gdb/23712: Introduce multidictionary's
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "bcache.h"
48 #include <ctype.h>
49
50 /* Ask stabsread.h to define the vars it normally declares `extern'. */
51 #define EXTERN
52 /**/
53 #include "stabsread.h" /* Our own declarations */
54 #undef EXTERN
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, const char **, const char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (const char **, int, int *, int);
93
94 static struct type *error_type (const char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (const char **, int *);
103
104 static struct type *read_type (const char **, struct objfile *);
105
106 static struct type *read_range_type (const char **, int[2],
107 int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (const char **,
110 int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (const char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, const char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, const char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (const char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (const char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (const char **, int, struct objfile *,
148 int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, const char **, struct type *,
154 struct objfile *);
155
156 static const char *find_name_end (const char *name);
157
158 static int process_reference (const char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 static void
166 invalid_cpp_abbrev_complaint (const char *arg1)
167 {
168 complaint (_("invalid C++ abbreviation `%s'"), arg1);
169 }
170
171 static void
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 {
174 complaint (_("bad register number %d (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint ("%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211
212 /* Vector of types defined so far, indexed by their type numbers.
213 (In newer sun systems, dbx uses a pair of numbers in parens,
214 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
215 Then these numbers must be translated through the type_translations
216 hash table to get the index into the type vector.) */
217
218 static struct type **type_vector;
219
220 /* Number of elements allocated for type_vector currently. */
221
222 static int type_vector_length;
223
224 /* Initial size of type vector. Is realloc'd larger if needed, and
225 realloc'd down to the size actually used, when completed. */
226
227 #define INITIAL_TYPE_VECTOR_LENGTH 160
228 \f
229
230 /* Look up a dbx type-number pair. Return the address of the slot
231 where the type for that number-pair is stored.
232 The number-pair is in TYPENUMS.
233
234 This can be used for finding the type associated with that pair
235 or for associating a new type with the pair. */
236
237 static struct type **
238 dbx_lookup_type (int typenums[2], struct objfile *objfile)
239 {
240 int filenum = typenums[0];
241 int index = typenums[1];
242 unsigned old_len;
243 int real_filenum;
244 struct header_file *f;
245 int f_orig_length;
246
247 if (filenum == -1) /* -1,-1 is for temporary types. */
248 return 0;
249
250 if (filenum < 0 || filenum >= n_this_object_header_files)
251 {
252 complaint (_("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* Allocate a floating-point type of size BITS. */
358
359 static struct type *
360 dbx_init_float_type (struct objfile *objfile, int bits)
361 {
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
371
372 return type;
373 }
374
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
377
378 static void
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
381 {
382 int ii;
383 char *name;
384 const char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
391
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp - name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, get_global_symbols ());
436 }
437 else
438 {
439 pp += 2;
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452 }
453 \f
454
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463 static int
464 read_type_number (const char **pp, int *typenums)
465 {
466 int nbits;
467
468 if (**pp == '(')
469 {
470 (*pp)++;
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
472 if (nbits != 0)
473 return -1;
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
475 if (nbits != 0)
476 return -1;
477 }
478 else
479 {
480 typenums[0] = 0;
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 return 0;
486 }
487 \f
488
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
496
497 struct ref_map
498 {
499 const char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502 };
503
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
508 static struct ref_map *ref_map;
509
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
512
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
515
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
519 void
520 stabsread_clear_cache (void)
521 {
522 ref_count = 0;
523 ref_chunk = 0;
524 }
525
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
530 void
531 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
532 {
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
541
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551 }
552
553 /* Return defined sym for the reference REFNUM. */
554 struct symbol *
555 ref_search (int refnum)
556 {
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560 }
561
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
565 static int
566 process_reference (const char **string)
567 {
568 const char *p;
569 int refnum = 0;
570
571 if (**string != '#')
572 return 0;
573
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585 }
586
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590 int
591 symbol_reference_defined (const char **string)
592 {
593 const char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
598 /* Defining symbols end in '='. */
599 if (*p == '=')
600 {
601 /* Symbol is being defined here. */
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612 }
613
614 static int
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616 {
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
619 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
620 {
621 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
622 SYMBOL_PRINT_NAME (sym));
623
624 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
625 }
626
627 return regno;
628 }
629
630 static const struct symbol_register_ops stab_register_funcs = {
631 stab_reg_to_regnum
632 };
633
634 /* The "aclass" indices for computed symbols. */
635
636 static int stab_register_index;
637 static int stab_regparm_index;
638
639 struct symbol *
640 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
641 struct objfile *objfile)
642 {
643 struct gdbarch *gdbarch = get_objfile_arch (objfile);
644 struct symbol *sym;
645 const char *p = find_name_end (string);
646 int deftype;
647 int synonym = 0;
648 int i;
649
650 /* We would like to eliminate nameless symbols, but keep their types.
651 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
652 to type 2, but, should not create a symbol to address that type. Since
653 the symbol will be nameless, there is no way any user can refer to it. */
654
655 int nameless;
656
657 /* Ignore syms with empty names. */
658 if (string[0] == 0)
659 return 0;
660
661 /* Ignore old-style symbols from cc -go. */
662 if (p == 0)
663 return 0;
664
665 while (p[1] == ':')
666 {
667 p += 2;
668 p = strchr (p, ':');
669 if (p == NULL)
670 {
671 complaint (
672 _("Bad stabs string '%s'"), string);
673 return NULL;
674 }
675 }
676
677 /* If a nameless stab entry, all we need is the type, not the symbol.
678 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
679 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
680
681 current_symbol = sym = allocate_symbol (objfile);
682
683 if (processing_gcc_compilation)
684 {
685 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
686 number of bytes occupied by a type or object, which we ignore. */
687 SYMBOL_LINE (sym) = desc;
688 }
689 else
690 {
691 SYMBOL_LINE (sym) = 0; /* unknown */
692 }
693
694 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
695 &objfile->objfile_obstack);
696
697 if (is_cplus_marker (string[0]))
698 {
699 /* Special GNU C++ names. */
700 switch (string[1])
701 {
702 case 't':
703 SYMBOL_SET_LINKAGE_NAME (sym, "this");
704 break;
705
706 case 'v': /* $vtbl_ptr_type */
707 goto normal;
708
709 case 'e':
710 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
711 break;
712
713 case '_':
714 /* This was an anonymous type that was never fixed up. */
715 goto normal;
716
717 case 'X':
718 /* SunPRO (3.0 at least) static variable encoding. */
719 if (gdbarch_static_transform_name_p (gdbarch))
720 goto normal;
721 /* fall through */
722
723 default:
724 complaint (_("Unknown C++ symbol name `%s'"),
725 string);
726 goto normal; /* Do *something* with it. */
727 }
728 }
729 else
730 {
731 normal:
732 std::string new_name;
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 {
736 char *name = (char *) alloca (p - string + 1);
737
738 memcpy (name, string, p - string);
739 name[p - string] = '\0';
740 new_name = cp_canonicalize_string (name);
741 }
742 if (!new_name.empty ())
743 {
744 SYMBOL_SET_NAMES (sym,
745 new_name.c_str (), new_name.length (),
746 1, objfile);
747 }
748 else
749 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
750
751 if (SYMBOL_LANGUAGE (sym) == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
753 objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
787 SYMBOL_TYPE (sym) = error_type (&p, objfile);
788 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
789 add_symbol_to_list (sym, get_file_symbols ());
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 gdb_byte *dbl_valu;
798 struct type *dbl_type;
799
800 dbl_type = objfile_type (objfile)->builtin_double;
801 dbl_valu
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 TYPE_LENGTH (dbl_type));
804
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
806
807 SYMBOL_TYPE (sym) = dbl_type;
808 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
810 }
811 break;
812 case 'i':
813 {
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
820
821 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
822 SYMBOL_VALUE (sym) = atoi (p);
823 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
824 }
825 break;
826
827 case 'c':
828 {
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 }
833 break;
834
835 case 's':
836 {
837 struct type *range_type;
838 int ind = 0;
839 char quote = *p++;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
842
843 if (quote != '\'' && quote != '"')
844 {
845 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
846 SYMBOL_TYPE (sym) = error_type (&p, objfile);
847 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
848 add_symbol_to_list (sym, get_file_symbols ());
849 return sym;
850 }
851
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
854 {
855 if (*p == '\\' && p[1] == quote)
856 {
857 string_local[ind] = (gdb_byte) quote;
858 ind++;
859 p += 2;
860 }
861 else if (*p)
862 {
863 string_local[ind] = (gdb_byte) (*p);
864 ind++;
865 p++;
866 }
867 }
868 if (*p != quote)
869 {
870 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
871 SYMBOL_TYPE (sym) = error_type (&p, objfile);
872 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
873 add_symbol_to_list (sym, get_file_symbols ());
874 return sym;
875 }
876
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
879 range_type
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
882 0, ind);
883 SYMBOL_TYPE (sym) = create_array_type (NULL,
884 objfile_type (objfile)->builtin_char,
885 range_type);
886 string_value
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
889 p++;
890
891 SYMBOL_VALUE_BYTES (sym) = string_value;
892 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
893 }
894 break;
895
896 case 'e':
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
901 {
902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
903 SYMBOL_TYPE (sym) = read_type (&p, objfile);
904
905 if (*p != ',')
906 {
907 SYMBOL_TYPE (sym) = error_type (&p, objfile);
908 break;
909 }
910 ++p;
911
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
917 however. */
918 SYMBOL_VALUE (sym) = atoi (p);
919 }
920 break;
921 default:
922 {
923 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
924 SYMBOL_TYPE (sym) = error_type (&p, objfile);
925 }
926 }
927 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
928 add_symbol_to_list (sym, get_file_symbols ());
929 return sym;
930
931 case 'C':
932 /* The name of a caught exception. */
933 SYMBOL_TYPE (sym) = read_type (&p, objfile);
934 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 SYMBOL_VALUE_ADDRESS (sym) = valu;
937 add_symbol_to_list (sym, get_local_symbols ());
938 break;
939
940 case 'f':
941 /* A static function definition. */
942 SYMBOL_TYPE (sym) = read_type (&p, objfile);
943 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
944 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
947
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
953 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
954
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
962
963 /* fall into process_prototype_types. */
964
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
967 if (*p == ';')
968 {
969 struct type *ftype = SYMBOL_TYPE (sym);
970 int nsemi = 0;
971 int nparams = 0;
972 const char *p1 = p;
973
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
976 while (*p1)
977 {
978 if (*p1++ == ';')
979 nsemi++;
980 }
981
982 /* Allocate parameter information fields and fill them in. */
983 TYPE_FIELDS (ftype) = (struct field *)
984 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
985 while (*p++ == ';')
986 {
987 struct type *ptype;
988
989 /* A type number of zero indicates the start of varargs.
990 FIXME: GDB currently ignores vararg functions. */
991 if (p[0] == '0' && p[1] == '\0')
992 break;
993 ptype = read_type (&p, objfile);
994
995 /* The Sun compilers mark integer arguments, which should
996 be promoted to the width of the calling conventions, with
997 a type which references itself. This type is turned into
998 a TYPE_CODE_VOID type by read_type, and we have to turn
999 it back into builtin_int here.
1000 FIXME: Do we need a new builtin_promoted_int_arg ? */
1001 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1002 ptype = objfile_type (objfile)->builtin_int;
1003 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1004 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1005 }
1006 TYPE_NFIELDS (ftype) = nparams;
1007 TYPE_PROTOTYPED (ftype) = 1;
1008 }
1009 break;
1010
1011 case 'F':
1012 /* A global function definition. */
1013 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1014 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1015 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1016 add_symbol_to_list (sym, get_global_symbols ());
1017 goto process_function_types;
1018
1019 case 'G':
1020 /* For a class G (global) symbol, it appears that the
1021 value is not correct. It is necessary to search for the
1022 corresponding linker definition to find the value.
1023 These definitions appear at the end of the namelist. */
1024 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1025 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1026 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1027 /* Don't add symbol references to global_sym_chain.
1028 Symbol references don't have valid names and wont't match up with
1029 minimal symbols when the global_sym_chain is relocated.
1030 We'll fixup symbol references when we fixup the defining symbol. */
1031 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1032 {
1033 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1034 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1035 global_sym_chain[i] = sym;
1036 }
1037 add_symbol_to_list (sym, get_global_symbols ());
1038 break;
1039
1040 /* This case is faked by a conditional above,
1041 when there is no code letter in the dbx data.
1042 Dbx data never actually contains 'l'. */
1043 case 's':
1044 case 'l':
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1047 SYMBOL_VALUE (sym) = valu;
1048 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1049 add_symbol_to_list (sym, get_local_symbols ());
1050 break;
1051
1052 case 'p':
1053 if (*p == 'F')
1054 /* pF is a two-letter code that means a function parameter in Fortran.
1055 The type-number specifies the type of the return value.
1056 Translate it into a pointer-to-function type. */
1057 {
1058 p++;
1059 SYMBOL_TYPE (sym)
1060 = lookup_pointer_type
1061 (lookup_function_type (read_type (&p, objfile)));
1062 }
1063 else
1064 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1065
1066 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1067 SYMBOL_VALUE (sym) = valu;
1068 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1069 SYMBOL_IS_ARGUMENT (sym) = 1;
1070 add_symbol_to_list (sym, get_local_symbols ());
1071
1072 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1073 {
1074 /* On little-endian machines, this crud is never necessary,
1075 and, if the extra bytes contain garbage, is harmful. */
1076 break;
1077 }
1078
1079 /* If it's gcc-compiled, if it says `short', believe it. */
1080 if (processing_gcc_compilation
1081 || gdbarch_believe_pcc_promotion (gdbarch))
1082 break;
1083
1084 if (!gdbarch_believe_pcc_promotion (gdbarch))
1085 {
1086 /* If PCC says a parameter is a short or a char, it is
1087 really an int. */
1088 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1089 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1090 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1091 {
1092 SYMBOL_TYPE (sym) =
1093 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1094 ? objfile_type (objfile)->builtin_unsigned_int
1095 : objfile_type (objfile)->builtin_int;
1096 }
1097 break;
1098 }
1099 /* Fall through. */
1100
1101 case 'P':
1102 /* acc seems to use P to declare the prototypes of functions that
1103 are referenced by this file. gdb is not prepared to deal
1104 with this extra information. FIXME, it ought to. */
1105 if (type == N_FUN)
1106 {
1107 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1108 goto process_prototype_types;
1109 }
1110 /*FALLTHROUGH */
1111
1112 case 'R':
1113 /* Parameter which is in a register. */
1114 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1115 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1116 SYMBOL_IS_ARGUMENT (sym) = 1;
1117 SYMBOL_VALUE (sym) = valu;
1118 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1119 add_symbol_to_list (sym, get_local_symbols ());
1120 break;
1121
1122 case 'r':
1123 /* Register variable (either global or local). */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1126 SYMBOL_VALUE (sym) = valu;
1127 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1128 if (within_function)
1129 {
1130 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1131 the same name to represent an argument passed in a
1132 register. GCC uses 'P' for the same case. So if we find
1133 such a symbol pair we combine it into one 'P' symbol.
1134 For Sun cc we need to do this regardless of
1135 stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1137 the stack.
1138
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1143 etc.).
