1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield
*next
;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist
*next
;
83 struct fn_fieldlist fn_fieldlist
;
89 read_one_struct_field (struct field_info
*, char **, char *,
90 struct type
*, struct objfile
*);
92 static struct type
*dbx_alloc_type (int[2], struct objfile
*);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type
*error_type (char **, struct objfile
*);
99 patch_block_stabs (struct pending
*, struct pending_stabs
*,
102 static void fix_common_block (struct symbol
*, int);
104 static int read_type_number (char **, int *);
106 static struct type
*read_type (char **, struct objfile
*);
108 static struct type
*read_range_type (char **, int[2], int, struct objfile
*);
110 static struct type
*read_sun_builtin_type (char **, int[2], struct objfile
*);
112 static struct type
*read_sun_floating_type (char **, int[2],
115 static struct type
*read_enum_type (char **, struct type
*, struct objfile
*);
117 static struct type
*rs6000_builtin_type (int, struct objfile
*);
120 read_member_functions (struct field_info
*, char **, struct type
*,
124 read_struct_fields (struct field_info
*, char **, struct type
*,
128 read_baseclasses (struct field_info
*, char **, struct type
*,
132 read_tilde_fields (struct field_info
*, char **, struct type
*,
135 static int attach_fn_fields_to_type (struct field_info
*, struct type
*);
137 static int attach_fields_to_type (struct field_info
*, struct type
*,
140 static struct type
*read_struct_type (char **, struct type
*,
144 static struct type
*read_array_type (char **, struct type
*,
147 static struct field
*read_args (char **, int, struct objfile
*, int *, int *);
149 static void add_undefined_type (struct type
*, int[2]);
152 read_cpp_abbrev (struct field_info
*, char **, struct type
*,
155 static char *find_name_end (char *name
);
157 static int process_reference (char **string
);
159 void stabsread_clear_cache (void);
161 static const char vptr_name
[] = "_vptr$";
162 static const char vb_name
[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1
)
167 complaint (&symfile_complaints
, _("invalid C++ abbreviation `%s'"), arg1
);
171 reg_value_complaint (int regnum
, int num_regs
, const char *sym
)
173 complaint (&symfile_complaints
,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum
, num_regs
- 1, sym
);
179 stabs_general_complaint (const char *arg1
)
181 complaint (&symfile_complaints
, "%s", arg1
);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type
**undef_types
;
187 static int undef_types_allocated
;
188 static int undef_types_length
;
189 static struct symbol
*current_symbol
= NULL
;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat
*noname_undefs
;
202 static int noname_undefs_allocated
;
203 static int noname_undefs_length
;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type
**
221 dbx_lookup_type (int typenums
[2], struct objfile
*objfile
)
223 int filenum
= typenums
[0];
224 int index
= typenums
[1];
227 struct header_file
*f
;
230 if (filenum
== -1) /* -1,-1 is for temporary types. */
233 if (filenum
< 0 || filenum
>= n_this_object_header_files
)
235 complaint (&symfile_complaints
,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum
, index
, symnum
);
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type
*temp_type
;
252 temp_type
= rs6000_builtin_type (index
, objfile
);
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index
>= type_vector_length
)
260 old_len
= type_vector_length
;
263 type_vector_length
= INITIAL_TYPE_VECTOR_LENGTH
;
264 type_vector
= (struct type
**)
265 xmalloc (type_vector_length
* sizeof (struct type
*));
267 while (index
>= type_vector_length
)
269 type_vector_length
*= 2;
271 type_vector
= (struct type
**)
272 xrealloc ((char *) type_vector
,
273 (type_vector_length
* sizeof (struct type
*)));
274 memset (&type_vector
[old_len
], 0,
275 (type_vector_length
- old_len
) * sizeof (struct type
*));
277 return (&type_vector
[index
]);
281 real_filenum
= this_object_header_files
[filenum
];
283 if (real_filenum
>= N_HEADER_FILES (objfile
))
285 static struct type
*temp_type
;
287 warning (_("GDB internal error: bad real_filenum"));
290 temp_type
= objfile_type (objfile
)->builtin_error
;
294 f
= HEADER_FILES (objfile
) + real_filenum
;
296 f_orig_length
= f
->length
;
297 if (index
>= f_orig_length
)
299 while (index
>= f
->length
)
303 f
->vector
= (struct type
**)
304 xrealloc ((char *) f
->vector
, f
->length
* sizeof (struct type
*));
305 memset (&f
->vector
[f_orig_length
], 0,
306 (f
->length
- f_orig_length
) * sizeof (struct type
*));
308 return (&f
->vector
[index
]);
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
319 dbx_alloc_type (int typenums
[2], struct objfile
*objfile
)
321 struct type
**type_addr
;
323 if (typenums
[0] == -1)
325 return (alloc_type (objfile
));
328 type_addr
= dbx_lookup_type (typenums
, objfile
);
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
335 *type_addr
= alloc_type (objfile
);
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
345 patch_block_stabs (struct pending
*symbols
, struct pending_stabs
*stabs
,
346 struct objfile
*objfile
)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii
= 0; ii
< stabs
->count
; ++ii
)
361 name
= stabs
->stab
[ii
];
362 pp
= (char *) strchr (name
, ':');
363 gdb_assert (pp
); /* Must find a ':' or game's over. */
367 pp
= (char *) strchr (pp
, ':');
369 sym
= find_symbol_in_list (symbols
, name
, pp
- name
);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym
= (struct symbol
*)
384 obstack_alloc (&objfile
->objfile_obstack
,
385 sizeof (struct symbol
));
387 memset (sym
, 0, sizeof (struct symbol
));
388 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
389 SYMBOL_CLASS (sym
) = LOC_OPTIMIZED_OUT
;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym
, obsavestring (name
, pp
- name
,
392 &objfile
->objfile_obstack
));
394 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
400 lookup_function_type (read_type (&pp
, objfile
));
404 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
406 add_symbol_to_list (sym
, &global_symbols
);
411 if (*(pp
- 1) == 'F' || *(pp
- 1) == 'f')
414 lookup_function_type (read_type (&pp
, objfile
));
418 SYMBOL_TYPE (sym
) = read_type (&pp
, objfile
);
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
432 Returns 0 for success, -1 for error. */
435 read_type_number (char **pp
, int *typenums
)
441 typenums
[0] = read_huge_number (pp
, ',', &nbits
, 0);
444 typenums
[1] = read_huge_number (pp
, ')', &nbits
, 0);
451 typenums
[1] = read_huge_number (pp
, 0, &nbits
, 0);
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478 static struct ref_map
*ref_map
;
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count
= 0;
483 /* Number of chunks malloced. */
484 static int ref_chunk
= 0;
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
490 stabsread_clear_cache (void)
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
501 ref_add (int refnum
, struct symbol
*sym
, char *stabs
, CORE_ADDR value
)
505 if (refnum
>= ref_count
)
506 ref_count
= refnum
+ 1;
507 if (ref_count
> ref_chunk
* MAX_CHUNK_REFS
)
509 int new_slots
= ref_count
- ref_chunk
* MAX_CHUNK_REFS
;
510 int new_chunks
= new_slots
/ MAX_CHUNK_REFS
+ 1;
511 ref_map
= (struct ref_map
*)
512 xrealloc (ref_map
, REF_MAP_SIZE (ref_chunk
+ new_chunks
));
513 memset (ref_map
+ ref_chunk
* MAX_CHUNK_REFS
, 0, new_chunks
* REF_CHUNK_SIZE
);
514 ref_chunk
+= new_chunks
;
516 ref_map
[refnum
].stabs
= stabs
;
517 ref_map
[refnum
].sym
= sym
;
518 ref_map
[refnum
].value
= value
;
521 /* Return defined sym for the reference REFNUM. */
523 ref_search (int refnum
)
525 if (refnum
< 0 || refnum
> ref_count
)
527 return ref_map
[refnum
].sym
;
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
534 process_reference (char **string
)
542 /* Advance beyond the initial '#'. */
545 /* Read number as reference id. */
546 while (*p
&& isdigit (*p
))
548 refnum
= refnum
* 10 + *p
- '0';
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
559 symbol_reference_defined (char **string
)
564 refnum
= process_reference (&p
);
566 /* Defining symbols end in '=' */
569 /* Symbol is being defined here. */
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
583 stab_reg_to_regnum (struct symbol
*sym
, struct gdbarch
*gdbarch
)
585 int regno
= gdbarch_stab_reg_to_regnum (gdbarch
, SYMBOL_VALUE (sym
));
587 if (regno
>= gdbarch_num_regs (gdbarch
)
588 + gdbarch_num_pseudo_regs (gdbarch
))
590 reg_value_complaint (regno
,
591 gdbarch_num_regs (gdbarch
)
592 + gdbarch_num_pseudo_regs (gdbarch
),
593 SYMBOL_PRINT_NAME (sym
));
595 regno
= gdbarch_sp_regnum (gdbarch
); /* Known safe, though useless */
601 static const struct symbol_register_ops stab_register_funcs
= {
606 define_symbol (CORE_ADDR valu
, char *string
, int desc
, int type
,
607 struct objfile
*objfile
)
609 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
611 char *p
= (char *) find_name_end (string
);
615 char *new_name
= NULL
;
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
624 /* Ignore syms with empty names. */
628 /* Ignore old-style symbols from cc -go */
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless
= (p
== string
|| ((string
[0] == ' ') && (string
[1] == ':')));
642 current_symbol
= sym
= (struct symbol
*)
643 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
644 memset (sym
, 0, sizeof (struct symbol
));
646 switch (type
& N_TYPE
)
649 SYMBOL_SECTION (sym
) = SECT_OFF_TEXT (objfile
);
652 SYMBOL_SECTION (sym
) = SECT_OFF_DATA (objfile
);
655 SYMBOL_SECTION (sym
) = SECT_OFF_BSS (objfile
);
659 if (processing_gcc_compilation
)
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym
) = desc
;
667 SYMBOL_LINE (sym
) = 0; /* unknown */
670 if (is_cplus_marker (string
[0]))
672 /* Special GNU C++ names. */
676 SYMBOL_SET_LINKAGE_NAME
677 (sym
, obsavestring ("this", strlen ("this"),
678 &objfile
->objfile_obstack
));
681 case 'v': /* $vtbl_ptr_type */
685 SYMBOL_SET_LINKAGE_NAME
686 (sym
, obsavestring ("eh_throw", strlen ("eh_throw"),
687 &objfile
->objfile_obstack
));
691 /* This was an anonymous type that was never fixed up. */
695 /* SunPRO (3.0 at least) static variable encoding. */
696 if (gdbarch_static_transform_name_p (gdbarch
))
698 /* ... fall through ... */
701 complaint (&symfile_complaints
, _("Unknown C++ symbol name `%s'"),
703 goto normal
; /* Do *something* with it */
709 SYMBOL_LANGUAGE (sym
) = current_subfile
->language
;
710 if (SYMBOL_LANGUAGE (sym
) == language_cplus
)
712 char *name
= alloca (p
- string
+ 1);
713 memcpy (name
, string
, p
- string
);
714 name
[p
- string
] = '\0';
715 new_name
= cp_canonicalize_string (name
);
716 cp_scan_for_anonymous_namespaces (sym
);
718 if (new_name
!= NULL
)
720 SYMBOL_SET_NAMES (sym
, new_name
, strlen (new_name
), objfile
);
724 SYMBOL_SET_NAMES (sym
, string
, p
- string
, objfile
);
728 /* Determine the type of name being defined. */
730 /* Getting GDB to correctly skip the symbol on an undefined symbol
731 descriptor and not ever dump core is a very dodgy proposition if
732 we do things this way. I say the acorn RISC machine can just
733 fix their compiler. */
734 /* The Acorn RISC machine's compiler can put out locals that don't
735 start with "234=" or "(3,4)=", so assume anything other than the
736 deftypes we know how to handle is a local. */
737 if (!strchr ("cfFGpPrStTvVXCR", *p
))
739 if (isdigit (*p
) || *p
== '(' || *p
== '-')
748 /* c is a special case, not followed by a type-number.
749 SYMBOL:c=iVALUE for an integer constant symbol.
750 SYMBOL:c=rVALUE for a floating constant symbol.
751 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
752 e.g. "b:c=e6,0" for "const b = blob1"
753 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
756 SYMBOL_CLASS (sym
) = LOC_CONST
;
757 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
758 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
759 add_symbol_to_list (sym
, &file_symbols
);
769 struct type
*dbl_type
;
771 /* FIXME-if-picky-about-floating-accuracy: Should be using
772 target arithmetic to get the value. real.c in GCC
773 probably has the necessary code. */
775 dbl_type
= objfile_type (objfile
)->builtin_double
;
777 obstack_alloc (&objfile
->objfile_obstack
,
778 TYPE_LENGTH (dbl_type
));
779 store_typed_floating (dbl_valu
, dbl_type
, d
);
781 SYMBOL_TYPE (sym
) = dbl_type
;
782 SYMBOL_VALUE_BYTES (sym
) = dbl_valu
;
783 SYMBOL_CLASS (sym
) = LOC_CONST_BYTES
;
788 /* Defining integer constants this way is kind of silly,
789 since 'e' constants allows the compiler to give not
790 only the value, but the type as well. C has at least
791 int, long, unsigned int, and long long as constant
792 types; other languages probably should have at least
793 unsigned as well as signed constants. */
795 SYMBOL_TYPE (sym
) = objfile_type (objfile
)->builtin_long
;
796 SYMBOL_VALUE (sym
) = atoi (p
);
797 SYMBOL_CLASS (sym
) = LOC_CONST
;
801 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
802 can be represented as integral.
803 e.g. "b:c=e6,0" for "const b = blob1"
804 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
806 SYMBOL_CLASS (sym
) = LOC_CONST
;
807 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
811 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
816 /* If the value is too big to fit in an int (perhaps because
817 it is unsigned), or something like that, we silently get
818 a bogus value. The type and everything else about it is
819 correct. Ideally, we should be using whatever we have
820 available for parsing unsigned and long long values,
822 SYMBOL_VALUE (sym
) = atoi (p
);
827 SYMBOL_CLASS (sym
) = LOC_CONST
;
828 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
831 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
832 add_symbol_to_list (sym
, &file_symbols
);
836 /* The name of a caught exception. */
837 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
838 SYMBOL_CLASS (sym
) = LOC_LABEL
;
839 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
840 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
841 add_symbol_to_list (sym
, &local_symbols
);
845 /* A static function definition. */
846 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
847 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
848 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
849 add_symbol_to_list (sym
, &file_symbols
);
850 /* fall into process_function_types. */
852 process_function_types
:
853 /* Function result types are described as the result type in stabs.
