Init current_directory.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include <string.h>
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42
43 #include <ctype.h>
44
45 /* Ask stabsread.h to define the vars it normally declares `extern'. */
46 #define EXTERN /**/
47 #include "stabsread.h" /* Our own declarations */
48 #undef EXTERN
49
50 /* The routines that read and process a complete stabs for a C struct or
51 C++ class pass lists of data member fields and lists of member function
52 fields in an instance of a field_info structure, as defined below.
53 This is part of some reorganization of low level C++ support and is
54 expected to eventually go away... (FIXME) */
55
56 struct field_info
57 {
58 struct nextfield
59 {
60 struct nextfield *next;
61
62 /* This is the raw visibility from the stab. It is not checked
63 for being one of the visibilities we recognize, so code which
64 examines this field better be able to deal. */
65 int visibility;
66
67 struct field field;
68 } *list;
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 } *fnlist;
74 };
75
76 static struct type *
77 dbx_alloc_type PARAMS ((int [2], struct objfile *));
78
79 static long read_huge_number PARAMS ((char **, int, int *));
80
81 static struct type *error_type PARAMS ((char **));
82
83 static void
84 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
85 struct objfile *));
86
87 static void
88 fix_common_block PARAMS ((struct symbol *, int));
89
90 static int
91 read_type_number PARAMS ((char **, int *));
92
93 static struct type *
94 read_range_type PARAMS ((char **, int [2], struct objfile *));
95
96 static struct type *
97 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
98
99 static struct type *
100 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
101
102 static struct type *
103 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
104
105 static struct type *
106 rs6000_builtin_type PARAMS ((int));
107
108 static int
109 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
122 struct objfile *));
123
124 static int
125 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
126
127 static int
128 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
129 struct objfile *));
130
131 static struct type *
132 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
133
134 static struct type *
135 read_array_type PARAMS ((char **, struct type *, struct objfile *));
136
137 static struct type **
138 read_args PARAMS ((char **, int, struct objfile *));
139
140 static int
141 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
142 struct objfile *));
143
144 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
145 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
146
147 /* Define this as 1 if a pcc declaration of a char or short argument
148 gives the correct address. Otherwise assume pcc gives the
149 address of the corresponding int, which is not the same on a
150 big-endian machine. */
151
152 #ifndef BELIEVE_PCC_PROMOTION
153 #define BELIEVE_PCC_PROMOTION 0
154 #endif
155
156 struct complaint invalid_cpp_abbrev_complaint =
157 {"invalid C++ abbreviation `%s'", 0, 0};
158
159 struct complaint invalid_cpp_type_complaint =
160 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
161
162 struct complaint member_fn_complaint =
163 {"member function type missing, got '%c'", 0, 0};
164
165 struct complaint const_vol_complaint =
166 {"const/volatile indicator missing, got '%c'", 0, 0};
167
168 struct complaint error_type_complaint =
169 {"debug info mismatch between compiler and debugger", 0, 0};
170
171 struct complaint invalid_member_complaint =
172 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
173
174 struct complaint range_type_base_complaint =
175 {"base type %d of range type is not defined", 0, 0};
176
177 struct complaint reg_value_complaint =
178 {"register number too large in symbol %s", 0, 0};
179
180 struct complaint vtbl_notfound_complaint =
181 {"virtual function table pointer not found when defining class `%s'", 0, 0};
182
183 struct complaint unrecognized_cplus_name_complaint =
184 {"Unknown C++ symbol name `%s'", 0, 0};
185
186 struct complaint rs6000_builtin_complaint =
187 {"Unknown builtin type %d", 0, 0};
188
189 struct complaint stabs_general_complaint =
190 {"%s", 0, 0};
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197
198 /* Check for and handle cretinous stabs symbol name continuation! */
199 #define STABS_CONTINUE(pp) \
200 do { \
201 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
202 *(pp) = next_symbol_text (); \
203 } while (0)
204 \f
205 /* FIXME: These probably should be our own types (like rs6000_builtin_type
206 has its own types) rather than builtin_type_*. */
207 static struct type **os9k_type_vector[] = {
208 0,
209 &builtin_type_int,
210 &builtin_type_char,
211 &builtin_type_long,
212 &builtin_type_short,
213 &builtin_type_unsigned_char,
214 &builtin_type_unsigned_short,
215 &builtin_type_unsigned_long,
216 &builtin_type_unsigned_int,
217 &builtin_type_float,
218 &builtin_type_double,
219 &builtin_type_void,
220 &builtin_type_long_double
221 };
222
223 static void os9k_init_type_vector PARAMS ((struct type **));
224
225 static void
226 os9k_init_type_vector(tv)
227 struct type **tv;
228 {
229 int i;
230 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
231 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
232 }
233
234 /* Look up a dbx type-number pair. Return the address of the slot
235 where the type for that number-pair is stored.
236 The number-pair is in TYPENUMS.
237
238 This can be used for finding the type associated with that pair
239 or for associating a new type with the pair. */
240
241 struct type **
242 dbx_lookup_type (typenums)
243 int typenums[2];
244 {
245 register int filenum = typenums[0];
246 register int index = typenums[1];
247 unsigned old_len;
248 register int real_filenum;
249 register struct header_file *f;
250 int f_orig_length;
251
252 if (filenum == -1) /* -1,-1 is for temporary types. */
253 return 0;
254
255 if (filenum < 0 || filenum >= n_this_object_header_files)
256 {
257 static struct complaint msg = {"\
258 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
259 0, 0};
260 complain (&msg, filenum, index, symnum);
261 goto error_return;
262 }
263
264 if (filenum == 0)
265 {
266 if (index < 0)
267 {
268 /* Caller wants address of address of type. We think
269 that negative (rs6k builtin) types will never appear as
270 "lvalues", (nor should they), so we stuff the real type
271 pointer into a temp, and return its address. If referenced,
272 this will do the right thing. */
273 static struct type *temp_type;
274
275 temp_type = rs6000_builtin_type(index);
276 return &temp_type;
277 }
278
279 /* Type is defined outside of header files.
280 Find it in this object file's type vector. */
281 if (index >= type_vector_length)
282 {
283 old_len = type_vector_length;
284 if (old_len == 0)
285 {
286 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
287 type_vector = (struct type **)
288 malloc (type_vector_length * sizeof (struct type *));
289 }
290 while (index >= type_vector_length)
291 {
292 type_vector_length *= 2;
293 }
294 type_vector = (struct type **)
295 xrealloc ((char *) type_vector,
296 (type_vector_length * sizeof (struct type *)));
297 memset (&type_vector[old_len], 0,
298 (type_vector_length - old_len) * sizeof (struct type *));
299
300 if (os9k_stabs)
301 /* Deal with OS9000 fundamental types. */
302 os9k_init_type_vector (type_vector);
303 }
304 return (&type_vector[index]);
305 }
306 else
307 {
308 real_filenum = this_object_header_files[filenum];
309
310 if (real_filenum >= n_header_files)
311 {
312 struct type *temp_type;
313 struct type **temp_type_p;
314
315 warning ("GDB internal error: bad real_filenum");
316
317 error_return:
318 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
319 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
320 *temp_type_p = temp_type;
321 return temp_type_p;
322 }
323
324 f = &header_files[real_filenum];
325
326 f_orig_length = f->length;
327 if (index >= f_orig_length)
328 {
329 while (index >= f->length)
330 {
331 f->length *= 2;
332 }
333 f->vector = (struct type **)
334 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
335 memset (&f->vector[f_orig_length], 0,
336 (f->length - f_orig_length) * sizeof (struct type *));
337 }
338 return (&f->vector[index]);
339 }
340 }
341
342 /* Make sure there is a type allocated for type numbers TYPENUMS
343 and return the type object.
344 This can create an empty (zeroed) type object.
345 TYPENUMS may be (-1, -1) to return a new type object that is not
346 put into the type vector, and so may not be referred to by number. */
347
348 static struct type *
349 dbx_alloc_type (typenums, objfile)
350 int typenums[2];
351 struct objfile *objfile;
352 {
353 register struct type **type_addr;
354
355 if (typenums[0] == -1)
356 {
357 return (alloc_type (objfile));
358 }
359
360 type_addr = dbx_lookup_type (typenums);
361
362 /* If we are referring to a type not known at all yet,
363 allocate an empty type for it.
364 We will fill it in later if we find out how. */
365 if (*type_addr == 0)
366 {
367 *type_addr = alloc_type (objfile);
368 }
369
370 return (*type_addr);
371 }
372
373 /* for all the stabs in a given stab vector, build appropriate types
374 and fix their symbols in given symbol vector. */
375
376 static void
377 patch_block_stabs (symbols, stabs, objfile)
378 struct pending *symbols;
379 struct pending_stabs *stabs;
380 struct objfile *objfile;
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389
390 /* for all the stab entries, find their corresponding symbols and
391 patch their types! */
392
393 for (ii = 0; ii < stabs->count; ++ii)
394 {
395 name = stabs->stab[ii];
396 pp = (char*) strchr (name, ':');
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *)strchr(pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp-name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = (struct symbol *)
417 obstack_alloc (&objfile->symbol_obstack,
418 sizeof (struct symbol));
419
420 memset (sym, 0, sizeof (struct symbol));
421 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
422 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
423 SYMBOL_NAME (sym) =
424 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
425 pp += 2;
426 if (*(pp-1) == 'F' || *(pp-1) == 'f')
427 {
428 /* I don't think the linker does this with functions,
429 so as far as I know this is never executed.
430 But it doesn't hurt to check. */
431 SYMBOL_TYPE (sym) =
432 lookup_function_type (read_type (&pp, objfile));
433 }
434 else
435 {
436 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
437 }
438 add_symbol_to_list (sym, &global_symbols);
439 }
440 else
441 {
442 pp += 2;
443 if (*(pp-1) == 'F' || *(pp-1) == 'f')
444 {
445 SYMBOL_TYPE (sym) =
446 lookup_function_type (read_type (&pp, objfile));
447 }
448 else
449 {
450 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
451 }
452 }
453 }
454 }
455 }
456
457 \f
458 /* Read a number by which a type is referred to in dbx data,
459 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
460 Just a single number N is equivalent to (0,N).
461 Return the two numbers by storing them in the vector TYPENUMS.
462 TYPENUMS will then be used as an argument to dbx_lookup_type.
463
464 Returns 0 for success, -1 for error. */
465
466 static int
467 read_type_number (pp, typenums)
468 register char **pp;
469 register int *typenums;
470 {
471 int nbits;
472 if (**pp == '(')
473 {
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits);
476 if (nbits != 0) return -1;
477 typenums[1] = read_huge_number (pp, ')', &nbits);
478 if (nbits != 0) return -1;
479 }
480 else
481 {
482 typenums[0] = 0;
483 typenums[1] = read_huge_number (pp, 0, &nbits);
484 if (nbits != 0) return -1;
485 }
486 return 0;
487 }
488
489 \f
490 /* To handle GNU C++ typename abbreviation, we need to be able to
491 fill in a type's name as soon as space for that type is allocated.
492 `type_synonym_name' is the name of the type being allocated.
493 It is cleared as soon as it is used (lest all allocated types
494 get this name). */
495
496 static char *type_synonym_name;
497
498 #if !defined (REG_STRUCT_HAS_ADDR)
499 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
500 #endif
501
502 /* ARGSUSED */
503 struct symbol *
504 define_symbol (valu, string, desc, type, objfile)
505 CORE_ADDR valu;
506 char *string;
507 int desc;
508 int type;
509 struct objfile *objfile;
510 {
511 register struct symbol *sym;
512 char *p = (char *) strchr (string, ':');
513 int deftype;
514 int synonym = 0;
515 register int i;
516
517 /* We would like to eliminate nameless symbols, but keep their types.
518 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
519 to type 2, but, should not create a symbol to address that type. Since
520 the symbol will be nameless, there is no way any user can refer to it. */
521
522 int nameless;
523
524 /* Ignore syms with empty names. */
525 if (string[0] == 0)
526 return 0;
527
528 /* Ignore old-style symbols from cc -go */
529 if (p == 0)
530 return 0;
531
532 while (p[1] == ':')
533 {
534 p += 2;
535 p = strchr(p, ':');
536 }
537
538 /* If a nameless stab entry, all we need is the type, not the symbol.
539 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
540 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
541
542 sym = (struct symbol *)
543 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
544 memset (sym, 0, sizeof (struct symbol));
545
546 switch (type & N_TYPE)
547 {
548 case N_TEXT:
549 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
550 break;
551 case N_DATA:
552 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
553 break;
554 case N_BSS:
555 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
556 break;
557 }
558
559 if (processing_gcc_compilation)
560 {
561 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
562 number of bytes occupied by a type or object, which we ignore. */
563 SYMBOL_LINE(sym) = desc;
564 }
565 else
566 {
567 SYMBOL_LINE(sym) = 0; /* unknown */
568 }
569
570 if (string[0] == CPLUS_MARKER)
571 {
572 /* Special GNU C++ names. */
573 switch (string[1])
574 {
575 case 't':
576 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
577 &objfile -> symbol_obstack);
578 break;
579
580 case 'v': /* $vtbl_ptr_type */
581 /* Was: SYMBOL_NAME (sym) = "vptr"; */
582 goto normal;
583
584 case 'e':
585 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
586 &objfile -> symbol_obstack);
587 break;
588
589 case '_':
590 /* This was an anonymous type that was never fixed up. */
591 goto normal;
592
593 default:
594 complain (&unrecognized_cplus_name_complaint, string);
595 goto normal; /* Do *something* with it */
596 }
597 }
598 else
599 {
600 normal:
601 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
602 SYMBOL_NAME (sym) = (char *)
603 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
604 /* Open-coded memcpy--saves function call time. */
605 /* FIXME: Does it really? Try replacing with simple strcpy and
606 try it on an executable with a large symbol table. */
607 /* FIXME: considering that gcc can open code memcpy anyway, I
608 doubt it. xoxorich. */
609 {
610 register char *p1 = string;
611 register char *p2 = SYMBOL_NAME (sym);
612 while (p1 != p)
613 {
614 *p2++ = *p1++;
615 }
616 *p2++ = '\0';
617 }
618
619 /* If this symbol is from a C++ compilation, then attempt to cache the
620 demangled form for future reference. This is a typical time versus
621 space tradeoff, that was decided in favor of time because it sped up
622 C++ symbol lookups by a factor of about 20. */
623
624 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
625 }
626 p++;
627
628 /* Determine the type of name being defined. */
629 #if 0
630 /* Getting GDB to correctly skip the symbol on an undefined symbol
631 descriptor and not ever dump core is a very dodgy proposition if
632 we do things this way. I say the acorn RISC machine can just
633 fix their compiler. */
634 /* The Acorn RISC machine's compiler can put out locals that don't
635 start with "234=" or "(3,4)=", so assume anything other than the
636 deftypes we know how to handle is a local. */
637 if (!strchr ("cfFGpPrStTvVXCR", *p))
638 #else
639 if (isdigit (*p) || *p == '(' || *p == '-')
640 #endif
641 deftype = 'l';
642 else
643 deftype = *p++;
644
645 switch (deftype)
646 {
647 case 'c':
648 /* c is a special case, not followed by a type-number.
