PR 4713
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* Support routines for reading and decoding debugging information in
25 the "stabs" format. This format is used with many systems that use
26 the a.out object file format, as well as some systems that use
27 COFF or ELF where the stabs data is placed in a special section.
28 Avoid placing any object file format specific code in this file. */
29
30 #include "defs.h"
31 #include "gdb_string.h"
32 #include "bfd.h"
33 #include "gdb_obstack.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "expression.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
40 #include "libaout.h"
41 #include "aout/aout64.h"
42 #include "gdb-stabs.h"
43 #include "buildsym.h"
44 #include "complaints.h"
45 #include "demangle.h"
46 #include "language.h"
47 #include "doublest.h"
48 #include "cp-abi.h"
49 #include "cp-support.h"
50
51 #include <ctype.h>
52
53 /* Ask stabsread.h to define the vars it normally declares `extern'. */
54 #define EXTERN
55 /**/
56 #include "stabsread.h" /* Our own declarations */
57 #undef EXTERN
58
59 extern void _initialize_stabsread (void);
60
61 /* The routines that read and process a complete stabs for a C struct or
62 C++ class pass lists of data member fields and lists of member function
63 fields in an instance of a field_info structure, as defined below.
64 This is part of some reorganization of low level C++ support and is
65 expected to eventually go away... (FIXME) */
66
67 struct field_info
68 {
69 struct nextfield
70 {
71 struct nextfield *next;
72
73 /* This is the raw visibility from the stab. It is not checked
74 for being one of the visibilities we recognize, so code which
75 examines this field better be able to deal. */
76 int visibility;
77
78 struct field field;
79 }
80 *list;
81 struct next_fnfieldlist
82 {
83 struct next_fnfieldlist *next;
84 struct fn_fieldlist fn_fieldlist;
85 }
86 *fnlist;
87 };
88
89 static void
90 read_one_struct_field (struct field_info *, char **, char *,
91 struct type *, struct objfile *);
92
93 static struct type *dbx_alloc_type (int[2], struct objfile *);
94
95 static long read_huge_number (char **, int, int *, int);
96
97 static struct type *error_type (char **, struct objfile *);
98
99 static void
100 patch_block_stabs (struct pending *, struct pending_stabs *,
101 struct objfile *);
102
103 static void fix_common_block (struct symbol *, int);
104
105 static int read_type_number (char **, int *);
106
107 static struct type *read_type (char **, struct objfile *);
108
109 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110
111 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112
113 static struct type *read_sun_floating_type (char **, int[2],
114 struct objfile *);
115
116 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117
118 static struct type *rs6000_builtin_type (int);
119
120 static int
121 read_member_functions (struct field_info *, char **, struct type *,
122 struct objfile *);
123
124 static int
125 read_struct_fields (struct field_info *, char **, struct type *,
126 struct objfile *);
127
128 static int
129 read_baseclasses (struct field_info *, char **, struct type *,
130 struct objfile *);
131
132 static int
133 read_tilde_fields (struct field_info *, char **, struct type *,
134 struct objfile *);
135
136 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137
138 static int attach_fields_to_type (struct field_info *, struct type *,
139 struct objfile *);
140
141 static struct type *read_struct_type (char **, struct type *,
142 enum type_code,
143 struct objfile *);
144
145 static struct type *read_array_type (char **, struct type *,
146 struct objfile *);
147
148 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149
150 static void add_undefined_type (struct type *, int[2]);
151
152 static int
153 read_cpp_abbrev (struct field_info *, char **, struct type *,
154 struct objfile *);
155
156 static char *find_name_end (char *name);
157
158 static int process_reference (char **string);
159
160 void stabsread_clear_cache (void);
161
162 static const char vptr_name[] = "_vptr$";
163 static const char vb_name[] = "_vb$";
164
165 static void
166 invalid_cpp_abbrev_complaint (const char *arg1)
167 {
168 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
169 }
170
171 static void
172 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 {
174 complaint (&symfile_complaints,
175 _("register number %d too large (max %d) in symbol %s"),
176 regnum, num_regs - 1, sym);
177 }
178
179 static void
180 stabs_general_complaint (const char *arg1)
181 {
182 complaint (&symfile_complaints, "%s", arg1);
183 }
184
185 /* Make a list of forward references which haven't been defined. */
186
187 static struct type **undef_types;
188 static int undef_types_allocated;
189 static int undef_types_length;
190 static struct symbol *current_symbol = NULL;
191
192 /* Make a list of nameless types that are undefined.
193 This happens when another type is referenced by its number
194 before this type is actually defined. For instance "t(0,1)=k(0,2)"
195 and type (0,2) is defined only later. */
196
197 struct nat
198 {
199 int typenums[2];
200 struct type *type;
201 };
202 static struct nat *noname_undefs;
203 static int noname_undefs_allocated;
204 static int noname_undefs_length;
205
206 /* Check for and handle cretinous stabs symbol name continuation! */
207 #define STABS_CONTINUE(pp,objfile) \
208 do { \
209 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
210 *(pp) = next_symbol_text (objfile); \
211 } while (0)
212 \f
213
214 /* Look up a dbx type-number pair. Return the address of the slot
215 where the type for that number-pair is stored.
216 The number-pair is in TYPENUMS.
217
218 This can be used for finding the type associated with that pair
219 or for associating a new type with the pair. */
220
221 static struct type **
222 dbx_lookup_type (int typenums[2])
223 {
224 int filenum = typenums[0];
225 int index = typenums[1];
226 unsigned old_len;
227 int real_filenum;
228 struct header_file *f;
229 int f_orig_length;
230
231 if (filenum == -1) /* -1,-1 is for temporary types. */
232 return 0;
233
234 if (filenum < 0 || filenum >= n_this_object_header_files)
235 {
236 complaint (&symfile_complaints,
237 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
238 filenum, index, symnum);
239 goto error_return;
240 }
241
242 if (filenum == 0)
243 {
244 if (index < 0)
245 {
246 /* Caller wants address of address of type. We think
247 that negative (rs6k builtin) types will never appear as
248 "lvalues", (nor should they), so we stuff the real type
249 pointer into a temp, and return its address. If referenced,
250 this will do the right thing. */
251 static struct type *temp_type;
252
253 temp_type = rs6000_builtin_type (index);
254 return &temp_type;
255 }
256
257 /* Type is defined outside of header files.
258 Find it in this object file's type vector. */
259 if (index >= type_vector_length)
260 {
261 old_len = type_vector_length;
262 if (old_len == 0)
263 {
264 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 type_vector = (struct type **)
266 xmalloc (type_vector_length * sizeof (struct type *));
267 }
268 while (index >= type_vector_length)
269 {
270 type_vector_length *= 2;
271 }
272 type_vector = (struct type **)
273 xrealloc ((char *) type_vector,
274 (type_vector_length * sizeof (struct type *)));
275 memset (&type_vector[old_len], 0,
276 (type_vector_length - old_len) * sizeof (struct type *));
277 }
278 return (&type_vector[index]);
279 }
280 else
281 {
282 real_filenum = this_object_header_files[filenum];
283
284 if (real_filenum >= N_HEADER_FILES (current_objfile))
285 {
286 struct type *temp_type;
287 struct type **temp_type_p;
288
289 warning (_("GDB internal error: bad real_filenum"));
290
291 error_return:
292 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
293 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
294 *temp_type_p = temp_type;
295 return temp_type_p;
296 }
297
298 f = HEADER_FILES (current_objfile) + real_filenum;
299
300 f_orig_length = f->length;
301 if (index >= f_orig_length)
302 {
303 while (index >= f->length)
304 {
305 f->length *= 2;
306 }
307 f->vector = (struct type **)
308 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
309 memset (&f->vector[f_orig_length], 0,
310 (f->length - f_orig_length) * sizeof (struct type *));
311 }
312 return (&f->vector[index]);
313 }
314 }
315
316 /* Make sure there is a type allocated for type numbers TYPENUMS
317 and return the type object.
318 This can create an empty (zeroed) type object.
319 TYPENUMS may be (-1, -1) to return a new type object that is not
320 put into the type vector, and so may not be referred to by number. */
321
322 static struct type *
323 dbx_alloc_type (int typenums[2], struct objfile *objfile)
324 {
325 struct type **type_addr;
326
327 if (typenums[0] == -1)
328 {
329 return (alloc_type (objfile));
330 }
331
332 type_addr = dbx_lookup_type (typenums);
333
334 /* If we are referring to a type not known at all yet,
335 allocate an empty type for it.
336 We will fill it in later if we find out how. */
337 if (*type_addr == 0)
338 {
339 *type_addr = alloc_type (objfile);
340 }
341
342 return (*type_addr);
343 }
344
345 /* for all the stabs in a given stab vector, build appropriate types
346 and fix their symbols in given symbol vector. */
347
348 static void
349 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
350 struct objfile *objfile)
351 {
352 int ii;
353 char *name;
354 char *pp;
355 struct symbol *sym;
356
357 if (stabs)
358 {
359
360 /* for all the stab entries, find their corresponding symbols and
361 patch their types! */
362
363 for (ii = 0; ii < stabs->count; ++ii)
364 {
365 name = stabs->stab[ii];
366 pp = (char *) strchr (name, ':');
367 while (pp[1] == ':')
368 {
369 pp += 2;
370 pp = (char *) strchr (pp, ':');
371 }
372 sym = find_symbol_in_list (symbols, name, pp - name);
373 if (!sym)
374 {
375 /* FIXME-maybe: it would be nice if we noticed whether
376 the variable was defined *anywhere*, not just whether
377 it is defined in this compilation unit. But neither
378 xlc or GCC seem to need such a definition, and until
379 we do psymtabs (so that the minimal symbols from all
380 compilation units are available now), I'm not sure
381 how to get the information. */
382
383 /* On xcoff, if a global is defined and never referenced,
384 ld will remove it from the executable. There is then
385 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
386 sym = (struct symbol *)
387 obstack_alloc (&objfile->objfile_obstack,
388 sizeof (struct symbol));
389
390 memset (sym, 0, sizeof (struct symbol));
391 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
392 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
393 DEPRECATED_SYMBOL_NAME (sym) =
394 obsavestring (name, pp - name, &objfile->objfile_obstack);
395 pp += 2;
396 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
397 {
398 /* I don't think the linker does this with functions,
399 so as far as I know this is never executed.
400 But it doesn't hurt to check. */
401 SYMBOL_TYPE (sym) =
402 lookup_function_type (read_type (&pp, objfile));
403 }
404 else
405 {
406 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
407 }
408 add_symbol_to_list (sym, &global_symbols);
409 }
410 else
411 {
412 pp += 2;
413 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
414 {
415 SYMBOL_TYPE (sym) =
416 lookup_function_type (read_type (&pp, objfile));
417 }
418 else
419 {
420 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
421 }
422 }
423 }
424 }
425 }
426 \f
427
428 /* Read a number by which a type is referred to in dbx data,
429 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
430 Just a single number N is equivalent to (0,N).
431 Return the two numbers by storing them in the vector TYPENUMS.
432 TYPENUMS will then be used as an argument to dbx_lookup_type.
433
434 Returns 0 for success, -1 for error. */
435
436 static int
437 read_type_number (char **pp, int *typenums)
438 {
439 int nbits;
440 if (**pp == '(')
441 {
442 (*pp)++;
443 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
444 if (nbits != 0)
445 return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
447 if (nbits != 0)
448 return -1;
449 }
450 else
451 {
452 typenums[0] = 0;
453 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
454 if (nbits != 0)
455 return -1;
456 }
457 return 0;
458 }
459 \f
460
461 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
462 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
463 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
464 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
465
466 /* Structure for storing pointers to reference definitions for fast lookup
467 during "process_later". */
468
469 struct ref_map
470 {
471 char *stabs;
472 CORE_ADDR value;
473 struct symbol *sym;
474 };
475
476 #define MAX_CHUNK_REFS 100
477 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
478 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
479
480 static struct ref_map *ref_map;
481
482 /* Ptr to free cell in chunk's linked list. */
483 static int ref_count = 0;
484
485 /* Number of chunks malloced. */
486 static int ref_chunk = 0;
487
488 /* This file maintains a cache of stabs aliases found in the symbol
489 table. If the symbol table changes, this cache must be cleared
490 or we are left holding onto data in invalid obstacks. */
491 void
492 stabsread_clear_cache (void)
493 {
494 ref_count = 0;
495 ref_chunk = 0;
496 }
497
498 /* Create array of pointers mapping refids to symbols and stab strings.
499 Add pointers to reference definition symbols and/or their values as we
500 find them, using their reference numbers as our index.
501 These will be used later when we resolve references. */
502 void
503 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
504 {
505 if (ref_count == 0)
506 ref_chunk = 0;
507 if (refnum >= ref_count)
508 ref_count = refnum + 1;
509 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
510 {
511 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
512 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
513 ref_map = (struct ref_map *)
514 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
515 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '=' */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 struct symbol *
585 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
586 struct objfile *objfile)
587 {
588 struct symbol *sym;
589 char *p = (char *) find_name_end (string);
590 int deftype;
591 int synonym = 0;
592 int i;
593
594 /* We would like to eliminate nameless symbols, but keep their types.
595 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
596 to type 2, but, should not create a symbol to address that type. Since
597 the symbol will be nameless, there is no way any user can refer to it. */
598
599 int nameless;
600
601 /* Ignore syms with empty names. */
602 if (string[0] == 0)
603 return 0;
604
605 /* Ignore old-style symbols from cc -go */
606 if (p == 0)
607 return 0;
608
609 while (p[1] == ':')
610 {
611 p += 2;
612 p = strchr (p, ':');
613 }
614
615 /* If a nameless stab entry, all we need is the type, not the symbol.
616 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
617 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
618
619 current_symbol = sym = (struct symbol *)
620 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
621 memset (sym, 0, sizeof (struct symbol));
622
623 switch (type & N_TYPE)
624 {
625 case N_TEXT:
626 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
627 break;
628 case N_DATA:
629 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
630 break;
631 case N_BSS:
632 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
633 break;
634 }
635
636 if (processing_gcc_compilation)
637 {
638 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
639 number of bytes occupied by a type or object, which we ignore. */
640 SYMBOL_LINE (sym) = desc;
641 }
642 else
643 {
644 SYMBOL_LINE (sym) = 0; /* unknown */
645 }
646
647 if (is_cplus_marker (string[0]))
648 {
649 /* Special GNU C++ names. */
650 switch (string[1])
651 {
652 case 't':
653 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
654 &objfile->objfile_obstack);
655 break;
656
657 case 'v': /* $vtbl_ptr_type */
658 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
659 goto normal;
660
661 case 'e':
662 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
663 &objfile->objfile_obstack);
664 break;
665
666 case '_':
667 /* This was an anonymous type that was never fixed up. */
668 goto normal;
669
670 #ifdef STATIC_TRANSFORM_NAME
671 case 'X':
672 /* SunPRO (3.0 at least) static variable encoding. */
673 goto normal;
674 #endif
675
676 default:
677 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
678 string);
679 goto normal; /* Do *something* with it */
680 }
681 }
682 else
683 {
684 normal:
685 SYMBOL_LANGUAGE (sym) = current_subfile->language;
686 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
687 }
688 p++;
689
690 /* Determine the type of name being defined. */
691 #if 0
692 /* Getting GDB to correctly skip the symbol on an undefined symbol
693 descriptor and not ever dump core is a very dodgy proposition if
694 we do things this way. I say the acorn RISC machine can just
695 fix their compiler. */
696 /* The Acorn RISC machine's compiler can put out locals that don't
697 start with "234=" or "(3,4)=", so assume anything other than the
698 deftypes we know how to handle is a local. */
699 if (!strchr ("cfFGpPrStTvVXCR", *p))
700 #else
701 if (isdigit (*p) || *p == '(' || *p == '-')
702 #endif
703 deftype = 'l';
704 else
705 deftype = *p++;
706
707 switch (deftype)
708 {
709 case 'c':
710 /* c is a special case, not followed by a type-number.