1144
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1149
1150 struct pending *local_symbols = *get_local_symbols ();
1151 if (local_symbols
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1154 {
1155 struct symbol *prev_sym;
1156
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1159 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1160 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1161 SYMBOL_LINKAGE_NAME (sym)) == 0)
1162 {
1163 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1167 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1168 sym = prev_sym;
1169 break;
1170 }
1171 }
1172 add_symbol_to_list (sym, get_local_symbols ());
1173 }
1174 else
1175 add_symbol_to_list (sym, get_file_symbols ());
1176 break;
1177
1178 case 'S':
1179 /* Static symbol at top level of file. */
1180 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1181 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1182 SYMBOL_VALUE_ADDRESS (sym) = valu;
1183 if (gdbarch_static_transform_name_p (gdbarch)
1184 && gdbarch_static_transform_name (gdbarch,
1185 SYMBOL_LINKAGE_NAME (sym))
1186 != SYMBOL_LINKAGE_NAME (sym))
1187 {
1188 struct bound_minimal_symbol msym;
1189
1190 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1191 NULL, objfile);
1192 if (msym.minsym != NULL)
1193 {
1194 const char *new_name = gdbarch_static_transform_name
1195 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1196
1197 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1198 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1199 }
1200 }
1201 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1202 add_symbol_to_list (sym, get_file_symbols ());
1203 break;
1204
1205 case 't':
1206 /* In Ada, there is no distinction between typedef and non-typedef;
1207 any type declaration implicitly has the equivalent of a typedef,
1208 and thus 't' is in fact equivalent to 'Tt'.
1209
1210 Therefore, for Ada units, we check the character immediately
1211 before the 't', and if we do not find a 'T', then make sure to
1212 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1213 will be stored in the VAR_DOMAIN). If the symbol was indeed
1214 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1215 elsewhere, so we don't need to take care of that.
1216
1217 This is important to do, because of forward references:
1218 The cleanup of undefined types stored in undef_types only uses
1219 STRUCT_DOMAIN symbols to perform the replacement. */
1220 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1221
1222 /* Typedef */
1223 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1224
1225 /* For a nameless type, we don't want a create a symbol, thus we
1226 did not use `sym'. Return without further processing. */
1227 if (nameless)
1228 return NULL;
1229
1230 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1231 SYMBOL_VALUE (sym) = valu;
1232 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1233 /* C++ vagaries: we may have a type which is derived from
1234 a base type which did not have its name defined when the
1235 derived class was output. We fill in the derived class's
1236 base part member's name here in that case. */
1237 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1238 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1239 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1240 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1241 {
1242 int j;
1243
1244 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1245 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1246 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1247 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1248 }
1249
1250 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1251 {
1252 /* gcc-2.6 or later (when using -fvtable-thunks)
1253 emits a unique named type for a vtable entry.
1254 Some gdb code depends on that specific name. */
1255 extern const char vtbl_ptr_name[];
1256
1257 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1258 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1259 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1260 {
1261 /* If we are giving a name to a type such as "pointer to
1262 foo" or "function returning foo", we better not set
1263 the TYPE_NAME. If the program contains "typedef char
1264 *caddr_t;", we don't want all variables of type char
1265 * to print as caddr_t. This is not just a
1266 consequence of GDB's type management; PCC and GCC (at
1267 least through version 2.4) both output variables of
1268 either type char * or caddr_t with the type number
1269 defined in the 't' symbol for caddr_t. If a future
1270 compiler cleans this up it GDB is not ready for it
1271 yet, but if it becomes ready we somehow need to
1272 disable this check (without breaking the PCC/GCC2.4
1273 case).
1274
1275 Sigh.
1276
1277 Fortunately, this check seems not to be necessary
1278 for anything except pointers or functions. */
1279 /* ezannoni: 2000-10-26. This seems to apply for
1280 versions of gcc older than 2.8. This was the original
1281 problem: with the following code gdb would tell that
1282 the type for name1 is caddr_t, and func is char().
1283
1284 typedef char *caddr_t;
1285 char *name2;
1286 struct x
1287 {
1288 char *name1;
1289 } xx;
1290 char *func()
1291 {
1292 }
1293 main () {}
1294 */
1295
1296 /* Pascal accepts names for pointer types. */
1297 if (get_current_subfile ()->language == language_pascal)
1298 {
1299 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1300 }
1301 }
1302 else
1303 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1304 }
1305
1306 add_symbol_to_list (sym, get_file_symbols ());
1307
1308 if (synonym)
1309 {
1310 /* Create the STRUCT_DOMAIN clone. */
1311 struct symbol *struct_sym = allocate_symbol (objfile);
1312
1313 *struct_sym = *sym;
1314 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1315 SYMBOL_VALUE (struct_sym) = valu;
1316 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1317 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1318 TYPE_NAME (SYMBOL_TYPE (sym))
1319 = obconcat (&objfile->objfile_obstack,
1320 SYMBOL_LINKAGE_NAME (sym),
1321 (char *) NULL);
1322 add_symbol_to_list (struct_sym, get_file_symbols ());
1323 }
1324
1325 break;
1326
1327 case 'T':
1328 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1329 by 't' which means we are typedef'ing it as well. */
1330 synonym = *p == 't';
1331
1332 if (synonym)
1333 p++;
1334
1335 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1336
1337 /* For a nameless type, we don't want a create a symbol, thus we
1338 did not use `sym'. Return without further processing. */
1339 if (nameless)
1340 return NULL;
1341
1342 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (sym) = valu;
1344 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (sym, get_file_symbols ());
1351
1352 if (synonym)
1353 {
1354 /* Clone the sym and then modify it. */
1355 struct symbol *typedef_sym = allocate_symbol (objfile);
1356
1357 *typedef_sym = *sym;
1358 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1359 SYMBOL_VALUE (typedef_sym) = valu;
1360 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1361 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1362 TYPE_NAME (SYMBOL_TYPE (sym))
1363 = obconcat (&objfile->objfile_obstack,
1364 SYMBOL_LINKAGE_NAME (sym),
1365 (char *) NULL);
1366 add_symbol_to_list (typedef_sym, get_file_symbols ());
1367 }
1368 break;
1369
1370 case 'V':
1371 /* Static symbol of local scope. */
1372 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1373 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1374 SYMBOL_VALUE_ADDRESS (sym) = valu;
1375 if (gdbarch_static_transform_name_p (gdbarch)
1376 && gdbarch_static_transform_name (gdbarch,
1377 SYMBOL_LINKAGE_NAME (sym))
1378 != SYMBOL_LINKAGE_NAME (sym))
1379 {
1380 struct bound_minimal_symbol msym;
1381
1382 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1383 NULL, objfile);
1384 if (msym.minsym != NULL)
1385 {
1386 const char *new_name = gdbarch_static_transform_name
1387 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1388
1389 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1390 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1391 }
1392 }
1393 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1394 add_symbol_to_list (sym, get_local_symbols ());
1395 break;
1396
1397 case 'v':
1398 /* Reference parameter */
1399 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1400 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1401 SYMBOL_IS_ARGUMENT (sym) = 1;
1402 SYMBOL_VALUE (sym) = valu;
1403 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1404 add_symbol_to_list (sym, get_local_symbols ());
1405 break;
1406
1407 case 'a':
1408 /* Reference parameter which is in a register. */
1409 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1410 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1411 SYMBOL_IS_ARGUMENT (sym) = 1;
1412 SYMBOL_VALUE (sym) = valu;
1413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1414 add_symbol_to_list (sym, get_local_symbols ());
1415 break;
1416
1417 case 'X':
1418 /* This is used by Sun FORTRAN for "function result value".
1419 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1420 that Pascal uses it too, but when I tried it Pascal used
1421 "x:3" (local symbol) instead. */
1422 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1423 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1424 SYMBOL_VALUE (sym) = valu;
1425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1426 add_symbol_to_list (sym, get_local_symbols ());
1427 break;
1428
1429 default:
1430 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1432 SYMBOL_VALUE (sym) = 0;
1433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1434 add_symbol_to_list (sym, get_file_symbols ());
1435 break;
1436 }
1437
1438 /* Some systems pass variables of certain types by reference instead
1439 of by value, i.e. they will pass the address of a structure (in a
1440 register or on the stack) instead of the structure itself. */
1441
1442 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1443 && SYMBOL_IS_ARGUMENT (sym))
1444 {
1445 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1446 variables passed in a register). */
1447 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1448 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1449 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1450 and subsequent arguments on SPARC, for example). */
1451 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1452 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1453 }
1454
1455 return sym;
1456 }
1457
1458 /* Skip rest of this symbol and return an error type.
1459
1460 General notes on error recovery: error_type always skips to the
1461 end of the symbol (modulo cretinous dbx symbol name continuation).
1462 Thus code like this:
1463
1464 if (*(*pp)++ != ';')
1465 return error_type (pp, objfile);
1466
1467 is wrong because if *pp starts out pointing at '\0' (typically as the
1468 result of an earlier error), it will be incremented to point to the
1469 start of the next symbol, which might produce strange results, at least
1470 if you run off the end of the string table. Instead use
1471
1472 if (**pp != ';')
1473 return error_type (pp, objfile);
1474 ++*pp;
1475
1476 or
1477
1478 if (**pp != ';')
1479 foo = error_type (pp, objfile);
1480 else
1481 ++*pp;
1482
1483 And in case it isn't obvious, the point of all this hair is so the compiler
1484 can define new types and new syntaxes, and old versions of the
1485 debugger will be able to read the new symbol tables. */
1486
1487 static struct type *
1488 error_type (const char **pp, struct objfile *objfile)
1489 {
1490 complaint (_("couldn't parse type; debugger out of date?"));
1491 while (1)
1492 {
1493 /* Skip to end of symbol. */
1494 while (**pp != '\0')
1495 {
1496 (*pp)++;
1497 }
1498
1499 /* Check for and handle cretinous dbx symbol name continuation! */
1500 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1501 {
1502 *pp = next_symbol_text (objfile);
1503 }
1504 else
1505 {
1506 break;
1507 }
1508 }
1509 return objfile_type (objfile)->builtin_error;
1510 }
1511 \f
1512
1513 /* Read type information or a type definition; return the type. Even
1514 though this routine accepts either type information or a type
1515 definition, the distinction is relevant--some parts of stabsread.c
1516 assume that type information starts with a digit, '-', or '(' in
1517 deciding whether to call read_type. */
1518
1519 static struct type *
1520 read_type (const char **pp, struct objfile *objfile)
1521 {
1522 struct type *type = 0;
1523 struct type *type1;
1524 int typenums[2];
1525 char type_descriptor;
1526
1527 /* Size in bits of type if specified by a type attribute, or -1 if
1528 there is no size attribute. */
1529 int type_size = -1;
1530
1531 /* Used to distinguish string and bitstring from char-array and set. */
1532 int is_string = 0;
1533
1534 /* Used to distinguish vector from array. */
1535 int is_vector = 0;
1536
1537 /* Read type number if present. The type number may be omitted.
1538 for instance in a two-dimensional array declared with type
1539 "ar1;1;10;ar1;1;10;4". */
1540 if ((**pp >= '0' && **pp <= '9')
1541 || **pp == '('
1542 || **pp == '-')
1543 {
1544 if (read_type_number (pp, typenums) != 0)
1545 return error_type (pp, objfile);
1546
1547 if (**pp != '=')
1548 {
1549 /* Type is not being defined here. Either it already
1550 exists, or this is a forward reference to it.
1551 dbx_alloc_type handles both cases. */
1552 type = dbx_alloc_type (typenums, objfile);
1553
1554 /* If this is a forward reference, arrange to complain if it
1555 doesn't get patched up by the time we're done
1556 reading. */
1557 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1558 add_undefined_type (type, typenums);
1559
1560 return type;
1561 }
1562
1563 /* Type is being defined here. */
1564 /* Skip the '='.
1565 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1566 (*pp) += 2;
1567 }
1568 else
1569 {
1570 /* 'typenums=' not present, type is anonymous. Read and return
1571 the definition, but don't put it in the type vector. */
1572 typenums[0] = typenums[1] = -1;
1573 (*pp)++;
1574 }
1575
1576 again:
1577 type_descriptor = (*pp)[-1];
1578 switch (type_descriptor)
1579 {
1580 case 'x':
1581 {
1582 enum type_code code;
1583
1584 /* Used to index through file_symbols. */
1585 struct pending *ppt;
1586 int i;
1587
1588 /* Name including "struct", etc. */
1589 char *type_name;
1590
1591 {
1592 const char *from, *p, *q1, *q2;
1593
1594 /* Set the type code according to the following letter. */
1595 switch ((*pp)[0])
1596 {
1597 case 's':
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 case 'u':
1601 code = TYPE_CODE_UNION;
1602 break;
1603 case 'e':
1604 code = TYPE_CODE_ENUM;
1605 break;
1606 default:
1607 {
1608 /* Complain and keep going, so compilers can invent new
1609 cross-reference types. */
1610 complaint (_("Unrecognized cross-reference type `%c'"),
1611 (*pp)[0]);
1612 code = TYPE_CODE_STRUCT;
1613 break;
1614 }
1615 }
1616
1617 q1 = strchr (*pp, '<');
1618 p = strchr (*pp, ':');
1619 if (p == NULL)
1620 return error_type (pp, objfile);
1621 if (q1 && p > q1 && p[1] == ':')
1622 {
1623 int nesting_level = 0;
1624
1625 for (q2 = q1; *q2; q2++)
1626 {
1627 if (*q2 == '<')
1628 nesting_level++;
1629 else if (*q2 == '>')
1630 nesting_level--;
1631 else if (*q2 == ':' && nesting_level == 0)
1632 break;
1633 }
1634 p = q2;
1635 if (*p != ':')
1636 return error_type (pp, objfile);
1637 }
1638 type_name = NULL;
1639 if (get_current_subfile ()->language == language_cplus)
1640 {
1641 char *name = (char *) alloca (p - *pp + 1);
1642
1643 memcpy (name, *pp, p - *pp);
1644 name[p - *pp] = '\0';
1645
1646 std::string new_name = cp_canonicalize_string (name);
1647 if (!new_name.empty ())
1648 {
1649 type_name
1650 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1651 new_name.c_str (),
1652 new_name.length ());
1653 }
1654 }
1655 if (type_name == NULL)
1656 {
1657 char *to = type_name = (char *)
1658 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1659
1660 /* Copy the name. */
1661 from = *pp + 1;
1662 while (from < p)
1663 *to++ = *from++;
1664 *to = '\0';
1665 }
1666
1667 /* Set the pointer ahead of the name which we just read, and
1668 the colon. */
1669 *pp = p + 1;
1670 }
1671
1672 /* If this type has already been declared, then reuse the same
1673 type, rather than allocating a new one. This saves some
1674 memory. */
1675
1676 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1677 for (i = 0; i < ppt->nsyms; i++)
1678 {
1679 struct symbol *sym = ppt->symbol[i];
1680
1681 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1682 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1683 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1684 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1685 {
1686 obstack_free (&objfile->objfile_obstack, type_name);
1687 type = SYMBOL_TYPE (sym);
1688 if (typenums[0] != -1)
1689 *dbx_lookup_type (typenums, objfile) = type;
1690 return type;
1691 }
1692 }
1693
1694 /* Didn't find the type to which this refers, so we must
1695 be dealing with a forward reference. Allocate a type
1696 structure for it, and keep track of it so we can
1697 fill in the rest of the fields when we get the full
1698 type. */
1699 type = dbx_alloc_type (typenums, objfile);
1700 TYPE_CODE (type) = code;
1701 TYPE_NAME (type) = type_name;
1702 INIT_CPLUS_SPECIFIC (type);
1703 TYPE_STUB (type) = 1;
1704
1705 add_undefined_type (type, typenums);
1706 return type;
1707 }
1708
1709 case '-': /* RS/6000 built-in type */
1710 case '0':
1711 case '1':
1712 case '2':
1713 case '3':
1714 case '4':
1715 case '5':
1716 case '6':
1717 case '7':
1718 case '8':
1719 case '9':
1720 case '(':
1721 (*pp)--;
1722
1723 /* We deal with something like t(1,2)=(3,4)=... which
1724 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1725
1726 /* Allocate and enter the typedef type first.
