (2) It is a 0-size array. For example
2926 union { int num; char str[0]; } foo. Printing _("<no value>" for
2927 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2928 will continue to work, and a 0-size array as a whole doesn't
2929 have any contents to print.
2931 I suspect this probably could also happen with gcc -gstabs (not
2932 -gstabs+) for static fields, and perhaps other C++ extensions.
2933 Hopefully few people use -gstabs with gdb, since it is intended
2934 for dbx compatibility. */
2936 /* Ignore this field. */
2937 fip
->list
->visibility
= VISIBILITY_IGNORE
;
2941 /* Detect an unpacked field and mark it as such.
2942 dbx gives a bit size for all fields.
2943 Note that forward refs cannot be packed,
2944 and treat enums as if they had the width of ints. */
2946 struct type
*field_type
= check_typedef (FIELD_TYPE (fip
->list
->field
));
2948 if (TYPE_CODE (field_type
) != TYPE_CODE_INT
2949 && TYPE_CODE (field_type
) != TYPE_CODE_RANGE
2950 && TYPE_CODE (field_type
) != TYPE_CODE_BOOL
2951 && TYPE_CODE (field_type
) != TYPE_CODE_ENUM
)
2953 FIELD_BITSIZE (fip
->list
->field
) = 0;
2955 if ((FIELD_BITSIZE (fip
->list
->field
)
2956 == TARGET_CHAR_BIT
* TYPE_LENGTH (field_type
)
2957 || (TYPE_CODE (field_type
) == TYPE_CODE_ENUM
2958 && FIELD_BITSIZE (fip
->list
->field
)
2959 == gdbarch_int_bit (gdbarch
))
2962 FIELD_BITPOS (fip
->list
->field
) % 8 == 0)
2964 FIELD_BITSIZE (fip
->list
->field
) = 0;
2970 /* Read struct or class data fields. They have the form:
2972 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2974 At the end, we see a semicolon instead of a field.
2976 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2979 The optional VISIBILITY is one of:
2981 '/0' (VISIBILITY_PRIVATE)
2982 '/1' (VISIBILITY_PROTECTED)
2983 '/2' (VISIBILITY_PUBLIC)
2984 '/9' (VISIBILITY_IGNORE)
2986 or nothing, for C style fields with public visibility.
2988 Returns 1 for success, 0 for failure. */
2991 read_struct_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
2992 struct objfile
*objfile
)
2995 struct nextfield
*new;
2997 /* We better set p right now, in case there are no fields at all... */
3001 /* Read each data member type until we find the terminating ';' at the end of
3002 the data member list, or break for some other reason such as finding the
3003 start of the member function list. */
3004 /* Stab string for structure/union does not end with two ';' in
3005 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3007 while (**pp
!= ';' && **pp
!= '\0')
3009 STABS_CONTINUE (pp
, objfile
);
3010 /* Get space to record the next field's data. */
3011 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
3012 make_cleanup (xfree
, new);
3013 memset (new, 0, sizeof (struct nextfield
));
3014 new->next
= fip
->list
;
3017 /* Get the field name. */
3020 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3021 unless the CPLUS_MARKER is followed by an underscore, in
3022 which case it is just the name of an anonymous type, which we
3023 should handle like any other type name. */
3025 if (is_cplus_marker (p
[0]) && p
[1] != '_')
3027 if (!read_cpp_abbrev (fip
, pp
, type
, objfile
))
3032 /* Look for the ':' that separates the field name from the field
3033 values. Data members are delimited by a single ':', while member
3034 functions are delimited by a pair of ':'s. When we hit the member
3035 functions (if any), terminate scan loop and return. */
3037 while (*p
!= ':' && *p
!= '\0')
3044 /* Check to see if we have hit the member functions yet. */
3049 read_one_struct_field (fip
, pp
, p
, type
, objfile
);
3051 if (p
[0] == ':' && p
[1] == ':')
3053 /* (the deleted) chill the list of fields: the last entry (at
3054 the head) is a partially constructed entry which we now
3056 fip
->list
= fip
->list
->next
;
3061 /* The stabs for C++ derived classes contain baseclass information which
3062 is marked by a '!' character after the total size. This function is
3063 called when we encounter the baseclass marker, and slurps up all the
3064 baseclass information.
3066 Immediately following the '!' marker is the number of base classes that
3067 the class is derived from, followed by information for each base class.
3068 For each base class, there are two visibility specifiers, a bit offset
3069 to the base class information within the derived class, a reference to
3070 the type for the base class, and a terminating semicolon.
3072 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3074 Baseclass information marker __________________|| | | | | | |
3075 Number of baseclasses __________________________| | | | | | |
3076 Visibility specifiers (2) ________________________| | | | | |
3077 Offset in bits from start of class _________________| | | | |
3078 Type number for base class ___________________________| | | |
3079 Visibility specifiers (2) _______________________________| | |
3080 Offset in bits from start of class ________________________| |
3081 Type number of base class ____________________________________|
3083 Return 1 for success, 0 for (error-type-inducing) failure. */
3089 read_baseclasses (struct field_info
*fip
, char **pp
, struct type
*type
,
3090 struct objfile
*objfile
)
3093 struct nextfield
*new;
3101 /* Skip the '!' baseclass information marker. */
3105 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3109 TYPE_N_BASECLASSES (type
) = read_huge_number (pp
, ',', &nbits
, 0);
3115 /* Some stupid compilers have trouble with the following, so break
3116 it up into simpler expressions. */
3117 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*)
3118 TYPE_ALLOC (type
, B_BYTES (TYPE_N_BASECLASSES (type
)));
3121 int num_bytes
= B_BYTES (TYPE_N_BASECLASSES (type
));
3124 pointer
= (char *) TYPE_ALLOC (type
, num_bytes
);
3125 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*) pointer
;
3129 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), TYPE_N_BASECLASSES (type
));
3131 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); i
++)
3133 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
3134 make_cleanup (xfree
, new);
3135 memset (new, 0, sizeof (struct nextfield
));
3136 new->next
= fip
->list
;
3138 FIELD_BITSIZE (new->field
) = 0; /* This should be an unpacked
3141 STABS_CONTINUE (pp
, objfile
);
3145 /* Nothing to do. */
3148 SET_TYPE_FIELD_VIRTUAL (type
, i
);
3151 /* Unknown character. Complain and treat it as non-virtual. */
3153 complaint (&symfile_complaints
,
3154 _("Unknown virtual character `%c' for baseclass"),
3160 new->visibility
= *(*pp
)++;
3161 switch (new->visibility
)
3163 case VISIBILITY_PRIVATE
:
3164 case VISIBILITY_PROTECTED
:
3165 case VISIBILITY_PUBLIC
:
3168 /* Bad visibility format. Complain and treat it as
3171 complaint (&symfile_complaints
,
3172 _("Unknown visibility `%c' for baseclass"),
3174 new->visibility
= VISIBILITY_PUBLIC
;
3181 /* The remaining value is the bit offset of the portion of the object
3182 corresponding to this baseclass. Always zero in the absence of
3183 multiple inheritance. */
3185 FIELD_BITPOS (new->field
) = read_huge_number (pp
, ',', &nbits
, 0);
3190 /* The last piece of baseclass information is the type of the
3191 base class. Read it, and remember it's type name as this
3194 new->field
.type
= read_type (pp
, objfile
);
3195 new->field
.name
= type_name_no_tag (new->field
.type
);
3197 /* Skip trailing ';' and bump count of number of fields seen. */
3206 /* The tail end of stabs for C++ classes that contain a virtual function
3207 pointer contains a tilde, a %, and a type number.