854 We need to convert this to the function-returning-type-X type
855 in GDB. E.g. "int" is converted to "function returning int". */
856 if (TYPE_CODE (SYMBOL_TYPE (sym
)) != TYPE_CODE_FUNC
)
857 SYMBOL_TYPE (sym
) = lookup_function_type (SYMBOL_TYPE (sym
));
859 /* All functions in C++ have prototypes. Stabs does not offer an
860 explicit way to identify prototyped or unprototyped functions,
861 but both GCC and Sun CC emit stabs for the "call-as" type rather
862 than the "declared-as" type for unprototyped functions, so
863 we treat all functions as if they were prototyped. This is used
864 primarily for promotion when calling the function from GDB. */
865 TYPE_PROTOTYPED (SYMBOL_TYPE (sym
)) = 1;
867 /* fall into process_prototype_types */
869 process_prototype_types
:
870 /* Sun acc puts declared types of arguments here. */
873 struct type
*ftype
= SYMBOL_TYPE (sym
);
878 /* Obtain a worst case guess for the number of arguments
879 by counting the semicolons. */
886 /* Allocate parameter information fields and fill them in. */
887 TYPE_FIELDS (ftype
) = (struct field
*)
888 TYPE_ALLOC (ftype
, nsemi
* sizeof (struct field
));
893 /* A type number of zero indicates the start of varargs.
894 FIXME: GDB currently ignores vararg functions. */
895 if (p
[0] == '0' && p
[1] == '\0')
897 ptype
= read_type (&p
, objfile
);
899 /* The Sun compilers mark integer arguments, which should
900 be promoted to the width of the calling conventions, with
901 a type which references itself. This type is turned into
902 a TYPE_CODE_VOID type by read_type, and we have to turn
903 it back into builtin_int here.
904 FIXME: Do we need a new builtin_promoted_int_arg ? */
905 if (TYPE_CODE (ptype
) == TYPE_CODE_VOID
)
906 ptype
= objfile_type (objfile
)->builtin_int
;
907 TYPE_FIELD_TYPE (ftype
, nparams
) = ptype
;
908 TYPE_FIELD_ARTIFICIAL (ftype
, nparams
++) = 0;
910 TYPE_NFIELDS (ftype
) = nparams
;
911 TYPE_PROTOTYPED (ftype
) = 1;
916 /* A global function definition. */
917 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
918 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
919 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
920 add_symbol_to_list (sym
, &global_symbols
);
921 goto process_function_types
;
924 /* For a class G (global) symbol, it appears that the
925 value is not correct. It is necessary to search for the
926 corresponding linker definition to find the value.
927 These definitions appear at the end of the namelist. */
928 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
929 SYMBOL_CLASS (sym
) = LOC_STATIC
;
930 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
931 /* Don't add symbol references to global_sym_chain.
932 Symbol references don't have valid names and wont't match up with
933 minimal symbols when the global_sym_chain is relocated.
934 We'll fixup symbol references when we fixup the defining symbol. */
935 if (SYMBOL_LINKAGE_NAME (sym
) && SYMBOL_LINKAGE_NAME (sym
)[0] != '#')
937 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
938 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
939 global_sym_chain
[i
] = sym
;
941 add_symbol_to_list (sym
, &global_symbols
);
944 /* This case is faked by a conditional above,
945 when there is no code letter in the dbx data.
946 Dbx data never actually contains 'l'. */
949 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
950 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
951 SYMBOL_VALUE (sym
) = valu
;
952 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
953 add_symbol_to_list (sym
, &local_symbols
);
958 /* pF is a two-letter code that means a function parameter in Fortran.
959 The type-number specifies the type of the return value.
960 Translate it into a pointer-to-function type. */
964 = lookup_pointer_type
965 (lookup_function_type (read_type (&p
, objfile
)));
968 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
970 SYMBOL_CLASS (sym
) = LOC_ARG
;
971 SYMBOL_VALUE (sym
) = valu
;
972 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
973 SYMBOL_IS_ARGUMENT (sym
) = 1;
974 add_symbol_to_list (sym
, &local_symbols
);
976 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_BIG
)
978 /* On little-endian machines, this crud is never necessary,
979 and, if the extra bytes contain garbage, is harmful. */
983 /* If it's gcc-compiled, if it says `short', believe it. */
984 if (processing_gcc_compilation
985 || gdbarch_believe_pcc_promotion (gdbarch
))
988 if (!gdbarch_believe_pcc_promotion (gdbarch
))
990 /* If PCC says a parameter is a short or a char, it is
992 if (TYPE_LENGTH (SYMBOL_TYPE (sym
))
993 < gdbarch_int_bit (gdbarch
) / TARGET_CHAR_BIT
994 && TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_INT
)
997 TYPE_UNSIGNED (SYMBOL_TYPE (sym
))
998 ? objfile_type (objfile
)->builtin_unsigned_int
999 : objfile_type (objfile
)->builtin_int
;
1005 /* acc seems to use P to declare the prototypes of functions that
1006 are referenced by this file. gdb is not prepared to deal
1007 with this extra information. FIXME, it ought to. */
1010 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1011 goto process_prototype_types
;
1016 /* Parameter which is in a register. */
1017 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1018 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1019 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1020 SYMBOL_IS_ARGUMENT (sym
) = 1;
1021 SYMBOL_VALUE (sym
) = valu
;
1022 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1023 add_symbol_to_list (sym
, &local_symbols
);
1027 /* Register variable (either global or local). */
1028 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1029 SYMBOL_CLASS (sym
) = LOC_REGISTER
;
1030 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1031 SYMBOL_VALUE (sym
) = valu
;
1032 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1033 if (within_function
)
1035 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1036 the same name to represent an argument passed in a
1037 register. GCC uses 'P' for the same case. So if we find
1038 such a symbol pair we combine it into one 'P' symbol.
1039 For Sun cc we need to do this regardless of
1040 stabs_argument_has_addr, because the compiler puts out
1041 the 'p' symbol even if it never saves the argument onto
1044 On most machines, we want to preserve both symbols, so
1045 that we can still get information about what is going on
1046 with the stack (VAX for computing args_printed, using
1047 stack slots instead of saved registers in backtraces,
1050 Note that this code illegally combines
1051 main(argc) struct foo argc; { register struct foo argc; }
1052 but this case is considered pathological and causes a warning
1053 from a decent compiler. */
1056 && local_symbols
->nsyms
> 0
1057 && gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
)))
1059 struct symbol
*prev_sym
;
1060 prev_sym
= local_symbols
->symbol
[local_symbols
->nsyms
- 1];
1061 if ((SYMBOL_CLASS (prev_sym
) == LOC_REF_ARG
1062 || SYMBOL_CLASS (prev_sym
) == LOC_ARG
)
1063 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym
),
1064 SYMBOL_LINKAGE_NAME (sym
)) == 0)
1066 SYMBOL_CLASS (prev_sym
) = LOC_REGISTER
;
1067 SYMBOL_REGISTER_OPS (prev_sym
) = &stab_register_funcs
;
1068 /* Use the type from the LOC_REGISTER; that is the type
1069 that is actually in that register. */
1070 SYMBOL_TYPE (prev_sym
) = SYMBOL_TYPE (sym
);
1071 SYMBOL_VALUE (prev_sym
) = SYMBOL_VALUE (sym
);
1076 add_symbol_to_list (sym
, &local_symbols
);
1079 add_symbol_to_list (sym
, &file_symbols
);
1083 /* Static symbol at top level of file */
1084 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1085 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1086 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1087 if (gdbarch_static_transform_name_p (gdbarch
)
1088 && gdbarch_static_transform_name (gdbarch
,
1089 SYMBOL_LINKAGE_NAME (sym
))
1090 != SYMBOL_LINKAGE_NAME (sym
))
1092 struct minimal_symbol
*msym
;
1093 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
), NULL
, objfile
);
1096 char *new_name
= gdbarch_static_transform_name
1097 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1098 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1099 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1102 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1103 add_symbol_to_list (sym
, &file_symbols
);
1107 /* In Ada, there is no distinction between typedef and non-typedef;
1108 any type declaration implicitly has the equivalent of a typedef,
1109 and thus 't' is in fact equivalent to 'Tt'.
1111 Therefore, for Ada units, we check the character immediately
1112 before the 't', and if we do not find a 'T', then make sure to
1113 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1114 will be stored in the VAR_DOMAIN). If the symbol was indeed
1115 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1116 elsewhere, so we don't need to take care of that.
1118 This is important to do, because of forward references:
1119 The cleanup of undefined types stored in undef_types only uses
1120 STRUCT_DOMAIN symbols to perform the replacement. */
1121 synonym
= (SYMBOL_LANGUAGE (sym
) == language_ada
&& p
[-2] != 'T');
1124 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1126 /* For a nameless type, we don't want a create a symbol, thus we
1127 did not use `sym'. Return without further processing. */
1131 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1132 SYMBOL_VALUE (sym
) = valu
;
1133 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1134 /* C++ vagaries: we may have a type which is derived from
1135 a base type which did not have its name defined when the
1136 derived class was output. We fill in the derived class's
1137 base part member's name here in that case. */
1138 if (TYPE_NAME (SYMBOL_TYPE (sym
)) != NULL
)
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_STRUCT
1140 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_UNION
)
1141 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)))
1144 for (j
= TYPE_N_BASECLASSES (SYMBOL_TYPE (sym
)) - 1; j
>= 0; j
--)
1145 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) == 0)
1146 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym
), j
) =
1147 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym
), j
));
1150 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == NULL
)
1152 /* gcc-2.6 or later (when using -fvtable-thunks)
1153 emits a unique named type for a vtable entry.
1154 Some gdb code depends on that specific name. */
1155 extern const char vtbl_ptr_name
[];
1157 if ((TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_PTR
1158 && strcmp (SYMBOL_LINKAGE_NAME (sym
), vtbl_ptr_name
))
1159 || TYPE_CODE (SYMBOL_TYPE (sym
)) == TYPE_CODE_FUNC
)
1161 /* If we are giving a name to a type such as "pointer to
1162 foo" or "function returning foo", we better not set
1163 the TYPE_NAME. If the program contains "typedef char
1164 *caddr_t;", we don't want all variables of type char
1165 * to print as caddr_t. This is not just a
1166 consequence of GDB's type management; PCC and GCC (at
1167 least through version 2.4) both output variables of
1168 either type char * or caddr_t with the type number
1169 defined in the 't' symbol for caddr_t. If a future
1170 compiler cleans this up it GDB is not ready for it
1171 yet, but if it becomes ready we somehow need to
1172 disable this check (without breaking the PCC/GCC2.4
1177 Fortunately, this check seems not to be necessary
1178 for anything except pointers or functions. */
1179 /* ezannoni: 2000-10-26. This seems to apply for
1180 versions of gcc older than 2.8. This was the original
1181 problem: with the following code gdb would tell that
1182 the type for name1 is caddr_t, and func is char()
1183 typedef char *caddr_t;
1195 /* Pascal accepts names for pointer types. */
1196 if (current_subfile
->language
== language_pascal
)
1198 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1202 TYPE_NAME (SYMBOL_TYPE (sym
)) = SYMBOL_LINKAGE_NAME (sym
);
1205 add_symbol_to_list (sym
, &file_symbols
);
1209 /* Create the STRUCT_DOMAIN clone. */
1210 struct symbol
*struct_sym
= (struct symbol
*)
1211 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1214 SYMBOL_CLASS (struct_sym
) = LOC_TYPEDEF
;
1215 SYMBOL_VALUE (struct_sym
) = valu
;
1216 SYMBOL_DOMAIN (struct_sym
) = STRUCT_DOMAIN
;
1217 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1218 TYPE_NAME (SYMBOL_TYPE (sym
))
1219 = obconcat (&objfile
->objfile_obstack
, "", "",
1220 SYMBOL_LINKAGE_NAME (sym
));
1221 add_symbol_to_list (struct_sym
, &file_symbols
);
1227 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1228 by 't' which means we are typedef'ing it as well. */
1229 synonym
= *p
== 't';
1234 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1236 /* For a nameless type, we don't want a create a symbol, thus we
1237 did not use `sym'. Return without further processing. */
1241 SYMBOL_CLASS (sym
) = LOC_TYPEDEF
;
1242 SYMBOL_VALUE (sym
) = valu
;
1243 SYMBOL_DOMAIN (sym
) = STRUCT_DOMAIN
;
1244 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym
)) == 0)
1245 TYPE_TAG_NAME (SYMBOL_TYPE (sym
))
1246 = obconcat (&objfile
->objfile_obstack
, "", "",
1247 SYMBOL_LINKAGE_NAME (sym
));
1248 add_symbol_to_list (sym
, &file_symbols
);
1252 /* Clone the sym and then modify it. */
1253 struct symbol
*typedef_sym
= (struct symbol
*)
1254 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
1255 *typedef_sym
= *sym
;
1256 SYMBOL_CLASS (typedef_sym
) = LOC_TYPEDEF
;
1257 SYMBOL_VALUE (typedef_sym
) = valu
;
1258 SYMBOL_DOMAIN (typedef_sym
) = VAR_DOMAIN
;
1259 if (TYPE_NAME (SYMBOL_TYPE (sym
)) == 0)
1260 TYPE_NAME (SYMBOL_TYPE (sym
))
1261 = obconcat (&objfile
->objfile_obstack
, "", "",
1262 SYMBOL_LINKAGE_NAME (sym
));
1263 add_symbol_to_list (typedef_sym
, &file_symbols
);
1268 /* Static symbol of local scope */
1269 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1270 SYMBOL_CLASS (sym
) = LOC_STATIC
;
1271 SYMBOL_VALUE_ADDRESS (sym
) = valu
;
1272 if (gdbarch_static_transform_name_p (gdbarch
)
1273 && gdbarch_static_transform_name (gdbarch
,
1274 SYMBOL_LINKAGE_NAME (sym
))
1275 != SYMBOL_LINKAGE_NAME (sym
))
1277 struct minimal_symbol
*msym
;
1278 msym
= lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym
), NULL
, objfile
);
1281 char *new_name
= gdbarch_static_transform_name
1282 (gdbarch
, SYMBOL_LINKAGE_NAME (sym
));
1283 SYMBOL_SET_LINKAGE_NAME (sym
, new_name
);
1284 SYMBOL_VALUE_ADDRESS (sym
) = SYMBOL_VALUE_ADDRESS (msym
);
1287 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1288 add_symbol_to_list (sym
, &local_symbols
);
1292 /* Reference parameter */
1293 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1294 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1295 SYMBOL_IS_ARGUMENT (sym
) = 1;
1296 SYMBOL_VALUE (sym
) = valu
;
1297 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1298 add_symbol_to_list (sym
, &local_symbols
);
1302 /* Reference parameter which is in a register. */
1303 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1304 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1305 SYMBOL_REGISTER_OPS (sym
) = &stab_register_funcs
;
1306 SYMBOL_IS_ARGUMENT (sym
) = 1;
1307 SYMBOL_VALUE (sym
) = valu
;
1308 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1309 add_symbol_to_list (sym
, &local_symbols
);
1313 /* This is used by Sun FORTRAN for "function result value".