1727 This handles recursive types. */
1728 type = dbx_alloc_type (typenums, objfile);
1729 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1730 {
1731 struct type *xtype = read_type (pp, objfile);
1732
1733 if (type == xtype)
1734 {
1735 /* It's being defined as itself. That means it is "void". */
1736 TYPE_CODE (type) = TYPE_CODE_VOID;
1737 TYPE_LENGTH (type) = 1;
1738 }
1739 else if (type_size >= 0 || is_string)
1740 {
1741 /* This is the absolute wrong way to construct types. Every
1742 other debug format has found a way around this problem and
1743 the related problems with unnecessarily stubbed types;
1744 someone motivated should attempt to clean up the issue
1745 here as well. Once a type pointed to has been created it
1746 should not be modified.
1747
1748 Well, it's not *absolutely* wrong. Constructing recursive
1749 types (trees, linked lists) necessarily entails modifying
1750 types after creating them. Constructing any loop structure
1751 entails side effects. The Dwarf 2 reader does handle this
1752 more gracefully (it never constructs more than once
1753 instance of a type object, so it doesn't have to copy type
1754 objects wholesale), but it still mutates type objects after
1755 other folks have references to them.
1756
1757 Keep in mind that this circularity/mutation issue shows up
1758 at the source language level, too: C's "incomplete types",
1759 for example. So the proper cleanup, I think, would be to
1760 limit GDB's type smashing to match exactly those required
1761 by the source language. So GDB could have a
1762 "complete_this_type" function, but never create unnecessary
1763 copies of a type otherwise. */
1764 replace_type (type, xtype);
1765 TYPE_NAME (type) = NULL;
1766 }
1767 else
1768 {
1769 TYPE_TARGET_STUB (type) = 1;
1770 TYPE_TARGET_TYPE (type) = xtype;
1771 }
1772 }
1773 break;
1774
1775 /* In the following types, we must be sure to overwrite any existing
1776 type that the typenums refer to, rather than allocating a new one
1777 and making the typenums point to the new one. This is because there
1778 may already be pointers to the existing type (if it had been
1779 forward-referenced), and we must change it to a pointer, function,
1780 reference, or whatever, *in-place*. */
1781
1782 case '*': /* Pointer to another type */
1783 type1 = read_type (pp, objfile);
1784 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1785 break;
1786
1787 case '&': /* Reference to another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1790 TYPE_CODE_REF);
1791 break;
1792
1793 case 'f': /* Function returning another type */
1794 type1 = read_type (pp, objfile);
1795 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1796 break;
1797
1798 case 'g': /* Prototyped function. (Sun) */
1799 {
1800 /* Unresolved questions:
1801
1802 - According to Sun's ``STABS Interface Manual'', for 'f'
1803 and 'F' symbol descriptors, a `0' in the argument type list
1804 indicates a varargs function. But it doesn't say how 'g'
1805 type descriptors represent that info. Someone with access
1806 to Sun's toolchain should try it out.
1807
1808 - According to the comment in define_symbol (search for
1809 `process_prototype_types:'), Sun emits integer arguments as
1810 types which ref themselves --- like `void' types. Do we
1811 have to deal with that here, too? Again, someone with
1812 access to Sun's toolchain should try it out and let us
1813 know. */
1814
1815 const char *type_start = (*pp) - 1;
1816 struct type *return_type = read_type (pp, objfile);
1817 struct type *func_type
1818 = make_function_type (return_type,
1819 dbx_lookup_type (typenums, objfile));
1820 struct type_list {
1821 struct type *type;
1822 struct type_list *next;
1823 } *arg_types = 0;
1824 int num_args = 0;
1825
1826 while (**pp && **pp != '#')
1827 {
1828 struct type *arg_type = read_type (pp, objfile);
1829 struct type_list *newobj = XALLOCA (struct type_list);
1830 newobj->type = arg_type;
1831 newobj->next = arg_types;
1832 arg_types = newobj;
1833 num_args++;
1834 }
1835 if (**pp == '#')
1836 ++*pp;
1837 else
1838 {
1839 complaint (_("Prototyped function type didn't "
1840 "end arguments with `#':\n%s"),
1841 type_start);
1842 }
1843
1844 /* If there is just one argument whose type is `void', then
1845 that's just an empty argument list. */
1846 if (arg_types
1847 && ! arg_types->next
1848 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1849 num_args = 0;
1850
1851 TYPE_FIELDS (func_type)
1852 = (struct field *) TYPE_ALLOC (func_type,
1853 num_args * sizeof (struct field));
1854 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1855 {
1856 int i;
1857 struct type_list *t;
1858
1859 /* We stuck each argument type onto the front of the list
1860 when we read it, so the list is reversed. Build the
1861 fields array right-to-left. */
1862 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1863 TYPE_FIELD_TYPE (func_type, i) = t->type;
1864 }
1865 TYPE_NFIELDS (func_type) = num_args;
1866 TYPE_PROTOTYPED (func_type) = 1;
1867
1868 type = func_type;
1869 break;
1870 }
1871
1872 case 'k': /* Const qualifier on some type (Sun) */
1873 type = read_type (pp, objfile);
1874 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1875 dbx_lookup_type (typenums, objfile));
1876 break;
1877
1878 case 'B': /* Volatile qual on some type (Sun) */
1879 type = read_type (pp, objfile);
1880 type = make_cv_type (TYPE_CONST (type), 1, type,
1881 dbx_lookup_type (typenums, objfile));
1882 break;
1883
1884 case '@':
1885 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1886 { /* Member (class & variable) type */
1887 /* FIXME -- we should be doing smash_to_XXX types here. */
1888
1889 struct type *domain = read_type (pp, objfile);
1890 struct type *memtype;
1891
1892 if (**pp != ',')
1893 /* Invalid member type data format. */
1894 return error_type (pp, objfile);
1895 ++*pp;
1896
1897 memtype = read_type (pp, objfile);
1898 type = dbx_alloc_type (typenums, objfile);
1899 smash_to_memberptr_type (type, domain, memtype);
1900 }
1901 else
1902 /* type attribute */
1903 {
1904 const char *attr = *pp;
1905
1906 /* Skip to the semicolon. */
1907 while (**pp != ';' && **pp != '\0')
1908 ++(*pp);
1909 if (**pp == '\0')
1910 return error_type (pp, objfile);
1911 else
1912 ++ * pp; /* Skip the semicolon. */
1913
1914 switch (*attr)
1915 {
1916 case 's': /* Size attribute */
1917 type_size = atoi (attr + 1);
1918 if (type_size <= 0)
1919 type_size = -1;
1920 break;
1921
1922 case 'S': /* String attribute */
1923 /* FIXME: check to see if following type is array? */
1924 is_string = 1;
1925 break;
1926
1927 case 'V': /* Vector attribute */
1928 /* FIXME: check to see if following type is array? */
1929 is_vector = 1;
1930 break;
1931
1932 default:
1933 /* Ignore unrecognized type attributes, so future compilers
1934 can invent new ones. */
1935 break;
1936 }
1937 ++*pp;
1938 goto again;
1939 }
1940 break;
1941
1942 case '#': /* Method (class & fn) type */
1943 if ((*pp)[0] == '#')
1944 {
1945 /* We'll get the parameter types from the name. */
1946 struct type *return_type;
1947
1948 (*pp)++;
1949 return_type = read_type (pp, objfile);
1950 if (*(*pp)++ != ';')
1951 complaint (_("invalid (minimal) member type "
1952 "data format at symtab pos %d."),
1953 symnum);
1954 type = allocate_stub_method (return_type);
1955 if (typenums[0] != -1)
1956 *dbx_lookup_type (typenums, objfile) = type;
1957 }
1958 else
1959 {
1960 struct type *domain = read_type (pp, objfile);
1961 struct type *return_type;
1962 struct field *args;
1963 int nargs, varargs;
1964
1965 if (**pp != ',')
1966 /* Invalid member type data format. */
1967 return error_type (pp, objfile);
1968 else
1969 ++(*pp);
1970
1971 return_type = read_type (pp, objfile);
1972 args = read_args (pp, ';', objfile, &nargs, &varargs);
1973 if (args == NULL)
1974 return error_type (pp, objfile);
1975 type = dbx_alloc_type (typenums, objfile);
1976 smash_to_method_type (type, domain, return_type, args,
1977 nargs, varargs);
1978 }
1979 break;
1980
1981 case 'r': /* Range type */
1982 type = read_range_type (pp, typenums, type_size, objfile);
1983 if (typenums[0] != -1)
1984 *dbx_lookup_type (typenums, objfile) = type;
1985 break;
1986
1987 case 'b':
1988 {
1989 /* Sun ACC builtin int type */
1990 type = read_sun_builtin_type (pp, typenums, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 }
1994 break;
1995
1996 case 'R': /* Sun ACC builtin float type */
1997 type = read_sun_floating_type (pp, typenums, objfile);
1998 if (typenums[0] != -1)
1999 *dbx_lookup_type (typenums, objfile) = type;
2000 break;
2001
2002 case 'e': /* Enumeration type */
2003 type = dbx_alloc_type (typenums, objfile);
2004 type = read_enum_type (pp, type, objfile);
2005 if (typenums[0] != -1)
2006 *dbx_lookup_type (typenums, objfile) = type;
2007 break;
2008
2009 case 's': /* Struct type */
2010 case 'u': /* Union type */
2011 {
2012 enum type_code type_code = TYPE_CODE_UNDEF;
2013 type = dbx_alloc_type (typenums, objfile);
2014 switch (type_descriptor)
2015 {
2016 case 's':
2017 type_code = TYPE_CODE_STRUCT;
2018 break;
2019 case 'u':
2020 type_code = TYPE_CODE_UNION;
2021 break;
2022 }
2023 type = read_struct_type (pp, type, type_code, objfile);
2024 break;
2025 }
2026
2027 case 'a': /* Array type */
2028 if (**pp != 'r')
2029 return error_type (pp, objfile);
2030 ++*pp;
2031
2032 type = dbx_alloc_type (typenums, objfile);
2033 type = read_array_type (pp, type, objfile);
2034 if (is_string)
2035 TYPE_CODE (type) = TYPE_CODE_STRING;
2036 if (is_vector)
2037 make_vector_type (type);
2038 break;
2039
2040 case 'S': /* Set type */
2041 type1 = read_type (pp, objfile);
2042 type = create_set_type ((struct type *) NULL, type1);
2043 if (typenums[0] != -1)
2044 *dbx_lookup_type (typenums, objfile) = type;
2045 break;
2046
2047 default:
2048 --*pp; /* Go back to the symbol in error. */
2049 /* Particularly important if it was \0! */
2050 return error_type (pp, objfile);
2051 }
2052
2053 if (type == 0)
2054 {
2055 warning (_("GDB internal error, type is NULL in stabsread.c."));
2056 return error_type (pp, objfile);
2057 }
2058
2059 /* Size specified in a type attribute overrides any other size. */
2060 if (type_size != -1)
2061 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2062
2063 return type;
2064 }
2065 \f
2066 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2067 Return the proper type node for a given builtin type number. */
2068
2069 static const struct objfile_data *rs6000_builtin_type_data;
2070
2071 static struct type *
2072 rs6000_builtin_type (int typenum, struct objfile *objfile)
2073 {
2074 struct type **negative_types
2075 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2076
2077 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2078 #define NUMBER_RECOGNIZED 34
2079 struct type *rettype = NULL;
2080
2081 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2082 {
2083 complaint (_("Unknown builtin type %d"), typenum);
2084 return objfile_type (objfile)->builtin_error;
2085 }
2086
2087 if (!negative_types)
2088 {
2089 /* This includes an empty slot for type number -0. */
2090 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2091 NUMBER_RECOGNIZED + 1, struct type *);
2092 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2093 }
2094
2095 if (negative_types[-typenum] != NULL)
2096 return negative_types[-typenum];
2097
2098 #if TARGET_CHAR_BIT != 8
2099 #error This code wrong for TARGET_CHAR_BIT not 8
2100 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2101 that if that ever becomes not true, the correct fix will be to
2102 make the size in the struct type to be in bits, not in units of
2103 TARGET_CHAR_BIT. */
2104 #endif
2105
2106 switch (-typenum)
2107 {
2108 case 1:
2109 /* The size of this and all the other types are fixed, defined
2110 by the debugging format. If there is a type called "int" which
2111 is other than 32 bits, then it should use a new negative type
2112 number (or avoid negative type numbers for that case).