649 SYMBOL:c=iVALUE for an integer constant symbol.
650 SYMBOL:c=rVALUE for a floating constant symbol.
651 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
652 e.g. "b:c=e6,0" for "const b = blob1"
653 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
654 if (*p != '=')
655 {
656 SYMBOL_CLASS (sym) = LOC_CONST;
657 SYMBOL_TYPE (sym) = error_type (&p);
658 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
659 add_symbol_to_list (sym, &file_symbols);
660 return sym;
661 }
662 ++p;
663 switch (*p++)
664 {
665 case 'r':
666 {
667 double d = atof (p);
668 char *dbl_valu;
669
670 /* FIXME-if-picky-about-floating-accuracy: Should be using
671 target arithmetic to get the value. real.c in GCC
672 probably has the necessary code. */
673
674 /* FIXME: lookup_fundamental_type is a hack. We should be
675 creating a type especially for the type of float constants.
676 Problem is, what type should it be?
677
678 Also, what should the name of this type be? Should we
679 be using 'S' constants (see stabs.texinfo) instead? */
680
681 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
682 FT_DBL_PREC_FLOAT);
683 dbl_valu = (char *)
684 obstack_alloc (&objfile -> symbol_obstack,
685 TYPE_LENGTH (SYMBOL_TYPE (sym)));
686 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
687 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
688 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
689 }
690 break;
691 case 'i':
692 {
693 /* Defining integer constants this way is kind of silly,
694 since 'e' constants allows the compiler to give not
695 only the value, but the type as well. C has at least
696 int, long, unsigned int, and long long as constant
697 types; other languages probably should have at least
698 unsigned as well as signed constants. */
699
700 /* We just need one int constant type for all objfiles.
701 It doesn't depend on languages or anything (arguably its
702 name should be a language-specific name for a type of
703 that size, but I'm inclined to say that if the compiler
704 wants a nice name for the type, it can use 'e'). */
705 static struct type *int_const_type;
706
707 /* Yes, this is as long as a *host* int. That is because we
708 use atoi. */
709 if (int_const_type == NULL)
710 int_const_type =
711 init_type (TYPE_CODE_INT,
712 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
713 "integer constant",
714 (struct objfile *)NULL);
715 SYMBOL_TYPE (sym) = int_const_type;
716 SYMBOL_VALUE (sym) = atoi (p);
717 SYMBOL_CLASS (sym) = LOC_CONST;
718 }
719 break;
720 case 'e':
721 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
722 can be represented as integral.
723 e.g. "b:c=e6,0" for "const b = blob1"
724 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
725 {
726 SYMBOL_CLASS (sym) = LOC_CONST;
727 SYMBOL_TYPE (sym) = read_type (&p, objfile);
728
729 if (*p != ',')
730 {
731 SYMBOL_TYPE (sym) = error_type (&p);
732 break;
733 }
734 ++p;
735
736 /* If the value is too big to fit in an int (perhaps because
737 it is unsigned), or something like that, we silently get
738 a bogus value. The type and everything else about it is
739 correct. Ideally, we should be using whatever we have
740 available for parsing unsigned and long long values,
741 however. */
742 SYMBOL_VALUE (sym) = atoi (p);
743 }
744 break;
745 default:
746 {
747 SYMBOL_CLASS (sym) = LOC_CONST;
748 SYMBOL_TYPE (sym) = error_type (&p);
749 }
750 }
751 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
752 add_symbol_to_list (sym, &file_symbols);
753 return sym;
754
755 case 'C':
756 /* The name of a caught exception. */
757 SYMBOL_TYPE (sym) = read_type (&p, objfile);
758 SYMBOL_CLASS (sym) = LOC_LABEL;
759 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
760 SYMBOL_VALUE_ADDRESS (sym) = valu;
761 add_symbol_to_list (sym, &local_symbols);
762 break;
763
764 case 'f':
765 /* A static function definition. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 SYMBOL_CLASS (sym) = LOC_BLOCK;
768 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
769 add_symbol_to_list (sym, &file_symbols);
770 /* fall into process_function_types. */
771
772 process_function_types:
773 /* Function result types are described as the result type in stabs.
774 We need to convert this to the function-returning-type-X type
775 in GDB. E.g. "int" is converted to "function returning int". */
776 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
777 {
778 #if 0
779 /* This code doesn't work -- it needs to realloc and can't. */
780 /* Attempt to set up to record a function prototype... */
781 struct type *new = alloc_type (objfile);
782
783 /* Generate a template for the type of this function. The
784 types of the arguments will be added as we read the symbol
785 table. */
786 *new = *lookup_function_type (SYMBOL_TYPE(sym));
787 SYMBOL_TYPE(sym) = new;
788 TYPE_OBJFILE (new) = objfile;
789 in_function_type = new;
790 #else
791 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
792 #endif
793 }
794 /* fall into process_prototype_types */
795
796 process_prototype_types:
797 /* Sun acc puts declared types of arguments here. We don't care
798 about their actual types (FIXME -- we should remember the whole
799 function prototype), but the list may define some new types
800 that we have to remember, so we must scan it now. */
801 while (*p == ';') {
802 p++;
803 read_type (&p, objfile);
804 }
805 break;
806
807 case 'F':
808 /* A global function definition. */
809 SYMBOL_TYPE (sym) = read_type (&p, objfile);
810 SYMBOL_CLASS (sym) = LOC_BLOCK;
811 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
812 add_symbol_to_list (sym, &global_symbols);
813 goto process_function_types;
814
815 case 'G':
816 /* For a class G (global) symbol, it appears that the
817 value is not correct. It is necessary to search for the
818 corresponding linker definition to find the value.
819 These definitions appear at the end of the namelist. */
820 SYMBOL_TYPE (sym) = read_type (&p, objfile);
821 i = hashname (SYMBOL_NAME (sym));
822 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
823 global_sym_chain[i] = sym;
824 SYMBOL_CLASS (sym) = LOC_STATIC;
825 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
826 add_symbol_to_list (sym, &global_symbols);
827 break;
828
829 /* This case is faked by a conditional above,
830 when there is no code letter in the dbx data.
831 Dbx data never actually contains 'l'. */
832 case 's':
833 case 'l':
834 SYMBOL_TYPE (sym) = read_type (&p, objfile);
835 SYMBOL_CLASS (sym) = LOC_LOCAL;
836 SYMBOL_VALUE (sym) = valu;
837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
838 add_symbol_to_list (sym, &local_symbols);
839 break;
840
841 case 'p':
842 if (*p == 'F')
843 /* pF is a two-letter code that means a function parameter in Fortran.
844 The type-number specifies the type of the return value.
845 Translate it into a pointer-to-function type. */
846 {
847 p++;
848 SYMBOL_TYPE (sym)
849 = lookup_pointer_type
850 (lookup_function_type (read_type (&p, objfile)));
851 }
852 else
853 SYMBOL_TYPE (sym) = read_type (&p, objfile);
854
855 /* Normally this is a parameter, a LOC_ARG. On the i960, it
856 can also be a LOC_LOCAL_ARG depending on symbol type. */
857 #ifndef DBX_PARM_SYMBOL_CLASS
858 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
859 #endif
860
861 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
862 SYMBOL_VALUE (sym) = valu;
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 #if 0
865 /* This doesn't work yet. */
866 add_param_to_type (&in_function_type, sym);
867 #endif
868 add_symbol_to_list (sym, &local_symbols);
869
870 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
871 /* On little-endian machines, this crud is never necessary, and,
872 if the extra bytes contain garbage, is harmful. */
873 break;
874 #else /* Big endian. */
875 /* If it's gcc-compiled, if it says `short', believe it. */
876 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
877 break;
878
879 #if !BELIEVE_PCC_PROMOTION
880 {
881 /* This is the signed type which arguments get promoted to. */
882 static struct type *pcc_promotion_type;
883 /* This is the unsigned type which arguments get promoted to. */
884 static struct type *pcc_unsigned_promotion_type;
885
886 /* Call it "int" because this is mainly C lossage. */
887 if (pcc_promotion_type == NULL)
888 pcc_promotion_type =
889 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
890 0, "int", NULL);
891
892 if (pcc_unsigned_promotion_type == NULL)
893 pcc_unsigned_promotion_type =
894 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
895 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
896
897 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
898 /* This macro is defined on machines (e.g. sparc) where
899 we should believe the type of a PCC 'short' argument,
900 but shouldn't believe the address (the address is
901 the address of the corresponding int).
902
903 My guess is that this correction, as opposed to changing
904 the parameter to an 'int' (as done below, for PCC
905 on most machines), is the right thing to do
906 on all machines, but I don't want to risk breaking
907 something that already works. On most PCC machines,
908 the sparc problem doesn't come up because the calling
909 function has to zero the top bytes (not knowing whether
910 the called function wants an int or a short), so there
911 is little practical difference between an int and a short
912 (except perhaps what happens when the GDB user types
913 "print short_arg = 0x10000;").
914
915 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
916 actually produces the correct address (we don't need to fix it
917 up). I made this code adapt so that it will offset the symbol
918 if it was pointing at an int-aligned location and not
919 otherwise. This way you can use the same gdb for 4.0.x and
920 4.1 systems.
921
922 If the parameter is shorter than an int, and is integral
923 (e.g. char, short, or unsigned equivalent), and is claimed to
924 be passed on an integer boundary, don't believe it! Offset the
925 parameter's address to the tail-end of that integer. */
926
927 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
928 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
929 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
930 {
931 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
932 - TYPE_LENGTH (SYMBOL_TYPE (sym));
933 }
934 break;
935
936 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
937
938 /* If PCC says a parameter is a short or a char,
939 it is really an int. */
940 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
941 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
942 {
943 SYMBOL_TYPE (sym) =
944 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
945 ? pcc_unsigned_promotion_type
946 : pcc_promotion_type;
947 }
948 break;
949
950 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
951 }
952 #endif /* !BELIEVE_PCC_PROMOTION. */
953 #endif /* Big endian. */
954
955 case 'P':
956 /* acc seems to use P to delare the prototypes of functions that
957 are referenced by this file. gdb is not prepared to deal
958 with this extra information. FIXME, it ought to. */
959 if (type == N_FUN)
960 {
961 read_type (&p, objfile);
962 goto process_prototype_types;
963 }
964 /*FALLTHROUGH*/
965
966 case 'R':
967 /* Parameter which is in a register. */
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 SYMBOL_CLASS (sym) = LOC_REGPARM;
970 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
971 if (SYMBOL_VALUE (sym) >= NUM_REGS)
972 {
973 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
974 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
975 }
976 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
977 add_symbol_to_list (sym, &local_symbols);
978 break;
979
980 case 'r':
981 /* Register variable (either global or local). */
982 SYMBOL_TYPE (sym) = read_type (&p, objfile);
983 SYMBOL_CLASS (sym) = LOC_REGISTER;
984 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
985 if (SYMBOL_VALUE (sym) >= NUM_REGS)
986 {
987 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
988 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
989 }
990 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
991 if (within_function)
992 {
993 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
994 name to represent an argument passed in a register.
995 GCC uses 'P' for the same case. So if we find such a symbol pair
996 we combine it into one 'P' symbol. For Sun cc we need to do this
997 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
998 the 'p' symbol even if it never saves the argument onto the stack.
999
1000 On most machines, we want to preserve both symbols, so that
1001 we can still get information about what is going on with the
1002 stack (VAX for computing args_printed, using stack slots instead
1003 of saved registers in backtraces, etc.).
1004
1005 Note that this code illegally combines
1006 main(argc) struct foo argc; { register struct foo argc; }
1007 but this case is considered pathological and causes a warning
1008 from a decent compiler. */
1009
1010 if (local_symbols
1011 && local_symbols->nsyms > 0
1012 #ifndef USE_REGISTER_NOT_ARG
1013 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1014 SYMBOL_TYPE (sym))
1015 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1016 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1017 #endif
1018 )
1019 {
1020 struct symbol *prev_sym;
1021 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1022 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1023 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1024 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1025 {
1026 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1027 /* Use the type from the LOC_REGISTER; that is the type
1028 that is actually in that register. */
1029 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1030 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1031 sym = prev_sym;
1032 break;
1033 }
1034 }
1035 add_symbol_to_list (sym, &local_symbols);
1036 }
1037 else
1038 add_symbol_to_list (sym, &file_symbols);
1039 break;
1040
1041 case 'S':
1042 /* Static symbol at top level of file */
1043 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1044 SYMBOL_CLASS (sym) = LOC_STATIC;
1045 SYMBOL_VALUE_ADDRESS (sym) = valu;
1046 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1047 add_symbol_to_list (sym, &file_symbols);
1048 break;
1049
1050 case 't':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1060 /* C++ vagaries: we may have a type which is derived from
1061 a base type which did not have its name defined when the
1062 derived class was output. We fill in the derived class's
1063 base part member's name here in that case. */
1064 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1065 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1066 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1067 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1068 {
1069 int j;
1070 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1071 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1072 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1073 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1074 }
1075
1076 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1077 {
1078 /* gcc-2.6 or later (when using -fvtable-thunks)
1079 emits a unique named type for a vtable entry.
