2004-01-05 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Support routines for reading and decoding debugging information in
24 the "stabs" format. This format is used with many systems that use
25 the a.out object file format, as well as some systems that use
26 COFF or ELF where the stabs data is placed in a special section.
27 Avoid placing any object file format specific code in this file. */
28
29 #include "defs.h"
30 #include "gdb_string.h"
31 #include "bfd.h"
32 #include "gdb_obstack.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "expression.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "libaout.h"
40 #include "aout/aout64.h"
41 #include "gdb-stabs.h"
42 #include "buildsym.h"
43 #include "complaints.h"
44 #include "demangle.h"
45 #include "language.h"
46 #include "doublest.h"
47 #include "cp-abi.h"
48 #include "cp-support.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static char *get_substring (char **, int);
93
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
95
96 static long read_huge_number (char **, int, int *);
97
98 static struct type *error_type (char **, struct objfile *);
99
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
103
104 static void fix_common_block (struct symbol *, int);
105
106 static int read_type_number (char **, int *);
107
108 static struct type *read_type (char **, struct objfile *);
109
110 static struct type *read_range_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
113
114 static struct type *read_sun_floating_type (char **, int[2],
115 struct objfile *);
116
117 static struct type *read_enum_type (char **, struct type *, struct objfile *);
118
119 static struct type *rs6000_builtin_type (int);
120
121 static int
122 read_member_functions (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_struct_fields (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_baseclasses (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_tilde_fields (struct field_info *, char **, struct type *,
135 struct objfile *);
136
137 static int attach_fn_fields_to_type (struct field_info *, struct type *);
138
139 static int attach_fields_to_type (struct field_info *, struct type *,
140 struct objfile *);
141
142 static struct type *read_struct_type (char **, struct type *,
143 enum type_code,
144 struct objfile *);
145
146 static struct type *read_array_type (char **, struct type *,
147 struct objfile *);
148
149 static struct field *read_args (char **, int, struct objfile *, int *, int *);
150
151 static void add_undefined_type (struct type *);
152
153 static int
154 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 struct objfile *);
156
157 static char *find_name_end (char *name);
158
159 static int process_reference (char **string);
160
161 static CORE_ADDR ref_search_value (int refnum);
162
163 void stabsread_clear_cache (void);
164
165 static const char vptr_name[] = "_vptr$";
166 static const char vb_name[] = "_vb$";
167
168 /* Define this as 1 if a pcc declaration of a char or short argument
169 gives the correct address. Otherwise assume pcc gives the
170 address of the corresponding int, which is not the same on a
171 big-endian machine. */
172
173 #if !defined (BELIEVE_PCC_PROMOTION)
174 #define BELIEVE_PCC_PROMOTION 0
175 #endif
176
177 static void
178 invalid_cpp_abbrev_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "invalid C++ abbreviation `%s'", arg1);
181 }
182
183 static void
184 reg_value_complaint (int arg1, int arg2, const char *arg3)
185 {
186 complaint (&symfile_complaints,
187 "register number %d too large (max %d) in symbol %s", arg1, arg2,
188 arg3);
189 }
190
191 static void
192 stabs_general_complaint (const char *arg1)
193 {
194 complaint (&symfile_complaints, "%s", arg1);
195 }
196
197 static void
198 lrs_general_complaint (const char *arg1)
199 {
200 complaint (&symfile_complaints, "%s", arg1);
201 }
202
203 /* Make a list of forward references which haven't been defined. */
204
205 static struct type **undef_types;
206 static int undef_types_allocated;
207 static int undef_types_length;
208 static struct symbol *current_symbol = NULL;
209
210 /* Check for and handle cretinous stabs symbol name continuation! */
211 #define STABS_CONTINUE(pp,objfile) \
212 do { \
213 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
214 *(pp) = next_symbol_text (objfile); \
215 } while (0)
216 \f
217
218 /* Look up a dbx type-number pair. Return the address of the slot
219 where the type for that number-pair is stored.
220 The number-pair is in TYPENUMS.
221
222 This can be used for finding the type associated with that pair
223 or for associating a new type with the pair. */
224
225 static struct type **
226 dbx_lookup_type (int typenums[2])
227 {
228 int filenum = typenums[0];
229 int index = typenums[1];
230 unsigned old_len;
231 int real_filenum;
232 struct header_file *f;
233 int f_orig_length;
234
235 if (filenum == -1) /* -1,-1 is for temporary types. */
236 return 0;
237
238 if (filenum < 0 || filenum >= n_this_object_header_files)
239 {
240 complaint (&symfile_complaints,
241 "Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
242 filenum, index, symnum);
243 goto error_return;
244 }
245
246 if (filenum == 0)
247 {
248 if (index < 0)
249 {
250 /* Caller wants address of address of type. We think
251 that negative (rs6k builtin) types will never appear as
252 "lvalues", (nor should they), so we stuff the real type
253 pointer into a temp, and return its address. If referenced,
254 this will do the right thing. */
255 static struct type *temp_type;
256
257 temp_type = rs6000_builtin_type (index);
258 return &temp_type;
259 }
260
261 /* Type is defined outside of header files.
262 Find it in this object file's type vector. */
263 if (index >= type_vector_length)
264 {
265 old_len = type_vector_length;
266 if (old_len == 0)
267 {
268 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
269 type_vector = (struct type **)
270 xmalloc (type_vector_length * sizeof (struct type *));
271 }
272 while (index >= type_vector_length)
273 {
274 type_vector_length *= 2;
275 }
276 type_vector = (struct type **)
277 xrealloc ((char *) type_vector,
278 (type_vector_length * sizeof (struct type *)));
279 memset (&type_vector[old_len], 0,
280 (type_vector_length - old_len) * sizeof (struct type *));
281 }
282 return (&type_vector[index]);
283 }
284 else
285 {
286 real_filenum = this_object_header_files[filenum];
287
288 if (real_filenum >= N_HEADER_FILES (current_objfile))
289 {
290 struct type *temp_type;
291 struct type **temp_type_p;
292
293 warning ("GDB internal error: bad real_filenum");
294
295 error_return:
296 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
297 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
298 *temp_type_p = temp_type;
299 return temp_type_p;
300 }
301
302 f = HEADER_FILES (current_objfile) + real_filenum;
303
304 f_orig_length = f->length;
305 if (index >= f_orig_length)
306 {
307 while (index >= f->length)
308 {
309 f->length *= 2;
310 }
311 f->vector = (struct type **)
312 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
313 memset (&f->vector[f_orig_length], 0,
314 (f->length - f_orig_length) * sizeof (struct type *));
315 }
316 return (&f->vector[index]);
317 }
318 }
319
320 /* Make sure there is a type allocated for type numbers TYPENUMS
321 and return the type object.
322 This can create an empty (zeroed) type object.
323 TYPENUMS may be (-1, -1) to return a new type object that is not
324 put into the type vector, and so may not be referred to by number. */
325
326 static struct type *
327 dbx_alloc_type (int typenums[2], struct objfile *objfile)
328 {
329 struct type **type_addr;
330
331 if (typenums[0] == -1)
332 {
333 return (alloc_type (objfile));
334 }
335
336 type_addr = dbx_lookup_type (typenums);
337
338 /* If we are referring to a type not known at all yet,
339 allocate an empty type for it.
340 We will fill it in later if we find out how. */
341 if (*type_addr == 0)
342 {
343 *type_addr = alloc_type (objfile);
344 }
345
346 return (*type_addr);
347 }
348
349 /* for all the stabs in a given stab vector, build appropriate types
350 and fix their symbols in given symbol vector. */
351
352 static void
353 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
354 struct objfile *objfile)
355 {
356 int ii;
357 char *name;
358 char *pp;
359 struct symbol *sym;
360
361 if (stabs)
362 {
363
364 /* for all the stab entries, find their corresponding symbols and
365 patch their types! */
366
367 for (ii = 0; ii < stabs->count; ++ii)
368 {
369 name = stabs->stab[ii];
370 pp = (char *) strchr (name, ':');
371 while (pp[1] == ':')
372 {
373 pp += 2;
374 pp = (char *) strchr (pp, ':');
375 }
376 sym = find_symbol_in_list (symbols, name, pp - name);
377 if (!sym)
378 {
379 /* FIXME-maybe: it would be nice if we noticed whether
380 the variable was defined *anywhere*, not just whether
381 it is defined in this compilation unit. But neither
382 xlc or GCC seem to need such a definition, and until
383 we do psymtabs (so that the minimal symbols from all
384 compilation units are available now), I'm not sure
385 how to get the information. */
386
387 /* On xcoff, if a global is defined and never referenced,
388 ld will remove it from the executable. There is then
389 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
390 sym = (struct symbol *)
391 obstack_alloc (&objfile->symbol_obstack,
392 sizeof (struct symbol));
393
394 memset (sym, 0, sizeof (struct symbol));
395 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
396 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
397 DEPRECATED_SYMBOL_NAME (sym) =
398 obsavestring (name, pp - name, &objfile->symbol_obstack);
399 pp += 2;
400 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
401 {
402 /* I don't think the linker does this with functions,
403 so as far as I know this is never executed.
404 But it doesn't hurt to check. */
405 SYMBOL_TYPE (sym) =
406 lookup_function_type (read_type (&pp, objfile));
407 }
408 else
409 {
410 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
411 }
412 add_symbol_to_list (sym, &global_symbols);
413 }
414 else
415 {
416 pp += 2;
417 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
418 {
419 SYMBOL_TYPE (sym) =
420 lookup_function_type (read_type (&pp, objfile));
421 }
422 else
423 {
424 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
425 }
426 }
427 }
428 }
429 }
430 \f
431
432 /* Read a number by which a type is referred to in dbx data,
433 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
434 Just a single number N is equivalent to (0,N).
435 Return the two numbers by storing them in the vector TYPENUMS.
436 TYPENUMS will then be used as an argument to dbx_lookup_type.
437
438 Returns 0 for success, -1 for error. */
439
440 static int
441 read_type_number (char **pp, int *typenums)
442 {
443 int nbits;
444 if (**pp == '(')
445 {
446 (*pp)++;
447 typenums[0] = read_huge_number (pp, ',', &nbits);
448 if (nbits != 0)
449 return -1;
450 typenums[1] = read_huge_number (pp, ')', &nbits);
451 if (nbits != 0)
452 return -1;
453 }
454 else
455 {
456 typenums[0] = 0;
457 typenums[1] = read_huge_number (pp, 0, &nbits);
458 if (nbits != 0)
459 return -1;
460 }
461 return 0;
462 }
463 \f
464
465 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
466 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
467 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
468 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
469
470 /* Structure for storing pointers to reference definitions for fast lookup
471 during "process_later". */
472
473 struct ref_map
474 {
475 char *stabs;
476 CORE_ADDR value;
477 struct symbol *sym;
478 };
479
480 #define MAX_CHUNK_REFS 100
481 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
482 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
483
484 static struct ref_map *ref_map;
485
486 /* Ptr to free cell in chunk's linked list. */
487 static int ref_count = 0;
488
489 /* Number of chunks malloced. */
490 static int ref_chunk = 0;
491
492 /* This file maintains a cache of stabs aliases found in the symbol
493 table. If the symbol table changes, this cache must be cleared
494 or we are left holding onto data in invalid obstacks. */
495 void
496 stabsread_clear_cache (void)
497 {
498 ref_count = 0;
499 ref_chunk = 0;
500 }
501
502 /* Create array of pointers mapping refids to symbols and stab strings.
503 Add pointers to reference definition symbols and/or their values as we
504 find them, using their reference numbers as our index.
505 These will be used later when we resolve references. */
506 void
507 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
508 {
509 if (ref_count == 0)
510 ref_chunk = 0;
511 if (refnum >= ref_count)
512 ref_count = refnum + 1;
513 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
514 {
515 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
516 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
517 ref_map = (struct ref_map *)
518 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
519 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
520 ref_chunk += new_chunks;
521 }
522 ref_map[refnum].stabs = stabs;
523 ref_map[refnum].sym = sym;
524 ref_map[refnum].value = value;
525 }
526
527 /* Return defined sym for the reference REFNUM. */
528 struct symbol *
529 ref_search (int refnum)
530 {
531 if (refnum < 0 || refnum > ref_count)
532 return 0;
533 return ref_map[refnum].sym;
534 }
535
536 /* Return value for the reference REFNUM. */
537
538 static CORE_ADDR
539 ref_search_value (int refnum)
540 {
541 if (refnum < 0 || refnum > ref_count)
542 return 0;
543 return ref_map[refnum].value;
544 }
545
546 /* Parse a reference id in STRING and return the resulting
547 reference number. Move STRING beyond the reference id. */
548
549 static int
550 process_reference (char **string)
551 {
552 char *p;
553 int refnum = 0;
554
555 if (**string != '#')
556 return 0;
557
558 /* Advance beyond the initial '#'. */
559 p = *string + 1;
560
561 /* Read number as reference id. */
562 while (*p && isdigit (*p))
563 {
564 refnum = refnum * 10 + *p - '0';
565 p++;
566 }
567 *string = p;
568 return refnum;
569 }
570
571 /* If STRING defines a reference, store away a pointer to the reference
572 definition for later use. Return the reference number. */
573
574 int
575 symbol_reference_defined (char **string)
576 {
577 char *p = *string;
578 int refnum = 0;
579
580 refnum = process_reference (&p);
581
582 /* Defining symbols end in '=' */
583 if (*p == '=')
584 {
585 /* Symbol is being defined here. */
586 *string = p + 1;
587 return refnum;
588 }
589 else
590 {
591 /* Must be a reference. Either the symbol has already been defined,
592 or this is a forward reference to it. */
593 *string = p;
594 return -1;
595 }
596 }
597
598 struct symbol *
599 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
600 struct objfile *objfile)
601 {
602 struct symbol *sym;
603 char *p = (char *) find_name_end (string);
604 int deftype;
605 int synonym = 0;
606 int i;
607
608 /* We would like to eliminate nameless symbols, but keep their types.
609 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
610 to type 2, but, should not create a symbol to address that type. Since
611 the symbol will be nameless, there is no way any user can refer to it. */
612
613 int nameless;
614
615 /* Ignore syms with empty names. */
616 if (string[0] == 0)
617 return 0;
618
619 /* Ignore old-style symbols from cc -go */
620 if (p == 0)
621 return 0;
622
623 while (p[1] == ':')
624 {
625 p += 2;
626 p = strchr (p, ':');
627 }
628
629 /* If a nameless stab entry, all we need is the type, not the symbol.
630 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
631 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
632
633 current_symbol = sym = (struct symbol *)
634 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
635 memset (sym, 0, sizeof (struct symbol));
636
637 switch (type & N_TYPE)
638 {
639 case N_TEXT:
640 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
641 break;
642 case N_DATA:
643 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
644 break;
645 case N_BSS:
646 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
647 break;
648 }
649
650 if (processing_gcc_compilation)
651 {
652 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
653 number of bytes occupied by a type or object, which we ignore. */
654 SYMBOL_LINE (sym) = desc;
655 }
656 else
657 {
658 SYMBOL_LINE (sym) = 0; /* unknown */
659 }
660
661 if (is_cplus_marker (string[0]))
662 {
663 /* Special GNU C++ names. */
664 switch (string[1])
665 {
666 case 't':
667 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
668 &objfile->symbol_obstack);
669 break;
670
671 case 'v': /* $vtbl_ptr_type */
672 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
673 goto normal;
674
675 case 'e':
676 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
677 &objfile->symbol_obstack);
678 break;
679
680 case '_':
681 /* This was an anonymous type that was never fixed up. */
682 goto normal;
683
684 #ifdef STATIC_TRANSFORM_NAME
685 case 'X':
686 /* SunPRO (3.0 at least) static variable encoding. */
687 goto normal;
688 #endif
689
690 default:
691 complaint (&symfile_complaints, "Unknown C++ symbol name `%s'",
692 string);
693 goto normal; /* Do *something* with it */
694 }
695 }
696 else
697 {
698 normal:
699 SYMBOL_LANGUAGE (sym) = current_subfile->language;
700 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
701 }
702 p++;
703
704 /* Determine the type of name being defined. */
705 #if 0
706 /* Getting GDB to correctly skip the symbol on an undefined symbol
707 descriptor and not ever dump core is a very dodgy proposition if
708 we do things this way. I say the acorn RISC machine can just
709 fix their compiler. */
710 /* The Acorn RISC machine's compiler can put out locals that don't
711 start with "234=" or "(3,4)=", so assume anything other than the
712 deftypes we know how to handle is a local. */
713 if (!strchr ("cfFGpPrStTvVXCR", *p))
714 #else
715 if (isdigit (*p) || *p == '(' || *p == '-')
716 #endif
717 deftype = 'l';
718 else
719 deftype = *p++;
720
721 switch (deftype)
722 {
723 case 'c':
724 /* c is a special case, not followed by a type-number.