2113 See stabs.texinfo. */
2114 rettype = init_integer_type (objfile, 32, 0, "int");
2115 break;
2116 case 2:
2117 rettype = init_integer_type (objfile, 8, 0, "char");
2118 TYPE_NOSIGN (rettype) = 1;
2119 break;
2120 case 3:
2121 rettype = init_integer_type (objfile, 16, 0, "short");
2122 break;
2123 case 4:
2124 rettype = init_integer_type (objfile, 32, 0, "long");
2125 break;
2126 case 5:
2127 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2128 break;
2129 case 6:
2130 rettype = init_integer_type (objfile, 8, 0, "signed char");
2131 break;
2132 case 7:
2133 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2134 break;
2135 case 8:
2136 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2137 break;
2138 case 9:
2139 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2140 break;
2141 case 10:
2142 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2143 break;
2144 case 11:
2145 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2146 break;
2147 case 12:
2148 /* IEEE single precision (32 bit). */
2149 rettype = init_float_type (objfile, 32, "float",
2150 floatformats_ieee_single);
2151 break;
2152 case 13:
2153 /* IEEE double precision (64 bit). */
2154 rettype = init_float_type (objfile, 64, "double",
2155 floatformats_ieee_double);
2156 break;
2157 case 14:
2158 /* This is an IEEE double on the RS/6000, and different machines with
2159 different sizes for "long double" should use different negative
2160 type numbers. See stabs.texinfo. */
2161 rettype = init_float_type (objfile, 64, "long double",
2162 floatformats_ieee_double);
2163 break;
2164 case 15:
2165 rettype = init_integer_type (objfile, 32, 0, "integer");
2166 break;
2167 case 16:
2168 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2169 break;
2170 case 17:
2171 rettype = init_float_type (objfile, 32, "short real",
2172 floatformats_ieee_single);
2173 break;
2174 case 18:
2175 rettype = init_float_type (objfile, 64, "real",
2176 floatformats_ieee_double);
2177 break;
2178 case 19:
2179 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2180 break;
2181 case 20:
2182 rettype = init_character_type (objfile, 8, 1, "character");
2183 break;
2184 case 21:
2185 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2186 break;
2187 case 22:
2188 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2189 break;
2190 case 23:
2191 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2192 break;
2193 case 24:
2194 rettype = init_boolean_type (objfile, 32, 1, "logical");
2195 break;
2196 case 25:
2197 /* Complex type consisting of two IEEE single precision values. */
2198 rettype = init_complex_type (objfile, "complex",
2199 rs6000_builtin_type (12, objfile));
2200 break;
2201 case 26:
2202 /* Complex type consisting of two IEEE double precision values. */
2203 rettype = init_complex_type (objfile, "double complex",
2204 rs6000_builtin_type (13, objfile));
2205 break;
2206 case 27:
2207 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2208 break;
2209 case 28:
2210 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2211 break;
2212 case 29:
2213 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2214 break;
2215 case 30:
2216 rettype = init_character_type (objfile, 16, 0, "wchar");
2217 break;
2218 case 31:
2219 rettype = init_integer_type (objfile, 64, 0, "long long");
2220 break;
2221 case 32:
2222 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2223 break;
2224 case 33:
2225 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2226 break;
2227 case 34:
2228 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2229 break;
2230 }
2231 negative_types[-typenum] = rettype;
2232 return rettype;
2233 }
2234 \f
2235 /* This page contains subroutines of read_type. */
2236
2237 /* Wrapper around method_name_from_physname to flag a complaint
2238 if there is an error. */
2239
2240 static char *
2241 stabs_method_name_from_physname (const char *physname)
2242 {
2243 char *method_name;
2244
2245 method_name = method_name_from_physname (physname);
2246
2247 if (method_name == NULL)
2248 {
2249 complaint (_("Method has bad physname %s\n"), physname);
2250 return NULL;
2251 }
2252
2253 return method_name;
2254 }
2255
2256 /* Read member function stabs info for C++ classes. The form of each member
2257 function data is:
2258
2259 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2260
2261 An example with two member functions is:
2262
2263 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2264
2265 For the case of overloaded operators, the format is op$::*.funcs, where
2266 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2267 name (such as `+=') and `.' marks the end of the operator name.
2268
2269 Returns 1 for success, 0 for failure. */
2270
2271 static int
2272 read_member_functions (struct field_info *fip, const char **pp,
2273 struct type *type, struct objfile *objfile)
2274 {
2275 int nfn_fields = 0;
2276 int length = 0;
2277 int i;
2278 struct next_fnfield
2279 {
2280 struct next_fnfield *next;
2281 struct fn_field fn_field;
2282 }
2283 *sublist;
2284 struct type *look_ahead_type;
2285 struct next_fnfieldlist *new_fnlist;
2286 struct next_fnfield *new_sublist;
2287 char *main_fn_name;
2288 const char *p;
2289
2290 /* Process each list until we find something that is not a member function
2291 or find the end of the functions. */
2292
2293 while (**pp != ';')
2294 {
2295 /* We should be positioned at the start of the function name.
2296 Scan forward to find the first ':' and if it is not the
2297 first of a "::" delimiter, then this is not a member function. */
2298 p = *pp;
2299 while (*p != ':')
2300 {
2301 p++;
2302 }
2303 if (p[1] != ':')
2304 {
2305 break;
2306 }
2307
2308 sublist = NULL;
2309 look_ahead_type = NULL;
2310 length = 0;
2311
2312 new_fnlist = XCNEW (struct next_fnfieldlist);
2313 make_cleanup (xfree, new_fnlist);
2314
2315 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2316 {
2317 /* This is a completely wierd case. In order to stuff in the
2318 names that might contain colons (the usual name delimiter),
2319 Mike Tiemann defined a different name format which is
2320 signalled if the identifier is "op$". In that case, the
2321 format is "op$::XXXX." where XXXX is the name. This is
2322 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2323 /* This lets the user type "break operator+".
2324 We could just put in "+" as the name, but that wouldn't
2325 work for "*". */
2326 static char opname[32] = "op$";
2327 char *o = opname + 3;
2328
2329 /* Skip past '::'. */
2330 *pp = p + 2;
2331
2332 STABS_CONTINUE (pp, objfile);
2333 p = *pp;
2334 while (*p != '.')
2335 {
2336 *o++ = *p++;
2337 }
2338 main_fn_name = savestring (opname, o - opname);
2339 /* Skip past '.' */
2340 *pp = p + 1;
2341 }
2342 else
2343 {
2344 main_fn_name = savestring (*pp, p - *pp);
2345 /* Skip past '::'. */
2346 *pp = p + 2;
2347 }
2348 new_fnlist->fn_fieldlist.name = main_fn_name;
2349
2350 do
2351 {
2352 new_sublist = XCNEW (struct next_fnfield);
2353 make_cleanup (xfree, new_sublist);
2354
2355 /* Check for and handle cretinous dbx symbol name continuation! */
2356 if (look_ahead_type == NULL)
2357 {
2358 /* Normal case. */
2359 STABS_CONTINUE (pp, objfile);
2360
2361 new_sublist->fn_field.type = read_type (pp, objfile);
2362 if (**pp != ':')
2363 {
2364 /* Invalid symtab info for member function. */
2365 return 0;
2366 }
2367 }
2368 else
2369 {
2370 /* g++ version 1 kludge */
2371 new_sublist->fn_field.type = look_ahead_type;
2372 look_ahead_type = NULL;
2373 }
2374
2375 (*pp)++;
2376 p = *pp;
2377 while (*p != ';')
2378 {
2379 p++;
2380 }
2381
2382 /* These are methods, not functions. */
2383 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2384 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2385 else
2386 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2387 == TYPE_CODE_METHOD);
2388
2389 /* If this is just a stub, then we don't have the real name here. */
2390 if (TYPE_STUB (new_sublist->fn_field.type))
2391 {
2392 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2393 set_type_self_type (new_sublist->fn_field.type, type);
2394 new_sublist->fn_field.is_stub = 1;
2395 }
2396
2397 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2398 *pp = p + 1;
2399
2400 /* Set this member function's visibility fields. */
2401 switch (*(*pp)++)
2402 {
2403 case VISIBILITY_PRIVATE:
2404 new_sublist->fn_field.is_private = 1;
2405 break;
2406 case VISIBILITY_PROTECTED:
2407 new_sublist->fn_field.is_protected = 1;
2408 break;
2409 }
2410
2411 STABS_CONTINUE (pp, objfile);
2412 switch (**pp)
2413 {
2414 case 'A': /* Normal functions. */
2415 new_sublist->fn_field.is_const = 0;
2416 new_sublist->fn_field.is_volatile = 0;
2417 (*pp)++;
2418 break;
2419 case 'B': /* `const' member functions. */
2420 new_sublist->fn_field.is_const = 1;
2421 new_sublist->fn_field.is_volatile = 0;
2422 (*pp)++;
2423 break;
2424 case 'C': /* `volatile' member function. */
2425 new_sublist->fn_field.is_const = 0;
2426 new_sublist->fn_field.is_volatile = 1;
2427 (*pp)++;
2428 break;
2429 case 'D': /* `const volatile' member function. */
2430 new_sublist->fn_field.is_const = 1;
2431 new_sublist->fn_field.is_volatile = 1;
2432 (*pp)++;
2433 break;
2434 case '*': /* File compiled with g++ version 1 --
2435 no info. */
2436 case '?':
2437 case '.':
2438 break;
2439 default:
2440 complaint (_("const/volatile indicator missing, got '%c'"),
2441 **pp);
2442 break;
2443 }
2444
2445 switch (*(*pp)++)
2446 {
2447 case '*':
2448 {
2449 int nbits;
2450 /* virtual member function, followed by index.
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
2457 new_sublist->fn_field.voffset =
2458 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2459 if (nbits != 0)
2460 return 0;
2461
2462 STABS_CONTINUE (pp, objfile);
2463 if (**pp == ';' || **pp == '\0')
2464 {
2465 /* Must be g++ version 1. */
2466 new_sublist->fn_field.fcontext = 0;
2467 }
2468 else
2469 {
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type = read_type (pp, objfile);
2474 if (**pp == ':')
2475 {
2476 /* g++ version 1 overloaded methods. */
2477 }
2478 else
2479 {
2480 new_sublist->fn_field.fcontext = look_ahead_type;
2481 if (**pp != ';')
2482 {
2483 return 0;
2484 }
2485 else
2486 {
2487 ++*pp;
2488 }
2489 look_ahead_type = NULL;
2490 }
2491 }
2492 break;
2493 }
2494 case '?':
2495 /* static member function. */
2496 {
2497 int slen = strlen (main_fn_name);
2498
2499 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2500
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2503 methods.
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist->fn_field.physname,
2512 main_fn_name, slen) == 0
2513 && new_sublist->fn_field.physname[slen] == '_'
2514 && new_sublist->fn_field.physname[slen + 1] == '_'))
2515 {
2516 new_sublist->fn_field.is_stub = 1;
2517 }
2518 break;
2519 }
2520
2521 default:
2522 /* error */
2523 complaint (_("member function type missing, got '%c'"),
2524 (*pp)[-1]);
2525 /* Normal member function. */
2526 /* Fall through. */
2527
2528 case '.':
2529 /* normal member function. */
2530 new_sublist->fn_field.voffset = 0;
2531 new_sublist->fn_field.fcontext = 0;
2532 break;
2533 }
2534
2535 new_sublist->next = sublist;
2536 sublist = new_sublist;
2537 length++;
2538 STABS_CONTINUE (pp, objfile);
2539 }
2540 while (**pp != ';' && **pp != '\0');
2541
2542 (*pp)++;
2543 STABS_CONTINUE (pp, objfile);
2544
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
2547 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2549 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2550 {
2551 xfree (main_fn_name);
2552 }
2553 else
2554 {
2555 int has_destructor = 0, has_other = 0;
2556 int is_v3 = 0;
2557 struct next_fnfield *tmp_sublist;
2558
2559 /* Various versions of GCC emit various mostly-useless
2560 strings in the name field for special member functions.
2561
2562 For stub methods, we need to defer correcting the name
2563 until we are ready to unstub the method, because the current
2564 name string is used by gdb_mangle_name. The only stub methods
2565 of concern here are GNU v2 operators; other methods have their
2566 names correct (see caveat below).
2567
2568 For non-stub methods, in GNU v3, we have a complete physname.
2569 Therefore we can safely correct the name now. This primarily
2570 affects constructors and destructors, whose name will be
2571 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2572 operators will also have incorrect names; for instance,
2573 "operator int" will be named "operator i" (i.e. the type is
2574 mangled).
2575
2576 For non-stub methods in GNU v2, we have no easy way to
2577 know if we have a complete physname or not. For most
2578 methods the result depends on the platform (if CPLUS_MARKER
2579 can be `$' or `.', it will use minimal debug information, or
2580 otherwise the full physname will be included).
2581
2582 Rather than dealing with this, we take a different approach.
2583 For v3 mangled names, we can use the full physname; for v2,
2584 we use cplus_demangle_opname (which is actually v2 specific),
2585 because the only interesting names are all operators - once again
2586 barring the caveat below. Skip this process if any method in the
2587 group is a stub, to prevent our fouling up the workings of
2588 gdb_mangle_name.
2589
2590 The caveat: GCC 2.95.x (and earlier?) put constructors and
2591 destructors in the same method group. We need to split this
2592 into two groups, because they should have different names.
2593 So for each method group we check whether it contains both
2594 routines whose physname appears to be a destructor (the physnames
2595 for and destructors are always provided, due to quirks in v2
2596 mangling) and routines whose physname does not appear to be a
2597 destructor. If so then we break up the list into two halves.
2598 Even if the constructors and destructors aren't in the same group
2599 the destructor will still lack the leading tilde, so that also
2600 needs to be fixed.
2601
2602 So, to summarize what we expect and handle here:
2603
2604 Given Given Real Real Action
2605 method name physname physname method name
2606
2607 __opi [none] __opi__3Foo operator int opname
2608 [now or later]
2609 Foo _._3Foo _._3Foo ~Foo separate and
2610 rename
2611 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2612 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2613 */
2614
2615 tmp_sublist = sublist;
2616 while (tmp_sublist != NULL)
2617 {
2618 if (tmp_sublist->fn_field.physname[0] == '_'
2619 && tmp_sublist->fn_field.physname[1] == 'Z')
2620 is_v3 = 1;
2621
2622 if (is_destructor_name (tmp_sublist->fn_field.physname))
2623 has_destructor++;
2624 else
2625 has_other++;
2626
2627 tmp_sublist = tmp_sublist->next;
2628 }
2629
2630 if (has_destructor && has_other)
2631 {
2632 struct next_fnfieldlist *destr_fnlist;
2633 struct next_fnfield *last_sublist;
2634
2635 /* Create a new fn_fieldlist for the destructors. */
2636
2637 destr_fnlist = XCNEW (struct next_fnfieldlist);
2638 make_cleanup (xfree, destr_fnlist);
2639
2640 destr_fnlist->fn_fieldlist.name
2641 = obconcat (&objfile->objfile_obstack, "~",
2642 new_fnlist->fn_fieldlist.name, (char *) NULL);
2643
2644 destr_fnlist->fn_fieldlist.fn_fields =
2645 XOBNEWVEC (&objfile->objfile_obstack,
2646 struct fn_field, has_destructor);
2647 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2648 sizeof (struct fn_field) * has_destructor);
2649 tmp_sublist = sublist;
2650 last_sublist = NULL;
2651 i = 0;
2652 while (tmp_sublist != NULL)
2653 {
2654 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2655 {
2656 tmp_sublist = tmp_sublist->next;
2657 continue;
2658 }
2659
2660 destr_fnlist->fn_fieldlist.fn_fields[i++]
2661 = tmp_sublist->fn_field;
2662 if (last_sublist)
2663 last_sublist->next = tmp_sublist->next;
2664 else
2665 sublist = tmp_sublist->next;
2666 last_sublist = tmp_sublist;
2667 tmp_sublist = tmp_sublist->next;
2668 }
2669
2670 destr_fnlist->fn_fieldlist.length = has_destructor;
2671 destr_fnlist->next = fip->fnlist;
2672 fip->fnlist = destr_fnlist;
2673 nfn_fields++;
2674 length -= has_destructor;
2675 }
2676 else if (is_v3)
2677 {
2678 /* v3 mangling prevents the use of abbreviated physnames,
2679 so we can do this here. There are stubbed methods in v3
2680 only:
2681 - in -gstabs instead of -gstabs+
2682 - or for static methods, which are output as a function type
2683 instead of a method type. */
2684 char *new_method_name =
2685 stabs_method_name_from_physname (sublist->fn_field.physname);
2686
2687 if (new_method_name != NULL
2688 && strcmp (new_method_name,
2689 new_fnlist->fn_fieldlist.name) != 0)
2690 {
2691 new_fnlist->fn_fieldlist.name = new_method_name;
2692 xfree (main_fn_name);
2693 }
2694 else
2695 xfree (new_method_name);
2696 }
2697 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2698 {
2699 new_fnlist->fn_fieldlist.name =
2700 obconcat (&objfile->objfile_obstack,
2701 "~", main_fn_name, (char *)NULL);
2702 xfree (main_fn_name);
2703 }
2704
2705 new_fnlist->fn_fieldlist.fn_fields
2706 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2707 for (i = length; (i--, sublist); sublist = sublist->next)
2708 {
2709 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2710 }
2711
2712 new_fnlist->fn_fieldlist.length = length;
2713 new_fnlist->next = fip->fnlist;
2714 fip->fnlist = new_fnlist;
2715 nfn_fields++;
2716 }
2717 }
2718
2719 if (nfn_fields)
2720 {
2721 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2722 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2723 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2724 memset (TYPE_FN_FIELDLISTS (type), 0,
2725 sizeof (struct fn_fieldlist) * nfn_fields);
2726 TYPE_NFN_FIELDS (type) = nfn_fields;
2727 }
2728
2729 return 1;
2730 }
2731
2732 /* Special GNU C++ name.