1080 Some gdb code depends on that specific name. */
1081 extern const char vtbl_ptr_name[];
1082
1083 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1084 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1085 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1086 {
1087 /* If we are giving a name to a type such as "pointer to
1088 foo" or "function returning foo", we better not set
1089 the TYPE_NAME. If the program contains "typedef char
1090 *caddr_t;", we don't want all variables of type char
1091 * to print as caddr_t. This is not just a
1092 consequence of GDB's type management; PCC and GCC (at
1093 least through version 2.4) both output variables of
1094 either type char * or caddr_t with the type number
1095 defined in the 't' symbol for caddr_t. If a future
1096 compiler cleans this up it GDB is not ready for it
1097 yet, but if it becomes ready we somehow need to
1098 disable this check (without breaking the PCC/GCC2.4
1099 case).
1100
1101 Sigh.
1102
1103 Fortunately, this check seems not to be necessary
1104 for anything except pointers or functions. */
1105 }
1106 else
1107 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1108 }
1109
1110 add_symbol_to_list (sym, &file_symbols);
1111 break;
1112
1113 case 'T':
1114 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1115 by 't' which means we are typedef'ing it as well. */
1116 synonym = *p == 't';
1117
1118 if (synonym)
1119 {
1120 p++;
1121 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1122 strlen (SYMBOL_NAME (sym)),
1123 &objfile -> symbol_obstack);
1124 }
1125 /* The semantics of C++ state that "struct foo { ... }" also defines
1126 a typedef for "foo". Unfortunately, cfront never makes the typedef
1127 when translating C++ into C. We make the typedef here so that
1128 "ptype foo" works as expected for cfront translated code. */
1129 else if (current_subfile->language == language_cplus)
1130 {
1131 synonym = 1;
1132 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1133 strlen (SYMBOL_NAME (sym)),
1134 &objfile -> symbol_obstack);
1135 }
1136
1137 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1138
1139 /* For a nameless type, we don't want a create a symbol, thus we
1140 did not use `sym'. Return without further processing. */
1141 if (nameless) return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1146 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1147 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1148 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1149 add_symbol_to_list (sym, &file_symbols);
1150
1151 if (synonym)
1152 {
1153 /* Clone the sym and then modify it. */
1154 register struct symbol *typedef_sym = (struct symbol *)
1155 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1156 *typedef_sym = *sym;
1157 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1158 SYMBOL_VALUE (typedef_sym) = valu;
1159 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1160 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1161 TYPE_NAME (SYMBOL_TYPE (sym))
1162 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1163 add_symbol_to_list (typedef_sym, &file_symbols);
1164 }
1165 break;
1166
1167 case 'V':
1168 /* Static symbol of local scope */
1169 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1170 SYMBOL_CLASS (sym) = LOC_STATIC;
1171 SYMBOL_VALUE_ADDRESS (sym) = valu;
1172 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1173 if (os9k_stabs)
1174 add_symbol_to_list (sym, &global_symbols);
1175 else
1176 add_symbol_to_list (sym, &local_symbols);
1177 break;
1178
1179 case 'v':
1180 /* Reference parameter */
1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1182 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1183 SYMBOL_VALUE (sym) = valu;
1184 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1185 add_symbol_to_list (sym, &local_symbols);
1186 break;
1187
1188 case 'X':
1189 /* This is used by Sun FORTRAN for "function result value".
1190 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1191 that Pascal uses it too, but when I tried it Pascal used
1192 "x:3" (local symbol) instead. */
1193 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1194 SYMBOL_CLASS (sym) = LOC_LOCAL;
1195 SYMBOL_VALUE (sym) = valu;
1196 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1197 add_symbol_to_list (sym, &local_symbols);
1198 break;
1199
1200 default:
1201 SYMBOL_TYPE (sym) = error_type (&p);
1202 SYMBOL_CLASS (sym) = LOC_CONST;
1203 SYMBOL_VALUE (sym) = 0;
1204 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1205 add_symbol_to_list (sym, &file_symbols);
1206 break;
1207 }
1208
1209 /* When passing structures to a function, some systems sometimes pass
1210 the address in a register, not the structure itself.
1211
1212 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1213 to LOC_REGPARM_ADDR for structures and unions. */
1214
1215 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1216 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1217 SYMBOL_TYPE (sym))
1218 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1219 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1220 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1221
1222 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th and
1223 subsequent arguments on the sparc, for example). */
1224 if (SYMBOL_CLASS (sym) == LOC_ARG
1225 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1226 SYMBOL_TYPE (sym))
1227 && ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1228 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1229 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1230
1231 return sym;
1232 }
1233
1234 \f
1235 /* Skip rest of this symbol and return an error type.
1236
1237 General notes on error recovery: error_type always skips to the
1238 end of the symbol (modulo cretinous dbx symbol name continuation).
1239 Thus code like this:
1240
1241 if (*(*pp)++ != ';')
1242 return error_type (pp);
1243
1244 is wrong because if *pp starts out pointing at '\0' (typically as the
1245 result of an earlier error), it will be incremented to point to the
1246 start of the next symbol, which might produce strange results, at least
1247 if you run off the end of the string table. Instead use
1248
1249 if (**pp != ';')
1250 return error_type (pp);
1251 ++*pp;
1252
1253 or
1254
1255 if (**pp != ';')
1256 foo = error_type (pp);
1257 else
1258 ++*pp;
1259
1260 And in case it isn't obvious, the point of all this hair is so the compiler
1261 can define new types and new syntaxes, and old versions of the
1262 debugger will be able to read the new symbol tables. */
1263
1264 static struct type *
1265 error_type (pp)
1266 char **pp;
1267 {
1268 complain (&error_type_complaint);
1269 while (1)
1270 {
1271 /* Skip to end of symbol. */
1272 while (**pp != '\0')
1273 {
1274 (*pp)++;
1275 }
1276
1277 /* Check for and handle cretinous dbx symbol name continuation! */
1278 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1279 {
1280 *pp = next_symbol_text ();
1281 }
1282 else
1283 {
1284 break;
1285 }
1286 }
1287 return (builtin_type_error);
1288 }
1289
1290 \f
1291 /* Read type information or a type definition; return the type. Even
1292 though this routine accepts either type information or a type
1293 definition, the distinction is relevant--some parts of stabsread.c
1294 assume that type information starts with a digit, '-', or '(' in
1295 deciding whether to call read_type. */
1296
1297 struct type *
1298 read_type (pp, objfile)
1299 register char **pp;
1300 struct objfile *objfile;
1301 {
1302 register struct type *type = 0;
1303 struct type *type1;
1304 int typenums[2];
1305 int xtypenums[2];
1306 char type_descriptor;
1307
1308 /* Size in bits of type if specified by a type attribute, or -1 if
1309 there is no size attribute. */
1310 int type_size = -1;
1311
1312 /* Used to distinguish string and bitstring from char-array and set. */
1313 int is_string = 0;
1314
1315 /* Read type number if present. The type number may be omitted.
1316 for instance in a two-dimensional array declared with type
1317 "ar1;1;10;ar1;1;10;4". */
1318 if ((**pp >= '0' && **pp <= '9')
1319 || **pp == '('
1320 || **pp == '-')
1321 {
1322 if (read_type_number (pp, typenums) != 0)
1323 return error_type (pp);
1324
1325 /* Type is not being defined here. Either it already exists,
1326 or this is a forward reference to it. dbx_alloc_type handles
1327 both cases. */
1328 if (**pp != '=')
1329 return dbx_alloc_type (typenums, objfile);
1330
1331 /* Type is being defined here. */
1332 /* Skip the '='. */
1333 ++(*pp);
1334
1335 while (**pp == '@')
1336 {
1337 char *p = *pp + 1;
1338 /* It might be a type attribute or a member type. */
1339 if (isdigit (*p) || *p == '(' || *p == '-')
1340 /* Member type. */
1341 break;
1342 else
1343 {
1344 /* Type attributes. */
1345 char *attr = p;
1346
1347 /* Skip to the semicolon. */
1348 while (*p != ';' && *p != '\0')
1349 ++p;
1350 *pp = p;
1351 if (*p == '\0')
1352 return error_type (pp);
1353 else
1354 /* Skip the semicolon. */
1355 ++*pp;
1356
1357 switch (*attr)
1358 {
1359 case 's':
1360 type_size = atoi (attr + 1);
1361 if (type_size <= 0)
1362 type_size = -1;
1363 break;
1364
1365 case 'S':
1366 is_string = 1;
1367 break;
1368
1369 default:
1370 /* Ignore unrecognized type attributes, so future compilers
1371 can invent new ones. */
1372 break;
1373 }
1374 }
1375 }
1376 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1377 ++(*pp);
1378 }
1379 else
1380 {
1381 /* 'typenums=' not present, type is anonymous. Read and return
1382 the definition, but don't put it in the type vector. */
1383 typenums[0] = typenums[1] = -1;
1384 (*pp)++;
1385 }
1386
1387 type_descriptor = (*pp)[-1];
1388 switch (type_descriptor)
1389 {
1390 case 'x':
1391 {
1392 enum type_code code;
1393
1394 /* Used to index through file_symbols. */
1395 struct pending *ppt;
1396 int i;
1397
1398 /* Name including "struct", etc. */
1399 char *type_name;
1400
1401 {
1402 char *from, *to, *p, *q1, *q2;
1403
1404 /* Set the type code according to the following letter. */
1405 switch ((*pp)[0])
1406 {
1407 case 's':
1408 code = TYPE_CODE_STRUCT;
1409 break;
1410 case 'u':
1411 code = TYPE_CODE_UNION;
1412 break;
1413 case 'e':
1414 code = TYPE_CODE_ENUM;
1415 break;
1416 default:
1417 {
1418 /* Complain and keep going, so compilers can invent new
1419 cross-reference types. */
1420 static struct complaint msg =
1421 {"Unrecognized cross-reference type `%c'", 0, 0};
1422 complain (&msg, (*pp)[0]);
1423 code = TYPE_CODE_STRUCT;
1424 break;
1425 }
1426 }
1427
1428 q1 = strchr(*pp, '<');
1429 p = strchr(*pp, ':');
1430 if (p == NULL)
1431 return error_type (pp);
1432 while (q1 && p > q1 && p[1] == ':')
1433 {
1434 q2 = strchr(q1, '>');
1435 if (!q2 || q2 < p)
1436 break;
1437 p += 2;
1438 p = strchr(p, ':');
1439 if (p == NULL)
1440 return error_type (pp);
1441 }
1442 to = type_name =
1443 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1444
1445 /* Copy the name. */
1446 from = *pp + 1;
1447 while (from < p)
1448 *to++ = *from++;
1449 *to = '\0';
1450
1451 /* Set the pointer ahead of the name which we just read, and
1452 the colon. */
1453 *pp = from + 1;
1454 }
1455
1456 /* Now check to see whether the type has already been
1457 declared. This was written for arrays of cross-referenced
1458 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1459 sure it is not necessary anymore. But it might be a good
1460 idea, to save a little memory. */
1461
1462 for (ppt = file_symbols; ppt; ppt = ppt->next)
1463 for (i = 0; i < ppt->nsyms; i++)
1464 {
1465 struct symbol *sym = ppt->symbol[i];
1466
1467 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1468 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1469 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1470 && STREQ (SYMBOL_NAME (sym), type_name))
1471 {
1472 obstack_free (&objfile -> type_obstack, type_name);
1473 type = SYMBOL_TYPE (sym);
1474 return type;
1475 }
1476 }
1477
1478 /* Didn't find the type to which this refers, so we must
1479 be dealing with a forward reference. Allocate a type
1480 structure for it, and keep track of it so we can
1481 fill in the rest of the fields when we get the full
1482 type. */
1483 type = dbx_alloc_type (typenums, objfile);
1484 TYPE_CODE (type) = code;
1485 TYPE_TAG_NAME (type) = type_name;
1486 INIT_CPLUS_SPECIFIC(type);
1487 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1488
1489 add_undefined_type (type);
1490 return type;
1491 }
1492
1493 case '-': /* RS/6000 built-in type */
1494 case '0':
1495 case '1':
1496 case '2':
1497 case '3':
1498 case '4':
1499 case '5':
1500 case '6':
1501 case '7':
1502 case '8':
1503 case '9':
1504 case '(':
1505
1506 {
1507 char *pp_saved;
1508
1509 (*pp)--;
1510 pp_saved = *pp;
1511
1512 /* Peek ahead at the number to detect void. */
1513 if (read_type_number (pp, xtypenums) != 0)
1514 return error_type (pp);
1515
1516 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1517 /* It's being defined as itself. That means it is "void". */
1518 type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
1519 else
1520 {
1521 struct type *xtype;
1522
1523 /* Go back to the number and have read_type get it. This means
1524 that we can deal with something like t(1,2)=(3,4)=... which
1525 the Lucid compiler uses. */
1526 *pp = pp_saved;
1527 xtype = read_type (pp, objfile);
1528
1529 /* The type is being defined to another type. So we copy the type.