711 SYMBOL:c=iVALUE for an integer constant symbol.
712 SYMBOL:c=rVALUE for a floating constant symbol.
713 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
714 e.g. "b:c=e6,0" for "const b = blob1"
715 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
716 if (*p != '=')
717 {
718 SYMBOL_CLASS (sym) = LOC_CONST;
719 SYMBOL_TYPE (sym) = error_type (&p, objfile);
720 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
721 add_symbol_to_list (sym, &file_symbols);
722 return sym;
723 }
724 ++p;
725 switch (*p++)
726 {
727 case 'r':
728 {
729 double d = atof (p);
730 gdb_byte *dbl_valu;
731
732 /* FIXME-if-picky-about-floating-accuracy: Should be using
733 target arithmetic to get the value. real.c in GCC
734 probably has the necessary code. */
735
736 /* FIXME: lookup_fundamental_type is a hack. We should be
737 creating a type especially for the type of float constants.
738 Problem is, what type should it be?
739
740 Also, what should the name of this type be? Should we
741 be using 'S' constants (see stabs.texinfo) instead? */
742
743 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
744 FT_DBL_PREC_FLOAT);
745 dbl_valu =
746 obstack_alloc (&objfile->objfile_obstack,
747 TYPE_LENGTH (SYMBOL_TYPE (sym)));
748 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
749 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
750 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
751 }
752 break;
753 case 'i':
754 {
755 /* Defining integer constants this way is kind of silly,
756 since 'e' constants allows the compiler to give not
757 only the value, but the type as well. C has at least
758 int, long, unsigned int, and long long as constant
759 types; other languages probably should have at least
760 unsigned as well as signed constants. */
761
762 /* We just need one int constant type for all objfiles.
763 It doesn't depend on languages or anything (arguably its
764 name should be a language-specific name for a type of
765 that size, but I'm inclined to say that if the compiler
766 wants a nice name for the type, it can use 'e'). */
767 static struct type *int_const_type;
768
769 /* Yes, this is as long as a *host* int. That is because we
770 use atoi. */
771 if (int_const_type == NULL)
772 int_const_type =
773 init_type (TYPE_CODE_INT,
774 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
775 "integer constant",
776 (struct objfile *) NULL);
777 SYMBOL_TYPE (sym) = int_const_type;
778 SYMBOL_VALUE (sym) = atoi (p);
779 SYMBOL_CLASS (sym) = LOC_CONST;
780 }
781 break;
782 case 'e':
783 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
784 can be represented as integral.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
787 {
788 SYMBOL_CLASS (sym) = LOC_CONST;
789 SYMBOL_TYPE (sym) = read_type (&p, objfile);
790
791 if (*p != ',')
792 {
793 SYMBOL_TYPE (sym) = error_type (&p, objfile);
794 break;
795 }
796 ++p;
797
798 /* If the value is too big to fit in an int (perhaps because
799 it is unsigned), or something like that, we silently get
800 a bogus value. The type and everything else about it is
801 correct. Ideally, we should be using whatever we have
802 available for parsing unsigned and long long values,
803 however. */
804 SYMBOL_VALUE (sym) = atoi (p);
805 }
806 break;
807 default:
808 {
809 SYMBOL_CLASS (sym) = LOC_CONST;
810 SYMBOL_TYPE (sym) = error_type (&p, objfile);
811 }
812 }
813 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
814 add_symbol_to_list (sym, &file_symbols);
815 return sym;
816
817 case 'C':
818 /* The name of a caught exception. */
819 SYMBOL_TYPE (sym) = read_type (&p, objfile);
820 SYMBOL_CLASS (sym) = LOC_LABEL;
821 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
822 SYMBOL_VALUE_ADDRESS (sym) = valu;
823 add_symbol_to_list (sym, &local_symbols);
824 break;
825
826 case 'f':
827 /* A static function definition. */
828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
829 SYMBOL_CLASS (sym) = LOC_BLOCK;
830 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 add_symbol_to_list (sym, &file_symbols);
832 /* fall into process_function_types. */
833
834 process_function_types:
835 /* Function result types are described as the result type in stabs.
836 We need to convert this to the function-returning-type-X type
837 in GDB. E.g. "int" is converted to "function returning int". */
838 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
839 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
840
841 /* All functions in C++ have prototypes. Stabs does not offer an
842 explicit way to identify prototyped or unprototyped functions,
843 but both GCC and Sun CC emit stabs for the "call-as" type rather
844 than the "declared-as" type for unprototyped functions, so
845 we treat all functions as if they were prototyped. This is used
846 primarily for promotion when calling the function from GDB. */
847 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
848
849 /* fall into process_prototype_types */
850
851 process_prototype_types:
852 /* Sun acc puts declared types of arguments here. */
853 if (*p == ';')
854 {
855 struct type *ftype = SYMBOL_TYPE (sym);
856 int nsemi = 0;
857 int nparams = 0;
858 char *p1 = p;
859
860 /* Obtain a worst case guess for the number of arguments
861 by counting the semicolons. */
862 while (*p1)
863 {
864 if (*p1++ == ';')
865 nsemi++;
866 }
867
868 /* Allocate parameter information fields and fill them in. */
869 TYPE_FIELDS (ftype) = (struct field *)
870 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
871 while (*p++ == ';')
872 {
873 struct type *ptype;
874
875 /* A type number of zero indicates the start of varargs.
876 FIXME: GDB currently ignores vararg functions. */
877 if (p[0] == '0' && p[1] == '\0')
878 break;
879 ptype = read_type (&p, objfile);
880
881 /* The Sun compilers mark integer arguments, which should
882 be promoted to the width of the calling conventions, with
883 a type which references itself. This type is turned into
884 a TYPE_CODE_VOID type by read_type, and we have to turn
885 it back into builtin_type_int here.
886 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
887 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
888 ptype = builtin_type_int;
889 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
890 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
891 }
892 TYPE_NFIELDS (ftype) = nparams;
893 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
894 }
895 break;
896
897 case 'F':
898 /* A global function definition. */
899 SYMBOL_TYPE (sym) = read_type (&p, objfile);
900 SYMBOL_CLASS (sym) = LOC_BLOCK;
901 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
902 add_symbol_to_list (sym, &global_symbols);
903 goto process_function_types;
904
905 case 'G':
906 /* For a class G (global) symbol, it appears that the
907 value is not correct. It is necessary to search for the
908 corresponding linker definition to find the value.
909 These definitions appear at the end of the namelist. */
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911 SYMBOL_CLASS (sym) = LOC_STATIC;
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 /* Don't add symbol references to global_sym_chain.
914 Symbol references don't have valid names and wont't match up with
915 minimal symbols when the global_sym_chain is relocated.
916 We'll fixup symbol references when we fixup the defining symbol. */
917 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
918 {
919 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
920 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
921 global_sym_chain[i] = sym;
922 }
923 add_symbol_to_list (sym, &global_symbols);
924 break;
925
926 /* This case is faked by a conditional above,
927 when there is no code letter in the dbx data.
928 Dbx data never actually contains 'l'. */
929 case 's':
930 case 'l':
931 SYMBOL_TYPE (sym) = read_type (&p, objfile);
932 SYMBOL_CLASS (sym) = LOC_LOCAL;
933 SYMBOL_VALUE (sym) = valu;
934 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
935 add_symbol_to_list (sym, &local_symbols);
936 break;
937
938 case 'p':
939 if (*p == 'F')
940 /* pF is a two-letter code that means a function parameter in Fortran.
941 The type-number specifies the type of the return value.
942 Translate it into a pointer-to-function type. */
943 {
944 p++;
945 SYMBOL_TYPE (sym)
946 = lookup_pointer_type
947 (lookup_function_type (read_type (&p, objfile)));
948 }
949 else
950 SYMBOL_TYPE (sym) = read_type (&p, objfile);
951
952 SYMBOL_CLASS (sym) = LOC_ARG;
953 SYMBOL_VALUE (sym) = valu;
954 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
955 add_symbol_to_list (sym, &local_symbols);
956
957 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
958 {
959 /* On little-endian machines, this crud is never necessary,
960 and, if the extra bytes contain garbage, is harmful. */
961 break;
962 }
963
964 /* If it's gcc-compiled, if it says `short', believe it. */
965 if (processing_gcc_compilation
966 || gdbarch_believe_pcc_promotion (current_gdbarch))
967 break;
968
969 if (!gdbarch_believe_pcc_promotion (current_gdbarch))
970 {
971 /* This is the signed type which arguments get promoted to. */
972 static struct type *pcc_promotion_type;
973 /* This is the unsigned type which arguments get promoted to. */
974 static struct type *pcc_unsigned_promotion_type;
975
976 /* Call it "int" because this is mainly C lossage. */
977 if (pcc_promotion_type == NULL)
978 pcc_promotion_type =
979 init_type (TYPE_CODE_INT,
980 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
981 0, "int", NULL);
982
983 if (pcc_unsigned_promotion_type == NULL)
984 pcc_unsigned_promotion_type =
985 init_type (TYPE_CODE_INT,
986 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
987 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
988
989 /* If PCC says a parameter is a short or a char, it is
990 really an int. */
991 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
992 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
993 {
994 SYMBOL_TYPE (sym) =
995 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
996 ? pcc_unsigned_promotion_type
997 : pcc_promotion_type;
998 }
999 break;
1000 }
1001
1002 case 'P':
1003 /* acc seems to use P to declare the prototypes of functions that
1004 are referenced by this file. gdb is not prepared to deal
1005 with this extra information. FIXME, it ought to. */
1006 if (type == N_FUN)
1007 {
1008 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1009 goto process_prototype_types;
1010 }
1011 /*FALLTHROUGH */
1012
1013 case 'R':
1014 /* Parameter which is in a register. */
1015 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1016 SYMBOL_CLASS (sym) = LOC_REGPARM;
1017 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1018 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1019 + gdbarch_num_pseudo_regs (current_gdbarch))
1020 {
1021 reg_value_complaint (SYMBOL_VALUE (sym),
1022 gdbarch_num_regs (current_gdbarch)
1023 + gdbarch_num_pseudo_regs (current_gdbarch),
1024 SYMBOL_PRINT_NAME (sym));
1025 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1026 /* Known safe, though useless */
1027 }
1028 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1029 add_symbol_to_list (sym, &local_symbols);
1030 break;
1031
1032 case 'r':
1033 /* Register variable (either global or local). */
1034 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1035 SYMBOL_CLASS (sym) = LOC_REGISTER;
1036 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1037 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1038 + gdbarch_num_pseudo_regs (current_gdbarch))
1039 {
1040 reg_value_complaint (SYMBOL_VALUE (sym),
1041 gdbarch_num_regs (current_gdbarch)
1042 + gdbarch_num_pseudo_regs (current_gdbarch),
1043 SYMBOL_PRINT_NAME (sym));
1044 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1045 /* Known safe, though useless */
1046 }
1047 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1048 if (within_function)
1049 {
1050 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1051 the same name to represent an argument passed in a
1052 register. GCC uses 'P' for the same case. So if we find
1053 such a symbol pair we combine it into one 'P' symbol.
1054 For Sun cc we need to do this regardless of
1055 stabs_argument_has_addr, because the compiler puts out
1056 the 'p' symbol even if it never saves the argument onto
1057 the stack.
1058
1059 On most machines, we want to preserve both symbols, so
1060 that we can still get information about what is going on
1061 with the stack (VAX for computing args_printed, using
1062 stack slots instead of saved registers in backtraces,
1063 etc.).
1064
1065 Note that this code illegally combines
1066 main(argc) struct foo argc; { register struct foo argc; }
1067 but this case is considered pathological and causes a warning
1068 from a decent compiler. */
1069
1070 if (local_symbols
1071 && local_symbols->nsyms > 0
1072 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1073 SYMBOL_TYPE (sym)))
1074 {
1075 struct symbol *prev_sym;
1076 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1077 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1078 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1079 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1080 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1081 {
1082 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1083 /* Use the type from the LOC_REGISTER; that is the type
1084 that is actually in that register. */
1085 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1086 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1087 sym = prev_sym;
1088 break;
1089 }
1090 }
1091 add_symbol_to_list (sym, &local_symbols);
1092 }
1093 else
1094 add_symbol_to_list (sym, &file_symbols);
1095 break;
1096
1097 case 'S':
1098 /* Static symbol at top level of file */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_CLASS (sym) = LOC_STATIC;
1101 SYMBOL_VALUE_ADDRESS (sym) = valu;
1102 #ifdef STATIC_TRANSFORM_NAME
1103 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1104 {
1105 struct minimal_symbol *msym;
1106 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1107 if (msym != NULL)
1108 {
1109 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1110 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1111 }
1112 }
1113 #endif
1114 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1115 add_symbol_to_list (sym, &file_symbols);
1116 break;
1117
1118 case 't':
1119 /* In Ada, there is no distinction between typedef and non-typedef;
1120 any type declaration implicitly has the equivalent of a typedef,
1121 and thus 't' is in fact equivalent to 'Tt'.
1122
1123 Therefore, for Ada units, we check the character immediately
1124 before the 't', and if we do not find a 'T', then make sure to
1125 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1126 will be stored in the VAR_DOMAIN). If the symbol was indeed
1127 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1128 elsewhere, so we don't need to take care of that.
1129
1130 This is important to do, because of forward references:
1131 The cleanup of undefined types stored in undef_types only uses
1132 STRUCT_DOMAIN symbols to perform the replacement. */
1133 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1134
1135 /* Typedef */
1136 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1137
1138 /* For a nameless type, we don't want a create a symbol, thus we
1139 did not use `sym'. Return without further processing. */
1140 if (nameless)
1141 return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1146 /* C++ vagaries: we may have a type which is derived from
1147 a base type which did not have its name defined when the
1148 derived class was output. We fill in the derived class's
1149 base part member's name here in that case. */
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1151 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1152 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1153 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1154 {
1155 int j;
1156 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1157 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1158 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1159 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1160 }
1161
1162 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1163 {
1164 /* gcc-2.6 or later (when using -fvtable-thunks)
1165 emits a unique named type for a vtable entry.
1166 Some gdb code depends on that specific name. */
1167 extern const char vtbl_ptr_name[];
1168
1169 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1170 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1171 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1172 {
1173 /* If we are giving a name to a type such as "pointer to
1174 foo" or "function returning foo", we better not set
1175 the TYPE_NAME. If the program contains "typedef char
1176 *caddr_t;", we don't want all variables of type char
1177 * to print as caddr_t. This is not just a
1178 consequence of GDB's type management; PCC and GCC (at
1179 least through version 2.4) both output variables of
1180 either type char * or caddr_t with the type number
1181 defined in the 't' symbol for caddr_t. If a future
1182 compiler cleans this up it GDB is not ready for it
1183 yet, but if it becomes ready we somehow need to
1184 disable this check (without breaking the PCC/GCC2.4
1185 case).