2733
2734 Returns 1 for success, 0 for failure. "failure" means that we can't
2735 keep parsing and it's time for error_type(). */
2736
2737 static int
2738 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2739 struct objfile *objfile)
2740 {
2741 const char *p;
2742 const char *name;
2743 char cpp_abbrev;
2744 struct type *context;
2745
2746 p = *pp;
2747 if (*++p == 'v')
2748 {
2749 name = NULL;
2750 cpp_abbrev = *++p;
2751
2752 *pp = p + 1;
2753
2754 /* At this point, *pp points to something like "22:23=*22...",
2755 where the type number before the ':' is the "context" and
2756 everything after is a regular type definition. Lookup the
2757 type, find it's name, and construct the field name. */
2758
2759 context = read_type (pp, objfile);
2760
2761 switch (cpp_abbrev)
2762 {
2763 case 'f': /* $vf -- a virtual function table pointer */
2764 name = TYPE_NAME (context);
2765 if (name == NULL)
2766 {
2767 name = "";
2768 }
2769 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2770 vptr_name, name, (char *) NULL);
2771 break;
2772
2773 case 'b': /* $vb -- a virtual bsomethingorother */
2774 name = TYPE_NAME (context);
2775 if (name == NULL)
2776 {
2777 complaint (_("C++ abbreviated type name "
2778 "unknown at symtab pos %d"),
2779 symnum);
2780 name = "FOO";
2781 }
2782 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2783 name, (char *) NULL);
2784 break;
2785
2786 default:
2787 invalid_cpp_abbrev_complaint (*pp);
2788 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2789 "INVALID_CPLUSPLUS_ABBREV",
2790 (char *) NULL);
2791 break;
2792 }
2793
2794 /* At this point, *pp points to the ':'. Skip it and read the
2795 field type. */
2796
2797 p = ++(*pp);
2798 if (p[-1] != ':')
2799 {
2800 invalid_cpp_abbrev_complaint (*pp);
2801 return 0;
2802 }
2803 fip->list->field.type = read_type (pp, objfile);
2804 if (**pp == ',')
2805 (*pp)++; /* Skip the comma. */
2806 else
2807 return 0;
2808
2809 {
2810 int nbits;
2811
2812 SET_FIELD_BITPOS (fip->list->field,
2813 read_huge_number (pp, ';', &nbits, 0));
2814 if (nbits != 0)
2815 return 0;
2816 }
2817 /* This field is unpacked. */
2818 FIELD_BITSIZE (fip->list->field) = 0;
2819 fip->list->visibility = VISIBILITY_PRIVATE;
2820 }
2821 else
2822 {
2823 invalid_cpp_abbrev_complaint (*pp);
2824 /* We have no idea what syntax an unrecognized abbrev would have, so
2825 better return 0. If we returned 1, we would need to at least advance
2826 *pp to avoid an infinite loop. */
2827 return 0;
2828 }
2829 return 1;
2830 }
2831
2832 static void
2833 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2834 struct type *type, struct objfile *objfile)
2835 {
2836 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2837
2838 fip->list->field.name
2839 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2840 *pp = p + 1;
2841
2842 /* This means we have a visibility for a field coming. */
2843 if (**pp == '/')
2844 {
2845 (*pp)++;
2846 fip->list->visibility = *(*pp)++;
2847 }
2848 else
2849 {
2850 /* normal dbx-style format, no explicit visibility */
2851 fip->list->visibility = VISIBILITY_PUBLIC;
2852 }
2853
2854 fip->list->field.type = read_type (pp, objfile);
2855 if (**pp == ':')
2856 {
2857 p = ++(*pp);
2858 #if 0
2859 /* Possible future hook for nested types. */
2860 if (**pp == '!')
2861 {
2862 fip->list->field.bitpos = (long) -2; /* nested type */
2863 p = ++(*pp);
2864 }
2865 else
2866 ...;
2867 #endif
2868 while (*p != ';')
2869 {
2870 p++;
2871 }
2872 /* Static class member. */
2873 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2874 *pp = p + 1;
2875 return;
2876 }
2877 else if (**pp != ',')
2878 {
2879 /* Bad structure-type format. */
2880 stabs_general_complaint ("bad structure-type format");
2881 return;
2882 }
2883
2884 (*pp)++; /* Skip the comma. */
2885
2886 {
2887 int nbits;
2888
2889 SET_FIELD_BITPOS (fip->list->field,
2890 read_huge_number (pp, ',', &nbits, 0));
2891 if (nbits != 0)
2892 {
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2895 }
2896 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2897 if (nbits != 0)
2898 {
2899 stabs_general_complaint ("bad structure-type format");
2900 return;
2901 }
2902 }
2903
2904 if (FIELD_BITPOS (fip->list->field) == 0
2905 && FIELD_BITSIZE (fip->list->field) == 0)
2906 {
2907 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2908 it is a field which has been optimized out. The correct stab for
2909 this case is to use VISIBILITY_IGNORE, but that is a recent
2910 invention. (2) It is a 0-size array. For example
2911 union { int num; char str[0]; } foo. Printing _("<no value>" for
2912 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2913 will continue to work, and a 0-size array as a whole doesn't
2914 have any contents to print.
2915
2916 I suspect this probably could also happen with gcc -gstabs (not
2917 -gstabs+) for static fields, and perhaps other C++ extensions.
2918 Hopefully few people use -gstabs with gdb, since it is intended
2919 for dbx compatibility. */
2920
2921 /* Ignore this field. */
2922 fip->list->visibility = VISIBILITY_IGNORE;
2923 }
2924 else
2925 {
2926 /* Detect an unpacked field and mark it as such.
2927 dbx gives a bit size for all fields.
2928 Note that forward refs cannot be packed,
2929 and treat enums as if they had the width of ints. */
2930
2931 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2932
2933 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2934 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2935 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2936 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2937 {
2938 FIELD_BITSIZE (fip->list->field) = 0;
2939 }
2940 if ((FIELD_BITSIZE (fip->list->field)
2941 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2942 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2943 && FIELD_BITSIZE (fip->list->field)
2944 == gdbarch_int_bit (gdbarch))
2945 )
2946 &&
2947 FIELD_BITPOS (fip->list->field) % 8 == 0)
2948 {
2949 FIELD_BITSIZE (fip->list->field) = 0;
2950 }
2951 }
2952 }
2953
2954
2955 /* Read struct or class data fields. They have the form:
2956
2957 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2958
2959 At the end, we see a semicolon instead of a field.
2960
2961 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2962 a static field.
2963
2964 The optional VISIBILITY is one of:
2965
2966 '/0' (VISIBILITY_PRIVATE)
2967 '/1' (VISIBILITY_PROTECTED)
2968 '/2' (VISIBILITY_PUBLIC)
2969 '/9' (VISIBILITY_IGNORE)
2970
2971 or nothing, for C style fields with public visibility.
2972
2973 Returns 1 for success, 0 for failure. */
2974
2975 static int
2976 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2977 struct objfile *objfile)
2978 {
2979 const char *p;
2980 struct nextfield *newobj;
2981
2982 /* We better set p right now, in case there are no fields at all... */
2983
2984 p = *pp;
2985
2986 /* Read each data member type until we find the terminating ';' at the end of
2987 the data member list, or break for some other reason such as finding the
2988 start of the member function list. */
2989 /* Stab string for structure/union does not end with two ';' in
2990 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2991
2992 while (**pp != ';' && **pp != '\0')
2993 {
2994 STABS_CONTINUE (pp, objfile);
2995 /* Get space to record the next field's data. */
2996 newobj = XCNEW (struct nextfield);
2997 make_cleanup (xfree, newobj);
2998
2999 newobj->next = fip->list;
3000 fip->list = newobj;
3001
3002 /* Get the field name. */
3003 p = *pp;
3004
3005 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3006 unless the CPLUS_MARKER is followed by an underscore, in
3007 which case it is just the name of an anonymous type, which we
3008 should handle like any other type name. */
3009
3010 if (is_cplus_marker (p[0]) && p[1] != '_')
3011 {
3012 if (!read_cpp_abbrev (fip, pp, type, objfile))
3013 return 0;
3014 continue;
3015 }
3016
3017 /* Look for the ':' that separates the field name from the field
3018 values. Data members are delimited by a single ':', while member
3019 functions are delimited by a pair of ':'s. When we hit the member
3020 functions (if any), terminate scan loop and return. */
3021
3022 while (*p != ':' && *p != '\0')
3023 {
3024 p++;
3025 }
3026 if (*p == '\0')
3027 return 0;
3028
3029 /* Check to see if we have hit the member functions yet. */
3030 if (p[1] == ':')
3031 {
3032 break;
3033 }
3034 read_one_struct_field (fip, pp, p, type, objfile);
3035 }
3036 if (p[0] == ':' && p[1] == ':')
3037 {
3038 /* (the deleted) chill the list of fields: the last entry (at
3039 the head) is a partially constructed entry which we now
3040 scrub. */
3041 fip->list = fip->list->next;
3042 }
3043 return 1;
3044 }
3045 /* *INDENT-OFF* */
3046 /* The stabs for C++ derived classes contain baseclass information which
3047 is marked by a '!' character after the total size. This function is
3048 called when we encounter the baseclass marker, and slurps up all the
3049 baseclass information.
3050
3051 Immediately following the '!' marker is the number of base classes that
3052 the class is derived from, followed by information for each base class.
3053 For each base class, there are two visibility specifiers, a bit offset
3054 to the base class information within the derived class, a reference to
3055 the type for the base class, and a terminating semicolon.
3056
3057 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3058 ^^ ^ ^ ^ ^ ^ ^
3059 Baseclass information marker __________________|| | | | | | |
3060 Number of baseclasses __________________________| | | | | | |
3061 Visibility specifiers (2) ________________________| | | | | |
3062 Offset in bits from start of class _________________| | | | |
3063 Type number for base class ___________________________| | | |
3064 Visibility specifiers (2) _______________________________| | |
3065 Offset in bits from start of class ________________________| |
3066 Type number of base class ____________________________________|
3067
3068 Return 1 for success, 0 for (error-type-inducing) failure. */
3069 /* *INDENT-ON* */
3070
3071
3072
3073 static int
3074 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3075 struct objfile *objfile)
3076 {
3077 int i;
3078 struct nextfield *newobj;
3079
3080 if (**pp != '!')
3081 {
3082 return 1;
3083 }
3084 else
3085 {
3086 /* Skip the '!' baseclass information marker. */
3087 (*pp)++;
3088 }
3089
3090 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3091 {
3092 int nbits;
3093
3094 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3095 if (nbits != 0)
3096 return 0;
3097 }
3098
3099 #if 0
3100 /* Some stupid compilers have trouble with the following, so break
3101 it up into simpler expressions. */
3102 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3103 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3104 #else
3105 {
3106 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3107 char *pointer;
3108
3109 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3111 }
3112 #endif /* 0 */
3113
3114 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3115
3116 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3117 {
3118 newobj = XCNEW (struct nextfield);
3119 make_cleanup (xfree, newobj);
3120
3121 newobj->next = fip->list;
3122 fip->list = newobj;
3123 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3124 field! */
3125
3126 STABS_CONTINUE (pp, objfile);
3127 switch (**pp)
3128 {
3129 case '0':
3130 /* Nothing to do. */
3131 break;
3132 case '1':
3133 SET_TYPE_FIELD_VIRTUAL (type, i);
3134 break;
3135 default:
3136 /* Unknown character. Complain and treat it as non-virtual. */
3137 {
3138 complaint (_("Unknown virtual character `%c' for baseclass"),
3139 **pp);
3140 }
3141 }
3142 ++(*pp);
3143
3144 newobj->visibility = *(*pp)++;
3145 switch (newobj->visibility)
3146 {
3147 case VISIBILITY_PRIVATE:
3148 case VISIBILITY_PROTECTED:
3149 case VISIBILITY_PUBLIC:
3150 break;
3151 default:
3152 /* Bad visibility format. Complain and treat it as
3153 public. */
3154 {
3155 complaint (_("Unknown visibility `%c' for baseclass"),
3156 newobj->visibility);
3157 newobj->visibility = VISIBILITY_PUBLIC;
3158 }
3159 }
3160
3161 {
3162 int nbits;
3163
3164 /* The remaining value is the bit offset of the portion of the object
3165 corresponding to this baseclass. Always zero in the absence of
3166 multiple inheritance. */
3167
3168 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3169 if (nbits != 0)
3170 return 0;
3171 }
3172
3173 /* The last piece of baseclass information is the type of the
3174 base class. Read it, and remember it's type name as this
3175 field's name. */
3176
3177 newobj->field.type = read_type (pp, objfile);
3178 newobj->field.name = TYPE_NAME (newobj->field.type);
3179
3180 /* Skip trailing ';' and bump count of number of fields seen. */
3181 if (**pp == ';')
3182 (*pp)++;
3183 else
3184 return 0;
3185 }
3186 return 1;
3187 }
3188
3189 /* The tail end of stabs for C++ classes that contain a virtual function
3190 pointer contains a tilde, a %, and a type number.
3191 The type number refers to the base class (possibly this class itself) which
3192 contains the vtable pointer for the current class.
