* ada-lang.c (ada_index_type): Update comment.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
393 pp += 2;
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 {
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
399 SYMBOL_TYPE (sym) =
400 lookup_function_type (read_type (&pp, objfile));
401 }
402 else
403 {
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 }
406 add_symbol_to_list (sym, &global_symbols);
407 }
408 else
409 {
410 pp += 2;
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 {
413 SYMBOL_TYPE (sym) =
414 lookup_function_type (read_type (&pp, objfile));
415 }
416 else
417 {
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 }
420 }
421 }
422 }
423 }
424 \f
425
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
431
432 Returns 0 for success, -1 for error. */
433
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437 int nbits;
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
515 }
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
519 }
520
521 /* Return defined sym for the reference REFNUM. */
522 struct symbol *
523 ref_search (int refnum)
524 {
525 if (refnum < 0 || refnum > ref_count)
526 return 0;
527 return ref_map[refnum].sym;
528 }
529
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
532
533 static int
534 process_reference (char **string)
535 {
536 char *p;
537 int refnum = 0;
538
539 if (**string != '#')
540 return 0;
541
542 /* Advance beyond the initial '#'. */
543 p = *string + 1;
544
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
547 {
548 refnum = refnum * 10 + *p - '0';
549 p++;
550 }
551 *string = p;
552 return refnum;
553 }
554
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
557
558 int
559 symbol_reference_defined (char **string)
560 {
561 char *p = *string;
562 int refnum = 0;
563
564 refnum = process_reference (&p);
565
566 /* Defining symbols end in '=' */
567 if (*p == '=')
568 {
569 /* Symbol is being defined here. */
570 *string = p + 1;
571 return refnum;
572 }
573 else
574 {
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
577 *string = p;
578 return -1;
579 }
580 }
581
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586
587 if (regno >= gdbarch_num_regs (gdbarch)
588 + gdbarch_num_pseudo_regs (gdbarch))
589 {
590 reg_value_complaint (regno,
591 gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch),
593 SYMBOL_PRINT_NAME (sym));
594
595 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596 }
597
598 return regno;
599 }
600
601 static const struct symbol_register_ops stab_register_funcs = {
602 stab_reg_to_regnum
603 };
604
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 struct objfile *objfile)
608 {
609 struct gdbarch *gdbarch = get_objfile_arch (objfile);
610 struct symbol *sym;
611 char *p = (char *) find_name_end (string);
612 int deftype;
613 int synonym = 0;
614 int i;
615 char *new_name = NULL;
616
617 /* We would like to eliminate nameless symbols, but keep their types.
618 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619 to type 2, but, should not create a symbol to address that type. Since
620 the symbol will be nameless, there is no way any user can refer to it. */
621
622 int nameless;
623
624 /* Ignore syms with empty names. */
625 if (string[0] == 0)
626 return 0;
627
628 /* Ignore old-style symbols from cc -go */
629 if (p == 0)
630 return 0;
631
632 while (p[1] == ':')
633 {
634 p += 2;
635 p = strchr (p, ':');
636 }
637
638 /* If a nameless stab entry, all we need is the type, not the symbol.
639 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641
642 current_symbol = sym = (struct symbol *)
643 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644 memset (sym, 0, sizeof (struct symbol));
645
646 switch (type & N_TYPE)
647 {
648 case N_TEXT:
649 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650 break;
651 case N_DATA:
652 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653 break;
654 case N_BSS:
655 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656 break;
657 }
658
659 if (processing_gcc_compilation)
660 {
661 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
662 number of bytes occupied by a type or object, which we ignore. */
663 SYMBOL_LINE (sym) = desc;
664 }
665 else
666 {
667 SYMBOL_LINE (sym) = 0; /* unknown */
668 }
669
670 if (is_cplus_marker (string[0]))
671 {
672 /* Special GNU C++ names. */
673 switch (string[1])
674 {
675 case 't':
676 SYMBOL_SET_LINKAGE_NAME
677 (sym, obsavestring ("this", strlen ("this"),
678 &objfile->objfile_obstack));
679 break;
680
681 case 'v': /* $vtbl_ptr_type */
682 goto normal;
683
684 case 'e':
685 SYMBOL_SET_LINKAGE_NAME
686 (sym, obsavestring ("eh_throw", strlen ("eh_throw"),
687 &objfile->objfile_obstack));
688 break;
689
690 case '_':
691 /* This was an anonymous type that was never fixed up. */
692 goto normal;
693
694 case 'X':
695 /* SunPRO (3.0 at least) static variable encoding. */
696 if (gdbarch_static_transform_name_p (gdbarch))
697 goto normal;
698 /* ... fall through ... */
699
700 default:
701 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
702 string);
703 goto normal; /* Do *something* with it */
704 }
705 }
706 else
707 {
708 normal:
709 SYMBOL_LANGUAGE (sym) = current_subfile->language;
710 if (SYMBOL_LANGUAGE (sym) == language_cplus)
711 {
712 char *name = alloca (p - string + 1);
713 memcpy (name, string, p - string);
714 name[p - string] = '\0';
715 new_name = cp_canonicalize_string (name);
716 cp_scan_for_anonymous_namespaces (sym);
717 }
718 if (new_name != NULL)
719 {
720 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), objfile);
721 xfree (new_name);
722 }
723 else
724 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
725 }
726 p++;
727
728 /* Determine the type of name being defined. */
729 #if 0
730 /* Getting GDB to correctly skip the symbol on an undefined symbol
731 descriptor and not ever dump core is a very dodgy proposition if
732 we do things this way. I say the acorn RISC machine can just
733 fix their compiler. */
734 /* The Acorn RISC machine's compiler can put out locals that don't
735 start with "234=" or "(3,4)=", so assume anything other than the
736 deftypes we know how to handle is a local. */
737 if (!strchr ("cfFGpPrStTvVXCR", *p))
738 #else
739 if (isdigit (*p) || *p == '(' || *p == '-')
740 #endif
741 deftype = 'l';
742 else
743 deftype = *p++;
744
745 switch (deftype)
746 {
747 case 'c':
748 /* c is a special case, not followed by a type-number.
749 SYMBOL:c=iVALUE for an integer constant symbol.
750 SYMBOL:c=rVALUE for a floating constant symbol.
751 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
752 e.g. "b:c=e6,0" for "const b = blob1"
753 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
754 if (*p != '=')
755 {
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 SYMBOL_TYPE (sym) = error_type (&p, objfile);
758 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
759 add_symbol_to_list (sym, &file_symbols);
760 return sym;
761 }
762 ++p;
763 switch (*p++)
764 {
765 case 'r':
766 {
767 double d = atof (p);
768 gdb_byte *dbl_valu;
769 struct type *dbl_type;
770
771 /* FIXME-if-picky-about-floating-accuracy: Should be using
772 target arithmetic to get the value. real.c in GCC
773 probably has the necessary code. */
774
775 dbl_type = objfile_type (objfile)->builtin_double;
776 dbl_valu =
777 obstack_alloc (&objfile->objfile_obstack,
778 TYPE_LENGTH (dbl_type));
779 store_typed_floating (dbl_valu, dbl_type, d);
780
781 SYMBOL_TYPE (sym) = dbl_type;
782 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
783 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
784 }
785 break;
786 case 'i':
787 {
788 /* Defining integer constants this way is kind of silly,
789 since 'e' constants allows the compiler to give not
790 only the value, but the type as well. C has at least
791 int, long, unsigned int, and long long as constant
792 types; other languages probably should have at least
793 unsigned as well as signed constants. */
794
795 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
796 SYMBOL_VALUE (sym) = atoi (p);
797 SYMBOL_CLASS (sym) = LOC_CONST;
798 }
799 break;
800 case 'e':
801 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
802 can be represented as integral.
803 e.g. "b:c=e6,0" for "const b = blob1"
804 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
805 {
806 SYMBOL_CLASS (sym) = LOC_CONST;
807 SYMBOL_TYPE (sym) = read_type (&p, objfile);
808
809 if (*p != ',')
810 {
811 SYMBOL_TYPE (sym) = error_type (&p, objfile);
812 break;
813 }
814 ++p;
815
816 /* If the value is too big to fit in an int (perhaps because
817 it is unsigned), or something like that, we silently get
818 a bogus value. The type and everything else about it is
819 correct. Ideally, we should be using whatever we have
820 available for parsing unsigned and long long values,
821 however. */
822 SYMBOL_VALUE (sym) = atoi (p);
823 }
824 break;
825 default:
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 }
830 }
831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832 add_symbol_to_list (sym, &file_symbols);
833 return sym;
834
835 case 'C':
836 /* The name of a caught exception. */
837 SYMBOL_TYPE (sym) = read_type (&p, objfile);
838 SYMBOL_CLASS (sym) = LOC_LABEL;
839 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840 SYMBOL_VALUE_ADDRESS (sym) = valu;
841 add_symbol_to_list (sym, &local_symbols);
842 break;
843
844 case 'f':
845 /* A static function definition. */
846 SYMBOL_TYPE (sym) = read_type (&p, objfile);
847 SYMBOL_CLASS (sym) = LOC_BLOCK;
848 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
849 add_symbol_to_list (sym, &file_symbols);
850 /* fall into process_function_types. */
851
852 process_function_types:
853 /* Function result types are described as the result type in stabs.
854 We need to convert this to the function-returning-type-X type
855 in GDB. E.g. "int" is converted to "function returning int". */
856 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
857 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
858
859 /* All functions in C++ have prototypes. Stabs does not offer an
860 explicit way to identify prototyped or unprototyped functions,
861 but both GCC and Sun CC emit stabs for the "call-as" type rather
862 than the "declared-as" type for unprototyped functions, so
863 we treat all functions as if they were prototyped. This is used
864 primarily for promotion when calling the function from GDB. */
865 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
866
867 /* fall into process_prototype_types */
868
869 process_prototype_types:
870 /* Sun acc puts declared types of arguments here. */
871 if (*p == ';')
872 {
873 struct type *ftype = SYMBOL_TYPE (sym);
874 int nsemi = 0;
875 int nparams = 0;
876 char *p1 = p;
877
878 /* Obtain a worst case guess for the number of arguments
879 by counting the semicolons. */
880 while (*p1)
881 {
882 if (*p1++ == ';')
883 nsemi++;
884 }
885
886 /* Allocate parameter information fields and fill them in. */
887 TYPE_FIELDS (ftype) = (struct field *)
888 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
889 while (*p++ == ';')
890 {
891 struct type *ptype;
892
893 /* A type number of zero indicates the start of varargs.
894 FIXME: GDB currently ignores vararg functions. */
895 if (p[0] == '0' && p[1] == '\0')
896 break;
897 ptype = read_type (&p, objfile);
898
899 /* The Sun compilers mark integer arguments, which should
900 be promoted to the width of the calling conventions, with
901 a type which references itself. This type is turned into
902 a TYPE_CODE_VOID type by read_type, and we have to turn
903 it back into builtin_int here.
904 FIXME: Do we need a new builtin_promoted_int_arg ? */
905 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
906 ptype = objfile_type (objfile)->builtin_int;
907 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
908 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
909 }
910 TYPE_NFIELDS (ftype) = nparams;
911 TYPE_PROTOTYPED (ftype) = 1;
912 }
913 break;
914
915 case 'F':
916 /* A global function definition. */
917 SYMBOL_TYPE (sym) = read_type (&p, objfile);
918 SYMBOL_CLASS (sym) = LOC_BLOCK;
919 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
920 add_symbol_to_list (sym, &global_symbols);
921 goto process_function_types;
922
923 case 'G':
924 /* For a class G (global) symbol, it appears that the
925 value is not correct. It is necessary to search for the
926 corresponding linker definition to find the value.