1314 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1315 that Pascal uses it too, but when I tried it Pascal used
1316 "x:3" (local symbol) instead. */
1317 SYMBOL_TYPE (sym
) = read_type (&p
, objfile
);
1318 SYMBOL_CLASS (sym
) = LOC_LOCAL
;
1319 SYMBOL_VALUE (sym
) = valu
;
1320 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1321 add_symbol_to_list (sym
, &local_symbols
);
1325 SYMBOL_TYPE (sym
) = error_type (&p
, objfile
);
1326 SYMBOL_CLASS (sym
) = LOC_CONST
;
1327 SYMBOL_VALUE (sym
) = 0;
1328 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
1329 add_symbol_to_list (sym
, &file_symbols
);
1333 /* Some systems pass variables of certain types by reference instead
1334 of by value, i.e. they will pass the address of a structure (in a
1335 register or on the stack) instead of the structure itself. */
1337 if (gdbarch_stabs_argument_has_addr (gdbarch
, SYMBOL_TYPE (sym
))
1338 && SYMBOL_IS_ARGUMENT (sym
))
1340 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1341 variables passed in a register). */
1342 if (SYMBOL_CLASS (sym
) == LOC_REGISTER
)
1343 SYMBOL_CLASS (sym
) = LOC_REGPARM_ADDR
;
1344 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1345 and subsequent arguments on SPARC, for example). */
1346 else if (SYMBOL_CLASS (sym
) == LOC_ARG
)
1347 SYMBOL_CLASS (sym
) = LOC_REF_ARG
;
1353 /* Skip rest of this symbol and return an error type.
1355 General notes on error recovery: error_type always skips to the
1356 end of the symbol (modulo cretinous dbx symbol name continuation).
1357 Thus code like this:
1359 if (*(*pp)++ != ';')
1360 return error_type (pp, objfile);
1362 is wrong because if *pp starts out pointing at '\0' (typically as the
1363 result of an earlier error), it will be incremented to point to the
1364 start of the next symbol, which might produce strange results, at least
1365 if you run off the end of the string table. Instead use
1368 return error_type (pp, objfile);
1374 foo = error_type (pp, objfile);
1378 And in case it isn't obvious, the point of all this hair is so the compiler
1379 can define new types and new syntaxes, and old versions of the
1380 debugger will be able to read the new symbol tables. */
1382 static struct type
*
1383 error_type (char **pp
, struct objfile
*objfile
)
1385 complaint (&symfile_complaints
, _("couldn't parse type; debugger out of date?"));
1388 /* Skip to end of symbol. */
1389 while (**pp
!= '\0')
1394 /* Check for and handle cretinous dbx symbol name continuation! */
1395 if ((*pp
)[-1] == '\\' || (*pp
)[-1] == '?')
1397 *pp
= next_symbol_text (objfile
);
1404 return objfile_type (objfile
)->builtin_error
;
1408 /* Read type information or a type definition; return the type. Even
1409 though this routine accepts either type information or a type
1410 definition, the distinction is relevant--some parts of stabsread.c
1411 assume that type information starts with a digit, '-', or '(' in
1412 deciding whether to call read_type. */
1414 static struct type
*
1415 read_type (char **pp
, struct objfile
*objfile
)
1417 struct type
*type
= 0;
1420 char type_descriptor
;
1422 /* Size in bits of type if specified by a type attribute, or -1 if
1423 there is no size attribute. */
1426 /* Used to distinguish string and bitstring from char-array and set. */
1429 /* Used to distinguish vector from array. */
1432 /* Read type number if present. The type number may be omitted.
1433 for instance in a two-dimensional array declared with type
1434 "ar1;1;10;ar1;1;10;4". */
1435 if ((**pp
>= '0' && **pp
<= '9')
1439 if (read_type_number (pp
, typenums
) != 0)
1440 return error_type (pp
, objfile
);
1444 /* Type is not being defined here. Either it already
1445 exists, or this is a forward reference to it.
1446 dbx_alloc_type handles both cases. */
1447 type
= dbx_alloc_type (typenums
, objfile
);
1449 /* If this is a forward reference, arrange to complain if it
1450 doesn't get patched up by the time we're done
1452 if (TYPE_CODE (type
) == TYPE_CODE_UNDEF
)
1453 add_undefined_type (type
, typenums
);
1458 /* Type is being defined here. */
1460 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1465 /* 'typenums=' not present, type is anonymous. Read and return
1466 the definition, but don't put it in the type vector. */
1467 typenums
[0] = typenums
[1] = -1;
1472 type_descriptor
= (*pp
)[-1];
1473 switch (type_descriptor
)
1477 enum type_code code
;
1479 /* Used to index through file_symbols. */
1480 struct pending
*ppt
;
1483 /* Name including "struct", etc. */
1487 char *from
, *to
, *p
, *q1
, *q2
;
1489 /* Set the type code according to the following letter. */
1493 code
= TYPE_CODE_STRUCT
;
1496 code
= TYPE_CODE_UNION
;
1499 code
= TYPE_CODE_ENUM
;
1503 /* Complain and keep going, so compilers can invent new
1504 cross-reference types. */
1505 complaint (&symfile_complaints
,
1506 _("Unrecognized cross-reference type `%c'"), (*pp
)[0]);
1507 code
= TYPE_CODE_STRUCT
;
1512 q1
= strchr (*pp
, '<');
1513 p
= strchr (*pp
, ':');
1515 return error_type (pp
, objfile
);
1516 if (q1
&& p
> q1
&& p
[1] == ':')
1518 int nesting_level
= 0;
1519 for (q2
= q1
; *q2
; q2
++)
1523 else if (*q2
== '>')
1525 else if (*q2
== ':' && nesting_level
== 0)
1530 return error_type (pp
, objfile
);
1533 if (current_subfile
->language
== language_cplus
)
1535 char *new_name
, *name
= alloca (p
- *pp
+ 1);
1536 memcpy (name
, *pp
, p
- *pp
);
1537 name
[p
- *pp
] = '\0';
1538 new_name
= cp_canonicalize_string (name
);
1539 if (new_name
!= NULL
)
1541 type_name
= obsavestring (new_name
, strlen (new_name
),
1542 &objfile
->objfile_obstack
);
1546 if (type_name
== NULL
)
1549 (char *) obstack_alloc (&objfile
->objfile_obstack
, p
- *pp
+ 1);
1551 /* Copy the name. */
1558 /* Set the pointer ahead of the name which we just read, and
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1567 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
1568 for (i
= 0; i
< ppt
->nsyms
; i
++)
1570 struct symbol
*sym
= ppt
->symbol
[i
];
1572 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
1575 && strcmp (SYMBOL_LINKAGE_NAME (sym
), type_name
) == 0)
1577 obstack_free (&objfile
->objfile_obstack
, type_name
);
1578 type
= SYMBOL_TYPE (sym
);
1579 if (typenums
[0] != -1)
1580 *dbx_lookup_type (typenums
, objfile
) = type
;
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1590 type
= dbx_alloc_type (typenums
, objfile
);
1591 TYPE_CODE (type
) = code
;
1592 TYPE_TAG_NAME (type
) = type_name
;
1593 INIT_CPLUS_SPECIFIC (type
);
1594 TYPE_STUB (type
) = 1;
1596 add_undefined_type (type
, typenums
);
1600 case '-': /* RS/6000 built-in type */
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type
= dbx_alloc_type (typenums
, objfile
);
1620 TYPE_CODE (type
) = TYPE_CODE_TYPEDEF
;
1622 struct type
*xtype
= read_type (pp
, objfile
);
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type
) = TYPE_CODE_VOID
;
1627 TYPE_LENGTH (type
) = 1;
1629 else if (type_size
>= 0 || is_string
)
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type
, xtype
);
1655 TYPE_NAME (type
) = NULL
;
1656 TYPE_TAG_NAME (type
) = NULL
;
1660 TYPE_TARGET_STUB (type
) = 1;
1661 TYPE_TARGET_TYPE (type
) = xtype
;
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1673 case '*': /* Pointer to another type */
1674 type1
= read_type (pp
, objfile
);
1675 type
= make_pointer_type (type1
, dbx_lookup_type (typenums
, objfile
));
1678 case '&': /* Reference to another type */
1679 type1
= read_type (pp
, objfile
);
1680 type
= make_reference_type (type1
, dbx_lookup_type (typenums
, objfile
));
1683 case 'f': /* Function returning another type */
1684 type1
= read_type (pp
, objfile
);
1685 type
= make_function_type (type1
, dbx_lookup_type (typenums
, objfile
));
1688 case 'g': /* Prototyped function. (Sun) */
1690 /* Unresolved questions:
1692 - According to Sun's ``STABS Interface Manual'', for 'f'
1693 and 'F' symbol descriptors, a `0' in the argument type list
1694 indicates a varargs function. But it doesn't say how 'g'
1695 type descriptors represent that info. Someone with access
1696 to Sun's toolchain should try it out.
1698 - According to the comment in define_symbol (search for
1699 `process_prototype_types:'), Sun emits integer arguments as
1700 types which ref themselves --- like `void' types. Do we
1701 have to deal with that here, too? Again, someone with
1702 access to Sun's toolchain should try it out and let us
1705 const char *type_start
= (*pp
) - 1;
1706 struct type
*return_type
= read_type (pp
, objfile
);
1707 struct type
*func_type
1708 = make_function_type (return_type
,
1709 dbx_lookup_type (typenums
, objfile
));
1712 struct type_list
*next
;
1716 while (**pp
&& **pp
!= '#')
1718 struct type
*arg_type
= read_type (pp
, objfile
);
1719 struct type_list
*new = alloca (sizeof (*new));
1720 new->type
= arg_type
;
1721 new->next
= arg_types
;
1729 complaint (&symfile_complaints
,
1730 _("Prototyped function type didn't end arguments with `#':\n%s"),
1734 /* If there is just one argument whose type is `void', then
1735 that's just an empty argument list. */
1737 && ! arg_types
->next
1738 && TYPE_CODE (arg_types
->type
) == TYPE_CODE_VOID
)
1741 TYPE_FIELDS (func_type
)
1742 = (struct field
*) TYPE_ALLOC (func_type
,
1743 num_args
* sizeof (struct field
));
1744 memset (TYPE_FIELDS (func_type
), 0, num_args
* sizeof (struct field
));
1747 struct type_list
*t
;
1749 /* We stuck each argument type onto the front of the list
1750 when we read it, so the list is reversed. Build the
1751 fields array right-to-left. */
1752 for (t
= arg_types
, i
= num_args
- 1; t
; t
= t
->next
, i
--)
1753 TYPE_FIELD_TYPE (func_type
, i
) = t
->type
;
1755 TYPE_NFIELDS (func_type
) = num_args
;
1756 TYPE_PROTOTYPED (func_type
) = 1;
1762 case 'k': /* Const qualifier on some type (Sun) */
1763 type
= read_type (pp
, objfile
);
1764 type
= make_cv_type (1, TYPE_VOLATILE (type
), type
,
1765 dbx_lookup_type (typenums
, objfile
));
1768 case 'B': /* Volatile qual on some type (Sun) */
1769 type
= read_type (pp
, objfile
);
1770 type
= make_cv_type (TYPE_CONST (type
), 1, type
,
1771 dbx_lookup_type (typenums
, objfile
));
1775 if (isdigit (**pp
) || **pp
== '(' || **pp
== '-')
1776 { /* Member (class & variable) type */
1777 /* FIXME -- we should be doing smash_to_XXX types here. */
1779 struct type
*domain
= read_type (pp
, objfile
);
1780 struct type
*memtype
;
1783 /* Invalid member type data format. */
1784 return error_type (pp
, objfile
);
1787 memtype
= read_type (pp
, objfile
);
1788 type
= dbx_alloc_type (typenums
, objfile
);
1789 smash_to_memberptr_type (type
, domain
, memtype
);
1792 /* type attribute */
1795 /* Skip to the semicolon. */
1796 while (**pp
!= ';' && **pp
!= '\0')
1799 return error_type (pp
, objfile
);
1801 ++ * pp
; /* Skip the semicolon. */
1805 case 's': /* Size attribute */
1806 type_size
= atoi (attr
+ 1);
1811 case 'S': /* String attribute */
1812 /* FIXME: check to see if following type is array? */
1816 case 'V': /* Vector attribute */
1817 /* FIXME: check to see if following type is array? */
1822 /* Ignore unrecognized type attributes, so future compilers
1823 can invent new ones. */
1831 case '#': /* Method (class & fn) type */
1832 if ((*pp
)[0] == '#')
1834 /* We'll get the parameter types from the name. */
1835 struct type
*return_type
;
1838 return_type
= read_type (pp
, objfile
);
1839 if (*(*pp
)++ != ';')
1840 complaint (&symfile_complaints
,
1841 _("invalid (minimal) member type data format at symtab pos %d."),
1843 type
= allocate_stub_method (return_type
);
1844 if (typenums
[0] != -1)
1845 *dbx_lookup_type (typenums
, objfile
) = type
;
1849 struct type
*domain
= read_type (pp
, objfile
);
1850 struct type
*return_type
;
1855 /* Invalid member type data format. */
1856 return error_type (pp
, objfile
);
1860 return_type
= read_type (pp
, objfile
);
1861 args
= read_args (pp
, ';', objfile
, &nargs
, &varargs
);
1863 return error_type (pp
, objfile
);
1864 type
= dbx_alloc_type (typenums
, objfile
);
1865 smash_to_method_type (type
, domain
, return_type
, args
,
1870 case 'r': /* Range type */
1871 type
= read_range_type (pp
, typenums
, type_size
, objfile
);
1872 if (typenums
[0] != -1)
1873 *dbx_lookup_type (typenums
, objfile
) = type
;
1878 /* Sun ACC builtin int type */
1879 type
= read_sun_builtin_type (pp
, typenums
, objfile
);
1880 if (typenums
[0] != -1)
1881 *dbx_lookup_type (typenums
, objfile
) = type
;
1885 case 'R': /* Sun ACC builtin float type */
1886 type
= read_sun_floating_type (pp
, typenums
, objfile
);
1887 if (typenums
[0] != -1)
1888 *dbx_lookup_type (typenums
, objfile
) = type
;
1891 case 'e': /* Enumeration type */
1892 type
= dbx_alloc_type (typenums
, objfile
);
1893 type
= read_enum_type (pp
, type
, objfile
);
1894 if (typenums
[0] != -1)
1895 *dbx_lookup_type (typenums
, objfile
) = type
;
1898 case 's': /* Struct type */
1899 case 'u': /* Union type */
1901 enum type_code type_code
= TYPE_CODE_UNDEF
;
1902 type
= dbx_alloc_type (typenums
, objfile
);
1903 switch (type_descriptor
)
1906 type_code
= TYPE_CODE_STRUCT
;
1909 type_code
= TYPE_CODE_UNION
;
1912 type
= read_struct_type (pp
, type
, type_code
, objfile
);
1916 case 'a': /* Array type */
1918 return error_type (pp
, objfile
);
1921 type
= dbx_alloc_type (typenums
, objfile
);
1922 type
= read_array_type (pp
, type
, objfile
);
1924 TYPE_CODE (type
) = TYPE_CODE_STRING
;
1926 make_vector_type (type
);
1929 case 'S': /* Set or bitstring type */
1930 type1
= read_type (pp
, objfile
);
1931 type
= create_set_type ((struct type
*) NULL
, type1
);
1933 TYPE_CODE (type
) = TYPE_CODE_BITSTRING
;
1934 if (typenums
[0] != -1)
1935 *dbx_lookup_type (typenums
, objfile
) = type
;
1939 --*pp
; /* Go back to the symbol in error */
1940 /* Particularly important if it was \0! */
1941 return error_type (pp
, objfile
);
1946 warning (_("GDB internal error, type is NULL in stabsread.c."));
1947 return error_type (pp
, objfile
);
1950 /* Size specified in a type attribute overrides any other size. */
1951 if (type_size
!= -1)
1952 TYPE_LENGTH (type
) = (type_size
+ TARGET_CHAR_BIT
- 1) / TARGET_CHAR_BIT
;
1957 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1958 Return the proper type node for a given builtin type number. */
1960 static const struct objfile_data
*rs6000_builtin_type_data
;
1962 static struct type
*
1963 rs6000_builtin_type (int typenum
, struct objfile
*objfile
)
1965 struct type
**negative_types
= objfile_data (objfile
, rs6000_builtin_type_data
);
1967 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1968 #define NUMBER_RECOGNIZED 34
1969 struct type
*rettype
= NULL
;
1971 if (typenum
>= 0 || typenum
< -NUMBER_RECOGNIZED
)
1973 complaint (&symfile_complaints
, _("Unknown builtin type %d"), typenum
);
1974 return objfile_type (objfile
)->builtin_error
;
1977 if (!negative_types
)
1979 /* This includes an empty slot for type number -0. */
1980 negative_types
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
1981 NUMBER_RECOGNIZED
+ 1, struct type
*);
1982 set_objfile_data (objfile
, rs6000_builtin_type_data
, negative_types
);
1985 if (negative_types
[-typenum
] != NULL
)
1986 return negative_types
[-typenum
];
1988 #if TARGET_CHAR_BIT != 8
1989 #error This code wrong for TARGET_CHAR_BIT not 8
1990 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1991 that if that ever becomes not true, the correct fix will be to
1992 make the size in the struct type to be in bits, not in units of
1999 /* The size of this and all the other types are fixed, defined
2000 by the debugging format. If there is a type called "int" which
2001 is other than 32 bits, then it should use a new negative type
2002 number (or avoid negative type numbers for that case).