3193
3194 This function is called when we have parsed all the method declarations,
3195 so we can look for the vptr base class info. */
3196
3197 static int
3198 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3199 struct objfile *objfile)
3200 {
3201 const char *p;
3202
3203 STABS_CONTINUE (pp, objfile);
3204
3205 /* If we are positioned at a ';', then skip it. */
3206 if (**pp == ';')
3207 {
3208 (*pp)++;
3209 }
3210
3211 if (**pp == '~')
3212 {
3213 (*pp)++;
3214
3215 if (**pp == '=' || **pp == '+' || **pp == '-')
3216 {
3217 /* Obsolete flags that used to indicate the presence
3218 of constructors and/or destructors. */
3219 (*pp)++;
3220 }
3221
3222 /* Read either a '%' or the final ';'. */
3223 if (*(*pp)++ == '%')
3224 {
3225 /* The next number is the type number of the base class
3226 (possibly our own class) which supplies the vtable for
3227 this class. Parse it out, and search that class to find
3228 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3229 and TYPE_VPTR_FIELDNO. */
3230
3231 struct type *t;
3232 int i;
3233
3234 t = read_type (pp, objfile);
3235 p = (*pp)++;
3236 while (*p != '\0' && *p != ';')
3237 {
3238 p++;
3239 }
3240 if (*p == '\0')
3241 {
3242 /* Premature end of symbol. */
3243 return 0;
3244 }
3245
3246 set_type_vptr_basetype (type, t);
3247 if (type == t) /* Our own class provides vtbl ptr. */
3248 {
3249 for (i = TYPE_NFIELDS (t) - 1;
3250 i >= TYPE_N_BASECLASSES (t);
3251 --i)
3252 {
3253 const char *name = TYPE_FIELD_NAME (t, i);
3254
3255 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3256 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3257 {
3258 set_type_vptr_fieldno (type, i);
3259 goto gotit;
3260 }
3261 }
3262 /* Virtual function table field not found. */
3263 complaint (_("virtual function table pointer "
3264 "not found when defining class `%s'"),
3265 TYPE_NAME (type));
3266 return 0;
3267 }
3268 else
3269 {
3270 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3271 }
3272
3273 gotit:
3274 *pp = p + 1;
3275 }
3276 }
3277 return 1;
3278 }
3279
3280 static int
3281 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3282 {
3283 int n;
3284
3285 for (n = TYPE_NFN_FIELDS (type);
3286 fip->fnlist != NULL;
3287 fip->fnlist = fip->fnlist->next)
3288 {
3289 --n; /* Circumvent Sun3 compiler bug. */
3290 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3291 }
3292 return 1;
3293 }
3294
3295 /* Create the vector of fields, and record how big it is.
3296 We need this info to record proper virtual function table information
3297 for this class's virtual functions. */
3298
3299 static int
3300 attach_fields_to_type (struct field_info *fip, struct type *type,
3301 struct objfile *objfile)
3302 {
3303 int nfields = 0;
3304 int non_public_fields = 0;
3305 struct nextfield *scan;
3306
3307 /* Count up the number of fields that we have, as well as taking note of
3308 whether or not there are any non-public fields, which requires us to
3309 allocate and build the private_field_bits and protected_field_bits
3310 bitfields. */
3311
3312 for (scan = fip->list; scan != NULL; scan = scan->next)
3313 {
3314 nfields++;
3315 if (scan->visibility != VISIBILITY_PUBLIC)
3316 {
3317 non_public_fields++;
3318 }
3319 }
3320
3321 /* Now we know how many fields there are, and whether or not there are any
3322 non-public fields. Record the field count, allocate space for the
3323 array of fields, and create blank visibility bitfields if necessary. */
3324
3325 TYPE_NFIELDS (type) = nfields;
3326 TYPE_FIELDS (type) = (struct field *)
3327 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3328 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3329
3330 if (non_public_fields)
3331 {
3332 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3333
3334 TYPE_FIELD_PRIVATE_BITS (type) =
3335 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3336 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3337
3338 TYPE_FIELD_PROTECTED_BITS (type) =
3339 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3340 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3341
3342 TYPE_FIELD_IGNORE_BITS (type) =
3343 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3344 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3345 }
3346
3347 /* Copy the saved-up fields into the field vector. Start from the
3348 head of the list, adding to the tail of the field array, so that
3349 they end up in the same order in the array in which they were
3350 added to the list. */
3351
3352 while (nfields-- > 0)
3353 {
3354 TYPE_FIELD (type, nfields) = fip->list->field;
3355 switch (fip->list->visibility)
3356 {
3357 case VISIBILITY_PRIVATE:
3358 SET_TYPE_FIELD_PRIVATE (type, nfields);
3359 break;
3360
3361 case VISIBILITY_PROTECTED:
3362 SET_TYPE_FIELD_PROTECTED (type, nfields);
3363 break;
3364
3365 case VISIBILITY_IGNORE:
3366 SET_TYPE_FIELD_IGNORE (type, nfields);
3367 break;
3368
3369 case VISIBILITY_PUBLIC:
3370 break;
3371
3372 default:
3373 /* Unknown visibility. Complain and treat it as public. */
3374 {
3375 complaint (_("Unknown visibility `%c' for field"),
3376 fip->list->visibility);
3377 }
3378 break;
3379 }
3380 fip->list = fip->list->next;
3381 }
3382 return 1;
3383 }
3384
3385
3386 /* Complain that the compiler has emitted more than one definition for the
3387 structure type TYPE. */
3388 static void
3389 complain_about_struct_wipeout (struct type *type)
3390 {
3391 const char *name = "";
3392 const char *kind = "";
3393
3394 if (TYPE_NAME (type))
3395 {
3396 name = TYPE_NAME (type);
3397 switch (TYPE_CODE (type))
3398 {
3399 case TYPE_CODE_STRUCT: kind = "struct "; break;
3400 case TYPE_CODE_UNION: kind = "union "; break;
3401 case TYPE_CODE_ENUM: kind = "enum "; break;
3402 default: kind = "";
3403 }
3404 }
3405 else
3406 {
3407 name = "<unknown>";
3408 kind = "";
3409 }
3410
3411 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3412 }
3413
3414 /* Set the length for all variants of a same main_type, which are
3415 connected in the closed chain.
3416
3417 This is something that needs to be done when a type is defined *after*
3418 some cross references to this type have already been read. Consider
3419 for instance the following scenario where we have the following two
3420 stabs entries:
3421
3422 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3423 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3424
3425 A stubbed version of type dummy is created while processing the first
3426 stabs entry. The length of that type is initially set to zero, since
3427 it is unknown at this point. Also, a "constant" variation of type
3428 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3429 the stabs line).
3430
3431 The second stabs entry allows us to replace the stubbed definition
3432 with the real definition. However, we still need to adjust the length
3433 of the "constant" variation of that type, as its length was left
3434 untouched during the main type replacement... */
3435
3436 static void
3437 set_length_in_type_chain (struct type *type)
3438 {
3439 struct type *ntype = TYPE_CHAIN (type);
3440
3441 while (ntype != type)
3442 {
3443 if (TYPE_LENGTH(ntype) == 0)
3444 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3445 else
3446 complain_about_struct_wipeout (ntype);
3447 ntype = TYPE_CHAIN (ntype);
3448 }
3449 }
3450
3451 /* Read the description of a structure (or union type) and return an object
3452 describing the type.
3453
3454 PP points to a character pointer that points to the next unconsumed token
3455 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3456 *PP will point to "4a:1,0,32;;".
3457
3458 TYPE points to an incomplete type that needs to be filled in.
3459
3460 OBJFILE points to the current objfile from which the stabs information is
3461 being read. (Note that it is redundant in that TYPE also contains a pointer
3462 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3463 */
3464
3465 static struct type *
3466 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3467 struct objfile *objfile)
3468 {
3469 struct cleanup *back_to;
3470 struct field_info fi;
3471
3472 fi.list = NULL;
3473 fi.fnlist = NULL;
3474
3475 /* When describing struct/union/class types in stabs, G++ always drops
3476 all qualifications from the name. So if you've got:
3477 struct A { ... struct B { ... }; ... };
3478 then G++ will emit stabs for `struct A::B' that call it simply
3479 `struct B'. Obviously, if you've got a real top-level definition for
3480 `struct B', or other nested definitions, this is going to cause
3481 problems.
3482
3483 Obviously, GDB can't fix this by itself, but it can at least avoid
3484 scribbling on existing structure type objects when new definitions
3485 appear. */
3486 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3487 || TYPE_STUB (type)))
3488 {
3489 complain_about_struct_wipeout (type);
3490
3491 /* It's probably best to return the type unchanged. */
3492 return type;
3493 }
3494
3495 back_to = make_cleanup (null_cleanup, 0);
3496
3497 INIT_CPLUS_SPECIFIC (type);
3498 TYPE_CODE (type) = type_code;
3499 TYPE_STUB (type) = 0;
3500
3501 /* First comes the total size in bytes. */
3502
3503 {
3504 int nbits;
3505
3506 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3507 if (nbits != 0)
3508 {
3509 do_cleanups (back_to);
3510 return error_type (pp, objfile);
3511 }
3512 set_length_in_type_chain (type);
3513 }
3514
3515 /* Now read the baseclasses, if any, read the regular C struct or C++
3516 class member fields, attach the fields to the type, read the C++
3517 member functions, attach them to the type, and then read any tilde
3518 field (baseclass specifier for the class holding the main vtable). */
3519
3520 if (!read_baseclasses (&fi, pp, type, objfile)
3521 || !read_struct_fields (&fi, pp, type, objfile)
3522 || !attach_fields_to_type (&fi, type, objfile)
3523 || !read_member_functions (&fi, pp, type, objfile)
3524 || !attach_fn_fields_to_type (&fi, type)
3525 || !read_tilde_fields (&fi, pp, type, objfile))
3526 {
3527 type = error_type (pp, objfile);
3528 }
3529
3530 do_cleanups (back_to);
3531 return (type);
3532 }
3533
3534 /* Read a definition of an array type,
3535 and create and return a suitable type object.
3536 Also creates a range type which represents the bounds of that
3537 array. */
3538
3539 static struct type *
3540 read_array_type (const char **pp, struct type *type,
3541 struct objfile *objfile)
3542 {
3543 struct type *index_type, *element_type, *range_type;
3544 int lower, upper;
3545 int adjustable = 0;
3546 int nbits;
3547
3548 /* Format of an array type:
3549 "ar<index type>;lower;upper;<array_contents_type>".
3550 OS9000: "arlower,upper;<array_contents_type>".
3551
3552 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3553 for these, produce a type like float[][]. */
3554
3555 {
3556 index_type = read_type (pp, objfile);
3557 if (**pp != ';')
3558 /* Improper format of array type decl. */
3559 return error_type (pp, objfile);
3560 ++*pp;
3561 }
3562
3563 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3564 {
3565 (*pp)++;
3566 adjustable = 1;
3567 }
3568 lower = read_huge_number (pp, ';', &nbits, 0);
3569
3570 if (nbits != 0)
3571 return error_type (pp, objfile);
3572
3573 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3574 {
3575 (*pp)++;
3576 adjustable = 1;
3577 }
3578 upper = read_huge_number (pp, ';', &nbits, 0);
3579 if (nbits != 0)
3580 return error_type (pp, objfile);
3581
3582 element_type = read_type (pp, objfile);
3583
3584 if (adjustable)
3585 {
3586 lower = 0;
3587 upper = -1;
3588 }
3589
3590 range_type =
3591 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3592 type = create_array_type (type, element_type, range_type);
3593
3594 return type;
3595 }
3596
3597
3598 /* Read a definition of an enumeration type,
3599 and create and return a suitable type object.
3600 Also defines the symbols that represent the values of the type. */
3601
3602 static struct type *
3603 read_enum_type (const char **pp, struct type *type,
3604 struct objfile *objfile)
3605 {
3606 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3607 const char *p;
3608 char *name;
3609 long n;
3610 struct symbol *sym;
3611 int nsyms = 0;
3612 struct pending **symlist;
3613 struct pending *osyms, *syms;
3614 int o_nsyms;
3615 int nbits;
3616 int unsigned_enum = 1;
3617
3618 #if 0
3619 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3620 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3621 to do? For now, force all enum values to file scope. */
3622 if (within_function)
3623 symlist = get_local_symbols ();
3624 else
3625 #endif
3626 symlist = get_file_symbols ();
3627 osyms = *symlist;
3628 o_nsyms = osyms ? osyms->nsyms : 0;
3629
3630 /* The aix4 compiler emits an extra field before the enum members;
3631 my guess is it's a type of some sort. Just ignore it. */
3632 if (**pp == '-')
3633 {
3634 /* Skip over the type. */
3635 while (**pp != ':')
3636 (*pp)++;
3637
3638 /* Skip over the colon. */
3639 (*pp)++;
3640 }
3641
3642 /* Read the value-names and their values.
3643 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3644 A semicolon or comma instead of a NAME means the end. */
3645 while (**pp && **pp != ';' && **pp != ',')
3646 {
3647 STABS_CONTINUE (pp, objfile);
3648 p = *pp;
3649 while (*p != ':')
3650 p++;
3651 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3652 *pp = p + 1;
3653 n = read_huge_number (pp, ',', &nbits, 0);
3654 if (nbits != 0)
3655 return error_type (pp, objfile);
3656
3657 sym = allocate_symbol (objfile);
3658 SYMBOL_SET_LINKAGE_NAME (sym, name);
3659 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3660 &objfile->objfile_obstack);
3661 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3662 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3663 SYMBOL_VALUE (sym) = n;
3664 if (n < 0)
3665 unsigned_enum = 0;
3666 add_symbol_to_list (sym, symlist);
3667 nsyms++;
3668 }
3669
3670 if (**pp == ';')
3671 (*pp)++; /* Skip the semicolon. */
3672
3673 /* Now fill in the fields of the type-structure. */
3674
3675 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3676 set_length_in_type_chain (type);
3677 TYPE_CODE (type) = TYPE_CODE_ENUM;
3678 TYPE_STUB (type) = 0;
3679 if (unsigned_enum)
3680 TYPE_UNSIGNED (type) = 1;
3681 TYPE_NFIELDS (type) = nsyms;
3682 TYPE_FIELDS (type) = (struct field *)
3683 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3684 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3685
3686 /* Find the symbols for the values and put them into the type.
3687 The symbols can be found in the symlist that we put them on
3688 to cause them to be defined. osyms contains the old value
3689 of that symlist; everything up to there was defined by us. */
3690 /* Note that we preserve the order of the enum constants, so
3691 that in something like "enum {FOO, LAST_THING=FOO}" we print
3692 FOO, not LAST_THING. */
3693
3694 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3695 {
3696 int last = syms == osyms ? o_nsyms : 0;
3697 int j = syms->nsyms;
3698
3699 for (; --j >= last; --n)
3700 {
3701 struct symbol *xsym = syms->symbol[j];
3702
3703 SYMBOL_TYPE (xsym) = type;
3704 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3705 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3706 TYPE_FIELD_BITSIZE (type, n) = 0;
3707 }
3708 if (syms == osyms)
3709 break;
3710 }
3711
3712 return type;
3713 }
3714
3715 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3716 typedefs in every file (for int, long, etc):
3717
3718 type = b <signed> <width> <format type>; <offset>; <nbits>
3719 signed = u or s.
3720 optional format type = c or b for char or boolean.
3721 offset = offset from high order bit to start bit of type.
3722 width is # bytes in object of this type, nbits is # bits in type.
3723
3724 The width/offset stuff appears to be for small objects stored in
3725 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3726 FIXME. */
3727
3728 static struct type *
3729 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3730 {
3731 int type_bits;
3732 int nbits;
3733 int unsigned_type;
3734 int boolean_type = 0;
3735
3736 switch (**pp)
3737 {
3738 case 's':
3739 unsigned_type = 0;
3740 break;
3741 case 'u':
3742 unsigned_type = 1;
3743 break;
3744 default:
3745 return error_type (pp, objfile);
3746 }
3747 (*pp)++;
3748
3749 /* For some odd reason, all forms of char put a c here. This is strange
3750 because no other type has this honor. We can safely ignore this because
3751 we actually determine 'char'acterness by the number of bits specified in
3752 the descriptor.
3753 Boolean forms, e.g Fortran logical*X, put a b here. */
3754
3755 if (**pp == 'c')
3756 (*pp)++;
3757 else if (**pp == 'b')
3758 {
3759 boolean_type = 1;
3760 (*pp)++;
3761 }
3762
3763 /* The first number appears to be the number of bytes occupied
3764 by this type, except that unsigned short is 4 instead of 2.
