Stash frame id of current frame before stashing frame id for previous frame
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* Allocate a floating-point type of size BITS. */
357
358 static struct type *
359 dbx_init_float_type (struct objfile *objfile, int bits)
360 {
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
369 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, NULL);
370
371 return type;
372 }
373
374 /* for all the stabs in a given stab vector, build appropriate types
375 and fix their symbols in given symbol vector. */
376
377 static void
378 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
380 {
381 int ii;
382 char *name;
383 char *pp;
384 struct symbol *sym;
385
386 if (stabs)
387 {
388 /* for all the stab entries, find their corresponding symbols and
389 patch their types! */
390
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
394 pp = (char *) strchr (name, ':');
395 gdb_assert (pp); /* Must find a ':' or game's over. */
396 while (pp[1] == ':')
397 {
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
400 }
401 sym = find_symbol_in_list (symbols, name, pp - name);
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
411
412 /* On xcoff, if a global is defined and never referenced,
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
415 sym = allocate_symbol (objfile);
416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
418 SYMBOL_SET_LINKAGE_NAME
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451 }
452 \f
453
454 /* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462 static int
463 read_type_number (char **pp, int *typenums)
464 {
465 int nbits;
466
467 if (**pp == '(')
468 {
469 (*pp)++;
470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
471 if (nbits != 0)
472 return -1;
473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
474 if (nbits != 0)
475 return -1;
476 }
477 else
478 {
479 typenums[0] = 0;
480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 }
484 return 0;
485 }
486 \f
487
488 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
493 /* Structure for storing pointers to reference definitions for fast lookup
494 during "process_later". */
495
496 struct ref_map
497 {
498 char *stabs;
499 CORE_ADDR value;
500 struct symbol *sym;
501 };
502
503 #define MAX_CHUNK_REFS 100
504 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
507 static struct ref_map *ref_map;
508
509 /* Ptr to free cell in chunk's linked list. */
510 static int ref_count = 0;
511
512 /* Number of chunks malloced. */
513 static int ref_chunk = 0;
514
515 /* This file maintains a cache of stabs aliases found in the symbol
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
518 void
519 stabsread_clear_cache (void)
520 {
521 ref_count = 0;
522 ref_chunk = 0;
523 }
524
525 /* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
529 void
530 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
531 {
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
540
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550 }
551
552 /* Return defined sym for the reference REFNUM. */
553 struct symbol *
554 ref_search (int refnum)
555 {
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559 }
560
561 /* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
564 static int
565 process_reference (char **string)
566 {
567 char *p;
568 int refnum = 0;
569
570 if (**string != '#')
571 return 0;
572
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
576 /* Read number as reference id. */
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584 }
585
586 /* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589 int
590 symbol_reference_defined (char **string)
591 {
592 char *p = *string;
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
597 /* Defining symbols end in '='. */
598 if (*p == '=')
599 {
600 /* Symbol is being defined here. */
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
606 /* Must be a reference. Either the symbol has already been defined,
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611 }
612
613 static int
614 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615 {
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
628 }
629
630 return regno;
631 }
632
633 static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635 };
636
637 /* The "aclass" indices for computed symbols. */
638
639 static int stab_register_index;
640 static int stab_regparm_index;
641
642 struct symbol *
643 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
644 struct objfile *objfile)
645 {
646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
647 struct symbol *sym;
648 char *p = (char *) find_name_end (string);
649 int deftype;
650 int synonym = 0;
651 int i;
652
653 /* We would like to eliminate nameless symbols, but keep their types.
654 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
655 to type 2, but, should not create a symbol to address that type. Since
656 the symbol will be nameless, there is no way any user can refer to it. */
657
658 int nameless;
659
660 /* Ignore syms with empty names. */
661 if (string[0] == 0)
662 return 0;
663
664 /* Ignore old-style symbols from cc -go. */
665 if (p == 0)
666 return 0;
667
668 while (p[1] == ':')
669 {
670 p += 2;
671 p = strchr (p, ':');
672 if (p == NULL)
673 {
674 complaint (&symfile_complaints,
675 _("Bad stabs string '%s'"), string);
676 return NULL;
677 }
678 }
679
680 /* If a nameless stab entry, all we need is the type, not the symbol.
681 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
682 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
683
684 current_symbol = sym = allocate_symbol (objfile);
685
686 if (processing_gcc_compilation)
687 {
688 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
689 number of bytes occupied by a type or object, which we ignore. */
690 SYMBOL_LINE (sym) = desc;
691 }
692 else
693 {
694 SYMBOL_LINE (sym) = 0; /* unknown */
695 }
696
697 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
698 &objfile->objfile_obstack);
699
700 if (is_cplus_marker (string[0]))
701 {
702 /* Special GNU C++ names. */
703 switch (string[1])
704 {
705 case 't':
706 SYMBOL_SET_LINKAGE_NAME (sym, "this");
707 break;
708
709 case 'v': /* $vtbl_ptr_type */
710 goto normal;
711
712 case 'e':
713 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
714 break;
715
716 case '_':
717 /* This was an anonymous type that was never fixed up. */
718 goto normal;
719
720 case 'X':
721 /* SunPRO (3.0 at least) static variable encoding. */
722 if (gdbarch_static_transform_name_p (gdbarch))
723 goto normal;
724 /* ... fall through ... */
725
726 default:
727 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
728 string);
729 goto normal; /* Do *something* with it. */
730 }
731 }
732 else
733 {
734 normal:
735 std::string new_name;
736
737 if (SYMBOL_LANGUAGE (sym) == language_cplus)
738 {
739 char *name = (char *) alloca (p - string + 1);
740
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
744 }
745 if (!new_name.empty ())
746 {
747 SYMBOL_SET_NAMES (sym,
748 new_name.c_str (), new_name.length (),
749 1, objfile);
750 }
751 else
752 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
753
754 if (SYMBOL_LANGUAGE (sym) == language_cplus)
755 cp_scan_for_anonymous_namespaces (sym, objfile);
756
757 }
758 p++;
759
760 /* Determine the type of name being defined. */
761 #if 0
762 /* Getting GDB to correctly skip the symbol on an undefined symbol
763 descriptor and not ever dump core is a very dodgy proposition if
764 we do things this way. I say the acorn RISC machine can just
765 fix their compiler. */
766 /* The Acorn RISC machine's compiler can put out locals that don't
767 start with "234=" or "(3,4)=", so assume anything other than the
768 deftypes we know how to handle is a local. */
769 if (!strchr ("cfFGpPrStTvVXCR", *p))
770 #else
771 if (isdigit (*p) || *p == '(' || *p == '-')
772 #endif
773 deftype = 'l';
774 else
775 deftype = *p++;
776
777 switch (deftype)
778 {
779 case 'c':
780 /* c is a special case, not followed by a type-number.
781 SYMBOL:c=iVALUE for an integer constant symbol.
782 SYMBOL:c=rVALUE for a floating constant symbol.
783 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 e.g. "b:c=e6,0" for "const b = blob1"
785 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
786 if (*p != '=')
787 {
788 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
789 SYMBOL_TYPE (sym) = error_type (&p, objfile);
790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793 }
794 ++p;
795 switch (*p++)
796 {
797 case 'r':
798 {
799 double d = atof (p);
800 gdb_byte *dbl_valu;
801 struct type *dbl_type;
802
803 /* FIXME-if-picky-about-floating-accuracy: Should be using
804 target arithmetic to get the value. real.c in GCC
805 probably has the necessary code. */
806
807 dbl_type = objfile_type (objfile)->builtin_double;
808 dbl_valu
809 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
810 TYPE_LENGTH (dbl_type));
811 store_typed_floating (dbl_valu, dbl_type, d);
812
813 SYMBOL_TYPE (sym) = dbl_type;
814 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
816 }
817 break;
818 case 'i':
819 {
820 /* Defining integer constants this way is kind of silly,
821 since 'e' constants allows the compiler to give not
822 only the value, but the type as well. C has at least
823 int, long, unsigned int, and long long as constant
824 types; other languages probably should have at least
825 unsigned as well as signed constants. */
826
827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
828 SYMBOL_VALUE (sym) = atoi (p);
829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
830 }
831 break;
832
833 case 'c':
834 {
835 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
836 SYMBOL_VALUE (sym) = atoi (p);
837 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
838 }
839 break;
840
841 case 's':
842 {
843 struct type *range_type;
844 int ind = 0;
845 char quote = *p++;
846 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
847 gdb_byte *string_value;
848
849 if (quote != '\'' && quote != '"')
850 {
851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
852 SYMBOL_TYPE (sym) = error_type (&p, objfile);
853 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
854 add_symbol_to_list (sym, &file_symbols);
855 return sym;
856 }
857
858 /* Find matching quote, rejecting escaped quotes. */
859 while (*p && *p != quote)
860 {
861 if (*p == '\\' && p[1] == quote)
862 {
863 string_local[ind] = (gdb_byte) quote;
864 ind++;
865 p += 2;
866 }
867 else if (*p)
868 {
869 string_local[ind] = (gdb_byte) (*p);
870 ind++;
871 p++;
872 }
873 }
874 if (*p != quote)
875 {
876 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
877 SYMBOL_TYPE (sym) = error_type (&p, objfile);
878 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
879 add_symbol_to_list (sym, &file_symbols);
880 return sym;
881 }
882
883 /* NULL terminate the string. */
884 string_local[ind] = 0;
885 range_type
886 = create_static_range_type (NULL,
887 objfile_type (objfile)->builtin_int,
888 0, ind);
889 SYMBOL_TYPE (sym) = create_array_type (NULL,
890 objfile_type (objfile)->builtin_char,
891 range_type);
892 string_value
893 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
894 memcpy (string_value, string_local, ind + 1);
895 p++;
896
897 SYMBOL_VALUE_BYTES (sym) = string_value;
898 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
899 }
900 break;
901
902 case 'e':
903 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
904 can be represented as integral.
905 e.g. "b:c=e6,0" for "const b = blob1"
906 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910
911 if (*p != ',')
912 {
913 SYMBOL_TYPE (sym) = error_type (&p, objfile);
914 break;
915 }
916 ++p;
917
918 /* If the value is too big to fit in an int (perhaps because
919 it is unsigned), or something like that, we silently get
920 a bogus value. The type and everything else about it is
921 correct. Ideally, we should be using whatever we have
922 available for parsing unsigned and long long values,
923 however. */
924 SYMBOL_VALUE (sym) = atoi (p);
925 }
926 break;
927 default:
928 {
929 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
930 SYMBOL_TYPE (sym) = error_type (&p, objfile);
931 }
932 }
933 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
934 add_symbol_to_list (sym, &file_symbols);
935 return sym;
936
937 case 'C':
938 /* The name of a caught exception. */
939 SYMBOL_TYPE (sym) = read_type (&p, objfile);
940 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
942 SYMBOL_VALUE_ADDRESS (sym) = valu;
943 add_symbol_to_list (sym, &local_symbols);
944 break;
945
946 case 'f':
947 /* A static function definition. */
948 SYMBOL_TYPE (sym) = read_type (&p, objfile);
949 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
950 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
951 add_symbol_to_list (sym, &file_symbols);
952 /* fall into process_function_types. */
953
954 process_function_types:
955 /* Function result types are described as the result type in stabs.
956 We need to convert this to the function-returning-type-X type
957 in GDB. E.g. "int" is converted to "function returning int". */
958 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
959 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
960
961 /* All functions in C++ have prototypes. Stabs does not offer an
962 explicit way to identify prototyped or unprototyped functions,
963 but both GCC and Sun CC emit stabs for the "call-as" type rather
964 than the "declared-as" type for unprototyped functions, so
965 we treat all functions as if they were prototyped. This is used
966 primarily for promotion when calling the function from GDB. */
967 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
968
969 /* fall into process_prototype_types. */
970
971 process_prototype_types:
972 /* Sun acc puts declared types of arguments here. */
973 if (*p == ';')
974 {
975 struct type *ftype = SYMBOL_TYPE (sym);
976 int nsemi = 0;
977 int nparams = 0;
978 char *p1 = p;
979
980 /* Obtain a worst case guess for the number of arguments
981 by counting the semicolons. */
982 while (*p1)
983 {
984 if (*p1++ == ';')
985 nsemi++;
986 }
987
988 /* Allocate parameter information fields and fill them in. */
989 TYPE_FIELDS (ftype) = (struct field *)
990 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
991 while (*p++ == ';')
992 {
993 struct type *ptype;
994
995 /* A type number of zero indicates the start of varargs.
996 FIXME: GDB currently ignores vararg functions. */
997 if (p[0] == '0' && p[1] == '\0')
998 break;
999 ptype = read_type (&p, objfile);
1000
1001 /* The Sun compilers mark integer arguments, which should
1002 be promoted to the width of the calling conventions, with
1003 a type which references itself. This type is turned into
1004 a TYPE_CODE_VOID type by read_type, and we have to turn
1005 it back into builtin_int here.
1006 FIXME: Do we need a new builtin_promoted_int_arg ? */
1007 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1008 ptype = objfile_type (objfile)->builtin_int;
1009 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1010 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1011 }
1012 TYPE_NFIELDS (ftype) = nparams;
1013 TYPE_PROTOTYPED (ftype) = 1;
1014 }
1015 break;
1016
1017 case 'F':
1018 /* A global function definition. */
1019 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1020 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1022 add_symbol_to_list (sym, &global_symbols);
1023 goto process_function_types;
1024
1025 case 'G':
1026 /* For a class G (global) symbol, it appears that the
1027 value is not correct. It is necessary to search for the
1028 corresponding linker definition to find the value.
1029 These definitions appear at the end of the namelist. */
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 /* Don't add symbol references to global_sym_chain.
1034 Symbol references don't have valid names and wont't match up with
1035 minimal symbols when the global_sym_chain is relocated.
1036 We'll fixup symbol references when we fixup the defining symbol. */
1037 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1038 {
1039 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1040 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1041 global_sym_chain[i] = sym;
1042 }
1043 add_symbol_to_list (sym, &global_symbols);
1044 break;
1045
1046 /* This case is faked by a conditional above,
1047 when there is no code letter in the dbx data.
1048 Dbx data never actually contains 'l'. */
1049 case 's':
1050 case 'l':
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 add_symbol_to_list (sym, &local_symbols);
1056 break;
1057
1058 case 'p':
1059 if (*p == 'F')
1060 /* pF is a two-letter code that means a function parameter in Fortran.