3208 The type number refers to the base class (possibly this class itself) which
3209 contains the vtable pointer for the current class.
3211 This function is called when we have parsed all the method declarations,
3212 so we can look for the vptr base class info. */
3215 read_tilde_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
3216 struct objfile
*objfile
)
3220 STABS_CONTINUE (pp
, objfile
);
3222 /* If we are positioned at a ';', then skip it. */
3232 if (**pp
== '=' || **pp
== '+' || **pp
== '-')
3234 /* Obsolete flags that used to indicate the presence
3235 of constructors and/or destructors. */
3239 /* Read either a '%' or the final ';'. */
3240 if (*(*pp
)++ == '%')
3242 /* The next number is the type number of the base class
3243 (possibly our own class) which supplies the vtable for
3244 this class. Parse it out, and search that class to find
3245 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3246 and TYPE_VPTR_FIELDNO. */
3251 t
= read_type (pp
, objfile
);
3253 while (*p
!= '\0' && *p
!= ';')
3259 /* Premature end of symbol. */
3263 TYPE_VPTR_BASETYPE (type
) = t
;
3264 if (type
== t
) /* Our own class provides vtbl ptr. */
3266 for (i
= TYPE_NFIELDS (t
) - 1;
3267 i
>= TYPE_N_BASECLASSES (t
);
3270 char *name
= TYPE_FIELD_NAME (t
, i
);
3272 if (!strncmp (name
, vptr_name
, sizeof (vptr_name
) - 2)
3273 && is_cplus_marker (name
[sizeof (vptr_name
) - 2]))
3275 TYPE_VPTR_FIELDNO (type
) = i
;
3279 /* Virtual function table field not found. */
3280 complaint (&symfile_complaints
,
3281 _("virtual function table pointer "
3282 "not found when defining class `%s'"),
3288 TYPE_VPTR_FIELDNO (type
) = TYPE_VPTR_FIELDNO (t
);
3299 attach_fn_fields_to_type (struct field_info
*fip
, struct type
*type
)
3303 for (n
= TYPE_NFN_FIELDS (type
);
3304 fip
->fnlist
!= NULL
;
3305 fip
->fnlist
= fip
->fnlist
->next
)
3307 --n
; /* Circumvent Sun3 compiler bug. */
3308 TYPE_FN_FIELDLISTS (type
)[n
] = fip
->fnlist
->fn_fieldlist
;
3313 /* Create the vector of fields, and record how big it is.
3314 We need this info to record proper virtual function table information
3315 for this class's virtual functions. */
3318 attach_fields_to_type (struct field_info
*fip
, struct type
*type
,
3319 struct objfile
*objfile
)
3322 int non_public_fields
= 0;
3323 struct nextfield
*scan
;
3325 /* Count up the number of fields that we have, as well as taking note of
3326 whether or not there are any non-public fields, which requires us to
3327 allocate and build the private_field_bits and protected_field_bits
3330 for (scan
= fip
->list
; scan
!= NULL
; scan
= scan
->next
)
3333 if (scan
->visibility
!= VISIBILITY_PUBLIC
)
3335 non_public_fields
++;
3339 /* Now we know how many fields there are, and whether or not there are any
3340 non-public fields. Record the field count, allocate space for the
3341 array of fields, and create blank visibility bitfields if necessary. */
3343 TYPE_NFIELDS (type
) = nfields
;
3344 TYPE_FIELDS (type
) = (struct field
*)
3345 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
3346 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nfields
);
3348 if (non_public_fields
)
3350 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3352 TYPE_FIELD_PRIVATE_BITS (type
) =
3353 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3354 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
3356 TYPE_FIELD_PROTECTED_BITS (type
) =
3357 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3358 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
3360 TYPE_FIELD_IGNORE_BITS (type
) =
3361 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3362 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
3365 /* Copy the saved-up fields into the field vector. Start from the
3366 head of the list, adding to the tail of the field array, so that
3367 they end up in the same order in the array in which they were
3368 added to the list. */
3370 while (nfields
-- > 0)
3372 TYPE_FIELD (type
, nfields
) = fip
->list
->field
;
3373 switch (fip
->list
->visibility
)
3375 case VISIBILITY_PRIVATE
:
3376 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
3379 case VISIBILITY_PROTECTED
:
3380 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
3383 case VISIBILITY_IGNORE
:
3384 SET_TYPE_FIELD_IGNORE (type
, nfields
);
3387 case VISIBILITY_PUBLIC
:
3391 /* Unknown visibility. Complain and treat it as public. */
3393 complaint (&symfile_complaints
,
3394 _("Unknown visibility `%c' for field"),
3395 fip
->list
->visibility
);
3399 fip
->list
= fip
->list
->next
;
3405 /* Complain that the compiler has emitted more than one definition for the
3406 structure type TYPE. */
3408 complain_about_struct_wipeout (struct type
*type
)
3413 if (TYPE_TAG_NAME (type
))
3415 name
= TYPE_TAG_NAME (type
);
3416 switch (TYPE_CODE (type
))
3418 case TYPE_CODE_STRUCT
: kind
= "struct "; break;
3419 case TYPE_CODE_UNION
: kind
= "union "; break;
3420 case TYPE_CODE_ENUM
: kind
= "enum "; break;
3424 else if (TYPE_NAME (type
))
3426 name
= TYPE_NAME (type
);
3435 complaint (&symfile_complaints
,
3436 _("struct/union type gets multiply defined: %s%s"), kind
, name
);
3439 /* Set the length for all variants of a same main_type, which are
3440 connected in the closed chain.