927 These definitions appear at the end of the namelist. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_CLASS (sym) = LOC_STATIC;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 /* Don't add symbol references to global_sym_chain.
932 Symbol references don't have valid names and wont't match up with
933 minimal symbols when the global_sym_chain is relocated.
934 We'll fixup symbol references when we fixup the defining symbol. */
935 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
936 {
937 i = hashname (SYMBOL_LINKAGE_NAME (sym));
938 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
939 global_sym_chain[i] = sym;
940 }
941 add_symbol_to_list (sym, &global_symbols);
942 break;
943
944 /* This case is faked by a conditional above,
945 when there is no code letter in the dbx data.
946 Dbx data never actually contains 'l'. */
947 case 's':
948 case 'l':
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
950 SYMBOL_CLASS (sym) = LOC_LOCAL;
951 SYMBOL_VALUE (sym) = valu;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, &local_symbols);
954 break;
955
956 case 'p':
957 if (*p == 'F')
958 /* pF is a two-letter code that means a function parameter in Fortran.
959 The type-number specifies the type of the return value.
960 Translate it into a pointer-to-function type. */
961 {
962 p++;
963 SYMBOL_TYPE (sym)
964 = lookup_pointer_type
965 (lookup_function_type (read_type (&p, objfile)));
966 }
967 else
968 SYMBOL_TYPE (sym) = read_type (&p, objfile);
969
970 SYMBOL_CLASS (sym) = LOC_ARG;
971 SYMBOL_VALUE (sym) = valu;
972 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
973 SYMBOL_IS_ARGUMENT (sym) = 1;
974 add_symbol_to_list (sym, &local_symbols);
975
976 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
977 {
978 /* On little-endian machines, this crud is never necessary,
979 and, if the extra bytes contain garbage, is harmful. */
980 break;
981 }
982
983 /* If it's gcc-compiled, if it says `short', believe it. */
984 if (processing_gcc_compilation
985 || gdbarch_believe_pcc_promotion (gdbarch))
986 break;
987
988 if (!gdbarch_believe_pcc_promotion (gdbarch))
989 {
990 /* If PCC says a parameter is a short or a char, it is
991 really an int. */
992 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
993 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
994 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
995 {
996 SYMBOL_TYPE (sym) =
997 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
998 ? objfile_type (objfile)->builtin_unsigned_int
999 : objfile_type (objfile)->builtin_int;
1000 }
1001 break;
1002 }
1003
1004 case 'P':
1005 /* acc seems to use P to declare the prototypes of functions that
1006 are referenced by this file. gdb is not prepared to deal
1007 with this extra information. FIXME, it ought to. */
1008 if (type == N_FUN)
1009 {
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 goto process_prototype_types;
1012 }
1013 /*FALLTHROUGH */
1014
1015 case 'R':
1016 /* Parameter which is in a register. */
1017 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018 SYMBOL_CLASS (sym) = LOC_REGISTER;
1019 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1020 SYMBOL_IS_ARGUMENT (sym) = 1;
1021 SYMBOL_VALUE (sym) = valu;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &local_symbols);
1024 break;
1025
1026 case 'r':
1027 /* Register variable (either global or local). */
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_CLASS (sym) = LOC_REGISTER;
1030 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1031 SYMBOL_VALUE (sym) = valu;
1032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033 if (within_function)
1034 {
1035 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1036 the same name to represent an argument passed in a
1037 register. GCC uses 'P' for the same case. So if we find
1038 such a symbol pair we combine it into one 'P' symbol.
1039 For Sun cc we need to do this regardless of
1040 stabs_argument_has_addr, because the compiler puts out
1041 the 'p' symbol even if it never saves the argument onto
1042 the stack.
1043
1044 On most machines, we want to preserve both symbols, so
1045 that we can still get information about what is going on
1046 with the stack (VAX for computing args_printed, using
1047 stack slots instead of saved registers in backtraces,
1048 etc.).
1049
1050 Note that this code illegally combines
1051 main(argc) struct foo argc; { register struct foo argc; }
1052 but this case is considered pathological and causes a warning
1053 from a decent compiler. */
1054
1055 if (local_symbols
1056 && local_symbols->nsyms > 0
1057 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1058 {
1059 struct symbol *prev_sym;
1060 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1061 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1062 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1063 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1064 SYMBOL_LINKAGE_NAME (sym)) == 0)
1065 {
1066 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1067 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1068 /* Use the type from the LOC_REGISTER; that is the type
1069 that is actually in that register. */
1070 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1071 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1072 sym = prev_sym;
1073 break;
1074 }
1075 }
1076 add_symbol_to_list (sym, &local_symbols);
1077 }
1078 else
1079 add_symbol_to_list (sym, &file_symbols);
1080 break;
1081
1082 case 'S':
1083 /* Static symbol at top level of file */
1084 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085 SYMBOL_CLASS (sym) = LOC_STATIC;
1086 SYMBOL_VALUE_ADDRESS (sym) = valu;
1087 if (gdbarch_static_transform_name_p (gdbarch)
1088 && gdbarch_static_transform_name (gdbarch,
1089 SYMBOL_LINKAGE_NAME (sym))
1090 != SYMBOL_LINKAGE_NAME (sym))
1091 {
1092 struct minimal_symbol *msym;
1093 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1094 if (msym != NULL)
1095 {
1096 char *new_name = gdbarch_static_transform_name
1097 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1098 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1099 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1100 }
1101 }
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &file_symbols);
1104 break;
1105
1106 case 't':
1107 /* In Ada, there is no distinction between typedef and non-typedef;
1108 any type declaration implicitly has the equivalent of a typedef,
1109 and thus 't' is in fact equivalent to 'Tt'.
1110
1111 Therefore, for Ada units, we check the character immediately
1112 before the 't', and if we do not find a 'T', then make sure to
1113 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1114 will be stored in the VAR_DOMAIN). If the symbol was indeed
1115 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1116 elsewhere, so we don't need to take care of that.
1117
1118 This is important to do, because of forward references:
1119 The cleanup of undefined types stored in undef_types only uses
1120 STRUCT_DOMAIN symbols to perform the replacement. */
1121 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1122
1123 /* Typedef */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125
1126 /* For a nameless type, we don't want a create a symbol, thus we
1127 did not use `sym'. Return without further processing. */
1128 if (nameless)
1129 return NULL;
1130
1131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 /* C++ vagaries: we may have a type which is derived from
1135 a base type which did not have its name defined when the
1136 derived class was output. We fill in the derived class's
1137 base part member's name here in that case. */
1138 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1139 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1140 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1141 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1142 {
1143 int j;
1144 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1145 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1146 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1147 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1148 }
1149
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1151 {
1152 /* gcc-2.6 or later (when using -fvtable-thunks)
1153 emits a unique named type for a vtable entry.
1154 Some gdb code depends on that specific name. */
1155 extern const char vtbl_ptr_name[];
1156
1157 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1158 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1159 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1160 {
1161 /* If we are giving a name to a type such as "pointer to
1162 foo" or "function returning foo", we better not set
1163 the TYPE_NAME. If the program contains "typedef char
1164 *caddr_t;", we don't want all variables of type char
1165 * to print as caddr_t. This is not just a
1166 consequence of GDB's type management; PCC and GCC (at
1167 least through version 2.4) both output variables of
1168 either type char * or caddr_t with the type number
1169 defined in the 't' symbol for caddr_t. If a future
1170 compiler cleans this up it GDB is not ready for it
1171 yet, but if it becomes ready we somehow need to
1172 disable this check (without breaking the PCC/GCC2.4
1173 case).
1174
1175 Sigh.
1176
1177 Fortunately, this check seems not to be necessary
1178 for anything except pointers or functions. */
1179 /* ezannoni: 2000-10-26. This seems to apply for
1180 versions of gcc older than 2.8. This was the original
1181 problem: with the following code gdb would tell that
1182 the type for name1 is caddr_t, and func is char()
1183 typedef char *caddr_t;
1184 char *name2;
1185 struct x
1186 {
1187 char *name1;
1188 } xx;
1189 char *func()
1190 {
1191 }
1192 main () {}
1193 */
1194
1195 /* Pascal accepts names for pointer types. */
1196 if (current_subfile->language == language_pascal)
1197 {
1198 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1199 }
1200 }
1201 else
1202 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1203 }
1204
1205 add_symbol_to_list (sym, &file_symbols);
1206
1207 if (synonym)
1208 {
1209 /* Create the STRUCT_DOMAIN clone. */
1210 struct symbol *struct_sym = (struct symbol *)
1211 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1212
1213 *struct_sym = *sym;
1214 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (struct_sym) = valu;
1216 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1217 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1218 TYPE_NAME (SYMBOL_TYPE (sym))
1219 = obconcat (&objfile->objfile_obstack, "", "",
1220 SYMBOL_LINKAGE_NAME (sym));
1221 add_symbol_to_list (struct_sym, &file_symbols);
1222 }
1223
1224 break;
1225
1226 case 'T':
1227 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1228 by 't' which means we are typedef'ing it as well. */
1229 synonym = *p == 't';
1230
1231 if (synonym)
1232 p++;
1233
1234 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1235
1236 /* For a nameless type, we don't want a create a symbol, thus we
1237 did not use `sym'. Return without further processing. */
1238 if (nameless)
1239 return NULL;
1240
1241 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1242 SYMBOL_VALUE (sym) = valu;
1243 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1244 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1245 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1246 = obconcat (&objfile->objfile_obstack, "", "",
1247 SYMBOL_LINKAGE_NAME (sym));
1248 add_symbol_to_list (sym, &file_symbols);
1249
1250 if (synonym)
1251 {
1252 /* Clone the sym and then modify it. */
1253 struct symbol *typedef_sym = (struct symbol *)
1254 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1255 *typedef_sym = *sym;
1256 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1257 SYMBOL_VALUE (typedef_sym) = valu;
1258 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1259 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1260 TYPE_NAME (SYMBOL_TYPE (sym))
1261 = obconcat (&objfile->objfile_obstack, "", "",
1262 SYMBOL_LINKAGE_NAME (sym));
1263 add_symbol_to_list (typedef_sym, &file_symbols);
1264 }
1265 break;
1266
1267 case 'V':
1268 /* Static symbol of local scope */
1269 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1270 SYMBOL_CLASS (sym) = LOC_STATIC;
1271 SYMBOL_VALUE_ADDRESS (sym) = valu;
1272 if (gdbarch_static_transform_name_p (gdbarch)
1273 && gdbarch_static_transform_name (gdbarch,
1274 SYMBOL_LINKAGE_NAME (sym))
1275 != SYMBOL_LINKAGE_NAME (sym))
1276 {
1277 struct minimal_symbol *msym;
1278 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1279 if (msym != NULL)
1280 {
1281 char *new_name = gdbarch_static_transform_name
1282 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1283 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1284 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1285 }
1286 }
1287 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1288 add_symbol_to_list (sym, &local_symbols);
1289 break;
1290
1291 case 'v':
1292 /* Reference parameter */
1293 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1294 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1295 SYMBOL_IS_ARGUMENT (sym) = 1;
1296 SYMBOL_VALUE (sym) = valu;
1297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1298 add_symbol_to_list (sym, &local_symbols);
1299 break;
1300
1301 case 'a':
1302 /* Reference parameter which is in a register. */
1303 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1304 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1305 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1306 SYMBOL_IS_ARGUMENT (sym) = 1;
1307 SYMBOL_VALUE (sym) = valu;
1308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1309 add_symbol_to_list (sym, &local_symbols);
1310 break;
1311
1312 case 'X':
1313 /* This is used by Sun FORTRAN for "function result value".