2003 See stabs.texinfo. */
2004 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "int", objfile
);
2007 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "char", objfile
);
2010 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "short", objfile
);
2013 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "long", objfile
);
2016 rettype
= init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_UNSIGNED
,
2017 "unsigned char", objfile
);
2020 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "signed char", objfile
);
2023 rettype
= init_type (TYPE_CODE_INT
, 2, TYPE_FLAG_UNSIGNED
,
2024 "unsigned short", objfile
);
2027 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2028 "unsigned int", objfile
);
2031 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2032 "unsigned", objfile
);
2034 rettype
= init_type (TYPE_CODE_INT
, 4, TYPE_FLAG_UNSIGNED
,
2035 "unsigned long", objfile
);
2038 rettype
= init_type (TYPE_CODE_VOID
, 1, 0, "void", objfile
);
2041 /* IEEE single precision (32 bit). */
2042 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "float", objfile
);
2045 /* IEEE double precision (64 bit). */
2046 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "double", objfile
);
2049 /* This is an IEEE double on the RS/6000, and different machines with
2050 different sizes for "long double" should use different negative
2051 type numbers. See stabs.texinfo. */
2052 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "long double", objfile
);
2055 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer", objfile
);
2058 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2059 "boolean", objfile
);
2062 rettype
= init_type (TYPE_CODE_FLT
, 4, 0, "short real", objfile
);
2065 rettype
= init_type (TYPE_CODE_FLT
, 8, 0, "real", objfile
);
2068 rettype
= init_type (TYPE_CODE_ERROR
, 0, 0, "stringptr", objfile
);
2071 rettype
= init_type (TYPE_CODE_CHAR
, 1, TYPE_FLAG_UNSIGNED
,
2072 "character", objfile
);
2075 rettype
= init_type (TYPE_CODE_BOOL
, 1, TYPE_FLAG_UNSIGNED
,
2076 "logical*1", objfile
);
2079 rettype
= init_type (TYPE_CODE_BOOL
, 2, TYPE_FLAG_UNSIGNED
,
2080 "logical*2", objfile
);
2083 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2084 "logical*4", objfile
);
2087 rettype
= init_type (TYPE_CODE_BOOL
, 4, TYPE_FLAG_UNSIGNED
,
2088 "logical", objfile
);
2091 /* Complex type consisting of two IEEE single precision values. */
2092 rettype
= init_type (TYPE_CODE_COMPLEX
, 8, 0, "complex", objfile
);
2093 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 4, 0, "float",
2097 /* Complex type consisting of two IEEE double precision values. */
2098 rettype
= init_type (TYPE_CODE_COMPLEX
, 16, 0, "double complex", NULL
);
2099 TYPE_TARGET_TYPE (rettype
) = init_type (TYPE_CODE_FLT
, 8, 0, "double",
2103 rettype
= init_type (TYPE_CODE_INT
, 1, 0, "integer*1", objfile
);
2106 rettype
= init_type (TYPE_CODE_INT
, 2, 0, "integer*2", objfile
);
2109 rettype
= init_type (TYPE_CODE_INT
, 4, 0, "integer*4", objfile
);
2112 rettype
= init_type (TYPE_CODE_CHAR
, 2, 0, "wchar", objfile
);
2115 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "long long", objfile
);
2118 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2119 "unsigned long long", objfile
);
2122 rettype
= init_type (TYPE_CODE_INT
, 8, TYPE_FLAG_UNSIGNED
,
2123 "logical*8", objfile
);
2126 rettype
= init_type (TYPE_CODE_INT
, 8, 0, "integer*8", objfile
);
2129 negative_types
[-typenum
] = rettype
;
2133 /* This page contains subroutines of read_type. */
2135 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2138 update_method_name_from_physname (char **old_name
, char *physname
)
2142 method_name
= method_name_from_physname (physname
);
2144 if (method_name
== NULL
)
2146 complaint (&symfile_complaints
,
2147 _("Method has bad physname %s\n"), physname
);
2151 if (strcmp (*old_name
, method_name
) != 0)
2154 *old_name
= method_name
;
2157 xfree (method_name
);
2160 /* Read member function stabs info for C++ classes. The form of each member
2163 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2165 An example with two member functions is:
2167 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2169 For the case of overloaded operators, the format is op$::*.funcs, where
2170 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2171 name (such as `+=') and `.' marks the end of the operator name.
2173 Returns 1 for success, 0 for failure. */
2176 read_member_functions (struct field_info
*fip
, char **pp
, struct type
*type
,
2177 struct objfile
*objfile
)
2181 /* Total number of member functions defined in this class. If the class
2182 defines two `f' functions, and one `g' function, then this will have
2184 int total_length
= 0;
2188 struct next_fnfield
*next
;
2189 struct fn_field fn_field
;
2192 struct type
*look_ahead_type
;
2193 struct next_fnfieldlist
*new_fnlist
;
2194 struct next_fnfield
*new_sublist
;
2198 /* Process each list until we find something that is not a member function
2199 or find the end of the functions. */
2203 /* We should be positioned at the start of the function name.
2204 Scan forward to find the first ':' and if it is not the
2205 first of a "::" delimiter, then this is not a member function. */
2217 look_ahead_type
= NULL
;
2220 new_fnlist
= (struct next_fnfieldlist
*)
2221 xmalloc (sizeof (struct next_fnfieldlist
));
2222 make_cleanup (xfree
, new_fnlist
);
2223 memset (new_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2225 if ((*pp
)[0] == 'o' && (*pp
)[1] == 'p' && is_cplus_marker ((*pp
)[2]))
2227 /* This is a completely wierd case. In order to stuff in the
2228 names that might contain colons (the usual name delimiter),
2229 Mike Tiemann defined a different name format which is
2230 signalled if the identifier is "op$". In that case, the
2231 format is "op$::XXXX." where XXXX is the name. This is
2232 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2233 /* This lets the user type "break operator+".
2234 We could just put in "+" as the name, but that wouldn't
2236 static char opname
[32] = "op$";
2237 char *o
= opname
+ 3;
2239 /* Skip past '::'. */
2242 STABS_CONTINUE (pp
, objfile
);
2248 main_fn_name
= savestring (opname
, o
- opname
);
2254 main_fn_name
= savestring (*pp
, p
- *pp
);
2255 /* Skip past '::'. */
2258 new_fnlist
->fn_fieldlist
.name
= main_fn_name
;
2263 (struct next_fnfield
*) xmalloc (sizeof (struct next_fnfield
));
2264 make_cleanup (xfree
, new_sublist
);
2265 memset (new_sublist
, 0, sizeof (struct next_fnfield
));
2267 /* Check for and handle cretinous dbx symbol name continuation! */
2268 if (look_ahead_type
== NULL
)
2271 STABS_CONTINUE (pp
, objfile
);
2273 new_sublist
->fn_field
.type
= read_type (pp
, objfile
);
2276 /* Invalid symtab info for member function. */
2282 /* g++ version 1 kludge */
2283 new_sublist
->fn_field
.type
= look_ahead_type
;
2284 look_ahead_type
= NULL
;
2294 /* If this is just a stub, then we don't have the real name here. */
2296 if (TYPE_STUB (new_sublist
->fn_field
.type
))
2298 if (!TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
))
2299 TYPE_DOMAIN_TYPE (new_sublist
->fn_field
.type
) = type
;
2300 new_sublist
->fn_field
.is_stub
= 1;
2302 new_sublist
->fn_field
.physname
= savestring (*pp
, p
- *pp
);
2305 /* Set this member function's visibility fields. */
2308 case VISIBILITY_PRIVATE
:
2309 new_sublist
->fn_field
.is_private
= 1;
2311 case VISIBILITY_PROTECTED
:
2312 new_sublist
->fn_field
.is_protected
= 1;
2316 STABS_CONTINUE (pp
, objfile
);
2319 case 'A': /* Normal functions. */
2320 new_sublist
->fn_field
.is_const
= 0;
2321 new_sublist
->fn_field
.is_volatile
= 0;
2324 case 'B': /* `const' member functions. */
2325 new_sublist
->fn_field
.is_const
= 1;
2326 new_sublist
->fn_field
.is_volatile
= 0;
2329 case 'C': /* `volatile' member function. */
2330 new_sublist
->fn_field
.is_const
= 0;
2331 new_sublist
->fn_field
.is_volatile
= 1;
2334 case 'D': /* `const volatile' member function. */
2335 new_sublist
->fn_field
.is_const
= 1;
2336 new_sublist
->fn_field
.is_volatile
= 1;
2339 case '*': /* File compiled with g++ version 1 -- no info */
2344 complaint (&symfile_complaints
,
2345 _("const/volatile indicator missing, got '%c'"), **pp
);
2354 /* virtual member function, followed by index.
2355 The sign bit is set to distinguish pointers-to-methods
2356 from virtual function indicies. Since the array is
2357 in words, the quantity must be shifted left by 1
2358 on 16 bit machine, and by 2 on 32 bit machine, forcing
2359 the sign bit out, and usable as a valid index into
2360 the array. Remove the sign bit here. */
2361 new_sublist
->fn_field
.voffset
=
2362 (0x7fffffff & read_huge_number (pp
, ';', &nbits
, 0)) + 2;
2366 STABS_CONTINUE (pp
, objfile
);
2367 if (**pp
== ';' || **pp
== '\0')
2369 /* Must be g++ version 1. */
2370 new_sublist
->fn_field
.fcontext
= 0;
2374 /* Figure out from whence this virtual function came.
2375 It may belong to virtual function table of
2376 one of its baseclasses. */
2377 look_ahead_type
= read_type (pp
, objfile
);
2380 /* g++ version 1 overloaded methods. */
2384 new_sublist
->fn_field
.fcontext
= look_ahead_type
;
2393 look_ahead_type
= NULL
;
2399 /* static member function. */
2401 int slen
= strlen (main_fn_name
);
2403 new_sublist
->fn_field
.voffset
= VOFFSET_STATIC
;
2405 /* For static member functions, we can't tell if they
2406 are stubbed, as they are put out as functions, and not as
2408 GCC v2 emits the fully mangled name if
2409 dbxout.c:flag_minimal_debug is not set, so we have to
2410 detect a fully mangled physname here and set is_stub
2411 accordingly. Fully mangled physnames in v2 start with
2412 the member function name, followed by two underscores.
2413 GCC v3 currently always emits stubbed member functions,
2414 but with fully mangled physnames, which start with _Z. */
2415 if (!(strncmp (new_sublist
->fn_field
.physname
,
2416 main_fn_name
, slen
) == 0
2417 && new_sublist
->fn_field
.physname
[slen
] == '_'
2418 && new_sublist
->fn_field
.physname
[slen
+ 1] == '_'))
2420 new_sublist
->fn_field
.is_stub
= 1;
2427 complaint (&symfile_complaints
,
2428 _("member function type missing, got '%c'"), (*pp
)[-1]);
2429 /* Fall through into normal member function. */
2432 /* normal member function. */
2433 new_sublist
->fn_field
.voffset
= 0;
2434 new_sublist
->fn_field
.fcontext
= 0;
2438 new_sublist
->next
= sublist
;
2439 sublist
= new_sublist
;
2441 STABS_CONTINUE (pp
, objfile
);
2443 while (**pp
!= ';' && **pp
!= '\0');
2446 STABS_CONTINUE (pp
, objfile
);
2448 /* Skip GCC 3.X member functions which are duplicates of the callable
2449 constructor/destructor. */
2450 if (strcmp_iw (main_fn_name
, "__base_ctor ") == 0
2451 || strcmp_iw (main_fn_name
, "__base_dtor ") == 0
2452 || strcmp (main_fn_name
, "__deleting_dtor") == 0)
2454 xfree (main_fn_name
);
2459 int has_destructor
= 0, has_other
= 0;
2461 struct next_fnfield
*tmp_sublist
;
2463 /* Various versions of GCC emit various mostly-useless
2464 strings in the name field for special member functions.
2466 For stub methods, we need to defer correcting the name
2467 until we are ready to unstub the method, because the current
2468 name string is used by gdb_mangle_name. The only stub methods
2469 of concern here are GNU v2 operators; other methods have their
2470 names correct (see caveat below).