3765 Since this information is redundant with the third number,
3766 we will ignore it. */
3767 read_huge_number (pp, ';', &nbits, 0);
3768 if (nbits != 0)
3769 return error_type (pp, objfile);
3770
3771 /* The second number is always 0, so ignore it too. */
3772 read_huge_number (pp, ';', &nbits, 0);
3773 if (nbits != 0)
3774 return error_type (pp, objfile);
3775
3776 /* The third number is the number of bits for this type. */
3777 type_bits = read_huge_number (pp, 0, &nbits, 0);
3778 if (nbits != 0)
3779 return error_type (pp, objfile);
3780 /* The type *should* end with a semicolon. If it are embedded
3781 in a larger type the semicolon may be the only way to know where
3782 the type ends. If this type is at the end of the stabstring we
3783 can deal with the omitted semicolon (but we don't have to like
3784 it). Don't bother to complain(), Sun's compiler omits the semicolon
3785 for "void". */
3786 if (**pp == ';')
3787 ++(*pp);
3788
3789 if (type_bits == 0)
3790 {
3791 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3792 TARGET_CHAR_BIT, NULL);
3793 if (unsigned_type)
3794 TYPE_UNSIGNED (type) = 1;
3795 return type;
3796 }
3797
3798 if (boolean_type)
3799 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3800 else
3801 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3802 }
3803
3804 static struct type *
3805 read_sun_floating_type (const char **pp, int typenums[2],
3806 struct objfile *objfile)
3807 {
3808 int nbits;
3809 int details;
3810 int nbytes;
3811 struct type *rettype;
3812
3813 /* The first number has more details about the type, for example
3814 FN_COMPLEX. */
3815 details = read_huge_number (pp, ';', &nbits, 0);
3816 if (nbits != 0)
3817 return error_type (pp, objfile);
3818
3819 /* The second number is the number of bytes occupied by this type. */
3820 nbytes = read_huge_number (pp, ';', &nbits, 0);
3821 if (nbits != 0)
3822 return error_type (pp, objfile);
3823
3824 nbits = nbytes * TARGET_CHAR_BIT;
3825
3826 if (details == NF_COMPLEX || details == NF_COMPLEX16
3827 || details == NF_COMPLEX32)
3828 {
3829 rettype = dbx_init_float_type (objfile, nbits / 2);
3830 return init_complex_type (objfile, NULL, rettype);
3831 }
3832
3833 return dbx_init_float_type (objfile, nbits);
3834 }
3835
3836 /* Read a number from the string pointed to by *PP.
3837 The value of *PP is advanced over the number.
3838 If END is nonzero, the character that ends the
3839 number must match END, or an error happens;
3840 and that character is skipped if it does match.
3841 If END is zero, *PP is left pointing to that character.
3842
3843 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3844 the number is represented in an octal representation, assume that
3845 it is represented in a 2's complement representation with a size of
3846 TWOS_COMPLEMENT_BITS.
3847
3848 If the number fits in a long, set *BITS to 0 and return the value.
3849 If not, set *BITS to be the number of bits in the number and return 0.
3850
3851 If encounter garbage, set *BITS to -1 and return 0. */
3852
3853 static long
3854 read_huge_number (const char **pp, int end, int *bits,
3855 int twos_complement_bits)
3856 {
3857 const char *p = *pp;
3858 int sign = 1;
3859 int sign_bit = 0;
3860 long n = 0;
3861 int radix = 10;
3862 char overflow = 0;
3863 int nbits = 0;
3864 int c;
3865 long upper_limit;
3866 int twos_complement_representation = 0;
3867
3868 if (*p == '-')
3869 {
3870 sign = -1;
3871 p++;
3872 }
3873
3874 /* Leading zero means octal. GCC uses this to output values larger
3875 than an int (because that would be hard in decimal). */
3876 if (*p == '0')
3877 {
3878 radix = 8;
3879 p++;
3880 }
3881
3882 /* Skip extra zeros. */
3883 while (*p == '0')
3884 p++;
3885
3886 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3887 {
3888 /* Octal, possibly signed. Check if we have enough chars for a
3889 negative number. */
3890
3891 size_t len;
3892 const char *p1 = p;
3893
3894 while ((c = *p1) >= '0' && c < '8')
3895 p1++;
3896
3897 len = p1 - p;
3898 if (len > twos_complement_bits / 3
3899 || (twos_complement_bits % 3 == 0
3900 && len == twos_complement_bits / 3))
3901 {
3902 /* Ok, we have enough characters for a signed value, check
3903 for signness by testing if the sign bit is set. */
3904 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3905 c = *p - '0';
3906 if (c & (1 << sign_bit))
3907 {
3908 /* Definitely signed. */
3909 twos_complement_representation = 1;
3910 sign = -1;
3911 }
3912 }
3913 }
3914
3915 upper_limit = LONG_MAX / radix;
3916
3917 while ((c = *p++) >= '0' && c < ('0' + radix))
3918 {
3919 if (n <= upper_limit)
3920 {
3921 if (twos_complement_representation)
3922 {
3923 /* Octal, signed, twos complement representation. In
3924 this case, n is the corresponding absolute value. */
3925 if (n == 0)
3926 {
3927 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3928
3929 n = -sn;
3930 }
3931 else
3932 {
3933 n *= radix;
3934 n -= c - '0';
3935 }
3936 }
3937 else
3938 {
3939 /* unsigned representation */
3940 n *= radix;
3941 n += c - '0'; /* FIXME this overflows anyway. */
3942 }
3943 }
3944 else
3945 overflow = 1;
3946
3947 /* This depends on large values being output in octal, which is
3948 what GCC does. */
3949 if (radix == 8)
3950 {
3951 if (nbits == 0)
3952 {
3953 if (c == '0')
3954 /* Ignore leading zeroes. */
3955 ;
3956 else if (c == '1')
3957 nbits = 1;
3958 else if (c == '2' || c == '3')
3959 nbits = 2;
3960 else
3961 nbits = 3;
3962 }
3963 else
3964 nbits += 3;
3965 }
3966 }
3967 if (end)
3968 {
3969 if (c && c != end)
3970 {
3971 if (bits != NULL)
3972 *bits = -1;
3973 return 0;
3974 }
3975 }
3976 else
3977 --p;
3978
3979 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3980 {
3981 /* We were supposed to parse a number with maximum
3982 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3983 if (bits != NULL)
3984 *bits = -1;
3985 return 0;
3986 }
3987
3988 *pp = p;
3989 if (overflow)
3990 {
3991 if (nbits == 0)
3992 {
3993 /* Large decimal constants are an error (because it is hard to
3994 count how many bits are in them). */
3995 if (bits != NULL)
3996 *bits = -1;
3997 return 0;
3998 }
3999
4000 /* -0x7f is the same as 0x80. So deal with it by adding one to
4001 the number of bits. Two's complement represention octals
4002 can't have a '-' in front. */
4003 if (sign == -1 && !twos_complement_representation)
4004 ++nbits;
4005 if (bits)
4006 *bits = nbits;
4007 }
4008 else
4009 {
4010 if (bits)
4011 *bits = 0;
4012 return n * sign;
4013 }
4014 /* It's *BITS which has the interesting information. */
4015 return 0;
4016 }
4017
4018 static struct type *
4019 read_range_type (const char **pp, int typenums[2], int type_size,
4020 struct objfile *objfile)
4021 {
4022 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4023 const char *orig_pp = *pp;
4024 int rangenums[2];
4025 long n2, n3;
4026 int n2bits, n3bits;
4027 int self_subrange;
4028 struct type *result_type;
4029 struct type *index_type = NULL;
4030
4031 /* First comes a type we are a subrange of.
4032 In C it is usually 0, 1 or the type being defined. */
4033 if (read_type_number (pp, rangenums) != 0)
4034 return error_type (pp, objfile);
4035 self_subrange = (rangenums[0] == typenums[0] &&
4036 rangenums[1] == typenums[1]);
4037
4038 if (**pp == '=')
4039 {
4040 *pp = orig_pp;
4041 index_type = read_type (pp, objfile);
4042 }
4043
4044 /* A semicolon should now follow; skip it. */
4045 if (**pp == ';')
4046 (*pp)++;
4047
4048 /* The remaining two operands are usually lower and upper bounds
4049 of the range. But in some special cases they mean something else. */
4050 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4051 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4052
4053 if (n2bits == -1 || n3bits == -1)
4054 return error_type (pp, objfile);
4055
4056 if (index_type)
4057 goto handle_true_range;
4058
4059 /* If limits are huge, must be large integral type. */
4060 if (n2bits != 0 || n3bits != 0)
4061 {
4062 char got_signed = 0;
4063 char got_unsigned = 0;
4064 /* Number of bits in the type. */
4065 int nbits = 0;
4066
4067 /* If a type size attribute has been specified, the bounds of
4068 the range should fit in this size. If the lower bounds needs
4069 more bits than the upper bound, then the type is signed. */
4070 if (n2bits <= type_size && n3bits <= type_size)
4071 {
4072 if (n2bits == type_size && n2bits > n3bits)
4073 got_signed = 1;
4074 else
4075 got_unsigned = 1;
4076 nbits = type_size;
4077 }
4078 /* Range from 0 to <large number> is an unsigned large integral type. */
4079 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4080 {
4081 got_unsigned = 1;
4082 nbits = n3bits;
4083 }
4084 /* Range from <large number> to <large number>-1 is a large signed
4085 integral type. Take care of the case where <large number> doesn't
4086 fit in a long but <large number>-1 does. */
4087 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4088 || (n2bits != 0 && n3bits == 0
4089 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4090 && n3 == LONG_MAX))
4091 {
4092 got_signed = 1;
4093 nbits = n2bits;
4094 }
4095
4096 if (got_signed || got_unsigned)
4097 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4098 else
4099 return error_type (pp, objfile);
4100 }
4101
4102 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4103 if (self_subrange && n2 == 0 && n3 == 0)
4104 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4105
4106 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4107 is the width in bytes.
4108
4109 Fortran programs appear to use this for complex types also. To
4110 distinguish between floats and complex, g77 (and others?) seem
4111 to use self-subranges for the complexes, and subranges of int for
4112 the floats.
4113
4114 Also note that for complexes, g77 sets n2 to the size of one of
4115 the member floats, not the whole complex beast. My guess is that
4116 this was to work well with pre-COMPLEX versions of gdb. */
4117
4118 if (n3 == 0 && n2 > 0)
4119 {
4120 struct type *float_type
4121 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4122
4123 if (self_subrange)
4124 return init_complex_type (objfile, NULL, float_type);
4125 else
4126 return float_type;
4127 }
4128
4129 /* If the upper bound is -1, it must really be an unsigned integral. */
4130
4131 else if (n2 == 0 && n3 == -1)
4132 {
4133 int bits = type_size;
4134
4135 if (bits <= 0)
4136 {
4137 /* We don't know its size. It is unsigned int or unsigned
4138 long. GCC 2.3.3 uses this for long long too, but that is
4139 just a GDB 3.5 compatibility hack. */
4140 bits = gdbarch_int_bit (gdbarch);
4141 }
4142
4143 return init_integer_type (objfile, bits, 1, NULL);
4144 }
4145
4146 /* Special case: char is defined (Who knows why) as a subrange of
4147 itself with range 0-127. */
4148 else if (self_subrange && n2 == 0 && n3 == 127)
4149 {
4150 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4151 0, NULL);
4152 TYPE_NOSIGN (type) = 1;
4153 return type;
4154 }
4155 /* We used to do this only for subrange of self or subrange of int. */
4156 else if (n2 == 0)
4157 {
4158 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4159 "unsigned long", and we already checked for that,
4160 so don't need to test for it here. */
4161
4162 if (n3 < 0)
4163 /* n3 actually gives the size. */
4164 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4165
4166 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4167 unsigned n-byte integer. But do require n to be a power of
4168 two; we don't want 3- and 5-byte integers flying around. */
4169 {
4170 int bytes;
4171 unsigned long bits;
4172
4173 bits = n3;
4174 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4175 bits >>= 8;
4176 if (bits == 0
4177 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4178 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4179 }
4180 }
4181 /* I think this is for Convex "long long". Since I don't know whether
4182 Convex sets self_subrange, I also accept that particular size regardless
4183 of self_subrange. */
4184 else if (n3 == 0 && n2 < 0
4185 && (self_subrange
4186 || n2 == -gdbarch_long_long_bit
4187 (gdbarch) / TARGET_CHAR_BIT))
4188 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4189 else if (n2 == -n3 - 1)
4190 {
4191 if (n3 == 0x7f)
4192 return init_integer_type (objfile, 8, 0, NULL);
4193 if (n3 == 0x7fff)
4194 return init_integer_type (objfile, 16, 0, NULL);
4195 if (n3 == 0x7fffffff)
4196 return init_integer_type (objfile, 32, 0, NULL);
4197 }
4198
4199 /* We have a real range type on our hands. Allocate space and
4200 return a real pointer. */
4201 handle_true_range:
4202
4203 if (self_subrange)
4204 index_type = objfile_type (objfile)->builtin_int;
4205 else
4206 index_type = *dbx_lookup_type (rangenums, objfile);
4207 if (index_type == NULL)
4208 {
4209 /* Does this actually ever happen? Is that why we are worrying
4210 about dealing with it rather than just calling error_type? */
4211
4212 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4213
4214 index_type = objfile_type (objfile)->builtin_int;
4215 }
4216
4217 result_type
4218 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4219 return (result_type);
4220 }
4221
4222 /* Read in an argument list. This is a list of types, separated by commas
4223 and terminated with END. Return the list of types read in, or NULL
4224 if there is an error. */
4225
4226 static struct field *
4227 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4228 int *varargsp)
4229 {
4230 /* FIXME! Remove this arbitrary limit! */
4231 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4232 int n = 0, i;
4233 struct field *rval;
4234
4235 while (**pp != end)
4236 {
4237 if (**pp != ',')
4238 /* Invalid argument list: no ','. */
4239 return NULL;
4240 (*pp)++;
4241 STABS_CONTINUE (pp, objfile);
4242 types[n++] = read_type (pp, objfile);
4243 }
4244 (*pp)++; /* get past `end' (the ':' character). */
4245
4246 if (n == 0)
4247 {
4248 /* We should read at least the THIS parameter here. Some broken stabs
4249 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4250 have been present ";-16,(0,43)" reference instead. This way the
4251 excessive ";" marker prematurely stops the parameters parsing. */
4252
4253 complaint (_("Invalid (empty) method arguments"));
4254 *varargsp = 0;
4255 }
4256 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4257 *varargsp = 1;
4258 else
4259 {
4260 n--;
4261 *varargsp = 0;
4262 }
4263
4264 rval = XCNEWVEC (struct field, n);
4265 for (i = 0; i < n; i++)
4266 rval[i].type = types[i];
4267 *nargsp = n;
4268 return rval;
4269 }
4270 \f
4271 /* Common block handling. */
4272
4273 /* List of symbols declared since the last BCOMM. This list is a tail
4274 of local_symbols. When ECOMM is seen, the symbols on the list
4275 are noted so their proper addresses can be filled in later,
4276 using the common block base address gotten from the assembler
4277 stabs. */
4278
4279 static struct pending *common_block;
4280 static int common_block_i;
4281
4282 /* Name of the current common block. We get it from the BCOMM instead of the
4283 ECOMM to match IBM documentation (even though IBM puts the name both places
4284 like everyone else). */
4285 static char *common_block_name;
4286
4287 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4288 to remain after this function returns. */
4289
4290 void
4291 common_block_start (const char *name, struct objfile *objfile)
4292 {
4293 if (common_block_name != NULL)
4294 {
4295 complaint (_("Invalid symbol data: common block within common block"));
4296 }
4297 common_block = *get_local_symbols ();
4298 common_block_i = common_block ? common_block->nsyms : 0;
4299 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4300 strlen (name));
4301 }
4302
4303 /* Process a N_ECOMM symbol. */
4304
4305 void
4306 common_block_end (struct objfile *objfile)
4307 {
4308 /* Symbols declared since the BCOMM are to have the common block
4309 start address added in when we know it. common_block and
4310 common_block_i point to the first symbol after the BCOMM in
4311 the local_symbols list; copy the list and hang it off the
4312 symbol for the common block name for later fixup. */
4313 int i;
4314 struct symbol *sym;
4315 struct pending *newobj = 0;
4316 struct pending *next;
4317 int j;
4318
4319 if (common_block_name == NULL)
4320 {
4321 complaint (_("ECOMM symbol unmatched by BCOMM"));
4322 return;
4323 }
4324
4325 sym = allocate_symbol (objfile);
4326 /* Note: common_block_name already saved on objfile_obstack. */
4327 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4328 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4329
4330 /* Now we copy all the symbols which have been defined since the BCOMM. */
4331
4332 /* Copy all the struct pendings before common_block. */
4333 for (next = *get_local_symbols ();
4334 next != NULL && next != common_block;
4335 next = next->next)
4336 {
4337 for (j = 0; j < next->nsyms; j++)
4338 add_symbol_to_list (next->symbol[j], &newobj);
4339 }
4340
4341 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4342 NULL, it means copy all the local symbols (which we already did
4343 above). */
4344
4345 if (common_block != NULL)
4346 for (j = common_block_i; j < common_block->nsyms; j++)
4347 add_symbol_to_list (common_block->symbol[j], &newobj);
4348
4349 SYMBOL_TYPE (sym) = (struct type *) newobj;
4350
4351 /* Should we be putting local_symbols back to what it was?