3442 This is something that needs to be done when a type is defined *after*
3443 some cross references to this type have already been read. Consider
3444 for instance the following scenario where we have the following two
3447 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3448 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3450 A stubbed version of type dummy is created while processing the first
3451 stabs entry. The length of that type is initially set to zero, since
3452 it is unknown at this point. Also, a "constant" variation of type
3453 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3456 The second stabs entry allows us to replace the stubbed definition
3457 with the real definition. However, we still need to adjust the length
3458 of the "constant" variation of that type, as its length was left
3459 untouched during the main type replacement... */
3462 set_length_in_type_chain (struct type
*type
)
3464 struct type
*ntype
= TYPE_CHAIN (type
);
3466 while (ntype
!= type
)
3468 if (TYPE_LENGTH(ntype
) == 0)
3469 TYPE_LENGTH (ntype
) = TYPE_LENGTH (type
);
3471 complain_about_struct_wipeout (ntype
);
3472 ntype
= TYPE_CHAIN (ntype
);
3476 /* Read the description of a structure (or union type) and return an object
3477 describing the type.
3479 PP points to a character pointer that points to the next unconsumed token
3480 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3481 *PP will point to "4a:1,0,32;;".
3483 TYPE points to an incomplete type that needs to be filled in.
3485 OBJFILE points to the current objfile from which the stabs information is
3486 being read. (Note that it is redundant in that TYPE also contains a pointer
3487 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3490 static struct type
*
3491 read_struct_type (char **pp
, struct type
*type
, enum type_code type_code
,
3492 struct objfile
*objfile
)
3494 struct cleanup
*back_to
;
3495 struct field_info fi
;
3500 /* When describing struct/union/class types in stabs, G++ always drops
3501 all qualifications from the name. So if you've got:
3502 struct A { ... struct B { ... }; ... };
3503 then G++ will emit stabs for `struct A::B' that call it simply
3504 `struct B'. Obviously, if you've got a real top-level definition for
3505 `struct B', or other nested definitions, this is going to cause
3508 Obviously, GDB can't fix this by itself, but it can at least avoid
3509 scribbling on existing structure type objects when new definitions
3511 if (! (TYPE_CODE (type
) == TYPE_CODE_UNDEF
3512 || TYPE_STUB (type
)))
3514 complain_about_struct_wipeout (type
);
3516 /* It's probably best to return the type unchanged. */
3520 back_to
= make_cleanup (null_cleanup
, 0);
3522 INIT_CPLUS_SPECIFIC (type
);
3523 TYPE_CODE (type
) = type_code
;
3524 TYPE_STUB (type
) = 0;
3526 /* First comes the total size in bytes. */
3531 TYPE_LENGTH (type
) = read_huge_number (pp
, 0, &nbits
, 0);
3533 return error_type (pp
, objfile
);
3534 set_length_in_type_chain (type
);
3537 /* Now read the baseclasses, if any, read the regular C struct or C++
3538 class member fields, attach the fields to the type, read the C++
3539 member functions, attach them to the type, and then read any tilde
3540 field (baseclass specifier for the class holding the main vtable). */
3542 if (!read_baseclasses (&fi
, pp
, type
, objfile
)
3543 || !read_struct_fields (&fi
, pp
, type
, objfile
)
3544 || !attach_fields_to_type (&fi
, type
, objfile
)
3545 || !read_member_functions (&fi
, pp
, type
, objfile
)
3546 || !attach_fn_fields_to_type (&fi
, type
)
3547 || !read_tilde_fields (&fi
, pp
, type
, objfile
))
3549 type
= error_type (pp
, objfile
);
3552 do_cleanups (back_to
);
3556 /* Read a definition of an array type,
3557 and create and return a suitable type object.
3558 Also creates a range type which represents the bounds of that
3561 static struct type
*
3562 read_array_type (char **pp
, struct type
*type
,
3563 struct objfile
*objfile
)
3565 struct type
*index_type
, *element_type
, *range_type
;
3570 /* Format of an array type:
3571 "ar<index type>;lower;upper;<array_contents_type>".
3572 OS9000: "arlower,upper;<array_contents_type>".
3574 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3575 for these, produce a type like float[][]. */
3578 index_type
= read_type (pp
, objfile
);
3580 /* Improper format of array type decl. */
3581 return error_type (pp
, objfile
);
3585 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3590 lower
= read_huge_number (pp
, ';', &nbits
, 0);
3593 return error_type (pp
, objfile
);
3595 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3600 upper
= read_huge_number (pp
, ';', &nbits
, 0);
3602 return error_type (pp
, objfile
);
3604 element_type
= read_type (pp
, objfile
);
3613 create_range_type ((struct type
*) NULL
, index_type
, lower
, upper
);
3614 type
= create_array_type (type
, element_type
, range_type
);
3620 /* Read a definition of an enumeration type,
3621 and create and return a suitable type object.
3622 Also defines the symbols that represent the values of the type. */
3624 static struct type
*
3625 read_enum_type (char **pp
, struct type
*type
,
3626 struct objfile
*objfile
)
3628 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3634 struct pending
**symlist
;
3635 struct pending
*osyms
, *syms
;
3638 int unsigned_enum
= 1;
3641 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3642 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3643 to do? For now, force all enum values to file scope. */
3644 if (within_function
)
3645 symlist
= &local_symbols
;
3648 symlist
= &file_symbols
;
3650 o_nsyms
= osyms
? osyms
->nsyms
: 0;
3652 /* The aix4 compiler emits an extra field before the enum members;
3653 my guess is it's a type of some sort. Just ignore it. */
3656 /* Skip over the type. */
3660 /* Skip over the colon. */
3664 /* Read the value-names and their values.