1186
1187 Sigh.
1188
1189 Fortunately, this check seems not to be necessary
1190 for anything except pointers or functions. */
1191 /* ezannoni: 2000-10-26. This seems to apply for
1192 versions of gcc older than 2.8. This was the original
1193 problem: with the following code gdb would tell that
1194 the type for name1 is caddr_t, and func is char()
1195 typedef char *caddr_t;
1196 char *name2;
1197 struct x
1198 {
1199 char *name1;
1200 } xx;
1201 char *func()
1202 {
1203 }
1204 main () {}
1205 */
1206
1207 /* Pascal accepts names for pointer types. */
1208 if (current_subfile->language == language_pascal)
1209 {
1210 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1211 }
1212 }
1213 else
1214 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1215 }
1216
1217 add_symbol_to_list (sym, &file_symbols);
1218
1219 if (synonym)
1220 {
1221 /* Create the STRUCT_DOMAIN clone. */
1222 struct symbol *struct_sym = (struct symbol *)
1223 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1224
1225 *struct_sym = *sym;
1226 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1227 SYMBOL_VALUE (struct_sym) = valu;
1228 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1229 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1230 TYPE_NAME (SYMBOL_TYPE (sym))
1231 = obconcat (&objfile->objfile_obstack, "", "",
1232 DEPRECATED_SYMBOL_NAME (sym));
1233 add_symbol_to_list (struct_sym, &file_symbols);
1234 }
1235
1236 break;
1237
1238 case 'T':
1239 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1240 by 't' which means we are typedef'ing it as well. */
1241 synonym = *p == 't';
1242
1243 if (synonym)
1244 p++;
1245
1246 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1247
1248 /* For a nameless type, we don't want a create a symbol, thus we
1249 did not use `sym'. Return without further processing. */
1250 if (nameless)
1251 return NULL;
1252
1253 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1254 SYMBOL_VALUE (sym) = valu;
1255 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1256 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1257 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1258 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1259 add_symbol_to_list (sym, &file_symbols);
1260
1261 if (synonym)
1262 {
1263 /* Clone the sym and then modify it. */
1264 struct symbol *typedef_sym = (struct symbol *)
1265 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1266 *typedef_sym = *sym;
1267 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1268 SYMBOL_VALUE (typedef_sym) = valu;
1269 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1270 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1271 TYPE_NAME (SYMBOL_TYPE (sym))
1272 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1273 add_symbol_to_list (typedef_sym, &file_symbols);
1274 }
1275 break;
1276
1277 case 'V':
1278 /* Static symbol of local scope */
1279 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1280 SYMBOL_CLASS (sym) = LOC_STATIC;
1281 SYMBOL_VALUE_ADDRESS (sym) = valu;
1282 #ifdef STATIC_TRANSFORM_NAME
1283 if (IS_STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym)))
1284 {
1285 struct minimal_symbol *msym;
1286 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1287 if (msym != NULL)
1288 {
1289 DEPRECATED_SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (DEPRECATED_SYMBOL_NAME (sym));
1290 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1291 }
1292 }
1293 #endif
1294 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1295 add_symbol_to_list (sym, &local_symbols);
1296 break;
1297
1298 case 'v':
1299 /* Reference parameter */
1300 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1301 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1302 SYMBOL_VALUE (sym) = valu;
1303 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1304 add_symbol_to_list (sym, &local_symbols);
1305 break;
1306
1307 case 'a':
1308 /* Reference parameter which is in a register. */
1309 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1310 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1311 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1312 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1313 + gdbarch_num_pseudo_regs (current_gdbarch))
1314 {
1315 reg_value_complaint (SYMBOL_VALUE (sym),
1316 gdbarch_num_regs (current_gdbarch)
1317 + gdbarch_num_pseudo_regs (current_gdbarch),
1318 SYMBOL_PRINT_NAME (sym));
1319 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1320 /* Known safe, though useless */
1321 }
1322 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1323 add_symbol_to_list (sym, &local_symbols);
1324 break;
1325
1326 case 'X':
1327 /* This is used by Sun FORTRAN for "function result value".
1328 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1329 that Pascal uses it too, but when I tried it Pascal used
1330 "x:3" (local symbol) instead. */
1331 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1332 SYMBOL_CLASS (sym) = LOC_LOCAL;
1333 SYMBOL_VALUE (sym) = valu;
1334 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1335 add_symbol_to_list (sym, &local_symbols);
1336 break;
1337
1338 default:
1339 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1340 SYMBOL_CLASS (sym) = LOC_CONST;
1341 SYMBOL_VALUE (sym) = 0;
1342 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1343 add_symbol_to_list (sym, &file_symbols);
1344 break;
1345 }
1346
1347 /* Some systems pass variables of certain types by reference instead
1348 of by value, i.e. they will pass the address of a structure (in a
1349 register or on the stack) instead of the structure itself. */
1350
1351 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1352 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1353 {
1354 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1355 variables passed in a register). */
1356 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1357 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1358 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1359 and subsequent arguments on SPARC, for example). */
1360 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1361 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1362 }
1363
1364 return sym;
1365 }
1366
1367 /* Skip rest of this symbol and return an error type.
1368
1369 General notes on error recovery: error_type always skips to the
1370 end of the symbol (modulo cretinous dbx symbol name continuation).
1371 Thus code like this:
1372
1373 if (*(*pp)++ != ';')
1374 return error_type (pp, objfile);
1375
1376 is wrong because if *pp starts out pointing at '\0' (typically as the
1377 result of an earlier error), it will be incremented to point to the
1378 start of the next symbol, which might produce strange results, at least
1379 if you run off the end of the string table. Instead use
1380
1381 if (**pp != ';')
1382 return error_type (pp, objfile);
1383 ++*pp;
1384
1385 or
1386
1387 if (**pp != ';')
1388 foo = error_type (pp, objfile);
1389 else
1390 ++*pp;
1391
1392 And in case it isn't obvious, the point of all this hair is so the compiler
1393 can define new types and new syntaxes, and old versions of the
1394 debugger will be able to read the new symbol tables. */
1395
1396 static struct type *
1397 error_type (char **pp, struct objfile *objfile)
1398 {
1399 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1400 while (1)
1401 {
1402 /* Skip to end of symbol. */
1403 while (**pp != '\0')
1404 {
1405 (*pp)++;
1406 }
1407
1408 /* Check for and handle cretinous dbx symbol name continuation! */
1409 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1410 {
1411 *pp = next_symbol_text (objfile);
1412 }
1413 else
1414 {
1415 break;
1416 }
1417 }
1418 return (builtin_type_error);
1419 }
1420 \f
1421
1422 /* Read type information or a type definition; return the type. Even
1423 though this routine accepts either type information or a type
1424 definition, the distinction is relevant--some parts of stabsread.c
1425 assume that type information starts with a digit, '-', or '(' in
1426 deciding whether to call read_type. */
1427
1428 static struct type *
1429 read_type (char **pp, struct objfile *objfile)
1430 {
1431 struct type *type = 0;
1432 struct type *type1;
1433 int typenums[2];
1434 char type_descriptor;
1435
1436 /* Size in bits of type if specified by a type attribute, or -1 if
1437 there is no size attribute. */
1438 int type_size = -1;
1439
1440 /* Used to distinguish string and bitstring from char-array and set. */
1441 int is_string = 0;
1442
1443 /* Used to distinguish vector from array. */
1444 int is_vector = 0;
1445
1446 /* Read type number if present. The type number may be omitted.
1447 for instance in a two-dimensional array declared with type
1448 "ar1;1;10;ar1;1;10;4". */
1449 if ((**pp >= '0' && **pp <= '9')
1450 || **pp == '('
1451 || **pp == '-')
1452 {
1453 if (read_type_number (pp, typenums) != 0)
1454 return error_type (pp, objfile);
1455
1456 if (**pp != '=')
1457 {
1458 /* Type is not being defined here. Either it already
1459 exists, or this is a forward reference to it.
1460 dbx_alloc_type handles both cases. */
1461 type = dbx_alloc_type (typenums, objfile);
1462
1463 /* If this is a forward reference, arrange to complain if it
1464 doesn't get patched up by the time we're done
1465 reading. */
1466 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1467 add_undefined_type (type, typenums);
1468
1469 return type;
1470 }
1471
1472 /* Type is being defined here. */
1473 /* Skip the '='.
1474 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1475 (*pp) += 2;
1476 }
1477 else
1478 {
1479 /* 'typenums=' not present, type is anonymous. Read and return
1480 the definition, but don't put it in the type vector. */
1481 typenums[0] = typenums[1] = -1;
1482 (*pp)++;
1483 }
1484
1485 again:
1486 type_descriptor = (*pp)[-1];
1487 switch (type_descriptor)
1488 {
1489 case 'x':
1490 {
1491 enum type_code code;
1492
1493 /* Used to index through file_symbols. */
1494 struct pending *ppt;
1495 int i;
1496
1497 /* Name including "struct", etc. */
1498 char *type_name;
1499
1500 {
1501 char *from, *to, *p, *q1, *q2;
1502
1503 /* Set the type code according to the following letter. */
1504 switch ((*pp)[0])
1505 {
1506 case 's':
1507 code = TYPE_CODE_STRUCT;
1508 break;
1509 case 'u':
1510 code = TYPE_CODE_UNION;
1511 break;
1512 case 'e':
1513 code = TYPE_CODE_ENUM;
1514 break;
1515 default:
1516 {
1517 /* Complain and keep going, so compilers can invent new
1518 cross-reference types. */
1519 complaint (&symfile_complaints,
1520 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1521 code = TYPE_CODE_STRUCT;
1522 break;
1523 }
1524 }
1525
1526 q1 = strchr (*pp, '<');
1527 p = strchr (*pp, ':');
1528 if (p == NULL)
1529 return error_type (pp, objfile);
1530 if (q1 && p > q1 && p[1] == ':')
1531 {
1532 int nesting_level = 0;
1533 for (q2 = q1; *q2; q2++)
1534 {
1535 if (*q2 == '<')
1536 nesting_level++;
1537 else if (*q2 == '>')
1538 nesting_level--;
1539 else if (*q2 == ':' && nesting_level == 0)
1540 break;
1541 }
1542 p = q2;
1543 if (*p != ':')
1544 return error_type (pp, objfile);
1545 }
1546 to = type_name =
1547 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1548
1549 /* Copy the name. */
1550 from = *pp + 1;
1551 while (from < p)
1552 *to++ = *from++;
1553 *to = '\0';
1554
1555 /* Set the pointer ahead of the name which we just read, and
1556 the colon. */
1557 *pp = from + 1;
1558 }
1559
1560 /* If this type has already been declared, then reuse the same
1561 type, rather than allocating a new one. This saves some
1562 memory. */
1563
1564 for (ppt = file_symbols; ppt; ppt = ppt->next)
1565 for (i = 0; i < ppt->nsyms; i++)
1566 {
1567 struct symbol *sym = ppt->symbol[i];
1568
1569 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1570 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1571 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1572 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1573 {
1574 obstack_free (&objfile->objfile_obstack, type_name);
1575 type = SYMBOL_TYPE (sym);
1576 if (typenums[0] != -1)
1577 *dbx_lookup_type (typenums) = type;
1578 return type;
1579 }
1580 }
1581
1582 /* Didn't find the type to which this refers, so we must
1583 be dealing with a forward reference. Allocate a type
1584 structure for it, and keep track of it so we can
1585 fill in the rest of the fields when we get the full
1586 type. */
1587 type = dbx_alloc_type (typenums, objfile);
1588 TYPE_CODE (type) = code;
1589 TYPE_TAG_NAME (type) = type_name;
1590 INIT_CPLUS_SPECIFIC (type);
1591 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1592
1593 add_undefined_type (type, typenums);
1594 return type;
1595 }
1596
1597 case '-': /* RS/6000 built-in type */
1598 case '0':
1599 case '1':
1600 case '2':
1601 case '3':
1602 case '4':
1603 case '5':
1604 case '6':
1605 case '7':
1606 case '8':
1607 case '9':
1608 case '(':
1609 (*pp)--;
1610
1611 /* We deal with something like t(1,2)=(3,4)=... which
1612 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1613
1614 /* Allocate and enter the typedef type first.
1615 This handles recursive types. */
1616 type = dbx_alloc_type (typenums, objfile);
1617 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1618 {
1619 struct type *xtype = read_type (pp, objfile);
1620 if (type == xtype)
1621 {
1622 /* It's being defined as itself. That means it is "void". */
1623 TYPE_CODE (type) = TYPE_CODE_VOID;
1624 TYPE_LENGTH (type) = 1;
1625 }
1626 else if (type_size >= 0 || is_string)
1627 {
1628 /* This is the absolute wrong way to construct types. Every
1629 other debug format has found a way around this problem and
1630 the related problems with unnecessarily stubbed types;
1631 someone motivated should attempt to clean up the issue
1632 here as well. Once a type pointed to has been created it
1633 should not be modified.
1634
1635 Well, it's not *absolutely* wrong. Constructing recursive
1636 types (trees, linked lists) necessarily entails modifying
1637 types after creating them. Constructing any loop structure
1638 entails side effects. The Dwarf 2 reader does handle this
1639 more gracefully (it never constructs more than once
1640 instance of a type object, so it doesn't have to copy type
1641 objects wholesale), but it still mutates type objects after
1642 other folks have references to them.
1643
1644 Keep in mind that this circularity/mutation issue shows up
1645 at the source language level, too: C's "incomplete types",
1646 for example. So the proper cleanup, I think, would be to
1647 limit GDB's type smashing to match exactly those required
1648 by the source language. So GDB could have a
1649 "complete_this_type" function, but never create unnecessary
1650 copies of a type otherwise. */
1651 replace_type (type, xtype);
1652 TYPE_NAME (type) = NULL;
1653 TYPE_TAG_NAME (type) = NULL;
1654 }
1655 else
1656 {
1657 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1658 TYPE_TARGET_TYPE (type) = xtype;
1659 }
1660 }
1661 break;
1662
1663 /* In the following types, we must be sure to overwrite any existing
1664 type that the typenums refer to, rather than allocating a new one
1665 and making the typenums point to the new one. This is because there
1666 may already be pointers to the existing type (if it had been
1667 forward-referenced), and we must change it to a pointer, function,
1668 reference, or whatever, *in-place*. */
1669
1670 case '*': /* Pointer to another type */
1671 type1 = read_type (pp, objfile);
1672 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1673 break;
1674
1675 case '&': /* Reference to another type */
1676 type1 = read_type (pp, objfile);
1677 type = make_reference_type (type1, dbx_lookup_type (typenums));
1678 break;
1679
1680 case 'f': /* Function returning another type */
1681 type1 = read_type (pp, objfile);
1682 type = make_function_type (type1, dbx_lookup_type (typenums));
1683 break;
1684
1685 case 'g': /* Prototyped function. (Sun) */
1686 {
1687 /* Unresolved questions:
1688
1689 - According to Sun's ``STABS Interface Manual'', for 'f'
1690 and 'F' symbol descriptors, a `0' in the argument type list
1691 indicates a varargs function. But it doesn't say how 'g'
1692 type descriptors represent that info. Someone with access
1693 to Sun's toolchain should try it out.