1314 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1315 that Pascal uses it too, but when I tried it Pascal used
1316 "x:3" (local symbol) instead. */
1317 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1318 SYMBOL_CLASS (sym) = LOC_LOCAL;
1319 SYMBOL_VALUE (sym) = valu;
1320 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1321 add_symbol_to_list (sym, &local_symbols);
1322 break;
1323
1324 default:
1325 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1326 SYMBOL_CLASS (sym) = LOC_CONST;
1327 SYMBOL_VALUE (sym) = 0;
1328 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1329 add_symbol_to_list (sym, &file_symbols);
1330 break;
1331 }
1332
1333 /* Some systems pass variables of certain types by reference instead
1334 of by value, i.e. they will pass the address of a structure (in a
1335 register or on the stack) instead of the structure itself. */
1336
1337 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1338 && SYMBOL_IS_ARGUMENT (sym))
1339 {
1340 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1341 variables passed in a register). */
1342 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1343 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1344 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1345 and subsequent arguments on SPARC, for example). */
1346 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1347 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1348 }
1349
1350 return sym;
1351 }
1352
1353 /* Skip rest of this symbol and return an error type.
1354
1355 General notes on error recovery: error_type always skips to the
1356 end of the symbol (modulo cretinous dbx symbol name continuation).
1357 Thus code like this:
1358
1359 if (*(*pp)++ != ';')
1360 return error_type (pp, objfile);
1361
1362 is wrong because if *pp starts out pointing at '\0' (typically as the
1363 result of an earlier error), it will be incremented to point to the
1364 start of the next symbol, which might produce strange results, at least
1365 if you run off the end of the string table. Instead use
1366
1367 if (**pp != ';')
1368 return error_type (pp, objfile);
1369 ++*pp;
1370
1371 or
1372
1373 if (**pp != ';')
1374 foo = error_type (pp, objfile);
1375 else
1376 ++*pp;
1377
1378 And in case it isn't obvious, the point of all this hair is so the compiler
1379 can define new types and new syntaxes, and old versions of the
1380 debugger will be able to read the new symbol tables. */
1381
1382 static struct type *
1383 error_type (char **pp, struct objfile *objfile)
1384 {
1385 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1386 while (1)
1387 {
1388 /* Skip to end of symbol. */
1389 while (**pp != '\0')
1390 {
1391 (*pp)++;
1392 }
1393
1394 /* Check for and handle cretinous dbx symbol name continuation! */
1395 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1396 {
1397 *pp = next_symbol_text (objfile);
1398 }
1399 else
1400 {
1401 break;
1402 }
1403 }
1404 return objfile_type (objfile)->builtin_error;
1405 }
1406 \f
1407
1408 /* Read type information or a type definition; return the type. Even
1409 though this routine accepts either type information or a type
1410 definition, the distinction is relevant--some parts of stabsread.c
1411 assume that type information starts with a digit, '-', or '(' in
1412 deciding whether to call read_type. */
1413
1414 static struct type *
1415 read_type (char **pp, struct objfile *objfile)
1416 {
1417 struct type *type = 0;
1418 struct type *type1;
1419 int typenums[2];
1420 char type_descriptor;
1421
1422 /* Size in bits of type if specified by a type attribute, or -1 if
1423 there is no size attribute. */
1424 int type_size = -1;
1425
1426 /* Used to distinguish string and bitstring from char-array and set. */
1427 int is_string = 0;
1428
1429 /* Used to distinguish vector from array. */
1430 int is_vector = 0;
1431
1432 /* Read type number if present. The type number may be omitted.
1433 for instance in a two-dimensional array declared with type
1434 "ar1;1;10;ar1;1;10;4". */
1435 if ((**pp >= '0' && **pp <= '9')
1436 || **pp == '('
1437 || **pp == '-')
1438 {
1439 if (read_type_number (pp, typenums) != 0)
1440 return error_type (pp, objfile);
1441
1442 if (**pp != '=')
1443 {
1444 /* Type is not being defined here. Either it already
1445 exists, or this is a forward reference to it.
1446 dbx_alloc_type handles both cases. */
1447 type = dbx_alloc_type (typenums, objfile);
1448
1449 /* If this is a forward reference, arrange to complain if it
1450 doesn't get patched up by the time we're done
1451 reading. */
1452 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1453 add_undefined_type (type, typenums);
1454
1455 return type;
1456 }
1457
1458 /* Type is being defined here. */
1459 /* Skip the '='.
1460 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1461 (*pp) += 2;
1462 }
1463 else
1464 {
1465 /* 'typenums=' not present, type is anonymous. Read and return
1466 the definition, but don't put it in the type vector. */
1467 typenums[0] = typenums[1] = -1;
1468 (*pp)++;
1469 }
1470
1471 again:
1472 type_descriptor = (*pp)[-1];
1473 switch (type_descriptor)
1474 {
1475 case 'x':
1476 {
1477 enum type_code code;
1478
1479 /* Used to index through file_symbols. */
1480 struct pending *ppt;
1481 int i;
1482
1483 /* Name including "struct", etc. */
1484 char *type_name;
1485
1486 {
1487 char *from, *to, *p, *q1, *q2;
1488
1489 /* Set the type code according to the following letter. */
1490 switch ((*pp)[0])
1491 {
1492 case 's':
1493 code = TYPE_CODE_STRUCT;
1494 break;
1495 case 'u':
1496 code = TYPE_CODE_UNION;
1497 break;
1498 case 'e':
1499 code = TYPE_CODE_ENUM;
1500 break;
1501 default:
1502 {
1503 /* Complain and keep going, so compilers can invent new
1504 cross-reference types. */
1505 complaint (&symfile_complaints,
1506 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1507 code = TYPE_CODE_STRUCT;
1508 break;
1509 }
1510 }
1511
1512 q1 = strchr (*pp, '<');
1513 p = strchr (*pp, ':');
1514 if (p == NULL)
1515 return error_type (pp, objfile);
1516 if (q1 && p > q1 && p[1] == ':')
1517 {
1518 int nesting_level = 0;
1519 for (q2 = q1; *q2; q2++)
1520 {
1521 if (*q2 == '<')
1522 nesting_level++;
1523 else if (*q2 == '>')
1524 nesting_level--;
1525 else if (*q2 == ':' && nesting_level == 0)
1526 break;
1527 }
1528 p = q2;
1529 if (*p != ':')
1530 return error_type (pp, objfile);
1531 }
1532 type_name = NULL;
1533 if (current_subfile->language == language_cplus)
1534 {
1535 char *new_name, *name = alloca (p - *pp + 1);
1536 memcpy (name, *pp, p - *pp);
1537 name[p - *pp] = '\0';
1538 new_name = cp_canonicalize_string (name);
1539 if (new_name != NULL)
1540 {
1541 type_name = obsavestring (new_name, strlen (new_name),
1542 &objfile->objfile_obstack);
1543 xfree (new_name);
1544 }
1545 }
1546 if (type_name == NULL)
1547 {
1548 to = type_name =
1549 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1550
1551 /* Copy the name. */
1552 from = *pp + 1;
1553 while (from < p)
1554 *to++ = *from++;
1555 *to = '\0';
1556 }
1557
1558 /* Set the pointer ahead of the name which we just read, and
1559 the colon. */
1560 *pp = p + 1;
1561 }
1562
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1565 memory. */
1566
1567 for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 for (i = 0; i < ppt->nsyms; i++)
1569 {
1570 struct symbol *sym = ppt->symbol[i];
1571
1572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1576 {
1577 obstack_free (&objfile->objfile_obstack, type_name);
1578 type = SYMBOL_TYPE (sym);
1579 if (typenums[0] != -1)
1580 *dbx_lookup_type (typenums, objfile) = type;
1581 return type;
1582 }
1583 }
1584
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1589 type. */
1590 type = dbx_alloc_type (typenums, objfile);
1591 TYPE_CODE (type) = code;
1592 TYPE_TAG_NAME (type) = type_name;
1593 INIT_CPLUS_SPECIFIC (type);
1594 TYPE_STUB (type) = 1;
1595
1596 add_undefined_type (type, typenums);
1597 return type;
1598 }
1599
1600 case '-': /* RS/6000 built-in type */
1601 case '0':
1602 case '1':
1603 case '2':
1604 case '3':
1605 case '4':
1606 case '5':
1607 case '6':
1608 case '7':
1609 case '8':
1610 case '9':
1611 case '(':
1612 (*pp)--;
1613
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type = dbx_alloc_type (typenums, objfile);
1620 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621 {
1622 struct type *xtype = read_type (pp, objfile);
1623 if (type == xtype)
1624 {
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type) = TYPE_CODE_VOID;
1627 TYPE_LENGTH (type) = 1;
1628 }
1629 else if (type_size >= 0 || is_string)
1630 {
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1637
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1646
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type, xtype);
1655 TYPE_NAME (type) = NULL;
1656 TYPE_TAG_NAME (type) = NULL;
1657 }
1658 else
1659 {
1660 TYPE_TARGET_STUB (type) = 1;
1661 TYPE_TARGET_TYPE (type) = xtype;
1662 }
1663 }
1664 break;
1665
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1672
1673 case '*': /* Pointer to another type */
1674 type1 = read_type (pp, objfile);
1675 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1676 break;
1677
1678 case '&': /* Reference to another type */
1679 type1 = read_type (pp, objfile);
1680 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1681 break;
1682
1683 case 'f': /* Function returning another type */
1684 type1 = read_type (pp, objfile);
1685 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1686 break;
1687
1688 case 'g': /* Prototyped function. (Sun) */
1689 {
1690 /* Unresolved questions:
1691
1692 - According to Sun's ``STABS Interface Manual'', for 'f'
1693 and 'F' symbol descriptors, a `0' in the argument type list
1694 indicates a varargs function. But it doesn't say how 'g'
1695 type descriptors represent that info. Someone with access
1696 to Sun's toolchain should try it out.