3665 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3666 A semicolon or comma instead of a NAME means the end. */
3667 while (**pp
&& **pp
!= ';' && **pp
!= ',')
3669 STABS_CONTINUE (pp
, objfile
);
3673 name
= obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
3675 n
= read_huge_number (pp
, ',', &nbits
, 0);
3677 return error_type (pp
, objfile
);
3679 sym
= (struct symbol
*)
3680 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
3681 memset (sym
, 0, sizeof (struct symbol
));
3682 SYMBOL_SET_LINKAGE_NAME (sym
, name
);
3683 SYMBOL_SET_LANGUAGE (sym
, current_subfile
->language
);
3684 SYMBOL_CLASS (sym
) = LOC_CONST
;
3685 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
3686 SYMBOL_VALUE (sym
) = n
;
3689 add_symbol_to_list (sym
, symlist
);
3694 (*pp
)++; /* Skip the semicolon. */
3696 /* Now fill in the fields of the type-structure. */
3698 TYPE_LENGTH (type
) = gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
;
3699 set_length_in_type_chain (type
);
3700 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
3701 TYPE_STUB (type
) = 0;
3703 TYPE_UNSIGNED (type
) = 1;
3704 TYPE_NFIELDS (type
) = nsyms
;
3705 TYPE_FIELDS (type
) = (struct field
*)
3706 TYPE_ALLOC (type
, sizeof (struct field
) * nsyms
);
3707 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nsyms
);
3709 /* Find the symbols for the values and put them into the type.
3710 The symbols can be found in the symlist that we put them on
3711 to cause them to be defined. osyms contains the old value
3712 of that symlist; everything up to there was defined by us. */
3713 /* Note that we preserve the order of the enum constants, so
3714 that in something like "enum {FOO, LAST_THING=FOO}" we print
3715 FOO, not LAST_THING. */
3717 for (syms
= *symlist
, n
= nsyms
- 1; syms
; syms
= syms
->next
)
3719 int last
= syms
== osyms
? o_nsyms
: 0;
3720 int j
= syms
->nsyms
;
3722 for (; --j
>= last
; --n
)
3724 struct symbol
*xsym
= syms
->symbol
[j
];
3726 SYMBOL_TYPE (xsym
) = type
;
3727 TYPE_FIELD_NAME (type
, n
) = SYMBOL_LINKAGE_NAME (xsym
);
3728 TYPE_FIELD_BITPOS (type
, n
) = SYMBOL_VALUE (xsym
);
3729 TYPE_FIELD_BITSIZE (type
, n
) = 0;
3738 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3739 typedefs in every file (for int, long, etc):
3741 type = b <signed> <width> <format type>; <offset>; <nbits>
3743 optional format type = c or b for char or boolean.
3744 offset = offset from high order bit to start bit of type.
3745 width is # bytes in object of this type, nbits is # bits in type.
3747 The width/offset stuff appears to be for small objects stored in
3748 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3751 static struct type
*
3752 read_sun_builtin_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3757 enum type_code code
= TYPE_CODE_INT
;
3768 return error_type (pp
, objfile
);
3772 /* For some odd reason, all forms of char put a c here. This is strange
3773 because no other type has this honor. We can safely ignore this because
3774 we actually determine 'char'acterness by the number of bits specified in
3776 Boolean forms, e.g Fortran logical*X, put a b here. */
3780 else if (**pp
== 'b')
3782 code
= TYPE_CODE_BOOL
;
3786 /* The first number appears to be the number of bytes occupied
3787 by this type, except that unsigned short is 4 instead of 2.
3788 Since this information is redundant with the third number,
3789 we will ignore it. */
3790 read_huge_number (pp
, ';', &nbits
, 0);
3792 return error_type (pp
, objfile
);
3794 /* The second number is always 0, so ignore it too. */
3795 read_huge_number (pp
, ';', &nbits
, 0);
3797 return error_type (pp
, objfile
);
3799 /* The third number is the number of bits for this type. */
3800 type_bits
= read_huge_number (pp
, 0, &nbits
, 0);
3802 return error_type (pp
, objfile
);
3803 /* The type *should* end with a semicolon. If it are embedded
3804 in a larger type the semicolon may be the only way to know where
3805 the type ends. If this type is at the end of the stabstring we
3806 can deal with the omitted semicolon (but we don't have to like
3807 it). Don't bother to complain(), Sun's compiler omits the semicolon
3813 return init_type (TYPE_CODE_VOID
, 1,
3814 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3817 return init_type (code
,
3818 type_bits
/ TARGET_CHAR_BIT
,
3819 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3823 static struct type
*
3824 read_sun_floating_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3829 struct type
*rettype
;
3831 /* The first number has more details about the type, for example
3833 details
= read_huge_number (pp
, ';', &nbits
, 0);
3835 return error_type (pp
, objfile
);
3837 /* The second number is the number of bytes occupied by this type. */
3838 nbytes
= read_huge_number (pp
, ';', &nbits
, 0);
3840 return error_type (pp
, objfile
);
3842 if (details
== NF_COMPLEX
|| details
== NF_COMPLEX16
3843 || details
== NF_COMPLEX32
)
3845 rettype
= init_type (TYPE_CODE_COMPLEX
, nbytes
, 0, NULL
, objfile
);
3846 TYPE_TARGET_TYPE (rettype
)
3847 = init_type (TYPE_CODE_FLT
, nbytes
/ 2, 0, NULL
, objfile
);
3851 return init_type (TYPE_CODE_FLT
, nbytes
, 0, NULL
, objfile
);
3854 /* Read a number from the string pointed to by *PP.
3855 The value of *PP is advanced over the number.
3856 If END is nonzero, the character that ends the
3857 number must match END, or an error happens;
3858 and that character is skipped if it does match.