1530 This loses if we copy a C++ class and so we lose track of how
1531 the names are mangled (but g++ doesn't output stabs like this
1532 now anyway). */
1533
1534 type = alloc_type (objfile);
1535 memcpy (type, xtype, sizeof (struct type));
1536
1537 /* The idea behind clearing the names is that the only purpose
1538 for defining a type to another type is so that the name of
1539 one can be different. So we probably don't need to worry much
1540 about the case where the compiler doesn't give a name to the
1541 new type. */
1542 TYPE_NAME (type) = NULL;
1543 TYPE_TAG_NAME (type) = NULL;
1544 }
1545 if (typenums[0] != -1)
1546 *dbx_lookup_type (typenums) = type;
1547 break;
1548 }
1549
1550 /* In the following types, we must be sure to overwrite any existing
1551 type that the typenums refer to, rather than allocating a new one
1552 and making the typenums point to the new one. This is because there
1553 may already be pointers to the existing type (if it had been
1554 forward-referenced), and we must change it to a pointer, function,
1555 reference, or whatever, *in-place*. */
1556
1557 case '*':
1558 type1 = read_type (pp, objfile);
1559 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1560 break;
1561
1562 case '&': /* Reference to another type */
1563 type1 = read_type (pp, objfile);
1564 type = make_reference_type (type1, dbx_lookup_type (typenums));
1565 break;
1566
1567 case 'f': /* Function returning another type */
1568 if (os9k_stabs && **pp == '(')
1569 {
1570 /* Function prototype; parse it.
1571 We must conditionalize this on os9k_stabs because otherwise
1572 it could be confused with a Sun-style (1,3) typenumber
1573 (I think). */
1574 struct type *t;
1575 ++*pp;
1576 while (**pp != ')')
1577 {
1578 t = read_type(pp, objfile);
1579 if (**pp == ',') ++*pp;
1580 }
1581 }
1582 type1 = read_type (pp, objfile);
1583 type = make_function_type (type1, dbx_lookup_type (typenums));
1584 break;
1585
1586 case 'k': /* Const qualifier on some type (Sun) */
1587 case 'c': /* Const qualifier on some type (OS9000) */
1588 /* Because 'c' means other things to AIX and 'k' is perfectly good,
1589 only accept 'c' in the os9k_stabs case. */
1590 if (type_descriptor == 'c' && !os9k_stabs)
1591 return error_type (pp);
1592 type = read_type (pp, objfile);
1593 /* FIXME! For now, we ignore const and volatile qualifiers. */
1594 break;
1595
1596 case 'B': /* Volatile qual on some type (Sun) */
1597 case 'i': /* Volatile qual on some type (OS9000) */
1598 /* Because 'i' means other things to AIX and 'B' is perfectly good,
1599 only accept 'i' in the os9k_stabs case. */
1600 if (type_descriptor == 'i' && !os9k_stabs)
1601 return error_type (pp);
1602 type = read_type (pp, objfile);
1603 /* FIXME! For now, we ignore const and volatile qualifiers. */
1604 break;
1605
1606 /* FIXME -- we should be doing smash_to_XXX types here. */
1607 case '@': /* Member (class & variable) type */
1608 {
1609 struct type *domain = read_type (pp, objfile);
1610 struct type *memtype;
1611
1612 if (**pp != ',')
1613 /* Invalid member type data format. */
1614 return error_type (pp);
1615 ++*pp;
1616
1617 memtype = read_type (pp, objfile);
1618 type = dbx_alloc_type (typenums, objfile);
1619 smash_to_member_type (type, domain, memtype);
1620 }
1621 break;
1622
1623 case '#': /* Method (class & fn) type */
1624 if ((*pp)[0] == '#')
1625 {
1626 /* We'll get the parameter types from the name. */
1627 struct type *return_type;
1628
1629 (*pp)++;
1630 return_type = read_type (pp, objfile);
1631 if (*(*pp)++ != ';')
1632 complain (&invalid_member_complaint, symnum);
1633 type = allocate_stub_method (return_type);
1634 if (typenums[0] != -1)
1635 *dbx_lookup_type (typenums) = type;
1636 }
1637 else
1638 {
1639 struct type *domain = read_type (pp, objfile);
1640 struct type *return_type;
1641 struct type **args;
1642
1643 if (**pp != ',')
1644 /* Invalid member type data format. */
1645 return error_type (pp);
1646 else
1647 ++(*pp);
1648
1649 return_type = read_type (pp, objfile);
1650 args = read_args (pp, ';', objfile);
1651 type = dbx_alloc_type (typenums, objfile);
1652 smash_to_method_type (type, domain, return_type, args);
1653 }
1654 break;
1655
1656 case 'r': /* Range type */
1657 type = read_range_type (pp, typenums, objfile);
1658 if (typenums[0] != -1)
1659 *dbx_lookup_type (typenums) = type;
1660 break;
1661
1662 case 'b':
1663 if (os9k_stabs)
1664 /* Const and volatile qualified type. */
1665 type = read_type (pp, objfile);
1666 else
1667 {
1668 /* Sun ACC builtin int type */
1669 type = read_sun_builtin_type (pp, typenums, objfile);
1670 if (typenums[0] != -1)
1671 *dbx_lookup_type (typenums) = type;
1672 }
1673 break;
1674
1675 case 'R': /* Sun ACC builtin float type */
1676 type = read_sun_floating_type (pp, typenums, objfile);
1677 if (typenums[0] != -1)
1678 *dbx_lookup_type (typenums) = type;
1679 break;
1680
1681 case 'e': /* Enumeration type */
1682 type = dbx_alloc_type (typenums, objfile);
1683 type = read_enum_type (pp, type, objfile);
1684 if (typenums[0] != -1)
1685 *dbx_lookup_type (typenums) = type;
1686 break;
1687
1688 case 's': /* Struct type */
1689 case 'u': /* Union type */
1690 type = dbx_alloc_type (typenums, objfile);
1691 if (!TYPE_NAME (type))
1692 {
1693 TYPE_NAME (type) = type_synonym_name;
1694 }
1695 type_synonym_name = NULL;
1696 switch (type_descriptor)
1697 {
1698 case 's':
1699 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1700 break;
1701 case 'u':
1702 TYPE_CODE (type) = TYPE_CODE_UNION;
1703 break;
1704 }
1705 type = read_struct_type (pp, type, objfile);
1706 break;
1707
1708 case 'a': /* Array type */
1709 if (**pp != 'r')
1710 return error_type (pp);
1711 ++*pp;
1712
1713 type = dbx_alloc_type (typenums, objfile);
1714 type = read_array_type (pp, type, objfile);
1715 if (is_string)
1716 TYPE_CODE (type) = TYPE_CODE_STRING;
1717 break;
1718
1719 case 'S':
1720 type1 = read_type (pp, objfile);
1721 type = create_set_type ((struct type*) NULL, type1);
1722 if (is_string)
1723 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1724 if (typenums[0] != -1)
1725 *dbx_lookup_type (typenums) = type;
1726 break;
1727
1728 default:
1729 --*pp; /* Go back to the symbol in error */
1730 /* Particularly important if it was \0! */
1731 return error_type (pp);
1732 }
1733
1734 if (type == 0)
1735 {
1736 warning ("GDB internal error, type is NULL in stabsread.c\n");
1737 return error_type (pp);
1738 }
1739
1740 /* Size specified in a type attribute overrides any other size. */
1741 if (type_size != -1)
1742 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1743
1744 return type;
1745 }
1746 \f
1747 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1748 Return the proper type node for a given builtin type number. */
1749
1750 static struct type *
1751 rs6000_builtin_type (typenum)
1752 int typenum;
1753 {
1754 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1755 #define NUMBER_RECOGNIZED 30
1756 /* This includes an empty slot for type number -0. */
1757 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1758 struct type *rettype = NULL;
1759
1760 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1761 {
1762 complain (&rs6000_builtin_complaint, typenum);
1763 return builtin_type_error;
1764 }
1765 if (negative_types[-typenum] != NULL)
1766 return negative_types[-typenum];
1767
1768 #if TARGET_CHAR_BIT != 8
1769 #error This code wrong for TARGET_CHAR_BIT not 8
1770 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1771 that if that ever becomes not true, the correct fix will be to
1772 make the size in the struct type to be in bits, not in units of
1773 TARGET_CHAR_BIT. */
1774 #endif
1775
1776 switch (-typenum)
1777 {
1778 case 1:
1779 /* The size of this and all the other types are fixed, defined
1780 by the debugging format. If there is a type called "int" which
1781 is other than 32 bits, then it should use a new negative type
1782 number (or avoid negative type numbers for that case).
1783 See stabs.texinfo. */
1784 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1785 break;
1786 case 2:
1787 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1788 break;
1789 case 3:
1790 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1791 break;
1792 case 4:
1793 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1794 break;
1795 case 5:
1796 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1797 "unsigned char", NULL);
1798 break;
1799 case 6:
1800 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1801 break;
1802 case 7:
1803 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1804 "unsigned short", NULL);
1805 break;
1806 case 8:
1807 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1808 "unsigned int", NULL);
1809 break;
1810 case 9:
1811 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1812 "unsigned", NULL);
1813 case 10:
1814 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1815 "unsigned long", NULL);
1816 break;
1817 case 11:
1818 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1819 break;
1820 case 12:
1821 /* IEEE single precision (32 bit). */
1822 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1823 break;
1824 case 13:
1825 /* IEEE double precision (64 bit). */
1826 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1827 break;
1828 case 14:
1829 /* This is an IEEE double on the RS/6000, and different machines with
1830 different sizes for "long double" should use different negative
1831 type numbers. See stabs.texinfo. */
1832 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1833 break;
1834 case 15:
1835 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1836 break;
1837 case 16:
1838 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1839 break;
1840 case 17:
1841 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1842 break;
1843 case 18:
1844 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1845 break;
1846 case 19:
1847 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1848 break;
1849 case 20:
1850 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1851 "character", NULL);
1852 break;
1853 case 21:
1854 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1855 "logical*1", NULL);
1856 break;
1857 case 22:
1858 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1859 "logical*2", NULL);
1860 break;
1861 case 23:
1862 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1863 "logical*4", NULL);
1864 break;
1865 case 24:
1866 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1867 "logical", NULL);
1868 break;
1869 case 25:
1870 /* Complex type consisting of two IEEE single precision values. */
1871 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1872 break;
1873 case 26:
1874 /* Complex type consisting of two IEEE double precision values. */
1875 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1876 break;
1877 case 27:
1878 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1879 break;
1880 case 28:
1881 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1882 break;
1883 case 29:
1884 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1885 break;
1886 case 30:
1887 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1888 break;
1889 }
1890 negative_types[-typenum] = rettype;
1891 return rettype;
1892 }
1893 \f
1894 /* This page contains subroutines of read_type. */
1895
1896 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1897 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1898 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1899 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1900
1901 /* Read member function stabs info for C++ classes. The form of each member
1902 function data is:
1903
1904 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1905
1906 An example with two member functions is:
1907
1908 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1909
1910 For the case of overloaded operators, the format is op$::*.funcs, where
1911 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1912 name (such as `+=') and `.' marks the end of the operator name.
1913
1914 Returns 1 for success, 0 for failure. */
1915
1916 static int
1917 read_member_functions (fip, pp, type, objfile)
1918 struct field_info *fip;
1919 char **pp;
1920 struct type *type;
1921 struct objfile *objfile;
1922 {
1923 int nfn_fields = 0;
1924 int length = 0;
1925 /* Total number of member functions defined in this class. If the class
1926 defines two `f' functions, and one `g' function, then this will have
1927 the value 3. */
1928 int total_length = 0;
1929 int i;
1930 struct next_fnfield
1931 {
1932 struct next_fnfield *next;
1933 struct fn_field fn_field;
1934 } *sublist;
1935 struct type *look_ahead_type;
1936 struct next_fnfieldlist *new_fnlist;
1937 struct next_fnfield *new_sublist;
1938 char *main_fn_name;
1939 register char *p;
1940
1941 /* Process each list until we find something that is not a member function
1942 or find the end of the functions. */
1943
1944 while (**pp != ';')
1945 {
1946 /* We should be positioned at the start of the function name.
1947 Scan forward to find the first ':' and if it is not the
1948 first of a "::" delimiter, then this is not a member function. */
1949 p = *pp;
1950 while (*p != ':')
1951 {
1952 p++;
1953 }
1954 if (p[1] != ':')
1955 {
1956 break;
1957 }
1958
1959 sublist = NULL;
1960 look_ahead_type = NULL;
1961 length = 0;
1962
1963 new_fnlist = (struct next_fnfieldlist *)
1964 xmalloc (sizeof (struct next_fnfieldlist));
1965 make_cleanup (free, new_fnlist);
1966 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1967
1968 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1969 {
1970 /* This is a completely wierd case. In order to stuff in the
1971 names that might contain colons (the usual name delimiter),
1972 Mike Tiemann defined a different name format which is
1973 signalled if the identifier is "op$". In that case, the
1974 format is "op$::XXXX." where XXXX is the name. This is
1975 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1976 /* This lets the user type "break operator+".
1977 We could just put in "+" as the name, but that wouldn't
1978 work for "*". */
1979 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1980 char *o = opname + 3;
1981
1982 /* Skip past '::'. */
1983 *pp = p + 2;
1984
1985 STABS_CONTINUE (pp);
1986 p = *pp;
1987 while (*p != '.')