1697
1698 - According to the comment in define_symbol (search for
1699 `process_prototype_types:'), Sun emits integer arguments as
1700 types which ref themselves --- like `void' types. Do we
1701 have to deal with that here, too? Again, someone with
1702 access to Sun's toolchain should try it out and let us
1703 know. */
1704
1705 const char *type_start = (*pp) - 1;
1706 struct type *return_type = read_type (pp, objfile);
1707 struct type *func_type
1708 = make_function_type (return_type,
1709 dbx_lookup_type (typenums, objfile));
1710 struct type_list {
1711 struct type *type;
1712 struct type_list *next;
1713 } *arg_types = 0;
1714 int num_args = 0;
1715
1716 while (**pp && **pp != '#')
1717 {
1718 struct type *arg_type = read_type (pp, objfile);
1719 struct type_list *new = alloca (sizeof (*new));
1720 new->type = arg_type;
1721 new->next = arg_types;
1722 arg_types = new;
1723 num_args++;
1724 }
1725 if (**pp == '#')
1726 ++*pp;
1727 else
1728 {
1729 complaint (&symfile_complaints,
1730 _("Prototyped function type didn't end arguments with `#':\n%s"),
1731 type_start);
1732 }
1733
1734 /* If there is just one argument whose type is `void', then
1735 that's just an empty argument list. */
1736 if (arg_types
1737 && ! arg_types->next
1738 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1739 num_args = 0;
1740
1741 TYPE_FIELDS (func_type)
1742 = (struct field *) TYPE_ALLOC (func_type,
1743 num_args * sizeof (struct field));
1744 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1745 {
1746 int i;
1747 struct type_list *t;
1748
1749 /* We stuck each argument type onto the front of the list
1750 when we read it, so the list is reversed. Build the
1751 fields array right-to-left. */
1752 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1753 TYPE_FIELD_TYPE (func_type, i) = t->type;
1754 }
1755 TYPE_NFIELDS (func_type) = num_args;
1756 TYPE_PROTOTYPED (func_type) = 1;
1757
1758 type = func_type;
1759 break;
1760 }
1761
1762 case 'k': /* Const qualifier on some type (Sun) */
1763 type = read_type (pp, objfile);
1764 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1765 dbx_lookup_type (typenums, objfile));
1766 break;
1767
1768 case 'B': /* Volatile qual on some type (Sun) */
1769 type = read_type (pp, objfile);
1770 type = make_cv_type (TYPE_CONST (type), 1, type,
1771 dbx_lookup_type (typenums, objfile));
1772 break;
1773
1774 case '@':
1775 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1776 { /* Member (class & variable) type */
1777 /* FIXME -- we should be doing smash_to_XXX types here. */
1778
1779 struct type *domain = read_type (pp, objfile);
1780 struct type *memtype;
1781
1782 if (**pp != ',')
1783 /* Invalid member type data format. */
1784 return error_type (pp, objfile);
1785 ++*pp;
1786
1787 memtype = read_type (pp, objfile);
1788 type = dbx_alloc_type (typenums, objfile);
1789 smash_to_memberptr_type (type, domain, memtype);
1790 }
1791 else
1792 /* type attribute */
1793 {
1794 char *attr = *pp;
1795 /* Skip to the semicolon. */
1796 while (**pp != ';' && **pp != '\0')
1797 ++(*pp);
1798 if (**pp == '\0')
1799 return error_type (pp, objfile);
1800 else
1801 ++ * pp; /* Skip the semicolon. */
1802
1803 switch (*attr)
1804 {
1805 case 's': /* Size attribute */
1806 type_size = atoi (attr + 1);
1807 if (type_size <= 0)
1808 type_size = -1;
1809 break;
1810
1811 case 'S': /* String attribute */
1812 /* FIXME: check to see if following type is array? */
1813 is_string = 1;
1814 break;
1815
1816 case 'V': /* Vector attribute */
1817 /* FIXME: check to see if following type is array? */
1818 is_vector = 1;
1819 break;
1820
1821 default:
1822 /* Ignore unrecognized type attributes, so future compilers
1823 can invent new ones. */
1824 break;
1825 }
1826 ++*pp;
1827 goto again;
1828 }
1829 break;
1830
1831 case '#': /* Method (class & fn) type */
1832 if ((*pp)[0] == '#')
1833 {
1834 /* We'll get the parameter types from the name. */
1835 struct type *return_type;
1836
1837 (*pp)++;
1838 return_type = read_type (pp, objfile);
1839 if (*(*pp)++ != ';')
1840 complaint (&symfile_complaints,
1841 _("invalid (minimal) member type data format at symtab pos %d."),
1842 symnum);
1843 type = allocate_stub_method (return_type);
1844 if (typenums[0] != -1)
1845 *dbx_lookup_type (typenums, objfile) = type;
1846 }
1847 else
1848 {
1849 struct type *domain = read_type (pp, objfile);
1850 struct type *return_type;
1851 struct field *args;
1852 int nargs, varargs;
1853
1854 if (**pp != ',')
1855 /* Invalid member type data format. */
1856 return error_type (pp, objfile);
1857 else
1858 ++(*pp);
1859
1860 return_type = read_type (pp, objfile);
1861 args = read_args (pp, ';', objfile, &nargs, &varargs);
1862 if (args == NULL)
1863 return error_type (pp, objfile);
1864 type = dbx_alloc_type (typenums, objfile);
1865 smash_to_method_type (type, domain, return_type, args,
1866 nargs, varargs);
1867 }
1868 break;
1869
1870 case 'r': /* Range type */
1871 type = read_range_type (pp, typenums, type_size, objfile);
1872 if (typenums[0] != -1)
1873 *dbx_lookup_type (typenums, objfile) = type;
1874 break;
1875
1876 case 'b':
1877 {
1878 /* Sun ACC builtin int type */
1879 type = read_sun_builtin_type (pp, typenums, objfile);
1880 if (typenums[0] != -1)
1881 *dbx_lookup_type (typenums, objfile) = type;
1882 }
1883 break;
1884
1885 case 'R': /* Sun ACC builtin float type */
1886 type = read_sun_floating_type (pp, typenums, objfile);
1887 if (typenums[0] != -1)
1888 *dbx_lookup_type (typenums, objfile) = type;
1889 break;
1890
1891 case 'e': /* Enumeration type */
1892 type = dbx_alloc_type (typenums, objfile);
1893 type = read_enum_type (pp, type, objfile);
1894 if (typenums[0] != -1)
1895 *dbx_lookup_type (typenums, objfile) = type;
1896 break;
1897
1898 case 's': /* Struct type */
1899 case 'u': /* Union type */
1900 {
1901 enum type_code type_code = TYPE_CODE_UNDEF;
1902 type = dbx_alloc_type (typenums, objfile);
1903 switch (type_descriptor)
1904 {
1905 case 's':
1906 type_code = TYPE_CODE_STRUCT;
1907 break;
1908 case 'u':
1909 type_code = TYPE_CODE_UNION;
1910 break;
1911 }
1912 type = read_struct_type (pp, type, type_code, objfile);
1913 break;
1914 }
1915
1916 case 'a': /* Array type */
1917 if (**pp != 'r')
1918 return error_type (pp, objfile);
1919 ++*pp;
1920
1921 type = dbx_alloc_type (typenums, objfile);
1922 type = read_array_type (pp, type, objfile);
1923 if (is_string)
1924 TYPE_CODE (type) = TYPE_CODE_STRING;
1925 if (is_vector)
1926 make_vector_type (type);
1927 break;
1928
1929 case 'S': /* Set or bitstring type */
1930 type1 = read_type (pp, objfile);
1931 type = create_set_type ((struct type *) NULL, type1);
1932 if (is_string)
1933 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1934 if (typenums[0] != -1)
1935 *dbx_lookup_type (typenums, objfile) = type;
1936 break;
1937
1938 default:
1939 --*pp; /* Go back to the symbol in error */
1940 /* Particularly important if it was \0! */
1941 return error_type (pp, objfile);
1942 }
1943
1944 if (type == 0)
1945 {
1946 warning (_("GDB internal error, type is NULL in stabsread.c."));
1947 return error_type (pp, objfile);
1948 }
1949
1950 /* Size specified in a type attribute overrides any other size. */
1951 if (type_size != -1)
1952 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1953
1954 return type;
1955 }
1956 \f
1957 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1958 Return the proper type node for a given builtin type number. */
1959
1960 static const struct objfile_data *rs6000_builtin_type_data;
1961
1962 static struct type *
1963 rs6000_builtin_type (int typenum, struct objfile *objfile)
1964 {
1965 struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
1966
1967 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1968 #define NUMBER_RECOGNIZED 34
1969 struct type *rettype = NULL;
1970
1971 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1972 {
1973 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1974 return objfile_type (objfile)->builtin_error;
1975 }
1976
1977 if (!negative_types)
1978 {
1979 /* This includes an empty slot for type number -0. */
1980 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
1981 NUMBER_RECOGNIZED + 1, struct type *);
1982 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
1983 }
1984
1985 if (negative_types[-typenum] != NULL)
1986 return negative_types[-typenum];
1987
1988 #if TARGET_CHAR_BIT != 8
1989 #error This code wrong for TARGET_CHAR_BIT not 8
1990 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1991 that if that ever becomes not true, the correct fix will be to
1992 make the size in the struct type to be in bits, not in units of
1993 TARGET_CHAR_BIT. */
1994 #endif
1995
1996 switch (-typenum)
1997 {
1998 case 1:
1999 /* The size of this and all the other types are fixed, defined
2000 by the debugging format. If there is a type called "int" which
2001 is other than 32 bits, then it should use a new negative type
2002 number (or avoid negative type numbers for that case).
2003 See stabs.texinfo. */
2004 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2005 break;
2006 case 2:
2007 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2008 break;
2009 case 3:
2010 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2011 break;
2012 case 4:
2013 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2014 break;
2015 case 5:
2016 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2017 "unsigned char", objfile);
2018 break;
2019 case 6:
2020 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2021 break;
2022 case 7:
2023 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2024 "unsigned short", objfile);
2025 break;
2026 case 8:
2027 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2028 "unsigned int", objfile);
2029 break;
2030 case 9:
2031 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2032 "unsigned", objfile);
2033 case 10:
2034 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2035 "unsigned long", objfile);
2036 break;
2037 case 11:
2038 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2039 break;
2040 case 12:
2041 /* IEEE single precision (32 bit). */
2042 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2043 break;
2044 case 13:
2045 /* IEEE double precision (64 bit). */
2046 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2047 break;
2048 case 14:
2049 /* This is an IEEE double on the RS/6000, and different machines with
2050 different sizes for "long double" should use different negative
2051 type numbers. See stabs.texinfo. */
2052 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2053 break;
2054 case 15:
2055 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2056 break;
2057 case 16:
2058 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2059 "boolean", objfile);
2060 break;
2061 case 17:
2062 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2063 break;
2064 case 18:
2065 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2066 break;
2067 case 19:
2068 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2069 break;
2070 case 20:
2071 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2072 "character", objfile);
2073 break;
2074 case 21:
2075 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2076 "logical*1", objfile);
2077 break;
2078 case 22:
2079 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2080 "logical*2", objfile);
2081 break;
2082 case 23:
2083 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2084 "logical*4", objfile);
2085 break;
2086 case 24:
2087 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2088 "logical", objfile);
2089 break;
2090 case 25:
2091 /* Complex type consisting of two IEEE single precision values. */
2092 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2093 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2094 objfile);
2095 break;
2096 case 26:
2097 /* Complex type consisting of two IEEE double precision values. */
2098 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2099 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2100 objfile);
2101 break;
2102 case 27:
2103 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2104 break;
2105 case 28:
2106 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2107 break;
2108 case 29:
2109 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2110 break;
2111 case 30:
2112 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2113 break;
2114 case 31:
2115 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2116 break;
2117 case 32:
2118 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2119 "unsigned long long", objfile);
2120 break;
2121 case 33:
2122 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2123 "logical*8", objfile);
2124 break;
2125 case 34:
2126 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2127 break;
2128 }
2129 negative_types[-typenum] = rettype;
2130 return rettype;
2131 }
2132 \f
2133 /* This page contains subroutines of read_type. */
2134
2135 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2136
2137 static void
2138 update_method_name_from_physname (char **old_name, char *physname)
2139 {
2140 char *method_name;
2141
2142 method_name = method_name_from_physname (physname);
2143
2144 if (method_name == NULL)
2145 {
2146 complaint (&symfile_complaints,
2147 _("Method has bad physname %s\n"), physname);
2148 return;
2149 }
2150
2151 if (strcmp (*old_name, method_name) != 0)
2152 {
2153 xfree (*old_name);
2154 *old_name = method_name;
2155 }
2156 else
2157 xfree (method_name);
2158 }
2159
2160 /* Read member function stabs info for C++ classes. The form of each member
2161 function data is:
2162
2163 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2164
2165 An example with two member functions is:
2166
2167 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2168
2169 For the case of overloaded operators, the format is op$::*.funcs, where
2170 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2171 name (such as `+=') and `.' marks the end of the operator name.