725 SYMBOL:c=iVALUE for an integer constant symbol.
726 SYMBOL:c=rVALUE for a floating constant symbol.
727 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
728 e.g. "b:c=e6,0" for "const b = blob1"
729 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
730 if (*p != '=')
731 {
732 SYMBOL_CLASS (sym) = LOC_CONST;
733 SYMBOL_TYPE (sym) = error_type (&p, objfile);
734 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
735 add_symbol_to_list (sym, &file_symbols);
736 return sym;
737 }
738 ++p;
739 switch (*p++)
740 {
741 case 'r':
742 {
743 double d = atof (p);
744 char *dbl_valu;
745
746 /* FIXME-if-picky-about-floating-accuracy: Should be using
747 target arithmetic to get the value. real.c in GCC
748 probably has the necessary code. */
749
750 /* FIXME: lookup_fundamental_type is a hack. We should be
751 creating a type especially for the type of float constants.
752 Problem is, what type should it be?
753
754 Also, what should the name of this type be? Should we
755 be using 'S' constants (see stabs.texinfo) instead? */
756
757 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
758 FT_DBL_PREC_FLOAT);
759 dbl_valu = (char *)
760 obstack_alloc (&objfile->symbol_obstack,
761 TYPE_LENGTH (SYMBOL_TYPE (sym)));
762 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
763 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
764 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
765 }
766 break;
767 case 'i':
768 {
769 /* Defining integer constants this way is kind of silly,
770 since 'e' constants allows the compiler to give not
771 only the value, but the type as well. C has at least
772 int, long, unsigned int, and long long as constant
773 types; other languages probably should have at least
774 unsigned as well as signed constants. */
775
776 /* We just need one int constant type for all objfiles.
777 It doesn't depend on languages or anything (arguably its
778 name should be a language-specific name for a type of
779 that size, but I'm inclined to say that if the compiler
780 wants a nice name for the type, it can use 'e'). */
781 static struct type *int_const_type;
782
783 /* Yes, this is as long as a *host* int. That is because we
784 use atoi. */
785 if (int_const_type == NULL)
786 int_const_type =
787 init_type (TYPE_CODE_INT,
788 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
789 "integer constant",
790 (struct objfile *) NULL);
791 SYMBOL_TYPE (sym) = int_const_type;
792 SYMBOL_VALUE (sym) = atoi (p);
793 SYMBOL_CLASS (sym) = LOC_CONST;
794 }
795 break;
796 case 'e':
797 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
798 can be represented as integral.
799 e.g. "b:c=e6,0" for "const b = blob1"
800 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
801 {
802 SYMBOL_CLASS (sym) = LOC_CONST;
803 SYMBOL_TYPE (sym) = read_type (&p, objfile);
804
805 if (*p != ',')
806 {
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
808 break;
809 }
810 ++p;
811
812 /* If the value is too big to fit in an int (perhaps because
813 it is unsigned), or something like that, we silently get
814 a bogus value. The type and everything else about it is
815 correct. Ideally, we should be using whatever we have
816 available for parsing unsigned and long long values,
817 however. */
818 SYMBOL_VALUE (sym) = atoi (p);
819 }
820 break;
821 default:
822 {
823 SYMBOL_CLASS (sym) = LOC_CONST;
824 SYMBOL_TYPE (sym) = error_type (&p, objfile);
825 }
826 }
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 return sym;
830
831 case 'C':
832 /* The name of a caught exception. */
833 SYMBOL_TYPE (sym) = read_type (&p, objfile);
834 SYMBOL_CLASS (sym) = LOC_LABEL;
835 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
836 SYMBOL_VALUE_ADDRESS (sym) = valu;
837 add_symbol_to_list (sym, &local_symbols);
838 break;
839
840 case 'f':
841 /* A static function definition. */
842 SYMBOL_TYPE (sym) = read_type (&p, objfile);
843 SYMBOL_CLASS (sym) = LOC_BLOCK;
844 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
845 add_symbol_to_list (sym, &file_symbols);
846 /* fall into process_function_types. */
847
848 process_function_types:
849 /* Function result types are described as the result type in stabs.
850 We need to convert this to the function-returning-type-X type
851 in GDB. E.g. "int" is converted to "function returning int". */
852 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
853 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
854
855 /* All functions in C++ have prototypes. Stabs does not offer an
856 explicit way to identify prototyped or unprototyped functions,
857 but both GCC and Sun CC emit stabs for the "call-as" type rather
858 than the "declared-as" type for unprototyped functions, so
859 we treat all functions as if they were prototyped. This is used
860 primarily for promotion when calling the function from GDB. */
861 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
862
863 /* fall into process_prototype_types */
864
865 process_prototype_types:
866 /* Sun acc puts declared types of arguments here. */
867 if (*p == ';')
868 {
869 struct type *ftype = SYMBOL_TYPE (sym);
870 int nsemi = 0;
871 int nparams = 0;
872 char *p1 = p;
873
874 /* Obtain a worst case guess for the number of arguments
875 by counting the semicolons. */
876 while (*p1)
877 {
878 if (*p1++ == ';')
879 nsemi++;
880 }
881
882 /* Allocate parameter information fields and fill them in. */
883 TYPE_FIELDS (ftype) = (struct field *)
884 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
885 while (*p++ == ';')
886 {
887 struct type *ptype;
888
889 /* A type number of zero indicates the start of varargs.
890 FIXME: GDB currently ignores vararg functions. */
891 if (p[0] == '0' && p[1] == '\0')
892 break;
893 ptype = read_type (&p, objfile);
894
895 /* The Sun compilers mark integer arguments, which should
896 be promoted to the width of the calling conventions, with
897 a type which references itself. This type is turned into
898 a TYPE_CODE_VOID type by read_type, and we have to turn
899 it back into builtin_type_int here.
900 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
901 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
902 ptype = builtin_type_int;
903 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
904 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
905 }
906 TYPE_NFIELDS (ftype) = nparams;
907 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
908 }
909 break;
910
911 case 'F':
912 /* A global function definition. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_BLOCK;
915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
916 add_symbol_to_list (sym, &global_symbols);
917 goto process_function_types;
918
919 case 'G':
920 /* For a class G (global) symbol, it appears that the
921 value is not correct. It is necessary to search for the
922 corresponding linker definition to find the value.
923 These definitions appear at the end of the namelist. */
924 SYMBOL_TYPE (sym) = read_type (&p, objfile);
925 SYMBOL_CLASS (sym) = LOC_STATIC;
926 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927 /* Don't add symbol references to global_sym_chain.
928 Symbol references don't have valid names and wont't match up with
929 minimal symbols when the global_sym_chain is relocated.
930 We'll fixup symbol references when we fixup the defining symbol. */
931 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
932 {
933 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
934 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
935 global_sym_chain[i] = sym;
936 }
937 add_symbol_to_list (sym, &global_symbols);
938 break;
939
940 /* This case is faked by a conditional above,
941 when there is no code letter in the dbx data.
942 Dbx data never actually contains 'l'. */
943 case 's':
944 case 'l':
945 SYMBOL_TYPE (sym) = read_type (&p, objfile);
946 SYMBOL_CLASS (sym) = LOC_LOCAL;
947 SYMBOL_VALUE (sym) = valu;
948 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
949 add_symbol_to_list (sym, &local_symbols);
950 break;
951
952 case 'p':
953 if (*p == 'F')
954 /* pF is a two-letter code that means a function parameter in Fortran.
955 The type-number specifies the type of the return value.
956 Translate it into a pointer-to-function type. */
957 {
958 p++;
959 SYMBOL_TYPE (sym)
960 = lookup_pointer_type
961 (lookup_function_type (read_type (&p, objfile)));
962 }
963 else
964 SYMBOL_TYPE (sym) = read_type (&p, objfile);
965
966 SYMBOL_CLASS (sym) = LOC_ARG;
967 SYMBOL_VALUE (sym) = valu;
968 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
969 add_symbol_to_list (sym, &local_symbols);
970
971 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
972 {
973 /* On little-endian machines, this crud is never necessary,
974 and, if the extra bytes contain garbage, is harmful. */
975 break;
976 }
977
978 /* If it's gcc-compiled, if it says `short', believe it. */
979 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
980 break;
981
982 if (!BELIEVE_PCC_PROMOTION)
983 {
984 /* This is the signed type which arguments get promoted to. */
985 static struct type *pcc_promotion_type;
986 /* This is the unsigned type which arguments get promoted to. */
987 static struct type *pcc_unsigned_promotion_type;
988
989 /* Call it "int" because this is mainly C lossage. */
990 if (pcc_promotion_type == NULL)
991 pcc_promotion_type =
992 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
993 0, "int", NULL);
994
995 if (pcc_unsigned_promotion_type == NULL)
996 pcc_unsigned_promotion_type =
997 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
998 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
999
1000 if (BELIEVE_PCC_PROMOTION_TYPE)
1001 {
1002 /* This is defined on machines (e.g. sparc) where we
1003 should believe the type of a PCC 'short' argument,
1004 but shouldn't believe the address (the address is the
1005 address of the corresponding int).
1006
1007 My guess is that this correction, as opposed to
1008 changing the parameter to an 'int' (as done below,
1009 for PCC on most machines), is the right thing to do
1010 on all machines, but I don't want to risk breaking
1011 something that already works. On most PCC machines,
1012 the sparc problem doesn't come up because the calling
1013 function has to zero the top bytes (not knowing
1014 whether the called function wants an int or a short),
1015 so there is little practical difference between an
1016 int and a short (except perhaps what happens when the
1017 GDB user types "print short_arg = 0x10000;").
1018
1019 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1020 compiler actually produces the correct address (we
1021 don't need to fix it up). I made this code adapt so
1022 that it will offset the symbol if it was pointing at
1023 an int-aligned location and not otherwise. This way
1024 you can use the same gdb for 4.0.x and 4.1 systems.
1025
1026 If the parameter is shorter than an int, and is
1027 integral (e.g. char, short, or unsigned equivalent),
1028 and is claimed to be passed on an integer boundary,
1029 don't believe it! Offset the parameter's address to
1030 the tail-end of that integer. */
1031
1032 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1033 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1034 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1035 {
1036 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1037 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1038 }
1039 break;
1040 }
1041 else
1042 {
1043 /* If PCC says a parameter is a short or a char,
1044 it is really an int. */
1045 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1046 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1047 {
1048 SYMBOL_TYPE (sym) =
1049 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1050 ? pcc_unsigned_promotion_type
1051 : pcc_promotion_type;
1052 }
1053 break;
1054 }
1055 }
1056
1057 case 'P':
1058 /* acc seems to use P to declare the prototypes of functions that
1059 are referenced by this file. gdb is not prepared to deal
1060 with this extra information. FIXME, it ought to. */
1061 if (type == N_FUN)
1062 {
1063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1064 goto process_prototype_types;
1065 }
1066 /*FALLTHROUGH */
1067
1068 case 'R':
1069 /* Parameter which is in a register. */
1070 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1071 SYMBOL_CLASS (sym) = LOC_REGPARM;
1072 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1073 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1074 {
1075 reg_value_complaint (SYMBOL_VALUE (sym),
1076 NUM_REGS + NUM_PSEUDO_REGS,
1077 SYMBOL_PRINT_NAME (sym));
1078 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1079 }
1080 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1081 add_symbol_to_list (sym, &local_symbols);
1082 break;
1083
1084 case 'r':
1085 /* Register variable (either global or local). */
1086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1087 SYMBOL_CLASS (sym) = LOC_REGISTER;
1088 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1089 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1090 {
1091 reg_value_complaint (SYMBOL_VALUE (sym),
1092 NUM_REGS + NUM_PSEUDO_REGS,
1093 SYMBOL_PRINT_NAME (sym));
1094 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1095 }
1096 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1097 if (within_function)
1098 {
1099 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1100 the same name to represent an argument passed in a
1101 register. GCC uses 'P' for the same case. So if we find
1102 such a symbol pair we combine it into one 'P' symbol.
1103 For Sun cc we need to do this regardless of
1104 stabs_argument_has_addr, because the compiler puts out
1105 the 'p' symbol even if it never saves the argument onto
1106 the stack.
1107
1108 On most machines, we want to preserve both symbols, so
1109 that we can still get information about what is going on
1110 with the stack (VAX for computing args_printed, using
1111 stack slots instead of saved registers in backtraces,
1112 etc.).
1113
1114 Note that this code illegally combines
1115 main(argc) struct foo argc; { register struct foo argc; }
1116 but this case is considered pathological and causes a warning
1117 from a decent compiler. */
1118
1119 if (local_symbols
1120 && local_symbols->nsyms > 0
1121 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1122 SYMBOL_TYPE (sym)))
1123 {
1124 struct symbol *prev_sym;
1125 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1126 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1127 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1128 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1129 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1130 {
1131 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1132 /* Use the type from the LOC_REGISTER; that is the type
1133 that is actually in that register. */
1134 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1135 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1136 sym = prev_sym;
1137 break;
1138 }
1139 }
1140 add_symbol_to_list (sym, &local_symbols);
1141 }
1142 else
1143 add_symbol_to_list (sym, &file_symbols);
1144 break;
1145
1146 case 'S':
1147 /* Static symbol at top level of file */
1148 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1149 SYMBOL_CLASS (sym) = LOC_STATIC;
1150 SYMBOL_VALUE_ADDRESS (sym) = valu;
1151 #ifdef STATIC_TRANSFORM_NAME
1152 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1153 {
1154 struct minimal_symbol *msym;
1155 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1156 if (msym != NULL)
1157 {
1158 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1159 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1160 }
1161 }
1162 #endif
1163 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1164 add_symbol_to_list (sym, &file_symbols);
1165 break;
1166
1167 case 't':
1168 /* Typedef */
1169 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1170
1171 /* For a nameless type, we don't want a create a symbol, thus we
1172 did not use `sym'. Return without further processing. */
1173 if (nameless)
1174 return NULL;
1175
1176 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1177 SYMBOL_VALUE (sym) = valu;
1178 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1179 /* C++ vagaries: we may have a type which is derived from
1180 a base type which did not have its name defined when the
1181 derived class was output. We fill in the derived class's
1182 base part member's name here in that case. */
1183 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1184 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1185 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1186 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1187 {
1188 int j;
1189 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1190 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1191 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1192 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1193 }
1194
1195 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1196 {
1197 /* gcc-2.6 or later (when using -fvtable-thunks)
1198 emits a unique named type for a vtable entry.
1199 Some gdb code depends on that specific name. */
1200 extern const char vtbl_ptr_name[];
1201
1202 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1203 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1204 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1205 {
1206 /* If we are giving a name to a type such as "pointer to
1207 foo" or "function returning foo", we better not set
1208 the TYPE_NAME. If the program contains "typedef char
1209 *caddr_t;", we don't want all variables of type char
1210 * to print as caddr_t. This is not just a
1211 consequence of GDB's type management; PCC and GCC (at
1212 least through version 2.4) both output variables of
1213 either type char * or caddr_t with the type number
1214 defined in the 't' symbol for caddr_t. If a future
1215 compiler cleans this up it GDB is not ready for it
1216 yet, but if it becomes ready we somehow need to
1217 disable this check (without breaking the PCC/GCC2.4
1218 case).