1694
1695 - According to the comment in define_symbol (search for
1696 `process_prototype_types:'), Sun emits integer arguments as
1697 types which ref themselves --- like `void' types. Do we
1698 have to deal with that here, too? Again, someone with
1699 access to Sun's toolchain should try it out and let us
1700 know. */
1701
1702 const char *type_start = (*pp) - 1;
1703 struct type *return_type = read_type (pp, objfile);
1704 struct type *func_type
1705 = make_function_type (return_type, dbx_lookup_type (typenums));
1706 struct type_list {
1707 struct type *type;
1708 struct type_list *next;
1709 } *arg_types = 0;
1710 int num_args = 0;
1711
1712 while (**pp && **pp != '#')
1713 {
1714 struct type *arg_type = read_type (pp, objfile);
1715 struct type_list *new = alloca (sizeof (*new));
1716 new->type = arg_type;
1717 new->next = arg_types;
1718 arg_types = new;
1719 num_args++;
1720 }
1721 if (**pp == '#')
1722 ++*pp;
1723 else
1724 {
1725 complaint (&symfile_complaints,
1726 _("Prototyped function type didn't end arguments with `#':\n%s"),
1727 type_start);
1728 }
1729
1730 /* If there is just one argument whose type is `void', then
1731 that's just an empty argument list. */
1732 if (arg_types
1733 && ! arg_types->next
1734 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1735 num_args = 0;
1736
1737 TYPE_FIELDS (func_type)
1738 = (struct field *) TYPE_ALLOC (func_type,
1739 num_args * sizeof (struct field));
1740 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1741 {
1742 int i;
1743 struct type_list *t;
1744
1745 /* We stuck each argument type onto the front of the list
1746 when we read it, so the list is reversed. Build the
1747 fields array right-to-left. */
1748 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1749 TYPE_FIELD_TYPE (func_type, i) = t->type;
1750 }
1751 TYPE_NFIELDS (func_type) = num_args;
1752 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1753
1754 type = func_type;
1755 break;
1756 }
1757
1758 case 'k': /* Const qualifier on some type (Sun) */
1759 type = read_type (pp, objfile);
1760 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1761 dbx_lookup_type (typenums));
1762 break;
1763
1764 case 'B': /* Volatile qual on some type (Sun) */
1765 type = read_type (pp, objfile);
1766 type = make_cv_type (TYPE_CONST (type), 1, type,
1767 dbx_lookup_type (typenums));
1768 break;
1769
1770 case '@':
1771 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1772 { /* Member (class & variable) type */
1773 /* FIXME -- we should be doing smash_to_XXX types here. */
1774
1775 struct type *domain = read_type (pp, objfile);
1776 struct type *memtype;
1777
1778 if (**pp != ',')
1779 /* Invalid member type data format. */
1780 return error_type (pp, objfile);
1781 ++*pp;
1782
1783 memtype = read_type (pp, objfile);
1784 type = dbx_alloc_type (typenums, objfile);
1785 smash_to_memberptr_type (type, domain, memtype);
1786 }
1787 else
1788 /* type attribute */
1789 {
1790 char *attr = *pp;
1791 /* Skip to the semicolon. */
1792 while (**pp != ';' && **pp != '\0')
1793 ++(*pp);
1794 if (**pp == '\0')
1795 return error_type (pp, objfile);
1796 else
1797 ++ * pp; /* Skip the semicolon. */
1798
1799 switch (*attr)
1800 {
1801 case 's': /* Size attribute */
1802 type_size = atoi (attr + 1);
1803 if (type_size <= 0)
1804 type_size = -1;
1805 break;
1806
1807 case 'S': /* String attribute */
1808 /* FIXME: check to see if following type is array? */
1809 is_string = 1;
1810 break;
1811
1812 case 'V': /* Vector attribute */
1813 /* FIXME: check to see if following type is array? */
1814 is_vector = 1;
1815 break;
1816
1817 default:
1818 /* Ignore unrecognized type attributes, so future compilers
1819 can invent new ones. */
1820 break;
1821 }
1822 ++*pp;
1823 goto again;
1824 }
1825 break;
1826
1827 case '#': /* Method (class & fn) type */
1828 if ((*pp)[0] == '#')
1829 {
1830 /* We'll get the parameter types from the name. */
1831 struct type *return_type;
1832
1833 (*pp)++;
1834 return_type = read_type (pp, objfile);
1835 if (*(*pp)++ != ';')
1836 complaint (&symfile_complaints,
1837 _("invalid (minimal) member type data format at symtab pos %d."),
1838 symnum);
1839 type = allocate_stub_method (return_type);
1840 if (typenums[0] != -1)
1841 *dbx_lookup_type (typenums) = type;
1842 }
1843 else
1844 {
1845 struct type *domain = read_type (pp, objfile);
1846 struct type *return_type;
1847 struct field *args;
1848 int nargs, varargs;
1849
1850 if (**pp != ',')
1851 /* Invalid member type data format. */
1852 return error_type (pp, objfile);
1853 else
1854 ++(*pp);
1855
1856 return_type = read_type (pp, objfile);
1857 args = read_args (pp, ';', objfile, &nargs, &varargs);
1858 if (args == NULL)
1859 return error_type (pp, objfile);
1860 type = dbx_alloc_type (typenums, objfile);
1861 smash_to_method_type (type, domain, return_type, args,
1862 nargs, varargs);
1863 }
1864 break;
1865
1866 case 'r': /* Range type */
1867 type = read_range_type (pp, typenums, type_size, objfile);
1868 if (typenums[0] != -1)
1869 *dbx_lookup_type (typenums) = type;
1870 break;
1871
1872 case 'b':
1873 {
1874 /* Sun ACC builtin int type */
1875 type = read_sun_builtin_type (pp, typenums, objfile);
1876 if (typenums[0] != -1)
1877 *dbx_lookup_type (typenums) = type;
1878 }
1879 break;
1880
1881 case 'R': /* Sun ACC builtin float type */
1882 type = read_sun_floating_type (pp, typenums, objfile);
1883 if (typenums[0] != -1)
1884 *dbx_lookup_type (typenums) = type;
1885 break;
1886
1887 case 'e': /* Enumeration type */
1888 type = dbx_alloc_type (typenums, objfile);
1889 type = read_enum_type (pp, type, objfile);
1890 if (typenums[0] != -1)
1891 *dbx_lookup_type (typenums) = type;
1892 break;
1893
1894 case 's': /* Struct type */
1895 case 'u': /* Union type */
1896 {
1897 enum type_code type_code = TYPE_CODE_UNDEF;
1898 type = dbx_alloc_type (typenums, objfile);
1899 switch (type_descriptor)
1900 {
1901 case 's':
1902 type_code = TYPE_CODE_STRUCT;
1903 break;
1904 case 'u':
1905 type_code = TYPE_CODE_UNION;
1906 break;
1907 }
1908 type = read_struct_type (pp, type, type_code, objfile);
1909 break;
1910 }
1911
1912 case 'a': /* Array type */
1913 if (**pp != 'r')
1914 return error_type (pp, objfile);
1915 ++*pp;
1916
1917 type = dbx_alloc_type (typenums, objfile);
1918 type = read_array_type (pp, type, objfile);
1919 if (is_string)
1920 TYPE_CODE (type) = TYPE_CODE_STRING;
1921 if (is_vector)
1922 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1923 break;
1924
1925 case 'S': /* Set or bitstring type */
1926 type1 = read_type (pp, objfile);
1927 type = create_set_type ((struct type *) NULL, type1);
1928 if (is_string)
1929 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1930 if (typenums[0] != -1)
1931 *dbx_lookup_type (typenums) = type;
1932 break;
1933
1934 default:
1935 --*pp; /* Go back to the symbol in error */
1936 /* Particularly important if it was \0! */
1937 return error_type (pp, objfile);
1938 }
1939
1940 if (type == 0)
1941 {
1942 warning (_("GDB internal error, type is NULL in stabsread.c."));
1943 return error_type (pp, objfile);
1944 }
1945
1946 /* Size specified in a type attribute overrides any other size. */
1947 if (type_size != -1)
1948 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1949
1950 return type;
1951 }
1952 \f
1953 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1954 Return the proper type node for a given builtin type number. */
1955
1956 static struct type *
1957 rs6000_builtin_type (int typenum)
1958 {
1959 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1960 #define NUMBER_RECOGNIZED 34
1961 /* This includes an empty slot for type number -0. */
1962 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1963 struct type *rettype = NULL;
1964
1965 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1966 {
1967 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1968 return builtin_type_error;
1969 }
1970 if (negative_types[-typenum] != NULL)
1971 return negative_types[-typenum];
1972
1973 #if TARGET_CHAR_BIT != 8
1974 #error This code wrong for TARGET_CHAR_BIT not 8
1975 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1976 that if that ever becomes not true, the correct fix will be to
1977 make the size in the struct type to be in bits, not in units of
1978 TARGET_CHAR_BIT. */
1979 #endif
1980
1981 switch (-typenum)
1982 {
1983 case 1:
1984 /* The size of this and all the other types are fixed, defined
1985 by the debugging format. If there is a type called "int" which
1986 is other than 32 bits, then it should use a new negative type
1987 number (or avoid negative type numbers for that case).
1988 See stabs.texinfo. */
1989 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1990 break;
1991 case 2:
1992 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1993 break;
1994 case 3:
1995 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1996 break;
1997 case 4:
1998 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1999 break;
2000 case 5:
2001 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2002 "unsigned char", NULL);
2003 break;
2004 case 6:
2005 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2006 break;
2007 case 7:
2008 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2009 "unsigned short", NULL);
2010 break;
2011 case 8:
2012 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2013 "unsigned int", NULL);
2014 break;
2015 case 9:
2016 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2017 "unsigned", NULL);
2018 case 10:
2019 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2020 "unsigned long", NULL);
2021 break;
2022 case 11:
2023 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2024 break;
2025 case 12:
2026 /* IEEE single precision (32 bit). */
2027 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2028 break;
2029 case 13:
2030 /* IEEE double precision (64 bit). */
2031 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2032 break;
2033 case 14:
2034 /* This is an IEEE double on the RS/6000, and different machines with
2035 different sizes for "long double" should use different negative
2036 type numbers. See stabs.texinfo. */
2037 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2038 break;
2039 case 15:
2040 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2041 break;
2042 case 16:
2043 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2044 "boolean", NULL);
2045 break;
2046 case 17:
2047 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2048 break;
2049 case 18:
2050 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2051 break;
2052 case 19:
2053 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2054 break;
2055 case 20:
2056 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2057 "character", NULL);
2058 break;
2059 case 21:
2060 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2061 "logical*1", NULL);
2062 break;
2063 case 22:
2064 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2065 "logical*2", NULL);
2066 break;
2067 case 23:
2068 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2069 "logical*4", NULL);
2070 break;
2071 case 24:
2072 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2073 "logical", NULL);
2074 break;
2075 case 25:
2076 /* Complex type consisting of two IEEE single precision values. */
2077 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2078 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2079 NULL);
2080 break;
2081 case 26:
2082 /* Complex type consisting of two IEEE double precision values. */
2083 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2084 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2085 NULL);
2086 break;
2087 case 27:
2088 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2089 break;
2090 case 28:
2091 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2092 break;
2093 case 29:
2094 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2095 break;
2096 case 30:
2097 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2098 break;
2099 case 31:
2100 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2101 break;
2102 case 32:
2103 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2104 "unsigned long long", NULL);
2105 break;
2106 case 33:
2107 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2108 "logical*8", NULL);
2109 break;
2110 case 34:
2111 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2112 break;
2113 }
2114 negative_types[-typenum] = rettype;
2115 return rettype;
2116 }
2117 \f
2118 /* This page contains subroutines of read_type. */
2119
2120 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2121
2122 static void
2123 update_method_name_from_physname (char **old_name, char *physname)
2124 {
2125 char *method_name;
2126
2127 method_name = method_name_from_physname (physname);
2128
2129 if (method_name == NULL)
2130 {
2131 complaint (&symfile_complaints,
2132 _("Method has bad physname %s\n"), physname);
2133 return;
2134 }
2135
2136 if (strcmp (*old_name, method_name) != 0)
2137 {
2138 xfree (*old_name);
2139 *old_name = method_name;
2140 }
2141 else
2142 xfree (method_name);
2143 }
2144
2145 /* Read member function stabs info for C++ classes. The form of each member
2146 function data is:
2147
2148 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2149
2150 An example with two member functions is:
2151
2152 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2153
2154 For the case of overloaded operators, the format is op$::*.funcs, where
2155 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2156 name (such as `+=') and `.' marks the end of the operator name.
2157
2158 Returns 1 for success, 0 for failure. */
2159
2160 static int
2161 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2162 struct objfile *objfile)
2163 {
2164 int nfn_fields = 0;
2165 int length = 0;
2166 /* Total number of member functions defined in this class. If the class
2167 defines two `f' functions, and one `g' function, then this will have
2168 the value 3. */
2169 int total_length = 0;
2170 int i;
2171 struct next_fnfield
2172 {
2173 struct next_fnfield *next;
2174 struct fn_field fn_field;
2175 }
2176 *sublist;
2177 struct type *look_ahead_type;
2178 struct next_fnfieldlist *new_fnlist;
2179 struct next_fnfield *new_sublist;
2180 char *main_fn_name;
2181 char *p;
2182
2183 /* Process each list until we find something that is not a member function
2184 or find the end of the functions. */
2185
2186 while (**pp != ';')
2187 {
2188 /* We should be positioned at the start of the function name.
2189 Scan forward to find the first ':' and if it is not the
2190 first of a "::" delimiter, then this is not a member function. */
2191 p = *pp;
2192 while (*p != ':')
2193 {
2194 p++;
2195 }
2196 if (p[1] != ':')
2197 {
2198 break;
2199 }
2200
2201 sublist = NULL;
2202 look_ahead_type = NULL;
2203 length = 0;
2204
2205 new_fnlist = (struct next_fnfieldlist *)
2206 xmalloc (sizeof (struct next_fnfieldlist));
2207 make_cleanup (xfree, new_fnlist);
2208 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2209
2210 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2211 {
2212 /* This is a completely wierd case. In order to stuff in the
2213 names that might contain colons (the usual name delimiter),
2214 Mike Tiemann defined a different name format which is
2215 signalled if the identifier is "op$". In that case, the
2216 format is "op$::XXXX." where XXXX is the name. This is
2217 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2218 /* This lets the user type "break operator+".
2219 We could just put in "+" as the name, but that wouldn't
2220 work for "*". */
2221 static char opname[32] = "op$";
2222 char *o = opname + 3;
2223
2224 /* Skip past '::'. */
2225 *pp = p + 2;
2226
2227 STABS_CONTINUE (pp, objfile);
2228 p = *pp;
2229 while (*p != '.')
2230 {
2231 *o++ = *p++;
2232 }
2233 main_fn_name = savestring (opname, o - opname);
2234 /* Skip past '.' */
2235 *pp = p + 1;
2236 }
2237 else
2238 {
2239 main_fn_name = savestring (*pp, p - *pp);
2240 /* Skip past '::'. */
2241 *pp = p + 2;
2242 }
2243 new_fnlist->fn_fieldlist.name = main_fn_name;
2244
2245 do
2246 {
2247 new_sublist =
2248 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2249 make_cleanup (xfree, new_sublist);
2250 memset (new_sublist, 0, sizeof (struct next_fnfield));
2251
2252 /* Check for and handle cretinous dbx symbol name continuation! */
2253 if (look_ahead_type == NULL)
2254 {
2255 /* Normal case. */
2256 STABS_CONTINUE (pp, objfile);
2257
2258 new_sublist->fn_field.type = read_type (pp, objfile);
2259 if (**pp != ':')
2260 {
2261 /* Invalid symtab info for member function. */
2262 return 0;
2263 }
2264 }
2265 else
2266 {
2267 /* g++ version 1 kludge */
2268 new_sublist->fn_field.type = look_ahead_type;
2269 look_ahead_type = NULL;
2270 }
2271
2272 (*pp)++;
2273 p = *pp;
2274 while (*p != ';')
2275 {
2276 p++;
2277 }
2278
2279 /* If this is just a stub, then we don't have the real name here. */
2280
2281 if (TYPE_STUB (new_sublist->fn_field.type))
2282 {
2283 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2284 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2285 new_sublist->fn_field.is_stub = 1;
2286 }
2287 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2288 *pp = p + 1;
2289
2290 /* Set this member function's visibility fields. */
2291 switch (*(*pp)++)
2292 {
2293 case VISIBILITY_PRIVATE:
2294 new_sublist->fn_field.is_private = 1;
2295 break;
2296 case VISIBILITY_PROTECTED:
2297 new_sublist->fn_field.is_protected = 1;
2298 break;
2299 }
2300
2301 STABS_CONTINUE (pp, objfile);
2302 switch (**pp)
2303 {
2304 case 'A': /* Normal functions. */
2305 new_sublist->fn_field.is_const = 0;
2306 new_sublist->fn_field.is_volatile = 0;
2307 (*pp)++;
2308 break;
2309 case 'B': /* `const' member functions. */
2310 new_sublist->fn_field.is_const = 1;
2311 new_sublist->fn_field.is_volatile = 0;
2312 (*pp)++;
2313 break;
2314 case 'C': /* `volatile' member function. */
2315 new_sublist->fn_field.is_const = 0;
2316 new_sublist->fn_field.is_volatile = 1;
2317 (*pp)++;
2318 break;
2319 case 'D': /* `const volatile' member function. */
2320 new_sublist->fn_field.is_const = 1;
2321 new_sublist->fn_field.is_volatile = 1;
2322 (*pp)++;
2323 break;
2324 case '*': /* File compiled with g++ version 1 -- no info */
2325 case '?':
2326 case '.':
2327 break;
2328 default:
2329 complaint (&symfile_complaints,
2330 _("const/volatile indicator missing, got '%c'"), **pp);
2331 break;
2332 }
2333
2334 switch (*(*pp)++)
2335 {
2336 case '*':
2337 {
2338 int nbits;
2339 /* virtual member function, followed by index.
2340 The sign bit is set to distinguish pointers-to-methods
2341 from virtual function indicies. Since the array is
2342 in words, the quantity must be shifted left by 1
2343 on 16 bit machine, and by 2 on 32 bit machine, forcing
2344 the sign bit out, and usable as a valid index into
2345 the array. Remove the sign bit here. */
2346 new_sublist->fn_field.voffset =
2347 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2348 if (nbits != 0)
2349 return 0;
2350
2351 STABS_CONTINUE (pp, objfile);
2352 if (**pp == ';' || **pp == '\0')
2353 {
2354 /* Must be g++ version 1. */
2355 new_sublist->fn_field.fcontext = 0;
2356 }
2357 else
2358 {
2359 /* Figure out from whence this virtual function came.