2172
2173 Returns 1 for success, 0 for failure. */
2174
2175 static int
2176 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2177 struct objfile *objfile)
2178 {
2179 int nfn_fields = 0;
2180 int length = 0;
2181 /* Total number of member functions defined in this class. If the class
2182 defines two `f' functions, and one `g' function, then this will have
2183 the value 3. */
2184 int total_length = 0;
2185 int i;
2186 struct next_fnfield
2187 {
2188 struct next_fnfield *next;
2189 struct fn_field fn_field;
2190 }
2191 *sublist;
2192 struct type *look_ahead_type;
2193 struct next_fnfieldlist *new_fnlist;
2194 struct next_fnfield *new_sublist;
2195 char *main_fn_name;
2196 char *p;
2197
2198 /* Process each list until we find something that is not a member function
2199 or find the end of the functions. */
2200
2201 while (**pp != ';')
2202 {
2203 /* We should be positioned at the start of the function name.
2204 Scan forward to find the first ':' and if it is not the
2205 first of a "::" delimiter, then this is not a member function. */
2206 p = *pp;
2207 while (*p != ':')
2208 {
2209 p++;
2210 }
2211 if (p[1] != ':')
2212 {
2213 break;
2214 }
2215
2216 sublist = NULL;
2217 look_ahead_type = NULL;
2218 length = 0;
2219
2220 new_fnlist = (struct next_fnfieldlist *)
2221 xmalloc (sizeof (struct next_fnfieldlist));
2222 make_cleanup (xfree, new_fnlist);
2223 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2224
2225 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2226 {
2227 /* This is a completely wierd case. In order to stuff in the
2228 names that might contain colons (the usual name delimiter),
2229 Mike Tiemann defined a different name format which is
2230 signalled if the identifier is "op$". In that case, the
2231 format is "op$::XXXX." where XXXX is the name. This is
2232 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2233 /* This lets the user type "break operator+".
2234 We could just put in "+" as the name, but that wouldn't
2235 work for "*". */
2236 static char opname[32] = "op$";
2237 char *o = opname + 3;
2238
2239 /* Skip past '::'. */
2240 *pp = p + 2;
2241
2242 STABS_CONTINUE (pp, objfile);
2243 p = *pp;
2244 while (*p != '.')
2245 {
2246 *o++ = *p++;
2247 }
2248 main_fn_name = savestring (opname, o - opname);
2249 /* Skip past '.' */
2250 *pp = p + 1;
2251 }
2252 else
2253 {
2254 main_fn_name = savestring (*pp, p - *pp);
2255 /* Skip past '::'. */
2256 *pp = p + 2;
2257 }
2258 new_fnlist->fn_fieldlist.name = main_fn_name;
2259
2260 do
2261 {
2262 new_sublist =
2263 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2264 make_cleanup (xfree, new_sublist);
2265 memset (new_sublist, 0, sizeof (struct next_fnfield));
2266
2267 /* Check for and handle cretinous dbx symbol name continuation! */
2268 if (look_ahead_type == NULL)
2269 {
2270 /* Normal case. */
2271 STABS_CONTINUE (pp, objfile);
2272
2273 new_sublist->fn_field.type = read_type (pp, objfile);
2274 if (**pp != ':')
2275 {
2276 /* Invalid symtab info for member function. */
2277 return 0;
2278 }
2279 }
2280 else
2281 {
2282 /* g++ version 1 kludge */
2283 new_sublist->fn_field.type = look_ahead_type;
2284 look_ahead_type = NULL;
2285 }
2286
2287 (*pp)++;
2288 p = *pp;
2289 while (*p != ';')
2290 {
2291 p++;
2292 }
2293
2294 /* If this is just a stub, then we don't have the real name here. */
2295
2296 if (TYPE_STUB (new_sublist->fn_field.type))
2297 {
2298 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2299 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2300 new_sublist->fn_field.is_stub = 1;
2301 }
2302 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2303 *pp = p + 1;
2304
2305 /* Set this member function's visibility fields. */
2306 switch (*(*pp)++)
2307 {
2308 case VISIBILITY_PRIVATE:
2309 new_sublist->fn_field.is_private = 1;
2310 break;
2311 case VISIBILITY_PROTECTED:
2312 new_sublist->fn_field.is_protected = 1;
2313 break;
2314 }
2315
2316 STABS_CONTINUE (pp, objfile);
2317 switch (**pp)
2318 {
2319 case 'A': /* Normal functions. */
2320 new_sublist->fn_field.is_const = 0;
2321 new_sublist->fn_field.is_volatile = 0;
2322 (*pp)++;
2323 break;
2324 case 'B': /* `const' member functions. */
2325 new_sublist->fn_field.is_const = 1;
2326 new_sublist->fn_field.is_volatile = 0;
2327 (*pp)++;
2328 break;
2329 case 'C': /* `volatile' member function. */
2330 new_sublist->fn_field.is_const = 0;
2331 new_sublist->fn_field.is_volatile = 1;
2332 (*pp)++;
2333 break;
2334 case 'D': /* `const volatile' member function. */
2335 new_sublist->fn_field.is_const = 1;
2336 new_sublist->fn_field.is_volatile = 1;
2337 (*pp)++;
2338 break;
2339 case '*': /* File compiled with g++ version 1 -- no info */
2340 case '?':
2341 case '.':
2342 break;
2343 default:
2344 complaint (&symfile_complaints,
2345 _("const/volatile indicator missing, got '%c'"), **pp);
2346 break;
2347 }
2348
2349 switch (*(*pp)++)
2350 {
2351 case '*':
2352 {
2353 int nbits;
2354 /* virtual member function, followed by index.
2355 The sign bit is set to distinguish pointers-to-methods
2356 from virtual function indicies. Since the array is
2357 in words, the quantity must be shifted left by 1
2358 on 16 bit machine, and by 2 on 32 bit machine, forcing
2359 the sign bit out, and usable as a valid index into
2360 the array. Remove the sign bit here. */
2361 new_sublist->fn_field.voffset =
2362 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2363 if (nbits != 0)
2364 return 0;
2365
2366 STABS_CONTINUE (pp, objfile);
2367 if (**pp == ';' || **pp == '\0')
2368 {
2369 /* Must be g++ version 1. */
2370 new_sublist->fn_field.fcontext = 0;
2371 }
2372 else
2373 {
2374 /* Figure out from whence this virtual function came.
2375 It may belong to virtual function table of
2376 one of its baseclasses. */
2377 look_ahead_type = read_type (pp, objfile);
2378 if (**pp == ':')
2379 {
2380 /* g++ version 1 overloaded methods. */
2381 }
2382 else
2383 {
2384 new_sublist->fn_field.fcontext = look_ahead_type;
2385 if (**pp != ';')
2386 {
2387 return 0;
2388 }
2389 else
2390 {
2391 ++*pp;
2392 }
2393 look_ahead_type = NULL;
2394 }
2395 }
2396 break;
2397 }
2398 case '?':
2399 /* static member function. */
2400 {
2401 int slen = strlen (main_fn_name);
2402
2403 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2404
2405 /* For static member functions, we can't tell if they
2406 are stubbed, as they are put out as functions, and not as
2407 methods.
2408 GCC v2 emits the fully mangled name if
2409 dbxout.c:flag_minimal_debug is not set, so we have to
2410 detect a fully mangled physname here and set is_stub
2411 accordingly. Fully mangled physnames in v2 start with
2412 the member function name, followed by two underscores.
2413 GCC v3 currently always emits stubbed member functions,
2414 but with fully mangled physnames, which start with _Z. */
2415 if (!(strncmp (new_sublist->fn_field.physname,
2416 main_fn_name, slen) == 0
2417 && new_sublist->fn_field.physname[slen] == '_'
2418 && new_sublist->fn_field.physname[slen + 1] == '_'))
2419 {
2420 new_sublist->fn_field.is_stub = 1;
2421 }
2422 break;
2423 }
2424
2425 default:
2426 /* error */
2427 complaint (&symfile_complaints,
2428 _("member function type missing, got '%c'"), (*pp)[-1]);
2429 /* Fall through into normal member function. */
2430
2431 case '.':
2432 /* normal member function. */
2433 new_sublist->fn_field.voffset = 0;
2434 new_sublist->fn_field.fcontext = 0;
2435 break;
2436 }
2437
2438 new_sublist->next = sublist;
2439 sublist = new_sublist;
2440 length++;
2441 STABS_CONTINUE (pp, objfile);
2442 }
2443 while (**pp != ';' && **pp != '\0');
2444
2445 (*pp)++;
2446 STABS_CONTINUE (pp, objfile);
2447
2448 /* Skip GCC 3.X member functions which are duplicates of the callable
2449 constructor/destructor. */
2450 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2451 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2452 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2453 {
2454 xfree (main_fn_name);
2455 }
2456 else
2457 {
2458 int has_stub = 0;
2459 int has_destructor = 0, has_other = 0;
2460 int is_v3 = 0;
2461 struct next_fnfield *tmp_sublist;
2462
2463 /* Various versions of GCC emit various mostly-useless
2464 strings in the name field for special member functions.
2465
2466 For stub methods, we need to defer correcting the name
2467 until we are ready to unstub the method, because the current
2468 name string is used by gdb_mangle_name. The only stub methods
2469 of concern here are GNU v2 operators; other methods have their
2470 names correct (see caveat below).
2471
2472 For non-stub methods, in GNU v3, we have a complete physname.
2473 Therefore we can safely correct the name now. This primarily
2474 affects constructors and destructors, whose name will be
2475 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2476 operators will also have incorrect names; for instance,
2477 "operator int" will be named "operator i" (i.e. the type is
2478 mangled).
2479
2480 For non-stub methods in GNU v2, we have no easy way to
2481 know if we have a complete physname or not. For most
2482 methods the result depends on the platform (if CPLUS_MARKER
2483 can be `$' or `.', it will use minimal debug information, or
2484 otherwise the full physname will be included).
2485
2486 Rather than dealing with this, we take a different approach.
2487 For v3 mangled names, we can use the full physname; for v2,
2488 we use cplus_demangle_opname (which is actually v2 specific),
2489 because the only interesting names are all operators - once again
2490 barring the caveat below. Skip this process if any method in the
2491 group is a stub, to prevent our fouling up the workings of
2492 gdb_mangle_name.
2493
2494 The caveat: GCC 2.95.x (and earlier?) put constructors and
2495 destructors in the same method group. We need to split this
2496 into two groups, because they should have different names.
2497 So for each method group we check whether it contains both
2498 routines whose physname appears to be a destructor (the physnames
2499 for and destructors are always provided, due to quirks in v2
2500 mangling) and routines whose physname does not appear to be a
2501 destructor. If so then we break up the list into two halves.