2472 For non-stub methods, in GNU v3, we have a complete physname.
2473 Therefore we can safely correct the name now. This primarily
2474 affects constructors and destructors, whose name will be
2475 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2476 operators will also have incorrect names; for instance,
2477 "operator int" will be named "operator i" (i.e. the type is
2480 For non-stub methods in GNU v2, we have no easy way to
2481 know if we have a complete physname or not. For most
2482 methods the result depends on the platform (if CPLUS_MARKER
2483 can be `$' or `.', it will use minimal debug information, or
2484 otherwise the full physname will be included).
2486 Rather than dealing with this, we take a different approach.
2487 For v3 mangled names, we can use the full physname; for v2,
2488 we use cplus_demangle_opname (which is actually v2 specific),
2489 because the only interesting names are all operators - once again
2490 barring the caveat below. Skip this process if any method in the
2491 group is a stub, to prevent our fouling up the workings of
2494 The caveat: GCC 2.95.x (and earlier?) put constructors and
2495 destructors in the same method group. We need to split this
2496 into two groups, because they should have different names.
2497 So for each method group we check whether it contains both
2498 routines whose physname appears to be a destructor (the physnames
2499 for and destructors are always provided, due to quirks in v2
2500 mangling) and routines whose physname does not appear to be a
2501 destructor. If so then we break up the list into two halves.
2502 Even if the constructors and destructors aren't in the same group
2503 the destructor will still lack the leading tilde, so that also
2506 So, to summarize what we expect and handle here:
2508 Given Given Real Real Action
2509 method name physname physname method name
2511 __opi [none] __opi__3Foo operator int opname
2513 Foo _._3Foo _._3Foo ~Foo separate and
2515 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2516 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2519 tmp_sublist
= sublist
;
2520 while (tmp_sublist
!= NULL
)
2522 if (tmp_sublist
->fn_field
.is_stub
)
2524 if (tmp_sublist
->fn_field
.physname
[0] == '_'
2525 && tmp_sublist
->fn_field
.physname
[1] == 'Z')
2528 if (is_destructor_name (tmp_sublist
->fn_field
.physname
))
2533 tmp_sublist
= tmp_sublist
->next
;
2536 if (has_destructor
&& has_other
)
2538 struct next_fnfieldlist
*destr_fnlist
;
2539 struct next_fnfield
*last_sublist
;
2541 /* Create a new fn_fieldlist for the destructors. */
2543 destr_fnlist
= (struct next_fnfieldlist
*)
2544 xmalloc (sizeof (struct next_fnfieldlist
));
2545 make_cleanup (xfree
, destr_fnlist
);
2546 memset (destr_fnlist
, 0, sizeof (struct next_fnfieldlist
));
2547 destr_fnlist
->fn_fieldlist
.name
2548 = obconcat (&objfile
->objfile_obstack
, "", "~",
2549 new_fnlist
->fn_fieldlist
.name
);
2551 destr_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2552 obstack_alloc (&objfile
->objfile_obstack
,
2553 sizeof (struct fn_field
) * has_destructor
);
2554 memset (destr_fnlist
->fn_fieldlist
.fn_fields
, 0,
2555 sizeof (struct fn_field
) * has_destructor
);
2556 tmp_sublist
= sublist
;
2557 last_sublist
= NULL
;
2559 while (tmp_sublist
!= NULL
)
2561 if (!is_destructor_name (tmp_sublist
->fn_field
.physname
))
2563 tmp_sublist
= tmp_sublist
->next
;
2567 destr_fnlist
->fn_fieldlist
.fn_fields
[i
++]
2568 = tmp_sublist
->fn_field
;
2570 last_sublist
->next
= tmp_sublist
->next
;
2572 sublist
= tmp_sublist
->next
;
2573 last_sublist
= tmp_sublist
;
2574 tmp_sublist
= tmp_sublist
->next
;
2577 destr_fnlist
->fn_fieldlist
.length
= has_destructor
;
2578 destr_fnlist
->next
= fip
->fnlist
;
2579 fip
->fnlist
= destr_fnlist
;
2581 total_length
+= has_destructor
;
2582 length
-= has_destructor
;
2586 /* v3 mangling prevents the use of abbreviated physnames,
2587 so we can do this here. There are stubbed methods in v3
2589 - in -gstabs instead of -gstabs+
2590 - or for static methods, which are output as a function type
2591 instead of a method type. */
2593 update_method_name_from_physname (&new_fnlist
->fn_fieldlist
.name
,
2594 sublist
->fn_field
.physname
);
2596 else if (has_destructor
&& new_fnlist
->fn_fieldlist
.name
[0] != '~')
2598 new_fnlist
->fn_fieldlist
.name
=
2599 concat ("~", main_fn_name
, (char *)NULL
);
2600 xfree (main_fn_name
);
2604 char dem_opname
[256];
2606 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2607 dem_opname
, DMGL_ANSI
);
2609 ret
= cplus_demangle_opname (new_fnlist
->fn_fieldlist
.name
,
2612 new_fnlist
->fn_fieldlist
.name
2613 = obsavestring (dem_opname
, strlen (dem_opname
),
2614 &objfile
->objfile_obstack
);
2617 new_fnlist
->fn_fieldlist
.fn_fields
= (struct fn_field
*)
2618 obstack_alloc (&objfile
->objfile_obstack
,
2619 sizeof (struct fn_field
) * length
);
2620 memset (new_fnlist
->fn_fieldlist
.fn_fields
, 0,
2621 sizeof (struct fn_field
) * length
);
2622 for (i
= length
; (i
--, sublist
); sublist
= sublist
->next
)
2624 new_fnlist
->fn_fieldlist
.fn_fields
[i
] = sublist
->fn_field
;
2627 new_fnlist
->fn_fieldlist
.length
= length
;
2628 new_fnlist
->next
= fip
->fnlist
;
2629 fip
->fnlist
= new_fnlist
;
2631 total_length
+= length
;
2637 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
2638 TYPE_FN_FIELDLISTS (type
) = (struct fn_fieldlist
*)
2639 TYPE_ALLOC (type
, sizeof (struct fn_fieldlist
) * nfn_fields
);
2640 memset (TYPE_FN_FIELDLISTS (type
), 0,
2641 sizeof (struct fn_fieldlist
) * nfn_fields
);
2642 TYPE_NFN_FIELDS (type
) = nfn_fields
;
2643 TYPE_NFN_FIELDS_TOTAL (type
) = total_length
;
2649 /* Special GNU C++ name.
2651 Returns 1 for success, 0 for failure. "failure" means that we can't
2652 keep parsing and it's time for error_type(). */
2655 read_cpp_abbrev (struct field_info
*fip
, char **pp
, struct type
*type
,
2656 struct objfile
*objfile
)
2661 struct type
*context
;
2671 /* At this point, *pp points to something like "22:23=*22...",
2672 where the type number before the ':' is the "context" and
2673 everything after is a regular type definition. Lookup the
2674 type, find it's name, and construct the field name. */
2676 context
= read_type (pp
, objfile
);
2680 case 'f': /* $vf -- a virtual function table pointer */
2681 name
= type_name_no_tag (context
);
2686 fip
->list
->field
.name
=
2687 obconcat (&objfile
->objfile_obstack
, vptr_name
, name
, "");
2690 case 'b': /* $vb -- a virtual bsomethingorother */
2691 name
= type_name_no_tag (context
);
2694 complaint (&symfile_complaints
,
2695 _("C++ abbreviated type name unknown at symtab pos %d"),
2699 fip
->list
->field
.name
=
2700 obconcat (&objfile
->objfile_obstack
, vb_name
, name
, "");
2704 invalid_cpp_abbrev_complaint (*pp
);
2705 fip
->list
->field
.name
=
2706 obconcat (&objfile
->objfile_obstack
,
2707 "INVALID_CPLUSPLUS_ABBREV", "", "");
2711 /* At this point, *pp points to the ':'. Skip it and read the
2717 invalid_cpp_abbrev_complaint (*pp
);
2720 fip
->list
->field
.type
= read_type (pp
, objfile
);
2722 (*pp
)++; /* Skip the comma. */
2728 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
,
2733 /* This field is unpacked. */
2734 FIELD_BITSIZE (fip
->list
->field
) = 0;
2735 fip
->list
->visibility
= VISIBILITY_PRIVATE
;
2739 invalid_cpp_abbrev_complaint (*pp
);
2740 /* We have no idea what syntax an unrecognized abbrev would have, so
2741 better return 0. If we returned 1, we would need to at least advance
2742 *pp to avoid an infinite loop. */
2749 read_one_struct_field (struct field_info
*fip
, char **pp
, char *p
,
2750 struct type
*type
, struct objfile
*objfile
)
2752 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
2754 fip
->list
->field
.name
=
2755 obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
2758 /* This means we have a visibility for a field coming. */
2762 fip
->list
->visibility
= *(*pp
)++;
2766 /* normal dbx-style format, no explicit visibility */
2767 fip
->list
->visibility
= VISIBILITY_PUBLIC
;
2770 fip
->list
->field
.type
= read_type (pp
, objfile
);
2775 /* Possible future hook for nested types. */
2778 fip
->list
->field
.bitpos
= (long) -2; /* nested type */
2788 /* Static class member. */
2789 SET_FIELD_PHYSNAME (fip
->list
->field
, savestring (*pp
, p
- *pp
));
2793 else if (**pp
!= ',')
2795 /* Bad structure-type format. */
2796 stabs_general_complaint ("bad structure-type format");
2800 (*pp
)++; /* Skip the comma. */
2804 FIELD_BITPOS (fip
->list
->field
) = read_huge_number (pp
, ',', &nbits
, 0);
2807 stabs_general_complaint ("bad structure-type format");
2810 FIELD_BITSIZE (fip
->list
->field
) = read_huge_number (pp
, ';', &nbits
, 0);
2813 stabs_general_complaint ("bad structure-type format");
2818 if (FIELD_BITPOS (fip
->list
->field
) == 0
2819 && FIELD_BITSIZE (fip
->list
->field
) == 0)
2821 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2822 it is a field which has been optimized out. The correct stab for
2823 this case is to use VISIBILITY_IGNORE, but that is a recent
2824 invention. (2) It is a 0-size array. For example
2825 union { int num; char str[0]; } foo. Printing _("<no value>" for
2826 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2827 will continue to work, and a 0-size array as a whole doesn't
2828 have any contents to print.
2830 I suspect this probably could also happen with gcc -gstabs (not
2831 -gstabs+) for static fields, and perhaps other C++ extensions.
2832 Hopefully few people use -gstabs with gdb, since it is intended
2833 for dbx compatibility. */
2835 /* Ignore this field. */
2836 fip
->list
->visibility
= VISIBILITY_IGNORE
;
2840 /* Detect an unpacked field and mark it as such.
2841 dbx gives a bit size for all fields.
2842 Note that forward refs cannot be packed,
2843 and treat enums as if they had the width of ints. */
2845 struct type
*field_type
= check_typedef (FIELD_TYPE (fip
->list
->field
));
2847 if (TYPE_CODE (field_type
) != TYPE_CODE_INT
2848 && TYPE_CODE (field_type
) != TYPE_CODE_RANGE
2849 && TYPE_CODE (field_type
) != TYPE_CODE_BOOL
2850 && TYPE_CODE (field_type
) != TYPE_CODE_ENUM
)
2852 FIELD_BITSIZE (fip
->list
->field
) = 0;
2854 if ((FIELD_BITSIZE (fip
->list
->field
)
2855 == TARGET_CHAR_BIT
* TYPE_LENGTH (field_type
)
2856 || (TYPE_CODE (field_type
) == TYPE_CODE_ENUM
2857 && FIELD_BITSIZE (fip
->list
->field
)
2858 == gdbarch_int_bit (gdbarch
))
2861 FIELD_BITPOS (fip
->list
->field
) % 8 == 0)
2863 FIELD_BITSIZE (fip
->list
->field
) = 0;
2869 /* Read struct or class data fields. They have the form:
2871 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2873 At the end, we see a semicolon instead of a field.
2875 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2878 The optional VISIBILITY is one of:
2880 '/0' (VISIBILITY_PRIVATE)
2881 '/1' (VISIBILITY_PROTECTED)
2882 '/2' (VISIBILITY_PUBLIC)
2883 '/9' (VISIBILITY_IGNORE)
2885 or nothing, for C style fields with public visibility.
2887 Returns 1 for success, 0 for failure. */
2890 read_struct_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
2891 struct objfile
*objfile
)
2894 struct nextfield
*new;
2896 /* We better set p right now, in case there are no fields at all... */
2900 /* Read each data member type until we find the terminating ';' at the end of
2901 the data member list, or break for some other reason such as finding the
2902 start of the member function list. */
2903 /* Stab string for structure/union does not end with two ';' in
2904 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2906 while (**pp
!= ';' && **pp
!= '\0')
2908 STABS_CONTINUE (pp
, objfile
);
2909 /* Get space to record the next field's data. */
2910 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
2911 make_cleanup (xfree
, new);
2912 memset (new, 0, sizeof (struct nextfield
));
2913 new->next
= fip
->list
;
2916 /* Get the field name. */
2919 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2920 unless the CPLUS_MARKER is followed by an underscore, in
2921 which case it is just the name of an anonymous type, which we
2922 should handle like any other type name. */
2924 if (is_cplus_marker (p
[0]) && p
[1] != '_')
2926 if (!read_cpp_abbrev (fip
, pp
, type
, objfile
))
2931 /* Look for the ':' that separates the field name from the field
2932 values. Data members are delimited by a single ':', while member
2933 functions are delimited by a pair of ':'s. When we hit the member
2934 functions (if any), terminate scan loop and return. */
2936 while (*p
!= ':' && *p
!= '\0')
2943 /* Check to see if we have hit the member functions yet. */
2948 read_one_struct_field (fip
, pp
, p
, type
, objfile
);
2950 if (p
[0] == ':' && p
[1] == ':')
2952 /* (the deleted) chill the list of fields: the last entry (at
2953 the head) is a partially constructed entry which we now
2955 fip
->list
= fip
->list
->next
;
2960 /* The stabs for C++ derived classes contain baseclass information which
2961 is marked by a '!' character after the total size. This function is
2962 called when we encounter the baseclass marker, and slurps up all the
2963 baseclass information.
2965 Immediately following the '!' marker is the number of base classes that
2966 the class is derived from, followed by information for each base class.
2967 For each base class, there are two visibility specifiers, a bit offset
2968 to the base class information within the derived class, a reference to
2969 the type for the base class, and a terminating semicolon.