2360 It may belong to virtual function table of
2361 one of its baseclasses. */
2362 look_ahead_type = read_type (pp, objfile);
2363 if (**pp == ':')
2364 {
2365 /* g++ version 1 overloaded methods. */
2366 }
2367 else
2368 {
2369 new_sublist->fn_field.fcontext = look_ahead_type;
2370 if (**pp != ';')
2371 {
2372 return 0;
2373 }
2374 else
2375 {
2376 ++*pp;
2377 }
2378 look_ahead_type = NULL;
2379 }
2380 }
2381 break;
2382 }
2383 case '?':
2384 /* static member function. */
2385 {
2386 int slen = strlen (main_fn_name);
2387
2388 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2389
2390 /* For static member functions, we can't tell if they
2391 are stubbed, as they are put out as functions, and not as
2392 methods.
2393 GCC v2 emits the fully mangled name if
2394 dbxout.c:flag_minimal_debug is not set, so we have to
2395 detect a fully mangled physname here and set is_stub
2396 accordingly. Fully mangled physnames in v2 start with
2397 the member function name, followed by two underscores.
2398 GCC v3 currently always emits stubbed member functions,
2399 but with fully mangled physnames, which start with _Z. */
2400 if (!(strncmp (new_sublist->fn_field.physname,
2401 main_fn_name, slen) == 0
2402 && new_sublist->fn_field.physname[slen] == '_'
2403 && new_sublist->fn_field.physname[slen + 1] == '_'))
2404 {
2405 new_sublist->fn_field.is_stub = 1;
2406 }
2407 break;
2408 }
2409
2410 default:
2411 /* error */
2412 complaint (&symfile_complaints,
2413 _("member function type missing, got '%c'"), (*pp)[-1]);
2414 /* Fall through into normal member function. */
2415
2416 case '.':
2417 /* normal member function. */
2418 new_sublist->fn_field.voffset = 0;
2419 new_sublist->fn_field.fcontext = 0;
2420 break;
2421 }
2422
2423 new_sublist->next = sublist;
2424 sublist = new_sublist;
2425 length++;
2426 STABS_CONTINUE (pp, objfile);
2427 }
2428 while (**pp != ';' && **pp != '\0');
2429
2430 (*pp)++;
2431 STABS_CONTINUE (pp, objfile);
2432
2433 /* Skip GCC 3.X member functions which are duplicates of the callable
2434 constructor/destructor. */
2435 if (strcmp (main_fn_name, "__base_ctor") == 0
2436 || strcmp (main_fn_name, "__base_dtor") == 0
2437 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2438 {
2439 xfree (main_fn_name);
2440 }
2441 else
2442 {
2443 int has_stub = 0;
2444 int has_destructor = 0, has_other = 0;
2445 int is_v3 = 0;
2446 struct next_fnfield *tmp_sublist;
2447
2448 /* Various versions of GCC emit various mostly-useless
2449 strings in the name field for special member functions.
2450
2451 For stub methods, we need to defer correcting the name
2452 until we are ready to unstub the method, because the current
2453 name string is used by gdb_mangle_name. The only stub methods
2454 of concern here are GNU v2 operators; other methods have their
2455 names correct (see caveat below).
2456
2457 For non-stub methods, in GNU v3, we have a complete physname.
2458 Therefore we can safely correct the name now. This primarily
2459 affects constructors and destructors, whose name will be
2460 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2461 operators will also have incorrect names; for instance,
2462 "operator int" will be named "operator i" (i.e. the type is
2463 mangled).
2464
2465 For non-stub methods in GNU v2, we have no easy way to
2466 know if we have a complete physname or not. For most
2467 methods the result depends on the platform (if CPLUS_MARKER
2468 can be `$' or `.', it will use minimal debug information, or
2469 otherwise the full physname will be included).
2470
2471 Rather than dealing with this, we take a different approach.
2472 For v3 mangled names, we can use the full physname; for v2,
2473 we use cplus_demangle_opname (which is actually v2 specific),
2474 because the only interesting names are all operators - once again
2475 barring the caveat below. Skip this process if any method in the
2476 group is a stub, to prevent our fouling up the workings of
2477 gdb_mangle_name.
2478
2479 The caveat: GCC 2.95.x (and earlier?) put constructors and
2480 destructors in the same method group. We need to split this
2481 into two groups, because they should have different names.
2482 So for each method group we check whether it contains both
2483 routines whose physname appears to be a destructor (the physnames
2484 for and destructors are always provided, due to quirks in v2
2485 mangling) and routines whose physname does not appear to be a
2486 destructor. If so then we break up the list into two halves.
2487 Even if the constructors and destructors aren't in the same group
2488 the destructor will still lack the leading tilde, so that also
2489 needs to be fixed.
2490
2491 So, to summarize what we expect and handle here:
2492
2493 Given Given Real Real Action
2494 method name physname physname method name
2495
2496 __opi [none] __opi__3Foo operator int opname
2497 [now or later]
2498 Foo _._3Foo _._3Foo ~Foo separate and
2499 rename
2500 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2501 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2502 */
2503
2504 tmp_sublist = sublist;
2505 while (tmp_sublist != NULL)
2506 {
2507 if (tmp_sublist->fn_field.is_stub)
2508 has_stub = 1;
2509 if (tmp_sublist->fn_field.physname[0] == '_'
2510 && tmp_sublist->fn_field.physname[1] == 'Z')
2511 is_v3 = 1;
2512
2513 if (is_destructor_name (tmp_sublist->fn_field.physname))
2514 has_destructor++;
2515 else
2516 has_other++;
2517
2518 tmp_sublist = tmp_sublist->next;
2519 }
2520
2521 if (has_destructor && has_other)
2522 {
2523 struct next_fnfieldlist *destr_fnlist;
2524 struct next_fnfield *last_sublist;
2525
2526 /* Create a new fn_fieldlist for the destructors. */
2527
2528 destr_fnlist = (struct next_fnfieldlist *)
2529 xmalloc (sizeof (struct next_fnfieldlist));
2530 make_cleanup (xfree, destr_fnlist);
2531 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2532 destr_fnlist->fn_fieldlist.name
2533 = obconcat (&objfile->objfile_obstack, "", "~",
2534 new_fnlist->fn_fieldlist.name);
2535
2536 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2537 obstack_alloc (&objfile->objfile_obstack,
2538 sizeof (struct fn_field) * has_destructor);
2539 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2540 sizeof (struct fn_field) * has_destructor);
2541 tmp_sublist = sublist;
2542 last_sublist = NULL;
2543 i = 0;
2544 while (tmp_sublist != NULL)
2545 {
2546 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2547 {
2548 tmp_sublist = tmp_sublist->next;
2549 continue;
2550 }
2551
2552 destr_fnlist->fn_fieldlist.fn_fields[i++]
2553 = tmp_sublist->fn_field;
2554 if (last_sublist)
2555 last_sublist->next = tmp_sublist->next;
2556 else
2557 sublist = tmp_sublist->next;
2558 last_sublist = tmp_sublist;
2559 tmp_sublist = tmp_sublist->next;
2560 }
2561
2562 destr_fnlist->fn_fieldlist.length = has_destructor;
2563 destr_fnlist->next = fip->fnlist;
2564 fip->fnlist = destr_fnlist;
2565 nfn_fields++;
2566 total_length += has_destructor;
2567 length -= has_destructor;
2568 }
2569 else if (is_v3)
2570 {
2571 /* v3 mangling prevents the use of abbreviated physnames,
2572 so we can do this here. There are stubbed methods in v3
2573 only:
2574 - in -gstabs instead of -gstabs+
2575 - or for static methods, which are output as a function type
2576 instead of a method type. */
2577
2578 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2579 sublist->fn_field.physname);
2580 }
2581 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2582 {
2583 new_fnlist->fn_fieldlist.name =
2584 concat ("~", main_fn_name, (char *)NULL);
2585 xfree (main_fn_name);
2586 }
2587 else if (!has_stub)
2588 {
2589 char dem_opname[256];
2590 int ret;
2591 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2592 dem_opname, DMGL_ANSI);
2593 if (!ret)
2594 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2595 dem_opname, 0);
2596 if (ret)
2597 new_fnlist->fn_fieldlist.name
2598 = obsavestring (dem_opname, strlen (dem_opname),
2599 &objfile->objfile_obstack);
2600 }
2601
2602 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2603 obstack_alloc (&objfile->objfile_obstack,
2604 sizeof (struct fn_field) * length);
2605 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2606 sizeof (struct fn_field) * length);
2607 for (i = length; (i--, sublist); sublist = sublist->next)
2608 {
2609 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2610 }
2611
2612 new_fnlist->fn_fieldlist.length = length;
2613 new_fnlist->next = fip->fnlist;
2614 fip->fnlist = new_fnlist;
2615 nfn_fields++;
2616 total_length += length;
2617 }
2618 }
2619
2620 if (nfn_fields)
2621 {
2622 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2623 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2624 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2625 memset (TYPE_FN_FIELDLISTS (type), 0,
2626 sizeof (struct fn_fieldlist) * nfn_fields);
2627 TYPE_NFN_FIELDS (type) = nfn_fields;
2628 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2629 }
2630
2631 return 1;
2632 }
2633
2634 /* Special GNU C++ name.
2635
2636 Returns 1 for success, 0 for failure. "failure" means that we can't
2637 keep parsing and it's time for error_type(). */
2638
2639 static int
2640 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2641 struct objfile *objfile)
2642 {
2643 char *p;
2644 char *name;
2645 char cpp_abbrev;
2646 struct type *context;
2647
2648 p = *pp;
2649 if (*++p == 'v')
2650 {
2651 name = NULL;
2652 cpp_abbrev = *++p;
2653
2654 *pp = p + 1;
2655
2656 /* At this point, *pp points to something like "22:23=*22...",
2657 where the type number before the ':' is the "context" and
2658 everything after is a regular type definition. Lookup the
2659 type, find it's name, and construct the field name. */
2660
2661 context = read_type (pp, objfile);
2662
2663 switch (cpp_abbrev)
2664 {
2665 case 'f': /* $vf -- a virtual function table pointer */
2666 name = type_name_no_tag (context);
2667 if (name == NULL)
2668 {
2669 name = "";
2670 }
2671 fip->list->field.name =
2672 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2673 break;
2674
2675 case 'b': /* $vb -- a virtual bsomethingorother */
2676 name = type_name_no_tag (context);
2677 if (name == NULL)
2678 {
2679 complaint (&symfile_complaints,
2680 _("C++ abbreviated type name unknown at symtab pos %d"),
2681 symnum);
2682 name = "FOO";
2683 }
2684 fip->list->field.name =
2685 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2686 break;
2687
2688 default:
2689 invalid_cpp_abbrev_complaint (*pp);
2690 fip->list->field.name =
2691 obconcat (&objfile->objfile_obstack,
2692 "INVALID_CPLUSPLUS_ABBREV", "", "");
2693 break;
2694 }
2695
2696 /* At this point, *pp points to the ':'. Skip it and read the
2697 field type. */
2698
2699 p = ++(*pp);
2700 if (p[-1] != ':')
2701 {
2702 invalid_cpp_abbrev_complaint (*pp);
2703 return 0;
2704 }
2705 fip->list->field.type = read_type (pp, objfile);
2706 if (**pp == ',')
2707 (*pp)++; /* Skip the comma. */
2708 else
2709 return 0;
2710
2711 {
2712 int nbits;
2713 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2714 0);
2715 if (nbits != 0)
2716 return 0;
2717 }
2718 /* This field is unpacked. */
2719 FIELD_BITSIZE (fip->list->field) = 0;
2720 fip->list->visibility = VISIBILITY_PRIVATE;
2721 }
2722 else
2723 {
2724 invalid_cpp_abbrev_complaint (*pp);
2725 /* We have no idea what syntax an unrecognized abbrev would have, so
2726 better return 0. If we returned 1, we would need to at least advance
2727 *pp to avoid an infinite loop. */
2728 return 0;
2729 }
2730 return 1;
2731 }
2732
2733 static void
2734 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2735 struct type *type, struct objfile *objfile)
2736 {
2737 fip->list->field.name =
2738 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2739 *pp = p + 1;
2740
2741 /* This means we have a visibility for a field coming. */
2742 if (**pp == '/')
2743 {
2744 (*pp)++;
2745 fip->list->visibility = *(*pp)++;
2746 }
2747 else
2748 {
2749 /* normal dbx-style format, no explicit visibility */
2750 fip->list->visibility = VISIBILITY_PUBLIC;
2751 }
2752
2753 fip->list->field.type = read_type (pp, objfile);
2754 if (**pp == ':')
2755 {
2756 p = ++(*pp);
2757 #if 0
2758 /* Possible future hook for nested types. */
2759 if (**pp == '!')
2760 {
2761 fip->list->field.bitpos = (long) -2; /* nested type */
2762 p = ++(*pp);
2763 }
2764 else
2765 ...;
2766 #endif
2767 while (*p != ';')
2768 {
2769 p++;
2770 }
2771 /* Static class member. */
2772 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2773 *pp = p + 1;
2774 return;
2775 }
2776 else if (**pp != ',')
2777 {
2778 /* Bad structure-type format. */
2779 stabs_general_complaint ("bad structure-type format");
2780 return;
2781 }
2782
2783 (*pp)++; /* Skip the comma. */
2784
2785 {
2786 int nbits;
2787 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2788 if (nbits != 0)
2789 {
2790 stabs_general_complaint ("bad structure-type format");
2791 return;
2792 }
2793 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2794 if (nbits != 0)
2795 {
2796 stabs_general_complaint ("bad structure-type format");
2797 return;
2798 }
2799 }
2800
2801 if (FIELD_BITPOS (fip->list->field) == 0
2802 && FIELD_BITSIZE (fip->list->field) == 0)
2803 {
2804 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2805 it is a field which has been optimized out. The correct stab for
2806 this case is to use VISIBILITY_IGNORE, but that is a recent
2807 invention. (2) It is a 0-size array. For example
2808 union { int num; char str[0]; } foo. Printing _("<no value>" for
2809 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2810 will continue to work, and a 0-size array as a whole doesn't
2811 have any contents to print.
2812
2813 I suspect this probably could also happen with gcc -gstabs (not
2814 -gstabs+) for static fields, and perhaps other C++ extensions.
2815 Hopefully few people use -gstabs with gdb, since it is intended
2816 for dbx compatibility. */
2817
2818 /* Ignore this field. */
2819 fip->list->visibility = VISIBILITY_IGNORE;
2820 }
2821 else
2822 {
2823 /* Detect an unpacked field and mark it as such.
2824 dbx gives a bit size for all fields.
2825 Note that forward refs cannot be packed,
2826 and treat enums as if they had the width of ints. */
2827
2828 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2829
2830 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2831 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2832 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2833 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2834 {
2835 FIELD_BITSIZE (fip->list->field) = 0;
2836 }
2837 if ((FIELD_BITSIZE (fip->list->field)
2838 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2839 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2840 && FIELD_BITSIZE (fip->list->field)
2841 == gdbarch_int_bit (current_gdbarch))
2842 )
2843 &&
2844 FIELD_BITPOS (fip->list->field) % 8 == 0)
2845 {
2846 FIELD_BITSIZE (fip->list->field) = 0;
2847 }
2848 }
2849 }
2850
2851
2852 /* Read struct or class data fields. They have the form:
2853
2854 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2855
2856 At the end, we see a semicolon instead of a field.
2857
2858 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2859 a static field.
2860
2861 The optional VISIBILITY is one of:
2862
2863 '/0' (VISIBILITY_PRIVATE)
2864 '/1' (VISIBILITY_PROTECTED)
2865 '/2' (VISIBILITY_PUBLIC)
2866 '/9' (VISIBILITY_IGNORE)
2867
2868 or nothing, for C style fields with public visibility.