2502 Even if the constructors and destructors aren't in the same group
2503 the destructor will still lack the leading tilde, so that also
2504 needs to be fixed.
2505
2506 So, to summarize what we expect and handle here:
2507
2508 Given Given Real Real Action
2509 method name physname physname method name
2510
2511 __opi [none] __opi__3Foo operator int opname
2512 [now or later]
2513 Foo _._3Foo _._3Foo ~Foo separate and
2514 rename
2515 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2516 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2517 */
2518
2519 tmp_sublist = sublist;
2520 while (tmp_sublist != NULL)
2521 {
2522 if (tmp_sublist->fn_field.is_stub)
2523 has_stub = 1;
2524 if (tmp_sublist->fn_field.physname[0] == '_'
2525 && tmp_sublist->fn_field.physname[1] == 'Z')
2526 is_v3 = 1;
2527
2528 if (is_destructor_name (tmp_sublist->fn_field.physname))
2529 has_destructor++;
2530 else
2531 has_other++;
2532
2533 tmp_sublist = tmp_sublist->next;
2534 }
2535
2536 if (has_destructor && has_other)
2537 {
2538 struct next_fnfieldlist *destr_fnlist;
2539 struct next_fnfield *last_sublist;
2540
2541 /* Create a new fn_fieldlist for the destructors. */
2542
2543 destr_fnlist = (struct next_fnfieldlist *)
2544 xmalloc (sizeof (struct next_fnfieldlist));
2545 make_cleanup (xfree, destr_fnlist);
2546 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2547 destr_fnlist->fn_fieldlist.name
2548 = obconcat (&objfile->objfile_obstack, "", "~",
2549 new_fnlist->fn_fieldlist.name);
2550
2551 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2552 obstack_alloc (&objfile->objfile_obstack,
2553 sizeof (struct fn_field) * has_destructor);
2554 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2555 sizeof (struct fn_field) * has_destructor);
2556 tmp_sublist = sublist;
2557 last_sublist = NULL;
2558 i = 0;
2559 while (tmp_sublist != NULL)
2560 {
2561 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2562 {
2563 tmp_sublist = tmp_sublist->next;
2564 continue;
2565 }
2566
2567 destr_fnlist->fn_fieldlist.fn_fields[i++]
2568 = tmp_sublist->fn_field;
2569 if (last_sublist)
2570 last_sublist->next = tmp_sublist->next;
2571 else
2572 sublist = tmp_sublist->next;
2573 last_sublist = tmp_sublist;
2574 tmp_sublist = tmp_sublist->next;
2575 }
2576
2577 destr_fnlist->fn_fieldlist.length = has_destructor;
2578 destr_fnlist->next = fip->fnlist;
2579 fip->fnlist = destr_fnlist;
2580 nfn_fields++;
2581 total_length += has_destructor;
2582 length -= has_destructor;
2583 }
2584 else if (is_v3)
2585 {
2586 /* v3 mangling prevents the use of abbreviated physnames,
2587 so we can do this here. There are stubbed methods in v3
2588 only:
2589 - in -gstabs instead of -gstabs+
2590 - or for static methods, which are output as a function type
2591 instead of a method type. */
2592
2593 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2594 sublist->fn_field.physname);
2595 }
2596 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2597 {
2598 new_fnlist->fn_fieldlist.name =
2599 concat ("~", main_fn_name, (char *)NULL);
2600 xfree (main_fn_name);
2601 }
2602 else if (!has_stub)
2603 {
2604 char dem_opname[256];
2605 int ret;
2606 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2607 dem_opname, DMGL_ANSI);
2608 if (!ret)
2609 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2610 dem_opname, 0);
2611 if (ret)
2612 new_fnlist->fn_fieldlist.name
2613 = obsavestring (dem_opname, strlen (dem_opname),
2614 &objfile->objfile_obstack);
2615 }
2616
2617 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2618 obstack_alloc (&objfile->objfile_obstack,
2619 sizeof (struct fn_field) * length);
2620 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2621 sizeof (struct fn_field) * length);
2622 for (i = length; (i--, sublist); sublist = sublist->next)
2623 {
2624 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2625 }
2626
2627 new_fnlist->fn_fieldlist.length = length;
2628 new_fnlist->next = fip->fnlist;
2629 fip->fnlist = new_fnlist;
2630 nfn_fields++;
2631 total_length += length;
2632 }
2633 }
2634
2635 if (nfn_fields)
2636 {
2637 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2638 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2639 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2640 memset (TYPE_FN_FIELDLISTS (type), 0,
2641 sizeof (struct fn_fieldlist) * nfn_fields);
2642 TYPE_NFN_FIELDS (type) = nfn_fields;
2643 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2644 }
2645
2646 return 1;
2647 }
2648
2649 /* Special GNU C++ name.
2650
2651 Returns 1 for success, 0 for failure. "failure" means that we can't
2652 keep parsing and it's time for error_type(). */
2653
2654 static int
2655 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2656 struct objfile *objfile)
2657 {
2658 char *p;
2659 char *name;
2660 char cpp_abbrev;
2661 struct type *context;
2662
2663 p = *pp;
2664 if (*++p == 'v')
2665 {
2666 name = NULL;
2667 cpp_abbrev = *++p;
2668
2669 *pp = p + 1;
2670
2671 /* At this point, *pp points to something like "22:23=*22...",
2672 where the type number before the ':' is the "context" and
2673 everything after is a regular type definition. Lookup the
2674 type, find it's name, and construct the field name. */
2675
2676 context = read_type (pp, objfile);
2677
2678 switch (cpp_abbrev)
2679 {
2680 case 'f': /* $vf -- a virtual function table pointer */
2681 name = type_name_no_tag (context);
2682 if (name == NULL)
2683 {
2684 name = "";
2685 }
2686 fip->list->field.name =
2687 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2688 break;
2689
2690 case 'b': /* $vb -- a virtual bsomethingorother */
2691 name = type_name_no_tag (context);
2692 if (name == NULL)
2693 {
2694 complaint (&symfile_complaints,
2695 _("C++ abbreviated type name unknown at symtab pos %d"),
2696 symnum);
2697 name = "FOO";
2698 }
2699 fip->list->field.name =
2700 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2701 break;
2702
2703 default:
2704 invalid_cpp_abbrev_complaint (*pp);
2705 fip->list->field.name =
2706 obconcat (&objfile->objfile_obstack,
2707 "INVALID_CPLUSPLUS_ABBREV", "", "");
2708 break;
2709 }
2710
2711 /* At this point, *pp points to the ':'. Skip it and read the
2712 field type. */
2713
2714 p = ++(*pp);
2715 if (p[-1] != ':')
2716 {
2717 invalid_cpp_abbrev_complaint (*pp);
2718 return 0;
2719 }
2720 fip->list->field.type = read_type (pp, objfile);
2721 if (**pp == ',')
2722 (*pp)++; /* Skip the comma. */
2723 else
2724 return 0;
2725
2726 {
2727 int nbits;
2728 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2729 0);
2730 if (nbits != 0)
2731 return 0;
2732 }
2733 /* This field is unpacked. */
2734 FIELD_BITSIZE (fip->list->field) = 0;
2735 fip->list->visibility = VISIBILITY_PRIVATE;
2736 }
2737 else
2738 {
2739 invalid_cpp_abbrev_complaint (*pp);
2740 /* We have no idea what syntax an unrecognized abbrev would have, so
2741 better return 0. If we returned 1, we would need to at least advance
2742 *pp to avoid an infinite loop. */
2743 return 0;
2744 }
2745 return 1;
2746 }
2747
2748 static void
2749 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2750 struct type *type, struct objfile *objfile)
2751 {
2752 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2753
2754 fip->list->field.name =
2755 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2756 *pp = p + 1;
2757
2758 /* This means we have a visibility for a field coming. */
2759 if (**pp == '/')
2760 {
2761 (*pp)++;
2762 fip->list->visibility = *(*pp)++;
2763 }
2764 else
2765 {
2766 /* normal dbx-style format, no explicit visibility */
2767 fip->list->visibility = VISIBILITY_PUBLIC;
2768 }
2769
2770 fip->list->field.type = read_type (pp, objfile);
2771 if (**pp == ':')
2772 {
2773 p = ++(*pp);
2774 #if 0
2775 /* Possible future hook for nested types. */
2776 if (**pp == '!')
2777 {
2778 fip->list->field.bitpos = (long) -2; /* nested type */
2779 p = ++(*pp);
2780 }
2781 else
2782 ...;
2783 #endif
2784 while (*p != ';')
2785 {
2786 p++;
2787 }
2788 /* Static class member. */
2789 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2790 *pp = p + 1;
2791 return;
2792 }
2793 else if (**pp != ',')
2794 {
2795 /* Bad structure-type format. */
2796 stabs_general_complaint ("bad structure-type format");
2797 return;
2798 }
2799
2800 (*pp)++; /* Skip the comma. */
2801
2802 {
2803 int nbits;
2804 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2805 if (nbits != 0)
2806 {
2807 stabs_general_complaint ("bad structure-type format");
2808 return;
2809 }
2810 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2811 if (nbits != 0)
2812 {
2813 stabs_general_complaint ("bad structure-type format");
2814 return;
2815 }
2816 }
2817
2818 if (FIELD_BITPOS (fip->list->field) == 0
2819 && FIELD_BITSIZE (fip->list->field) == 0)
2820 {
2821 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2822 it is a field which has been optimized out. The correct stab for
2823 this case is to use VISIBILITY_IGNORE, but that is a recent
2824 invention. (2) It is a 0-size array. For example
2825 union { int num; char str[0]; } foo. Printing _("<no value>" for
2826 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2827 will continue to work, and a 0-size array as a whole doesn't
2828 have any contents to print.
2829
2830 I suspect this probably could also happen with gcc -gstabs (not
2831 -gstabs+) for static fields, and perhaps other C++ extensions.
2832 Hopefully few people use -gstabs with gdb, since it is intended
2833 for dbx compatibility. */
2834
2835 /* Ignore this field. */
2836 fip->list->visibility = VISIBILITY_IGNORE;
2837 }
2838 else
2839 {
2840 /* Detect an unpacked field and mark it as such.
2841 dbx gives a bit size for all fields.
2842 Note that forward refs cannot be packed,
2843 and treat enums as if they had the width of ints. */
2844
2845 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2846
2847 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2848 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2849 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2850 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2851 {
2852 FIELD_BITSIZE (fip->list->field) = 0;
2853 }
2854 if ((FIELD_BITSIZE (fip->list->field)
2855 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2856 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2857 && FIELD_BITSIZE (fip->list->field)
2858 == gdbarch_int_bit (gdbarch))
2859 )
2860 &&
2861 FIELD_BITPOS (fip->list->field) % 8 == 0)
2862 {
2863 FIELD_BITSIZE (fip->list->field) = 0;
2864 }
2865 }
2866 }
2867
2868
2869 /* Read struct or class data fields. They have the form:
2870
2871 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2872
2873 At the end, we see a semicolon instead of a field.
2874
2875 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2876 a static field.
2877
2878 The optional VISIBILITY is one of:
2879
2880 '/0' (VISIBILITY_PRIVATE)
2881 '/1' (VISIBILITY_PROTECTED)
2882 '/2' (VISIBILITY_PUBLIC)
2883 '/9' (VISIBILITY_IGNORE)
2884
2885 or nothing, for C style fields with public visibility.