1988 {
1989 *o++ = *p++;
1990 }
1991 main_fn_name = savestring (opname, o - opname);
1992 /* Skip past '.' */
1993 *pp = p + 1;
1994 }
1995 else
1996 {
1997 main_fn_name = savestring (*pp, p - *pp);
1998 /* Skip past '::'. */
1999 *pp = p + 2;
2000 }
2001 new_fnlist -> fn_fieldlist.name = main_fn_name;
2002
2003 do
2004 {
2005 new_sublist =
2006 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2007 make_cleanup (free, new_sublist);
2008 memset (new_sublist, 0, sizeof (struct next_fnfield));
2009
2010 /* Check for and handle cretinous dbx symbol name continuation! */
2011 if (look_ahead_type == NULL)
2012 {
2013 /* Normal case. */
2014 STABS_CONTINUE (pp);
2015
2016 new_sublist -> fn_field.type = read_type (pp, objfile);
2017 if (**pp != ':')
2018 {
2019 /* Invalid symtab info for member function. */
2020 return 0;
2021 }
2022 }
2023 else
2024 {
2025 /* g++ version 1 kludge */
2026 new_sublist -> fn_field.type = look_ahead_type;
2027 look_ahead_type = NULL;
2028 }
2029
2030 (*pp)++;
2031 p = *pp;
2032 while (*p != ';')
2033 {
2034 p++;
2035 }
2036
2037 /* If this is just a stub, then we don't have the real name here. */
2038
2039 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
2040 {
2041 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
2042 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
2043 new_sublist -> fn_field.is_stub = 1;
2044 }
2045 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
2046 *pp = p + 1;
2047
2048 /* Set this member function's visibility fields. */
2049 switch (*(*pp)++)
2050 {
2051 case VISIBILITY_PRIVATE:
2052 new_sublist -> fn_field.is_private = 1;
2053 break;
2054 case VISIBILITY_PROTECTED:
2055 new_sublist -> fn_field.is_protected = 1;
2056 break;
2057 }
2058
2059 STABS_CONTINUE (pp);
2060 switch (**pp)
2061 {
2062 case 'A': /* Normal functions. */
2063 new_sublist -> fn_field.is_const = 0;
2064 new_sublist -> fn_field.is_volatile = 0;
2065 (*pp)++;
2066 break;
2067 case 'B': /* `const' member functions. */
2068 new_sublist -> fn_field.is_const = 1;
2069 new_sublist -> fn_field.is_volatile = 0;
2070 (*pp)++;
2071 break;
2072 case 'C': /* `volatile' member function. */
2073 new_sublist -> fn_field.is_const = 0;
2074 new_sublist -> fn_field.is_volatile = 1;
2075 (*pp)++;
2076 break;
2077 case 'D': /* `const volatile' member function. */
2078 new_sublist -> fn_field.is_const = 1;
2079 new_sublist -> fn_field.is_volatile = 1;
2080 (*pp)++;
2081 break;
2082 case '*': /* File compiled with g++ version 1 -- no info */
2083 case '?':
2084 case '.':
2085 break;
2086 default:
2087 complain (&const_vol_complaint, **pp);
2088 break;
2089 }
2090
2091 switch (*(*pp)++)
2092 {
2093 case '*':
2094 {
2095 int nbits;
2096 /* virtual member function, followed by index.
2097 The sign bit is set to distinguish pointers-to-methods
2098 from virtual function indicies. Since the array is
2099 in words, the quantity must be shifted left by 1
2100 on 16 bit machine, and by 2 on 32 bit machine, forcing
2101 the sign bit out, and usable as a valid index into
2102 the array. Remove the sign bit here. */
2103 new_sublist -> fn_field.voffset =
2104 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2105 if (nbits != 0)
2106 return 0;
2107
2108 STABS_CONTINUE (pp);
2109 if (**pp == ';' || **pp == '\0')
2110 {
2111 /* Must be g++ version 1. */
2112 new_sublist -> fn_field.fcontext = 0;
2113 }
2114 else
2115 {
2116 /* Figure out from whence this virtual function came.
2117 It may belong to virtual function table of
2118 one of its baseclasses. */
2119 look_ahead_type = read_type (pp, objfile);
2120 if (**pp == ':')
2121 {
2122 /* g++ version 1 overloaded methods. */
2123 }
2124 else
2125 {
2126 new_sublist -> fn_field.fcontext = look_ahead_type;
2127 if (**pp != ';')
2128 {
2129 return 0;
2130 }
2131 else
2132 {
2133 ++*pp;
2134 }
2135 look_ahead_type = NULL;
2136 }
2137 }
2138 break;
2139 }
2140 case '?':
2141 /* static member function. */
2142 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2143 if (strncmp (new_sublist -> fn_field.physname,
2144 main_fn_name, strlen (main_fn_name)))
2145 {
2146 new_sublist -> fn_field.is_stub = 1;
2147 }
2148 break;
2149
2150 default:
2151 /* error */
2152 complain (&member_fn_complaint, (*pp)[-1]);
2153 /* Fall through into normal member function. */
2154
2155 case '.':
2156 /* normal member function. */
2157 new_sublist -> fn_field.voffset = 0;
2158 new_sublist -> fn_field.fcontext = 0;
2159 break;
2160 }
2161
2162 new_sublist -> next = sublist;
2163 sublist = new_sublist;
2164 length++;
2165 STABS_CONTINUE (pp);
2166 }
2167 while (**pp != ';' && **pp != '\0');
2168
2169 (*pp)++;
2170
2171 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2172 obstack_alloc (&objfile -> type_obstack,
2173 sizeof (struct fn_field) * length);
2174 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2175 sizeof (struct fn_field) * length);
2176 for (i = length; (i--, sublist); sublist = sublist -> next)
2177 {
2178 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2179 }
2180
2181 new_fnlist -> fn_fieldlist.length = length;
2182 new_fnlist -> next = fip -> fnlist;
2183 fip -> fnlist = new_fnlist;
2184 nfn_fields++;
2185 total_length += length;
2186 STABS_CONTINUE (pp);
2187 }
2188
2189 if (nfn_fields)
2190 {
2191 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2192 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2193 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2194 memset (TYPE_FN_FIELDLISTS (type), 0,
2195 sizeof (struct fn_fieldlist) * nfn_fields);
2196 TYPE_NFN_FIELDS (type) = nfn_fields;
2197 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2198 }
2199
2200 return 1;
2201 }
2202
2203 /* Special GNU C++ name.
2204
2205 Returns 1 for success, 0 for failure. "failure" means that we can't
2206 keep parsing and it's time for error_type(). */
2207
2208 static int
2209 read_cpp_abbrev (fip, pp, type, objfile)
2210 struct field_info *fip;
2211 char **pp;
2212 struct type *type;
2213 struct objfile *objfile;
2214 {
2215 register char *p;
2216 char *name;
2217 char cpp_abbrev;
2218 struct type *context;
2219
2220 p = *pp;
2221 if (*++p == 'v')
2222 {
2223 name = NULL;
2224 cpp_abbrev = *++p;
2225
2226 *pp = p + 1;
2227
2228 /* At this point, *pp points to something like "22:23=*22...",
2229 where the type number before the ':' is the "context" and
2230 everything after is a regular type definition. Lookup the
2231 type, find it's name, and construct the field name. */
2232
2233 context = read_type (pp, objfile);
2234
2235 switch (cpp_abbrev)
2236 {
2237 case 'f': /* $vf -- a virtual function table pointer */
2238 fip->list->field.name =
2239 obconcat (&objfile->type_obstack, vptr_name, "", "");
2240 break;
2241
2242 case 'b': /* $vb -- a virtual bsomethingorother */
2243 name = type_name_no_tag (context);
2244 if (name == NULL)
2245 {
2246 complain (&invalid_cpp_type_complaint, symnum);
2247 name = "FOO";
2248 }
2249 fip->list->field.name =
2250 obconcat (&objfile->type_obstack, vb_name, name, "");
2251 break;
2252
2253 default:
2254 complain (&invalid_cpp_abbrev_complaint, *pp);
2255 fip->list->field.name =
2256 obconcat (&objfile->type_obstack,
2257 "INVALID_CPLUSPLUS_ABBREV", "", "");
2258 break;
2259 }
2260
2261 /* At this point, *pp points to the ':'. Skip it and read the
2262 field type. */
2263
2264 p = ++(*pp);
2265 if (p[-1] != ':')
2266 {
2267 complain (&invalid_cpp_abbrev_complaint, *pp);
2268 return 0;
2269 }
2270 fip->list->field.type = read_type (pp, objfile);
2271 if (**pp == ',')
2272 (*pp)++; /* Skip the comma. */
2273 else
2274 return 0;
2275
2276 {
2277 int nbits;
2278 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2279 if (nbits != 0)
2280 return 0;
2281 }
2282 /* This field is unpacked. */
2283 fip->list->field.bitsize = 0;
2284 fip->list->visibility = VISIBILITY_PRIVATE;
2285 }
2286 else
2287 {
2288 complain (&invalid_cpp_abbrev_complaint, *pp);
2289 /* We have no idea what syntax an unrecognized abbrev would have, so
2290 better return 0. If we returned 1, we would need to at least advance
2291 *pp to avoid an infinite loop. */
2292 return 0;
2293 }
2294 return 1;
2295 }
2296
2297 static void
2298 read_one_struct_field (fip, pp, p, type, objfile)
2299 struct field_info *fip;
2300 char **pp;
2301 char *p;
2302 struct type *type;
2303 struct objfile *objfile;
2304 {
2305 fip -> list -> field.name =
2306 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2307 *pp = p + 1;
2308
2309 /* This means we have a visibility for a field coming. */
2310 if (**pp == '/')
2311 {
2312 (*pp)++;
2313 fip -> list -> visibility = *(*pp)++;
2314 }
2315 else
2316 {
2317 /* normal dbx-style format, no explicit visibility */
2318 fip -> list -> visibility = VISIBILITY_PUBLIC;
2319 }
2320
2321 fip -> list -> field.type = read_type (pp, objfile);
2322 if (**pp == ':')
2323 {
2324 p = ++(*pp);
2325 #if 0
2326 /* Possible future hook for nested types. */
2327 if (**pp == '!')
2328 {
2329 fip -> list -> field.bitpos = (long)-2; /* nested type */
2330 p = ++(*pp);
2331 }
2332 else
2333 #endif
2334 {
2335 /* Static class member. */
2336 fip -> list -> field.bitpos = (long) -1;
2337 }
2338 while (*p != ';')
2339 {
2340 p++;
2341 }
2342 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2343 *pp = p + 1;
2344 return;
2345 }
2346 else if (**pp != ',')
2347 {
2348 /* Bad structure-type format. */
2349 complain (&stabs_general_complaint, "bad structure-type format");
2350 return;
2351 }
2352
2353 (*pp)++; /* Skip the comma. */
2354
2355 {
2356 int nbits;
2357 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2358 if (nbits != 0)
2359 {
2360 complain (&stabs_general_complaint, "bad structure-type format");
2361 return;
2362 }
2363 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2364 if (nbits != 0)
2365 {
2366 complain (&stabs_general_complaint, "bad structure-type format");
2367 return;
2368 }
2369 }
2370
2371 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2372 {
2373 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2374 it is a field which has been optimized out. The correct stab for
2375 this case is to use VISIBILITY_IGNORE, but that is a recent
2376 invention. (2) It is a 0-size array. For example
2377 union { int num; char str[0]; } foo. Printing "<no value>" for
2378 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2379 will continue to work, and a 0-size array as a whole doesn't
2380 have any contents to print.
2381
2382 I suspect this probably could also happen with gcc -gstabs (not
2383 -gstabs+) for static fields, and perhaps other C++ extensions.
2384 Hopefully few people use -gstabs with gdb, since it is intended
2385 for dbx compatibility. */
2386
2387 /* Ignore this field. */
2388 fip -> list-> visibility = VISIBILITY_IGNORE;
2389 }
2390 else
2391 {
2392 /* Detect an unpacked field and mark it as such.
2393 dbx gives a bit size for all fields.
2394 Note that forward refs cannot be packed,
2395 and treat enums as if they had the width of ints. */
2396
2397 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2398 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2399 {
2400 fip -> list -> field.bitsize = 0;
2401 }
2402 if ((fip -> list -> field.bitsize
2403 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2404 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2405 && (fip -> list -> field.bitsize
2406 == TARGET_INT_BIT)
2407 )
2408 )
2409 &&
2410 fip -> list -> field.bitpos % 8 == 0)
2411 {
2412 fip -> list -> field.bitsize = 0;
2413 }
2414 }
2415 }
2416
2417
2418 /* Read struct or class data fields. They have the form:
2419
2420 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2421
2422 At the end, we see a semicolon instead of a field.
2423
2424 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2425 a static field.
2426
2427 The optional VISIBILITY is one of:
2428
2429 '/0' (VISIBILITY_PRIVATE)
2430 '/1' (VISIBILITY_PROTECTED)
2431 '/2' (VISIBILITY_PUBLIC)
2432 '/9' (VISIBILITY_IGNORE)
2433
2434 or nothing, for C style fields with public visibility.
2435
2436 Returns 1 for success, 0 for failure. */
2437
2438 static int
2439 read_struct_fields (fip, pp, type, objfile)
2440 struct field_info *fip;
2441 char **pp;
2442 struct type *type;
2443 struct objfile *objfile;
2444 {
2445 register char *p;
2446 struct nextfield *new;
2447
2448 /* We better set p right now, in case there are no fields at all... */
2449
2450 p = *pp;
2451
2452 /* Read each data member type until we find the terminating ';' at the end of
2453 the data member list, or break for some other reason such as finding the
2454 start of the member function list. */
2455
2456 while (**pp != ';')
2457 {
2458 if (os9k_stabs && **pp == ',') break;
2459 STABS_CONTINUE (pp);
2460 /* Get space to record the next field's data. */
2461 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2462 make_cleanup (free, new);
2463 memset (new, 0, sizeof (struct nextfield));
2464 new -> next = fip -> list;
2465 fip -> list = new;
2466
2467 /* Get the field name. */
2468 p = *pp;
2469
2470 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2471 unless the CPLUS_MARKER is followed by an underscore, in
2472 which case it is just the name of an anonymous type, which we
2473 should handle like any other type name. We accept either '$'
2474 or '.', because a field name can never contain one of these
2475 characters except as a CPLUS_MARKER (we probably should be
2476 doing that in most parts of GDB). */
2477
2478 if ((*p == '$' || *p == '.') && p[1] != '_')
2479 {
2480 if (!read_cpp_abbrev (fip, pp, type, objfile))
2481 return 0;
2482 continue;
2483 }
2484
2485 /* Look for the ':' that separates the field name from the field
2486 values. Data members are delimited by a single ':', while member
2487 functions are delimited by a pair of ':'s. When we hit the member
2488 functions (if any), terminate scan loop and return. */
2489
2490 while (*p != ':' && *p != '\0')
2491 {
2492 p++;
2493 }
2494 if (*p == '\0')
2495 return 0;
2496
2497 /* Check to see if we have hit the member functions yet. */
2498 if (p[1] == ':')
2499 {
2500 break;
2501 }
2502 read_one_struct_field (fip, pp, p, type, objfile);
2503 }
2504 if (p[0] == ':' && p[1] == ':')
2505 {
2506 /* chill the list of fields: the last entry (at the head) is a
2507 partially constructed entry which we now scrub. */
2508 fip -> list = fip -> list -> next;
2509 }
2510 return 1;
2511 }
2512
2513 /* The stabs for C++ derived classes contain baseclass information which
2514 is marked by a '!' character after the total size. This function is
2515 called when we encounter the baseclass marker, and slurps up all the
2516 baseclass information.