3859 If END is zero, *PP is left pointing to that character.
3861 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3862 the number is represented in an octal representation, assume that
3863 it is represented in a 2's complement representation with a size of
3864 TWOS_COMPLEMENT_BITS.
3866 If the number fits in a long, set *BITS to 0 and return the value.
3867 If not, set *BITS to be the number of bits in the number and return 0.
3869 If encounter garbage, set *BITS to -1 and return 0. */
3872 read_huge_number (char **pp
, int end
, int *bits
, int twos_complement_bits
)
3883 int twos_complement_representation
= 0;
3891 /* Leading zero means octal. GCC uses this to output values larger
3892 than an int (because that would be hard in decimal). */
3899 /* Skip extra zeros. */
3903 if (sign
> 0 && radix
== 8 && twos_complement_bits
> 0)
3905 /* Octal, possibly signed. Check if we have enough chars for a
3911 while ((c
= *p1
) >= '0' && c
< '8')
3915 if (len
> twos_complement_bits
/ 3
3916 || (twos_complement_bits
% 3 == 0
3917 && len
== twos_complement_bits
/ 3))
3919 /* Ok, we have enough characters for a signed value, check
3920 for signness by testing if the sign bit is set. */
3921 sign_bit
= (twos_complement_bits
% 3 + 2) % 3;
3923 if (c
& (1 << sign_bit
))
3925 /* Definitely signed. */
3926 twos_complement_representation
= 1;
3932 upper_limit
= LONG_MAX
/ radix
;
3934 while ((c
= *p
++) >= '0' && c
< ('0' + radix
))
3936 if (n
<= upper_limit
)
3938 if (twos_complement_representation
)
3940 /* Octal, signed, twos complement representation. In
3941 this case, n is the corresponding absolute value. */
3944 long sn
= c
- '0' - ((2 * (c
- '0')) | (2 << sign_bit
));
3956 /* unsigned representation */
3958 n
+= c
- '0'; /* FIXME this overflows anyway. */
3964 /* This depends on large values being output in octal, which is
3971 /* Ignore leading zeroes. */
3975 else if (c
== '2' || c
== '3')
3996 if (radix
== 8 && twos_complement_bits
> 0 && nbits
> twos_complement_bits
)
3998 /* We were supposed to parse a number with maximum
3999 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4010 /* Large decimal constants are an error (because it is hard to
4011 count how many bits are in them). */
4017 /* -0x7f is the same as 0x80. So deal with it by adding one to
4018 the number of bits. Two's complement represention octals
4019 can't have a '-' in front. */
4020 if (sign
== -1 && !twos_complement_representation
)
4031 /* It's *BITS which has the interesting information. */
4035 static struct type
*
4036 read_range_type (char **pp
, int typenums
[2], int type_size
,
4037 struct objfile
*objfile
)
4039 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
4040 char *orig_pp
= *pp
;
4045 struct type
*result_type
;
4046 struct type
*index_type
= NULL
;
4048 /* First comes a type we are a subrange of.
4049 In C it is usually 0, 1 or the type being defined. */
4050 if (read_type_number (pp
, rangenums
) != 0)
4051 return error_type (pp
, objfile
);
4052 self_subrange
= (rangenums
[0] == typenums
[0] &&
4053 rangenums
[1] == typenums
[1]);
4058 index_type
= read_type (pp
, objfile
);
4061 /* A semicolon should now follow; skip it. */
4065 /* The remaining two operands are usually lower and upper bounds
4066 of the range. But in some special cases they mean something else. */
4067 n2
= read_huge_number (pp
, ';', &n2bits
, type_size
);
4068 n3
= read_huge_number (pp
, ';', &n3bits
, type_size
);
4070 if (n2bits
== -1 || n3bits
== -1)
4071 return error_type (pp
, objfile
);
4074 goto handle_true_range
;
4076 /* If limits are huge, must be large integral type. */
4077 if (n2bits
!= 0 || n3bits
!= 0)
4079 char got_signed
= 0;
4080 char got_unsigned
= 0;
4081 /* Number of bits in the type. */
4084 /* If a type size attribute has been specified, the bounds of
4085 the range should fit in this size. If the lower bounds needs
4086 more bits than the upper bound, then the type is signed. */
4087 if (n2bits
<= type_size
&& n3bits
<= type_size
)
4089 if (n2bits
== type_size
&& n2bits
> n3bits
)
4095 /* Range from 0 to <large number> is an unsigned large integral type. */
4096 else if ((n2bits
== 0 && n2
== 0) && n3bits
!= 0)
4101 /* Range from <large number> to <large number>-1 is a large signed
4102 integral type. Take care of the case where <large number> doesn't
4103 fit in a long but <large number>-1 does. */
4104 else if ((n2bits
!= 0 && n3bits
!= 0 && n2bits
== n3bits
+ 1)
4105 || (n2bits
!= 0 && n3bits
== 0
4106 && (n2bits
== sizeof (long) * HOST_CHAR_BIT
)
4113 if (got_signed
|| got_unsigned
)
4115 return init_type (TYPE_CODE_INT
, nbits
/ TARGET_CHAR_BIT
,
4116 got_unsigned
? TYPE_FLAG_UNSIGNED
: 0, NULL
,
4120 return error_type (pp
, objfile
);
4123 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4124 if (self_subrange
&& n2
== 0 && n3
== 0)
4125 return init_type (TYPE_CODE_VOID
, 1, 0, NULL
, objfile
);
4127 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4128 is the width in bytes.