2886
2887 Returns 1 for success, 0 for failure. */
2888
2889 static int
2890 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2891 struct objfile *objfile)
2892 {
2893 char *p;
2894 struct nextfield *new;
2895
2896 /* We better set p right now, in case there are no fields at all... */
2897
2898 p = *pp;
2899
2900 /* Read each data member type until we find the terminating ';' at the end of
2901 the data member list, or break for some other reason such as finding the
2902 start of the member function list. */
2903 /* Stab string for structure/union does not end with two ';' in
2904 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2905
2906 while (**pp != ';' && **pp != '\0')
2907 {
2908 STABS_CONTINUE (pp, objfile);
2909 /* Get space to record the next field's data. */
2910 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2911 make_cleanup (xfree, new);
2912 memset (new, 0, sizeof (struct nextfield));
2913 new->next = fip->list;
2914 fip->list = new;
2915
2916 /* Get the field name. */
2917 p = *pp;
2918
2919 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2920 unless the CPLUS_MARKER is followed by an underscore, in
2921 which case it is just the name of an anonymous type, which we
2922 should handle like any other type name. */
2923
2924 if (is_cplus_marker (p[0]) && p[1] != '_')
2925 {
2926 if (!read_cpp_abbrev (fip, pp, type, objfile))
2927 return 0;
2928 continue;
2929 }
2930
2931 /* Look for the ':' that separates the field name from the field
2932 values. Data members are delimited by a single ':', while member
2933 functions are delimited by a pair of ':'s. When we hit the member
2934 functions (if any), terminate scan loop and return. */
2935
2936 while (*p != ':' && *p != '\0')
2937 {
2938 p++;
2939 }
2940 if (*p == '\0')
2941 return 0;
2942
2943 /* Check to see if we have hit the member functions yet. */
2944 if (p[1] == ':')
2945 {
2946 break;
2947 }
2948 read_one_struct_field (fip, pp, p, type, objfile);
2949 }
2950 if (p[0] == ':' && p[1] == ':')
2951 {
2952 /* (the deleted) chill the list of fields: the last entry (at
2953 the head) is a partially constructed entry which we now
2954 scrub. */
2955 fip->list = fip->list->next;
2956 }
2957 return 1;
2958 }
2959 /* *INDENT-OFF* */
2960 /* The stabs for C++ derived classes contain baseclass information which
2961 is marked by a '!' character after the total size. This function is
2962 called when we encounter the baseclass marker, and slurps up all the
2963 baseclass information.
2964
2965 Immediately following the '!' marker is the number of base classes that
2966 the class is derived from, followed by information for each base class.
2967 For each base class, there are two visibility specifiers, a bit offset
2968 to the base class information within the derived class, a reference to
2969 the type for the base class, and a terminating semicolon.
2970
2971 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2972 ^^ ^ ^ ^ ^ ^ ^
2973 Baseclass information marker __________________|| | | | | | |
2974 Number of baseclasses __________________________| | | | | | |
2975 Visibility specifiers (2) ________________________| | | | | |
2976 Offset in bits from start of class _________________| | | | |
2977 Type number for base class ___________________________| | | |
2978 Visibility specifiers (2) _______________________________| | |
2979 Offset in bits from start of class ________________________| |
2980 Type number of base class ____________________________________|
2981
2982 Return 1 for success, 0 for (error-type-inducing) failure. */
2983 /* *INDENT-ON* */
2984
2985
2986
2987 static int
2988 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2989 struct objfile *objfile)
2990 {
2991 int i;
2992 struct nextfield *new;
2993
2994 if (**pp != '!')
2995 {
2996 return 1;
2997 }
2998 else
2999 {
3000 /* Skip the '!' baseclass information marker. */
3001 (*pp)++;
3002 }
3003
3004 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3005 {
3006 int nbits;
3007 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3008 if (nbits != 0)
3009 return 0;
3010 }
3011
3012 #if 0
3013 /* Some stupid compilers have trouble with the following, so break
3014 it up into simpler expressions. */
3015 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3016 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3017 #else
3018 {
3019 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3020 char *pointer;
3021
3022 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3023 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3024 }
3025 #endif /* 0 */
3026
3027 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3028
3029 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3030 {
3031 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3032 make_cleanup (xfree, new);
3033 memset (new, 0, sizeof (struct nextfield));
3034 new->next = fip->list;
3035 fip->list = new;
3036 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3037
3038 STABS_CONTINUE (pp, objfile);
3039 switch (**pp)
3040 {
3041 case '0':
3042 /* Nothing to do. */
3043 break;
3044 case '1':
3045 SET_TYPE_FIELD_VIRTUAL (type, i);
3046 break;
3047 default:
3048 /* Unknown character. Complain and treat it as non-virtual. */
3049 {
3050 complaint (&symfile_complaints,
3051 _("Unknown virtual character `%c' for baseclass"), **pp);
3052 }
3053 }
3054 ++(*pp);
3055
3056 new->visibility = *(*pp)++;
3057 switch (new->visibility)
3058 {
3059 case VISIBILITY_PRIVATE:
3060 case VISIBILITY_PROTECTED:
3061 case VISIBILITY_PUBLIC:
3062 break;
3063 default:
3064 /* Bad visibility format. Complain and treat it as
3065 public. */
3066 {
3067 complaint (&symfile_complaints,
3068 _("Unknown visibility `%c' for baseclass"),
3069 new->visibility);
3070 new->visibility = VISIBILITY_PUBLIC;
3071 }
3072 }
3073
3074 {
3075 int nbits;
3076
3077 /* The remaining value is the bit offset of the portion of the object
3078 corresponding to this baseclass. Always zero in the absence of
3079 multiple inheritance. */
3080
3081 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3082 if (nbits != 0)
3083 return 0;
3084 }
3085
3086 /* The last piece of baseclass information is the type of the
3087 base class. Read it, and remember it's type name as this
3088 field's name. */
3089
3090 new->field.type = read_type (pp, objfile);
3091 new->field.name = type_name_no_tag (new->field.type);
3092
3093 /* skip trailing ';' and bump count of number of fields seen */
3094 if (**pp == ';')
3095 (*pp)++;
3096 else
3097 return 0;
3098 }
3099 return 1;
3100 }
3101
3102 /* The tail end of stabs for C++ classes that contain a virtual function
3103 pointer contains a tilde, a %, and a type number.
3104 The type number refers to the base class (possibly this class itself) which
3105 contains the vtable pointer for the current class.
3106
3107 This function is called when we have parsed all the method declarations,
3108 so we can look for the vptr base class info. */
3109
3110 static int
3111 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3112 struct objfile *objfile)
3113 {
3114 char *p;
3115
3116 STABS_CONTINUE (pp, objfile);
3117
3118 /* If we are positioned at a ';', then skip it. */
3119 if (**pp == ';')
3120 {
3121 (*pp)++;
3122 }
3123
3124 if (**pp == '~')
3125 {
3126 (*pp)++;
3127
3128 if (**pp == '=' || **pp == '+' || **pp == '-')
3129 {
3130 /* Obsolete flags that used to indicate the presence
3131 of constructors and/or destructors. */
3132 (*pp)++;
3133 }
3134
3135 /* Read either a '%' or the final ';'. */
3136 if (*(*pp)++ == '%')
3137 {
3138 /* The next number is the type number of the base class
3139 (possibly our own class) which supplies the vtable for
3140 this class. Parse it out, and search that class to find
3141 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3142 and TYPE_VPTR_FIELDNO. */
3143
3144 struct type *t;
3145 int i;
3146
3147 t = read_type (pp, objfile);
3148 p = (*pp)++;
3149 while (*p != '\0' && *p != ';')
3150 {
3151 p++;
3152 }
3153 if (*p == '\0')
3154 {
3155 /* Premature end of symbol. */
3156 return 0;
3157 }
3158
3159 TYPE_VPTR_BASETYPE (type) = t;
3160 if (type == t) /* Our own class provides vtbl ptr */
3161 {
3162 for (i = TYPE_NFIELDS (t) - 1;
3163 i >= TYPE_N_BASECLASSES (t);
3164 --i)
3165 {
3166 char *name = TYPE_FIELD_NAME (t, i);
3167 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3168 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3169 {
3170 TYPE_VPTR_FIELDNO (type) = i;
3171 goto gotit;
3172 }
3173 }
3174 /* Virtual function table field not found. */
3175 complaint (&symfile_complaints,
3176 _("virtual function table pointer not found when defining class `%s'"),
3177 TYPE_NAME (type));
3178 return 0;
3179 }
3180 else
3181 {
3182 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3183 }
3184
3185 gotit:
3186 *pp = p + 1;
3187 }
3188 }
3189 return 1;
3190 }
3191
3192 static int
3193 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3194 {
3195 int n;
3196
3197 for (n = TYPE_NFN_FIELDS (type);
3198 fip->fnlist != NULL;
3199 fip->fnlist = fip->fnlist->next)
3200 {
3201 --n; /* Circumvent Sun3 compiler bug */
3202 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3203 }
3204 return 1;
3205 }
3206
3207 /* Create the vector of fields, and record how big it is.
3208 We need this info to record proper virtual function table information
3209 for this class's virtual functions. */
3210
3211 static int
3212 attach_fields_to_type (struct field_info *fip, struct type *type,
3213 struct objfile *objfile)
3214 {
3215 int nfields = 0;
3216 int non_public_fields = 0;
3217 struct nextfield *scan;
3218
3219 /* Count up the number of fields that we have, as well as taking note of
3220 whether or not there are any non-public fields, which requires us to
3221 allocate and build the private_field_bits and protected_field_bits
3222 bitfields. */
3223
3224 for (scan = fip->list; scan != NULL; scan = scan->next)
3225 {
3226 nfields++;
3227 if (scan->visibility != VISIBILITY_PUBLIC)
3228 {
3229 non_public_fields++;
3230 }
3231 }
3232
3233 /* Now we know how many fields there are, and whether or not there are any
3234 non-public fields. Record the field count, allocate space for the
3235 array of fields, and create blank visibility bitfields if necessary. */
3236
3237 TYPE_NFIELDS (type) = nfields;
3238 TYPE_FIELDS (type) = (struct field *)
3239 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3240 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3241
3242 if (non_public_fields)
3243 {
3244 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3245
3246 TYPE_FIELD_PRIVATE_BITS (type) =
3247 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3248 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3249
3250 TYPE_FIELD_PROTECTED_BITS (type) =
3251 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3252 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3253
3254 TYPE_FIELD_IGNORE_BITS (type) =
3255 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3256 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3257 }
3258
3259 /* Copy the saved-up fields into the field vector. Start from the head
3260 of the list, adding to the tail of the field array, so that they end
3261 up in the same order in the array in which they were added to the list. */
3262
3263 while (nfields-- > 0)
3264 {
3265 TYPE_FIELD (type, nfields) = fip->list->field;
3266 switch (fip->list->visibility)
3267 {
3268 case VISIBILITY_PRIVATE:
3269 SET_TYPE_FIELD_PRIVATE (type, nfields);
3270 break;
3271
3272 case VISIBILITY_PROTECTED:
3273 SET_TYPE_FIELD_PROTECTED (type, nfields);
3274 break;
3275
3276 case VISIBILITY_IGNORE:
3277 SET_TYPE_FIELD_IGNORE (type, nfields);
3278 break;
3279
3280 case VISIBILITY_PUBLIC:
3281 break;
3282
3283 default:
3284 /* Unknown visibility. Complain and treat it as public. */
3285 {
3286 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3287 fip->list->visibility);
3288 }
3289 break;
3290 }
3291 fip->list = fip->list->next;
3292 }
3293 return 1;
3294 }
3295
3296
3297 /* Complain that the compiler has emitted more than one definition for the
3298 structure type TYPE. */
3299 static void
3300 complain_about_struct_wipeout (struct type *type)
3301 {
3302 char *name = "";
3303 char *kind = "";
3304
3305 if (TYPE_TAG_NAME (type))
3306 {
3307 name = TYPE_TAG_NAME (type);
3308 switch (TYPE_CODE (type))
3309 {
3310 case TYPE_CODE_STRUCT: kind = "struct "; break;
3311 case TYPE_CODE_UNION: kind = "union "; break;
3312 case TYPE_CODE_ENUM: kind = "enum "; break;
3313 default: kind = "";
3314 }
3315 }
3316 else if (TYPE_NAME (type))
3317 {
3318 name = TYPE_NAME (type);
3319 kind = "";
3320 }
3321 else
3322 {
3323 name = "<unknown>";
3324 kind = "";
3325 }
3326
3327 complaint (&symfile_complaints,
3328 _("struct/union type gets multiply defined: %s%s"), kind, name);
3329 }
3330
3331
3332 /* Read the description of a structure (or union type) and return an object
3333 describing the type.