2971 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2973 Baseclass information marker __________________|| | | | | | |
2974 Number of baseclasses __________________________| | | | | | |
2975 Visibility specifiers (2) ________________________| | | | | |
2976 Offset in bits from start of class _________________| | | | |
2977 Type number for base class ___________________________| | | |
2978 Visibility specifiers (2) _______________________________| | |
2979 Offset in bits from start of class ________________________| |
2980 Type number of base class ____________________________________|
2982 Return 1 for success, 0 for (error-type-inducing) failure. */
2988 read_baseclasses (struct field_info
*fip
, char **pp
, struct type
*type
,
2989 struct objfile
*objfile
)
2992 struct nextfield
*new;
3000 /* Skip the '!' baseclass information marker. */
3004 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3007 TYPE_N_BASECLASSES (type
) = read_huge_number (pp
, ',', &nbits
, 0);
3013 /* Some stupid compilers have trouble with the following, so break
3014 it up into simpler expressions. */
3015 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*)
3016 TYPE_ALLOC (type
, B_BYTES (TYPE_N_BASECLASSES (type
)));
3019 int num_bytes
= B_BYTES (TYPE_N_BASECLASSES (type
));
3022 pointer
= (char *) TYPE_ALLOC (type
, num_bytes
);
3023 TYPE_FIELD_VIRTUAL_BITS (type
) = (B_TYPE
*) pointer
;
3027 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type
), TYPE_N_BASECLASSES (type
));
3029 for (i
= 0; i
< TYPE_N_BASECLASSES (type
); i
++)
3031 new = (struct nextfield
*) xmalloc (sizeof (struct nextfield
));
3032 make_cleanup (xfree
, new);
3033 memset (new, 0, sizeof (struct nextfield
));
3034 new->next
= fip
->list
;
3036 FIELD_BITSIZE (new->field
) = 0; /* this should be an unpacked field! */
3038 STABS_CONTINUE (pp
, objfile
);
3042 /* Nothing to do. */
3045 SET_TYPE_FIELD_VIRTUAL (type
, i
);
3048 /* Unknown character. Complain and treat it as non-virtual. */
3050 complaint (&symfile_complaints
,
3051 _("Unknown virtual character `%c' for baseclass"), **pp
);
3056 new->visibility
= *(*pp
)++;
3057 switch (new->visibility
)
3059 case VISIBILITY_PRIVATE
:
3060 case VISIBILITY_PROTECTED
:
3061 case VISIBILITY_PUBLIC
:
3064 /* Bad visibility format. Complain and treat it as
3067 complaint (&symfile_complaints
,
3068 _("Unknown visibility `%c' for baseclass"),
3070 new->visibility
= VISIBILITY_PUBLIC
;
3077 /* The remaining value is the bit offset of the portion of the object
3078 corresponding to this baseclass. Always zero in the absence of
3079 multiple inheritance. */
3081 FIELD_BITPOS (new->field
) = read_huge_number (pp
, ',', &nbits
, 0);
3086 /* The last piece of baseclass information is the type of the
3087 base class. Read it, and remember it's type name as this
3090 new->field
.type
= read_type (pp
, objfile
);
3091 new->field
.name
= type_name_no_tag (new->field
.type
);
3093 /* skip trailing ';' and bump count of number of fields seen */
3102 /* The tail end of stabs for C++ classes that contain a virtual function
3103 pointer contains a tilde, a %, and a type number.
3104 The type number refers to the base class (possibly this class itself) which
3105 contains the vtable pointer for the current class.
3107 This function is called when we have parsed all the method declarations,
3108 so we can look for the vptr base class info. */
3111 read_tilde_fields (struct field_info
*fip
, char **pp
, struct type
*type
,
3112 struct objfile
*objfile
)
3116 STABS_CONTINUE (pp
, objfile
);
3118 /* If we are positioned at a ';', then skip it. */
3128 if (**pp
== '=' || **pp
== '+' || **pp
== '-')
3130 /* Obsolete flags that used to indicate the presence
3131 of constructors and/or destructors. */
3135 /* Read either a '%' or the final ';'. */
3136 if (*(*pp
)++ == '%')
3138 /* The next number is the type number of the base class
3139 (possibly our own class) which supplies the vtable for
3140 this class. Parse it out, and search that class to find
3141 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3142 and TYPE_VPTR_FIELDNO. */
3147 t
= read_type (pp
, objfile
);
3149 while (*p
!= '\0' && *p
!= ';')
3155 /* Premature end of symbol. */
3159 TYPE_VPTR_BASETYPE (type
) = t
;
3160 if (type
== t
) /* Our own class provides vtbl ptr */
3162 for (i
= TYPE_NFIELDS (t
) - 1;
3163 i
>= TYPE_N_BASECLASSES (t
);
3166 char *name
= TYPE_FIELD_NAME (t
, i
);
3167 if (!strncmp (name
, vptr_name
, sizeof (vptr_name
) - 2)
3168 && is_cplus_marker (name
[sizeof (vptr_name
) - 2]))
3170 TYPE_VPTR_FIELDNO (type
) = i
;
3174 /* Virtual function table field not found. */
3175 complaint (&symfile_complaints
,
3176 _("virtual function table pointer not found when defining class `%s'"),
3182 TYPE_VPTR_FIELDNO (type
) = TYPE_VPTR_FIELDNO (t
);
3193 attach_fn_fields_to_type (struct field_info
*fip
, struct type
*type
)
3197 for (n
= TYPE_NFN_FIELDS (type
);
3198 fip
->fnlist
!= NULL
;
3199 fip
->fnlist
= fip
->fnlist
->next
)
3201 --n
; /* Circumvent Sun3 compiler bug */
3202 TYPE_FN_FIELDLISTS (type
)[n
] = fip
->fnlist
->fn_fieldlist
;
3207 /* Create the vector of fields, and record how big it is.
3208 We need this info to record proper virtual function table information
3209 for this class's virtual functions. */
3212 attach_fields_to_type (struct field_info
*fip
, struct type
*type
,
3213 struct objfile
*objfile
)
3216 int non_public_fields
= 0;
3217 struct nextfield
*scan
;
3219 /* Count up the number of fields that we have, as well as taking note of
3220 whether or not there are any non-public fields, which requires us to
3221 allocate and build the private_field_bits and protected_field_bits
3224 for (scan
= fip
->list
; scan
!= NULL
; scan
= scan
->next
)
3227 if (scan
->visibility
!= VISIBILITY_PUBLIC
)
3229 non_public_fields
++;
3233 /* Now we know how many fields there are, and whether or not there are any
3234 non-public fields. Record the field count, allocate space for the
3235 array of fields, and create blank visibility bitfields if necessary. */
3237 TYPE_NFIELDS (type
) = nfields
;
3238 TYPE_FIELDS (type
) = (struct field
*)
3239 TYPE_ALLOC (type
, sizeof (struct field
) * nfields
);
3240 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nfields
);
3242 if (non_public_fields
)
3244 ALLOCATE_CPLUS_STRUCT_TYPE (type
);
3246 TYPE_FIELD_PRIVATE_BITS (type
) =
3247 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3248 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type
), nfields
);
3250 TYPE_FIELD_PROTECTED_BITS (type
) =
3251 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3252 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type
), nfields
);
3254 TYPE_FIELD_IGNORE_BITS (type
) =
3255 (B_TYPE
*) TYPE_ALLOC (type
, B_BYTES (nfields
));
3256 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type
), nfields
);
3259 /* Copy the saved-up fields into the field vector. Start from the head
3260 of the list, adding to the tail of the field array, so that they end
3261 up in the same order in the array in which they were added to the list. */
3263 while (nfields
-- > 0)
3265 TYPE_FIELD (type
, nfields
) = fip
->list
->field
;
3266 switch (fip
->list
->visibility
)
3268 case VISIBILITY_PRIVATE
:
3269 SET_TYPE_FIELD_PRIVATE (type
, nfields
);
3272 case VISIBILITY_PROTECTED
:
3273 SET_TYPE_FIELD_PROTECTED (type
, nfields
);
3276 case VISIBILITY_IGNORE
:
3277 SET_TYPE_FIELD_IGNORE (type
, nfields
);
3280 case VISIBILITY_PUBLIC
:
3284 /* Unknown visibility. Complain and treat it as public. */
3286 complaint (&symfile_complaints
, _("Unknown visibility `%c' for field"),
3287 fip
->list
->visibility
);
3291 fip
->list
= fip
->list
->next
;
3297 /* Complain that the compiler has emitted more than one definition for the
3298 structure type TYPE. */
3300 complain_about_struct_wipeout (struct type
*type
)
3305 if (TYPE_TAG_NAME (type
))
3307 name
= TYPE_TAG_NAME (type
);
3308 switch (TYPE_CODE (type
))
3310 case TYPE_CODE_STRUCT
: kind
= "struct "; break;
3311 case TYPE_CODE_UNION
: kind
= "union "; break;
3312 case TYPE_CODE_ENUM
: kind
= "enum "; break;
3316 else if (TYPE_NAME (type
))
3318 name
= TYPE_NAME (type
);
3327 complaint (&symfile_complaints
,
3328 _("struct/union type gets multiply defined: %s%s"), kind
, name
);
3332 /* Read the description of a structure (or union type) and return an object
3333 describing the type.
3335 PP points to a character pointer that points to the next unconsumed token
3336 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3337 *PP will point to "4a:1,0,32;;".
3339 TYPE points to an incomplete type that needs to be filled in.
3341 OBJFILE points to the current objfile from which the stabs information is
3342 being read. (Note that it is redundant in that TYPE also contains a pointer
3343 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3346 static struct type
*
3347 read_struct_type (char **pp
, struct type
*type
, enum type_code type_code
,
3348 struct objfile
*objfile
)
3350 struct cleanup
*back_to
;
3351 struct field_info fi
;
3356 /* When describing struct/union/class types in stabs, G++ always drops
3357 all qualifications from the name. So if you've got:
3358 struct A { ... struct B { ... }; ... };
3359 then G++ will emit stabs for `struct A::B' that call it simply
3360 `struct B'. Obviously, if you've got a real top-level definition for
3361 `struct B', or other nested definitions, this is going to cause
3364 Obviously, GDB can't fix this by itself, but it can at least avoid
3365 scribbling on existing structure type objects when new definitions
3367 if (! (TYPE_CODE (type
) == TYPE_CODE_UNDEF
3368 || TYPE_STUB (type
)))
3370 complain_about_struct_wipeout (type
);
3372 /* It's probably best to return the type unchanged. */
3376 back_to
= make_cleanup (null_cleanup
, 0);
3378 INIT_CPLUS_SPECIFIC (type
);
3379 TYPE_CODE (type
) = type_code
;
3380 TYPE_STUB (type
) = 0;
3382 /* First comes the total size in bytes. */
3386 TYPE_LENGTH (type
) = read_huge_number (pp
, 0, &nbits
, 0);
3388 return error_type (pp
, objfile
);
3391 /* Now read the baseclasses, if any, read the regular C struct or C++
3392 class member fields, attach the fields to the type, read the C++
3393 member functions, attach them to the type, and then read any tilde
3394 field (baseclass specifier for the class holding the main vtable). */
3396 if (!read_baseclasses (&fi
, pp
, type
, objfile
)
3397 || !read_struct_fields (&fi
, pp
, type
, objfile
)
3398 || !attach_fields_to_type (&fi
, type
, objfile
)
3399 || !read_member_functions (&fi
, pp
, type
, objfile
)
3400 || !attach_fn_fields_to_type (&fi
, type
)
3401 || !read_tilde_fields (&fi
, pp
, type
, objfile
))
3403 type
= error_type (pp
, objfile
);
3406 do_cleanups (back_to
);
3410 /* Read a definition of an array type,
3411 and create and return a suitable type object.
3412 Also creates a range type which represents the bounds of that
3415 static struct type
*
3416 read_array_type (char **pp
, struct type
*type
,
3417 struct objfile
*objfile
)
3419 struct type
*index_type
, *element_type
, *range_type
;
3424 /* Format of an array type:
3425 "ar<index type>;lower;upper;<array_contents_type>".
3426 OS9000: "arlower,upper;<array_contents_type>".
3428 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3429 for these, produce a type like float[][]. */
3432 index_type
= read_type (pp
, objfile
);
3434 /* Improper format of array type decl. */
3435 return error_type (pp
, objfile
);
3439 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3444 lower
= read_huge_number (pp
, ';', &nbits
, 0);
3447 return error_type (pp
, objfile
);
3449 if (!(**pp
>= '0' && **pp
<= '9') && **pp
!= '-')
3454 upper
= read_huge_number (pp
, ';', &nbits
, 0);
3456 return error_type (pp
, objfile
);
3458 element_type
= read_type (pp
, objfile
);
3467 create_range_type ((struct type
*) NULL
, index_type
, lower
, upper
);
3468 type
= create_array_type (type
, element_type
, range_type
);
3474 /* Read a definition of an enumeration type,
3475 and create and return a suitable type object.
3476 Also defines the symbols that represent the values of the type. */
3478 static struct type
*
3479 read_enum_type (char **pp
, struct type
*type
,
3480 struct objfile
*objfile
)
3482 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3488 struct pending
**symlist
;
3489 struct pending
*osyms
, *syms
;
3492 int unsigned_enum
= 1;
3495 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3496 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3497 to do? For now, force all enum values to file scope. */
3498 if (within_function
)
3499 symlist
= &local_symbols
;
3502 symlist
= &file_symbols
;
3504 o_nsyms
= osyms
? osyms
->nsyms
: 0;
3506 /* The aix4 compiler emits an extra field before the enum members;
3507 my guess is it's a type of some sort. Just ignore it. */
3510 /* Skip over the type. */
3514 /* Skip over the colon. */
3518 /* Read the value-names and their values.
3519 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3520 A semicolon or comma instead of a NAME means the end. */
3521 while (**pp
&& **pp
!= ';' && **pp
!= ',')
3523 STABS_CONTINUE (pp
, objfile
);
3527 name
= obsavestring (*pp
, p
- *pp
, &objfile
->objfile_obstack
);
3529 n
= read_huge_number (pp
, ',', &nbits
, 0);
3531 return error_type (pp
, objfile
);
3533 sym
= (struct symbol
*)
3534 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
3535 memset (sym
, 0, sizeof (struct symbol
));
3536 SYMBOL_SET_LINKAGE_NAME (sym
, name
);
3537 SYMBOL_LANGUAGE (sym
) = current_subfile
->language
;
3538 SYMBOL_CLASS (sym
) = LOC_CONST
;
3539 SYMBOL_DOMAIN (sym
) = VAR_DOMAIN
;
3540 SYMBOL_VALUE (sym
) = n
;
3543 add_symbol_to_list (sym
, symlist
);
3548 (*pp
)++; /* Skip the semicolon. */
3550 /* Now fill in the fields of the type-structure. */
3552 TYPE_LENGTH (type
) = gdbarch_int_bit (gdbarch
) / HOST_CHAR_BIT
;
3553 TYPE_CODE (type
) = TYPE_CODE_ENUM
;
3554 TYPE_STUB (type
) = 0;
3556 TYPE_UNSIGNED (type
) = 1;
3557 TYPE_NFIELDS (type
) = nsyms
;
3558 TYPE_FIELDS (type
) = (struct field
*)
3559 TYPE_ALLOC (type
, sizeof (struct field
) * nsyms
);
3560 memset (TYPE_FIELDS (type
), 0, sizeof (struct field
) * nsyms
);
3562 /* Find the symbols for the values and put them into the type.