2517
2518 Immediately following the '!' marker is the number of base classes that
2519 the class is derived from, followed by information for each base class.
2520 For each base class, there are two visibility specifiers, a bit offset
2521 to the base class information within the derived class, a reference to
2522 the type for the base class, and a terminating semicolon.
2523
2524 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2525 ^^ ^ ^ ^ ^ ^ ^
2526 Baseclass information marker __________________|| | | | | | |
2527 Number of baseclasses __________________________| | | | | | |
2528 Visibility specifiers (2) ________________________| | | | | |
2529 Offset in bits from start of class _________________| | | | |
2530 Type number for base class ___________________________| | | |
2531 Visibility specifiers (2) _______________________________| | |
2532 Offset in bits from start of class ________________________| |
2533 Type number of base class ____________________________________|
2534
2535 Return 1 for success, 0 for (error-type-inducing) failure. */
2536
2537 static int
2538 read_baseclasses (fip, pp, type, objfile)
2539 struct field_info *fip;
2540 char **pp;
2541 struct type *type;
2542 struct objfile *objfile;
2543 {
2544 int i;
2545 struct nextfield *new;
2546
2547 if (**pp != '!')
2548 {
2549 return 1;
2550 }
2551 else
2552 {
2553 /* Skip the '!' baseclass information marker. */
2554 (*pp)++;
2555 }
2556
2557 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2558 {
2559 int nbits;
2560 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2561 if (nbits != 0)
2562 return 0;
2563 }
2564
2565 #if 0
2566 /* Some stupid compilers have trouble with the following, so break
2567 it up into simpler expressions. */
2568 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2569 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2570 #else
2571 {
2572 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2573 char *pointer;
2574
2575 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2576 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2577 }
2578 #endif /* 0 */
2579
2580 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2581
2582 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2583 {
2584 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2585 make_cleanup (free, new);
2586 memset (new, 0, sizeof (struct nextfield));
2587 new -> next = fip -> list;
2588 fip -> list = new;
2589 new -> field.bitsize = 0; /* this should be an unpacked field! */
2590
2591 STABS_CONTINUE (pp);
2592 switch (**pp)
2593 {
2594 case '0':
2595 /* Nothing to do. */
2596 break;
2597 case '1':
2598 SET_TYPE_FIELD_VIRTUAL (type, i);
2599 break;
2600 default:
2601 /* Unknown character. Complain and treat it as non-virtual. */
2602 {
2603 static struct complaint msg = {
2604 "Unknown virtual character `%c' for baseclass", 0, 0};
2605 complain (&msg, **pp);
2606 }
2607 }
2608 ++(*pp);
2609
2610 new -> visibility = *(*pp)++;
2611 switch (new -> visibility)
2612 {
2613 case VISIBILITY_PRIVATE:
2614 case VISIBILITY_PROTECTED:
2615 case VISIBILITY_PUBLIC:
2616 break;
2617 default:
2618 /* Bad visibility format. Complain and treat it as
2619 public. */
2620 {
2621 static struct complaint msg = {
2622 "Unknown visibility `%c' for baseclass", 0, 0};
2623 complain (&msg, new -> visibility);
2624 new -> visibility = VISIBILITY_PUBLIC;
2625 }
2626 }
2627
2628 {
2629 int nbits;
2630
2631 /* The remaining value is the bit offset of the portion of the object
2632 corresponding to this baseclass. Always zero in the absence of
2633 multiple inheritance. */
2634
2635 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2636 if (nbits != 0)
2637 return 0;
2638 }
2639
2640 /* The last piece of baseclass information is the type of the
2641 base class. Read it, and remember it's type name as this
2642 field's name. */
2643
2644 new -> field.type = read_type (pp, objfile);
2645 new -> field.name = type_name_no_tag (new -> field.type);
2646
2647 /* skip trailing ';' and bump count of number of fields seen */
2648 if (**pp == ';')
2649 (*pp)++;
2650 else
2651 return 0;
2652 }
2653 return 1;
2654 }
2655
2656 /* The tail end of stabs for C++ classes that contain a virtual function
2657 pointer contains a tilde, a %, and a type number.
2658 The type number refers to the base class (possibly this class itself) which
2659 contains the vtable pointer for the current class.
2660
2661 This function is called when we have parsed all the method declarations,
2662 so we can look for the vptr base class info. */
2663
2664 static int
2665 read_tilde_fields (fip, pp, type, objfile)
2666 struct field_info *fip;
2667 char **pp;
2668 struct type *type;
2669 struct objfile *objfile;
2670 {
2671 register char *p;
2672
2673 STABS_CONTINUE (pp);
2674
2675 /* If we are positioned at a ';', then skip it. */
2676 if (**pp == ';')
2677 {
2678 (*pp)++;
2679 }
2680
2681 if (**pp == '~')
2682 {
2683 (*pp)++;
2684
2685 if (**pp == '=' || **pp == '+' || **pp == '-')
2686 {
2687 /* Obsolete flags that used to indicate the presence
2688 of constructors and/or destructors. */
2689 (*pp)++;
2690 }
2691
2692 /* Read either a '%' or the final ';'. */
2693 if (*(*pp)++ == '%')
2694 {
2695 /* The next number is the type number of the base class
2696 (possibly our own class) which supplies the vtable for
2697 this class. Parse it out, and search that class to find
2698 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2699 and TYPE_VPTR_FIELDNO. */
2700
2701 struct type *t;
2702 int i;
2703
2704 t = read_type (pp, objfile);
2705 p = (*pp)++;
2706 while (*p != '\0' && *p != ';')
2707 {
2708 p++;
2709 }
2710 if (*p == '\0')
2711 {
2712 /* Premature end of symbol. */
2713 return 0;
2714 }
2715
2716 TYPE_VPTR_BASETYPE (type) = t;
2717 if (type == t) /* Our own class provides vtbl ptr */
2718 {
2719 for (i = TYPE_NFIELDS (t) - 1;
2720 i >= TYPE_N_BASECLASSES (t);
2721 --i)
2722 {
2723 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2724 sizeof (vptr_name) - 1))
2725 {
2726 TYPE_VPTR_FIELDNO (type) = i;
2727 goto gotit;
2728 }
2729 }
2730 /* Virtual function table field not found. */
2731 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2732 return 0;
2733 }
2734 else
2735 {
2736 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2737 }
2738
2739 gotit:
2740 *pp = p + 1;
2741 }
2742 }
2743 return 1;
2744 }
2745
2746 static int
2747 attach_fn_fields_to_type (fip, type)
2748 struct field_info *fip;
2749 register struct type *type;
2750 {
2751 register int n;
2752
2753 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2754 {
2755 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2756 {
2757 /* @@ Memory leak on objfile -> type_obstack? */
2758 return 0;
2759 }
2760 TYPE_NFN_FIELDS_TOTAL (type) +=
2761 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2762 }
2763
2764 for (n = TYPE_NFN_FIELDS (type);
2765 fip -> fnlist != NULL;
2766 fip -> fnlist = fip -> fnlist -> next)
2767 {
2768 --n; /* Circumvent Sun3 compiler bug */
2769 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2770 }
2771 return 1;
2772 }
2773
2774 /* Create the vector of fields, and record how big it is.
2775 We need this info to record proper virtual function table information
2776 for this class's virtual functions. */
2777
2778 static int
2779 attach_fields_to_type (fip, type, objfile)
2780 struct field_info *fip;
2781 register struct type *type;
2782 struct objfile *objfile;
2783 {
2784 register int nfields = 0;
2785 register int non_public_fields = 0;
2786 register struct nextfield *scan;
2787
2788 /* Count up the number of fields that we have, as well as taking note of
2789 whether or not there are any non-public fields, which requires us to
2790 allocate and build the private_field_bits and protected_field_bits
2791 bitfields. */
2792
2793 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2794 {
2795 nfields++;
2796 if (scan -> visibility != VISIBILITY_PUBLIC)
2797 {
2798 non_public_fields++;
2799 }
2800 }
2801
2802 /* Now we know how many fields there are, and whether or not there are any
2803 non-public fields. Record the field count, allocate space for the
2804 array of fields, and create blank visibility bitfields if necessary. */
2805
2806 TYPE_NFIELDS (type) = nfields;
2807 TYPE_FIELDS (type) = (struct field *)
2808 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2809 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2810
2811 if (non_public_fields)
2812 {
2813 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2814
2815 TYPE_FIELD_PRIVATE_BITS (type) =
2816 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2817 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2818
2819 TYPE_FIELD_PROTECTED_BITS (type) =
2820 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2821 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2822
2823 TYPE_FIELD_IGNORE_BITS (type) =
2824 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2825 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2826 }
2827
2828 /* Copy the saved-up fields into the field vector. Start from the head
2829 of the list, adding to the tail of the field array, so that they end
2830 up in the same order in the array in which they were added to the list. */
2831
2832 while (nfields-- > 0)
2833 {
2834 TYPE_FIELD (type, nfields) = fip -> list -> field;
2835 switch (fip -> list -> visibility)
2836 {
2837 case VISIBILITY_PRIVATE:
2838 SET_TYPE_FIELD_PRIVATE (type, nfields);
2839 break;
2840
2841 case VISIBILITY_PROTECTED:
2842 SET_TYPE_FIELD_PROTECTED (type, nfields);
2843 break;
2844
2845 case VISIBILITY_IGNORE:
2846 SET_TYPE_FIELD_IGNORE (type, nfields);
2847 break;
2848
2849 case VISIBILITY_PUBLIC:
2850 break;
2851
2852 default:
2853 /* Unknown visibility. Complain and treat it as public. */
2854 {
2855 static struct complaint msg = {
2856 "Unknown visibility `%c' for field", 0, 0};
2857 complain (&msg, fip -> list -> visibility);
2858 }
2859 break;
2860 }
2861 fip -> list = fip -> list -> next;
2862 }
2863 return 1;
2864 }
2865
2866 /* Read the description of a structure (or union type) and return an object
2867 describing the type.
2868
2869 PP points to a character pointer that points to the next unconsumed token
2870 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2871 *PP will point to "4a:1,0,32;;".
2872
2873 TYPE points to an incomplete type that needs to be filled in.
2874
2875 OBJFILE points to the current objfile from which the stabs information is
2876 being read. (Note that it is redundant in that TYPE also contains a pointer
2877 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2878 */
2879
2880 static struct type *
2881 read_struct_type (pp, type, objfile)
2882 char **pp;
2883 struct type *type;
2884 struct objfile *objfile;
2885 {
2886 struct cleanup *back_to;
2887 struct field_info fi;
2888
2889 fi.list = NULL;
2890 fi.fnlist = NULL;
2891
2892 back_to = make_cleanup (null_cleanup, 0);
2893
2894 INIT_CPLUS_SPECIFIC (type);
2895 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2896
2897 /* First comes the total size in bytes. */
2898
2899 {
2900 int nbits;
2901 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2902 if (nbits != 0)
2903 return error_type (pp);
2904 }
2905
2906 /* Now read the baseclasses, if any, read the regular C struct or C++
2907 class member fields, attach the fields to the type, read the C++
2908 member functions, attach them to the type, and then read any tilde
2909 field (baseclass specifier for the class holding the main vtable). */
2910
2911 if (!read_baseclasses (&fi, pp, type, objfile)
2912 || !read_struct_fields (&fi, pp, type, objfile)
2913 || !attach_fields_to_type (&fi, type, objfile)
2914 || !read_member_functions (&fi, pp, type, objfile)
2915 || !attach_fn_fields_to_type (&fi, type)
2916 || !read_tilde_fields (&fi, pp, type, objfile))
2917 {
2918 do_cleanups (back_to);
2919 return (error_type (pp));
2920 }
2921
2922 do_cleanups (back_to);
2923 return (type);
2924 }
2925
2926 /* Read a definition of an array type,
2927 and create and return a suitable type object.
2928 Also creates a range type which represents the bounds of that
2929 array. */
2930
2931 static struct type *
2932 read_array_type (pp, type, objfile)
2933 register char **pp;
2934 register struct type *type;
2935 struct objfile *objfile;
2936 {
2937 struct type *index_type, *element_type, *range_type;
2938 int lower, upper;
2939 int adjustable = 0;
2940 int nbits;
2941
2942 /* Format of an array type:
2943 "ar<index type>;lower;upper;<array_contents_type>".
2944 OS9000: "arlower,upper;<array_contents_type>".
2945
2946 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2947 for these, produce a type like float[][]. */
2948
2949 if (os9k_stabs)
2950 index_type = builtin_type_int;
2951 else
2952 {
2953 index_type = read_type (pp, objfile);
2954 if (**pp != ';')
2955 /* Improper format of array type decl. */
2956 return error_type (pp);
2957 ++*pp;
2958 }
2959
2960 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2961 {
2962 (*pp)++;
2963 adjustable = 1;
2964 }
2965 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
2966 if (nbits != 0)
2967 return error_type (pp);
2968
2969 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2970 {
2971 (*pp)++;
2972 adjustable = 1;
2973 }
2974 upper = read_huge_number (pp, ';', &nbits);
2975 if (nbits != 0)
2976 return error_type (pp);
2977
2978 element_type = read_type (pp, objfile);
2979
2980 if (adjustable)
2981 {
2982 lower = 0;
2983 upper = -1;
2984 }
2985
2986 range_type =
2987 create_range_type ((struct type *) NULL, index_type, lower, upper);
2988 type = create_array_type (type, element_type, range_type);
2989
2990 /* If we have an array whose element type is not yet known, but whose
2991 bounds *are* known, record it to be adjusted at the end of the file. */
2992 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2993 the two have the same effect except that the latter is cleaner and the
2994 former would be wrong for types which really are zero-length (if we
2995 have any). */
2996
2997 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2998 {
2999 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
3000 add_undefined_type (type);
3001 }
3002
3003 return type;
3004 }
3005
3006
3007 /* Read a definition of an enumeration type,
3008 and create and return a suitable type object.