1219
1220 Sigh.
1221
1222 Fortunately, this check seems not to be necessary
1223 for anything except pointers or functions. */
1224 /* ezannoni: 2000-10-26. This seems to apply for
1225 versions of gcc older than 2.8. This was the original
1226 problem: with the following code gdb would tell that
1227 the type for name1 is caddr_t, and func is char()
1228 typedef char *caddr_t;
1229 char *name2;
1230 struct x
1231 {
1232 char *name1;
1233 } xx;
1234 char *func()
1235 {
1236 }
1237 main () {}
1238 */
1239
1240 /* Pascal accepts names for pointer types. */
1241 if (current_subfile->language == language_pascal)
1242 {
1243 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1244 }
1245 }
1246 else
1247 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1248 }
1249
1250 add_symbol_to_list (sym, &file_symbols);
1251 break;
1252
1253 case 'T':
1254 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1255 by 't' which means we are typedef'ing it as well. */
1256 synonym = *p == 't';
1257
1258 if (synonym)
1259 p++;
1260
1261 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1262
1263 /* For a nameless type, we don't want a create a symbol, thus we
1264 did not use `sym'. Return without further processing. */
1265 if (nameless)
1266 return NULL;
1267
1268 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1269 SYMBOL_VALUE (sym) = valu;
1270 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1271 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1272 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1273 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1274 add_symbol_to_list (sym, &file_symbols);
1275
1276 if (synonym)
1277 {
1278 /* Clone the sym and then modify it. */
1279 struct symbol *typedef_sym = (struct symbol *)
1280 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1281 *typedef_sym = *sym;
1282 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1283 SYMBOL_VALUE (typedef_sym) = valu;
1284 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1285 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1286 TYPE_NAME (SYMBOL_TYPE (sym))
1287 = obconcat (&objfile->type_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1288 add_symbol_to_list (typedef_sym, &file_symbols);
1289 }
1290 break;
1291
1292 case 'V':
1293 /* Static symbol of local scope */
1294 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1295 SYMBOL_CLASS (sym) = LOC_STATIC;
1296 SYMBOL_VALUE_ADDRESS (sym) = valu;
1297 #ifdef STATIC_TRANSFORM_NAME
1298 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1299 {
1300 struct minimal_symbol *msym;
1301 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1302 if (msym != NULL)
1303 {
1304 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1305 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1306 }
1307 }
1308 #endif
1309 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1310 add_symbol_to_list (sym, &local_symbols);
1311 break;
1312
1313 case 'v':
1314 /* Reference parameter */
1315 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1316 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1317 SYMBOL_VALUE (sym) = valu;
1318 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1319 add_symbol_to_list (sym, &local_symbols);
1320 break;
1321
1322 case 'a':
1323 /* Reference parameter which is in a register. */
1324 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1325 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1326 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1327 if (SYMBOL_VALUE (sym) >= NUM_REGS + NUM_PSEUDO_REGS)
1328 {
1329 reg_value_complaint (SYMBOL_VALUE (sym),
1330 NUM_REGS + NUM_PSEUDO_REGS,
1331 SYMBOL_PRINT_NAME (sym));
1332 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1333 }
1334 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1335 add_symbol_to_list (sym, &local_symbols);
1336 break;
1337
1338 case 'X':
1339 /* This is used by Sun FORTRAN for "function result value".
1340 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1341 that Pascal uses it too, but when I tried it Pascal used
1342 "x:3" (local symbol) instead. */
1343 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1344 SYMBOL_CLASS (sym) = LOC_LOCAL;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1347 add_symbol_to_list (sym, &local_symbols);
1348 break;
1349
1350 default:
1351 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1352 SYMBOL_CLASS (sym) = LOC_CONST;
1353 SYMBOL_VALUE (sym) = 0;
1354 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1355 add_symbol_to_list (sym, &file_symbols);
1356 break;
1357 }
1358
1359 /* Some systems pass variables of certain types by reference instead
1360 of by value, i.e. they will pass the address of a structure (in a
1361 register or on the stack) instead of the structure itself. */
1362
1363 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1364 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1365 {
1366 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1367 variables passed in a register). */
1368 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1369 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1370 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1371 and subsequent arguments on SPARC, for example). */
1372 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1373 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1374 }
1375
1376 return sym;
1377 }
1378
1379 /* Skip rest of this symbol and return an error type.
1380
1381 General notes on error recovery: error_type always skips to the
1382 end of the symbol (modulo cretinous dbx symbol name continuation).
1383 Thus code like this:
1384
1385 if (*(*pp)++ != ';')
1386 return error_type (pp, objfile);
1387
1388 is wrong because if *pp starts out pointing at '\0' (typically as the
1389 result of an earlier error), it will be incremented to point to the
1390 start of the next symbol, which might produce strange results, at least
1391 if you run off the end of the string table. Instead use
1392
1393 if (**pp != ';')
1394 return error_type (pp, objfile);
1395 ++*pp;
1396
1397 or
1398
1399 if (**pp != ';')
1400 foo = error_type (pp, objfile);
1401 else
1402 ++*pp;
1403
1404 And in case it isn't obvious, the point of all this hair is so the compiler
1405 can define new types and new syntaxes, and old versions of the
1406 debugger will be able to read the new symbol tables. */
1407
1408 static struct type *
1409 error_type (char **pp, struct objfile *objfile)
1410 {
1411 complaint (&symfile_complaints, "couldn't parse type; debugger out of date?");
1412 while (1)
1413 {
1414 /* Skip to end of symbol. */
1415 while (**pp != '\0')
1416 {
1417 (*pp)++;
1418 }
1419
1420 /* Check for and handle cretinous dbx symbol name continuation! */
1421 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1422 {
1423 *pp = next_symbol_text (objfile);
1424 }
1425 else
1426 {
1427 break;
1428 }
1429 }
1430 return (builtin_type_error);
1431 }
1432 \f
1433
1434 /* Read type information or a type definition; return the type. Even
1435 though this routine accepts either type information or a type
1436 definition, the distinction is relevant--some parts of stabsread.c
1437 assume that type information starts with a digit, '-', or '(' in
1438 deciding whether to call read_type. */
1439
1440 static struct type *
1441 read_type (char **pp, struct objfile *objfile)
1442 {
1443 struct type *type = 0;
1444 struct type *type1;
1445 int typenums[2];
1446 char type_descriptor;
1447
1448 /* Size in bits of type if specified by a type attribute, or -1 if
1449 there is no size attribute. */
1450 int type_size = -1;
1451
1452 /* Used to distinguish string and bitstring from char-array and set. */
1453 int is_string = 0;
1454
1455 /* Used to distinguish vector from array. */
1456 int is_vector = 0;
1457
1458 /* Read type number if present. The type number may be omitted.
1459 for instance in a two-dimensional array declared with type
1460 "ar1;1;10;ar1;1;10;4". */
1461 if ((**pp >= '0' && **pp <= '9')
1462 || **pp == '('
1463 || **pp == '-')
1464 {
1465 if (read_type_number (pp, typenums) != 0)
1466 return error_type (pp, objfile);
1467
1468 /* Type is not being defined here. Either it already exists,
1469 or this is a forward reference to it. dbx_alloc_type handles
1470 both cases. */
1471 if (**pp != '=')
1472 return dbx_alloc_type (typenums, objfile);
1473
1474 /* Type is being defined here. */
1475 /* Skip the '='.
1476 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1477 (*pp) += 2;
1478 }
1479 else
1480 {
1481 /* 'typenums=' not present, type is anonymous. Read and return
1482 the definition, but don't put it in the type vector. */
1483 typenums[0] = typenums[1] = -1;
1484 (*pp)++;
1485 }
1486
1487 again:
1488 type_descriptor = (*pp)[-1];
1489 switch (type_descriptor)
1490 {
1491 case 'x':
1492 {
1493 enum type_code code;
1494
1495 /* Used to index through file_symbols. */
1496 struct pending *ppt;
1497 int i;
1498
1499 /* Name including "struct", etc. */
1500 char *type_name;
1501
1502 {
1503 char *from, *to, *p, *q1, *q2;
1504
1505 /* Set the type code according to the following letter. */
1506 switch ((*pp)[0])
1507 {
1508 case 's':
1509 code = TYPE_CODE_STRUCT;
1510 break;
1511 case 'u':
1512 code = TYPE_CODE_UNION;
1513 break;
1514 case 'e':
1515 code = TYPE_CODE_ENUM;
1516 break;
1517 default:
1518 {
1519 /* Complain and keep going, so compilers can invent new
1520 cross-reference types. */
1521 complaint (&symfile_complaints,
1522 "Unrecognized cross-reference type `%c'", (*pp)[0]);
1523 code = TYPE_CODE_STRUCT;
1524 break;
1525 }
1526 }
1527
1528 q1 = strchr (*pp, '<');
1529 p = strchr (*pp, ':');
1530 if (p == NULL)
1531 return error_type (pp, objfile);
1532 if (q1 && p > q1 && p[1] == ':')
1533 {
1534 int nesting_level = 0;
1535 for (q2 = q1; *q2; q2++)
1536 {
1537 if (*q2 == '<')
1538 nesting_level++;
1539 else if (*q2 == '>')
1540 nesting_level--;
1541 else if (*q2 == ':' && nesting_level == 0)
1542 break;
1543 }
1544 p = q2;
1545 if (*p != ':')
1546 return error_type (pp, objfile);
1547 }
1548 to = type_name =
1549 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1550
1551 /* Copy the name. */
1552 from = *pp + 1;
1553 while (from < p)
1554 *to++ = *from++;
1555 *to = '\0';
1556
1557 /* Set the pointer ahead of the name which we just read, and
1558 the colon. */
1559 *pp = from + 1;
1560 }
1561
1562 /* If this type has already been declared, then reuse the same
1563 type, rather than allocating a new one. This saves some
1564 memory. */
1565
1566 for (ppt = file_symbols; ppt; ppt = ppt->next)
1567 for (i = 0; i < ppt->nsyms; i++)
1568 {
1569 struct symbol *sym = ppt->symbol[i];
1570
1571 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1572 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1573 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1574 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1575 {
1576 obstack_free (&objfile->type_obstack, type_name);
1577 type = SYMBOL_TYPE (sym);
1578 if (typenums[0] != -1)
1579 *dbx_lookup_type (typenums) = type;
1580 return type;
1581 }
1582 }
1583
1584 /* Didn't find the type to which this refers, so we must
1585 be dealing with a forward reference. Allocate a type
1586 structure for it, and keep track of it so we can
1587 fill in the rest of the fields when we get the full
1588 type. */
1589 type = dbx_alloc_type (typenums, objfile);
1590 TYPE_CODE (type) = code;
1591 TYPE_TAG_NAME (type) = type_name;
1592 INIT_CPLUS_SPECIFIC (type);
1593 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1594
1595 add_undefined_type (type);
1596 return type;
1597 }
1598
1599 case '-': /* RS/6000 built-in type */
1600 case '0':
1601 case '1':
1602 case '2':
1603 case '3':
1604 case '4':
1605 case '5':
1606 case '6':
1607 case '7':
1608 case '8':
1609 case '9':
1610 case '(':
1611 (*pp)--;
1612
1613 /* We deal with something like t(1,2)=(3,4)=... which
1614 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1615
1616 /* Allocate and enter the typedef type first.
1617 This handles recursive types. */
1618 type = dbx_alloc_type (typenums, objfile);
1619 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1620 {
1621 struct type *xtype = read_type (pp, objfile);
1622 if (type == xtype)
1623 {
1624 /* It's being defined as itself. That means it is "void". */
1625 TYPE_CODE (type) = TYPE_CODE_VOID;
1626 TYPE_LENGTH (type) = 1;
1627 }
1628 else if (type_size >= 0 || is_string)
1629 {
1630 /* This is the absolute wrong way to construct types. Every
1631 other debug format has found a way around this problem and
1632 the related problems with unnecessarily stubbed types;
1633 someone motivated should attempt to clean up the issue
1634 here as well. Once a type pointed to has been created it
1635 should not be modified.
1636
1637 Well, it's not *absolutely* wrong. Constructing recursive
1638 types (trees, linked lists) necessarily entails modifying
1639 types after creating them. Constructing any loop structure
1640 entails side effects. The Dwarf 2 reader does handle this
1641 more gracefully (it never constructs more than once
1642 instance of a type object, so it doesn't have to copy type
1643 objects wholesale), but it still mutates type objects after
1644 other folks have references to them.
1645
1646 Keep in mind that this circularity/mutation issue shows up
1647 at the source language level, too: C's "incomplete types",
1648 for example. So the proper cleanup, I think, would be to
1649 limit GDB's type smashing to match exactly those required
1650 by the source language. So GDB could have a
1651 "complete_this_type" function, but never create unnecessary
1652 copies of a type otherwise. */
1653 replace_type (type, xtype);
1654 TYPE_NAME (type) = NULL;
1655 TYPE_TAG_NAME (type) = NULL;
1656 }
1657 else
1658 {
1659 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1660 TYPE_TARGET_TYPE (type) = xtype;
1661 }
1662 }
1663 break;
1664
1665 /* In the following types, we must be sure to overwrite any existing
1666 type that the typenums refer to, rather than allocating a new one
1667 and making the typenums point to the new one. This is because there
1668 may already be pointers to the existing type (if it had been
1669 forward-referenced), and we must change it to a pointer, function,
1670 reference, or whatever, *in-place*. */
1671
1672 case '*': /* Pointer to another type */
1673 type1 = read_type (pp, objfile);
1674 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1675 break;
1676
1677 case '&': /* Reference to another type */
1678 type1 = read_type (pp, objfile);
1679 type = make_reference_type (type1, dbx_lookup_type (typenums));
1680 break;
1681
1682 case 'f': /* Function returning another type */
1683 type1 = read_type (pp, objfile);
1684 type = make_function_type (type1, dbx_lookup_type (typenums));
1685 break;
1686
1687 case 'g': /* Prototyped function. (Sun) */
1688 {
1689 /* Unresolved questions:
1690
1691 - According to Sun's ``STABS Interface Manual'', for 'f'
1692 and 'F' symbol descriptors, a `0' in the argument type list
1693 indicates a varargs function. But it doesn't say how 'g'
1694 type descriptors represent that info. Someone with access
1695 to Sun's toolchain should try it out.