2869
2870 Returns 1 for success, 0 for failure. */
2871
2872 static int
2873 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2874 struct objfile *objfile)
2875 {
2876 char *p;
2877 struct nextfield *new;
2878
2879 /* We better set p right now, in case there are no fields at all... */
2880
2881 p = *pp;
2882
2883 /* Read each data member type until we find the terminating ';' at the end of
2884 the data member list, or break for some other reason such as finding the
2885 start of the member function list. */
2886 /* Stab string for structure/union does not end with two ';' in
2887 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2888
2889 while (**pp != ';' && **pp != '\0')
2890 {
2891 STABS_CONTINUE (pp, objfile);
2892 /* Get space to record the next field's data. */
2893 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2894 make_cleanup (xfree, new);
2895 memset (new, 0, sizeof (struct nextfield));
2896 new->next = fip->list;
2897 fip->list = new;
2898
2899 /* Get the field name. */
2900 p = *pp;
2901
2902 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2903 unless the CPLUS_MARKER is followed by an underscore, in
2904 which case it is just the name of an anonymous type, which we
2905 should handle like any other type name. */
2906
2907 if (is_cplus_marker (p[0]) && p[1] != '_')
2908 {
2909 if (!read_cpp_abbrev (fip, pp, type, objfile))
2910 return 0;
2911 continue;
2912 }
2913
2914 /* Look for the ':' that separates the field name from the field
2915 values. Data members are delimited by a single ':', while member
2916 functions are delimited by a pair of ':'s. When we hit the member
2917 functions (if any), terminate scan loop and return. */
2918
2919 while (*p != ':' && *p != '\0')
2920 {
2921 p++;
2922 }
2923 if (*p == '\0')
2924 return 0;
2925
2926 /* Check to see if we have hit the member functions yet. */
2927 if (p[1] == ':')
2928 {
2929 break;
2930 }
2931 read_one_struct_field (fip, pp, p, type, objfile);
2932 }
2933 if (p[0] == ':' && p[1] == ':')
2934 {
2935 /* (the deleted) chill the list of fields: the last entry (at
2936 the head) is a partially constructed entry which we now
2937 scrub. */
2938 fip->list = fip->list->next;
2939 }
2940 return 1;
2941 }
2942 /* *INDENT-OFF* */
2943 /* The stabs for C++ derived classes contain baseclass information which
2944 is marked by a '!' character after the total size. This function is
2945 called when we encounter the baseclass marker, and slurps up all the
2946 baseclass information.
2947
2948 Immediately following the '!' marker is the number of base classes that
2949 the class is derived from, followed by information for each base class.
2950 For each base class, there are two visibility specifiers, a bit offset
2951 to the base class information within the derived class, a reference to
2952 the type for the base class, and a terminating semicolon.
2953
2954 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2955 ^^ ^ ^ ^ ^ ^ ^
2956 Baseclass information marker __________________|| | | | | | |
2957 Number of baseclasses __________________________| | | | | | |
2958 Visibility specifiers (2) ________________________| | | | | |
2959 Offset in bits from start of class _________________| | | | |
2960 Type number for base class ___________________________| | | |
2961 Visibility specifiers (2) _______________________________| | |
2962 Offset in bits from start of class ________________________| |
2963 Type number of base class ____________________________________|
2964
2965 Return 1 for success, 0 for (error-type-inducing) failure. */
2966 /* *INDENT-ON* */
2967
2968
2969
2970 static int
2971 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2972 struct objfile *objfile)
2973 {
2974 int i;
2975 struct nextfield *new;
2976
2977 if (**pp != '!')
2978 {
2979 return 1;
2980 }
2981 else
2982 {
2983 /* Skip the '!' baseclass information marker. */
2984 (*pp)++;
2985 }
2986
2987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2988 {
2989 int nbits;
2990 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2991 if (nbits != 0)
2992 return 0;
2993 }
2994
2995 #if 0
2996 /* Some stupid compilers have trouble with the following, so break
2997 it up into simpler expressions. */
2998 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2999 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3000 #else
3001 {
3002 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3003 char *pointer;
3004
3005 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3006 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3007 }
3008 #endif /* 0 */
3009
3010 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3011
3012 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3013 {
3014 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3015 make_cleanup (xfree, new);
3016 memset (new, 0, sizeof (struct nextfield));
3017 new->next = fip->list;
3018 fip->list = new;
3019 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3020
3021 STABS_CONTINUE (pp, objfile);
3022 switch (**pp)
3023 {
3024 case '0':
3025 /* Nothing to do. */
3026 break;
3027 case '1':
3028 SET_TYPE_FIELD_VIRTUAL (type, i);
3029 break;
3030 default:
3031 /* Unknown character. Complain and treat it as non-virtual. */
3032 {
3033 complaint (&symfile_complaints,
3034 _("Unknown virtual character `%c' for baseclass"), **pp);
3035 }
3036 }
3037 ++(*pp);
3038
3039 new->visibility = *(*pp)++;
3040 switch (new->visibility)
3041 {
3042 case VISIBILITY_PRIVATE:
3043 case VISIBILITY_PROTECTED:
3044 case VISIBILITY_PUBLIC:
3045 break;
3046 default:
3047 /* Bad visibility format. Complain and treat it as
3048 public. */
3049 {
3050 complaint (&symfile_complaints,
3051 _("Unknown visibility `%c' for baseclass"),
3052 new->visibility);
3053 new->visibility = VISIBILITY_PUBLIC;
3054 }
3055 }
3056
3057 {
3058 int nbits;
3059
3060 /* The remaining value is the bit offset of the portion of the object
3061 corresponding to this baseclass. Always zero in the absence of
3062 multiple inheritance. */
3063
3064 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3065 if (nbits != 0)
3066 return 0;
3067 }
3068
3069 /* The last piece of baseclass information is the type of the
3070 base class. Read it, and remember it's type name as this
3071 field's name. */
3072
3073 new->field.type = read_type (pp, objfile);
3074 new->field.name = type_name_no_tag (new->field.type);
3075
3076 /* skip trailing ';' and bump count of number of fields seen */
3077 if (**pp == ';')
3078 (*pp)++;
3079 else
3080 return 0;
3081 }
3082 return 1;
3083 }
3084
3085 /* The tail end of stabs for C++ classes that contain a virtual function
3086 pointer contains a tilde, a %, and a type number.
3087 The type number refers to the base class (possibly this class itself) which
3088 contains the vtable pointer for the current class.
3089
3090 This function is called when we have parsed all the method declarations,
3091 so we can look for the vptr base class info. */
3092
3093 static int
3094 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3095 struct objfile *objfile)
3096 {
3097 char *p;
3098
3099 STABS_CONTINUE (pp, objfile);
3100
3101 /* If we are positioned at a ';', then skip it. */
3102 if (**pp == ';')
3103 {
3104 (*pp)++;
3105 }
3106
3107 if (**pp == '~')
3108 {
3109 (*pp)++;
3110
3111 if (**pp == '=' || **pp == '+' || **pp == '-')
3112 {
3113 /* Obsolete flags that used to indicate the presence
3114 of constructors and/or destructors. */
3115 (*pp)++;
3116 }
3117
3118 /* Read either a '%' or the final ';'. */
3119 if (*(*pp)++ == '%')
3120 {
3121 /* The next number is the type number of the base class
3122 (possibly our own class) which supplies the vtable for
3123 this class. Parse it out, and search that class to find
3124 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3125 and TYPE_VPTR_FIELDNO. */
3126
3127 struct type *t;
3128 int i;
3129
3130 t = read_type (pp, objfile);
3131 p = (*pp)++;
3132 while (*p != '\0' && *p != ';')
3133 {
3134 p++;
3135 }
3136 if (*p == '\0')
3137 {
3138 /* Premature end of symbol. */
3139 return 0;
3140 }
3141
3142 TYPE_VPTR_BASETYPE (type) = t;
3143 if (type == t) /* Our own class provides vtbl ptr */
3144 {
3145 for (i = TYPE_NFIELDS (t) - 1;
3146 i >= TYPE_N_BASECLASSES (t);
3147 --i)
3148 {
3149 char *name = TYPE_FIELD_NAME (t, i);
3150 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3151 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3152 {
3153 TYPE_VPTR_FIELDNO (type) = i;
3154 goto gotit;
3155 }
3156 }
3157 /* Virtual function table field not found. */
3158 complaint (&symfile_complaints,
3159 _("virtual function table pointer not found when defining class `%s'"),
3160 TYPE_NAME (type));
3161 return 0;
3162 }
3163 else
3164 {
3165 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3166 }
3167
3168 gotit:
3169 *pp = p + 1;
3170 }
3171 }
3172 return 1;
3173 }
3174
3175 static int
3176 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3177 {
3178 int n;
3179
3180 for (n = TYPE_NFN_FIELDS (type);
3181 fip->fnlist != NULL;
3182 fip->fnlist = fip->fnlist->next)
3183 {
3184 --n; /* Circumvent Sun3 compiler bug */
3185 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3186 }
3187 return 1;
3188 }
3189
3190 /* Create the vector of fields, and record how big it is.
3191 We need this info to record proper virtual function table information
3192 for this class's virtual functions. */
3193
3194 static int
3195 attach_fields_to_type (struct field_info *fip, struct type *type,
3196 struct objfile *objfile)
3197 {
3198 int nfields = 0;
3199 int non_public_fields = 0;
3200 struct nextfield *scan;
3201
3202 /* Count up the number of fields that we have, as well as taking note of
3203 whether or not there are any non-public fields, which requires us to
3204 allocate and build the private_field_bits and protected_field_bits
3205 bitfields. */
3206
3207 for (scan = fip->list; scan != NULL; scan = scan->next)
3208 {
3209 nfields++;
3210 if (scan->visibility != VISIBILITY_PUBLIC)
3211 {
3212 non_public_fields++;
3213 }
3214 }
3215
3216 /* Now we know how many fields there are, and whether or not there are any
3217 non-public fields. Record the field count, allocate space for the
3218 array of fields, and create blank visibility bitfields if necessary. */
3219
3220 TYPE_NFIELDS (type) = nfields;
3221 TYPE_FIELDS (type) = (struct field *)
3222 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3223 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3224
3225 if (non_public_fields)
3226 {
3227 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3228
3229 TYPE_FIELD_PRIVATE_BITS (type) =
3230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3231 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3232
3233 TYPE_FIELD_PROTECTED_BITS (type) =
3234 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3235 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3236
3237 TYPE_FIELD_IGNORE_BITS (type) =
3238 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3239 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3240 }
3241
3242 /* Copy the saved-up fields into the field vector. Start from the head
3243 of the list, adding to the tail of the field array, so that they end
3244 up in the same order in the array in which they were added to the list. */
3245
3246 while (nfields-- > 0)
3247 {
3248 TYPE_FIELD (type, nfields) = fip->list->field;
3249 switch (fip->list->visibility)
3250 {
3251 case VISIBILITY_PRIVATE:
3252 SET_TYPE_FIELD_PRIVATE (type, nfields);
3253 break;
3254
3255 case VISIBILITY_PROTECTED:
3256 SET_TYPE_FIELD_PROTECTED (type, nfields);
3257 break;
3258
3259 case VISIBILITY_IGNORE:
3260 SET_TYPE_FIELD_IGNORE (type, nfields);
3261 break;
3262
3263 case VISIBILITY_PUBLIC:
3264 break;
3265
3266 default:
3267 /* Unknown visibility. Complain and treat it as public. */
3268 {
3269 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3270 fip->list->visibility);
3271 }
3272 break;
3273 }
3274 fip->list = fip->list->next;
3275 }
3276 return 1;
3277 }
3278
3279
3280 /* Complain that the compiler has emitted more than one definition for the
3281 structure type TYPE. */
3282 static void
3283 complain_about_struct_wipeout (struct type *type)
3284 {
3285 char *name = "";
3286 char *kind = "";
3287
3288 if (TYPE_TAG_NAME (type))
3289 {
3290 name = TYPE_TAG_NAME (type);
3291 switch (TYPE_CODE (type))
3292 {
3293 case TYPE_CODE_STRUCT: kind = "struct "; break;
3294 case TYPE_CODE_UNION: kind = "union "; break;
3295 case TYPE_CODE_ENUM: kind = "enum "; break;
3296 default: kind = "";
3297 }
3298 }
3299 else if (TYPE_NAME (type))
3300 {
3301 name = TYPE_NAME (type);
3302 kind = "";
3303 }
3304 else
3305 {
3306 name = "<unknown>";
3307 kind = "";
3308 }
3309
3310 complaint (&symfile_complaints,
3311 _("struct/union type gets multiply defined: %s%s"), kind, name);
3312 }
3313
3314
3315 /* Read the description of a structure (or union type) and return an object
3316 describing the type.
3317
3318 PP points to a character pointer that points to the next unconsumed token
3319 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3320 *PP will point to "4a:1,0,32;;".
3321
3322 TYPE points to an incomplete type that needs to be filled in.
3323
3324 OBJFILE points to the current objfile from which the stabs information is
3325 being read. (Note that it is redundant in that TYPE also contains a pointer
3326 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3327 */
3328
3329 static struct type *
3330 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3331 struct objfile *objfile)
3332 {
3333 struct cleanup *back_to;
3334 struct field_info fi;
3335
3336 fi.list = NULL;
3337 fi.fnlist = NULL;
3338
3339 /* When describing struct/union/class types in stabs, G++ always drops
3340 all qualifications from the name. So if you've got:
3341 struct A { ... struct B { ... }; ... };
3342 then G++ will emit stabs for `struct A::B' that call it simply
3343 `struct B'. Obviously, if you've got a real top-level definition for
3344 `struct B', or other nested definitions, this is going to cause
3345 problems.
3346
3347 Obviously, GDB can't fix this by itself, but it can at least avoid
3348 scribbling on existing structure type objects when new definitions
3349 appear. */
3350 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3351 || TYPE_STUB (type)))
3352 {
3353 complain_about_struct_wipeout (type);
3354
3355 /* It's probably best to return the type unchanged. */
3356 return type;
3357 }
3358
3359 back_to = make_cleanup (null_cleanup, 0);
3360
3361 INIT_CPLUS_SPECIFIC (type);
3362 TYPE_CODE (type) = type_code;
3363 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3364
3365 /* First comes the total size in bytes. */
3366
3367 {
3368 int nbits;
3369 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3370 if (nbits != 0)
3371 return error_type (pp, objfile);
3372 }
3373
3374 /* Now read the baseclasses, if any, read the regular C struct or C++
3375 class member fields, attach the fields to the type, read the C++
3376 member functions, attach them to the type, and then read any tilde
3377 field (baseclass specifier for the class holding the main vtable). */
3378
3379 if (!read_baseclasses (&fi, pp, type, objfile)
3380 || !read_struct_fields (&fi, pp, type, objfile)
3381 || !attach_fields_to_type (&fi, type, objfile)
3382 || !read_member_functions (&fi, pp, type, objfile)
3383 || !attach_fn_fields_to_type (&fi, type)
3384 || !read_tilde_fields (&fi, pp, type, objfile))
3385 {
3386 type = error_type (pp, objfile);
3387 }
3388
3389 do_cleanups (back_to);
3390 return (type);
3391 }
3392
3393 /* Read a definition of an array type,
3394 and create and return a suitable type object.
3395 Also creates a range type which represents the bounds of that
3396 array. */
3397
3398 static struct type *
3399 read_array_type (char **pp, struct type *type,
3400 struct objfile *objfile)
3401 {
3402 struct type *index_type, *element_type, *range_type;
3403 int lower, upper;
3404 int adjustable = 0;
3405 int nbits;
3406
3407 /* Format of an array type:
3408 "ar<index type>;lower;upper;<array_contents_type>".
3409 OS9000: "arlower,upper;<array_contents_type>".
3410
3411 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3412 for these, produce a type like float[][]. */
3413
3414 {
3415 index_type = read_type (pp, objfile);
3416 if (**pp != ';')
3417 /* Improper format of array type decl. */
3418 return error_type (pp, objfile);
3419 ++*pp;
3420 }
3421
3422 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3423 {
3424 (*pp)++;
3425 adjustable = 1;
3426 }
3427 lower = read_huge_number (pp, ';', &nbits, 0);
3428
3429 if (nbits != 0)
3430 return error_type (pp, objfile);
3431
3432 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3433 {
3434 (*pp)++;
3435 adjustable = 1;
3436 }
3437 upper = read_huge_number (pp, ';', &nbits, 0);
3438 if (nbits != 0)
3439 return error_type (pp, objfile);
3440
3441 element_type = read_type (pp, objfile);
3442
3443 if (adjustable)
3444 {
3445 lower = 0;
3446 upper = -1;
3447 }
3448
3449 range_type =
3450 create_range_type ((struct type *) NULL, index_type, lower, upper);
3451 type = create_array_type (type, element_type, range_type);
3452
3453 return type;
3454 }
3455
3456
3457 /* Read a definition of an enumeration type,
3458 and create and return a suitable type object.