3563 The symbols can be found in the symlist that we put them on
3564 to cause them to be defined. osyms contains the old value
3565 of that symlist; everything up to there was defined by us. */
3566 /* Note that we preserve the order of the enum constants, so
3567 that in something like "enum {FOO, LAST_THING=FOO}" we print
3568 FOO, not LAST_THING. */
3570 for (syms
= *symlist
, n
= nsyms
- 1; syms
; syms
= syms
->next
)
3572 int last
= syms
== osyms
? o_nsyms
: 0;
3573 int j
= syms
->nsyms
;
3574 for (; --j
>= last
; --n
)
3576 struct symbol
*xsym
= syms
->symbol
[j
];
3577 SYMBOL_TYPE (xsym
) = type
;
3578 TYPE_FIELD_NAME (type
, n
) = SYMBOL_LINKAGE_NAME (xsym
);
3579 TYPE_FIELD_BITPOS (type
, n
) = SYMBOL_VALUE (xsym
);
3580 TYPE_FIELD_BITSIZE (type
, n
) = 0;
3589 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3590 typedefs in every file (for int, long, etc):
3592 type = b <signed> <width> <format type>; <offset>; <nbits>
3594 optional format type = c or b for char or boolean.
3595 offset = offset from high order bit to start bit of type.
3596 width is # bytes in object of this type, nbits is # bits in type.
3598 The width/offset stuff appears to be for small objects stored in
3599 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3602 static struct type
*
3603 read_sun_builtin_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3608 enum type_code code
= TYPE_CODE_INT
;
3619 return error_type (pp
, objfile
);
3623 /* For some odd reason, all forms of char put a c here. This is strange
3624 because no other type has this honor. We can safely ignore this because
3625 we actually determine 'char'acterness by the number of bits specified in
3627 Boolean forms, e.g Fortran logical*X, put a b here. */
3631 else if (**pp
== 'b')
3633 code
= TYPE_CODE_BOOL
;
3637 /* The first number appears to be the number of bytes occupied
3638 by this type, except that unsigned short is 4 instead of 2.
3639 Since this information is redundant with the third number,
3640 we will ignore it. */
3641 read_huge_number (pp
, ';', &nbits
, 0);
3643 return error_type (pp
, objfile
);
3645 /* The second number is always 0, so ignore it too. */
3646 read_huge_number (pp
, ';', &nbits
, 0);
3648 return error_type (pp
, objfile
);
3650 /* The third number is the number of bits for this type. */
3651 type_bits
= read_huge_number (pp
, 0, &nbits
, 0);
3653 return error_type (pp
, objfile
);
3654 /* The type *should* end with a semicolon. If it are embedded
3655 in a larger type the semicolon may be the only way to know where
3656 the type ends. If this type is at the end of the stabstring we
3657 can deal with the omitted semicolon (but we don't have to like
3658 it). Don't bother to complain(), Sun's compiler omits the semicolon
3664 return init_type (TYPE_CODE_VOID
, 1,
3665 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3668 return init_type (code
,
3669 type_bits
/ TARGET_CHAR_BIT
,
3670 signed_type
? 0 : TYPE_FLAG_UNSIGNED
, (char *) NULL
,
3674 static struct type
*
3675 read_sun_floating_type (char **pp
, int typenums
[2], struct objfile
*objfile
)
3680 struct type
*rettype
;
3682 /* The first number has more details about the type, for example
3684 details
= read_huge_number (pp
, ';', &nbits
, 0);
3686 return error_type (pp
, objfile
);
3688 /* The second number is the number of bytes occupied by this type */
3689 nbytes
= read_huge_number (pp
, ';', &nbits
, 0);
3691 return error_type (pp
, objfile
);
3693 if (details
== NF_COMPLEX
|| details
== NF_COMPLEX16
3694 || details
== NF_COMPLEX32
)
3696 rettype
= init_type (TYPE_CODE_COMPLEX
, nbytes
, 0, NULL
, objfile
);
3697 TYPE_TARGET_TYPE (rettype
)
3698 = init_type (TYPE_CODE_FLT
, nbytes
/ 2, 0, NULL
, objfile
);
3702 return init_type (TYPE_CODE_FLT
, nbytes
, 0, NULL
, objfile
);
3705 /* Read a number from the string pointed to by *PP.
3706 The value of *PP is advanced over the number.
3707 If END is nonzero, the character that ends the
3708 number must match END, or an error happens;
3709 and that character is skipped if it does match.
3710 If END is zero, *PP is left pointing to that character.
3712 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3713 the number is represented in an octal representation, assume that
3714 it is represented in a 2's complement representation with a size of
3715 TWOS_COMPLEMENT_BITS.
3717 If the number fits in a long, set *BITS to 0 and return the value.
3718 If not, set *BITS to be the number of bits in the number and return 0.
3720 If encounter garbage, set *BITS to -1 and return 0. */
3723 read_huge_number (char **pp
, int end
, int *bits
, int twos_complement_bits
)
3734 int twos_complement_representation
= 0;
3742 /* Leading zero means octal. GCC uses this to output values larger
3743 than an int (because that would be hard in decimal). */
3750 /* Skip extra zeros. */
3754 if (sign
> 0 && radix
== 8 && twos_complement_bits
> 0)
3756 /* Octal, possibly signed. Check if we have enough chars for a
3761 while ((c
= *p1
) >= '0' && c
< '8')
3765 if (len
> twos_complement_bits
/ 3
3766 || (twos_complement_bits
% 3 == 0 && len
== twos_complement_bits
/ 3))
3768 /* Ok, we have enough characters for a signed value, check
3769 for signness by testing if the sign bit is set. */
3770 sign_bit
= (twos_complement_bits
% 3 + 2) % 3;
3772 if (c
& (1 << sign_bit
))
3774 /* Definitely signed. */
3775 twos_complement_representation
= 1;
3781 upper_limit
= LONG_MAX
/ radix
;
3783 while ((c
= *p
++) >= '0' && c
< ('0' + radix
))
3785 if (n
<= upper_limit
)
3787 if (twos_complement_representation
)
3789 /* Octal, signed, twos complement representation. In
3790 this case, n is the corresponding absolute value. */
3793 long sn
= c
- '0' - ((2 * (c
- '0')) | (2 << sign_bit
));
3804 /* unsigned representation */
3806 n
+= c
- '0'; /* FIXME this overflows anyway */
3812 /* This depends on large values being output in octal, which is
3819 /* Ignore leading zeroes. */
3823 else if (c
== '2' || c
== '3')
3844 if (radix
== 8 && twos_complement_bits
> 0 && nbits
> twos_complement_bits
)
3846 /* We were supposed to parse a number with maximum
3847 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3858 /* Large decimal constants are an error (because it is hard to
3859 count how many bits are in them). */
3865 /* -0x7f is the same as 0x80. So deal with it by adding one to
3866 the number of bits. Two's complement represention octals
3867 can't have a '-' in front. */
3868 if (sign
== -1 && !twos_complement_representation
)
3879 /* It's *BITS which has the interesting information. */
3883 static struct type
*
3884 read_range_type (char **pp
, int typenums
[2], int type_size
,
3885 struct objfile
*objfile
)
3887 struct gdbarch
*gdbarch
= get_objfile_arch (objfile
);
3888 char *orig_pp
= *pp
;
3893 struct type
*result_type
;
3894 struct type
*index_type
= NULL
;
3896 /* First comes a type we are a subrange of.
3897 In C it is usually 0, 1 or the type being defined. */
3898 if (read_type_number (pp
, rangenums
) != 0)
3899 return error_type (pp
, objfile
);
3900 self_subrange
= (rangenums
[0] == typenums
[0] &&
3901 rangenums
[1] == typenums
[1]);
3906 index_type
= read_type (pp
, objfile
);
3909 /* A semicolon should now follow; skip it. */
3913 /* The remaining two operands are usually lower and upper bounds
3914 of the range. But in some special cases they mean something else. */
3915 n2
= read_huge_number (pp
, ';', &n2bits
, type_size
);
3916 n3
= read_huge_number (pp
, ';', &n3bits
, type_size
);
3918 if (n2bits
== -1 || n3bits
== -1)
3919 return error_type (pp
, objfile
);
3922 goto handle_true_range
;
3924 /* If limits are huge, must be large integral type. */
3925 if (n2bits
!= 0 || n3bits
!= 0)
3927 char got_signed
= 0;
3928 char got_unsigned
= 0;
3929 /* Number of bits in the type. */
3932 /* If a type size attribute has been specified, the bounds of
3933 the range should fit in this size. If the lower bounds needs
3934 more bits than the upper bound, then the type is signed. */
3935 if (n2bits
<= type_size
&& n3bits
<= type_size
)
3937 if (n2bits
== type_size
&& n2bits
> n3bits
)
3943 /* Range from 0 to <large number> is an unsigned large integral type. */
3944 else if ((n2bits
== 0 && n2
== 0) && n3bits
!= 0)
3949 /* Range from <large number> to <large number>-1 is a large signed
3950 integral type. Take care of the case where <large number> doesn't
3951 fit in a long but <large number>-1 does. */
3952 else if ((n2bits
!= 0 && n3bits
!= 0 && n2bits
== n3bits
+ 1)
3953 || (n2bits
!= 0 && n3bits
== 0
3954 && (n2bits
== sizeof (long) * HOST_CHAR_BIT
)
3961 if (got_signed
|| got_unsigned
)
3963 return init_type (TYPE_CODE_INT
, nbits
/ TARGET_CHAR_BIT
,
3964 got_unsigned
? TYPE_FLAG_UNSIGNED
: 0, NULL
,
3968 return error_type (pp
, objfile
);
3971 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3972 if (self_subrange
&& n2
== 0 && n3
== 0)
3973 return init_type (TYPE_CODE_VOID
, 1, 0, NULL
, objfile
);
3975 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3976 is the width in bytes.
3978 Fortran programs appear to use this for complex types also. To
3979 distinguish between floats and complex, g77 (and others?) seem
3980 to use self-subranges for the complexes, and subranges of int for
3983 Also note that for complexes, g77 sets n2 to the size of one of
3984 the member floats, not the whole complex beast. My guess is that
3985 this was to work well with pre-COMPLEX versions of gdb. */
3987 if (n3
== 0 && n2
> 0)
3989 struct type
*float_type
3990 = init_type (TYPE_CODE_FLT
, n2
, 0, NULL
, objfile
);
3994 struct type
*complex_type
=
3995 init_type (TYPE_CODE_COMPLEX
, 2 * n2
, 0, NULL
, objfile
);
3996 TYPE_TARGET_TYPE (complex_type
) = float_type
;
3997 return complex_type
;
4003 /* If the upper bound is -1, it must really be an unsigned integral. */
4005 else if (n2
== 0 && n3
== -1)
4007 int bits
= type_size
;
4010 /* We don't know its size. It is unsigned int or unsigned
4011 long. GCC 2.3.3 uses this for long long too, but that is
4012 just a GDB 3.5 compatibility hack. */
4013 bits
= gdbarch_int_bit (gdbarch
);
4016 return init_type (TYPE_CODE_INT
, bits
/ TARGET_CHAR_BIT
,
4017 TYPE_FLAG_UNSIGNED
, NULL
, objfile
);
4020 /* Special case: char is defined (Who knows why) as a subrange of
4021 itself with range 0-127. */
4022 else if (self_subrange
&& n2
== 0 && n3
== 127)
4023 return init_type (TYPE_CODE_INT
, 1, TYPE_FLAG_NOSIGN
, NULL
, objfile
);
4025 /* We used to do this only for subrange of self or subrange of int. */
4028 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4029 "unsigned long", and we already checked for that,
4030 so don't need to test for it here. */
4033 /* n3 actually gives the size. */
4034 return init_type (TYPE_CODE_INT
, -n3
, TYPE_FLAG_UNSIGNED
,
4037 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4038 unsigned n-byte integer. But do require n to be a power of
4039 two; we don't want 3- and 5-byte integers flying around. */
4045 for (bytes
= 0; (bits
& 0xff) == 0xff; bytes
++)
4048 && ((bytes
- 1) & bytes
) == 0) /* "bytes is a power of two" */
4049 return init_type (TYPE_CODE_INT
, bytes
, TYPE_FLAG_UNSIGNED
, NULL
,
4053 /* I think this is for Convex "long long". Since I don't know whether
4054 Convex sets self_subrange, I also accept that particular size regardless
4055 of self_subrange. */
4056 else if (n3
== 0 && n2
< 0
4058 || n2
== -gdbarch_long_long_bit
4059 (gdbarch
) / TARGET_CHAR_BIT
))
4060 return init_type (TYPE_CODE_INT
, -n2
, 0, NULL
, objfile
);
4061 else if (n2
== -n3
- 1)
4064 return init_type (TYPE_CODE_INT
, 1, 0, NULL
, objfile
);
4066 return init_type (TYPE_CODE_INT
, 2, 0, NULL
, objfile
);
4067 if (n3
== 0x7fffffff)
4068 return init_type (TYPE_CODE_INT
, 4, 0, NULL
, objfile
);
4071 /* We have a real range type on our hands. Allocate space and
4072 return a real pointer. */
4076 index_type
= objfile_type (objfile
)->builtin_int
;
4078 index_type
= *dbx_lookup_type (rangenums
, objfile
);
4079 if (index_type
== NULL
)
4081 /* Does this actually ever happen? Is that why we are worrying
4082 about dealing with it rather than just calling error_type? */
4084 complaint (&symfile_complaints
,
4085 _("base type %d of range type is not defined"), rangenums
[1]);
4087 index_type
= objfile_type (objfile
)->builtin_int
;
4090 result_type
= create_range_type ((struct type
*) NULL
, index_type
, n2
, n3
);
4091 return (result_type
);
4094 /* Read in an argument list. This is a list of types, separated by commas
4095 and terminated with END. Return the list of types read in, or NULL
4096 if there is an error. */
4098 static struct field
*
4099 read_args (char **pp
, int end
, struct objfile
*objfile
, int *nargsp
,
4102 /* FIXME! Remove this arbitrary limit! */
4103 struct type
*types
[1024]; /* allow for fns of 1023 parameters */
4110 /* Invalid argument list: no ','. */
4113 STABS_CONTINUE (pp
, objfile
);
4114 types
[n
++] = read_type (pp
, objfile
);
4116 (*pp
)++; /* get past `end' (the ':' character) */
4118 if (TYPE_CODE (types
[n
- 1]) != TYPE_CODE_VOID
)
4126 rval
= (struct field
*) xmalloc (n
* sizeof (struct field
));
4127 memset (rval
, 0, n
* sizeof (struct field
));
4128 for (i
= 0; i
< n
; i
++)
4129 rval
[i
].type
= types
[i
];
4134 /* Common block handling. */
4136 /* List of symbols declared since the last BCOMM. This list is a tail
4137 of local_symbols. When ECOMM is seen, the symbols on the list
4138 are noted so their proper addresses can be filled in later,
4139 using the common block base address gotten from the assembler
4142 static struct pending
*common_block
;
4143 static int common_block_i
;
4145 /* Name of the current common block. We get it from the BCOMM instead of the
4146 ECOMM to match IBM documentation (even though IBM puts the name both places
4147 like everyone else). */
4148 static char *common_block_name
;
4150 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4151 to remain after this function returns. */
4154 common_block_start (char *name
, struct objfile
*objfile
)
4156 if (common_block_name
!= NULL
)
4158 complaint (&symfile_complaints
,
4159 _("Invalid symbol data: common block within common block"));
4161 common_block
= local_symbols
;
4162 common_block_i
= local_symbols
? local_symbols
->nsyms
: 0;
4163 common_block_name
= obsavestring (name
, strlen (name
),
4164 &objfile
->objfile_obstack
);
4167 /* Process a N_ECOMM symbol. */
4170 common_block_end (struct objfile
*objfile
)
4172 /* Symbols declared since the BCOMM are to have the common block
4173 start address added in when we know it. common_block and
4174 common_block_i point to the first symbol after the BCOMM in
4175 the local_symbols list; copy the list and hang it off the
4176 symbol for the common block name for later fixup. */
4179 struct pending
*new = 0;
4180 struct pending
*next
;
4183 if (common_block_name
== NULL
)
4185 complaint (&symfile_complaints
, _("ECOMM symbol unmatched by BCOMM"));
4189 sym
= (struct symbol
*)
4190 obstack_alloc (&objfile
->objfile_obstack
, sizeof (struct symbol
));
4191 memset (sym
, 0, sizeof (struct symbol
));
4192 /* Note: common_block_name already saved on objfile_obstack */
4193 SYMBOL_SET_LINKAGE_NAME (sym
, common_block_name
);
4194 SYMBOL_CLASS (sym
) = LOC_BLOCK
;
4196 /* Now we copy all the symbols which have been defined since the BCOMM. */
4198 /* Copy all the struct pendings before common_block. */
4199 for (next
= local_symbols
;
4200 next
!= NULL
&& next
!= common_block
;
4203 for (j
= 0; j
< next
->nsyms
; j
++)
4204 add_symbol_to_list (next
->symbol
[j
], &new);
4207 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4208 NULL, it means copy all the local symbols (which we already did
4211 if (common_block
!= NULL
)
4212 for (j
= common_block_i
; j
< common_block
->nsyms
; j
++)
4213 add_symbol_to_list (common_block
->symbol
[j
], &new);
4215 SYMBOL_TYPE (sym
) = (struct type
*) new;
4217 /* Should we be putting local_symbols back to what it was?