1061 The type-number specifies the type of the return value.
1062 Translate it into a pointer-to-function type. */
1063 {
1064 p++;
1065 SYMBOL_TYPE (sym)
1066 = lookup_pointer_type
1067 (lookup_function_type (read_type (&p, objfile)));
1068 }
1069 else
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071
1072 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1073 SYMBOL_VALUE (sym) = valu;
1074 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1075 SYMBOL_IS_ARGUMENT (sym) = 1;
1076 add_symbol_to_list (sym, &local_symbols);
1077
1078 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1079 {
1080 /* On little-endian machines, this crud is never necessary,
1081 and, if the extra bytes contain garbage, is harmful. */
1082 break;
1083 }
1084
1085 /* If it's gcc-compiled, if it says `short', believe it. */
1086 if (processing_gcc_compilation
1087 || gdbarch_believe_pcc_promotion (gdbarch))
1088 break;
1089
1090 if (!gdbarch_believe_pcc_promotion (gdbarch))
1091 {
1092 /* If PCC says a parameter is a short or a char, it is
1093 really an int. */
1094 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1095 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1096 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1097 {
1098 SYMBOL_TYPE (sym) =
1099 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1100 ? objfile_type (objfile)->builtin_unsigned_int
1101 : objfile_type (objfile)->builtin_int;
1102 }
1103 break;
1104 }
1105
1106 case 'P':
1107 /* acc seems to use P to declare the prototypes of functions that
1108 are referenced by this file. gdb is not prepared to deal
1109 with this extra information. FIXME, it ought to. */
1110 if (type == N_FUN)
1111 {
1112 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1113 goto process_prototype_types;
1114 }
1115 /*FALLTHROUGH */
1116
1117 case 'R':
1118 /* Parameter which is in a register. */
1119 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1120 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1121 SYMBOL_IS_ARGUMENT (sym) = 1;
1122 SYMBOL_VALUE (sym) = valu;
1123 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1124 add_symbol_to_list (sym, &local_symbols);
1125 break;
1126
1127 case 'r':
1128 /* Register variable (either global or local). */
1129 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1130 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1131 SYMBOL_VALUE (sym) = valu;
1132 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1133 if (within_function)
1134 {
1135 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1136 the same name to represent an argument passed in a
1137 register. GCC uses 'P' for the same case. So if we find
1138 such a symbol pair we combine it into one 'P' symbol.
1139 For Sun cc we need to do this regardless of
1140 stabs_argument_has_addr, because the compiler puts out
1141 the 'p' symbol even if it never saves the argument onto
1142 the stack.
1143
1144 On most machines, we want to preserve both symbols, so
1145 that we can still get information about what is going on
1146 with the stack (VAX for computing args_printed, using
1147 stack slots instead of saved registers in backtraces,
1148 etc.).
1149
1150 Note that this code illegally combines
1151 main(argc) struct foo argc; { register struct foo argc; }
1152 but this case is considered pathological and causes a warning
1153 from a decent compiler. */
1154
1155 if (local_symbols
1156 && local_symbols->nsyms > 0
1157 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1158 {
1159 struct symbol *prev_sym;
1160
1161 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1162 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1163 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1164 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1165 SYMBOL_LINKAGE_NAME (sym)) == 0)
1166 {
1167 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1168 /* Use the type from the LOC_REGISTER; that is the type
1169 that is actually in that register. */
1170 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1171 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1172 sym = prev_sym;
1173 break;
1174 }
1175 }
1176 add_symbol_to_list (sym, &local_symbols);
1177 }
1178 else
1179 add_symbol_to_list (sym, &file_symbols);
1180 break;
1181
1182 case 'S':
1183 /* Static symbol at top level of file. */
1184 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1185 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1186 SYMBOL_VALUE_ADDRESS (sym) = valu;
1187 if (gdbarch_static_transform_name_p (gdbarch)
1188 && gdbarch_static_transform_name (gdbarch,
1189 SYMBOL_LINKAGE_NAME (sym))
1190 != SYMBOL_LINKAGE_NAME (sym))
1191 {
1192 struct bound_minimal_symbol msym;
1193
1194 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1195 NULL, objfile);
1196 if (msym.minsym != NULL)
1197 {
1198 const char *new_name = gdbarch_static_transform_name
1199 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1200
1201 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1202 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1203 }
1204 }
1205 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1206 add_symbol_to_list (sym, &file_symbols);
1207 break;
1208
1209 case 't':
1210 /* In Ada, there is no distinction between typedef and non-typedef;
1211 any type declaration implicitly has the equivalent of a typedef,
1212 and thus 't' is in fact equivalent to 'Tt'.
1213
1214 Therefore, for Ada units, we check the character immediately
1215 before the 't', and if we do not find a 'T', then make sure to
1216 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1217 will be stored in the VAR_DOMAIN). If the symbol was indeed
1218 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1219 elsewhere, so we don't need to take care of that.
1220
1221 This is important to do, because of forward references:
1222 The cleanup of undefined types stored in undef_types only uses
1223 STRUCT_DOMAIN symbols to perform the replacement. */
1224 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1225
1226 /* Typedef */
1227 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1228
1229 /* For a nameless type, we don't want a create a symbol, thus we
1230 did not use `sym'. Return without further processing. */
1231 if (nameless)
1232 return NULL;
1233
1234 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1235 SYMBOL_VALUE (sym) = valu;
1236 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1237 /* C++ vagaries: we may have a type which is derived from
1238 a base type which did not have its name defined when the
1239 derived class was output. We fill in the derived class's
1240 base part member's name here in that case. */
1241 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1242 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1244 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1245 {
1246 int j;
1247
1248 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1249 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1250 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1251 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1252 }
1253
1254 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1255 {
1256 /* gcc-2.6 or later (when using -fvtable-thunks)
1257 emits a unique named type for a vtable entry.
1258 Some gdb code depends on that specific name. */
1259 extern const char vtbl_ptr_name[];
1260
1261 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1262 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1263 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1264 {
1265 /* If we are giving a name to a type such as "pointer to
1266 foo" or "function returning foo", we better not set
1267 the TYPE_NAME. If the program contains "typedef char
1268 *caddr_t;", we don't want all variables of type char
1269 * to print as caddr_t. This is not just a
1270 consequence of GDB's type management; PCC and GCC (at
1271 least through version 2.4) both output variables of
1272 either type char * or caddr_t with the type number
1273 defined in the 't' symbol for caddr_t. If a future
1274 compiler cleans this up it GDB is not ready for it
1275 yet, but if it becomes ready we somehow need to
1276 disable this check (without breaking the PCC/GCC2.4
1277 case).
1278
1279 Sigh.
1280
1281 Fortunately, this check seems not to be necessary
1282 for anything except pointers or functions. */
1283 /* ezannoni: 2000-10-26. This seems to apply for
1284 versions of gcc older than 2.8. This was the original
1285 problem: with the following code gdb would tell that
1286 the type for name1 is caddr_t, and func is char().
1287
1288 typedef char *caddr_t;
1289 char *name2;
1290 struct x
1291 {
1292 char *name1;
1293 } xx;
1294 char *func()
1295 {
1296 }
1297 main () {}
1298 */
1299
1300 /* Pascal accepts names for pointer types. */
1301 if (current_subfile->language == language_pascal)
1302 {
1303 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1304 }
1305 }
1306 else
1307 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1308 }
1309
1310 add_symbol_to_list (sym, &file_symbols);
1311
1312 if (synonym)
1313 {
1314 /* Create the STRUCT_DOMAIN clone. */
1315 struct symbol *struct_sym = allocate_symbol (objfile);
1316
1317 *struct_sym = *sym;
1318 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1319 SYMBOL_VALUE (struct_sym) = valu;
1320 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1321 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1322 TYPE_NAME (SYMBOL_TYPE (sym))
1323 = obconcat (&objfile->objfile_obstack,
1324 SYMBOL_LINKAGE_NAME (sym),
1325 (char *) NULL);
1326 add_symbol_to_list (struct_sym, &file_symbols);
1327 }
1328
1329 break;
1330
1331 case 'T':
1332 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1333 by 't' which means we are typedef'ing it as well. */
1334 synonym = *p == 't';
1335
1336 if (synonym)
1337 p++;
1338
1339 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1340
1341 /* For a nameless type, we don't want a create a symbol, thus we
1342 did not use `sym'. Return without further processing. */
1343 if (nameless)
1344 return NULL;
1345
1346 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1347 SYMBOL_VALUE (sym) = valu;
1348 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1349 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1350 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1351 = obconcat (&objfile->objfile_obstack,
1352 SYMBOL_LINKAGE_NAME (sym),
1353 (char *) NULL);
1354 add_symbol_to_list (sym, &file_symbols);
1355
1356 if (synonym)
1357 {
1358 /* Clone the sym and then modify it. */
1359 struct symbol *typedef_sym = allocate_symbol (objfile);
1360
1361 *typedef_sym = *sym;
1362 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1363 SYMBOL_VALUE (typedef_sym) = valu;
1364 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1365 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1366 TYPE_NAME (SYMBOL_TYPE (sym))
1367 = obconcat (&objfile->objfile_obstack,
1368 SYMBOL_LINKAGE_NAME (sym),
1369 (char *) NULL);
1370 add_symbol_to_list (typedef_sym, &file_symbols);
1371 }
1372 break;
1373
1374 case 'V':
1375 /* Static symbol of local scope. */
1376 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1377 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1378 SYMBOL_VALUE_ADDRESS (sym) = valu;
1379 if (gdbarch_static_transform_name_p (gdbarch)
1380 && gdbarch_static_transform_name (gdbarch,
1381 SYMBOL_LINKAGE_NAME (sym))
1382 != SYMBOL_LINKAGE_NAME (sym))
1383 {
1384 struct bound_minimal_symbol msym;
1385
1386 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1387 NULL, objfile);
1388 if (msym.minsym != NULL)
1389 {
1390 const char *new_name = gdbarch_static_transform_name
1391 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1392
1393 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1394 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1395 }
1396 }
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'v':
1402 /* Reference parameter */
1403 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1404 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1405 SYMBOL_IS_ARGUMENT (sym) = 1;
1406 SYMBOL_VALUE (sym) = valu;
1407 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1408 add_symbol_to_list (sym, &local_symbols);
1409 break;
1410
1411 case 'a':
1412 /* Reference parameter which is in a register. */
1413 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1414 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1415 SYMBOL_IS_ARGUMENT (sym) = 1;
1416 SYMBOL_VALUE (sym) = valu;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &local_symbols);
1419 break;
1420
1421 case 'X':
1422 /* This is used by Sun FORTRAN for "function result value".
1423 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1424 that Pascal uses it too, but when I tried it Pascal used
1425 "x:3" (local symbol) instead. */
1426 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1427 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1428 SYMBOL_VALUE (sym) = valu;
1429 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1430 add_symbol_to_list (sym, &local_symbols);
1431 break;
1432
1433 default:
1434 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1435 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1436 SYMBOL_VALUE (sym) = 0;
1437 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1438 add_symbol_to_list (sym, &file_symbols);
1439 break;
1440 }
1441
1442 /* Some systems pass variables of certain types by reference instead
1443 of by value, i.e. they will pass the address of a structure (in a
1444 register or on the stack) instead of the structure itself. */
1445
1446 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1447 && SYMBOL_IS_ARGUMENT (sym))
1448 {
1449 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1450 variables passed in a register). */
1451 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1452 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1453 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1454 and subsequent arguments on SPARC, for example). */
1455 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1456 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1457 }
1458
1459 return sym;
1460 }
1461
1462 /* Skip rest of this symbol and return an error type.
1463
1464 General notes on error recovery: error_type always skips to the
1465 end of the symbol (modulo cretinous dbx symbol name continuation).
1466 Thus code like this:
1467
1468 if (*(*pp)++ != ';')
1469 return error_type (pp, objfile);
1470
1471 is wrong because if *pp starts out pointing at '\0' (typically as the
1472 result of an earlier error), it will be incremented to point to the
1473 start of the next symbol, which might produce strange results, at least
1474 if you run off the end of the string table. Instead use
1475
1476 if (**pp != ';')
1477 return error_type (pp, objfile);
1478 ++*pp;
1479
1480 or
1481
1482 if (**pp != ';')
1483 foo = error_type (pp, objfile);
1484 else
1485 ++*pp;
1486
1487 And in case it isn't obvious, the point of all this hair is so the compiler
1488 can define new types and new syntaxes, and old versions of the
1489 debugger will be able to read the new symbol tables. */
1490
1491 static struct type *
1492 error_type (char **pp, struct objfile *objfile)
1493 {
1494 complaint (&symfile_complaints,
1495 _("couldn't parse type; debugger out of date?"));
1496 while (1)
1497 {
1498 /* Skip to end of symbol. */
1499 while (**pp != '\0')
1500 {
1501 (*pp)++;
1502 }
1503
1504 /* Check for and handle cretinous dbx symbol name continuation! */
1505 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1506 {
1507 *pp = next_symbol_text (objfile);
1508 }
1509 else
1510 {
1511 break;
1512 }
1513 }
1514 return objfile_type (objfile)->builtin_error;
1515 }
1516 \f
1517
1518 /* Read type information or a type definition; return the type. Even
1519 though this routine accepts either type information or a type
1520 definition, the distinction is relevant--some parts of stabsread.c
1521 assume that type information starts with a digit, '-', or '(' in
1522 deciding whether to call read_type. */
1523
1524 static struct type *
1525 read_type (char **pp, struct objfile *objfile)
1526 {
1527 struct type *type = 0;
1528 struct type *type1;
1529 int typenums[2];
1530 char type_descriptor;
1531
1532 /* Size in bits of type if specified by a type attribute, or -1 if
1533 there is no size attribute. */
1534 int type_size = -1;
1535
1536 /* Used to distinguish string and bitstring from char-array and set. */
1537 int is_string = 0;
1538
1539 /* Used to distinguish vector from array. */
1540 int is_vector = 0;
1541
1542 /* Read type number if present. The type number may be omitted.
1543 for instance in a two-dimensional array declared with type
1544 "ar1;1;10;ar1;1;10;4". */
1545 if ((**pp >= '0' && **pp <= '9')
1546 || **pp == '('
1547 || **pp == '-')
1548 {
1549 if (read_type_number (pp, typenums) != 0)
1550 return error_type (pp, objfile);
1551
1552 if (**pp != '=')
1553 {
1554 /* Type is not being defined here. Either it already
1555 exists, or this is a forward reference to it.
1556 dbx_alloc_type handles both cases. */
1557 type = dbx_alloc_type (typenums, objfile);
1558
1559 /* If this is a forward reference, arrange to complain if it
1560 doesn't get patched up by the time we're done
1561 reading. */
1562 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1563 add_undefined_type (type, typenums);
1564
1565 return type;
1566 }
1567
1568 /* Type is being defined here. */
1569 /* Skip the '='.