1696
1697 - According to the comment in define_symbol (search for
1698 `process_prototype_types:'), Sun emits integer arguments as
1699 types which ref themselves --- like `void' types. Do we
1700 have to deal with that here, too? Again, someone with
1701 access to Sun's toolchain should try it out and let us
1702 know. */
1703
1704 const char *type_start = (*pp) - 1;
1705 struct type *return_type = read_type (pp, objfile);
1706 struct type *func_type
1707 = make_function_type (return_type, dbx_lookup_type (typenums));
1708 struct type_list {
1709 struct type *type;
1710 struct type_list *next;
1711 } *arg_types = 0;
1712 int num_args = 0;
1713
1714 while (**pp && **pp != '#')
1715 {
1716 struct type *arg_type = read_type (pp, objfile);
1717 struct type_list *new = alloca (sizeof (*new));
1718 new->type = arg_type;
1719 new->next = arg_types;
1720 arg_types = new;
1721 num_args++;
1722 }
1723 if (**pp == '#')
1724 ++*pp;
1725 else
1726 {
1727 complaint (&symfile_complaints,
1728 "Prototyped function type didn't end arguments with `#':\n%s",
1729 type_start);
1730 }
1731
1732 /* If there is just one argument whose type is `void', then
1733 that's just an empty argument list. */
1734 if (arg_types
1735 && ! arg_types->next
1736 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1737 num_args = 0;
1738
1739 TYPE_FIELDS (func_type)
1740 = (struct field *) TYPE_ALLOC (func_type,
1741 num_args * sizeof (struct field));
1742 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1743 {
1744 int i;
1745 struct type_list *t;
1746
1747 /* We stuck each argument type onto the front of the list
1748 when we read it, so the list is reversed. Build the
1749 fields array right-to-left. */
1750 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1751 TYPE_FIELD_TYPE (func_type, i) = t->type;
1752 }
1753 TYPE_NFIELDS (func_type) = num_args;
1754 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1755
1756 type = func_type;
1757 break;
1758 }
1759
1760 case 'k': /* Const qualifier on some type (Sun) */
1761 type = read_type (pp, objfile);
1762 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1763 dbx_lookup_type (typenums));
1764 break;
1765
1766 case 'B': /* Volatile qual on some type (Sun) */
1767 type = read_type (pp, objfile);
1768 type = make_cv_type (TYPE_CONST (type), 1, type,
1769 dbx_lookup_type (typenums));
1770 break;
1771
1772 case '@':
1773 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1774 { /* Member (class & variable) type */
1775 /* FIXME -- we should be doing smash_to_XXX types here. */
1776
1777 struct type *domain = read_type (pp, objfile);
1778 struct type *memtype;
1779
1780 if (**pp != ',')
1781 /* Invalid member type data format. */
1782 return error_type (pp, objfile);
1783 ++*pp;
1784
1785 memtype = read_type (pp, objfile);
1786 type = dbx_alloc_type (typenums, objfile);
1787 smash_to_member_type (type, domain, memtype);
1788 }
1789 else
1790 /* type attribute */
1791 {
1792 char *attr = *pp;
1793 /* Skip to the semicolon. */
1794 while (**pp != ';' && **pp != '\0')
1795 ++(*pp);
1796 if (**pp == '\0')
1797 return error_type (pp, objfile);
1798 else
1799 ++ * pp; /* Skip the semicolon. */
1800
1801 switch (*attr)
1802 {
1803 case 's': /* Size attribute */
1804 type_size = atoi (attr + 1);
1805 if (type_size <= 0)
1806 type_size = -1;
1807 break;
1808
1809 case 'S': /* String attribute */
1810 /* FIXME: check to see if following type is array? */
1811 is_string = 1;
1812 break;
1813
1814 case 'V': /* Vector attribute */
1815 /* FIXME: check to see if following type is array? */
1816 is_vector = 1;
1817 break;
1818
1819 default:
1820 /* Ignore unrecognized type attributes, so future compilers
1821 can invent new ones. */
1822 break;
1823 }
1824 ++*pp;
1825 goto again;
1826 }
1827 break;
1828
1829 case '#': /* Method (class & fn) type */
1830 if ((*pp)[0] == '#')
1831 {
1832 /* We'll get the parameter types from the name. */
1833 struct type *return_type;
1834
1835 (*pp)++;
1836 return_type = read_type (pp, objfile);
1837 if (*(*pp)++ != ';')
1838 complaint (&symfile_complaints,
1839 "invalid (minimal) member type data format at symtab pos %d.",
1840 symnum);
1841 type = allocate_stub_method (return_type);
1842 if (typenums[0] != -1)
1843 *dbx_lookup_type (typenums) = type;
1844 }
1845 else
1846 {
1847 struct type *domain = read_type (pp, objfile);
1848 struct type *return_type;
1849 struct field *args;
1850 int nargs, varargs;
1851
1852 if (**pp != ',')
1853 /* Invalid member type data format. */
1854 return error_type (pp, objfile);
1855 else
1856 ++(*pp);
1857
1858 return_type = read_type (pp, objfile);
1859 args = read_args (pp, ';', objfile, &nargs, &varargs);
1860 type = dbx_alloc_type (typenums, objfile);
1861 smash_to_method_type (type, domain, return_type, args,
1862 nargs, varargs);
1863 }
1864 break;
1865
1866 case 'r': /* Range type */
1867 type = read_range_type (pp, typenums, objfile);
1868 if (typenums[0] != -1)
1869 *dbx_lookup_type (typenums) = type;
1870 break;
1871
1872 case 'b':
1873 {
1874 /* Sun ACC builtin int type */
1875 type = read_sun_builtin_type (pp, typenums, objfile);
1876 if (typenums[0] != -1)
1877 *dbx_lookup_type (typenums) = type;
1878 }
1879 break;
1880
1881 case 'R': /* Sun ACC builtin float type */
1882 type = read_sun_floating_type (pp, typenums, objfile);
1883 if (typenums[0] != -1)
1884 *dbx_lookup_type (typenums) = type;
1885 break;
1886
1887 case 'e': /* Enumeration type */
1888 type = dbx_alloc_type (typenums, objfile);
1889 type = read_enum_type (pp, type, objfile);
1890 if (typenums[0] != -1)
1891 *dbx_lookup_type (typenums) = type;
1892 break;
1893
1894 case 's': /* Struct type */
1895 case 'u': /* Union type */
1896 {
1897 enum type_code type_code = TYPE_CODE_UNDEF;
1898 type = dbx_alloc_type (typenums, objfile);
1899 switch (type_descriptor)
1900 {
1901 case 's':
1902 type_code = TYPE_CODE_STRUCT;
1903 break;
1904 case 'u':
1905 type_code = TYPE_CODE_UNION;
1906 break;
1907 }
1908 type = read_struct_type (pp, type, type_code, objfile);
1909 break;
1910 }
1911
1912 case 'a': /* Array type */
1913 if (**pp != 'r')
1914 return error_type (pp, objfile);
1915 ++*pp;
1916
1917 type = dbx_alloc_type (typenums, objfile);
1918 type = read_array_type (pp, type, objfile);
1919 if (is_string)
1920 TYPE_CODE (type) = TYPE_CODE_STRING;
1921 if (is_vector)
1922 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1923 break;
1924
1925 case 'S': /* Set or bitstring type */
1926 type1 = read_type (pp, objfile);
1927 type = create_set_type ((struct type *) NULL, type1);
1928 if (is_string)
1929 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1930 if (typenums[0] != -1)
1931 *dbx_lookup_type (typenums) = type;
1932 break;
1933
1934 default:
1935 --*pp; /* Go back to the symbol in error */
1936 /* Particularly important if it was \0! */
1937 return error_type (pp, objfile);
1938 }
1939
1940 if (type == 0)
1941 {
1942 warning ("GDB internal error, type is NULL in stabsread.c\n");
1943 return error_type (pp, objfile);
1944 }
1945
1946 /* Size specified in a type attribute overrides any other size. */
1947 if (type_size != -1)
1948 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1949
1950 return type;
1951 }
1952 \f
1953 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1954 Return the proper type node for a given builtin type number. */
1955
1956 static struct type *
1957 rs6000_builtin_type (int typenum)
1958 {
1959 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1960 #define NUMBER_RECOGNIZED 34
1961 /* This includes an empty slot for type number -0. */
1962 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1963 struct type *rettype = NULL;
1964
1965 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1966 {
1967 complaint (&symfile_complaints, "Unknown builtin type %d", typenum);
1968 return builtin_type_error;
1969 }
1970 if (negative_types[-typenum] != NULL)
1971 return negative_types[-typenum];
1972
1973 #if TARGET_CHAR_BIT != 8
1974 #error This code wrong for TARGET_CHAR_BIT not 8
1975 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1976 that if that ever becomes not true, the correct fix will be to
1977 make the size in the struct type to be in bits, not in units of
1978 TARGET_CHAR_BIT. */
1979 #endif
1980
1981 switch (-typenum)
1982 {
1983 case 1:
1984 /* The size of this and all the other types are fixed, defined
1985 by the debugging format. If there is a type called "int" which
1986 is other than 32 bits, then it should use a new negative type
1987 number (or avoid negative type numbers for that case).
1988 See stabs.texinfo. */
1989 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1990 break;
1991 case 2:
1992 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1993 break;
1994 case 3:
1995 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1996 break;
1997 case 4:
1998 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1999 break;
2000 case 5:
2001 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2002 "unsigned char", NULL);
2003 break;
2004 case 6:
2005 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2006 break;
2007 case 7:
2008 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2009 "unsigned short", NULL);
2010 break;
2011 case 8:
2012 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2013 "unsigned int", NULL);
2014 break;
2015 case 9:
2016 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2017 "unsigned", NULL);
2018 case 10:
2019 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2020 "unsigned long", NULL);
2021 break;
2022 case 11:
2023 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2024 break;
2025 case 12:
2026 /* IEEE single precision (32 bit). */
2027 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2028 break;
2029 case 13:
2030 /* IEEE double precision (64 bit). */
2031 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2032 break;
2033 case 14:
2034 /* This is an IEEE double on the RS/6000, and different machines with
2035 different sizes for "long double" should use different negative
2036 type numbers. See stabs.texinfo. */
2037 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2038 break;
2039 case 15:
2040 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2041 break;
2042 case 16:
2043 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2044 "boolean", NULL);
2045 break;
2046 case 17:
2047 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2048 break;
2049 case 18:
2050 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2051 break;
2052 case 19:
2053 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2054 break;
2055 case 20:
2056 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2057 "character", NULL);
2058 break;
2059 case 21:
2060 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2061 "logical*1", NULL);
2062 break;
2063 case 22:
2064 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2065 "logical*2", NULL);
2066 break;
2067 case 23:
2068 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2069 "logical*4", NULL);
2070 break;
2071 case 24:
2072 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2073 "logical", NULL);
2074 break;
2075 case 25:
2076 /* Complex type consisting of two IEEE single precision values. */
2077 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2078 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2079 NULL);
2080 break;
2081 case 26:
2082 /* Complex type consisting of two IEEE double precision values. */
2083 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2084 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2085 NULL);
2086 break;
2087 case 27:
2088 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2089 break;
2090 case 28:
2091 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2092 break;
2093 case 29:
2094 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2095 break;
2096 case 30:
2097 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2098 break;
2099 case 31:
2100 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2101 break;
2102 case 32:
2103 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2104 "unsigned long long", NULL);
2105 break;
2106 case 33:
2107 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2108 "logical*8", NULL);
2109 break;
2110 case 34:
2111 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2112 break;
2113 }
2114 negative_types[-typenum] = rettype;
2115 return rettype;
2116 }
2117 \f
2118 /* This page contains subroutines of read_type. */
2119
2120 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2121
2122 static void
2123 update_method_name_from_physname (char **old_name, char *physname)
2124 {
2125 char *method_name;
2126
2127 method_name = method_name_from_physname (physname);
2128
2129 if (method_name == NULL)
2130 {
2131 complaint (&symfile_complaints,
2132 "Method has bad physname %s\n", physname);
2133 return;
2134 }
2135
2136 if (strcmp (*old_name, method_name) != 0)
2137 {
2138 xfree (*old_name);
2139 *old_name = method_name;
2140 }
2141 else
2142 xfree (method_name);
2143 }
2144
2145 /* Read member function stabs info for C++ classes. The form of each member
2146 function data is:
2147
2148 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2149
2150 An example with two member functions is:
2151
2152 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2153
2154 For the case of overloaded operators, the format is op$::*.funcs, where
2155 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2156 name (such as `+=') and `.' marks the end of the operator name.
2157
2158 Returns 1 for success, 0 for failure. */
2159
2160 static int
2161 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2162 struct objfile *objfile)
2163 {
2164 int nfn_fields = 0;
2165 int length = 0;
2166 /* Total number of member functions defined in this class. If the class
2167 defines two `f' functions, and one `g' function, then this will have
2168 the value 3. */
2169 int total_length = 0;
2170 int i;
2171 struct next_fnfield
2172 {
2173 struct next_fnfield *next;
2174 struct fn_field fn_field;
2175 }
2176 *sublist;
2177 struct type *look_ahead_type;
2178 struct next_fnfieldlist *new_fnlist;
2179 struct next_fnfield *new_sublist;
2180 char *main_fn_name;
2181 char *p;
2182
2183 /* Process each list until we find something that is not a member function
2184 or find the end of the functions. */
2185
2186 while (**pp != ';')
2187 {
2188 /* We should be positioned at the start of the function name.
2189 Scan forward to find the first ':' and if it is not the
2190 first of a "::" delimiter, then this is not a member function. */
2191 p = *pp;
2192 while (*p != ':')
2193 {
2194 p++;
2195 }
2196 if (p[1] != ':')
2197 {
2198 break;
2199 }
2200
2201 sublist = NULL;
2202 look_ahead_type = NULL;
2203 length = 0;
2204
2205 new_fnlist = (struct next_fnfieldlist *)
2206 xmalloc (sizeof (struct next_fnfieldlist));
2207 make_cleanup (xfree, new_fnlist);
2208 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2209
2210 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2211 {
2212 /* This is a completely wierd case. In order to stuff in the
2213 names that might contain colons (the usual name delimiter),
2214 Mike Tiemann defined a different name format which is
2215 signalled if the identifier is "op$". In that case, the
2216 format is "op$::XXXX." where XXXX is the name. This is
2217 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2218 /* This lets the user type "break operator+".
2219 We could just put in "+" as the name, but that wouldn't
2220 work for "*". */
2221 static char opname[32] = "op$";
2222 char *o = opname + 3;
2223
2224 /* Skip past '::'. */
2225 *pp = p + 2;
2226
2227 STABS_CONTINUE (pp, objfile);
2228 p = *pp;
2229 while (*p != '.')
2230 {
2231 *o++ = *p++;
2232 }
2233 main_fn_name = savestring (opname, o - opname);
2234 /* Skip past '.' */
2235 *pp = p + 1;
2236 }
2237 else
2238 {
2239 main_fn_name = savestring (*pp, p - *pp);
2240 /* Skip past '::'. */
2241 *pp = p + 2;
2242 }
2243 new_fnlist->fn_fieldlist.name = main_fn_name;
2244
2245 do
2246 {
2247 new_sublist =
2248 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2249 make_cleanup (xfree, new_sublist);
2250 memset (new_sublist, 0, sizeof (struct next_fnfield));
2251
2252 /* Check for and handle cretinous dbx symbol name continuation! */
2253 if (look_ahead_type == NULL)
2254 {
2255 /* Normal case. */
2256 STABS_CONTINUE (pp, objfile);
2257
2258 new_sublist->fn_field.type = read_type (pp, objfile);
2259 if (**pp != ':')
2260 {
2261 /* Invalid symtab info for member function. */
2262 return 0;
2263 }
2264 }
2265 else
2266 {
2267 /* g++ version 1 kludge */
2268 new_sublist->fn_field.type = look_ahead_type;
2269 look_ahead_type = NULL;
2270 }
2271
2272 (*pp)++;
2273 p = *pp;
2274 while (*p != ';')
2275 {
2276 p++;
2277 }
2278
2279 /* If this is just a stub, then we don't have the real name here. */
2280
2281 if (TYPE_STUB (new_sublist->fn_field.type))
2282 {
2283 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2284 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2285 new_sublist->fn_field.is_stub = 1;
2286 }
2287 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2288 *pp = p + 1;
2289
2290 /* Set this member function's visibility fields. */
2291 switch (*(*pp)++)
2292 {
2293 case VISIBILITY_PRIVATE:
2294 new_sublist->fn_field.is_private = 1;
2295 break;
2296 case VISIBILITY_PROTECTED:
2297 new_sublist->fn_field.is_protected = 1;
2298 break;
2299 }
2300
2301 STABS_CONTINUE (pp, objfile);
2302 switch (**pp)
2303 {
2304 case 'A': /* Normal functions. */
2305 new_sublist->fn_field.is_const = 0;
2306 new_sublist->fn_field.is_volatile = 0;
2307 (*pp)++;
2308 break;
2309 case 'B': /* `const' member functions. */
2310 new_sublist->fn_field.is_const = 1;
2311 new_sublist->fn_field.is_volatile = 0;
2312 (*pp)++;
2313 break;
2314 case 'C': /* `volatile' member function. */
2315 new_sublist->fn_field.is_const = 0;
2316 new_sublist->fn_field.is_volatile = 1;
2317 (*pp)++;
2318 break;
2319 case 'D': /* `const volatile' member function. */
2320 new_sublist->fn_field.is_const = 1;
2321 new_sublist->fn_field.is_volatile = 1;
2322 (*pp)++;
2323 break;
2324 case '*': /* File compiled with g++ version 1 -- no info */
2325 case '?':
2326 case '.':
2327 break;
2328 default:
2329 complaint (&symfile_complaints,
2330 "const/volatile indicator missing, got '%c'", **pp);
2331 break;
2332 }
2333
2334 switch (*(*pp)++)
2335 {
2336 case '*':
2337 {
2338 int nbits;
2339 /* virtual member function, followed by index.