3459 Also defines the symbols that represent the values of the type. */
3460
3461 static struct type *
3462 read_enum_type (char **pp, struct type *type,
3463 struct objfile *objfile)
3464 {
3465 char *p;
3466 char *name;
3467 long n;
3468 struct symbol *sym;
3469 int nsyms = 0;
3470 struct pending **symlist;
3471 struct pending *osyms, *syms;
3472 int o_nsyms;
3473 int nbits;
3474 int unsigned_enum = 1;
3475
3476 #if 0
3477 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3478 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3479 to do? For now, force all enum values to file scope. */
3480 if (within_function)
3481 symlist = &local_symbols;
3482 else
3483 #endif
3484 symlist = &file_symbols;
3485 osyms = *symlist;
3486 o_nsyms = osyms ? osyms->nsyms : 0;
3487
3488 /* The aix4 compiler emits an extra field before the enum members;
3489 my guess is it's a type of some sort. Just ignore it. */
3490 if (**pp == '-')
3491 {
3492 /* Skip over the type. */
3493 while (**pp != ':')
3494 (*pp)++;
3495
3496 /* Skip over the colon. */
3497 (*pp)++;
3498 }
3499
3500 /* Read the value-names and their values.
3501 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3502 A semicolon or comma instead of a NAME means the end. */
3503 while (**pp && **pp != ';' && **pp != ',')
3504 {
3505 STABS_CONTINUE (pp, objfile);
3506 p = *pp;
3507 while (*p != ':')
3508 p++;
3509 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3510 *pp = p + 1;
3511 n = read_huge_number (pp, ',', &nbits, 0);
3512 if (nbits != 0)
3513 return error_type (pp, objfile);
3514
3515 sym = (struct symbol *)
3516 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3517 memset (sym, 0, sizeof (struct symbol));
3518 DEPRECATED_SYMBOL_NAME (sym) = name;
3519 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3520 SYMBOL_CLASS (sym) = LOC_CONST;
3521 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3522 SYMBOL_VALUE (sym) = n;
3523 if (n < 0)
3524 unsigned_enum = 0;
3525 add_symbol_to_list (sym, symlist);
3526 nsyms++;
3527 }
3528
3529 if (**pp == ';')
3530 (*pp)++; /* Skip the semicolon. */
3531
3532 /* Now fill in the fields of the type-structure. */
3533
3534 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3535 TYPE_CODE (type) = TYPE_CODE_ENUM;
3536 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3537 if (unsigned_enum)
3538 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3539 TYPE_NFIELDS (type) = nsyms;
3540 TYPE_FIELDS (type) = (struct field *)
3541 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3542 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3543
3544 /* Find the symbols for the values and put them into the type.
3545 The symbols can be found in the symlist that we put them on
3546 to cause them to be defined. osyms contains the old value
3547 of that symlist; everything up to there was defined by us. */
3548 /* Note that we preserve the order of the enum constants, so
3549 that in something like "enum {FOO, LAST_THING=FOO}" we print
3550 FOO, not LAST_THING. */
3551
3552 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3553 {
3554 int last = syms == osyms ? o_nsyms : 0;
3555 int j = syms->nsyms;
3556 for (; --j >= last; --n)
3557 {
3558 struct symbol *xsym = syms->symbol[j];
3559 SYMBOL_TYPE (xsym) = type;
3560 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3561 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3562 TYPE_FIELD_BITSIZE (type, n) = 0;
3563 }
3564 if (syms == osyms)
3565 break;
3566 }
3567
3568 return type;
3569 }
3570
3571 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3572 typedefs in every file (for int, long, etc):
3573
3574 type = b <signed> <width> <format type>; <offset>; <nbits>
3575 signed = u or s.
3576 optional format type = c or b for char or boolean.
3577 offset = offset from high order bit to start bit of type.
3578 width is # bytes in object of this type, nbits is # bits in type.
3579
3580 The width/offset stuff appears to be for small objects stored in
3581 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3582 FIXME. */
3583
3584 static struct type *
3585 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3586 {
3587 int type_bits;
3588 int nbits;
3589 int signed_type;
3590 enum type_code code = TYPE_CODE_INT;
3591
3592 switch (**pp)
3593 {
3594 case 's':
3595 signed_type = 1;
3596 break;
3597 case 'u':
3598 signed_type = 0;
3599 break;
3600 default:
3601 return error_type (pp, objfile);
3602 }
3603 (*pp)++;
3604
3605 /* For some odd reason, all forms of char put a c here. This is strange
3606 because no other type has this honor. We can safely ignore this because
3607 we actually determine 'char'acterness by the number of bits specified in
3608 the descriptor.
3609 Boolean forms, e.g Fortran logical*X, put a b here. */
3610
3611 if (**pp == 'c')
3612 (*pp)++;
3613 else if (**pp == 'b')
3614 {
3615 code = TYPE_CODE_BOOL;
3616 (*pp)++;
3617 }
3618
3619 /* The first number appears to be the number of bytes occupied
3620 by this type, except that unsigned short is 4 instead of 2.
3621 Since this information is redundant with the third number,
3622 we will ignore it. */
3623 read_huge_number (pp, ';', &nbits, 0);
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
3626
3627 /* The second number is always 0, so ignore it too. */
3628 read_huge_number (pp, ';', &nbits, 0);
3629 if (nbits != 0)
3630 return error_type (pp, objfile);
3631
3632 /* The third number is the number of bits for this type. */
3633 type_bits = read_huge_number (pp, 0, &nbits, 0);
3634 if (nbits != 0)
3635 return error_type (pp, objfile);
3636 /* The type *should* end with a semicolon. If it are embedded
3637 in a larger type the semicolon may be the only way to know where
3638 the type ends. If this type is at the end of the stabstring we
3639 can deal with the omitted semicolon (but we don't have to like
3640 it). Don't bother to complain(), Sun's compiler omits the semicolon
3641 for "void". */
3642 if (**pp == ';')
3643 ++(*pp);
3644
3645 if (type_bits == 0)
3646 return init_type (TYPE_CODE_VOID, 1,
3647 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3648 objfile);
3649 else
3650 return init_type (code,
3651 type_bits / TARGET_CHAR_BIT,
3652 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3653 objfile);
3654 }
3655
3656 static struct type *
3657 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3658 {
3659 int nbits;
3660 int details;
3661 int nbytes;
3662 struct type *rettype;
3663
3664 /* The first number has more details about the type, for example
3665 FN_COMPLEX. */
3666 details = read_huge_number (pp, ';', &nbits, 0);
3667 if (nbits != 0)
3668 return error_type (pp, objfile);
3669
3670 /* The second number is the number of bytes occupied by this type */
3671 nbytes = read_huge_number (pp, ';', &nbits, 0);
3672 if (nbits != 0)
3673 return error_type (pp, objfile);
3674
3675 if (details == NF_COMPLEX || details == NF_COMPLEX16
3676 || details == NF_COMPLEX32)
3677 {
3678 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3679 TYPE_TARGET_TYPE (rettype)
3680 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3681 return rettype;
3682 }
3683
3684 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3685 }
3686
3687 /* Read a number from the string pointed to by *PP.
3688 The value of *PP is advanced over the number.
3689 If END is nonzero, the character that ends the
3690 number must match END, or an error happens;
3691 and that character is skipped if it does match.
3692 If END is zero, *PP is left pointing to that character.
3693
3694 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3695 the number is represented in an octal representation, assume that
3696 it is represented in a 2's complement representation with a size of
3697 TWOS_COMPLEMENT_BITS.
3698
3699 If the number fits in a long, set *BITS to 0 and return the value.
3700 If not, set *BITS to be the number of bits in the number and return 0.
3701
3702 If encounter garbage, set *BITS to -1 and return 0. */
3703
3704 static long
3705 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3706 {
3707 char *p = *pp;
3708 int sign = 1;
3709 int sign_bit;
3710 long n = 0;
3711 long sn = 0;
3712 int radix = 10;
3713 char overflow = 0;
3714 int nbits = 0;
3715 int c;
3716 long upper_limit;
3717 int twos_complement_representation = radix == 8 && twos_complement_bits > 0;
3718
3719 if (*p == '-')
3720 {
3721 sign = -1;
3722 p++;
3723 }
3724
3725 /* Leading zero means octal. GCC uses this to output values larger
3726 than an int (because that would be hard in decimal). */
3727 if (*p == '0')
3728 {
3729 radix = 8;
3730 p++;
3731 }
3732
3733 upper_limit = LONG_MAX / radix;
3734
3735 while ((c = *p++) >= '0' && c < ('0' + radix))
3736 {
3737 if (n <= upper_limit)
3738 {
3739 if (twos_complement_representation)
3740 {
3741 /* Octal, signed, twos complement representation. In this case,
3742 sn is the signed value, n is the corresponding absolute
3743 value. signed_bit is the position of the sign bit in the
3744 first three bits. */
3745 if (sn == 0)
3746 {
3747 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3748 sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3749 }
3750 else
3751 {
3752 sn *= radix;
3753 sn += c - '0';
3754 }
3755
3756 if (sn < 0)
3757 n = -sn;
3758 }
3759 else
3760 {
3761 /* unsigned representation */
3762 n *= radix;
3763 n += c - '0'; /* FIXME this overflows anyway */
3764 }
3765 }
3766 else
3767 overflow = 1;
3768
3769 /* This depends on large values being output in octal, which is
3770 what GCC does. */
3771 if (radix == 8)
3772 {
3773 if (nbits == 0)
3774 {
3775 if (c == '0')
3776 /* Ignore leading zeroes. */
3777 ;
3778 else if (c == '1')
3779 nbits = 1;
3780 else if (c == '2' || c == '3')
3781 nbits = 2;
3782 else
3783 nbits = 3;
3784 }
3785 else
3786 nbits += 3;
3787 }
3788 }
3789 if (end)
3790 {
3791 if (c && c != end)
3792 {
3793 if (bits != NULL)
3794 *bits = -1;
3795 return 0;
3796 }
3797 }
3798 else
3799 --p;
3800
3801 *pp = p;
3802 if (overflow)
3803 {
3804 if (nbits == 0)
3805 {
3806 /* Large decimal constants are an error (because it is hard to
3807 count how many bits are in them). */
3808 if (bits != NULL)
3809 *bits = -1;
3810 return 0;
3811 }
3812
3813 /* -0x7f is the same as 0x80. So deal with it by adding one to
3814 the number of bits. */
3815 if (sign == -1)
3816 ++nbits;
3817 if (bits)
3818 *bits = nbits;
3819 }
3820 else
3821 {
3822 if (bits)
3823 *bits = 0;
3824 if (twos_complement_representation)
3825 return sn;
3826 else
3827 return n * sign;
3828 }
3829 /* It's *BITS which has the interesting information. */
3830 return 0;
3831 }
3832
3833 static struct type *
3834 read_range_type (char **pp, int typenums[2], int type_size,
3835 struct objfile *objfile)
3836 {
3837 char *orig_pp = *pp;
3838 int rangenums[2];
3839 long n2, n3;
3840 int n2bits, n3bits;
3841 int self_subrange;
3842 struct type *result_type;
3843 struct type *index_type = NULL;
3844
3845 /* First comes a type we are a subrange of.
3846 In C it is usually 0, 1 or the type being defined. */
3847 if (read_type_number (pp, rangenums) != 0)
3848 return error_type (pp, objfile);
3849 self_subrange = (rangenums[0] == typenums[0] &&
3850 rangenums[1] == typenums[1]);
3851
3852 if (**pp == '=')
3853 {
3854 *pp = orig_pp;
3855 index_type = read_type (pp, objfile);
3856 }
3857
3858 /* A semicolon should now follow; skip it. */
3859 if (**pp == ';')
3860 (*pp)++;
3861
3862 /* The remaining two operands are usually lower and upper bounds
3863 of the range. But in some special cases they mean something else. */
3864 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3865 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3866
3867 if (n2bits == -1 || n3bits == -1)
3868 return error_type (pp, objfile);
3869
3870 if (index_type)
3871 goto handle_true_range;
3872
3873 /* If limits are huge, must be large integral type. */
3874 if (n2bits != 0 || n3bits != 0)
3875 {
3876 char got_signed = 0;
3877 char got_unsigned = 0;
3878 /* Number of bits in the type. */
3879 int nbits = 0;
3880
3881 /* If a type size attribute has been specified, the bounds of
3882 the range should fit in this size. If the lower bounds needs
3883 more bits than the upper bound, then the type is signed. */
3884 if (n2bits <= type_size && n3bits <= type_size)
3885 {
3886 if (n2bits == type_size && n2bits > n3bits)
3887 got_signed = 1;
3888 else
3889 got_unsigned = 1;
3890 nbits = type_size;
3891 }
3892 /* Range from 0 to <large number> is an unsigned large integral type. */
3893 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3894 {
3895 got_unsigned = 1;
3896 nbits = n3bits;
3897 }
3898 /* Range from <large number> to <large number>-1 is a large signed
3899 integral type. Take care of the case where <large number> doesn't
3900 fit in a long but <large number>-1 does. */
3901 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3902 || (n2bits != 0 && n3bits == 0
3903 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3904 && n3 == LONG_MAX))
3905 {
3906 got_signed = 1;
3907 nbits = n2bits;
3908 }
3909
3910 if (got_signed || got_unsigned)
3911 {
3912 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3913 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3914 objfile);
3915 }
3916 else
3917 return error_type (pp, objfile);
3918 }
3919
3920 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3921 if (self_subrange && n2 == 0 && n3 == 0)
3922 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3923
3924 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3925 is the width in bytes.
3926
3927 Fortran programs appear to use this for complex types also. To
3928 distinguish between floats and complex, g77 (and others?) seem
3929 to use self-subranges for the complexes, and subranges of int for
3930 the floats.