1570 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1571 (*pp) += 2;
1572 }
1573 else
1574 {
1575 /* 'typenums=' not present, type is anonymous. Read and return
1576 the definition, but don't put it in the type vector. */
1577 typenums[0] = typenums[1] = -1;
1578 (*pp)++;
1579 }
1580
1581 again:
1582 type_descriptor = (*pp)[-1];
1583 switch (type_descriptor)
1584 {
1585 case 'x':
1586 {
1587 enum type_code code;
1588
1589 /* Used to index through file_symbols. */
1590 struct pending *ppt;
1591 int i;
1592
1593 /* Name including "struct", etc. */
1594 char *type_name;
1595
1596 {
1597 char *from, *to, *p, *q1, *q2;
1598
1599 /* Set the type code according to the following letter. */
1600 switch ((*pp)[0])
1601 {
1602 case 's':
1603 code = TYPE_CODE_STRUCT;
1604 break;
1605 case 'u':
1606 code = TYPE_CODE_UNION;
1607 break;
1608 case 'e':
1609 code = TYPE_CODE_ENUM;
1610 break;
1611 default:
1612 {
1613 /* Complain and keep going, so compilers can invent new
1614 cross-reference types. */
1615 complaint (&symfile_complaints,
1616 _("Unrecognized cross-reference type `%c'"),
1617 (*pp)[0]);
1618 code = TYPE_CODE_STRUCT;
1619 break;
1620 }
1621 }
1622
1623 q1 = strchr (*pp, '<');
1624 p = strchr (*pp, ':');
1625 if (p == NULL)
1626 return error_type (pp, objfile);
1627 if (q1 && p > q1 && p[1] == ':')
1628 {
1629 int nesting_level = 0;
1630
1631 for (q2 = q1; *q2; q2++)
1632 {
1633 if (*q2 == '<')
1634 nesting_level++;
1635 else if (*q2 == '>')
1636 nesting_level--;
1637 else if (*q2 == ':' && nesting_level == 0)
1638 break;
1639 }
1640 p = q2;
1641 if (*p != ':')
1642 return error_type (pp, objfile);
1643 }
1644 type_name = NULL;
1645 if (current_subfile->language == language_cplus)
1646 {
1647 char *name = (char *) alloca (p - *pp + 1);
1648
1649 memcpy (name, *pp, p - *pp);
1650 name[p - *pp] = '\0';
1651
1652 std::string new_name = cp_canonicalize_string (name);
1653 if (!new_name.empty ())
1654 {
1655 type_name
1656 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1657 new_name.c_str (),
1658 new_name.length ());
1659 }
1660 }
1661 if (type_name == NULL)
1662 {
1663 to = type_name = (char *)
1664 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1665
1666 /* Copy the name. */
1667 from = *pp + 1;
1668 while (from < p)
1669 *to++ = *from++;
1670 *to = '\0';
1671 }
1672
1673 /* Set the pointer ahead of the name which we just read, and
1674 the colon. */
1675 *pp = p + 1;
1676 }
1677
1678 /* If this type has already been declared, then reuse the same
1679 type, rather than allocating a new one. This saves some
1680 memory. */
1681
1682 for (ppt = file_symbols; ppt; ppt = ppt->next)
1683 for (i = 0; i < ppt->nsyms; i++)
1684 {
1685 struct symbol *sym = ppt->symbol[i];
1686
1687 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1688 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1689 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1690 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1691 {
1692 obstack_free (&objfile->objfile_obstack, type_name);
1693 type = SYMBOL_TYPE (sym);
1694 if (typenums[0] != -1)
1695 *dbx_lookup_type (typenums, objfile) = type;
1696 return type;
1697 }
1698 }
1699
1700 /* Didn't find the type to which this refers, so we must
1701 be dealing with a forward reference. Allocate a type
1702 structure for it, and keep track of it so we can
1703 fill in the rest of the fields when we get the full
1704 type. */
1705 type = dbx_alloc_type (typenums, objfile);
1706 TYPE_CODE (type) = code;
1707 TYPE_TAG_NAME (type) = type_name;
1708 INIT_CPLUS_SPECIFIC (type);
1709 TYPE_STUB (type) = 1;
1710
1711 add_undefined_type (type, typenums);
1712 return type;
1713 }
1714
1715 case '-': /* RS/6000 built-in type */
1716 case '0':
1717 case '1':
1718 case '2':
1719 case '3':
1720 case '4':
1721 case '5':
1722 case '6':
1723 case '7':
1724 case '8':
1725 case '9':
1726 case '(':
1727 (*pp)--;
1728
1729 /* We deal with something like t(1,2)=(3,4)=... which
1730 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1731
1732 /* Allocate and enter the typedef type first.
1733 This handles recursive types. */
1734 type = dbx_alloc_type (typenums, objfile);
1735 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1736 {
1737 struct type *xtype = read_type (pp, objfile);
1738
1739 if (type == xtype)
1740 {
1741 /* It's being defined as itself. That means it is "void". */
1742 TYPE_CODE (type) = TYPE_CODE_VOID;
1743 TYPE_LENGTH (type) = 1;
1744 }
1745 else if (type_size >= 0 || is_string)
1746 {
1747 /* This is the absolute wrong way to construct types. Every
1748 other debug format has found a way around this problem and
1749 the related problems with unnecessarily stubbed types;
1750 someone motivated should attempt to clean up the issue
1751 here as well. Once a type pointed to has been created it
1752 should not be modified.
1753
1754 Well, it's not *absolutely* wrong. Constructing recursive
1755 types (trees, linked lists) necessarily entails modifying
1756 types after creating them. Constructing any loop structure
1757 entails side effects. The Dwarf 2 reader does handle this
1758 more gracefully (it never constructs more than once
1759 instance of a type object, so it doesn't have to copy type
1760 objects wholesale), but it still mutates type objects after
1761 other folks have references to them.
1762
1763 Keep in mind that this circularity/mutation issue shows up
1764 at the source language level, too: C's "incomplete types",
1765 for example. So the proper cleanup, I think, would be to
1766 limit GDB's type smashing to match exactly those required
1767 by the source language. So GDB could have a
1768 "complete_this_type" function, but never create unnecessary
1769 copies of a type otherwise. */
1770 replace_type (type, xtype);
1771 TYPE_NAME (type) = NULL;
1772 TYPE_TAG_NAME (type) = NULL;
1773 }
1774 else
1775 {
1776 TYPE_TARGET_STUB (type) = 1;
1777 TYPE_TARGET_TYPE (type) = xtype;
1778 }
1779 }
1780 break;
1781
1782 /* In the following types, we must be sure to overwrite any existing
1783 type that the typenums refer to, rather than allocating a new one
1784 and making the typenums point to the new one. This is because there
1785 may already be pointers to the existing type (if it had been
1786 forward-referenced), and we must change it to a pointer, function,
1787 reference, or whatever, *in-place*. */
1788
1789 case '*': /* Pointer to another type */
1790 type1 = read_type (pp, objfile);
1791 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1792 break;
1793
1794 case '&': /* Reference to another type */
1795 type1 = read_type (pp, objfile);
1796 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1797 break;
1798
1799 case 'f': /* Function returning another type */
1800 type1 = read_type (pp, objfile);
1801 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1802 break;
1803
1804 case 'g': /* Prototyped function. (Sun) */
1805 {
1806 /* Unresolved questions:
1807
1808 - According to Sun's ``STABS Interface Manual'', for 'f'
1809 and 'F' symbol descriptors, a `0' in the argument type list
1810 indicates a varargs function. But it doesn't say how 'g'
1811 type descriptors represent that info. Someone with access
1812 to Sun's toolchain should try it out.
1813
1814 - According to the comment in define_symbol (search for
1815 `process_prototype_types:'), Sun emits integer arguments as
1816 types which ref themselves --- like `void' types. Do we
1817 have to deal with that here, too? Again, someone with
1818 access to Sun's toolchain should try it out and let us
1819 know. */
1820
1821 const char *type_start = (*pp) - 1;
1822 struct type *return_type = read_type (pp, objfile);
1823 struct type *func_type
1824 = make_function_type (return_type,
1825 dbx_lookup_type (typenums, objfile));
1826 struct type_list {
1827 struct type *type;
1828 struct type_list *next;
1829 } *arg_types = 0;
1830 int num_args = 0;
1831
1832 while (**pp && **pp != '#')
1833 {
1834 struct type *arg_type = read_type (pp, objfile);
1835 struct type_list *newobj = XALLOCA (struct type_list);
1836 newobj->type = arg_type;
1837 newobj->next = arg_types;
1838 arg_types = newobj;
1839 num_args++;
1840 }
1841 if (**pp == '#')
1842 ++*pp;
1843 else
1844 {
1845 complaint (&symfile_complaints,
1846 _("Prototyped function type didn't "
1847 "end arguments with `#':\n%s"),
1848 type_start);
1849 }
1850
1851 /* If there is just one argument whose type is `void', then
1852 that's just an empty argument list. */
1853 if (arg_types
1854 && ! arg_types->next
1855 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1856 num_args = 0;
1857
1858 TYPE_FIELDS (func_type)
1859 = (struct field *) TYPE_ALLOC (func_type,
1860 num_args * sizeof (struct field));
1861 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1862 {
1863 int i;
1864 struct type_list *t;
1865
1866 /* We stuck each argument type onto the front of the list
1867 when we read it, so the list is reversed. Build the
1868 fields array right-to-left. */
1869 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1870 TYPE_FIELD_TYPE (func_type, i) = t->type;
1871 }
1872 TYPE_NFIELDS (func_type) = num_args;
1873 TYPE_PROTOTYPED (func_type) = 1;
1874
1875 type = func_type;
1876 break;
1877 }
1878
1879 case 'k': /* Const qualifier on some type (Sun) */
1880 type = read_type (pp, objfile);
1881 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1882 dbx_lookup_type (typenums, objfile));
1883 break;
1884
1885 case 'B': /* Volatile qual on some type (Sun) */
1886 type = read_type (pp, objfile);
1887 type = make_cv_type (TYPE_CONST (type), 1, type,
1888 dbx_lookup_type (typenums, objfile));
1889 break;
1890
1891 case '@':
1892 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1893 { /* Member (class & variable) type */
1894 /* FIXME -- we should be doing smash_to_XXX types here. */
1895
1896 struct type *domain = read_type (pp, objfile);
1897 struct type *memtype;
1898
1899 if (**pp != ',')
1900 /* Invalid member type data format. */
1901 return error_type (pp, objfile);
1902 ++*pp;
1903
1904 memtype = read_type (pp, objfile);
1905 type = dbx_alloc_type (typenums, objfile);
1906 smash_to_memberptr_type (type, domain, memtype);
1907 }
1908 else
1909 /* type attribute */
1910 {
1911 char *attr = *pp;
1912
1913 /* Skip to the semicolon. */
1914 while (**pp != ';' && **pp != '\0')
1915 ++(*pp);
1916 if (**pp == '\0')
1917 return error_type (pp, objfile);
1918 else
1919 ++ * pp; /* Skip the semicolon. */
1920
1921 switch (*attr)
1922 {
1923 case 's': /* Size attribute */
1924 type_size = atoi (attr + 1);
1925 if (type_size <= 0)
1926 type_size = -1;
1927 break;
1928
1929 case 'S': /* String attribute */
1930 /* FIXME: check to see if following type is array? */
1931 is_string = 1;
1932 break;
1933
1934 case 'V': /* Vector attribute */
1935 /* FIXME: check to see if following type is array? */
1936 is_vector = 1;
1937 break;
1938
1939 default:
1940 /* Ignore unrecognized type attributes, so future compilers
1941 can invent new ones. */
1942 break;
1943 }
1944 ++*pp;
1945 goto again;
1946 }
1947 break;
1948
1949 case '#': /* Method (class & fn) type */
1950 if ((*pp)[0] == '#')
1951 {
1952 /* We'll get the parameter types from the name. */
1953 struct type *return_type;
1954
1955 (*pp)++;
1956 return_type = read_type (pp, objfile);
1957 if (*(*pp)++ != ';')
1958 complaint (&symfile_complaints,
1959 _("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1961 symnum);
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1965 }
1966 else
1967 {
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1970 struct field *args;
1971 int nargs, varargs;
1972
1973 if (**pp != ',')
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1976 else
1977 ++(*pp);
1978
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1981 if (args == NULL)
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1985 nargs, varargs);
1986 }
1987 break;
1988
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 break;
1994
1995 case 'b':
1996 {
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 }
2002 break;
2003
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2008 break;
2009
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2015 break;
2016
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2019 {
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2023 {
2024 case 's':
2025 type_code = TYPE_CODE_STRUCT;
2026 break;
2027 case 'u':
2028 type_code = TYPE_CODE_UNION;
2029 break;
2030 }
2031 type = read_struct_type (pp, type, type_code, objfile);
2032 break;
2033 }
2034
2035 case 'a': /* Array type */
2036 if (**pp != 'r')
2037 return error_type (pp, objfile);
2038 ++*pp;
2039
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2042 if (is_string)
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2044 if (is_vector)
2045 make_vector_type (type);
2046 break;
2047
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2053 break;
2054
2055 default:
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2059 }
2060
2061 if (type == 0)
2062 {
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2065 }
2066
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2070
2071 return type;
2072 }
2073 \f
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2076
2077 static const struct objfile_data *rs6000_builtin_type_data;
2078
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 {
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2084
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2088
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2090 {
2091 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2093 }
2094
2095 if (!negative_types)
2096 {
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2101 }
2102
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2105
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2111 TARGET_CHAR_BIT. */
2112 #endif
2113
2114 switch (-typenum)
2115 {
2116 case 1:
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2123 break;
2124 case 2:
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2127 break;
2128 case 3:
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2130 break;
2131 case 4:
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2133 break;
2134 case 5:
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2136 break;
2137 case 6:
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2139 break;
2140 case 7:
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2142 break;
2143 case 8:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2145 break;
2146 case 9:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2148 break;
2149 case 10:
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2151 break;
2152 case 11:
2153 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2154 break;
2155 case 12:
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2159 break;
2160 case 13:
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2164 break;
2165 case 14:
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2171 break;
2172 case 15:
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2174 break;
2175 case 16:
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2177 break;
2178 case 17:
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2181 break;
2182 case 18:
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2185 break;
2186 case 19:
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2188 break;
2189 case 20:
2190 rettype = init_character_type (objfile, 8, 1, "character");
2191 break;
2192 case 21:
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2194 break;
2195 case 22:
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2197 break;
2198 case 23:
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2200 break;
2201 case 24:
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2203 break;
2204 case 25:
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2208 break;
2209 case 26:
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2213 break;
2214 case 27:
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2216 break;
2217 case 28:
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2219 break;
2220 case 29:
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2222 break;
2223 case 30:
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2225 break;
2226 case 31:
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2228 break;
2229 case 32:
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2231 break;
2232 case 33:
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2234 break;
2235 case 34:
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2237 break;
2238 }
2239 negative_types[-typenum] = rettype;
2240 return rettype;
2241 }
2242 \f
2243 /* This page contains subroutines of read_type. */
2244
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2247
2248 static char *
2249 stabs_method_name_from_physname (const char *physname)
2250 {
2251 char *method_name;
2252
2253 method_name = method_name_from_physname (physname);
2254
2255 if (method_name == NULL)
2256 {
2257 complaint (&symfile_complaints,
2258 _("Method has bad physname %s\n"), physname);
2259 return NULL;
2260 }
2261
2262 return method_name;
2263 }
2264
2265 /* Read member function stabs info for C++ classes. The form of each member
2266 function data is:
2267
2268 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2269
2270 An example with two member functions is:
2271
2272 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2273
2274 For the case of overloaded operators, the format is op$::*.funcs, where
2275 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2276 name (such as `+=') and `.' marks the end of the operator name.