3009 Also defines the symbols that represent the values of the type. */
3010
3011 static struct type *
3012 read_enum_type (pp, type, objfile)
3013 register char **pp;
3014 register struct type *type;
3015 struct objfile *objfile;
3016 {
3017 register char *p;
3018 char *name;
3019 register long n;
3020 register struct symbol *sym;
3021 int nsyms = 0;
3022 struct pending **symlist;
3023 struct pending *osyms, *syms;
3024 int o_nsyms;
3025 int nbits;
3026
3027 #if 0
3028 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3029 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3030 to do? For now, force all enum values to file scope. */
3031 if (within_function)
3032 symlist = &local_symbols;
3033 else
3034 #endif
3035 symlist = &file_symbols;
3036 osyms = *symlist;
3037 o_nsyms = osyms ? osyms->nsyms : 0;
3038
3039 if (os9k_stabs)
3040 {
3041 /* Size. Perhaps this does not have to be conditionalized on
3042 os9k_stabs (assuming the name of an enum constant can't start
3043 with a digit). */
3044 read_huge_number (pp, 0, &nbits);
3045 if (nbits != 0)
3046 return error_type (pp);
3047 }
3048
3049 /* Read the value-names and their values.
3050 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3051 A semicolon or comma instead of a NAME means the end. */
3052 while (**pp && **pp != ';' && **pp != ',')
3053 {
3054 STABS_CONTINUE (pp);
3055 p = *pp;
3056 while (*p != ':') p++;
3057 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
3058 *pp = p + 1;
3059 n = read_huge_number (pp, ',', &nbits);
3060 if (nbits != 0)
3061 return error_type (pp);
3062
3063 sym = (struct symbol *)
3064 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3065 memset (sym, 0, sizeof (struct symbol));
3066 SYMBOL_NAME (sym) = name;
3067 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
3068 SYMBOL_CLASS (sym) = LOC_CONST;
3069 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3070 SYMBOL_VALUE (sym) = n;
3071 add_symbol_to_list (sym, symlist);
3072 nsyms++;
3073 }
3074
3075 if (**pp == ';')
3076 (*pp)++; /* Skip the semicolon. */
3077
3078 /* Now fill in the fields of the type-structure. */
3079
3080 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3081 TYPE_CODE (type) = TYPE_CODE_ENUM;
3082 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3083 TYPE_NFIELDS (type) = nsyms;
3084 TYPE_FIELDS (type) = (struct field *)
3085 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3086 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3087
3088 /* Find the symbols for the values and put them into the type.
3089 The symbols can be found in the symlist that we put them on
3090 to cause them to be defined. osyms contains the old value
3091 of that symlist; everything up to there was defined by us. */
3092 /* Note that we preserve the order of the enum constants, so
3093 that in something like "enum {FOO, LAST_THING=FOO}" we print
3094 FOO, not LAST_THING. */
3095
3096 for (syms = *symlist, n = 0; syms; syms = syms->next)
3097 {
3098 int j = 0;
3099 if (syms == osyms)
3100 j = o_nsyms;
3101 for (; j < syms->nsyms; j++,n++)
3102 {
3103 struct symbol *xsym = syms->symbol[j];
3104 SYMBOL_TYPE (xsym) = type;
3105 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
3106 TYPE_FIELD_VALUE (type, n) = 0;
3107 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3108 TYPE_FIELD_BITSIZE (type, n) = 0;
3109 }
3110 if (syms == osyms)
3111 break;
3112 }
3113
3114 return type;
3115 }
3116
3117 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3118 typedefs in every file (for int, long, etc):
3119
3120 type = b <signed> <width>; <offset>; <nbits>
3121 signed = u or s. Possible c in addition to u or s (for char?).
3122 offset = offset from high order bit to start bit of type.
3123 width is # bytes in object of this type, nbits is # bits in type.
3124
3125 The width/offset stuff appears to be for small objects stored in
3126 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3127 FIXME. */
3128
3129 static struct type *
3130 read_sun_builtin_type (pp, typenums, objfile)
3131 char **pp;
3132 int typenums[2];
3133 struct objfile *objfile;
3134 {
3135 int type_bits;
3136 int nbits;
3137 int signed_type;
3138
3139 switch (**pp)
3140 {
3141 case 's':
3142 signed_type = 1;
3143 break;
3144 case 'u':
3145 signed_type = 0;
3146 break;
3147 default:
3148 return error_type (pp);
3149 }
3150 (*pp)++;
3151
3152 /* For some odd reason, all forms of char put a c here. This is strange
3153 because no other type has this honor. We can safely ignore this because
3154 we actually determine 'char'acterness by the number of bits specified in
3155 the descriptor. */
3156
3157 if (**pp == 'c')
3158 (*pp)++;
3159
3160 /* The first number appears to be the number of bytes occupied
3161 by this type, except that unsigned short is 4 instead of 2.
3162 Since this information is redundant with the third number,
3163 we will ignore it. */
3164 read_huge_number (pp, ';', &nbits);
3165 if (nbits != 0)
3166 return error_type (pp);
3167
3168 /* The second number is always 0, so ignore it too. */
3169 read_huge_number (pp, ';', &nbits);
3170 if (nbits != 0)
3171 return error_type (pp);
3172
3173 /* The third number is the number of bits for this type. */
3174 type_bits = read_huge_number (pp, 0, &nbits);
3175 if (nbits != 0)
3176 return error_type (pp);
3177 /* The type *should* end with a semicolon. If it are embedded
3178 in a larger type the semicolon may be the only way to know where
3179 the type ends. If this type is at the end of the stabstring we
3180 can deal with the omitted semicolon (but we don't have to like
3181 it). Don't bother to complain(), Sun's compiler omits the semicolon
3182 for "void". */
3183 if (**pp == ';')
3184 ++(*pp);
3185
3186 if (type_bits == 0)
3187 return init_type (TYPE_CODE_VOID, 1,
3188 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3189 objfile);
3190 else
3191 return init_type (TYPE_CODE_INT,
3192 type_bits / TARGET_CHAR_BIT,
3193 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3194 objfile);
3195 }
3196
3197 static struct type *
3198 read_sun_floating_type (pp, typenums, objfile)
3199 char **pp;
3200 int typenums[2];
3201 struct objfile *objfile;
3202 {
3203 int nbits;
3204 int details;
3205 int nbytes;
3206
3207 /* The first number has more details about the type, for example
3208 FN_COMPLEX. */
3209 details = read_huge_number (pp, ';', &nbits);
3210 if (nbits != 0)
3211 return error_type (pp);
3212
3213 /* The second number is the number of bytes occupied by this type */
3214 nbytes = read_huge_number (pp, ';', &nbits);
3215 if (nbits != 0)
3216 return error_type (pp);
3217
3218 if (details == NF_COMPLEX || details == NF_COMPLEX16
3219 || details == NF_COMPLEX32)
3220 /* This is a type we can't handle, but we do know the size.
3221 We also will be able to give it a name. */
3222 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3223
3224 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3225 }
3226
3227 /* Read a number from the string pointed to by *PP.
3228 The value of *PP is advanced over the number.
3229 If END is nonzero, the character that ends the
3230 number must match END, or an error happens;
3231 and that character is skipped if it does match.
3232 If END is zero, *PP is left pointing to that character.
3233
3234 If the number fits in a long, set *BITS to 0 and return the value.
3235 If not, set *BITS to be the number of bits in the number and return 0.
3236
3237 If encounter garbage, set *BITS to -1 and return 0. */
3238
3239 static long
3240 read_huge_number (pp, end, bits)
3241 char **pp;
3242 int end;
3243 int *bits;
3244 {
3245 char *p = *pp;
3246 int sign = 1;
3247 long n = 0;
3248 int radix = 10;
3249 char overflow = 0;
3250 int nbits = 0;
3251 int c;
3252 long upper_limit;
3253
3254 if (*p == '-')
3255 {
3256 sign = -1;
3257 p++;
3258 }
3259
3260 /* Leading zero means octal. GCC uses this to output values larger
3261 than an int (because that would be hard in decimal). */
3262 if (*p == '0')
3263 {
3264 radix = 8;
3265 p++;
3266 }
3267
3268 upper_limit = LONG_MAX / radix;
3269 while ((c = *p++) >= '0' && c < ('0' + radix))
3270 {
3271 if (n <= upper_limit)
3272 {
3273 n *= radix;
3274 n += c - '0'; /* FIXME this overflows anyway */
3275 }
3276 else
3277 overflow = 1;
3278
3279 /* This depends on large values being output in octal, which is
3280 what GCC does. */
3281 if (radix == 8)
3282 {
3283 if (nbits == 0)
3284 {
3285 if (c == '0')
3286 /* Ignore leading zeroes. */
3287 ;
3288 else if (c == '1')
3289 nbits = 1;
3290 else if (c == '2' || c == '3')
3291 nbits = 2;
3292 else
3293 nbits = 3;
3294 }
3295 else
3296 nbits += 3;
3297 }
3298 }
3299 if (end)
3300 {
3301 if (c && c != end)
3302 {
3303 if (bits != NULL)
3304 *bits = -1;
3305 return 0;
3306 }
3307 }
3308 else
3309 --p;
3310
3311 *pp = p;
3312 if (overflow)
3313 {
3314 if (nbits == 0)
3315 {
3316 /* Large decimal constants are an error (because it is hard to
3317 count how many bits are in them). */
3318 if (bits != NULL)
3319 *bits = -1;
3320 return 0;
3321 }
3322
3323 /* -0x7f is the same as 0x80. So deal with it by adding one to
3324 the number of bits. */
3325 if (sign == -1)
3326 ++nbits;
3327 if (bits)
3328 *bits = nbits;
3329 }
3330 else
3331 {
3332 if (bits)
3333 *bits = 0;
3334 return n * sign;
3335 }
3336 /* It's *BITS which has the interesting information. */
3337 return 0;
3338 }
3339
3340 static struct type *
3341 read_range_type (pp, typenums, objfile)
3342 char **pp;
3343 int typenums[2];
3344 struct objfile *objfile;
3345 {
3346 int rangenums[2];
3347 long n2, n3;
3348 int n2bits, n3bits;
3349 int self_subrange;
3350 struct type *result_type;
3351 struct type *index_type;
3352
3353 /* First comes a type we are a subrange of.
3354 In C it is usually 0, 1 or the type being defined. */
3355 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3356 not just a type number. */
3357 if (read_type_number (pp, rangenums) != 0)
3358 return error_type (pp);
3359 self_subrange = (rangenums[0] == typenums[0] &&
3360 rangenums[1] == typenums[1]);
3361
3362 /* A semicolon should now follow; skip it. */
3363 if (**pp == ';')
3364 (*pp)++;
3365
3366 /* The remaining two operands are usually lower and upper bounds
3367 of the range. But in some special cases they mean something else. */
3368 n2 = read_huge_number (pp, ';', &n2bits);
3369 n3 = read_huge_number (pp, ';', &n3bits);
3370
3371 if (n2bits == -1 || n3bits == -1)
3372 return error_type (pp);
3373
3374 /* If limits are huge, must be large integral type. */
3375 if (n2bits != 0 || n3bits != 0)
3376 {
3377 char got_signed = 0;
3378 char got_unsigned = 0;
3379 /* Number of bits in the type. */
3380 int nbits = 0;
3381
3382 /* Range from 0 to <large number> is an unsigned large integral type. */
3383 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3384 {
3385 got_unsigned = 1;
3386 nbits = n3bits;
3387 }
3388 /* Range from <large number> to <large number>-1 is a large signed
3389 integral type. Take care of the case where <large number> doesn't
3390 fit in a long but <large number>-1 does. */
3391 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3392 || (n2bits != 0 && n3bits == 0
3393 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3394 && n3 == LONG_MAX))
3395 {
3396 got_signed = 1;
3397 nbits = n2bits;
3398 }
3399
3400 if (got_signed || got_unsigned)
3401 {
3402 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3403 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3404 objfile);
3405 }
3406 else
3407 return error_type (pp);
3408 }
3409
3410 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3411 if (self_subrange && n2 == 0 && n3 == 0)
3412 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3413
3414 /* If n3 is zero and n2 is not, we want a floating type,
3415 and n2 is the width in bytes.
3416
3417 Fortran programs appear to use this for complex types also,
3418 and they give no way to distinguish between double and single-complex!