3931
3932 Also note that for complexes, g77 sets n2 to the size of one of
3933 the member floats, not the whole complex beast. My guess is that
3934 this was to work well with pre-COMPLEX versions of gdb. */
3935
3936 if (n3 == 0 && n2 > 0)
3937 {
3938 struct type *float_type
3939 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3940
3941 if (self_subrange)
3942 {
3943 struct type *complex_type =
3944 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3945 TYPE_TARGET_TYPE (complex_type) = float_type;
3946 return complex_type;
3947 }
3948 else
3949 return float_type;
3950 }
3951
3952 /* If the upper bound is -1, it must really be an unsigned int. */
3953
3954 else if (n2 == 0 && n3 == -1)
3955 {
3956 /* It is unsigned int or unsigned long. */
3957 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3958 compatibility hack. */
3959 return init_type (TYPE_CODE_INT,
3960 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
3961 TYPE_FLAG_UNSIGNED, NULL, objfile);
3962 }
3963
3964 /* Special case: char is defined (Who knows why) as a subrange of
3965 itself with range 0-127. */
3966 else if (self_subrange && n2 == 0 && n3 == 127)
3967 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3968
3969 /* We used to do this only for subrange of self or subrange of int. */
3970 else if (n2 == 0)
3971 {
3972 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3973 "unsigned long", and we already checked for that,
3974 so don't need to test for it here. */
3975
3976 if (n3 < 0)
3977 /* n3 actually gives the size. */
3978 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3979 NULL, objfile);
3980
3981 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3982 unsigned n-byte integer. But do require n to be a power of
3983 two; we don't want 3- and 5-byte integers flying around. */
3984 {
3985 int bytes;
3986 unsigned long bits;
3987
3988 bits = n3;
3989 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3990 bits >>= 8;
3991 if (bits == 0
3992 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
3993 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
3994 objfile);
3995 }
3996 }
3997 /* I think this is for Convex "long long". Since I don't know whether
3998 Convex sets self_subrange, I also accept that particular size regardless
3999 of self_subrange. */
4000 else if (n3 == 0 && n2 < 0
4001 && (self_subrange
4002 || n2 == -gdbarch_long_long_bit
4003 (current_gdbarch) / TARGET_CHAR_BIT))
4004 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4005 else if (n2 == -n3 - 1)
4006 {
4007 if (n3 == 0x7f)
4008 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4009 if (n3 == 0x7fff)
4010 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4011 if (n3 == 0x7fffffff)
4012 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4013 }
4014
4015 /* We have a real range type on our hands. Allocate space and
4016 return a real pointer. */
4017 handle_true_range:
4018
4019 if (self_subrange)
4020 index_type = builtin_type_int;
4021 else
4022 index_type = *dbx_lookup_type (rangenums);
4023 if (index_type == NULL)
4024 {
4025 /* Does this actually ever happen? Is that why we are worrying
4026 about dealing with it rather than just calling error_type? */
4027
4028 static struct type *range_type_index;
4029
4030 complaint (&symfile_complaints,
4031 _("base type %d of range type is not defined"), rangenums[1]);
4032 if (range_type_index == NULL)
4033 range_type_index =
4034 init_type (TYPE_CODE_INT,
4035 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4036 0, "range type index type", NULL);
4037 index_type = range_type_index;
4038 }
4039
4040 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4041 return (result_type);
4042 }
4043
4044 /* Read in an argument list. This is a list of types, separated by commas
4045 and terminated with END. Return the list of types read in, or NULL
4046 if there is an error. */
4047
4048 static struct field *
4049 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4050 int *varargsp)
4051 {
4052 /* FIXME! Remove this arbitrary limit! */
4053 struct type *types[1024]; /* allow for fns of 1023 parameters */
4054 int n = 0, i;
4055 struct field *rval;
4056
4057 while (**pp != end)
4058 {
4059 if (**pp != ',')
4060 /* Invalid argument list: no ','. */
4061 return NULL;
4062 (*pp)++;
4063 STABS_CONTINUE (pp, objfile);
4064 types[n++] = read_type (pp, objfile);
4065 }
4066 (*pp)++; /* get past `end' (the ':' character) */
4067
4068 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4069 *varargsp = 1;
4070 else
4071 {
4072 n--;
4073 *varargsp = 0;
4074 }
4075
4076 rval = (struct field *) xmalloc (n * sizeof (struct field));
4077 memset (rval, 0, n * sizeof (struct field));
4078 for (i = 0; i < n; i++)
4079 rval[i].type = types[i];
4080 *nargsp = n;
4081 return rval;
4082 }
4083 \f
4084 /* Common block handling. */
4085
4086 /* List of symbols declared since the last BCOMM. This list is a tail
4087 of local_symbols. When ECOMM is seen, the symbols on the list
4088 are noted so their proper addresses can be filled in later,
4089 using the common block base address gotten from the assembler
4090 stabs. */
4091
4092 static struct pending *common_block;
4093 static int common_block_i;
4094
4095 /* Name of the current common block. We get it from the BCOMM instead of the
4096 ECOMM to match IBM documentation (even though IBM puts the name both places
4097 like everyone else). */
4098 static char *common_block_name;
4099
4100 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4101 to remain after this function returns. */
4102
4103 void
4104 common_block_start (char *name, struct objfile *objfile)
4105 {
4106 if (common_block_name != NULL)
4107 {
4108 complaint (&symfile_complaints,
4109 _("Invalid symbol data: common block within common block"));
4110 }
4111 common_block = local_symbols;
4112 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4113 common_block_name = obsavestring (name, strlen (name),
4114 &objfile->objfile_obstack);
4115 }
4116
4117 /* Process a N_ECOMM symbol. */
4118
4119 void
4120 common_block_end (struct objfile *objfile)
4121 {
4122 /* Symbols declared since the BCOMM are to have the common block
4123 start address added in when we know it. common_block and
4124 common_block_i point to the first symbol after the BCOMM in
4125 the local_symbols list; copy the list and hang it off the
4126 symbol for the common block name for later fixup. */
4127 int i;
4128 struct symbol *sym;
4129 struct pending *new = 0;
4130 struct pending *next;
4131 int j;
4132
4133 if (common_block_name == NULL)
4134 {
4135 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4136 return;
4137 }
4138
4139 sym = (struct symbol *)
4140 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4141 memset (sym, 0, sizeof (struct symbol));
4142 /* Note: common_block_name already saved on objfile_obstack */
4143 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4144 SYMBOL_CLASS (sym) = LOC_BLOCK;
4145
4146 /* Now we copy all the symbols which have been defined since the BCOMM. */
4147
4148 /* Copy all the struct pendings before common_block. */
4149 for (next = local_symbols;
4150 next != NULL && next != common_block;
4151 next = next->next)
4152 {
4153 for (j = 0; j < next->nsyms; j++)
4154 add_symbol_to_list (next->symbol[j], &new);
4155 }
4156
4157 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4158 NULL, it means copy all the local symbols (which we already did
4159 above). */
4160
4161 if (common_block != NULL)
4162 for (j = common_block_i; j < common_block->nsyms; j++)
4163 add_symbol_to_list (common_block->symbol[j], &new);
4164
4165 SYMBOL_TYPE (sym) = (struct type *) new;
4166
4167 /* Should we be putting local_symbols back to what it was?
4168 Does it matter? */
4169
4170 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4171 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4172 global_sym_chain[i] = sym;
4173 common_block_name = NULL;
4174 }
4175
4176 /* Add a common block's start address to the offset of each symbol
4177 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4178 the common block name). */
4179
4180 static void
4181 fix_common_block (struct symbol *sym, int valu)
4182 {
4183 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4184 for (; next; next = next->next)
4185 {
4186 int j;
4187 for (j = next->nsyms - 1; j >= 0; j--)
4188 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4189 }
4190 }
4191 \f
4192
4193
4194 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4195 See add_undefined_type for more details. */
4196
4197 static void
4198 add_undefined_type_noname (struct type *type, int typenums[2])
4199 {
4200 struct nat nat;
4201
4202 nat.typenums[0] = typenums [0];
4203 nat.typenums[1] = typenums [1];
4204 nat.type = type;
4205
4206 if (noname_undefs_length == noname_undefs_allocated)
4207 {
4208 noname_undefs_allocated *= 2;
4209 noname_undefs = (struct nat *)
4210 xrealloc ((char *) noname_undefs,
4211 noname_undefs_allocated * sizeof (struct nat));
4212 }
4213 noname_undefs[noname_undefs_length++] = nat;
4214 }
4215
4216 /* Add TYPE to the UNDEF_TYPES vector.
4217 See add_undefined_type for more details. */
4218
4219 static void
4220 add_undefined_type_1 (struct type *type)
4221 {
4222 if (undef_types_length == undef_types_allocated)
4223 {
4224 undef_types_allocated *= 2;
4225 undef_types = (struct type **)
4226 xrealloc ((char *) undef_types,
4227 undef_types_allocated * sizeof (struct type *));
4228 }
4229 undef_types[undef_types_length++] = type;
4230 }
4231
4232 /* What about types defined as forward references inside of a small lexical
4233 scope? */
4234 /* Add a type to the list of undefined types to be checked through
4235 once this file has been read in.
4236
4237 In practice, we actually maintain two such lists: The first list
4238 (UNDEF_TYPES) is used for types whose name has been provided, and
4239 concerns forward references (eg 'xs' or 'xu' forward references);
4240 the second list (NONAME_UNDEFS) is used for types whose name is
4241 unknown at creation time, because they were referenced through
4242 their type number before the actual type was declared.
4243 This function actually adds the given type to the proper list. */
4244
4245 static void
4246 add_undefined_type (struct type *type, int typenums[2])
4247 {
4248 if (TYPE_TAG_NAME (type) == NULL)
4249 add_undefined_type_noname (type, typenums);
4250 else
4251 add_undefined_type_1 (type);
4252 }
4253
4254 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4255
4256 void
4257 cleanup_undefined_types_noname (void)
4258 {
4259 int i;
4260
4261 for (i = 0; i < noname_undefs_length; i++)
4262 {
4263 struct nat nat = noname_undefs[i];
4264 struct type **type;
4265
4266 type = dbx_lookup_type (nat.typenums);
4267 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4268 replace_type (nat.type, *type);
4269 }
4270
4271 noname_undefs_length = 0;
4272 }
4273
4274 /* Go through each undefined type, see if it's still undefined, and fix it
4275 up if possible. We have two kinds of undefined types:
4276
4277 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4278 Fix: update array length using the element bounds
4279 and the target type's length.
4280 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4281 yet defined at the time a pointer to it was made.
4282 Fix: Do a full lookup on the struct/union tag. */
4283
4284 void
4285 cleanup_undefined_types_1 (void)
4286 {
4287 struct type **type;
4288
4289 for (type = undef_types; type < undef_types + undef_types_length; type++)
4290 {
4291 switch (TYPE_CODE (*type))
4292 {
4293
4294 case TYPE_CODE_STRUCT:
4295 case TYPE_CODE_UNION:
4296 case TYPE_CODE_ENUM:
4297 {
4298 /* Check if it has been defined since. Need to do this here
4299 as well as in check_typedef to deal with the (legitimate in
4300 C though not C++) case of several types with the same name
4301 in different source files. */
4302 if (TYPE_STUB (*type))
4303 {
4304 struct pending *ppt;
4305 int i;
4306 /* Name of the type, without "struct" or "union" */
4307 char *typename = TYPE_TAG_NAME (*type);
4308
4309 if (typename == NULL)
4310 {
4311 complaint (&symfile_complaints, _("need a type name"));
4312 break;
4313 }
4314 for (ppt = file_symbols; ppt; ppt = ppt->next)
4315 {
4316 for (i = 0; i < ppt->nsyms; i++)
4317 {
4318 struct symbol *sym = ppt->symbol[i];
4319
4320 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4321 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4322 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4323 TYPE_CODE (*type))
4324 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4325 replace_type (*type, SYMBOL_TYPE (sym));
4326 }
4327 }
4328 }
4329 }
4330 break;
4331
4332 default:
4333 {
4334 complaint (&symfile_complaints,
4335 _("forward-referenced types left unresolved, "
4336 "type code %d."),
4337 TYPE_CODE (*type));
4338 }
4339 break;
4340 }
4341 }
4342
4343 undef_types_length = 0;
4344 }
4345
4346 /* Try to fix all the undefined types we ecountered while processing
4347 this unit. */
4348
4349 void
4350 cleanup_undefined_types (void)
4351 {
4352 cleanup_undefined_types_1 ();
4353 cleanup_undefined_types_noname ();
4354 }
4355
4356 /* Scan through all of the global symbols defined in the object file,
4357 assigning values to the debugging symbols that need to be assigned
4358 to. Get these symbols from the minimal symbol table. */
4359
4360 void
4361 scan_file_globals (struct objfile *objfile)
4362 {
4363 int hash;
4364 struct minimal_symbol *msymbol;
4365 struct symbol *sym, *prev;
4366 struct objfile *resolve_objfile;
4367
4368 /* SVR4 based linkers copy referenced global symbols from shared
4369 libraries to the main executable.
4370 If we are scanning the symbols for a shared library, try to resolve
4371 them from the minimal symbols of the main executable first. */
4372
4373 if (symfile_objfile && objfile != symfile_objfile)
4374 resolve_objfile = symfile_objfile;
4375 else
4376 resolve_objfile = objfile;
4377
4378 while (1)
4379 {
4380 /* Avoid expensive loop through all minimal symbols if there are
4381 no unresolved symbols. */
4382 for (hash = 0; hash < HASHSIZE; hash++)
4383 {
4384 if (global_sym_chain[hash])
4385 break;
4386 }
4387 if (hash >= HASHSIZE)
4388 return;
4389
4390 for (msymbol = resolve_objfile->msymbols;
4391 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4392 msymbol++)
4393 {
4394 QUIT;
4395
4396 /* Skip static symbols. */
4397 switch (MSYMBOL_TYPE (msymbol))
4398 {
4399 case mst_file_text:
4400 case mst_file_data:
4401 case mst_file_bss:
4402 continue;
4403 default:
4404 break;
4405 }
4406
4407 prev = NULL;
4408
4409 /* Get the hash index and check all the symbols
4410 under that hash index. */
4411
4412 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4413
4414 for (sym = global_sym_chain[hash]; sym;)
4415 {
4416 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4417 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4418 {
4419 /* Splice this symbol out of the hash chain and
4420 assign the value we have to it. */
4421 if (prev)
4422 {
4423 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4424 }
4425 else
4426 {
4427 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4428 }
4429
4430 /* Check to see whether we need to fix up a common block. */
4431 /* Note: this code might be executed several times for
4432 the same symbol if there are multiple references. */
4433 if (sym)
4434 {
4435 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4436 {
4437 fix_common_block (sym,
4438 SYMBOL_VALUE_ADDRESS (msymbol));
4439 }
4440 else
4441 {
4442 SYMBOL_VALUE_ADDRESS (sym)
4443 = SYMBOL_VALUE_ADDRESS (msymbol);
4444 }
4445 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4446 }
4447
4448 if (prev)
4449 {
4450 sym = SYMBOL_VALUE_CHAIN (prev);
4451 }
4452 else
4453 {
4454 sym = global_sym_chain[hash];
4455 }
4456 }
4457 else
4458 {
4459 prev = sym;
4460 sym = SYMBOL_VALUE_CHAIN (sym);
4461 }
4462 }
4463 }
4464 if (resolve_objfile == objfile)
4465 break;
4466 resolve_objfile = objfile;
4467 }
4468
4469 /* Change the storage class of any remaining unresolved globals to
4470 LOC_UNRESOLVED and remove them from the chain. */
4471 for (hash = 0; hash < HASHSIZE; hash++)
4472 {
4473 sym = global_sym_chain[hash];
4474 while (sym)
4475 {
4476 prev = sym;
4477 sym = SYMBOL_VALUE_CHAIN (sym);
4478
4479 /* Change the symbol address from the misleading chain value
4480 to address zero. */
4481 SYMBOL_VALUE_ADDRESS (prev) = 0;
4482
4483 /* Complain about unresolved common block symbols. */
4484 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4485 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4486 else
4487 complaint (&symfile_complaints,
4488 _("%s: common block `%s' from global_sym_chain unresolved"),
4489 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4490 }
4491 }
4492 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4493 }
4494
4495 /* Initialize anything that needs initializing when starting to read
4496 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4497 to a psymtab. */
4498
4499 void
4500 stabsread_init (void)
4501 {
4502 }
4503
4504 /* Initialize anything that needs initializing when a completely new
4505 symbol file is specified (not just adding some symbols from another
4506 file, e.g. a shared library). */
4507
4508 void
4509 stabsread_new_init (void)
4510 {
4511 /* Empty the hash table of global syms looking for values. */
4512 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4513 }
4514
4515 /* Initialize anything that needs initializing at the same time as
4516 start_symtab() is called. */
4517
4518 void
4519 start_stabs (void)
4520 {
4521 global_stabs = NULL; /* AIX COFF */
4522 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4523 n_this_object_header_files = 1;
4524 type_vector_length = 0;
4525 type_vector = (struct type **) 0;
4526
4527 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4528 common_block_name = NULL;
4529 }
4530
4531 /* Call after end_symtab() */
4532
4533 void
4534 end_stabs (void)
4535 {
4536 if (type_vector)
4537 {
4538 xfree (type_vector);
4539 }
4540 type_vector = 0;
4541 type_vector_length = 0;
4542 previous_stab_code = 0;
4543 }
4544
4545 void
4546 finish_global_stabs (struct objfile *objfile)
4547 {
4548 if (global_stabs)
4549 {
4550 patch_block_stabs (global_symbols, global_stabs, objfile);
4551 xfree (global_stabs);
4552 global_stabs = NULL;
4553 }
4554 }
4555
4556 /* Find the end of the name, delimited by a ':', but don't match
4557 ObjC symbols which look like -[Foo bar::]:bla. */
4558 static char *
4559 find_name_end (char *name)
4560 {
4561 char *s = name;
4562 if (s[0] == '-' || *s == '+')
4563 {
4564 /* Must be an ObjC method symbol. */
4565 if (s[1] != '[')
4566 {
4567 error (_("invalid symbol name \"%s\""), name);
4568 }
4569 s = strchr (s, ']');
4570 if (s == NULL)
4571 {
4572 error (_("invalid symbol name \"%s\""), name);
4573 }
4574 return strchr (s, ':');
4575 }
4576 else
4577 {
4578 return strchr (s, ':');
4579 }
4580 }
4581
4582 /* Initializer for this module */
4583
4584 void
4585 _initialize_stabsread (void)
4586 {
4587 undef_types_allocated = 20;
4588 undef_types_length = 0;
4589 undef_types = (struct type **)
4590 xmalloc (undef_types_allocated * sizeof (struct type *));
4591
4592 noname_undefs_allocated = 20;
4593 noname_undefs_length = 0;
4594 noname_undefs = (struct nat *)
4595 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4596 }
This page took 0.140917 seconds and 4 git commands to generate.