4130 Fortran programs appear to use this for complex types also. To
4131 distinguish between floats and complex, g77 (and others?) seem
4132 to use self-subranges for the complexes, and subranges of int for
4135 Also note that for complexes, g77 sets n2 to the size of one of
4136 the member floats, not the whole complex beast. My guess is that
4137 this was to work well with pre-COMPLEX versions of gdb. */
4139 if (n3
== 0 && n2
> 0)
4141 struct type
*float_type
4142 = init_type (TYPE_CODE_FLT
, n2
, 0, NULL
, objfile
);
4146 struct type
*complex_type
=
4147 init_type (TYPE_CODE_COMPLEX
, 2 * n2
, 0, NULL
, objfile
);
4149 TYPE_TARGET_TYPE (complex_type
) = float_type
;
4150 return complex_type
;
4156 /* If the upper bound is -1, it must really be an unsigned integral. */
4158 else if (n2
== 0 && n3
== -1)
4160 int bits
= type_size
;
4164 /* We don't know its size. It is unsigned int or unsigned
4165 long. GCC 2.3.3 uses this for long long too, but that is
4166 just a GDB 3.5 compatibility hack. */
4167 bits
= gdbarch_int_bit (gdbarch
);
4170 return init_type (TYPE_CODE_INT
, bits
/ TARGET_CHAR_BIT
,
4171 TYPE_FLAG_UNSIGNED
, NULL
, objfile
);
4174 /* Special case: char is defined (Who knows why) as a subrange of
4175 itself with range 0-127. */
4176 else if (self_subrange
&& n2
== 0 && n3
== 127)
4177 return init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_NOSIGN
, NULL
, objfile
);
4179 /* We used to do this only for subrange of self or subrange of int. */
4182 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4183 "unsigned long", and we already checked for that,
4184 so don't need to test for it here. */
4187 /* n3 actually gives the size. */
4188 return init_type (TYPE_CODE_INT
, -n3
, TYPE_FLAG_UNSIGNED
,
4191 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4192 unsigned n-byte integer. But do require n to be a power of
4193 two; we don't want 3- and 5-byte integers flying around. */
4199 for (bytes
= 0; (bits
& 0xff) == 0xff; bytes
++)
4202 && ((bytes
- 1) & bytes
) == 0) /* "bytes is a power of two" */
4203 return init_type (TYPE_CODE_INT
, bytes
, TYPE_FLAG_UNSIGNED
, NULL
,
4207 /* I think this is for Convex "long long". Since I don't know whether
4208 Convex sets self_subrange, I also accept that particular size regardless
4209 of self_subrange. */
4210 else if (n3
== 0 && n2
< 0
4212 || n2
== -gdbarch_long_long_bit
4213 (gdbarch
) / TARGET_CHAR_BIT
))
4214 return init_type (TYPE_CODE_INT
, -n2
, 0, NULL
, objfile
);
4215 else if (n2
== -n3
- 1)
4218 return init_type (TYPE_CODE_INT
, 1, 0, NULL
, objfile
);
4220 return init_type (TYPE_CODE_INT
, 2, 0, NULL
, objfile
);
4221 if (n3
== 0x7fffffff)
4222 return init_type (TYPE_CODE_INT
, 4, 0, NULL
, objfile
);
4225 /* We have a real range type on our hands. Allocate space and
4226 return a real pointer. */
4230 index_type
= objfile_type (objfile
)->builtin_int
;
4232 index_type
= *dbx_lookup_type (rangenums
, objfile
);
4233 if (index_type
== NULL
)
4235 /* Does this actually ever happen? Is that why we are worrying
4236 about dealing with it rather than just calling error_type? */
4238 complaint (&symfile_complaints
,
4239 _("base type %d of range type is not defined"), rangenums
[1]);
4241 index_type
= objfile_type (objfile
)->builtin_int
;
4244 result_type
= create_range_type ((struct type
*) NULL
, index_type
, n2
, n3
);
4245 return (result_type
);
4248 /* Read in an argument list. This is a list of types, separated by commas
4249 and terminated with END. Return the list of types read in, or NULL
4250 if there is an error. */
4252 static struct field
*
4253 read_args (char **pp
, int end
, struct objfile
*objfile
, int *nargsp
,
4256 /* FIXME! Remove this arbitrary limit! */
4257 struct type
*types
[1024]; /* Allow for fns of 1023 parameters. */
4264 /* Invalid argument list: no ','. */
4267 STABS_CONTINUE (pp
, objfile
);
4268 types
[n
++] = read_type (pp
, objfile
);
4270 (*pp
)++; /* get past `end' (the ':' character). */
4274 /* We should read at least the THIS parameter here. Some broken stabs
4275 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4276 have been present ";-16,(0,43)" reference instead. This way the
4277 excessive ";" marker prematurely stops the parameters parsing. */
4279 complaint (&symfile_complaints
, _("Invalid (empty) method arguments"));
4282 else if (TYPE_CODE (types
[n
- 1]) != TYPE_CODE_VOID
)
4290 rval
= (struct field
*) xmalloc (n
* sizeof (struct field
));
4291 memset (rval
, 0, n
* sizeof (struct field
));
4292 for (i
= 0; i
< n
; i
++)
4293 rval
[i
].type
= types
[i
];
4298 /* Common block handling. */
4300 /* List of symbols declared since the last BCOMM. This list is a tail
4301 of local_symbols. When ECOMM is seen, the symbols on the list
4302 are noted so their proper addresses can be filled in later,
4303 using the common block base address gotten from the assembler
4306 static struct pending
*common_block
;
4307 static int common_block_i
;
4309 /* Name of the current common block. We get it from the BCOMM instead of the
4310 ECOMM to match IBM documentation (even though IBM puts the name both places
4311 like everyone else). */
4312 static char *common_block_name
;
4314 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4315 to remain after this function returns. */
4318 common_block_start (char *name
, struct objfile
*objfile
)
4320 if (common_block_name
!= NULL
)
4322 complaint (&symfile_complaints
,
4323 _("Invalid symbol data: common block within common block"));
4325 common_block
= local_symbols
;
4326 common_block_i
= local_symbols
? local_symbols
->nsyms
: 0;
4327 common_block_name
= obsavestring (name
, strlen (name
),
4328 &objfile
->objfile_obstack
);
4331 /* Process a N_ECOMM symbol. */
4334 common_block_end (struct objfile
*objfile
)
4336 /* Symbols declared since the BCOMM are to have the common block
4337 start address added in when we know it. common_block and
4338 common_block_i point to the first symbol after the BCOMM in
4339 the local_symbols list; copy the list and hang it off the
4340 symbol for the common block name for later fixup. */
4343 struct pending
*new = 0;
4344 struct pending
*next
;
4347 if (common_block_name
== NULL
)
4349 complaint (&symfile_complaints
, _("ECOMM symbol unmatched by BCOMM"));
4353 sym
= (struct symbol
*)
4354 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
4355 memset (sym
, 0, sizeof (struct symbol
));
4356 /* Note: common_block_name already saved on objfile_obstack. */
4357 SYMBOL_SET_LINKAGE_NAME (sym
, common_block_name
);
4358 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
4360 /* Now we copy all the symbols which have been defined since the BCOMM. */
4362 /* Copy all the struct pendings before common_block. */
4363 for (next
= local_symbols
;
4364 next
!= NULL
&& next
!= common_block
;
4367 for (j
= 0; j
< next
->nsyms
; j
++)
4368 add_symbol_to_list (next
->symbol
[j
], &new);
4371 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4372 NULL, it means copy all the local symbols (which we already did
4375 if (common_block
!= NULL
)
4376 for (j
= common_block_i
; j
< common_block
->nsyms
; j
++)
4377 add_symbol_to_list (common_block
->symbol
[j
], &new);
4379 SYMBOL_TYPE (sym
) = (struct type
*) new;
4381 /* Should we be putting local_symbols back to what it was?