2277
2278 Returns 1 for success, 0 for failure. */
2279
2280 static int
2281 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2282 struct objfile *objfile)
2283 {
2284 int nfn_fields = 0;
2285 int length = 0;
2286 int i;
2287 struct next_fnfield
2288 {
2289 struct next_fnfield *next;
2290 struct fn_field fn_field;
2291 }
2292 *sublist;
2293 struct type *look_ahead_type;
2294 struct next_fnfieldlist *new_fnlist;
2295 struct next_fnfield *new_sublist;
2296 char *main_fn_name;
2297 char *p;
2298
2299 /* Process each list until we find something that is not a member function
2300 or find the end of the functions. */
2301
2302 while (**pp != ';')
2303 {
2304 /* We should be positioned at the start of the function name.
2305 Scan forward to find the first ':' and if it is not the
2306 first of a "::" delimiter, then this is not a member function. */
2307 p = *pp;
2308 while (*p != ':')
2309 {
2310 p++;
2311 }
2312 if (p[1] != ':')
2313 {
2314 break;
2315 }
2316
2317 sublist = NULL;
2318 look_ahead_type = NULL;
2319 length = 0;
2320
2321 new_fnlist = XCNEW (struct next_fnfieldlist);
2322 make_cleanup (xfree, new_fnlist);
2323
2324 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2325 {
2326 /* This is a completely wierd case. In order to stuff in the
2327 names that might contain colons (the usual name delimiter),
2328 Mike Tiemann defined a different name format which is
2329 signalled if the identifier is "op$". In that case, the
2330 format is "op$::XXXX." where XXXX is the name. This is
2331 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2332 /* This lets the user type "break operator+".
2333 We could just put in "+" as the name, but that wouldn't
2334 work for "*". */
2335 static char opname[32] = "op$";
2336 char *o = opname + 3;
2337
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340
2341 STABS_CONTINUE (pp, objfile);
2342 p = *pp;
2343 while (*p != '.')
2344 {
2345 *o++ = *p++;
2346 }
2347 main_fn_name = savestring (opname, o - opname);
2348 /* Skip past '.' */
2349 *pp = p + 1;
2350 }
2351 else
2352 {
2353 main_fn_name = savestring (*pp, p - *pp);
2354 /* Skip past '::'. */
2355 *pp = p + 2;
2356 }
2357 new_fnlist->fn_fieldlist.name = main_fn_name;
2358
2359 do
2360 {
2361 new_sublist = XCNEW (struct next_fnfield);
2362 make_cleanup (xfree, new_sublist);
2363
2364 /* Check for and handle cretinous dbx symbol name continuation! */
2365 if (look_ahead_type == NULL)
2366 {
2367 /* Normal case. */
2368 STABS_CONTINUE (pp, objfile);
2369
2370 new_sublist->fn_field.type = read_type (pp, objfile);
2371 if (**pp != ':')
2372 {
2373 /* Invalid symtab info for member function. */
2374 return 0;
2375 }
2376 }
2377 else
2378 {
2379 /* g++ version 1 kludge */
2380 new_sublist->fn_field.type = look_ahead_type;
2381 look_ahead_type = NULL;
2382 }
2383
2384 (*pp)++;
2385 p = *pp;
2386 while (*p != ';')
2387 {
2388 p++;
2389 }
2390
2391 /* These are methods, not functions. */
2392 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2393 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2394 else
2395 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2396 == TYPE_CODE_METHOD);
2397
2398 /* If this is just a stub, then we don't have the real name here. */
2399 if (TYPE_STUB (new_sublist->fn_field.type))
2400 {
2401 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2402 set_type_self_type (new_sublist->fn_field.type, type);
2403 new_sublist->fn_field.is_stub = 1;
2404 }
2405
2406 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2407 *pp = p + 1;
2408
2409 /* Set this member function's visibility fields. */
2410 switch (*(*pp)++)
2411 {
2412 case VISIBILITY_PRIVATE:
2413 new_sublist->fn_field.is_private = 1;
2414 break;
2415 case VISIBILITY_PROTECTED:
2416 new_sublist->fn_field.is_protected = 1;
2417 break;
2418 }
2419
2420 STABS_CONTINUE (pp, objfile);
2421 switch (**pp)
2422 {
2423 case 'A': /* Normal functions. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 0;
2426 (*pp)++;
2427 break;
2428 case 'B': /* `const' member functions. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 0;
2431 (*pp)++;
2432 break;
2433 case 'C': /* `volatile' member function. */
2434 new_sublist->fn_field.is_const = 0;
2435 new_sublist->fn_field.is_volatile = 1;
2436 (*pp)++;
2437 break;
2438 case 'D': /* `const volatile' member function. */
2439 new_sublist->fn_field.is_const = 1;
2440 new_sublist->fn_field.is_volatile = 1;
2441 (*pp)++;
2442 break;
2443 case '*': /* File compiled with g++ version 1 --
2444 no info. */
2445 case '?':
2446 case '.':
2447 break;
2448 default:
2449 complaint (&symfile_complaints,
2450 _("const/volatile indicator missing, got '%c'"),
2451 **pp);
2452 break;
2453 }
2454
2455 switch (*(*pp)++)
2456 {
2457 case '*':
2458 {
2459 int nbits;
2460 /* virtual member function, followed by index.
2461 The sign bit is set to distinguish pointers-to-methods
2462 from virtual function indicies. Since the array is
2463 in words, the quantity must be shifted left by 1
2464 on 16 bit machine, and by 2 on 32 bit machine, forcing
2465 the sign bit out, and usable as a valid index into
2466 the array. Remove the sign bit here. */
2467 new_sublist->fn_field.voffset =
2468 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2469 if (nbits != 0)
2470 return 0;
2471
2472 STABS_CONTINUE (pp, objfile);
2473 if (**pp == ';' || **pp == '\0')
2474 {
2475 /* Must be g++ version 1. */
2476 new_sublist->fn_field.fcontext = 0;
2477 }
2478 else
2479 {
2480 /* Figure out from whence this virtual function came.
2481 It may belong to virtual function table of
2482 one of its baseclasses. */
2483 look_ahead_type = read_type (pp, objfile);
2484 if (**pp == ':')
2485 {
2486 /* g++ version 1 overloaded methods. */
2487 }
2488 else
2489 {
2490 new_sublist->fn_field.fcontext = look_ahead_type;
2491 if (**pp != ';')
2492 {
2493 return 0;
2494 }
2495 else
2496 {
2497 ++*pp;
2498 }
2499 look_ahead_type = NULL;
2500 }
2501 }
2502 break;
2503 }
2504 case '?':
2505 /* static member function. */
2506 {
2507 int slen = strlen (main_fn_name);
2508
2509 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2510
2511 /* For static member functions, we can't tell if they
2512 are stubbed, as they are put out as functions, and not as
2513 methods.
2514 GCC v2 emits the fully mangled name if
2515 dbxout.c:flag_minimal_debug is not set, so we have to
2516 detect a fully mangled physname here and set is_stub
2517 accordingly. Fully mangled physnames in v2 start with
2518 the member function name, followed by two underscores.
2519 GCC v3 currently always emits stubbed member functions,
2520 but with fully mangled physnames, which start with _Z. */
2521 if (!(strncmp (new_sublist->fn_field.physname,
2522 main_fn_name, slen) == 0
2523 && new_sublist->fn_field.physname[slen] == '_'
2524 && new_sublist->fn_field.physname[slen + 1] == '_'))
2525 {
2526 new_sublist->fn_field.is_stub = 1;
2527 }
2528 break;
2529 }
2530
2531 default:
2532 /* error */
2533 complaint (&symfile_complaints,
2534 _("member function type missing, got '%c'"),
2535 (*pp)[-1]);
2536 /* Fall through into normal member function. */
2537
2538 case '.':
2539 /* normal member function. */
2540 new_sublist->fn_field.voffset = 0;
2541 new_sublist->fn_field.fcontext = 0;
2542 break;
2543 }
2544
2545 new_sublist->next = sublist;
2546 sublist = new_sublist;
2547 length++;
2548 STABS_CONTINUE (pp, objfile);
2549 }
2550 while (**pp != ';' && **pp != '\0');
2551
2552 (*pp)++;
2553 STABS_CONTINUE (pp, objfile);
2554
2555 /* Skip GCC 3.X member functions which are duplicates of the callable
2556 constructor/destructor. */
2557 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2558 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2559 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2560 {
2561 xfree (main_fn_name);
2562 }
2563 else
2564 {
2565 int has_stub = 0;
2566 int has_destructor = 0, has_other = 0;
2567 int is_v3 = 0;
2568 struct next_fnfield *tmp_sublist;
2569
2570 /* Various versions of GCC emit various mostly-useless
2571 strings in the name field for special member functions.
2572
2573 For stub methods, we need to defer correcting the name
2574 until we are ready to unstub the method, because the current
2575 name string is used by gdb_mangle_name. The only stub methods
2576 of concern here are GNU v2 operators; other methods have their
2577 names correct (see caveat below).
2578
2579 For non-stub methods, in GNU v3, we have a complete physname.
2580 Therefore we can safely correct the name now. This primarily
2581 affects constructors and destructors, whose name will be
2582 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2583 operators will also have incorrect names; for instance,
2584 "operator int" will be named "operator i" (i.e. the type is
2585 mangled).
2586
2587 For non-stub methods in GNU v2, we have no easy way to
2588 know if we have a complete physname or not. For most
2589 methods the result depends on the platform (if CPLUS_MARKER
2590 can be `$' or `.', it will use minimal debug information, or
2591 otherwise the full physname will be included).
2592
2593 Rather than dealing with this, we take a different approach.
2594 For v3 mangled names, we can use the full physname; for v2,
2595 we use cplus_demangle_opname (which is actually v2 specific),
2596 because the only interesting names are all operators - once again
2597 barring the caveat below. Skip this process if any method in the
2598 group is a stub, to prevent our fouling up the workings of
2599 gdb_mangle_name.
2600
2601 The caveat: GCC 2.95.x (and earlier?) put constructors and
2602 destructors in the same method group. We need to split this
2603 into two groups, because they should have different names.
2604 So for each method group we check whether it contains both
2605 routines whose physname appears to be a destructor (the physnames
2606 for and destructors are always provided, due to quirks in v2
2607 mangling) and routines whose physname does not appear to be a
2608 destructor. If so then we break up the list into two halves.
2609 Even if the constructors and destructors aren't in the same group
2610 the destructor will still lack the leading tilde, so that also
2611 needs to be fixed.
2612
2613 So, to summarize what we expect and handle here:
2614
2615 Given Given Real Real Action
2616 method name physname physname method name
2617
2618 __opi [none] __opi__3Foo operator int opname
2619 [now or later]
2620 Foo _._3Foo _._3Foo ~Foo separate and
2621 rename
2622 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2623 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2624 */
2625
2626 tmp_sublist = sublist;
2627 while (tmp_sublist != NULL)
2628 {
2629 if (tmp_sublist->fn_field.is_stub)
2630 has_stub = 1;
2631 if (tmp_sublist->fn_field.physname[0] == '_'
2632 && tmp_sublist->fn_field.physname[1] == 'Z')
2633 is_v3 = 1;
2634
2635 if (is_destructor_name (tmp_sublist->fn_field.physname))
2636 has_destructor++;
2637 else
2638 has_other++;
2639
2640 tmp_sublist = tmp_sublist->next;
2641 }
2642
2643 if (has_destructor && has_other)
2644 {
2645 struct next_fnfieldlist *destr_fnlist;
2646 struct next_fnfield *last_sublist;
2647
2648 /* Create a new fn_fieldlist for the destructors. */
2649
2650 destr_fnlist = XCNEW (struct next_fnfieldlist);
2651 make_cleanup (xfree, destr_fnlist);
2652
2653 destr_fnlist->fn_fieldlist.name
2654 = obconcat (&objfile->objfile_obstack, "~",
2655 new_fnlist->fn_fieldlist.name, (char *) NULL);
2656
2657 destr_fnlist->fn_fieldlist.fn_fields =
2658 XOBNEWVEC (&objfile->objfile_obstack,
2659 struct fn_field, has_destructor);
2660 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2661 sizeof (struct fn_field) * has_destructor);
2662 tmp_sublist = sublist;
2663 last_sublist = NULL;
2664 i = 0;
2665 while (tmp_sublist != NULL)
2666 {
2667 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2668 {
2669 tmp_sublist = tmp_sublist->next;
2670 continue;
2671 }
2672
2673 destr_fnlist->fn_fieldlist.fn_fields[i++]
2674 = tmp_sublist->fn_field;
2675 if (last_sublist)
2676 last_sublist->next = tmp_sublist->next;
2677 else
2678 sublist = tmp_sublist->next;
2679 last_sublist = tmp_sublist;
2680 tmp_sublist = tmp_sublist->next;
2681 }
2682
2683 destr_fnlist->fn_fieldlist.length = has_destructor;
2684 destr_fnlist->next = fip->fnlist;
2685 fip->fnlist = destr_fnlist;
2686 nfn_fields++;
2687 length -= has_destructor;
2688 }
2689 else if (is_v3)
2690 {
2691 /* v3 mangling prevents the use of abbreviated physnames,
2692 so we can do this here. There are stubbed methods in v3
2693 only:
2694 - in -gstabs instead of -gstabs+
2695 - or for static methods, which are output as a function type
2696 instead of a method type. */
2697 char *new_method_name =
2698 stabs_method_name_from_physname (sublist->fn_field.physname);
2699
2700 if (new_method_name != NULL
2701 && strcmp (new_method_name,
2702 new_fnlist->fn_fieldlist.name) != 0)
2703 {
2704 new_fnlist->fn_fieldlist.name = new_method_name;
2705 xfree (main_fn_name);
2706 }
2707 else
2708 xfree (new_method_name);
2709 }
2710 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2711 {
2712 new_fnlist->fn_fieldlist.name =
2713 obconcat (&objfile->objfile_obstack,
2714 "~", main_fn_name, (char *)NULL);
2715 xfree (main_fn_name);
2716 }
2717 else if (!has_stub)
2718 {
2719 char dem_opname[256];
2720 int ret;
2721
2722 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2723 dem_opname, DMGL_ANSI);
2724 if (!ret)
2725 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2726 dem_opname, 0);
2727 if (ret)
2728 new_fnlist->fn_fieldlist.name
2729 = ((const char *)
2730 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2731 strlen (dem_opname)));
2732 xfree (main_fn_name);
2733 }
2734
2735 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2736 obstack_alloc (&objfile->objfile_obstack,
2737 sizeof (struct fn_field) * length);
2738 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2739 sizeof (struct fn_field) * length);
2740 for (i = length; (i--, sublist); sublist = sublist->next)
2741 {
2742 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2743 }
2744
2745 new_fnlist->fn_fieldlist.length = length;
2746 new_fnlist->next = fip->fnlist;
2747 fip->fnlist = new_fnlist;
2748 nfn_fields++;
2749 }
2750 }
2751
2752 if (nfn_fields)
2753 {
2754 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2755 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2756 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2757 memset (TYPE_FN_FIELDLISTS (type), 0,
2758 sizeof (struct fn_fieldlist) * nfn_fields);
2759 TYPE_NFN_FIELDS (type) = nfn_fields;
2760 }
2761
2762 return 1;
2763 }
2764
2765 /* Special GNU C++ name.