2340 The sign bit is set to distinguish pointers-to-methods
2341 from virtual function indicies. Since the array is
2342 in words, the quantity must be shifted left by 1
2343 on 16 bit machine, and by 2 on 32 bit machine, forcing
2344 the sign bit out, and usable as a valid index into
2345 the array. Remove the sign bit here. */
2346 new_sublist->fn_field.voffset =
2347 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
2348 if (nbits != 0)
2349 return 0;
2350
2351 STABS_CONTINUE (pp, objfile);
2352 if (**pp == ';' || **pp == '\0')
2353 {
2354 /* Must be g++ version 1. */
2355 new_sublist->fn_field.fcontext = 0;
2356 }
2357 else
2358 {
2359 /* Figure out from whence this virtual function came.
2360 It may belong to virtual function table of
2361 one of its baseclasses. */
2362 look_ahead_type = read_type (pp, objfile);
2363 if (**pp == ':')
2364 {
2365 /* g++ version 1 overloaded methods. */
2366 }
2367 else
2368 {
2369 new_sublist->fn_field.fcontext = look_ahead_type;
2370 if (**pp != ';')
2371 {
2372 return 0;
2373 }
2374 else
2375 {
2376 ++*pp;
2377 }
2378 look_ahead_type = NULL;
2379 }
2380 }
2381 break;
2382 }
2383 case '?':
2384 /* static member function. */
2385 {
2386 int slen = strlen (main_fn_name);
2387
2388 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2389
2390 /* For static member functions, we can't tell if they
2391 are stubbed, as they are put out as functions, and not as
2392 methods.
2393 GCC v2 emits the fully mangled name if
2394 dbxout.c:flag_minimal_debug is not set, so we have to
2395 detect a fully mangled physname here and set is_stub
2396 accordingly. Fully mangled physnames in v2 start with
2397 the member function name, followed by two underscores.
2398 GCC v3 currently always emits stubbed member functions,
2399 but with fully mangled physnames, which start with _Z. */
2400 if (!(strncmp (new_sublist->fn_field.physname,
2401 main_fn_name, slen) == 0
2402 && new_sublist->fn_field.physname[slen] == '_'
2403 && new_sublist->fn_field.physname[slen + 1] == '_'))
2404 {
2405 new_sublist->fn_field.is_stub = 1;
2406 }
2407 break;
2408 }
2409
2410 default:
2411 /* error */
2412 complaint (&symfile_complaints,
2413 "member function type missing, got '%c'", (*pp)[-1]);
2414 /* Fall through into normal member function. */
2415
2416 case '.':
2417 /* normal member function. */
2418 new_sublist->fn_field.voffset = 0;
2419 new_sublist->fn_field.fcontext = 0;
2420 break;
2421 }
2422
2423 new_sublist->next = sublist;
2424 sublist = new_sublist;
2425 length++;
2426 STABS_CONTINUE (pp, objfile);
2427 }
2428 while (**pp != ';' && **pp != '\0');
2429
2430 (*pp)++;
2431 STABS_CONTINUE (pp, objfile);
2432
2433 /* Skip GCC 3.X member functions which are duplicates of the callable
2434 constructor/destructor. */
2435 if (strcmp (main_fn_name, "__base_ctor") == 0
2436 || strcmp (main_fn_name, "__base_dtor") == 0
2437 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2438 {
2439 xfree (main_fn_name);
2440 }
2441 else
2442 {
2443 int has_stub = 0;
2444 int has_destructor = 0, has_other = 0;
2445 int is_v3 = 0;
2446 struct next_fnfield *tmp_sublist;
2447
2448 /* Various versions of GCC emit various mostly-useless
2449 strings in the name field for special member functions.
2450
2451 For stub methods, we need to defer correcting the name
2452 until we are ready to unstub the method, because the current
2453 name string is used by gdb_mangle_name. The only stub methods
2454 of concern here are GNU v2 operators; other methods have their
2455 names correct (see caveat below).
2456
2457 For non-stub methods, in GNU v3, we have a complete physname.
2458 Therefore we can safely correct the name now. This primarily
2459 affects constructors and destructors, whose name will be
2460 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2461 operators will also have incorrect names; for instance,
2462 "operator int" will be named "operator i" (i.e. the type is
2463 mangled).
2464
2465 For non-stub methods in GNU v2, we have no easy way to
2466 know if we have a complete physname or not. For most
2467 methods the result depends on the platform (if CPLUS_MARKER
2468 can be `$' or `.', it will use minimal debug information, or
2469 otherwise the full physname will be included).
2470
2471 Rather than dealing with this, we take a different approach.
2472 For v3 mangled names, we can use the full physname; for v2,
2473 we use cplus_demangle_opname (which is actually v2 specific),
2474 because the only interesting names are all operators - once again
2475 barring the caveat below. Skip this process if any method in the
2476 group is a stub, to prevent our fouling up the workings of
2477 gdb_mangle_name.
2478
2479 The caveat: GCC 2.95.x (and earlier?) put constructors and
2480 destructors in the same method group. We need to split this
2481 into two groups, because they should have different names.
2482 So for each method group we check whether it contains both
2483 routines whose physname appears to be a destructor (the physnames
2484 for and destructors are always provided, due to quirks in v2
2485 mangling) and routines whose physname does not appear to be a
2486 destructor. If so then we break up the list into two halves.
2487 Even if the constructors and destructors aren't in the same group
2488 the destructor will still lack the leading tilde, so that also
2489 needs to be fixed.
2490
2491 So, to summarize what we expect and handle here:
2492
2493 Given Given Real Real Action
2494 method name physname physname method name
2495
2496 __opi [none] __opi__3Foo operator int opname
2497 [now or later]
2498 Foo _._3Foo _._3Foo ~Foo separate and
2499 rename
2500 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2501 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2502 */
2503
2504 tmp_sublist = sublist;
2505 while (tmp_sublist != NULL)
2506 {
2507 if (tmp_sublist->fn_field.is_stub)
2508 has_stub = 1;
2509 if (tmp_sublist->fn_field.physname[0] == '_'
2510 && tmp_sublist->fn_field.physname[1] == 'Z')
2511 is_v3 = 1;
2512
2513 if (is_destructor_name (tmp_sublist->fn_field.physname))
2514 has_destructor++;
2515 else
2516 has_other++;
2517
2518 tmp_sublist = tmp_sublist->next;
2519 }
2520
2521 if (has_destructor && has_other)
2522 {
2523 struct next_fnfieldlist *destr_fnlist;
2524 struct next_fnfield *last_sublist;
2525
2526 /* Create a new fn_fieldlist for the destructors. */
2527
2528 destr_fnlist = (struct next_fnfieldlist *)
2529 xmalloc (sizeof (struct next_fnfieldlist));
2530 make_cleanup (xfree, destr_fnlist);
2531 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2532 destr_fnlist->fn_fieldlist.name
2533 = obconcat (&objfile->type_obstack, "", "~",
2534 new_fnlist->fn_fieldlist.name);
2535
2536 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2537 obstack_alloc (&objfile->type_obstack,
2538 sizeof (struct fn_field) * has_destructor);
2539 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2540 sizeof (struct fn_field) * has_destructor);
2541 tmp_sublist = sublist;
2542 last_sublist = NULL;
2543 i = 0;
2544 while (tmp_sublist != NULL)
2545 {
2546 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2547 {
2548 tmp_sublist = tmp_sublist->next;
2549 continue;
2550 }
2551
2552 destr_fnlist->fn_fieldlist.fn_fields[i++]
2553 = tmp_sublist->fn_field;
2554 if (last_sublist)
2555 last_sublist->next = tmp_sublist->next;
2556 else
2557 sublist = tmp_sublist->next;
2558 last_sublist = tmp_sublist;
2559 tmp_sublist = tmp_sublist->next;
2560 }
2561
2562 destr_fnlist->fn_fieldlist.length = has_destructor;
2563 destr_fnlist->next = fip->fnlist;
2564 fip->fnlist = destr_fnlist;
2565 nfn_fields++;
2566 total_length += has_destructor;
2567 length -= has_destructor;
2568 }
2569 else if (is_v3)
2570 {
2571 /* v3 mangling prevents the use of abbreviated physnames,
2572 so we can do this here. There are stubbed methods in v3
2573 only:
2574 - in -gstabs instead of -gstabs+
2575 - or for static methods, which are output as a function type
2576 instead of a method type. */
2577
2578 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2579 sublist->fn_field.physname);
2580 }
2581 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2582 {
2583 new_fnlist->fn_fieldlist.name = concat ("~", main_fn_name, NULL);
2584 xfree (main_fn_name);
2585 }
2586 else if (!has_stub)
2587 {
2588 char dem_opname[256];
2589 int ret;
2590 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2591 dem_opname, DMGL_ANSI);
2592 if (!ret)
2593 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2594 dem_opname, 0);
2595 if (ret)
2596 new_fnlist->fn_fieldlist.name
2597 = obsavestring (dem_opname, strlen (dem_opname),
2598 &objfile->type_obstack);
2599 }
2600
2601 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2602 obstack_alloc (&objfile->type_obstack,
2603 sizeof (struct fn_field) * length);
2604 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2605 sizeof (struct fn_field) * length);
2606 for (i = length; (i--, sublist); sublist = sublist->next)
2607 {
2608 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2609 }
2610
2611 new_fnlist->fn_fieldlist.length = length;
2612 new_fnlist->next = fip->fnlist;
2613 fip->fnlist = new_fnlist;
2614 nfn_fields++;
2615 total_length += length;
2616 }
2617 }
2618
2619 if (nfn_fields)
2620 {
2621 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2622 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2623 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2624 memset (TYPE_FN_FIELDLISTS (type), 0,
2625 sizeof (struct fn_fieldlist) * nfn_fields);
2626 TYPE_NFN_FIELDS (type) = nfn_fields;
2627 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2628 }
2629
2630 return 1;
2631 }
2632
2633 /* Special GNU C++ name.
2634
2635 Returns 1 for success, 0 for failure. "failure" means that we can't
2636 keep parsing and it's time for error_type(). */
2637
2638 static int
2639 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2640 struct objfile *objfile)
2641 {
2642 char *p;
2643 char *name;
2644 char cpp_abbrev;
2645 struct type *context;
2646
2647 p = *pp;
2648 if (*++p == 'v')
2649 {
2650 name = NULL;
2651 cpp_abbrev = *++p;
2652
2653 *pp = p + 1;
2654
2655 /* At this point, *pp points to something like "22:23=*22...",
2656 where the type number before the ':' is the "context" and
2657 everything after is a regular type definition. Lookup the
2658 type, find it's name, and construct the field name. */
2659
2660 context = read_type (pp, objfile);
2661
2662 switch (cpp_abbrev)
2663 {
2664 case 'f': /* $vf -- a virtual function table pointer */
2665 name = type_name_no_tag (context);
2666 if (name == NULL)
2667 {
2668 name = "";
2669 }
2670 fip->list->field.name =
2671 obconcat (&objfile->type_obstack, vptr_name, name, "");
2672 break;
2673
2674 case 'b': /* $vb -- a virtual bsomethingorother */
2675 name = type_name_no_tag (context);
2676 if (name == NULL)
2677 {
2678 complaint (&symfile_complaints,
2679 "C++ abbreviated type name unknown at symtab pos %d",
2680 symnum);
2681 name = "FOO";
2682 }
2683 fip->list->field.name =
2684 obconcat (&objfile->type_obstack, vb_name, name, "");
2685 break;
2686
2687 default:
2688 invalid_cpp_abbrev_complaint (*pp);
2689 fip->list->field.name =
2690 obconcat (&objfile->type_obstack,
2691 "INVALID_CPLUSPLUS_ABBREV", "", "");
2692 break;
2693 }
2694
2695 /* At this point, *pp points to the ':'. Skip it and read the
2696 field type. */
2697
2698 p = ++(*pp);
2699 if (p[-1] != ':')
2700 {
2701 invalid_cpp_abbrev_complaint (*pp);
2702 return 0;
2703 }
2704 fip->list->field.type = read_type (pp, objfile);
2705 if (**pp == ',')
2706 (*pp)++; /* Skip the comma. */
2707 else
2708 return 0;
2709
2710 {
2711 int nbits;
2712 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
2713 if (nbits != 0)
2714 return 0;
2715 }
2716 /* This field is unpacked. */
2717 FIELD_BITSIZE (fip->list->field) = 0;
2718 fip->list->visibility = VISIBILITY_PRIVATE;
2719 }
2720 else
2721 {
2722 invalid_cpp_abbrev_complaint (*pp);
2723 /* We have no idea what syntax an unrecognized abbrev would have, so
2724 better return 0. If we returned 1, we would need to at least advance
2725 *pp to avoid an infinite loop. */
2726 return 0;
2727 }
2728 return 1;
2729 }
2730
2731 static void
2732 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2733 struct type *type, struct objfile *objfile)
2734 {
2735 fip->list->field.name =
2736 obsavestring (*pp, p - *pp, &objfile->type_obstack);
2737 *pp = p + 1;
2738
2739 /* This means we have a visibility for a field coming. */
2740 if (**pp == '/')
2741 {
2742 (*pp)++;
2743 fip->list->visibility = *(*pp)++;
2744 }
2745 else
2746 {
2747 /* normal dbx-style format, no explicit visibility */
2748 fip->list->visibility = VISIBILITY_PUBLIC;
2749 }
2750
2751 fip->list->field.type = read_type (pp, objfile);
2752 if (**pp == ':')
2753 {
2754 p = ++(*pp);
2755 #if 0
2756 /* Possible future hook for nested types. */
2757 if (**pp == '!')
2758 {
2759 fip->list->field.bitpos = (long) -2; /* nested type */
2760 p = ++(*pp);
2761 }
2762 else
2763 ...;
2764 #endif
2765 while (*p != ';')
2766 {
2767 p++;
2768 }
2769 /* Static class member. */
2770 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2771 *pp = p + 1;
2772 return;
2773 }
2774 else if (**pp != ',')
2775 {
2776 /* Bad structure-type format. */
2777 stabs_general_complaint ("bad structure-type format");
2778 return;
2779 }
2780
2781 (*pp)++; /* Skip the comma. */
2782
2783 {
2784 int nbits;
2785 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
2786 if (nbits != 0)
2787 {
2788 stabs_general_complaint ("bad structure-type format");
2789 return;
2790 }
2791 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
2792 if (nbits != 0)
2793 {
2794 stabs_general_complaint ("bad structure-type format");
2795 return;
2796 }
2797 }
2798
2799 if (FIELD_BITPOS (fip->list->field) == 0
2800 && FIELD_BITSIZE (fip->list->field) == 0)
2801 {
2802 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2803 it is a field which has been optimized out. The correct stab for
2804 this case is to use VISIBILITY_IGNORE, but that is a recent
2805 invention. (2) It is a 0-size array. For example
2806 union { int num; char str[0]; } foo. Printing "<no value>" for
2807 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2808 will continue to work, and a 0-size array as a whole doesn't
2809 have any contents to print.