4220 i
= hashname (SYMBOL_LINKAGE_NAME (sym
));
4221 SYMBOL_VALUE_CHAIN (sym
) = global_sym_chain
[i
];
4222 global_sym_chain
[i
] = sym
;
4223 common_block_name
= NULL
;
4226 /* Add a common block's start address to the offset of each symbol
4227 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4228 the common block name). */
4231 fix_common_block (struct symbol
*sym
, int valu
)
4233 struct pending
*next
= (struct pending
*) SYMBOL_TYPE (sym
);
4234 for (; next
; next
= next
->next
)
4237 for (j
= next
->nsyms
- 1; j
>= 0; j
--)
4238 SYMBOL_VALUE_ADDRESS (next
->symbol
[j
]) += valu
;
4244 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4245 See add_undefined_type for more details. */
4248 add_undefined_type_noname (struct type
*type
, int typenums
[2])
4252 nat
.typenums
[0] = typenums
[0];
4253 nat
.typenums
[1] = typenums
[1];
4256 if (noname_undefs_length
== noname_undefs_allocated
)
4258 noname_undefs_allocated
*= 2;
4259 noname_undefs
= (struct nat
*)
4260 xrealloc ((char *) noname_undefs
,
4261 noname_undefs_allocated
* sizeof (struct nat
));
4263 noname_undefs
[noname_undefs_length
++] = nat
;
4266 /* Add TYPE to the UNDEF_TYPES vector.
4267 See add_undefined_type for more details. */
4270 add_undefined_type_1 (struct type
*type
)
4272 if (undef_types_length
== undef_types_allocated
)
4274 undef_types_allocated
*= 2;
4275 undef_types
= (struct type
**)
4276 xrealloc ((char *) undef_types
,
4277 undef_types_allocated
* sizeof (struct type
*));
4279 undef_types
[undef_types_length
++] = type
;
4282 /* What about types defined as forward references inside of a small lexical
4284 /* Add a type to the list of undefined types to be checked through
4285 once this file has been read in.
4287 In practice, we actually maintain two such lists: The first list
4288 (UNDEF_TYPES) is used for types whose name has been provided, and
4289 concerns forward references (eg 'xs' or 'xu' forward references);
4290 the second list (NONAME_UNDEFS) is used for types whose name is
4291 unknown at creation time, because they were referenced through
4292 their type number before the actual type was declared.
4293 This function actually adds the given type to the proper list. */
4296 add_undefined_type (struct type
*type
, int typenums
[2])
4298 if (TYPE_TAG_NAME (type
) == NULL
)
4299 add_undefined_type_noname (type
, typenums
);
4301 add_undefined_type_1 (type
);
4304 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4307 cleanup_undefined_types_noname (struct objfile
*objfile
)
4311 for (i
= 0; i
< noname_undefs_length
; i
++)
4313 struct nat nat
= noname_undefs
[i
];
4316 type
= dbx_lookup_type (nat
.typenums
, objfile
);
4317 if (nat
.type
!= *type
&& TYPE_CODE (*type
) != TYPE_CODE_UNDEF
)
4319 /* The instance flags of the undefined type are still unset,
4320 and needs to be copied over from the reference type.
4321 Since replace_type expects them to be identical, we need
4322 to set these flags manually before hand. */
4323 TYPE_INSTANCE_FLAGS (nat
.type
) = TYPE_INSTANCE_FLAGS (*type
);
4324 replace_type (nat
.type
, *type
);
4328 noname_undefs_length
= 0;
4331 /* Go through each undefined type, see if it's still undefined, and fix it
4332 up if possible. We have two kinds of undefined types:
4334 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4335 Fix: update array length using the element bounds
4336 and the target type's length.
4337 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4338 yet defined at the time a pointer to it was made.
4339 Fix: Do a full lookup on the struct/union tag. */
4342 cleanup_undefined_types_1 (void)
4346 /* Iterate over every undefined type, and look for a symbol whose type
4347 matches our undefined type. The symbol matches if:
4348 1. It is a typedef in the STRUCT domain;
4349 2. It has the same name, and same type code;
4350 3. The instance flags are identical.
4352 It is important to check the instance flags, because we have seen
4353 examples where the debug info contained definitions such as:
4355 "foo_t:t30=B31=xefoo_t:"
4357 In this case, we have created an undefined type named "foo_t" whose
4358 instance flags is null (when processing "xefoo_t"), and then created
4359 another type with the same name, but with different instance flags
4360 ('B' means volatile). I think that the definition above is wrong,
4361 since the same type cannot be volatile and non-volatile at the same
4362 time, but we need to be able to cope with it when it happens. The
4363 approach taken here is to treat these two types as different. */
4365 for (type
= undef_types
; type
< undef_types
+ undef_types_length
; type
++)
4367 switch (TYPE_CODE (*type
))
4370 case TYPE_CODE_STRUCT
:
4371 case TYPE_CODE_UNION
:
4372 case TYPE_CODE_ENUM
:
4374 /* Check if it has been defined since. Need to do this here
4375 as well as in check_typedef to deal with the (legitimate in
4376 C though not C++) case of several types with the same name
4377 in different source files. */
4378 if (TYPE_STUB (*type
))
4380 struct pending
*ppt
;
4382 /* Name of the type, without "struct" or "union" */
4383 char *typename
= TYPE_TAG_NAME (*type
);
4385 if (typename
== NULL
)
4387 complaint (&symfile_complaints
, _("need a type name"));
4390 for (ppt
= file_symbols
; ppt
; ppt
= ppt
->next
)
4392 for (i
= 0; i
< ppt
->nsyms
; i
++)
4394 struct symbol
*sym
= ppt
->symbol
[i
];
4396 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4397 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4398 && (TYPE_CODE (SYMBOL_TYPE (sym
)) ==
4400 && (TYPE_INSTANCE_FLAGS (*type
) ==
4401 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym
)))
4402 && strcmp (SYMBOL_LINKAGE_NAME (sym
),
4404 replace_type (*type
, SYMBOL_TYPE (sym
));
4413 complaint (&symfile_complaints
,
4414 _("forward-referenced types left unresolved, "
4422 undef_types_length
= 0;
4425 /* Try to fix all the undefined types we ecountered while processing
4429 cleanup_undefined_types (struct objfile
*objfile
)
4431 cleanup_undefined_types_1 ();
4432 cleanup_undefined_types_noname (objfile
);
4435 /* Scan through all of the global symbols defined in the object file,
4436 assigning values to the debugging symbols that need to be assigned
4437 to. Get these symbols from the minimal symbol table. */
4440 scan_file_globals (struct objfile
*objfile
)
4443 struct minimal_symbol
*msymbol
;
4444 struct symbol
*sym
, *prev
;
4445 struct objfile
*resolve_objfile
;
4447 /* SVR4 based linkers copy referenced global symbols from shared
4448 libraries to the main executable.
4449 If we are scanning the symbols for a shared library, try to resolve
4450 them from the minimal symbols of the main executable first. */
4452 if (symfile_objfile
&& objfile
!= symfile_objfile
)
4453 resolve_objfile
= symfile_objfile
;
4455 resolve_objfile
= objfile
;
4459 /* Avoid expensive loop through all minimal symbols if there are
4460 no unresolved symbols. */
4461 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4463 if (global_sym_chain
[hash
])
4466 if (hash
>= HASHSIZE
)
4469 ALL_OBJFILE_MSYMBOLS (resolve_objfile
, msymbol
)
4473 /* Skip static symbols. */
4474 switch (MSYMBOL_TYPE (msymbol
))
4486 /* Get the hash index and check all the symbols
4487 under that hash index. */
4489 hash
= hashname (SYMBOL_LINKAGE_NAME (msymbol
));
4491 for (sym
= global_sym_chain
[hash
]; sym
;)
4493 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol
),
4494 SYMBOL_LINKAGE_NAME (sym
)) == 0)
4496 /* Splice this symbol out of the hash chain and
4497 assign the value we have to it. */
4500 SYMBOL_VALUE_CHAIN (prev
) = SYMBOL_VALUE_CHAIN (sym
);
4504 global_sym_chain
[hash
] = SYMBOL_VALUE_CHAIN (sym
);
4507 /* Check to see whether we need to fix up a common block. */
4508 /* Note: this code might be executed several times for
4509 the same symbol if there are multiple references. */
4512 if (SYMBOL_CLASS (sym
) == LOC_BLOCK
)
4514 fix_common_block (sym
,
4515 SYMBOL_VALUE_ADDRESS (msymbol
));
4519 SYMBOL_VALUE_ADDRESS (sym
)
4520 = SYMBOL_VALUE_ADDRESS (msymbol
);
4522 SYMBOL_SECTION (sym
) = SYMBOL_SECTION (msymbol
);
4527 sym
= SYMBOL_VALUE_CHAIN (prev
);
4531 sym
= global_sym_chain
[hash
];
4537 sym
= SYMBOL_VALUE_CHAIN (sym
);
4541 if (resolve_objfile
== objfile
)
4543 resolve_objfile
= objfile
;
4546 /* Change the storage class of any remaining unresolved globals to
4547 LOC_UNRESOLVED and remove them from the chain. */
4548 for (hash
= 0; hash
< HASHSIZE
; hash
++)
4550 sym
= global_sym_chain
[hash
];
4554 sym
= SYMBOL_VALUE_CHAIN (sym
);
4556 /* Change the symbol address from the misleading chain value
4558 SYMBOL_VALUE_ADDRESS (prev
) = 0;
4560 /* Complain about unresolved common block symbols. */
4561 if (SYMBOL_CLASS (prev
) == LOC_STATIC
)
4562 SYMBOL_CLASS (prev
) = LOC_UNRESOLVED
;
4564 complaint (&symfile_complaints
,
4565 _("%s: common block `%s' from global_sym_chain unresolved"),
4566 objfile
->name
, SYMBOL_PRINT_NAME (prev
));
4569 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4572 /* Initialize anything that needs initializing when starting to read
4573 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4577 stabsread_init (void)
4581 /* Initialize anything that needs initializing when a completely new
4582 symbol file is specified (not just adding some symbols from another
4583 file, e.g. a shared library). */
4586 stabsread_new_init (void)
4588 /* Empty the hash table of global syms looking for values. */
4589 memset (global_sym_chain
, 0, sizeof (global_sym_chain
));
4592 /* Initialize anything that needs initializing at the same time as
4593 start_symtab() is called. */
4598 global_stabs
= NULL
; /* AIX COFF */
4599 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4600 n_this_object_header_files
= 1;
4601 type_vector_length
= 0;
4602 type_vector
= (struct type
**) 0;
4604 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4605 common_block_name
= NULL
;
4608 /* Call after end_symtab() */
4615 xfree (type_vector
);
4618 type_vector_length
= 0;
4619 previous_stab_code
= 0;
4623 finish_global_stabs (struct objfile
*objfile
)
4627 patch_block_stabs (global_symbols
, global_stabs
, objfile
);
4628 xfree (global_stabs
);
4629 global_stabs
= NULL
;
4633 /* Find the end of the name, delimited by a ':', but don't match
4634 ObjC symbols which look like -[Foo bar::]:bla. */
4636 find_name_end (char *name
)
4639 if (s
[0] == '-' || *s
== '+')
4641 /* Must be an ObjC method symbol. */
4644 error (_("invalid symbol name \"%s\""), name
);
4646 s
= strchr (s
, ']');
4649 error (_("invalid symbol name \"%s\""), name
);
4651 return strchr (s
, ':');
4655 return strchr (s
, ':');
4659 /* Initializer for this module */
4662 _initialize_stabsread (void)
4664 rs6000_builtin_type_data
= register_objfile_data ();
4666 undef_types_allocated
= 20;
4667 undef_types_length
= 0;
4668 undef_types
= (struct type
**)
4669 xmalloc (undef_types_allocated
* sizeof (struct type
*));
4671 noname_undefs_allocated
= 20;
4672 noname_undefs_length
= 0;
4673 noname_undefs
= (struct nat
*)
4674 xmalloc (noname_undefs_allocated
* sizeof (struct nat
));