2766
2767 Returns 1 for success, 0 for failure. "failure" means that we can't
2768 keep parsing and it's time for error_type(). */
2769
2770 static int
2771 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2772 struct objfile *objfile)
2773 {
2774 char *p;
2775 const char *name;
2776 char cpp_abbrev;
2777 struct type *context;
2778
2779 p = *pp;
2780 if (*++p == 'v')
2781 {
2782 name = NULL;
2783 cpp_abbrev = *++p;
2784
2785 *pp = p + 1;
2786
2787 /* At this point, *pp points to something like "22:23=*22...",
2788 where the type number before the ':' is the "context" and
2789 everything after is a regular type definition. Lookup the
2790 type, find it's name, and construct the field name. */
2791
2792 context = read_type (pp, objfile);
2793
2794 switch (cpp_abbrev)
2795 {
2796 case 'f': /* $vf -- a virtual function table pointer */
2797 name = type_name_no_tag (context);
2798 if (name == NULL)
2799 {
2800 name = "";
2801 }
2802 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2803 vptr_name, name, (char *) NULL);
2804 break;
2805
2806 case 'b': /* $vb -- a virtual bsomethingorother */
2807 name = type_name_no_tag (context);
2808 if (name == NULL)
2809 {
2810 complaint (&symfile_complaints,
2811 _("C++ abbreviated type name "
2812 "unknown at symtab pos %d"),
2813 symnum);
2814 name = "FOO";
2815 }
2816 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2817 name, (char *) NULL);
2818 break;
2819
2820 default:
2821 invalid_cpp_abbrev_complaint (*pp);
2822 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2823 "INVALID_CPLUSPLUS_ABBREV",
2824 (char *) NULL);
2825 break;
2826 }
2827
2828 /* At this point, *pp points to the ':'. Skip it and read the
2829 field type. */
2830
2831 p = ++(*pp);
2832 if (p[-1] != ':')
2833 {
2834 invalid_cpp_abbrev_complaint (*pp);
2835 return 0;
2836 }
2837 fip->list->field.type = read_type (pp, objfile);
2838 if (**pp == ',')
2839 (*pp)++; /* Skip the comma. */
2840 else
2841 return 0;
2842
2843 {
2844 int nbits;
2845
2846 SET_FIELD_BITPOS (fip->list->field,
2847 read_huge_number (pp, ';', &nbits, 0));
2848 if (nbits != 0)
2849 return 0;
2850 }
2851 /* This field is unpacked. */
2852 FIELD_BITSIZE (fip->list->field) = 0;
2853 fip->list->visibility = VISIBILITY_PRIVATE;
2854 }
2855 else
2856 {
2857 invalid_cpp_abbrev_complaint (*pp);
2858 /* We have no idea what syntax an unrecognized abbrev would have, so
2859 better return 0. If we returned 1, we would need to at least advance
2860 *pp to avoid an infinite loop. */
2861 return 0;
2862 }
2863 return 1;
2864 }
2865
2866 static void
2867 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2868 struct type *type, struct objfile *objfile)
2869 {
2870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2871
2872 fip->list->field.name
2873 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2874 *pp = p + 1;
2875
2876 /* This means we have a visibility for a field coming. */
2877 if (**pp == '/')
2878 {
2879 (*pp)++;
2880 fip->list->visibility = *(*pp)++;
2881 }
2882 else
2883 {
2884 /* normal dbx-style format, no explicit visibility */
2885 fip->list->visibility = VISIBILITY_PUBLIC;
2886 }
2887
2888 fip->list->field.type = read_type (pp, objfile);
2889 if (**pp == ':')
2890 {
2891 p = ++(*pp);
2892 #if 0
2893 /* Possible future hook for nested types. */
2894 if (**pp == '!')
2895 {
2896 fip->list->field.bitpos = (long) -2; /* nested type */
2897 p = ++(*pp);
2898 }
2899 else
2900 ...;
2901 #endif
2902 while (*p != ';')
2903 {
2904 p++;
2905 }
2906 /* Static class member. */
2907 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2908 *pp = p + 1;
2909 return;
2910 }
2911 else if (**pp != ',')
2912 {
2913 /* Bad structure-type format. */
2914 stabs_general_complaint ("bad structure-type format");
2915 return;
2916 }
2917
2918 (*pp)++; /* Skip the comma. */
2919
2920 {
2921 int nbits;
2922
2923 SET_FIELD_BITPOS (fip->list->field,
2924 read_huge_number (pp, ',', &nbits, 0));
2925 if (nbits != 0)
2926 {
2927 stabs_general_complaint ("bad structure-type format");
2928 return;
2929 }
2930 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2931 if (nbits != 0)
2932 {
2933 stabs_general_complaint ("bad structure-type format");
2934 return;
2935 }
2936 }
2937
2938 if (FIELD_BITPOS (fip->list->field) == 0
2939 && FIELD_BITSIZE (fip->list->field) == 0)
2940 {
2941 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2942 it is a field which has been optimized out. The correct stab for
2943 this case is to use VISIBILITY_IGNORE, but that is a recent
2944 invention. (2) It is a 0-size array. For example
2945 union { int num; char str[0]; } foo. Printing _("<no value>" for
2946 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2947 will continue to work, and a 0-size array as a whole doesn't
2948 have any contents to print.
2949
2950 I suspect this probably could also happen with gcc -gstabs (not
2951 -gstabs+) for static fields, and perhaps other C++ extensions.
2952 Hopefully few people use -gstabs with gdb, since it is intended
2953 for dbx compatibility. */
2954
2955 /* Ignore this field. */
2956 fip->list->visibility = VISIBILITY_IGNORE;
2957 }
2958 else
2959 {
2960 /* Detect an unpacked field and mark it as such.
2961 dbx gives a bit size for all fields.
2962 Note that forward refs cannot be packed,
2963 and treat enums as if they had the width of ints. */
2964
2965 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2966
2967 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2968 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2969 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2970 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2971 {
2972 FIELD_BITSIZE (fip->list->field) = 0;
2973 }
2974 if ((FIELD_BITSIZE (fip->list->field)
2975 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2976 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2977 && FIELD_BITSIZE (fip->list->field)
2978 == gdbarch_int_bit (gdbarch))
2979 )
2980 &&
2981 FIELD_BITPOS (fip->list->field) % 8 == 0)
2982 {
2983 FIELD_BITSIZE (fip->list->field) = 0;
2984 }
2985 }
2986 }
2987
2988
2989 /* Read struct or class data fields. They have the form:
2990
2991 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2992
2993 At the end, we see a semicolon instead of a field.
2994
2995 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2996 a static field.
2997
2998 The optional VISIBILITY is one of:
2999
3000 '/0' (VISIBILITY_PRIVATE)
3001 '/1' (VISIBILITY_PROTECTED)
3002 '/2' (VISIBILITY_PUBLIC)
3003 '/9' (VISIBILITY_IGNORE)
3004
3005 or nothing, for C style fields with public visibility.
3006
3007 Returns 1 for success, 0 for failure. */
3008
3009 static int
3010 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3011 struct objfile *objfile)
3012 {
3013 char *p;
3014 struct nextfield *newobj;
3015
3016 /* We better set p right now, in case there are no fields at all... */
3017
3018 p = *pp;
3019
3020 /* Read each data member type until we find the terminating ';' at the end of
3021 the data member list, or break for some other reason such as finding the
3022 start of the member function list. */
3023 /* Stab string for structure/union does not end with two ';' in
3024 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3025
3026 while (**pp != ';' && **pp != '\0')
3027 {
3028 STABS_CONTINUE (pp, objfile);
3029 /* Get space to record the next field's data. */
3030 newobj = XCNEW (struct nextfield);
3031 make_cleanup (xfree, newobj);
3032
3033 newobj->next = fip->list;
3034 fip->list = newobj;
3035
3036 /* Get the field name. */
3037 p = *pp;
3038
3039 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3040 unless the CPLUS_MARKER is followed by an underscore, in
3041 which case it is just the name of an anonymous type, which we
3042 should handle like any other type name. */
3043
3044 if (is_cplus_marker (p[0]) && p[1] != '_')
3045 {
3046 if (!read_cpp_abbrev (fip, pp, type, objfile))
3047 return 0;
3048 continue;
3049 }
3050
3051 /* Look for the ':' that separates the field name from the field
3052 values. Data members are delimited by a single ':', while member
3053 functions are delimited by a pair of ':'s. When we hit the member
3054 functions (if any), terminate scan loop and return. */
3055
3056 while (*p != ':' && *p != '\0')
3057 {
3058 p++;
3059 }
3060 if (*p == '\0')
3061 return 0;
3062
3063 /* Check to see if we have hit the member functions yet. */
3064 if (p[1] == ':')
3065 {
3066 break;
3067 }
3068 read_one_struct_field (fip, pp, p, type, objfile);
3069 }
3070 if (p[0] == ':' && p[1] == ':')
3071 {
3072 /* (the deleted) chill the list of fields: the last entry (at
3073 the head) is a partially constructed entry which we now
3074 scrub. */
3075 fip->list = fip->list->next;
3076 }
3077 return 1;
3078 }
3079 /* *INDENT-OFF* */
3080 /* The stabs for C++ derived classes contain baseclass information which
3081 is marked by a '!' character after the total size. This function is
3082 called when we encounter the baseclass marker, and slurps up all the
3083 baseclass information.
3084
3085 Immediately following the '!' marker is the number of base classes that
3086 the class is derived from, followed by information for each base class.
3087 For each base class, there are two visibility specifiers, a bit offset
3088 to the base class information within the derived class, a reference to
3089 the type for the base class, and a terminating semicolon.
3090
3091 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3092 ^^ ^ ^ ^ ^ ^ ^
3093 Baseclass information marker __________________|| | | | | | |
3094 Number of baseclasses __________________________| | | | | | |
3095 Visibility specifiers (2) ________________________| | | | | |
3096 Offset in bits from start of class _________________| | | | |
3097 Type number for base class ___________________________| | | |
3098 Visibility specifiers (2) _______________________________| | |
3099 Offset in bits from start of class ________________________| |
3100 Type number of base class ____________________________________|
3101
3102 Return 1 for success, 0 for (error-type-inducing) failure. */
3103 /* *INDENT-ON* */
3104
3105
3106
3107 static int
3108 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3109 struct objfile *objfile)
3110 {
3111 int i;
3112 struct nextfield *newobj;
3113
3114 if (**pp != '!')
3115 {
3116 return 1;
3117 }
3118 else
3119 {
3120 /* Skip the '!' baseclass information marker. */
3121 (*pp)++;
3122 }
3123
3124 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3125 {
3126 int nbits;
3127
3128 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3129 if (nbits != 0)
3130 return 0;
3131 }
3132
3133 #if 0
3134 /* Some stupid compilers have trouble with the following, so break
3135 it up into simpler expressions. */
3136 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3137 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3138 #else
3139 {
3140 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3141 char *pointer;
3142
3143 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3144 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3145 }
3146 #endif /* 0 */
3147
3148 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3149
3150 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3151 {
3152 newobj = XCNEW (struct nextfield);
3153 make_cleanup (xfree, newobj);
3154
3155 newobj->next = fip->list;
3156 fip->list = newobj;
3157 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3158 field! */
3159
3160 STABS_CONTINUE (pp, objfile);
3161 switch (**pp)
3162 {
3163 case '0':
3164 /* Nothing to do. */
3165 break;
3166 case '1':
3167 SET_TYPE_FIELD_VIRTUAL (type, i);
3168 break;
3169 default:
3170 /* Unknown character. Complain and treat it as non-virtual. */
3171 {
3172 complaint (&symfile_complaints,
3173 _("Unknown virtual character `%c' for baseclass"),
3174 **pp);
3175 }
3176 }
3177 ++(*pp);
3178
3179 newobj->visibility = *(*pp)++;
3180 switch (newobj->visibility)
3181 {
3182 case VISIBILITY_PRIVATE:
3183 case VISIBILITY_PROTECTED:
3184 case VISIBILITY_PUBLIC:
3185 break;
3186 default:
3187 /* Bad visibility format. Complain and treat it as
3188 public. */
3189 {
3190 complaint (&symfile_complaints,
3191 _("Unknown visibility `%c' for baseclass"),
3192 newobj->visibility);
3193 newobj->visibility = VISIBILITY_PUBLIC;
3194 }
3195 }
3196
3197 {
3198 int nbits;
3199
3200 /* The remaining value is the bit offset of the portion of the object
3201 corresponding to this baseclass. Always zero in the absence of
3202 multiple inheritance. */
3203
3204 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3205 if (nbits != 0)
3206 return 0;
3207 }
3208
3209 /* The last piece of baseclass information is the type of the
3210 base class. Read it, and remember it's type name as this
3211 field's name. */
3212
3213 newobj->field.type = read_type (pp, objfile);
3214 newobj->field.name = type_name_no_tag (newobj->field.type);
3215
3216 /* Skip trailing ';' and bump count of number of fields seen. */
3217 if (**pp == ';')
3218 (*pp)++;
3219 else
3220 return 0;
3221 }
3222 return 1;
3223 }
3224
3225 /* The tail end of stabs for C++ classes that contain a virtual function
3226 pointer contains a tilde, a %, and a type number.
3227 The type number refers to the base class (possibly this class itself) which
3228 contains the vtable pointer for the current class.
3229
3230 This function is called when we have parsed all the method declarations,
3231 so we can look for the vptr base class info. */
3232
3233 static int
3234 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3235 struct objfile *objfile)
3236 {
3237 char *p;
3238
3239 STABS_CONTINUE (pp, objfile);
3240
3241 /* If we are positioned at a ';', then skip it. */
3242 if (**pp == ';')
3243 {
3244 (*pp)++;
3245 }
3246
3247 if (**pp == '~')
3248 {
3249 (*pp)++;
3250
3251 if (**pp == '=' || **pp == '+' || **pp == '-')
3252 {
3253 /* Obsolete flags that used to indicate the presence
3254 of constructors and/or destructors. */
3255 (*pp)++;
3256 }
3257
3258 /* Read either a '%' or the final ';'. */
3259 if (*(*pp)++ == '%')
3260 {
3261 /* The next number is the type number of the base class
3262 (possibly our own class) which supplies the vtable for
3263 this class. Parse it out, and search that class to find
3264 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3265 and TYPE_VPTR_FIELDNO. */
3266
3267 struct type *t;
3268 int i;
3269
3270 t = read_type (pp, objfile);
3271 p = (*pp)++;
3272 while (*p != '\0' && *p != ';')
3273 {
3274 p++;
3275 }
3276 if (*p == '\0')
3277 {
3278 /* Premature end of symbol. */
3279 return 0;
3280 }
3281
3282 set_type_vptr_basetype (type, t);
3283 if (type == t) /* Our own class provides vtbl ptr. */
3284 {
3285 for (i = TYPE_NFIELDS (t) - 1;
3286 i >= TYPE_N_BASECLASSES (t);
3287 --i)
3288 {
3289 const char *name = TYPE_FIELD_NAME (t, i);
3290
3291 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3292 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3293 {
3294 set_type_vptr_fieldno (type, i);
3295 goto gotit;
3296 }
3297 }
3298 /* Virtual function table field not found. */
3299 complaint (&symfile_complaints,
3300 _("virtual function table pointer "
3301 "not found when defining class `%s'"),
3302 TYPE_NAME (type));
3303 return 0;
3304 }
3305 else
3306 {
3307 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3308 }
3309
3310 gotit:
3311 *pp = p + 1;
3312 }
3313 }
3314 return 1;
3315 }
3316
3317 static int
3318 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3319 {
3320 int n;
3321
3322 for (n = TYPE_NFN_FIELDS (type);
3323 fip->fnlist != NULL;
3324 fip->fnlist = fip->fnlist->next)
3325 {
3326 --n; /* Circumvent Sun3 compiler bug. */
3327 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3328 }
3329 return 1;
3330 }
3331
3332 /* Create the vector of fields, and record how big it is.