2810
2811 I suspect this probably could also happen with gcc -gstabs (not
2812 -gstabs+) for static fields, and perhaps other C++ extensions.
2813 Hopefully few people use -gstabs with gdb, since it is intended
2814 for dbx compatibility. */
2815
2816 /* Ignore this field. */
2817 fip->list->visibility = VISIBILITY_IGNORE;
2818 }
2819 else
2820 {
2821 /* Detect an unpacked field and mark it as such.
2822 dbx gives a bit size for all fields.
2823 Note that forward refs cannot be packed,
2824 and treat enums as if they had the width of ints. */
2825
2826 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2827
2828 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2829 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2830 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2831 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2832 {
2833 FIELD_BITSIZE (fip->list->field) = 0;
2834 }
2835 if ((FIELD_BITSIZE (fip->list->field)
2836 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2837 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2838 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
2839 )
2840 &&
2841 FIELD_BITPOS (fip->list->field) % 8 == 0)
2842 {
2843 FIELD_BITSIZE (fip->list->field) = 0;
2844 }
2845 }
2846 }
2847
2848
2849 /* Read struct or class data fields. They have the form:
2850
2851 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2852
2853 At the end, we see a semicolon instead of a field.
2854
2855 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2856 a static field.
2857
2858 The optional VISIBILITY is one of:
2859
2860 '/0' (VISIBILITY_PRIVATE)
2861 '/1' (VISIBILITY_PROTECTED)
2862 '/2' (VISIBILITY_PUBLIC)
2863 '/9' (VISIBILITY_IGNORE)
2864
2865 or nothing, for C style fields with public visibility.
2866
2867 Returns 1 for success, 0 for failure. */
2868
2869 static int
2870 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2871 struct objfile *objfile)
2872 {
2873 char *p;
2874 struct nextfield *new;
2875
2876 /* We better set p right now, in case there are no fields at all... */
2877
2878 p = *pp;
2879
2880 /* Read each data member type until we find the terminating ';' at the end of
2881 the data member list, or break for some other reason such as finding the
2882 start of the member function list. */
2883 /* Stab string for structure/union does not end with two ';' in
2884 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2885
2886 while (**pp != ';' && **pp != '\0')
2887 {
2888 STABS_CONTINUE (pp, objfile);
2889 /* Get space to record the next field's data. */
2890 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2891 make_cleanup (xfree, new);
2892 memset (new, 0, sizeof (struct nextfield));
2893 new->next = fip->list;
2894 fip->list = new;
2895
2896 /* Get the field name. */
2897 p = *pp;
2898
2899 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2900 unless the CPLUS_MARKER is followed by an underscore, in
2901 which case it is just the name of an anonymous type, which we
2902 should handle like any other type name. */
2903
2904 if (is_cplus_marker (p[0]) && p[1] != '_')
2905 {
2906 if (!read_cpp_abbrev (fip, pp, type, objfile))
2907 return 0;
2908 continue;
2909 }
2910
2911 /* Look for the ':' that separates the field name from the field
2912 values. Data members are delimited by a single ':', while member
2913 functions are delimited by a pair of ':'s. When we hit the member
2914 functions (if any), terminate scan loop and return. */
2915
2916 while (*p != ':' && *p != '\0')
2917 {
2918 p++;
2919 }
2920 if (*p == '\0')
2921 return 0;
2922
2923 /* Check to see if we have hit the member functions yet. */
2924 if (p[1] == ':')
2925 {
2926 break;
2927 }
2928 read_one_struct_field (fip, pp, p, type, objfile);
2929 }
2930 if (p[0] == ':' && p[1] == ':')
2931 {
2932 /* (the deleted) chill the list of fields: the last entry (at
2933 the head) is a partially constructed entry which we now
2934 scrub. */
2935 fip->list = fip->list->next;
2936 }
2937 return 1;
2938 }
2939 /* *INDENT-OFF* */
2940 /* The stabs for C++ derived classes contain baseclass information which
2941 is marked by a '!' character after the total size. This function is
2942 called when we encounter the baseclass marker, and slurps up all the
2943 baseclass information.
2944
2945 Immediately following the '!' marker is the number of base classes that
2946 the class is derived from, followed by information for each base class.
2947 For each base class, there are two visibility specifiers, a bit offset
2948 to the base class information within the derived class, a reference to
2949 the type for the base class, and a terminating semicolon.
2950
2951 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2952 ^^ ^ ^ ^ ^ ^ ^
2953 Baseclass information marker __________________|| | | | | | |
2954 Number of baseclasses __________________________| | | | | | |
2955 Visibility specifiers (2) ________________________| | | | | |
2956 Offset in bits from start of class _________________| | | | |
2957 Type number for base class ___________________________| | | |
2958 Visibility specifiers (2) _______________________________| | |
2959 Offset in bits from start of class ________________________| |
2960 Type number of base class ____________________________________|
2961
2962 Return 1 for success, 0 for (error-type-inducing) failure. */
2963 /* *INDENT-ON* */
2964
2965
2966
2967 static int
2968 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2969 struct objfile *objfile)
2970 {
2971 int i;
2972 struct nextfield *new;
2973
2974 if (**pp != '!')
2975 {
2976 return 1;
2977 }
2978 else
2979 {
2980 /* Skip the '!' baseclass information marker. */
2981 (*pp)++;
2982 }
2983
2984 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2985 {
2986 int nbits;
2987 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2988 if (nbits != 0)
2989 return 0;
2990 }
2991
2992 #if 0
2993 /* Some stupid compilers have trouble with the following, so break
2994 it up into simpler expressions. */
2995 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2996 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2997 #else
2998 {
2999 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3000 char *pointer;
3001
3002 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3003 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3004 }
3005 #endif /* 0 */
3006
3007 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3008
3009 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3010 {
3011 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3012 make_cleanup (xfree, new);
3013 memset (new, 0, sizeof (struct nextfield));
3014 new->next = fip->list;
3015 fip->list = new;
3016 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3017
3018 STABS_CONTINUE (pp, objfile);
3019 switch (**pp)
3020 {
3021 case '0':
3022 /* Nothing to do. */
3023 break;
3024 case '1':
3025 SET_TYPE_FIELD_VIRTUAL (type, i);
3026 break;
3027 default:
3028 /* Unknown character. Complain and treat it as non-virtual. */
3029 {
3030 complaint (&symfile_complaints,
3031 "Unknown virtual character `%c' for baseclass", **pp);
3032 }
3033 }
3034 ++(*pp);
3035
3036 new->visibility = *(*pp)++;
3037 switch (new->visibility)
3038 {
3039 case VISIBILITY_PRIVATE:
3040 case VISIBILITY_PROTECTED:
3041 case VISIBILITY_PUBLIC:
3042 break;
3043 default:
3044 /* Bad visibility format. Complain and treat it as
3045 public. */
3046 {
3047 complaint (&symfile_complaints,
3048 "Unknown visibility `%c' for baseclass",
3049 new->visibility);
3050 new->visibility = VISIBILITY_PUBLIC;
3051 }
3052 }
3053
3054 {
3055 int nbits;
3056
3057 /* The remaining value is the bit offset of the portion of the object
3058 corresponding to this baseclass. Always zero in the absence of
3059 multiple inheritance. */
3060
3061 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3062 if (nbits != 0)
3063 return 0;
3064 }
3065
3066 /* The last piece of baseclass information is the type of the
3067 base class. Read it, and remember it's type name as this
3068 field's name. */
3069
3070 new->field.type = read_type (pp, objfile);
3071 new->field.name = type_name_no_tag (new->field.type);
3072
3073 /* skip trailing ';' and bump count of number of fields seen */
3074 if (**pp == ';')
3075 (*pp)++;
3076 else
3077 return 0;
3078 }
3079 return 1;
3080 }
3081
3082 /* The tail end of stabs for C++ classes that contain a virtual function
3083 pointer contains a tilde, a %, and a type number.
3084 The type number refers to the base class (possibly this class itself) which
3085 contains the vtable pointer for the current class.
3086
3087 This function is called when we have parsed all the method declarations,
3088 so we can look for the vptr base class info. */
3089
3090 static int
3091 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3092 struct objfile *objfile)
3093 {
3094 char *p;
3095
3096 STABS_CONTINUE (pp, objfile);
3097
3098 /* If we are positioned at a ';', then skip it. */
3099 if (**pp == ';')
3100 {
3101 (*pp)++;
3102 }
3103
3104 if (**pp == '~')
3105 {
3106 (*pp)++;
3107
3108 if (**pp == '=' || **pp == '+' || **pp == '-')
3109 {
3110 /* Obsolete flags that used to indicate the presence
3111 of constructors and/or destructors. */
3112 (*pp)++;
3113 }
3114
3115 /* Read either a '%' or the final ';'. */
3116 if (*(*pp)++ == '%')
3117 {
3118 /* The next number is the type number of the base class
3119 (possibly our own class) which supplies the vtable for
3120 this class. Parse it out, and search that class to find
3121 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3122 and TYPE_VPTR_FIELDNO. */
3123
3124 struct type *t;
3125 int i;
3126
3127 t = read_type (pp, objfile);
3128 p = (*pp)++;
3129 while (*p != '\0' && *p != ';')
3130 {
3131 p++;
3132 }
3133 if (*p == '\0')
3134 {
3135 /* Premature end of symbol. */
3136 return 0;
3137 }
3138
3139 TYPE_VPTR_BASETYPE (type) = t;
3140 if (type == t) /* Our own class provides vtbl ptr */
3141 {
3142 for (i = TYPE_NFIELDS (t) - 1;
3143 i >= TYPE_N_BASECLASSES (t);
3144 --i)
3145 {
3146 char *name = TYPE_FIELD_NAME (t, i);
3147 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3148 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3149 {
3150 TYPE_VPTR_FIELDNO (type) = i;
3151 goto gotit;
3152 }
3153 }
3154 /* Virtual function table field not found. */
3155 complaint (&symfile_complaints,
3156 "virtual function table pointer not found when defining class `%s'",
3157 TYPE_NAME (type));
3158 return 0;
3159 }
3160 else
3161 {
3162 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3163 }
3164
3165 gotit:
3166 *pp = p + 1;
3167 }
3168 }
3169 return 1;
3170 }
3171
3172 static int
3173 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3174 {
3175 int n;
3176
3177 for (n = TYPE_NFN_FIELDS (type);
3178 fip->fnlist != NULL;
3179 fip->fnlist = fip->fnlist->next)
3180 {
3181 --n; /* Circumvent Sun3 compiler bug */
3182 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3183 }
3184 return 1;
3185 }
3186
3187 /* Create the vector of fields, and record how big it is.
3188 We need this info to record proper virtual function table information
3189 for this class's virtual functions. */
3190
3191 static int
3192 attach_fields_to_type (struct field_info *fip, struct type *type,
3193 struct objfile *objfile)
3194 {
3195 int nfields = 0;
3196 int non_public_fields = 0;
3197 struct nextfield *scan;
3198
3199 /* Count up the number of fields that we have, as well as taking note of
3200 whether or not there are any non-public fields, which requires us to
3201 allocate and build the private_field_bits and protected_field_bits
3202 bitfields. */
3203
3204 for (scan = fip->list; scan != NULL; scan = scan->next)
3205 {
3206 nfields++;
3207 if (scan->visibility != VISIBILITY_PUBLIC)
3208 {
3209 non_public_fields++;
3210 }
3211 }
3212
3213 /* Now we know how many fields there are, and whether or not there are any
3214 non-public fields. Record the field count, allocate space for the
3215 array of fields, and create blank visibility bitfields if necessary. */
3216
3217 TYPE_NFIELDS (type) = nfields;
3218 TYPE_FIELDS (type) = (struct field *)
3219 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3220 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3221
3222 if (non_public_fields)
3223 {
3224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3225
3226 TYPE_FIELD_PRIVATE_BITS (type) =
3227 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3228 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3229
3230 TYPE_FIELD_PROTECTED_BITS (type) =
3231 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3232 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3233
3234 TYPE_FIELD_IGNORE_BITS (type) =
3235 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3236 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3237 }
3238
3239 /* Copy the saved-up fields into the field vector. Start from the head
3240 of the list, adding to the tail of the field array, so that they end
3241 up in the same order in the array in which they were added to the list. */
3242
3243 while (nfields-- > 0)
3244 {
3245 TYPE_FIELD (type, nfields) = fip->list->field;
3246 switch (fip->list->visibility)
3247 {
3248 case VISIBILITY_PRIVATE:
3249 SET_TYPE_FIELD_PRIVATE (type, nfields);
3250 break;
3251
3252 case VISIBILITY_PROTECTED:
3253 SET_TYPE_FIELD_PROTECTED (type, nfields);
3254 break;
3255
3256 case VISIBILITY_IGNORE:
3257 SET_TYPE_FIELD_IGNORE (type, nfields);
3258 break;
3259
3260 case VISIBILITY_PUBLIC:
3261 break;
3262
3263 default:
3264 /* Unknown visibility. Complain and treat it as public. */
3265 {
3266 complaint (&symfile_complaints, "Unknown visibility `%c' for field",
3267 fip->list->visibility);
3268 }
3269 break;
3270 }
3271 fip->list = fip->list->next;
3272 }
3273 return 1;
3274 }
3275
3276
3277 /* Complain that the compiler has emitted more than one definition for the
3278 structure type TYPE. */
3279 static void
3280 complain_about_struct_wipeout (struct type *type)
3281 {
3282 char *name = "";
3283 char *kind = "";
3284
3285 if (TYPE_TAG_NAME (type))
3286 {
3287 name = TYPE_TAG_NAME (type);
3288 switch (TYPE_CODE (type))
3289 {
3290 case TYPE_CODE_STRUCT: kind = "struct "; break;
3291 case TYPE_CODE_UNION: kind = "union "; break;
3292 case TYPE_CODE_ENUM: kind = "enum "; break;
3293 default: kind = "";
3294 }
3295 }
3296 else if (TYPE_NAME (type))
3297 {
3298 name = TYPE_NAME (type);
3299 kind = "";
3300 }
3301 else
3302 {
3303 name = "<unknown>";
3304 kind = "";
3305 }
3306
3307 complaint (&symfile_complaints,
3308 "struct/union type gets multiply defined: %s%s", kind, name);
3309 }
3310
3311
3312 /* Read the description of a structure (or union type) and return an object
3313 describing the type.
3314
3315 PP points to a character pointer that points to the next unconsumed token
3316 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3317 *PP will point to "4a:1,0,32;;".
3318
3319 TYPE points to an incomplete type that needs to be filled in.
3320
3321 OBJFILE points to the current objfile from which the stabs information is
3322 being read. (Note that it is redundant in that TYPE also contains a pointer
3323 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3324 */
3325
3326 static struct type *
3327 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3328 struct objfile *objfile)
3329 {
3330 struct cleanup *back_to;
3331 struct field_info fi;
3332
3333 fi.list = NULL;
3334 fi.fnlist = NULL;
3335
3336 /* When describing struct/union/class types in stabs, G++ always drops
3337 all qualifications from the name. So if you've got:
3338 struct A { ... struct B { ... }; ... };
3339 then G++ will emit stabs for `struct A::B' that call it simply
3340 `struct B'. Obviously, if you've got a real top-level definition for
3341 `struct B', or other nested definitions, this is going to cause
3342 problems.