4384 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
4385 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
4386 global_sym_chain
[i
] = sym
;
4387 common_block_name
= NULL
;
4390 /* Add a common block's start address to the offset of each symbol
4391 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4392 the common block name). */
4395 fix_common_block (struct symbol
*sym
, int valu
)
4397 struct pending
*next
= (struct pending
*) SYMBOL_TYPE (sym
);
4399 for (; next
; next
= next
->next
)
4403 for (j
= next
->nsyms
- 1; j
>= 0; j
--)
4404 SYMBOL_VALUE_ADDRESS (next
->symbol
[j
]) += valu
;
4410 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4411 See add_undefined_type for more details. */
4414 add_undefined_type_noname (struct type
*type
, int typenums
[2])
4418 nat
.typenums
[0] = typenums
[0];
4419 nat
.typenums
[1] = typenums
[1];
4422 if (noname_undefs_length
== noname_undefs_allocated
)
4424 noname_undefs_allocated
*= 2;
4425 noname_undefs
= (struct nat
*)
4426 xrealloc ((char *) noname_undefs
,
4427 noname_undefs_allocated
* sizeof (struct nat
));
4429 noname_undefs
[noname_undefs_length
++] = nat
;
4432 /* Add TYPE to the UNDEF_TYPES vector.
4433 See add_undefined_type for more details. */
4436 add_undefined_type_1 (struct type
*type
)
4438 if (undef_types_length
== undef_types_allocated
)
4440 undef_types_allocated
*= 2;
4441 undef_types
= (struct type
**)
4442 xrealloc ((char *) undef_types
,
4443 undef_types_allocated
* sizeof (struct type
*));
4445 undef_types
[undef_types_length
++] = type
;
4448 /* What about types defined as forward references inside of a small lexical
4450 /* Add a type to the list of undefined types to be checked through
4451 once this file has been read in.
4453 In practice, we actually maintain two such lists: The first list
4454 (UNDEF_TYPES) is used for types whose name has been provided, and
4455 concerns forward references (eg 'xs' or 'xu' forward references);
4456 the second list (NONAME_UNDEFS) is used for types whose name is
4457 unknown at creation time, because they were referenced through
4458 their type number before the actual type was declared.
4459 This function actually adds the given type to the proper list. */
4462 add_undefined_type (struct type
*type
, int typenums
[2])
4464 if (TYPE_TAG_NAME (type
) == NULL
)
4465 add_undefined_type_noname (type
, typenums
);
4467 add_undefined_type_1 (type
);
4470 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4473 cleanup_undefined_types_noname (struct objfile
*objfile
)
4477 for (i
= 0; i
< noname_undefs_length
; i
++)
4479 struct nat nat
= noname_undefs
[i
];
4482 type
= dbx_lookup_type (nat
.typenums
, objfile
);
4483 if (nat
.type
!= *type
&& TYPE_CODE (*type
) != TYPE_CODE_UNDEF
)
4485 /* The instance flags of the undefined type are still unset,
4486 and needs to be copied over from the reference type.
4487 Since replace_type expects them to be identical, we need
4488 to set these flags manually before hand. */
4489 TYPE_INSTANCE_FLAGS (nat
.type
) = TYPE_INSTANCE_FLAGS (*type
);
4490 replace_type (nat
.type
, *type
);
4494 noname_undefs_length
= 0;
4497 /* Go through each undefined type, see if it's still undefined, and fix it
4498 up if possible. We have two kinds of undefined types:
4500 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4501 Fix: update array length using the element bounds
4502 and the target type's length.
4503 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4504 yet defined at the time a pointer to it was made.
4505 Fix: Do a full lookup on the struct/union tag. */
4508 cleanup_undefined_types_1 (void)
4512 /* Iterate over every undefined type, and look for a symbol whose type
4513 matches our undefined type. The symbol matches if:
4514 1. It is a typedef in the STRUCT domain;
4515 2. It has the same name, and same type code;
4516 3. The instance flags are identical.
4518 It is important to check the instance flags, because we have seen
4519 examples where the debug info contained definitions such as:
4521 "foo_t:t30=B31=xefoo_t:"
4523 In this case, we have created an undefined type named "foo_t" whose
4524 instance flags is null (when processing "xefoo_t"), and then created
4525 another type with the same name, but with different instance flags
4526 ('B' means volatile). I think that the definition above is wrong,
4527 since the same type cannot be volatile and non-volatile at the same
4528 time, but we need to be able to cope with it when it happens. The
4529 approach taken here is to treat these two types as different. */
4531 for (type
= undef_types
; type
< undef_types
+ undef_types_length
; type
++)
4533 switch (TYPE_CODE (*type
))
4536 case TYPE_CODE_STRUCT
:
4537 case TYPE_CODE_UNION
:
4538 case TYPE_CODE_ENUM
:
4540 /* Check if it has been defined since. Need to do this here
4541 as well as in check_typedef to deal with the (legitimate in
4542 C though not C++) case of several types with the same name
4543 in different source files. */
4544 if (TYPE_STUB (*type
))
4546 struct pending
*ppt
;
4548 /* Name of the type, without "struct" or "union". */
4549 char *typename
= TYPE_TAG_NAME (*type
);
4551 if (typename
== NULL
)
4553 complaint (&symfile_complaints
, _("need a type name"));
4556 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
4558 for (i
= 0; i
< ppt
->nsyms
; i
++)
4560 struct symbol
*sym
= ppt
->symbol
[i
];
4562 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4563 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4564 && (TYPE_CODE (SYMBOL_TYPE (sym
)) ==
4566 && (TYPE_INSTANCE_FLAGS (*type
) ==
4567 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym
)))
4568 && strcmp (SYMBOL_LINKAGE_NAME (sym
),
4570 replace_type (*type
, SYMBOL_TYPE (sym
));
4579 complaint (&symfile_complaints
,
4580 _("forward-referenced types left unresolved, "
4588 undef_types_length
= 0;
4591 /* Try to fix all the undefined types we ecountered while processing
4595 cleanup_undefined_types (struct objfile
*objfile
)
4597 cleanup_undefined_types_1 ();
4598 cleanup_undefined_types_noname (objfile
);
4601 /* Scan through all of the global symbols defined in the object file,
4602 assigning values to the debugging symbols that need to be assigned
4603 to. Get these symbols from the minimal symbol table. */
4606 scan_file_globals (struct objfile
*objfile
)
4609 struct minimal_symbol
*msymbol
;
4610 struct symbol
*sym
, *prev
;
4611 struct objfile
*resolve_objfile
;
4613 /* SVR4 based linkers copy referenced global symbols from shared
4614 libraries to the main executable.