3419
3420 GDB does not have complex types.
3421
3422 Just return the complex as a float of that size. It won't work right
3423 for the complex values, but at least it makes the file loadable. */
3424
3425 if (n3 == 0 && n2 > 0)
3426 {
3427 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3428 }
3429
3430 /* If the upper bound is -1, it must really be an unsigned int. */
3431
3432 else if (n2 == 0 && n3 == -1)
3433 {
3434 /* It is unsigned int or unsigned long. */
3435 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3436 compatibility hack. */
3437 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3438 TYPE_FLAG_UNSIGNED, NULL, objfile);
3439 }
3440
3441 /* Special case: char is defined (Who knows why) as a subrange of
3442 itself with range 0-127. */
3443 else if (self_subrange && n2 == 0 && n3 == 127)
3444 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3445
3446 /* We used to do this only for subrange of self or subrange of int. */
3447 else if (n2 == 0)
3448 {
3449 if (n3 < 0)
3450 /* n3 actually gives the size. */
3451 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3452 NULL, objfile);
3453 if (n3 == 0xff)
3454 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3455 if (n3 == 0xffff)
3456 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3457
3458 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3459 "unsigned long", and we already checked for that,
3460 so don't need to test for it here. */
3461 }
3462 /* I think this is for Convex "long long". Since I don't know whether
3463 Convex sets self_subrange, I also accept that particular size regardless
3464 of self_subrange. */
3465 else if (n3 == 0 && n2 < 0
3466 && (self_subrange
3467 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3468 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3469 else if (n2 == -n3 -1)
3470 {
3471 if (n3 == 0x7f)
3472 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3473 if (n3 == 0x7fff)
3474 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3475 if (n3 == 0x7fffffff)
3476 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3477 }
3478
3479 /* We have a real range type on our hands. Allocate space and
3480 return a real pointer. */
3481
3482 /* At this point I don't have the faintest idea how to deal with
3483 a self_subrange type; I'm going to assume that this is used
3484 as an idiom, and that all of them are special cases. So . . . */
3485 if (self_subrange)
3486 return error_type (pp);
3487
3488 index_type = *dbx_lookup_type (rangenums);
3489 if (index_type == NULL)
3490 {
3491 /* Does this actually ever happen? Is that why we are worrying
3492 about dealing with it rather than just calling error_type? */
3493
3494 static struct type *range_type_index;
3495
3496 complain (&range_type_base_complaint, rangenums[1]);
3497 if (range_type_index == NULL)
3498 range_type_index =
3499 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3500 0, "range type index type", NULL);
3501 index_type = range_type_index;
3502 }
3503
3504 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3505 return (result_type);
3506 }
3507
3508 /* Read in an argument list. This is a list of types, separated by commas
3509 and terminated with END. Return the list of types read in, or (struct type
3510 **)-1 if there is an error. */
3511
3512 static struct type **
3513 read_args (pp, end, objfile)
3514 char **pp;
3515 int end;
3516 struct objfile *objfile;
3517 {
3518 /* FIXME! Remove this arbitrary limit! */
3519 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3520 int n = 0;
3521
3522 while (**pp != end)
3523 {
3524 if (**pp != ',')
3525 /* Invalid argument list: no ','. */
3526 return (struct type **)-1;
3527 (*pp)++;
3528 STABS_CONTINUE (pp);
3529 types[n++] = read_type (pp, objfile);
3530 }
3531 (*pp)++; /* get past `end' (the ':' character) */
3532
3533 if (n == 1)
3534 {
3535 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3536 }
3537 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3538 {
3539 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3540 memset (rval + n, 0, sizeof (struct type *));
3541 }
3542 else
3543 {
3544 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3545 }
3546 memcpy (rval, types, n * sizeof (struct type *));
3547 return rval;
3548 }
3549 \f
3550 /* Common block handling. */
3551
3552 /* List of symbols declared since the last BCOMM. This list is a tail
3553 of local_symbols. When ECOMM is seen, the symbols on the list
3554 are noted so their proper addresses can be filled in later,
3555 using the common block base address gotten from the assembler
3556 stabs. */
3557
3558 static struct pending *common_block;
3559 static int common_block_i;
3560
3561 /* Name of the current common block. We get it from the BCOMM instead of the
3562 ECOMM to match IBM documentation (even though IBM puts the name both places
3563 like everyone else). */
3564 static char *common_block_name;
3565
3566 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3567 to remain after this function returns. */
3568
3569 void
3570 common_block_start (name, objfile)
3571 char *name;
3572 struct objfile *objfile;
3573 {
3574 if (common_block_name != NULL)
3575 {
3576 static struct complaint msg = {
3577 "Invalid symbol data: common block within common block",
3578 0, 0};
3579 complain (&msg);
3580 }
3581 common_block = local_symbols;
3582 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3583 common_block_name = obsavestring (name, strlen (name),
3584 &objfile -> symbol_obstack);
3585 }
3586
3587 /* Process a N_ECOMM symbol. */
3588
3589 void
3590 common_block_end (objfile)
3591 struct objfile *objfile;
3592 {
3593 /* Symbols declared since the BCOMM are to have the common block
3594 start address added in when we know it. common_block and
3595 common_block_i point to the first symbol after the BCOMM in
3596 the local_symbols list; copy the list and hang it off the
3597 symbol for the common block name for later fixup. */
3598 int i;
3599 struct symbol *sym;
3600 struct pending *new = 0;
3601 struct pending *next;
3602 int j;
3603
3604 if (common_block_name == NULL)
3605 {
3606 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3607 complain (&msg);
3608 return;
3609 }
3610
3611 sym = (struct symbol *)
3612 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3613 memset (sym, 0, sizeof (struct symbol));
3614 SYMBOL_NAME (sym) = common_block_name;
3615 SYMBOL_CLASS (sym) = LOC_BLOCK;
3616
3617 /* Now we copy all the symbols which have been defined since the BCOMM. */
3618
3619 /* Copy all the struct pendings before common_block. */
3620 for (next = local_symbols;
3621 next != NULL && next != common_block;
3622 next = next->next)
3623 {
3624 for (j = 0; j < next->nsyms; j++)
3625 add_symbol_to_list (next->symbol[j], &new);
3626 }
3627
3628 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3629 NULL, it means copy all the local symbols (which we already did
3630 above). */
3631
3632 if (common_block != NULL)
3633 for (j = common_block_i; j < common_block->nsyms; j++)
3634 add_symbol_to_list (common_block->symbol[j], &new);
3635
3636 SYMBOL_TYPE (sym) = (struct type *) new;
3637
3638 /* Should we be putting local_symbols back to what it was?
3639 Does it matter? */
3640
3641 i = hashname (SYMBOL_NAME (sym));
3642 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3643 global_sym_chain[i] = sym;
3644 common_block_name = NULL;
3645 }
3646
3647 /* Add a common block's start address to the offset of each symbol
3648 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3649 the common block name). */
3650
3651 static void
3652 fix_common_block (sym, valu)
3653 struct symbol *sym;
3654 int valu;
3655 {
3656 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
3657 for ( ; next; next = next->next)
3658 {
3659 register int j;
3660 for (j = next->nsyms - 1; j >= 0; j--)
3661 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3662 }
3663 }
3664
3665
3666 \f
3667 /* What about types defined as forward references inside of a small lexical
3668 scope? */
3669 /* Add a type to the list of undefined types to be checked through
3670 once this file has been read in. */
3671
3672 void
3673 add_undefined_type (type)
3674 struct type *type;
3675 {
3676 if (undef_types_length == undef_types_allocated)
3677 {
3678 undef_types_allocated *= 2;
3679 undef_types = (struct type **)
3680 xrealloc ((char *) undef_types,
3681 undef_types_allocated * sizeof (struct type *));
3682 }
3683 undef_types[undef_types_length++] = type;
3684 }
3685
3686 /* Go through each undefined type, see if it's still undefined, and fix it
3687 up if possible. We have two kinds of undefined types:
3688
3689 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3690 Fix: update array length using the element bounds
3691 and the target type's length.
3692 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3693 yet defined at the time a pointer to it was made.
3694 Fix: Do a full lookup on the struct/union tag. */
3695 void
3696 cleanup_undefined_types ()
3697 {
3698 struct type **type;
3699
3700 for (type = undef_types; type < undef_types + undef_types_length; type++)
3701 {
3702 switch (TYPE_CODE (*type))
3703 {
3704
3705 case TYPE_CODE_STRUCT:
3706 case TYPE_CODE_UNION:
3707 case TYPE_CODE_ENUM:
3708 {
3709 /* Check if it has been defined since. Need to do this here
3710 as well as in check_stub_type to deal with the (legitimate in
3711 C though not C++) case of several types with the same name
3712 in different source files. */
3713 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3714 {
3715 struct pending *ppt;
3716 int i;
3717 /* Name of the type, without "struct" or "union" */
3718 char *typename = TYPE_TAG_NAME (*type);
3719
3720 if (typename == NULL)
3721 {
3722 static struct complaint msg = {"need a type name", 0, 0};
3723 complain (&msg);
3724 break;
3725 }
3726 for (ppt = file_symbols; ppt; ppt = ppt->next)
3727 {
3728 for (i = 0; i < ppt->nsyms; i++)
3729 {
3730 struct symbol *sym = ppt->symbol[i];
3731
3732 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3733 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3734 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3735 TYPE_CODE (*type))
3736 && STREQ (SYMBOL_NAME (sym), typename))
3737 {
3738 memcpy (*type, SYMBOL_TYPE (sym),
3739 sizeof (struct type));
3740 }
3741 }
3742 }
3743 }
3744 }
3745 break;
3746
3747 case TYPE_CODE_ARRAY:
3748 {
3749 /* This is a kludge which is here for historical reasons
3750 because I suspect that check_stub_type does not get
3751 called everywhere it needs to be called for arrays. Even
3752 with this kludge, those places are broken for the case
3753 where the stub type is defined in another compilation
3754 unit, but this kludge at least deals with it for the case
3755 in which it is the same compilation unit.
3756
3757 Don't try to do this by calling check_stub_type; it might
3758 cause symbols to be read in lookup_symbol, and the symbol
3759 reader is not reentrant. */
3760
3761 struct type *range_type;
3762 int lower, upper;
3763
3764 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3765 goto badtype;
3766 if (TYPE_NFIELDS (*type) != 1)
3767 goto badtype;
3768 range_type = TYPE_FIELD_TYPE (*type, 0);
3769 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3770 goto badtype;
3771
3772 /* Now recompute the length of the array type, based on its
3773 number of elements and the target type's length. */
3774 lower = TYPE_FIELD_BITPOS (range_type, 0);
3775 upper = TYPE_FIELD_BITPOS (range_type, 1);
3776 TYPE_LENGTH (*type) = (upper - lower + 1)
3777 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3778
3779 /* If the target type is not a stub, we could be clearing
3780 TYPE_FLAG_TARGET_STUB for *type. */
3781 }
3782 break;
3783
3784 default:
3785 badtype:
3786 {
3787 static struct complaint msg = {"\
3788 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3789 complain (&msg, TYPE_CODE (*type));
3790 }
3791 break;
3792 }
3793 }
3794
3795 undef_types_length = 0;
3796 }
3797
3798 /* Scan through all of the global symbols defined in the object file,
3799 assigning values to the debugging symbols that need to be assigned
3800 to. Get these symbols from the minimal symbol table. */
3801
3802 void
3803 scan_file_globals (objfile)
3804 struct objfile *objfile;
3805 {
3806 int hash;
3807 struct minimal_symbol *msymbol;
3808 struct symbol *sym, *prev;
3809
3810 if (objfile->msymbols == 0) /* Beware the null file. */
3811 return;
3812
3813 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3814 {
3815 QUIT;
3816
3817 prev = NULL;
3818
3819 /* Get the hash index and check all the symbols
3820 under that hash index. */
3821
3822 hash = hashname (SYMBOL_NAME (msymbol));
3823
3824 for (sym = global_sym_chain[hash]; sym;)
3825 {
3826 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3827 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3828 {
3829 /* Splice this symbol out of the hash chain and
3830 assign the value we have to it. */
3831 if (prev)
3832 {
3833 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3834 }
3835 else
3836 {
3837 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3838 }
3839
3840 /* Check to see whether we need to fix up a common block. */
3841 /* Note: this code might be executed several times for
3842 the same symbol if there are multiple references. */
3843
3844 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3845 {
3846 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3847 }
3848 else
3849 {
3850 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3851 }
3852
3853 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
3854
3855 if (prev)
3856 {
3857 sym = SYMBOL_VALUE_CHAIN (prev);
3858 }
3859 else
3860 {
3861 sym = global_sym_chain[hash];
3862 }
3863 }
3864 else
3865 {
3866 prev = sym;
3867 sym = SYMBOL_VALUE_CHAIN (sym);
3868 }
3869 }
3870 }
3871 }
3872
3873 /* Initialize anything that needs initializing when starting to read
3874 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3875 to a psymtab. */
3876
3877 void
3878 stabsread_init ()
3879 {
3880 }
3881
3882 /* Initialize anything that needs initializing when a completely new
3883 symbol file is specified (not just adding some symbols from another
3884 file, e.g. a shared library). */
3885
3886 void
3887 stabsread_new_init ()
3888 {
3889 /* Empty the hash table of global syms looking for values. */
3890 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3891 }
3892
3893 /* Initialize anything that needs initializing at the same time as
3894 start_symtab() is called. */
3895
3896 void start_stabs ()
3897 {
3898 global_stabs = NULL; /* AIX COFF */
3899 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3900 n_this_object_header_files = 1;
3901 type_vector_length = 0;
3902 type_vector = (struct type **) 0;
3903
3904 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3905 common_block_name = NULL;
3906
3907 os9k_stabs = 0;
3908 }
3909
3910 /* Call after end_symtab() */
3911
3912 void end_stabs ()
3913 {
3914 if (type_vector)
3915 {
3916 free ((char *) type_vector);
3917 }
3918 type_vector = 0;
3919 type_vector_length = 0;
3920 previous_stab_code = 0;
3921 }
3922
3923 void
3924 finish_global_stabs (objfile)
3925 struct objfile *objfile;
3926 {
3927 if (global_stabs)
3928 {
3929 patch_block_stabs (global_symbols, global_stabs, objfile);
3930 free ((PTR) global_stabs);
3931 global_stabs = NULL;
3932 }
3933 }
3934
3935 /* Initializer for this module */
3936
3937 void
3938 _initialize_stabsread ()
3939 {
3940 undef_types_allocated = 20;
3941 undef_types_length = 0;
3942 undef_types = (struct type **)
3943 xmalloc (undef_types_allocated * sizeof (struct type *));
3944 }
This page took 0.119717 seconds and 4 git commands to generate.