3333 We need this info to record proper virtual function table information
3334 for this class's virtual functions. */
3335
3336 static int
3337 attach_fields_to_type (struct field_info *fip, struct type *type,
3338 struct objfile *objfile)
3339 {
3340 int nfields = 0;
3341 int non_public_fields = 0;
3342 struct nextfield *scan;
3343
3344 /* Count up the number of fields that we have, as well as taking note of
3345 whether or not there are any non-public fields, which requires us to
3346 allocate and build the private_field_bits and protected_field_bits
3347 bitfields. */
3348
3349 for (scan = fip->list; scan != NULL; scan = scan->next)
3350 {
3351 nfields++;
3352 if (scan->visibility != VISIBILITY_PUBLIC)
3353 {
3354 non_public_fields++;
3355 }
3356 }
3357
3358 /* Now we know how many fields there are, and whether or not there are any
3359 non-public fields. Record the field count, allocate space for the
3360 array of fields, and create blank visibility bitfields if necessary. */
3361
3362 TYPE_NFIELDS (type) = nfields;
3363 TYPE_FIELDS (type) = (struct field *)
3364 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3365 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3366
3367 if (non_public_fields)
3368 {
3369 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3370
3371 TYPE_FIELD_PRIVATE_BITS (type) =
3372 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3373 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3374
3375 TYPE_FIELD_PROTECTED_BITS (type) =
3376 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3377 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3378
3379 TYPE_FIELD_IGNORE_BITS (type) =
3380 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3381 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3382 }
3383
3384 /* Copy the saved-up fields into the field vector. Start from the
3385 head of the list, adding to the tail of the field array, so that
3386 they end up in the same order in the array in which they were
3387 added to the list. */
3388
3389 while (nfields-- > 0)
3390 {
3391 TYPE_FIELD (type, nfields) = fip->list->field;
3392 switch (fip->list->visibility)
3393 {
3394 case VISIBILITY_PRIVATE:
3395 SET_TYPE_FIELD_PRIVATE (type, nfields);
3396 break;
3397
3398 case VISIBILITY_PROTECTED:
3399 SET_TYPE_FIELD_PROTECTED (type, nfields);
3400 break;
3401
3402 case VISIBILITY_IGNORE:
3403 SET_TYPE_FIELD_IGNORE (type, nfields);
3404 break;
3405
3406 case VISIBILITY_PUBLIC:
3407 break;
3408
3409 default:
3410 /* Unknown visibility. Complain and treat it as public. */
3411 {
3412 complaint (&symfile_complaints,
3413 _("Unknown visibility `%c' for field"),
3414 fip->list->visibility);
3415 }
3416 break;
3417 }
3418 fip->list = fip->list->next;
3419 }
3420 return 1;
3421 }
3422
3423
3424 /* Complain that the compiler has emitted more than one definition for the
3425 structure type TYPE. */
3426 static void
3427 complain_about_struct_wipeout (struct type *type)
3428 {
3429 const char *name = "";
3430 const char *kind = "";
3431
3432 if (TYPE_TAG_NAME (type))
3433 {
3434 name = TYPE_TAG_NAME (type);
3435 switch (TYPE_CODE (type))
3436 {
3437 case TYPE_CODE_STRUCT: kind = "struct "; break;
3438 case TYPE_CODE_UNION: kind = "union "; break;
3439 case TYPE_CODE_ENUM: kind = "enum "; break;
3440 default: kind = "";
3441 }
3442 }
3443 else if (TYPE_NAME (type))
3444 {
3445 name = TYPE_NAME (type);
3446 kind = "";
3447 }
3448 else
3449 {
3450 name = "<unknown>";
3451 kind = "";
3452 }
3453
3454 complaint (&symfile_complaints,
3455 _("struct/union type gets multiply defined: %s%s"), kind, name);
3456 }
3457
3458 /* Set the length for all variants of a same main_type, which are
3459 connected in the closed chain.
3460
3461 This is something that needs to be done when a type is defined *after*
3462 some cross references to this type have already been read. Consider
3463 for instance the following scenario where we have the following two
3464 stabs entries:
3465
3466 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3467 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3468
3469 A stubbed version of type dummy is created while processing the first
3470 stabs entry. The length of that type is initially set to zero, since
3471 it is unknown at this point. Also, a "constant" variation of type
3472 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3473 the stabs line).
3474
3475 The second stabs entry allows us to replace the stubbed definition
3476 with the real definition. However, we still need to adjust the length
3477 of the "constant" variation of that type, as its length was left
3478 untouched during the main type replacement... */
3479
3480 static void
3481 set_length_in_type_chain (struct type *type)
3482 {
3483 struct type *ntype = TYPE_CHAIN (type);
3484
3485 while (ntype != type)
3486 {
3487 if (TYPE_LENGTH(ntype) == 0)
3488 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3489 else
3490 complain_about_struct_wipeout (ntype);
3491 ntype = TYPE_CHAIN (ntype);
3492 }
3493 }
3494
3495 /* Read the description of a structure (or union type) and return an object
3496 describing the type.
3497
3498 PP points to a character pointer that points to the next unconsumed token
3499 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3500 *PP will point to "4a:1,0,32;;".
3501
3502 TYPE points to an incomplete type that needs to be filled in.
3503
3504 OBJFILE points to the current objfile from which the stabs information is
3505 being read. (Note that it is redundant in that TYPE also contains a pointer
3506 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3507 */
3508
3509 static struct type *
3510 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3511 struct objfile *objfile)
3512 {
3513 struct cleanup *back_to;
3514 struct field_info fi;
3515
3516 fi.list = NULL;
3517 fi.fnlist = NULL;
3518
3519 /* When describing struct/union/class types in stabs, G++ always drops
3520 all qualifications from the name. So if you've got:
3521 struct A { ... struct B { ... }; ... };
3522 then G++ will emit stabs for `struct A::B' that call it simply
3523 `struct B'. Obviously, if you've got a real top-level definition for
3524 `struct B', or other nested definitions, this is going to cause
3525 problems.
3526
3527 Obviously, GDB can't fix this by itself, but it can at least avoid
3528 scribbling on existing structure type objects when new definitions
3529 appear. */
3530 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3531 || TYPE_STUB (type)))
3532 {
3533 complain_about_struct_wipeout (type);
3534
3535 /* It's probably best to return the type unchanged. */
3536 return type;
3537 }
3538
3539 back_to = make_cleanup (null_cleanup, 0);
3540
3541 INIT_CPLUS_SPECIFIC (type);
3542 TYPE_CODE (type) = type_code;
3543 TYPE_STUB (type) = 0;
3544
3545 /* First comes the total size in bytes. */
3546
3547 {
3548 int nbits;
3549
3550 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3551 if (nbits != 0)
3552 {
3553 do_cleanups (back_to);
3554 return error_type (pp, objfile);
3555 }
3556 set_length_in_type_chain (type);
3557 }
3558
3559 /* Now read the baseclasses, if any, read the regular C struct or C++
3560 class member fields, attach the fields to the type, read the C++
3561 member functions, attach them to the type, and then read any tilde
3562 field (baseclass specifier for the class holding the main vtable). */
3563
3564 if (!read_baseclasses (&fi, pp, type, objfile)
3565 || !read_struct_fields (&fi, pp, type, objfile)
3566 || !attach_fields_to_type (&fi, type, objfile)
3567 || !read_member_functions (&fi, pp, type, objfile)
3568 || !attach_fn_fields_to_type (&fi, type)
3569 || !read_tilde_fields (&fi, pp, type, objfile))
3570 {
3571 type = error_type (pp, objfile);
3572 }
3573
3574 do_cleanups (back_to);
3575 return (type);
3576 }
3577
3578 /* Read a definition of an array type,
3579 and create and return a suitable type object.
3580 Also creates a range type which represents the bounds of that
3581 array. */
3582
3583 static struct type *
3584 read_array_type (char **pp, struct type *type,
3585 struct objfile *objfile)
3586 {
3587 struct type *index_type, *element_type, *range_type;
3588 int lower, upper;
3589 int adjustable = 0;
3590 int nbits;
3591
3592 /* Format of an array type:
3593 "ar<index type>;lower;upper;<array_contents_type>".
3594 OS9000: "arlower,upper;<array_contents_type>".
3595
3596 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3597 for these, produce a type like float[][]. */
3598
3599 {
3600 index_type = read_type (pp, objfile);
3601 if (**pp != ';')
3602 /* Improper format of array type decl. */
3603 return error_type (pp, objfile);
3604 ++*pp;
3605 }
3606
3607 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3608 {
3609 (*pp)++;
3610 adjustable = 1;
3611 }
3612 lower = read_huge_number (pp, ';', &nbits, 0);
3613
3614 if (nbits != 0)
3615 return error_type (pp, objfile);
3616
3617 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3618 {
3619 (*pp)++;
3620 adjustable = 1;
3621 }
3622 upper = read_huge_number (pp, ';', &nbits, 0);
3623 if (nbits != 0)
3624 return error_type (pp, objfile);
3625
3626 element_type = read_type (pp, objfile);
3627
3628 if (adjustable)
3629 {
3630 lower = 0;
3631 upper = -1;
3632 }
3633
3634 range_type =
3635 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3636 type = create_array_type (type, element_type, range_type);
3637
3638 return type;
3639 }
3640
3641
3642 /* Read a definition of an enumeration type,
3643 and create and return a suitable type object.
3644 Also defines the symbols that represent the values of the type. */
3645
3646 static struct type *
3647 read_enum_type (char **pp, struct type *type,
3648 struct objfile *objfile)
3649 {
3650 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3651 char *p;
3652 char *name;
3653 long n;
3654 struct symbol *sym;
3655 int nsyms = 0;
3656 struct pending **symlist;
3657 struct pending *osyms, *syms;
3658 int o_nsyms;
3659 int nbits;
3660 int unsigned_enum = 1;
3661
3662 #if 0
3663 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3664 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3665 to do? For now, force all enum values to file scope. */
3666 if (within_function)
3667 symlist = &local_symbols;
3668 else
3669 #endif
3670 symlist = &file_symbols;
3671 osyms = *symlist;
3672 o_nsyms = osyms ? osyms->nsyms : 0;
3673
3674 /* The aix4 compiler emits an extra field before the enum members;
3675 my guess is it's a type of some sort. Just ignore it. */
3676 if (**pp == '-')
3677 {
3678 /* Skip over the type. */
3679 while (**pp != ':')
3680 (*pp)++;
3681
3682 /* Skip over the colon. */
3683 (*pp)++;
3684 }
3685
3686 /* Read the value-names and their values.
3687 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3688 A semicolon or comma instead of a NAME means the end. */
3689 while (**pp && **pp != ';' && **pp != ',')
3690 {
3691 STABS_CONTINUE (pp, objfile);
3692 p = *pp;
3693 while (*p != ':')
3694 p++;
3695 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3696 *pp = p + 1;
3697 n = read_huge_number (pp, ',', &nbits, 0);
3698 if (nbits != 0)
3699 return error_type (pp, objfile);
3700
3701 sym = allocate_symbol (objfile);
3702 SYMBOL_SET_LINKAGE_NAME (sym, name);
3703 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3704 &objfile->objfile_obstack);
3705 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3706 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3707 SYMBOL_VALUE (sym) = n;
3708 if (n < 0)
3709 unsigned_enum = 0;
3710 add_symbol_to_list (sym, symlist);
3711 nsyms++;
3712 }
3713
3714 if (**pp == ';')
3715 (*pp)++; /* Skip the semicolon. */
3716
3717 /* Now fill in the fields of the type-structure. */
3718
3719 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3720 set_length_in_type_chain (type);
3721 TYPE_CODE (type) = TYPE_CODE_ENUM;
3722 TYPE_STUB (type) = 0;
3723 if (unsigned_enum)
3724 TYPE_UNSIGNED (type) = 1;
3725 TYPE_NFIELDS (type) = nsyms;
3726 TYPE_FIELDS (type) = (struct field *)
3727 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3728 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3729
3730 /* Find the symbols for the values and put them into the type.
3731 The symbols can be found in the symlist that we put them on
3732 to cause them to be defined. osyms contains the old value
3733 of that symlist; everything up to there was defined by us. */
3734 /* Note that we preserve the order of the enum constants, so
3735 that in something like "enum {FOO, LAST_THING=FOO}" we print
3736 FOO, not LAST_THING. */
3737
3738 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3739 {
3740 int last = syms == osyms ? o_nsyms : 0;
3741 int j = syms->nsyms;
3742
3743 for (; --j >= last; --n)
3744 {
3745 struct symbol *xsym = syms->symbol[j];
3746
3747 SYMBOL_TYPE (xsym) = type;
3748 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3749 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3750 TYPE_FIELD_BITSIZE (type, n) = 0;
3751 }
3752 if (syms == osyms)
3753 break;
3754 }
3755
3756 return type;
3757 }
3758
3759 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3760 typedefs in every file (for int, long, etc):
3761
3762 type = b <signed> <width> <format type>; <offset>; <nbits>
3763 signed = u or s.
3764 optional format type = c or b for char or boolean.
3765 offset = offset from high order bit to start bit of type.
3766 width is # bytes in object of this type, nbits is # bits in type.
3767
3768 The width/offset stuff appears to be for small objects stored in
3769 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3770 FIXME. */
3771
3772 static struct type *
3773 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3774 {
3775 int type_bits;
3776 int nbits;
3777 int unsigned_type;
3778 int boolean_type = 0;
3779
3780 switch (**pp)
3781 {
3782 case 's':
3783 unsigned_type = 0;
3784 break;
3785 case 'u':
3786 unsigned_type = 1;
3787 break;
3788 default:
3789 return error_type (pp, objfile);
3790 }
3791 (*pp)++;
3792
3793 /* For some odd reason, all forms of char put a c here. This is strange
3794 because no other type has this honor. We can safely ignore this because
3795 we actually determine 'char'acterness by the number of bits specified in
3796 the descriptor.
3797 Boolean forms, e.g Fortran logical*X, put a b here. */
3798
3799 if (**pp == 'c')
3800 (*pp)++;
3801 else if (**pp == 'b')
3802 {
3803 boolean_type = 1;
3804 (*pp)++;
3805 }
3806
3807 /* The first number appears to be the number of bytes occupied
3808 by this type, except that unsigned short is 4 instead of 2.