3343
3344 Obviously, GDB can't fix this by itself, but it can at least avoid
3345 scribbling on existing structure type objects when new definitions
3346 appear. */
3347 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3348 || TYPE_STUB (type)))
3349 {
3350 complain_about_struct_wipeout (type);
3351
3352 /* It's probably best to return the type unchanged. */
3353 return type;
3354 }
3355
3356 back_to = make_cleanup (null_cleanup, 0);
3357
3358 INIT_CPLUS_SPECIFIC (type);
3359 TYPE_CODE (type) = type_code;
3360 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3361
3362 /* First comes the total size in bytes. */
3363
3364 {
3365 int nbits;
3366 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
3367 if (nbits != 0)
3368 return error_type (pp, objfile);
3369 }
3370
3371 /* Now read the baseclasses, if any, read the regular C struct or C++
3372 class member fields, attach the fields to the type, read the C++
3373 member functions, attach them to the type, and then read any tilde
3374 field (baseclass specifier for the class holding the main vtable). */
3375
3376 if (!read_baseclasses (&fi, pp, type, objfile)
3377 || !read_struct_fields (&fi, pp, type, objfile)
3378 || !attach_fields_to_type (&fi, type, objfile)
3379 || !read_member_functions (&fi, pp, type, objfile)
3380 || !attach_fn_fields_to_type (&fi, type)
3381 || !read_tilde_fields (&fi, pp, type, objfile))
3382 {
3383 type = error_type (pp, objfile);
3384 }
3385
3386 do_cleanups (back_to);
3387 return (type);
3388 }
3389
3390 /* Read a definition of an array type,
3391 and create and return a suitable type object.
3392 Also creates a range type which represents the bounds of that
3393 array. */
3394
3395 static struct type *
3396 read_array_type (char **pp, struct type *type,
3397 struct objfile *objfile)
3398 {
3399 struct type *index_type, *element_type, *range_type;
3400 int lower, upper;
3401 int adjustable = 0;
3402 int nbits;
3403
3404 /* Format of an array type:
3405 "ar<index type>;lower;upper;<array_contents_type>".
3406 OS9000: "arlower,upper;<array_contents_type>".
3407
3408 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3409 for these, produce a type like float[][]. */
3410
3411 {
3412 index_type = read_type (pp, objfile);
3413 if (**pp != ';')
3414 /* Improper format of array type decl. */
3415 return error_type (pp, objfile);
3416 ++*pp;
3417 }
3418
3419 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3420 {
3421 (*pp)++;
3422 adjustable = 1;
3423 }
3424 lower = read_huge_number (pp, ';', &nbits);
3425
3426 if (nbits != 0)
3427 return error_type (pp, objfile);
3428
3429 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3430 {
3431 (*pp)++;
3432 adjustable = 1;
3433 }
3434 upper = read_huge_number (pp, ';', &nbits);
3435 if (nbits != 0)
3436 return error_type (pp, objfile);
3437
3438 element_type = read_type (pp, objfile);
3439
3440 if (adjustable)
3441 {
3442 lower = 0;
3443 upper = -1;
3444 }
3445
3446 range_type =
3447 create_range_type ((struct type *) NULL, index_type, lower, upper);
3448 type = create_array_type (type, element_type, range_type);
3449
3450 return type;
3451 }
3452
3453
3454 /* Read a definition of an enumeration type,
3455 and create and return a suitable type object.
3456 Also defines the symbols that represent the values of the type. */
3457
3458 static struct type *
3459 read_enum_type (char **pp, struct type *type,
3460 struct objfile *objfile)
3461 {
3462 char *p;
3463 char *name;
3464 long n;
3465 struct symbol *sym;
3466 int nsyms = 0;
3467 struct pending **symlist;
3468 struct pending *osyms, *syms;
3469 int o_nsyms;
3470 int nbits;
3471 int unsigned_enum = 1;
3472
3473 #if 0
3474 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3475 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3476 to do? For now, force all enum values to file scope. */
3477 if (within_function)
3478 symlist = &local_symbols;
3479 else
3480 #endif
3481 symlist = &file_symbols;
3482 osyms = *symlist;
3483 o_nsyms = osyms ? osyms->nsyms : 0;
3484
3485 /* The aix4 compiler emits an extra field before the enum members;
3486 my guess is it's a type of some sort. Just ignore it. */
3487 if (**pp == '-')
3488 {
3489 /* Skip over the type. */
3490 while (**pp != ':')
3491 (*pp)++;
3492
3493 /* Skip over the colon. */
3494 (*pp)++;
3495 }
3496
3497 /* Read the value-names and their values.
3498 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3499 A semicolon or comma instead of a NAME means the end. */
3500 while (**pp && **pp != ';' && **pp != ',')
3501 {
3502 STABS_CONTINUE (pp, objfile);
3503 p = *pp;
3504 while (*p != ':')
3505 p++;
3506 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
3507 *pp = p + 1;
3508 n = read_huge_number (pp, ',', &nbits);
3509 if (nbits != 0)
3510 return error_type (pp, objfile);
3511
3512 sym = (struct symbol *)
3513 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3514 memset (sym, 0, sizeof (struct symbol));
3515 DEPRECATED_SYMBOL_NAME (sym) = name;
3516 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3517 SYMBOL_CLASS (sym) = LOC_CONST;
3518 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3519 SYMBOL_VALUE (sym) = n;
3520 if (n < 0)
3521 unsigned_enum = 0;
3522 add_symbol_to_list (sym, symlist);
3523 nsyms++;
3524 }
3525
3526 if (**pp == ';')
3527 (*pp)++; /* Skip the semicolon. */
3528
3529 /* Now fill in the fields of the type-structure. */
3530
3531 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
3532 TYPE_CODE (type) = TYPE_CODE_ENUM;
3533 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3534 if (unsigned_enum)
3535 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3536 TYPE_NFIELDS (type) = nsyms;
3537 TYPE_FIELDS (type) = (struct field *)
3538 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3539 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3540
3541 /* Find the symbols for the values and put them into the type.
3542 The symbols can be found in the symlist that we put them on
3543 to cause them to be defined. osyms contains the old value
3544 of that symlist; everything up to there was defined by us. */
3545 /* Note that we preserve the order of the enum constants, so
3546 that in something like "enum {FOO, LAST_THING=FOO}" we print
3547 FOO, not LAST_THING. */
3548
3549 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3550 {
3551 int last = syms == osyms ? o_nsyms : 0;
3552 int j = syms->nsyms;
3553 for (; --j >= last; --n)
3554 {
3555 struct symbol *xsym = syms->symbol[j];
3556 SYMBOL_TYPE (xsym) = type;
3557 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3558 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3559 TYPE_FIELD_BITSIZE (type, n) = 0;
3560 }
3561 if (syms == osyms)
3562 break;
3563 }
3564
3565 return type;
3566 }
3567
3568 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3569 typedefs in every file (for int, long, etc):
3570
3571 type = b <signed> <width> <format type>; <offset>; <nbits>
3572 signed = u or s.
3573 optional format type = c or b for char or boolean.
3574 offset = offset from high order bit to start bit of type.
3575 width is # bytes in object of this type, nbits is # bits in type.
3576
3577 The width/offset stuff appears to be for small objects stored in
3578 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3579 FIXME. */
3580
3581 static struct type *
3582 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3583 {
3584 int type_bits;
3585 int nbits;
3586 int signed_type;
3587 enum type_code code = TYPE_CODE_INT;
3588
3589 switch (**pp)
3590 {
3591 case 's':
3592 signed_type = 1;
3593 break;
3594 case 'u':
3595 signed_type = 0;
3596 break;
3597 default:
3598 return error_type (pp, objfile);
3599 }
3600 (*pp)++;
3601
3602 /* For some odd reason, all forms of char put a c here. This is strange
3603 because no other type has this honor. We can safely ignore this because
3604 we actually determine 'char'acterness by the number of bits specified in
3605 the descriptor.
3606 Boolean forms, e.g Fortran logical*X, put a b here. */
3607
3608 if (**pp == 'c')
3609 (*pp)++;
3610 else if (**pp == 'b')
3611 {
3612 code = TYPE_CODE_BOOL;
3613 (*pp)++;
3614 }
3615
3616 /* The first number appears to be the number of bytes occupied
3617 by this type, except that unsigned short is 4 instead of 2.
3618 Since this information is redundant with the third number,
3619 we will ignore it. */
3620 read_huge_number (pp, ';', &nbits);
3621 if (nbits != 0)
3622 return error_type (pp, objfile);
3623
3624 /* The second number is always 0, so ignore it too. */
3625 read_huge_number (pp, ';', &nbits);
3626 if (nbits != 0)
3627 return error_type (pp, objfile);
3628
3629 /* The third number is the number of bits for this type. */
3630 type_bits = read_huge_number (pp, 0, &nbits);
3631 if (nbits != 0)
3632 return error_type (pp, objfile);
3633 /* The type *should* end with a semicolon. If it are embedded
3634 in a larger type the semicolon may be the only way to know where
3635 the type ends. If this type is at the end of the stabstring we
3636 can deal with the omitted semicolon (but we don't have to like
3637 it). Don't bother to complain(), Sun's compiler omits the semicolon
3638 for "void". */
3639 if (**pp == ';')
3640 ++(*pp);
3641
3642 if (type_bits == 0)
3643 return init_type (TYPE_CODE_VOID, 1,
3644 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3645 objfile);
3646 else
3647 return init_type (code,
3648 type_bits / TARGET_CHAR_BIT,
3649 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3650 objfile);
3651 }
3652
3653 static struct type *
3654 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3655 {
3656 int nbits;
3657 int details;
3658 int nbytes;
3659 struct type *rettype;
3660
3661 /* The first number has more details about the type, for example
3662 FN_COMPLEX. */
3663 details = read_huge_number (pp, ';', &nbits);
3664 if (nbits != 0)
3665 return error_type (pp, objfile);
3666
3667 /* The second number is the number of bytes occupied by this type */
3668 nbytes = read_huge_number (pp, ';', &nbits);
3669 if (nbits != 0)
3670 return error_type (pp, objfile);
3671
3672 if (details == NF_COMPLEX || details == NF_COMPLEX16
3673 || details == NF_COMPLEX32)
3674 {
3675 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3676 TYPE_TARGET_TYPE (rettype)
3677 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3678 return rettype;
3679 }
3680
3681 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3682 }
3683
3684 /* Read a number from the string pointed to by *PP.
3685 The value of *PP is advanced over the number.
3686 If END is nonzero, the character that ends the
3687 number must match END, or an error happens;
3688 and that character is skipped if it does match.
3689 If END is zero, *PP is left pointing to that character.
3690
3691 If the number fits in a long, set *BITS to 0 and return the value.
3692 If not, set *BITS to be the number of bits in the number and return 0.
3693
3694 If encounter garbage, set *BITS to -1 and return 0. */
3695
3696 static long
3697 read_huge_number (char **pp, int end, int *bits)
3698 {
3699 char *p = *pp;
3700 int sign = 1;
3701 long n = 0;
3702 int radix = 10;
3703 char overflow = 0;
3704 int nbits = 0;
3705 int c;
3706 long upper_limit;
3707
3708 if (*p == '-')
3709 {
3710 sign = -1;
3711 p++;
3712 }
3713
3714 /* Leading zero means octal. GCC uses this to output values larger
3715 than an int (because that would be hard in decimal). */
3716 if (*p == '0')
3717 {
3718 radix = 8;
3719 p++;
3720 }
3721
3722 upper_limit = LONG_MAX / radix;
3723
3724 while ((c = *p++) >= '0' && c < ('0' + radix))
3725 {
3726 if (n <= upper_limit)
3727 {
3728 n *= radix;
3729 n += c - '0'; /* FIXME this overflows anyway */
3730 }
3731 else
3732 overflow = 1;
3733
3734 /* This depends on large values being output in octal, which is
3735 what GCC does. */
3736 if (radix == 8)
3737 {
3738 if (nbits == 0)
3739 {
3740 if (c == '0')
3741 /* Ignore leading zeroes. */
3742 ;
3743 else if (c == '1')
3744 nbits = 1;
3745 else if (c == '2' || c == '3')
3746 nbits = 2;
3747 else
3748 nbits = 3;
3749 }
3750 else
3751 nbits += 3;
3752 }
3753 }
3754 if (end)
3755 {
3756 if (c && c != end)
3757 {
3758 if (bits != NULL)
3759 *bits = -1;
3760 return 0;
3761 }
3762 }
3763 else
3764 --p;
3765
3766 *pp = p;
3767 if (overflow)
3768 {
3769 if (nbits == 0)
3770 {
3771 /* Large decimal constants are an error (because it is hard to
3772 count how many bits are in them). */
3773 if (bits != NULL)
3774 *bits = -1;
3775 return 0;
3776 }
3777
3778 /* -0x7f is the same as 0x80. So deal with it by adding one to
3779 the number of bits. */
3780 if (sign == -1)
3781 ++nbits;
3782 if (bits)
3783 *bits = nbits;
3784 }
3785 else
3786 {
3787 if (bits)
3788 *bits = 0;
3789 return n * sign;
3790 }
3791 /* It's *BITS which has the interesting information. */
3792 return 0;
3793 }
3794
3795 static struct type *
3796 read_range_type (char **pp, int typenums[2], struct objfile *objfile)
3797 {
3798 char *orig_pp = *pp;
3799 int rangenums[2];
3800 long n2, n3;
3801 int n2bits, n3bits;
3802 int self_subrange;
3803 struct type *result_type;
3804 struct type *index_type = NULL;
3805
3806 /* First comes a type we are a subrange of.
3807 In C it is usually 0, 1 or the type being defined. */
3808 if (read_type_number (pp, rangenums) != 0)
3809 return error_type (pp, objfile);
3810 self_subrange = (rangenums[0] == typenums[0] &&
3811 rangenums[1] == typenums[1]);
3812
3813 if (**pp == '=')
3814 {
3815 *pp = orig_pp;
3816 index_type = read_type (pp, objfile);
3817 }
3818
3819 /* A semicolon should now follow; skip it. */
3820 if (**pp == ';')
3821 (*pp)++;
3822
3823 /* The remaining two operands are usually lower and upper bounds
3824 of the range. But in some special cases they mean something else. */
3825 n2 = read_huge_number (pp, ';', &n2bits);
3826 n3 = read_huge_number (pp, ';', &n3bits);
3827
3828 if (n2bits == -1 || n3bits == -1)
3829 return error_type (pp, objfile);
3830
3831 if (index_type)
3832 goto handle_true_range;
3833
3834 /* If limits are huge, must be large integral type. */
3835 if (n2bits != 0 || n3bits != 0)
3836 {
3837 char got_signed = 0;
3838 char got_unsigned = 0;
3839 /* Number of bits in the type. */
3840 int nbits = 0;
3841
3842 /* Range from 0 to <large number> is an unsigned large integral type. */
3843 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3844 {
3845 got_unsigned = 1;
3846 nbits = n3bits;
3847 }
3848 /* Range from <large number> to <large number>-1 is a large signed
3849 integral type. Take care of the case where <large number> doesn't
3850 fit in a long but <large number>-1 does. */
3851 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3852 || (n2bits != 0 && n3bits == 0
3853 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3854 && n3 == LONG_MAX))
3855 {
3856 got_signed = 1;
3857 nbits = n2bits;
3858 }
3859
3860 if (got_signed || got_unsigned)
3861 {
3862 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3863 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3864 objfile);
3865 }
3866 else
3867 return error_type (pp, objfile);
3868 }
3869
3870 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3871 if (self_subrange && n2 == 0 && n3 == 0)
3872 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3873
3874 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3875 is the width in bytes.
3876
3877 Fortran programs appear to use this for complex types also. To
3878 distinguish between floats and complex, g77 (and others?) seem
3879 to use self-subranges for the complexes, and subranges of int for
3880 the floats.