4352 Does it matter? */
4353
4354 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4355 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4356 global_sym_chain[i] = sym;
4357 common_block_name = NULL;
4358 }
4359
4360 /* Add a common block's start address to the offset of each symbol
4361 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4362 the common block name). */
4363
4364 static void
4365 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4366 {
4367 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4368
4369 for (; next; next = next->next)
4370 {
4371 int j;
4372
4373 for (j = next->nsyms - 1; j >= 0; j--)
4374 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4375 }
4376 }
4377 \f
4378
4379
4380 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4381 See add_undefined_type for more details. */
4382
4383 static void
4384 add_undefined_type_noname (struct type *type, int typenums[2])
4385 {
4386 struct nat nat;
4387
4388 nat.typenums[0] = typenums [0];
4389 nat.typenums[1] = typenums [1];
4390 nat.type = type;
4391
4392 if (noname_undefs_length == noname_undefs_allocated)
4393 {
4394 noname_undefs_allocated *= 2;
4395 noname_undefs = (struct nat *)
4396 xrealloc ((char *) noname_undefs,
4397 noname_undefs_allocated * sizeof (struct nat));
4398 }
4399 noname_undefs[noname_undefs_length++] = nat;
4400 }
4401
4402 /* Add TYPE to the UNDEF_TYPES vector.
4403 See add_undefined_type for more details. */
4404
4405 static void
4406 add_undefined_type_1 (struct type *type)
4407 {
4408 if (undef_types_length == undef_types_allocated)
4409 {
4410 undef_types_allocated *= 2;
4411 undef_types = (struct type **)
4412 xrealloc ((char *) undef_types,
4413 undef_types_allocated * sizeof (struct type *));
4414 }
4415 undef_types[undef_types_length++] = type;
4416 }
4417
4418 /* What about types defined as forward references inside of a small lexical
4419 scope? */
4420 /* Add a type to the list of undefined types to be checked through
4421 once this file has been read in.
4422
4423 In practice, we actually maintain two such lists: The first list
4424 (UNDEF_TYPES) is used for types whose name has been provided, and
4425 concerns forward references (eg 'xs' or 'xu' forward references);
4426 the second list (NONAME_UNDEFS) is used for types whose name is
4427 unknown at creation time, because they were referenced through
4428 their type number before the actual type was declared.
4429 This function actually adds the given type to the proper list. */
4430
4431 static void
4432 add_undefined_type (struct type *type, int typenums[2])
4433 {
4434 if (TYPE_NAME (type) == NULL)
4435 add_undefined_type_noname (type, typenums);
4436 else
4437 add_undefined_type_1 (type);
4438 }
4439
4440 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4441
4442 static void
4443 cleanup_undefined_types_noname (struct objfile *objfile)
4444 {
4445 int i;
4446
4447 for (i = 0; i < noname_undefs_length; i++)
4448 {
4449 struct nat nat = noname_undefs[i];
4450 struct type **type;
4451
4452 type = dbx_lookup_type (nat.typenums, objfile);
4453 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4454 {
4455 /* The instance flags of the undefined type are still unset,
4456 and needs to be copied over from the reference type.
4457 Since replace_type expects them to be identical, we need
4458 to set these flags manually before hand. */
4459 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4460 replace_type (nat.type, *type);
4461 }
4462 }
4463
4464 noname_undefs_length = 0;
4465 }
4466
4467 /* Go through each undefined type, see if it's still undefined, and fix it
4468 up if possible. We have two kinds of undefined types:
4469
4470 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4471 Fix: update array length using the element bounds
4472 and the target type's length.
4473 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4474 yet defined at the time a pointer to it was made.
4475 Fix: Do a full lookup on the struct/union tag. */
4476
4477 static void
4478 cleanup_undefined_types_1 (void)
4479 {
4480 struct type **type;
4481
4482 /* Iterate over every undefined type, and look for a symbol whose type
4483 matches our undefined type. The symbol matches if:
4484 1. It is a typedef in the STRUCT domain;
4485 2. It has the same name, and same type code;
4486 3. The instance flags are identical.
4487
4488 It is important to check the instance flags, because we have seen
4489 examples where the debug info contained definitions such as:
4490
4491 "foo_t:t30=B31=xefoo_t:"
4492
4493 In this case, we have created an undefined type named "foo_t" whose
4494 instance flags is null (when processing "xefoo_t"), and then created
4495 another type with the same name, but with different instance flags
4496 ('B' means volatile). I think that the definition above is wrong,
4497 since the same type cannot be volatile and non-volatile at the same
4498 time, but we need to be able to cope with it when it happens. The
4499 approach taken here is to treat these two types as different. */
4500
4501 for (type = undef_types; type < undef_types + undef_types_length; type++)
4502 {
4503 switch (TYPE_CODE (*type))
4504 {
4505
4506 case TYPE_CODE_STRUCT:
4507 case TYPE_CODE_UNION:
4508 case TYPE_CODE_ENUM:
4509 {
4510 /* Check if it has been defined since. Need to do this here
4511 as well as in check_typedef to deal with the (legitimate in
4512 C though not C++) case of several types with the same name
4513 in different source files. */
4514 if (TYPE_STUB (*type))
4515 {
4516 struct pending *ppt;
4517 int i;
4518 /* Name of the type, without "struct" or "union". */
4519 const char *type_name = TYPE_NAME (*type);
4520
4521 if (type_name == NULL)
4522 {
4523 complaint (_("need a type name"));
4524 break;
4525 }
4526 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4527 {
4528 for (i = 0; i < ppt->nsyms; i++)
4529 {
4530 struct symbol *sym = ppt->symbol[i];
4531
4532 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4533 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4534 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4535 TYPE_CODE (*type))
4536 && (TYPE_INSTANCE_FLAGS (*type) ==
4537 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4538 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4539 type_name) == 0)
4540 replace_type (*type, SYMBOL_TYPE (sym));
4541 }
4542 }
4543 }
4544 }
4545 break;
4546
4547 default:
4548 {
4549 complaint (_("forward-referenced types left unresolved, "
4550 "type code %d."),
4551 TYPE_CODE (*type));
4552 }
4553 break;
4554 }
4555 }
4556
4557 undef_types_length = 0;
4558 }
4559
4560 /* Try to fix all the undefined types we ecountered while processing
4561 this unit. */
4562
4563 void
4564 cleanup_undefined_stabs_types (struct objfile *objfile)
4565 {
4566 cleanup_undefined_types_1 ();
4567 cleanup_undefined_types_noname (objfile);
4568 }
4569
4570 /* See stabsread.h. */
4571
4572 void
4573 scan_file_globals (struct objfile *objfile)
4574 {
4575 int hash;
4576 struct symbol *sym, *prev;
4577 struct objfile *resolve_objfile;
4578
4579 /* SVR4 based linkers copy referenced global symbols from shared
4580 libraries to the main executable.
4581 If we are scanning the symbols for a shared library, try to resolve
4582 them from the minimal symbols of the main executable first. */
4583
4584 if (symfile_objfile && objfile != symfile_objfile)
4585 resolve_objfile = symfile_objfile;
4586 else
4587 resolve_objfile = objfile;
4588
4589 while (1)
4590 {
4591 /* Avoid expensive loop through all minimal symbols if there are
4592 no unresolved symbols. */
4593 for (hash = 0; hash < HASHSIZE; hash++)
4594 {
4595 if (global_sym_chain[hash])
4596 break;
4597 }
4598 if (hash >= HASHSIZE)
4599 return;
4600
4601 for (minimal_symbol *msymbol : objfile_msymbols (resolve_objfile))
4602 {
4603 QUIT;
4604
4605 /* Skip static symbols. */
4606 switch (MSYMBOL_TYPE (msymbol))
4607 {
4608 case mst_file_text:
4609 case mst_file_data:
4610 case mst_file_bss:
4611 continue;
4612 default:
4613 break;
4614 }
4615
4616 prev = NULL;
4617
4618 /* Get the hash index and check all the symbols
4619 under that hash index. */
4620
4621 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4622
4623 for (sym = global_sym_chain[hash]; sym;)
4624 {
4625 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4626 SYMBOL_LINKAGE_NAME (sym)) == 0)
4627 {
4628 /* Splice this symbol out of the hash chain and
4629 assign the value we have to it. */
4630 if (prev)
4631 {
4632 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4633 }
4634 else
4635 {
4636 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4637 }
4638
4639 /* Check to see whether we need to fix up a common block. */
4640 /* Note: this code might be executed several times for
4641 the same symbol if there are multiple references. */
4642 if (sym)
4643 {
4644 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4645 {
4646 fix_common_block (sym,
4647 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4648 msymbol));
4649 }
4650 else
4651 {
4652 SYMBOL_VALUE_ADDRESS (sym)
4653 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4654 }
4655 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4656 }
4657
4658 if (prev)
4659 {
4660 sym = SYMBOL_VALUE_CHAIN (prev);
4661 }
4662 else
4663 {
4664 sym = global_sym_chain[hash];
4665 }
4666 }
4667 else
4668 {
4669 prev = sym;
4670 sym = SYMBOL_VALUE_CHAIN (sym);
4671 }
4672 }
4673 }
4674 if (resolve_objfile == objfile)
4675 break;
4676 resolve_objfile = objfile;
4677 }
4678
4679 /* Change the storage class of any remaining unresolved globals to
4680 LOC_UNRESOLVED and remove them from the chain. */
4681 for (hash = 0; hash < HASHSIZE; hash++)
4682 {
4683 sym = global_sym_chain[hash];
4684 while (sym)
4685 {
4686 prev = sym;
4687 sym = SYMBOL_VALUE_CHAIN (sym);
4688
4689 /* Change the symbol address from the misleading chain value
4690 to address zero. */
4691 SYMBOL_VALUE_ADDRESS (prev) = 0;
4692
4693 /* Complain about unresolved common block symbols. */
4694 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4695 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4696 else
4697 complaint (_("%s: common block `%s' from "
4698 "global_sym_chain unresolved"),
4699 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4700 }
4701 }
4702 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4703 }
4704
4705 /* Initialize anything that needs initializing when starting to read
4706 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4707 to a psymtab. */
4708
4709 void
4710 stabsread_init (void)
4711 {
4712 }
4713
4714 /* Initialize anything that needs initializing when a completely new
4715 symbol file is specified (not just adding some symbols from another
4716 file, e.g. a shared library). */
4717
4718 void
4719 stabsread_new_init (void)
4720 {
4721 /* Empty the hash table of global syms looking for values. */
4722 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4723 }
4724
4725 /* Initialize anything that needs initializing at the same time as
4726 start_symtab() is called. */
4727
4728 void
4729 start_stabs (void)
4730 {
4731 global_stabs = NULL; /* AIX COFF */
4732 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4733 n_this_object_header_files = 1;
4734 type_vector_length = 0;
4735 type_vector = (struct type **) 0;
4736 within_function = 0;
4737
4738 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4739 common_block_name = NULL;
4740 }
4741
4742 /* Call after end_symtab(). */
4743
4744 void
4745 end_stabs (void)
4746 {
4747 if (type_vector)
4748 {
4749 xfree (type_vector);
4750 }
4751 type_vector = 0;
4752 type_vector_length = 0;
4753 previous_stab_code = 0;
4754 }
4755
4756 void
4757 finish_global_stabs (struct objfile *objfile)
4758 {
4759 if (global_stabs)
4760 {
4761 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4762 xfree (global_stabs);
4763 global_stabs = NULL;
4764 }
4765 }
4766
4767 /* Find the end of the name, delimited by a ':', but don't match
4768 ObjC symbols which look like -[Foo bar::]:bla. */
4769 static const char *
4770 find_name_end (const char *name)
4771 {
4772 const char *s = name;
4773
4774 if (s[0] == '-' || *s == '+')
4775 {
4776 /* Must be an ObjC method symbol. */
4777 if (s[1] != '[')
4778 {
4779 error (_("invalid symbol name \"%s\""), name);
4780 }
4781 s = strchr (s, ']');
4782 if (s == NULL)
4783 {
4784 error (_("invalid symbol name \"%s\""), name);
4785 }
4786 return strchr (s, ':');
4787 }
4788 else
4789 {
4790 return strchr (s, ':');
4791 }
4792 }
4793
4794 /* See stabsread.h. */
4795
4796 int
4797 hashname (const char *name)
4798 {
4799 return hash (name, strlen (name)) % HASHSIZE;
4800 }
4801
4802 /* Initializer for this module. */
4803
4804 void
4805 _initialize_stabsread (void)
4806 {
4807 rs6000_builtin_type_data = register_objfile_data ();
4808
4809 undef_types_allocated = 20;
4810 undef_types_length = 0;
4811 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4812
4813 noname_undefs_allocated = 20;
4814 noname_undefs_length = 0;
4815 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4816
4817 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4818 &stab_register_funcs);
4819 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4820 &stab_register_funcs);
4821 }
This page took 0.154639 seconds and 4 git commands to generate.