3809 Since this information is redundant with the third number,
3810 we will ignore it. */
3811 read_huge_number (pp, ';', &nbits, 0);
3812 if (nbits != 0)
3813 return error_type (pp, objfile);
3814
3815 /* The second number is always 0, so ignore it too. */
3816 read_huge_number (pp, ';', &nbits, 0);
3817 if (nbits != 0)
3818 return error_type (pp, objfile);
3819
3820 /* The third number is the number of bits for this type. */
3821 type_bits = read_huge_number (pp, 0, &nbits, 0);
3822 if (nbits != 0)
3823 return error_type (pp, objfile);
3824 /* The type *should* end with a semicolon. If it are embedded
3825 in a larger type the semicolon may be the only way to know where
3826 the type ends. If this type is at the end of the stabstring we
3827 can deal with the omitted semicolon (but we don't have to like
3828 it). Don't bother to complain(), Sun's compiler omits the semicolon
3829 for "void". */
3830 if (**pp == ';')
3831 ++(*pp);
3832
3833 if (type_bits == 0)
3834 {
3835 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3836 if (unsigned_type)
3837 TYPE_UNSIGNED (type) = 1;
3838 return type;
3839 }
3840
3841 if (boolean_type)
3842 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3843 else
3844 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3845 }
3846
3847 static struct type *
3848 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3849 {
3850 int nbits;
3851 int details;
3852 int nbytes;
3853 struct type *rettype;
3854
3855 /* The first number has more details about the type, for example
3856 FN_COMPLEX. */
3857 details = read_huge_number (pp, ';', &nbits, 0);
3858 if (nbits != 0)
3859 return error_type (pp, objfile);
3860
3861 /* The second number is the number of bytes occupied by this type. */
3862 nbytes = read_huge_number (pp, ';', &nbits, 0);
3863 if (nbits != 0)
3864 return error_type (pp, objfile);
3865
3866 nbits = nbytes * TARGET_CHAR_BIT;
3867
3868 if (details == NF_COMPLEX || details == NF_COMPLEX16
3869 || details == NF_COMPLEX32)
3870 {
3871 rettype = dbx_init_float_type (objfile, nbits / 2);
3872 return init_complex_type (objfile, NULL, rettype);
3873 }
3874
3875 return dbx_init_float_type (objfile, nbits);
3876 }
3877
3878 /* Read a number from the string pointed to by *PP.
3879 The value of *PP is advanced over the number.
3880 If END is nonzero, the character that ends the
3881 number must match END, or an error happens;
3882 and that character is skipped if it does match.
3883 If END is zero, *PP is left pointing to that character.
3884
3885 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3886 the number is represented in an octal representation, assume that
3887 it is represented in a 2's complement representation with a size of
3888 TWOS_COMPLEMENT_BITS.
3889
3890 If the number fits in a long, set *BITS to 0 and return the value.
3891 If not, set *BITS to be the number of bits in the number and return 0.
3892
3893 If encounter garbage, set *BITS to -1 and return 0. */
3894
3895 static long
3896 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3897 {
3898 char *p = *pp;
3899 int sign = 1;
3900 int sign_bit = 0;
3901 long n = 0;
3902 int radix = 10;
3903 char overflow = 0;
3904 int nbits = 0;
3905 int c;
3906 long upper_limit;
3907 int twos_complement_representation = 0;
3908
3909 if (*p == '-')
3910 {
3911 sign = -1;
3912 p++;
3913 }
3914
3915 /* Leading zero means octal. GCC uses this to output values larger
3916 than an int (because that would be hard in decimal). */
3917 if (*p == '0')
3918 {
3919 radix = 8;
3920 p++;
3921 }
3922
3923 /* Skip extra zeros. */
3924 while (*p == '0')
3925 p++;
3926
3927 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3928 {
3929 /* Octal, possibly signed. Check if we have enough chars for a
3930 negative number. */
3931
3932 size_t len;
3933 char *p1 = p;
3934
3935 while ((c = *p1) >= '0' && c < '8')
3936 p1++;
3937
3938 len = p1 - p;
3939 if (len > twos_complement_bits / 3
3940 || (twos_complement_bits % 3 == 0
3941 && len == twos_complement_bits / 3))
3942 {
3943 /* Ok, we have enough characters for a signed value, check
3944 for signness by testing if the sign bit is set. */
3945 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3946 c = *p - '0';
3947 if (c & (1 << sign_bit))
3948 {
3949 /* Definitely signed. */
3950 twos_complement_representation = 1;
3951 sign = -1;
3952 }
3953 }
3954 }
3955
3956 upper_limit = LONG_MAX / radix;
3957
3958 while ((c = *p++) >= '0' && c < ('0' + radix))
3959 {
3960 if (n <= upper_limit)
3961 {
3962 if (twos_complement_representation)
3963 {
3964 /* Octal, signed, twos complement representation. In
3965 this case, n is the corresponding absolute value. */
3966 if (n == 0)
3967 {
3968 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3969
3970 n = -sn;
3971 }
3972 else
3973 {
3974 n *= radix;
3975 n -= c - '0';
3976 }
3977 }
3978 else
3979 {
3980 /* unsigned representation */
3981 n *= radix;
3982 n += c - '0'; /* FIXME this overflows anyway. */
3983 }
3984 }
3985 else
3986 overflow = 1;
3987
3988 /* This depends on large values being output in octal, which is
3989 what GCC does. */
3990 if (radix == 8)
3991 {
3992 if (nbits == 0)
3993 {
3994 if (c == '0')
3995 /* Ignore leading zeroes. */
3996 ;
3997 else if (c == '1')
3998 nbits = 1;
3999 else if (c == '2' || c == '3')
4000 nbits = 2;
4001 else
4002 nbits = 3;
4003 }
4004 else
4005 nbits += 3;
4006 }
4007 }
4008 if (end)
4009 {
4010 if (c && c != end)
4011 {
4012 if (bits != NULL)
4013 *bits = -1;
4014 return 0;
4015 }
4016 }
4017 else
4018 --p;
4019
4020 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4021 {
4022 /* We were supposed to parse a number with maximum
4023 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4024 if (bits != NULL)
4025 *bits = -1;
4026 return 0;
4027 }
4028
4029 *pp = p;
4030 if (overflow)
4031 {
4032 if (nbits == 0)
4033 {
4034 /* Large decimal constants are an error (because it is hard to
4035 count how many bits are in them). */
4036 if (bits != NULL)
4037 *bits = -1;
4038 return 0;
4039 }
4040
4041 /* -0x7f is the same as 0x80. So deal with it by adding one to
4042 the number of bits. Two's complement represention octals
4043 can't have a '-' in front. */
4044 if (sign == -1 && !twos_complement_representation)
4045 ++nbits;
4046 if (bits)
4047 *bits = nbits;
4048 }
4049 else
4050 {
4051 if (bits)
4052 *bits = 0;
4053 return n * sign;
4054 }
4055 /* It's *BITS which has the interesting information. */
4056 return 0;
4057 }
4058
4059 static struct type *
4060 read_range_type (char **pp, int typenums[2], int type_size,
4061 struct objfile *objfile)
4062 {
4063 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4064 char *orig_pp = *pp;
4065 int rangenums[2];
4066 long n2, n3;
4067 int n2bits, n3bits;
4068 int self_subrange;
4069 struct type *result_type;
4070 struct type *index_type = NULL;
4071
4072 /* First comes a type we are a subrange of.
4073 In C it is usually 0, 1 or the type being defined. */
4074 if (read_type_number (pp, rangenums) != 0)
4075 return error_type (pp, objfile);
4076 self_subrange = (rangenums[0] == typenums[0] &&
4077 rangenums[1] == typenums[1]);
4078
4079 if (**pp == '=')
4080 {
4081 *pp = orig_pp;
4082 index_type = read_type (pp, objfile);
4083 }
4084
4085 /* A semicolon should now follow; skip it. */
4086 if (**pp == ';')
4087 (*pp)++;
4088
4089 /* The remaining two operands are usually lower and upper bounds
4090 of the range. But in some special cases they mean something else. */
4091 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4092 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4093
4094 if (n2bits == -1 || n3bits == -1)
4095 return error_type (pp, objfile);
4096
4097 if (index_type)
4098 goto handle_true_range;
4099
4100 /* If limits are huge, must be large integral type. */
4101 if (n2bits != 0 || n3bits != 0)
4102 {
4103 char got_signed = 0;
4104 char got_unsigned = 0;
4105 /* Number of bits in the type. */
4106 int nbits = 0;
4107
4108 /* If a type size attribute has been specified, the bounds of
4109 the range should fit in this size. If the lower bounds needs
4110 more bits than the upper bound, then the type is signed. */
4111 if (n2bits <= type_size && n3bits <= type_size)
4112 {
4113 if (n2bits == type_size && n2bits > n3bits)
4114 got_signed = 1;
4115 else
4116 got_unsigned = 1;
4117 nbits = type_size;
4118 }
4119 /* Range from 0 to <large number> is an unsigned large integral type. */
4120 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4121 {
4122 got_unsigned = 1;
4123 nbits = n3bits;
4124 }
4125 /* Range from <large number> to <large number>-1 is a large signed
4126 integral type. Take care of the case where <large number> doesn't
4127 fit in a long but <large number>-1 does. */
4128 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4129 || (n2bits != 0 && n3bits == 0
4130 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4131 && n3 == LONG_MAX))
4132 {
4133 got_signed = 1;
4134 nbits = n2bits;
4135 }
4136
4137 if (got_signed || got_unsigned)
4138 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4139 else
4140 return error_type (pp, objfile);
4141 }
4142
4143 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4144 if (self_subrange && n2 == 0 && n3 == 0)
4145 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4146
4147 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4148 is the width in bytes.
4149
4150 Fortran programs appear to use this for complex types also. To
4151 distinguish between floats and complex, g77 (and others?) seem
4152 to use self-subranges for the complexes, and subranges of int for
4153 the floats.
4154
4155 Also note that for complexes, g77 sets n2 to the size of one of
4156 the member floats, not the whole complex beast. My guess is that
4157 this was to work well with pre-COMPLEX versions of gdb. */
4158
4159 if (n3 == 0 && n2 > 0)
4160 {
4161 struct type *float_type
4162 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4163
4164 if (self_subrange)
4165 return init_complex_type (objfile, NULL, float_type);
4166 else
4167 return float_type;
4168 }
4169
4170 /* If the upper bound is -1, it must really be an unsigned integral. */
4171
4172 else if (n2 == 0 && n3 == -1)
4173 {
4174 int bits = type_size;
4175
4176 if (bits <= 0)
4177 {
4178 /* We don't know its size. It is unsigned int or unsigned
4179 long. GCC 2.3.3 uses this for long long too, but that is
4180 just a GDB 3.5 compatibility hack. */
4181 bits = gdbarch_int_bit (gdbarch);
4182 }
4183
4184 return init_integer_type (objfile, bits, 1, NULL);
4185 }
4186
4187 /* Special case: char is defined (Who knows why) as a subrange of
4188 itself with range 0-127. */
4189 else if (self_subrange && n2 == 0 && n3 == 127)
4190 {
4191 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4192 TYPE_NOSIGN (type) = 1;
4193 return type;
4194 }
4195 /* We used to do this only for subrange of self or subrange of int. */
4196 else if (n2 == 0)
4197 {
4198 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4199 "unsigned long", and we already checked for that,
4200 so don't need to test for it here. */
4201
4202 if (n3 < 0)
4203 /* n3 actually gives the size. */
4204 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4205
4206 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4207 unsigned n-byte integer. But do require n to be a power of
4208 two; we don't want 3- and 5-byte integers flying around. */
4209 {
4210 int bytes;
4211 unsigned long bits;
4212
4213 bits = n3;
4214 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4215 bits >>= 8;
4216 if (bits == 0
4217 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4218 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4219 }
4220 }
4221 /* I think this is for Convex "long long". Since I don't know whether
4222 Convex sets self_subrange, I also accept that particular size regardless
4223 of self_subrange. */
4224 else if (n3 == 0 && n2 < 0
4225 && (self_subrange
4226 || n2 == -gdbarch_long_long_bit
4227 (gdbarch) / TARGET_CHAR_BIT))
4228 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4229 else if (n2 == -n3 - 1)
4230 {
4231 if (n3 == 0x7f)
4232 return init_integer_type (objfile, 8, 0, NULL);
4233 if (n3 == 0x7fff)
4234 return init_integer_type (objfile, 16, 0, NULL);
4235 if (n3 == 0x7fffffff)
4236 return init_integer_type (objfile, 32, 0, NULL);
4237 }
4238
4239 /* We have a real range type on our hands. Allocate space and
4240 return a real pointer. */
4241 handle_true_range:
4242
4243 if (self_subrange)
4244 index_type = objfile_type (objfile)->builtin_int;
4245 else
4246 index_type = *dbx_lookup_type (rangenums, objfile);
4247 if (index_type == NULL)
4248 {
4249 /* Does this actually ever happen? Is that why we are worrying
4250 about dealing with it rather than just calling error_type? */
4251
4252 complaint (&symfile_complaints,
4253 _("base type %d of range type is not defined"), rangenums[1]);
4254
4255 index_type = objfile_type (objfile)->builtin_int;
4256 }
4257
4258 result_type
4259 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4260 return (result_type);
4261 }
4262
4263 /* Read in an argument list. This is a list of types, separated by commas
4264 and terminated with END. Return the list of types read in, or NULL
4265 if there is an error. */
4266
4267 static struct field *
4268 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4269 int *varargsp)
4270 {
4271 /* FIXME! Remove this arbitrary limit! */
4272 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4273 int n = 0, i;
4274 struct field *rval;
4275
4276 while (**pp != end)
4277 {
4278 if (**pp != ',')
4279 /* Invalid argument list: no ','. */
4280 return NULL;
4281 (*pp)++;
4282 STABS_CONTINUE (pp, objfile);
4283 types[n++] = read_type (pp, objfile);
4284 }
4285 (*pp)++; /* get past `end' (the ':' character). */
4286
4287 if (n == 0)
4288 {
4289 /* We should read at least the THIS parameter here. Some broken stabs
4290 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4291 have been present ";-16,(0,43)" reference instead. This way the
4292 excessive ";" marker prematurely stops the parameters parsing. */
4293
4294 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4295 *varargsp = 0;
4296 }
4297 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4298 *varargsp = 1;
4299 else
4300 {
4301 n--;
4302 *varargsp = 0;
4303 }
4304
4305 rval = XCNEWVEC (struct field, n);
4306 for (i = 0; i < n; i++)
4307 rval[i].type = types[i];
4308 *nargsp = n;
4309 return rval;
4310 }
4311 \f
4312 /* Common block handling. */
4313
4314 /* List of symbols declared since the last BCOMM. This list is a tail
4315 of local_symbols. When ECOMM is seen, the symbols on the list
4316 are noted so their proper addresses can be filled in later,
4317 using the common block base address gotten from the assembler
4318 stabs. */
4319
4320 static struct pending *common_block;
4321 static int common_block_i;
4322
4323 /* Name of the current common block. We get it from the BCOMM instead of the
4324 ECOMM to match IBM documentation (even though IBM puts the name both places
4325 like everyone else). */
4326 static char *common_block_name;
4327
4328 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4329 to remain after this function returns. */
4330
4331 void
4332 common_block_start (char *name, struct objfile *objfile)
4333 {
4334 if (common_block_name != NULL)
4335 {
4336 complaint (&symfile_complaints,
4337 _("Invalid symbol data: common block within common block"));
4338 }
4339 common_block = local_symbols;
4340 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4341 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4342 strlen (name));
4343 }
4344
4345 /* Process a N_ECOMM symbol. */
4346
4347 void
4348 common_block_end (struct objfile *objfile)
4349 {
4350 /* Symbols declared since the BCOMM are to have the common block
4351 start address added in when we know it. common_block and
4352 common_block_i point to the first symbol after the BCOMM in
4353 the local_symbols list; copy the list and hang it off the
4354 symbol for the common block name for later fixup. */
4355 int i;
4356 struct symbol *sym;
4357 struct pending *newobj = 0;
4358 struct pending *next;
4359 int j;
4360
4361 if (common_block_name == NULL)
4362 {
4363 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4364 return;
4365 }
4366
4367 sym = allocate_symbol (objfile);
4368 /* Note: common_block_name already saved on objfile_obstack. */
4369 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4370 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4371
4372 /* Now we copy all the symbols which have been defined since the BCOMM. */
4373
4374 /* Copy all the struct pendings before common_block. */
4375 for (next = local_symbols;
4376 next != NULL && next != common_block;
4377 next = next->next)
4378 {
4379 for (j = 0; j < next->nsyms; j++)
4380 add_symbol_to_list (next->symbol[j], &newobj);
4381 }
4382
4383 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4384 NULL, it means copy all the local symbols (which we already did
4385 above). */
4386
4387 if (common_block != NULL)
4388 for (j = common_block_i; j < common_block->nsyms; j++)
4389 add_symbol_to_list (common_block->symbol[j], &newobj);
4390
4391 SYMBOL_TYPE (sym) = (struct type *) newobj;
4392
4393 /* Should we be putting local_symbols back to what it was?