3881
3882 Also note that for complexes, g77 sets n2 to the size of one of
3883 the member floats, not the whole complex beast. My guess is that
3884 this was to work well with pre-COMPLEX versions of gdb. */
3885
3886 if (n3 == 0 && n2 > 0)
3887 {
3888 struct type *float_type
3889 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3890
3891 if (self_subrange)
3892 {
3893 struct type *complex_type =
3894 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3895 TYPE_TARGET_TYPE (complex_type) = float_type;
3896 return complex_type;
3897 }
3898 else
3899 return float_type;
3900 }
3901
3902 /* If the upper bound is -1, it must really be an unsigned int. */
3903
3904 else if (n2 == 0 && n3 == -1)
3905 {
3906 /* It is unsigned int or unsigned long. */
3907 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3908 compatibility hack. */
3909 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3910 TYPE_FLAG_UNSIGNED, NULL, objfile);
3911 }
3912
3913 /* Special case: char is defined (Who knows why) as a subrange of
3914 itself with range 0-127. */
3915 else if (self_subrange && n2 == 0 && n3 == 127)
3916 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3917
3918 /* We used to do this only for subrange of self or subrange of int. */
3919 else if (n2 == 0)
3920 {
3921 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3922 "unsigned long", and we already checked for that,
3923 so don't need to test for it here. */
3924
3925 if (n3 < 0)
3926 /* n3 actually gives the size. */
3927 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3928 NULL, objfile);
3929
3930 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3931 unsigned n-byte integer. But do require n to be a power of
3932 two; we don't want 3- and 5-byte integers flying around. */
3933 {
3934 int bytes;
3935 unsigned long bits;
3936
3937 bits = n3;
3938 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3939 bits >>= 8;
3940 if (bits == 0
3941 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3942 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3943 objfile);
3944 }
3945 }
3946 /* I think this is for Convex "long long". Since I don't know whether
3947 Convex sets self_subrange, I also accept that particular size regardless
3948 of self_subrange. */
3949 else if (n3 == 0 && n2 < 0
3950 && (self_subrange
3951 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3952 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
3953 else if (n2 == -n3 - 1)
3954 {
3955 if (n3 == 0x7f)
3956 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3957 if (n3 == 0x7fff)
3958 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3959 if (n3 == 0x7fffffff)
3960 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3961 }
3962
3963 /* We have a real range type on our hands. Allocate space and
3964 return a real pointer. */
3965 handle_true_range:
3966
3967 if (self_subrange)
3968 index_type = builtin_type_int;
3969 else
3970 index_type = *dbx_lookup_type (rangenums);
3971 if (index_type == NULL)
3972 {
3973 /* Does this actually ever happen? Is that why we are worrying
3974 about dealing with it rather than just calling error_type? */
3975
3976 static struct type *range_type_index;
3977
3978 complaint (&symfile_complaints,
3979 "base type %d of range type is not defined", rangenums[1]);
3980 if (range_type_index == NULL)
3981 range_type_index =
3982 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3983 0, "range type index type", NULL);
3984 index_type = range_type_index;
3985 }
3986
3987 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3988 return (result_type);
3989 }
3990
3991 /* Read in an argument list. This is a list of types, separated by commas
3992 and terminated with END. Return the list of types read in, or (struct type
3993 **)-1 if there is an error. */
3994
3995 static struct field *
3996 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
3997 int *varargsp)
3998 {
3999 /* FIXME! Remove this arbitrary limit! */
4000 struct type *types[1024]; /* allow for fns of 1023 parameters */
4001 int n = 0, i;
4002 struct field *rval;
4003
4004 while (**pp != end)
4005 {
4006 if (**pp != ',')
4007 /* Invalid argument list: no ','. */
4008 return (struct field *) -1;
4009 (*pp)++;
4010 STABS_CONTINUE (pp, objfile);
4011 types[n++] = read_type (pp, objfile);
4012 }
4013 (*pp)++; /* get past `end' (the ':' character) */
4014
4015 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4016 *varargsp = 1;
4017 else
4018 {
4019 n--;
4020 *varargsp = 0;
4021 }
4022
4023 rval = (struct field *) xmalloc (n * sizeof (struct field));
4024 memset (rval, 0, n * sizeof (struct field));
4025 for (i = 0; i < n; i++)
4026 rval[i].type = types[i];
4027 *nargsp = n;
4028 return rval;
4029 }
4030 \f
4031 /* Common block handling. */
4032
4033 /* List of symbols declared since the last BCOMM. This list is a tail
4034 of local_symbols. When ECOMM is seen, the symbols on the list
4035 are noted so their proper addresses can be filled in later,
4036 using the common block base address gotten from the assembler
4037 stabs. */
4038
4039 static struct pending *common_block;
4040 static int common_block_i;
4041
4042 /* Name of the current common block. We get it from the BCOMM instead of the
4043 ECOMM to match IBM documentation (even though IBM puts the name both places
4044 like everyone else). */
4045 static char *common_block_name;
4046
4047 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4048 to remain after this function returns. */
4049
4050 void
4051 common_block_start (char *name, struct objfile *objfile)
4052 {
4053 if (common_block_name != NULL)
4054 {
4055 complaint (&symfile_complaints,
4056 "Invalid symbol data: common block within common block");
4057 }
4058 common_block = local_symbols;
4059 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4060 common_block_name = obsavestring (name, strlen (name),
4061 &objfile->symbol_obstack);
4062 }
4063
4064 /* Process a N_ECOMM symbol. */
4065
4066 void
4067 common_block_end (struct objfile *objfile)
4068 {
4069 /* Symbols declared since the BCOMM are to have the common block
4070 start address added in when we know it. common_block and
4071 common_block_i point to the first symbol after the BCOMM in
4072 the local_symbols list; copy the list and hang it off the
4073 symbol for the common block name for later fixup. */
4074 int i;
4075 struct symbol *sym;
4076 struct pending *new = 0;
4077 struct pending *next;
4078 int j;
4079
4080 if (common_block_name == NULL)
4081 {
4082 complaint (&symfile_complaints, "ECOMM symbol unmatched by BCOMM");
4083 return;
4084 }
4085
4086 sym = (struct symbol *)
4087 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4088 memset (sym, 0, sizeof (struct symbol));
4089 /* Note: common_block_name already saved on symbol_obstack */
4090 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4091 SYMBOL_CLASS (sym) = LOC_BLOCK;
4092
4093 /* Now we copy all the symbols which have been defined since the BCOMM. */
4094
4095 /* Copy all the struct pendings before common_block. */
4096 for (next = local_symbols;
4097 next != NULL && next != common_block;
4098 next = next->next)
4099 {
4100 for (j = 0; j < next->nsyms; j++)
4101 add_symbol_to_list (next->symbol[j], &new);
4102 }
4103
4104 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4105 NULL, it means copy all the local symbols (which we already did
4106 above). */
4107
4108 if (common_block != NULL)
4109 for (j = common_block_i; j < common_block->nsyms; j++)
4110 add_symbol_to_list (common_block->symbol[j], &new);
4111
4112 SYMBOL_TYPE (sym) = (struct type *) new;
4113
4114 /* Should we be putting local_symbols back to what it was?
4115 Does it matter? */
4116
4117 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4118 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4119 global_sym_chain[i] = sym;
4120 common_block_name = NULL;
4121 }
4122
4123 /* Add a common block's start address to the offset of each symbol
4124 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4125 the common block name). */
4126
4127 static void
4128 fix_common_block (struct symbol *sym, int valu)
4129 {
4130 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4131 for (; next; next = next->next)
4132 {
4133 int j;
4134 for (j = next->nsyms - 1; j >= 0; j--)
4135 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4136 }
4137 }
4138 \f
4139
4140
4141 /* What about types defined as forward references inside of a small lexical
4142 scope? */
4143 /* Add a type to the list of undefined types to be checked through
4144 once this file has been read in. */
4145
4146 static void
4147 add_undefined_type (struct type *type)
4148 {
4149 if (undef_types_length == undef_types_allocated)
4150 {
4151 undef_types_allocated *= 2;
4152 undef_types = (struct type **)
4153 xrealloc ((char *) undef_types,
4154 undef_types_allocated * sizeof (struct type *));
4155 }
4156 undef_types[undef_types_length++] = type;
4157 }
4158
4159 /* Go through each undefined type, see if it's still undefined, and fix it
4160 up if possible. We have two kinds of undefined types:
4161
4162 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4163 Fix: update array length using the element bounds
4164 and the target type's length.
4165 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4166 yet defined at the time a pointer to it was made.
4167 Fix: Do a full lookup on the struct/union tag. */
4168 void
4169 cleanup_undefined_types (void)
4170 {
4171 struct type **type;
4172
4173 for (type = undef_types; type < undef_types + undef_types_length; type++)
4174 {
4175 switch (TYPE_CODE (*type))
4176 {
4177
4178 case TYPE_CODE_STRUCT:
4179 case TYPE_CODE_UNION:
4180 case TYPE_CODE_ENUM:
4181 {
4182 /* Check if it has been defined since. Need to do this here
4183 as well as in check_typedef to deal with the (legitimate in
4184 C though not C++) case of several types with the same name
4185 in different source files. */
4186 if (TYPE_STUB (*type))
4187 {
4188 struct pending *ppt;
4189 int i;
4190 /* Name of the type, without "struct" or "union" */
4191 char *typename = TYPE_TAG_NAME (*type);
4192
4193 if (typename == NULL)
4194 {
4195 complaint (&symfile_complaints, "need a type name");
4196 break;
4197 }
4198 for (ppt = file_symbols; ppt; ppt = ppt->next)
4199 {
4200 for (i = 0; i < ppt->nsyms; i++)
4201 {
4202 struct symbol *sym = ppt->symbol[i];
4203
4204 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4205 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4206 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4207 TYPE_CODE (*type))
4208 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4209 replace_type (*type, SYMBOL_TYPE (sym));
4210 }
4211 }
4212 }
4213 }
4214 break;
4215
4216 default:
4217 {
4218 complaint (&symfile_complaints,
4219 "GDB internal error. cleanup_undefined_types with bad type %d.",
4220 TYPE_CODE (*type));
4221 }
4222 break;
4223 }
4224 }
4225
4226 undef_types_length = 0;
4227 }
4228
4229 /* Scan through all of the global symbols defined in the object file,
4230 assigning values to the debugging symbols that need to be assigned
4231 to. Get these symbols from the minimal symbol table. */
4232
4233 void
4234 scan_file_globals (struct objfile *objfile)
4235 {
4236 int hash;
4237 struct minimal_symbol *msymbol;
4238 struct symbol *sym, *prev;
4239 struct objfile *resolve_objfile;
4240
4241 /* SVR4 based linkers copy referenced global symbols from shared
4242 libraries to the main executable.
4243 If we are scanning the symbols for a shared library, try to resolve
4244 them from the minimal symbols of the main executable first. */
4245
4246 if (symfile_objfile && objfile != symfile_objfile)
4247 resolve_objfile = symfile_objfile;
4248 else
4249 resolve_objfile = objfile;
4250
4251 while (1)
4252 {
4253 /* Avoid expensive loop through all minimal symbols if there are
4254 no unresolved symbols. */
4255 for (hash = 0; hash < HASHSIZE; hash++)
4256 {
4257 if (global_sym_chain[hash])
4258 break;
4259 }
4260 if (hash >= HASHSIZE)
4261 return;
4262
4263 for (msymbol = resolve_objfile->msymbols;
4264 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4265 msymbol++)
4266 {
4267 QUIT;
4268
4269 /* Skip static symbols. */
4270 switch (MSYMBOL_TYPE (msymbol))
4271 {
4272 case mst_file_text:
4273 case mst_file_data:
4274 case mst_file_bss:
4275 continue;
4276 default:
4277 break;
4278 }
4279
4280 prev = NULL;
4281
4282 /* Get the hash index and check all the symbols
4283 under that hash index. */
4284
4285 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4286
4287 for (sym = global_sym_chain[hash]; sym;)
4288 {
4289 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4290 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4291 {
4292 /* Splice this symbol out of the hash chain and
4293 assign the value we have to it. */
4294 if (prev)
4295 {
4296 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4297 }
4298 else
4299 {
4300 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4301 }
4302
4303 /* Check to see whether we need to fix up a common block. */
4304 /* Note: this code might be executed several times for
4305 the same symbol if there are multiple references. */
4306 if (sym)
4307 {
4308 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4309 {
4310 fix_common_block (sym,
4311 SYMBOL_VALUE_ADDRESS (msymbol));
4312 }
4313 else
4314 {
4315 SYMBOL_VALUE_ADDRESS (sym)
4316 = SYMBOL_VALUE_ADDRESS (msymbol);
4317 }
4318 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4319 }
4320
4321 if (prev)
4322 {
4323 sym = SYMBOL_VALUE_CHAIN (prev);
4324 }
4325 else
4326 {
4327 sym = global_sym_chain[hash];
4328 }
4329 }
4330 else
4331 {
4332 prev = sym;
4333 sym = SYMBOL_VALUE_CHAIN (sym);
4334 }
4335 }
4336 }
4337 if (resolve_objfile == objfile)
4338 break;
4339 resolve_objfile = objfile;
4340 }
4341
4342 /* Change the storage class of any remaining unresolved globals to
4343 LOC_UNRESOLVED and remove them from the chain. */
4344 for (hash = 0; hash < HASHSIZE; hash++)
4345 {
4346 sym = global_sym_chain[hash];
4347 while (sym)
4348 {
4349 prev = sym;
4350 sym = SYMBOL_VALUE_CHAIN (sym);
4351
4352 /* Change the symbol address from the misleading chain value
4353 to address zero. */
4354 SYMBOL_VALUE_ADDRESS (prev) = 0;
4355
4356 /* Complain about unresolved common block symbols. */
4357 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4358 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4359 else
4360 complaint (&symfile_complaints,
4361 "%s: common block `%s' from global_sym_chain unresolved",
4362 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4363 }
4364 }
4365 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4366 }
4367
4368 /* Initialize anything that needs initializing when starting to read
4369 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4370 to a psymtab. */
4371
4372 void
4373 stabsread_init (void)
4374 {
4375 }
4376
4377 /* Initialize anything that needs initializing when a completely new
4378 symbol file is specified (not just adding some symbols from another
4379 file, e.g. a shared library). */
4380
4381 void
4382 stabsread_new_init (void)
4383 {
4384 /* Empty the hash table of global syms looking for values. */
4385 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4386 }
4387
4388 /* Initialize anything that needs initializing at the same time as
4389 start_symtab() is called. */
4390
4391 void
4392 start_stabs (void)
4393 {
4394 global_stabs = NULL; /* AIX COFF */
4395 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4396 n_this_object_header_files = 1;
4397 type_vector_length = 0;
4398 type_vector = (struct type **) 0;
4399
4400 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4401 common_block_name = NULL;
4402 }
4403
4404 /* Call after end_symtab() */
4405
4406 void
4407 end_stabs (void)
4408 {
4409 if (type_vector)
4410 {
4411 xfree (type_vector);
4412 }
4413 type_vector = 0;
4414 type_vector_length = 0;
4415 previous_stab_code = 0;
4416 }
4417
4418 void
4419 finish_global_stabs (struct objfile *objfile)
4420 {
4421 if (global_stabs)
4422 {
4423 patch_block_stabs (global_symbols, global_stabs, objfile);
4424 xfree (global_stabs);
4425 global_stabs = NULL;
4426 }
4427 }
4428
4429 /* Find the end of the name, delimited by a ':', but don't match
4430 ObjC symbols which look like -[Foo bar::]:bla. */
4431 static char *
4432 find_name_end (char *name)
4433 {
4434 char *s = name;
4435 if (s[0] == '-' || *s == '+')
4436 {
4437 /* Must be an ObjC method symbol. */
4438 if (s[1] != '[')
4439 {
4440 error ("invalid symbol name \"%s\"", name);
4441 }
4442 s = strchr (s, ']');
4443 if (s == NULL)
4444 {
4445 error ("invalid symbol name \"%s\"", name);
4446 }
4447 return strchr (s, ':');
4448 }
4449 else
4450 {
4451 return strchr (s, ':');
4452 }
4453 }
4454
4455 /* Initializer for this module */
4456
4457 void
4458 _initialize_stabsread (void)
4459 {
4460 undef_types_allocated = 20;
4461 undef_types_length = 0;
4462 undef_types = (struct type **)
4463 xmalloc (undef_types_allocated * sizeof (struct type *));
4464 }
This page took 0.12282 seconds and 4 git commands to generate.