4615 If we are scanning the symbols for a shared library, try to resolve
4616 them from the minimal symbols of the main executable first. */
4618 if (symfile_objfile
&& objfile
!= symfile_objfile
)
4619 resolve_objfile
= symfile_objfile
;
4621 resolve_objfile
= objfile
;
4625 /* Avoid expensive loop through all minimal symbols if there are
4626 no unresolved symbols. */
4627 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4629 if (global_sym_chain
[hash
])
4632 if (hash
>= HASHSIZE
)
4635 ALL_OBJFILE_MSYMBOLS (resolve_objfile
, msymbol
)
4639 /* Skip static symbols. */
4640 switch (MSYMBOL_TYPE (msymbol
))
4652 /* Get the hash index and check all the symbols
4653 under that hash index. */
4655 hash
= hashname (SYMBOL_LINKAGE_NAME (msymbol
));
4657 for (sym
= global_sym_chain
[hash
]; sym
;)
4659 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol
),
4660 SYMBOL_LINKAGE_NAME (sym
)) == 0)
4662 /* Splice this symbol out of the hash chain and
4663 assign the value we have to it. */
4666 SYMBOL_VALUE_CHAIN (prev
) = SYMBOL_VALUE_CHAIN (sym
);
4670 global_sym_chain
[hash
] = SYMBOL_VALUE_CHAIN (sym
);
4673 /* Check to see whether we need to fix up a common block. */
4674 /* Note: this code might be executed several times for
4675 the same symbol if there are multiple references. */
4678 if (SYMBOL_CLASS (sym
) == LOC_BLOCK
)
4680 fix_common_block (sym
,
4681 SYMBOL_VALUE_ADDRESS (msymbol
));
4685 SYMBOL_VALUE_ADDRESS (sym
)
4686 = SYMBOL_VALUE_ADDRESS (msymbol
);
4688 SYMBOL_SECTION (sym
) = SYMBOL_SECTION (msymbol
);
4693 sym
= SYMBOL_VALUE_CHAIN (prev
);
4697 sym
= global_sym_chain
[hash
];
4703 sym
= SYMBOL_VALUE_CHAIN (sym
);
4707 if (resolve_objfile
== objfile
)
4709 resolve_objfile
= objfile
;
4712 /* Change the storage class of any remaining unresolved globals to
4713 LOC_UNRESOLVED and remove them from the chain. */
4714 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4716 sym
= global_sym_chain
[hash
];
4720 sym
= SYMBOL_VALUE_CHAIN (sym
);
4722 /* Change the symbol address from the misleading chain value
4724 SYMBOL_VALUE_ADDRESS (prev
) = 0;
4726 /* Complain about unresolved common block symbols. */
4727 if (SYMBOL_CLASS (prev
) == LOC_STATIC
)
4728 SYMBOL_CLASS (prev
) = LOC_UNRESOLVED
;
4730 complaint (&symfile_complaints
,
4731 _("%s: common block `%s' from "
4732 "global_sym_chain unresolved"),
4733 objfile
->name
, SYMBOL_PRINT_NAME (prev
));
4736 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4739 /* Initialize anything that needs initializing when starting to read
4740 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4744 stabsread_init (void)
4748 /* Initialize anything that needs initializing when a completely new
4749 symbol file is specified (not just adding some symbols from another
4750 file, e.g. a shared library). */
4753 stabsread_new_init (void)
4755 /* Empty the hash table of global syms looking for values. */
4756 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4759 /* Initialize anything that needs initializing at the same time as
4760 start_symtab() is called. */
4765 global_stabs
= NULL
; /* AIX COFF */
4766 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4767 n_this_object_header_files
= 1;
4768 type_vector_length
= 0;
4769 type_vector
= (struct type
**) 0;
4771 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4772 common_block_name
= NULL
;
4775 /* Call after end_symtab(). */
4782 xfree (type_vector
);
4785 type_vector_length
= 0;
4786 previous_stab_code
= 0;
4790 finish_global_stabs (struct objfile
*objfile
)
4794 patch_block_stabs (global_symbols
, global_stabs
, objfile
);
4795 xfree (global_stabs
);
4796 global_stabs
= NULL
;
4800 /* Find the end of the name, delimited by a ':', but don't match
4801 ObjC symbols which look like -[Foo bar::]:bla. */
4803 find_name_end (char *name
)
4807 if (s
[0] == '-' || *s
== '+')
4809 /* Must be an ObjC method symbol. */
4812 error (_("invalid symbol name \"%s\""), name
);
4814 s
= strchr (s
, ']');
4817 error (_("invalid symbol name \"%s\""), name
);
4819 return strchr (s
, ':');
4823 return strchr (s
, ':');
4827 /* Initializer for this module. */
4830 _initialize_stabsread (void)
4832 rs6000_builtin_type_data
= register_objfile_data ();
4834 undef_types_allocated
= 20;
4835 undef_types_length
= 0;
4836 undef_types
= (struct type
**)
4837 xmalloc (undef_types_allocated
* sizeof (struct type
*));
4839 noname_undefs_allocated
= 20;
4840 noname_undefs_length
= 0;
4841 noname_undefs
= (struct nat
*)
4842 xmalloc (noname_undefs_allocated
* sizeof (struct nat
));