4394 Does it matter? */
4395
4396 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4397 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4398 global_sym_chain[i] = sym;
4399 common_block_name = NULL;
4400 }
4401
4402 /* Add a common block's start address to the offset of each symbol
4403 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4404 the common block name). */
4405
4406 static void
4407 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4408 {
4409 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4410
4411 for (; next; next = next->next)
4412 {
4413 int j;
4414
4415 for (j = next->nsyms - 1; j >= 0; j--)
4416 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4417 }
4418 }
4419 \f
4420
4421
4422 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4423 See add_undefined_type for more details. */
4424
4425 static void
4426 add_undefined_type_noname (struct type *type, int typenums[2])
4427 {
4428 struct nat nat;
4429
4430 nat.typenums[0] = typenums [0];
4431 nat.typenums[1] = typenums [1];
4432 nat.type = type;
4433
4434 if (noname_undefs_length == noname_undefs_allocated)
4435 {
4436 noname_undefs_allocated *= 2;
4437 noname_undefs = (struct nat *)
4438 xrealloc ((char *) noname_undefs,
4439 noname_undefs_allocated * sizeof (struct nat));
4440 }
4441 noname_undefs[noname_undefs_length++] = nat;
4442 }
4443
4444 /* Add TYPE to the UNDEF_TYPES vector.
4445 See add_undefined_type for more details. */
4446
4447 static void
4448 add_undefined_type_1 (struct type *type)
4449 {
4450 if (undef_types_length == undef_types_allocated)
4451 {
4452 undef_types_allocated *= 2;
4453 undef_types = (struct type **)
4454 xrealloc ((char *) undef_types,
4455 undef_types_allocated * sizeof (struct type *));
4456 }
4457 undef_types[undef_types_length++] = type;
4458 }
4459
4460 /* What about types defined as forward references inside of a small lexical
4461 scope? */
4462 /* Add a type to the list of undefined types to be checked through
4463 once this file has been read in.
4464
4465 In practice, we actually maintain two such lists: The first list
4466 (UNDEF_TYPES) is used for types whose name has been provided, and
4467 concerns forward references (eg 'xs' or 'xu' forward references);
4468 the second list (NONAME_UNDEFS) is used for types whose name is
4469 unknown at creation time, because they were referenced through
4470 their type number before the actual type was declared.
4471 This function actually adds the given type to the proper list. */
4472
4473 static void
4474 add_undefined_type (struct type *type, int typenums[2])
4475 {
4476 if (TYPE_TAG_NAME (type) == NULL)
4477 add_undefined_type_noname (type, typenums);
4478 else
4479 add_undefined_type_1 (type);
4480 }
4481
4482 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4483
4484 static void
4485 cleanup_undefined_types_noname (struct objfile *objfile)
4486 {
4487 int i;
4488
4489 for (i = 0; i < noname_undefs_length; i++)
4490 {
4491 struct nat nat = noname_undefs[i];
4492 struct type **type;
4493
4494 type = dbx_lookup_type (nat.typenums, objfile);
4495 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4496 {
4497 /* The instance flags of the undefined type are still unset,
4498 and needs to be copied over from the reference type.
4499 Since replace_type expects them to be identical, we need
4500 to set these flags manually before hand. */
4501 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4502 replace_type (nat.type, *type);
4503 }
4504 }
4505
4506 noname_undefs_length = 0;
4507 }
4508
4509 /* Go through each undefined type, see if it's still undefined, and fix it
4510 up if possible. We have two kinds of undefined types:
4511
4512 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4513 Fix: update array length using the element bounds
4514 and the target type's length.
4515 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4516 yet defined at the time a pointer to it was made.
4517 Fix: Do a full lookup on the struct/union tag. */
4518
4519 static void
4520 cleanup_undefined_types_1 (void)
4521 {
4522 struct type **type;
4523
4524 /* Iterate over every undefined type, and look for a symbol whose type
4525 matches our undefined type. The symbol matches if:
4526 1. It is a typedef in the STRUCT domain;
4527 2. It has the same name, and same type code;
4528 3. The instance flags are identical.
4529
4530 It is important to check the instance flags, because we have seen
4531 examples where the debug info contained definitions such as:
4532
4533 "foo_t:t30=B31=xefoo_t:"
4534
4535 In this case, we have created an undefined type named "foo_t" whose
4536 instance flags is null (when processing "xefoo_t"), and then created
4537 another type with the same name, but with different instance flags
4538 ('B' means volatile). I think that the definition above is wrong,
4539 since the same type cannot be volatile and non-volatile at the same
4540 time, but we need to be able to cope with it when it happens. The
4541 approach taken here is to treat these two types as different. */
4542
4543 for (type = undef_types; type < undef_types + undef_types_length; type++)
4544 {
4545 switch (TYPE_CODE (*type))
4546 {
4547
4548 case TYPE_CODE_STRUCT:
4549 case TYPE_CODE_UNION:
4550 case TYPE_CODE_ENUM:
4551 {
4552 /* Check if it has been defined since. Need to do this here
4553 as well as in check_typedef to deal with the (legitimate in
4554 C though not C++) case of several types with the same name
4555 in different source files. */
4556 if (TYPE_STUB (*type))
4557 {
4558 struct pending *ppt;
4559 int i;
4560 /* Name of the type, without "struct" or "union". */
4561 const char *type_name = TYPE_TAG_NAME (*type);
4562
4563 if (type_name == NULL)
4564 {
4565 complaint (&symfile_complaints, _("need a type name"));
4566 break;
4567 }
4568 for (ppt = file_symbols; ppt; ppt = ppt->next)
4569 {
4570 for (i = 0; i < ppt->nsyms; i++)
4571 {
4572 struct symbol *sym = ppt->symbol[i];
4573
4574 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4575 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4576 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4577 TYPE_CODE (*type))
4578 && (TYPE_INSTANCE_FLAGS (*type) ==
4579 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4580 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4581 type_name) == 0)
4582 replace_type (*type, SYMBOL_TYPE (sym));
4583 }
4584 }
4585 }
4586 }
4587 break;
4588
4589 default:
4590 {
4591 complaint (&symfile_complaints,
4592 _("forward-referenced types left unresolved, "
4593 "type code %d."),
4594 TYPE_CODE (*type));
4595 }
4596 break;
4597 }
4598 }
4599
4600 undef_types_length = 0;
4601 }
4602
4603 /* Try to fix all the undefined types we ecountered while processing
4604 this unit. */
4605
4606 void
4607 cleanup_undefined_stabs_types (struct objfile *objfile)
4608 {
4609 cleanup_undefined_types_1 ();
4610 cleanup_undefined_types_noname (objfile);
4611 }
4612
4613 /* Scan through all of the global symbols defined in the object file,
4614 assigning values to the debugging symbols that need to be assigned
4615 to. Get these symbols from the minimal symbol table. */
4616
4617 void
4618 scan_file_globals (struct objfile *objfile)
4619 {
4620 int hash;
4621 struct minimal_symbol *msymbol;
4622 struct symbol *sym, *prev;
4623 struct objfile *resolve_objfile;
4624
4625 /* SVR4 based linkers copy referenced global symbols from shared
4626 libraries to the main executable.
4627 If we are scanning the symbols for a shared library, try to resolve
4628 them from the minimal symbols of the main executable first. */
4629
4630 if (symfile_objfile && objfile != symfile_objfile)
4631 resolve_objfile = symfile_objfile;
4632 else
4633 resolve_objfile = objfile;
4634
4635 while (1)
4636 {
4637 /* Avoid expensive loop through all minimal symbols if there are
4638 no unresolved symbols. */
4639 for (hash = 0; hash < HASHSIZE; hash++)
4640 {
4641 if (global_sym_chain[hash])
4642 break;
4643 }
4644 if (hash >= HASHSIZE)
4645 return;
4646
4647 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4648 {
4649 QUIT;
4650
4651 /* Skip static symbols. */
4652 switch (MSYMBOL_TYPE (msymbol))
4653 {
4654 case mst_file_text:
4655 case mst_file_data:
4656 case mst_file_bss:
4657 continue;
4658 default:
4659 break;
4660 }
4661
4662 prev = NULL;
4663
4664 /* Get the hash index and check all the symbols
4665 under that hash index. */
4666
4667 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4668
4669 for (sym = global_sym_chain[hash]; sym;)
4670 {
4671 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4672 SYMBOL_LINKAGE_NAME (sym)) == 0)
4673 {
4674 /* Splice this symbol out of the hash chain and
4675 assign the value we have to it. */
4676 if (prev)
4677 {
4678 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4679 }
4680 else
4681 {
4682 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4683 }
4684
4685 /* Check to see whether we need to fix up a common block. */
4686 /* Note: this code might be executed several times for
4687 the same symbol if there are multiple references. */
4688 if (sym)
4689 {
4690 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4691 {
4692 fix_common_block (sym,
4693 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4694 msymbol));
4695 }
4696 else
4697 {
4698 SYMBOL_VALUE_ADDRESS (sym)
4699 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4700 }
4701 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4702 }
4703
4704 if (prev)
4705 {
4706 sym = SYMBOL_VALUE_CHAIN (prev);
4707 }
4708 else
4709 {
4710 sym = global_sym_chain[hash];
4711 }
4712 }
4713 else
4714 {
4715 prev = sym;
4716 sym = SYMBOL_VALUE_CHAIN (sym);
4717 }
4718 }
4719 }
4720 if (resolve_objfile == objfile)
4721 break;
4722 resolve_objfile = objfile;
4723 }
4724
4725 /* Change the storage class of any remaining unresolved globals to
4726 LOC_UNRESOLVED and remove them from the chain. */
4727 for (hash = 0; hash < HASHSIZE; hash++)
4728 {
4729 sym = global_sym_chain[hash];
4730 while (sym)
4731 {
4732 prev = sym;
4733 sym = SYMBOL_VALUE_CHAIN (sym);
4734
4735 /* Change the symbol address from the misleading chain value
4736 to address zero. */
4737 SYMBOL_VALUE_ADDRESS (prev) = 0;
4738
4739 /* Complain about unresolved common block symbols. */
4740 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4741 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4742 else
4743 complaint (&symfile_complaints,
4744 _("%s: common block `%s' from "
4745 "global_sym_chain unresolved"),
4746 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4747 }
4748 }
4749 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4750 }
4751
4752 /* Initialize anything that needs initializing when starting to read
4753 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4754 to a psymtab. */
4755
4756 void
4757 stabsread_init (void)
4758 {
4759 }
4760
4761 /* Initialize anything that needs initializing when a completely new
4762 symbol file is specified (not just adding some symbols from another
4763 file, e.g. a shared library). */
4764
4765 void
4766 stabsread_new_init (void)
4767 {
4768 /* Empty the hash table of global syms looking for values. */
4769 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4770 }
4771
4772 /* Initialize anything that needs initializing at the same time as
4773 start_symtab() is called. */
4774
4775 void
4776 start_stabs (void)
4777 {
4778 global_stabs = NULL; /* AIX COFF */
4779 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4780 n_this_object_header_files = 1;
4781 type_vector_length = 0;
4782 type_vector = (struct type **) 0;
4783
4784 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4785 common_block_name = NULL;
4786 }
4787
4788 /* Call after end_symtab(). */
4789
4790 void
4791 end_stabs (void)
4792 {
4793 if (type_vector)
4794 {
4795 xfree (type_vector);
4796 }
4797 type_vector = 0;
4798 type_vector_length = 0;
4799 previous_stab_code = 0;
4800 }
4801
4802 void
4803 finish_global_stabs (struct objfile *objfile)
4804 {
4805 if (global_stabs)
4806 {
4807 patch_block_stabs (global_symbols, global_stabs, objfile);
4808 xfree (global_stabs);
4809 global_stabs = NULL;
4810 }
4811 }
4812
4813 /* Find the end of the name, delimited by a ':', but don't match
4814 ObjC symbols which look like -[Foo bar::]:bla. */
4815 static char *
4816 find_name_end (char *name)
4817 {
4818 char *s = name;
4819
4820 if (s[0] == '-' || *s == '+')
4821 {
4822 /* Must be an ObjC method symbol. */
4823 if (s[1] != '[')
4824 {
4825 error (_("invalid symbol name \"%s\""), name);
4826 }
4827 s = strchr (s, ']');
4828 if (s == NULL)
4829 {
4830 error (_("invalid symbol name \"%s\""), name);
4831 }
4832 return strchr (s, ':');
4833 }
4834 else
4835 {
4836 return strchr (s, ':');
4837 }
4838 }
4839
4840 /* Initializer for this module. */
4841
4842 void
4843 _initialize_stabsread (void)
4844 {
4845 rs6000_builtin_type_data = register_objfile_data ();
4846
4847 undef_types_allocated = 20;
4848 undef_types_length = 0;
4849 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4850
4851 noname_undefs_allocated = 20;
4852 noname_undefs_length = 0;
4853 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4854
4855 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4856 &stab_register_funcs);
4857 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4858 &stab_register_funcs);
4859 }
This page took 0.187249 seconds and 4 git commands to generate.