3334
3335 PP points to a character pointer that points to the next unconsumed token
3336 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3337 *PP will point to "4a:1,0,32;;".
3338
3339 TYPE points to an incomplete type that needs to be filled in.
3340
3341 OBJFILE points to the current objfile from which the stabs information is
3342 being read. (Note that it is redundant in that TYPE also contains a pointer
3343 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3344 */
3345
3346 static struct type *
3347 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3348 struct objfile *objfile)
3349 {
3350 struct cleanup *back_to;
3351 struct field_info fi;
3352
3353 fi.list = NULL;
3354 fi.fnlist = NULL;
3355
3356 /* When describing struct/union/class types in stabs, G++ always drops
3357 all qualifications from the name. So if you've got:
3358 struct A { ... struct B { ... }; ... };
3359 then G++ will emit stabs for `struct A::B' that call it simply
3360 `struct B'. Obviously, if you've got a real top-level definition for
3361 `struct B', or other nested definitions, this is going to cause
3362 problems.
3363
3364 Obviously, GDB can't fix this by itself, but it can at least avoid
3365 scribbling on existing structure type objects when new definitions
3366 appear. */
3367 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3368 || TYPE_STUB (type)))
3369 {
3370 complain_about_struct_wipeout (type);
3371
3372 /* It's probably best to return the type unchanged. */
3373 return type;
3374 }
3375
3376 back_to = make_cleanup (null_cleanup, 0);
3377
3378 INIT_CPLUS_SPECIFIC (type);
3379 TYPE_CODE (type) = type_code;
3380 TYPE_STUB (type) = 0;
3381
3382 /* First comes the total size in bytes. */
3383
3384 {
3385 int nbits;
3386 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3387 if (nbits != 0)
3388 return error_type (pp, objfile);
3389 }
3390
3391 /* Now read the baseclasses, if any, read the regular C struct or C++
3392 class member fields, attach the fields to the type, read the C++
3393 member functions, attach them to the type, and then read any tilde
3394 field (baseclass specifier for the class holding the main vtable). */
3395
3396 if (!read_baseclasses (&fi, pp, type, objfile)
3397 || !read_struct_fields (&fi, pp, type, objfile)
3398 || !attach_fields_to_type (&fi, type, objfile)
3399 || !read_member_functions (&fi, pp, type, objfile)
3400 || !attach_fn_fields_to_type (&fi, type)
3401 || !read_tilde_fields (&fi, pp, type, objfile))
3402 {
3403 type = error_type (pp, objfile);
3404 }
3405
3406 do_cleanups (back_to);
3407 return (type);
3408 }
3409
3410 /* Read a definition of an array type,
3411 and create and return a suitable type object.
3412 Also creates a range type which represents the bounds of that
3413 array. */
3414
3415 static struct type *
3416 read_array_type (char **pp, struct type *type,
3417 struct objfile *objfile)
3418 {
3419 struct type *index_type, *element_type, *range_type;
3420 int lower, upper;
3421 int adjustable = 0;
3422 int nbits;
3423
3424 /* Format of an array type:
3425 "ar<index type>;lower;upper;<array_contents_type>".
3426 OS9000: "arlower,upper;<array_contents_type>".
3427
3428 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3429 for these, produce a type like float[][]. */
3430
3431 {
3432 index_type = read_type (pp, objfile);
3433 if (**pp != ';')
3434 /* Improper format of array type decl. */
3435 return error_type (pp, objfile);
3436 ++*pp;
3437 }
3438
3439 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3440 {
3441 (*pp)++;
3442 adjustable = 1;
3443 }
3444 lower = read_huge_number (pp, ';', &nbits, 0);
3445
3446 if (nbits != 0)
3447 return error_type (pp, objfile);
3448
3449 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3450 {
3451 (*pp)++;
3452 adjustable = 1;
3453 }
3454 upper = read_huge_number (pp, ';', &nbits, 0);
3455 if (nbits != 0)
3456 return error_type (pp, objfile);
3457
3458 element_type = read_type (pp, objfile);
3459
3460 if (adjustable)
3461 {
3462 lower = 0;
3463 upper = -1;
3464 }
3465
3466 range_type =
3467 create_range_type ((struct type *) NULL, index_type, lower, upper);
3468 type = create_array_type (type, element_type, range_type);
3469
3470 return type;
3471 }
3472
3473
3474 /* Read a definition of an enumeration type,
3475 and create and return a suitable type object.
3476 Also defines the symbols that represent the values of the type. */
3477
3478 static struct type *
3479 read_enum_type (char **pp, struct type *type,
3480 struct objfile *objfile)
3481 {
3482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3483 char *p;
3484 char *name;
3485 long n;
3486 struct symbol *sym;
3487 int nsyms = 0;
3488 struct pending **symlist;
3489 struct pending *osyms, *syms;
3490 int o_nsyms;
3491 int nbits;
3492 int unsigned_enum = 1;
3493
3494 #if 0
3495 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3496 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3497 to do? For now, force all enum values to file scope. */
3498 if (within_function)
3499 symlist = &local_symbols;
3500 else
3501 #endif
3502 symlist = &file_symbols;
3503 osyms = *symlist;
3504 o_nsyms = osyms ? osyms->nsyms : 0;
3505
3506 /* The aix4 compiler emits an extra field before the enum members;
3507 my guess is it's a type of some sort. Just ignore it. */
3508 if (**pp == '-')
3509 {
3510 /* Skip over the type. */
3511 while (**pp != ':')
3512 (*pp)++;
3513
3514 /* Skip over the colon. */
3515 (*pp)++;
3516 }
3517
3518 /* Read the value-names and their values.
3519 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3520 A semicolon or comma instead of a NAME means the end. */
3521 while (**pp && **pp != ';' && **pp != ',')
3522 {
3523 STABS_CONTINUE (pp, objfile);
3524 p = *pp;
3525 while (*p != ':')
3526 p++;
3527 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3528 *pp = p + 1;
3529 n = read_huge_number (pp, ',', &nbits, 0);
3530 if (nbits != 0)
3531 return error_type (pp, objfile);
3532
3533 sym = (struct symbol *)
3534 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3535 memset (sym, 0, sizeof (struct symbol));
3536 SYMBOL_SET_LINKAGE_NAME (sym, name);
3537 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3538 SYMBOL_CLASS (sym) = LOC_CONST;
3539 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3540 SYMBOL_VALUE (sym) = n;
3541 if (n < 0)
3542 unsigned_enum = 0;
3543 add_symbol_to_list (sym, symlist);
3544 nsyms++;
3545 }
3546
3547 if (**pp == ';')
3548 (*pp)++; /* Skip the semicolon. */
3549
3550 /* Now fill in the fields of the type-structure. */
3551
3552 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3553 TYPE_CODE (type) = TYPE_CODE_ENUM;
3554 TYPE_STUB (type) = 0;
3555 if (unsigned_enum)
3556 TYPE_UNSIGNED (type) = 1;
3557 TYPE_NFIELDS (type) = nsyms;
3558 TYPE_FIELDS (type) = (struct field *)
3559 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3560 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3561
3562 /* Find the symbols for the values and put them into the type.
3563 The symbols can be found in the symlist that we put them on
3564 to cause them to be defined. osyms contains the old value
3565 of that symlist; everything up to there was defined by us. */
3566 /* Note that we preserve the order of the enum constants, so
3567 that in something like "enum {FOO, LAST_THING=FOO}" we print
3568 FOO, not LAST_THING. */
3569
3570 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3571 {
3572 int last = syms == osyms ? o_nsyms : 0;
3573 int j = syms->nsyms;
3574 for (; --j >= last; --n)
3575 {
3576 struct symbol *xsym = syms->symbol[j];
3577 SYMBOL_TYPE (xsym) = type;
3578 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3579 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3580 TYPE_FIELD_BITSIZE (type, n) = 0;
3581 }
3582 if (syms == osyms)
3583 break;
3584 }
3585
3586 return type;
3587 }
3588
3589 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3590 typedefs in every file (for int, long, etc):
3591
3592 type = b <signed> <width> <format type>; <offset>; <nbits>
3593 signed = u or s.
3594 optional format type = c or b for char or boolean.
3595 offset = offset from high order bit to start bit of type.
3596 width is # bytes in object of this type, nbits is # bits in type.
3597
3598 The width/offset stuff appears to be for small objects stored in
3599 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3600 FIXME. */
3601
3602 static struct type *
3603 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3604 {
3605 int type_bits;
3606 int nbits;
3607 int signed_type;
3608 enum type_code code = TYPE_CODE_INT;
3609
3610 switch (**pp)
3611 {
3612 case 's':
3613 signed_type = 1;
3614 break;
3615 case 'u':
3616 signed_type = 0;
3617 break;
3618 default:
3619 return error_type (pp, objfile);
3620 }
3621 (*pp)++;
3622
3623 /* For some odd reason, all forms of char put a c here. This is strange
3624 because no other type has this honor. We can safely ignore this because
3625 we actually determine 'char'acterness by the number of bits specified in
3626 the descriptor.
3627 Boolean forms, e.g Fortran logical*X, put a b here. */
3628
3629 if (**pp == 'c')
3630 (*pp)++;
3631 else if (**pp == 'b')
3632 {
3633 code = TYPE_CODE_BOOL;
3634 (*pp)++;
3635 }
3636
3637 /* The first number appears to be the number of bytes occupied
3638 by this type, except that unsigned short is 4 instead of 2.
3639 Since this information is redundant with the third number,
3640 we will ignore it. */
3641 read_huge_number (pp, ';', &nbits, 0);
3642 if (nbits != 0)
3643 return error_type (pp, objfile);
3644
3645 /* The second number is always 0, so ignore it too. */
3646 read_huge_number (pp, ';', &nbits, 0);
3647 if (nbits != 0)
3648 return error_type (pp, objfile);
3649
3650 /* The third number is the number of bits for this type. */
3651 type_bits = read_huge_number (pp, 0, &nbits, 0);
3652 if (nbits != 0)
3653 return error_type (pp, objfile);
3654 /* The type *should* end with a semicolon. If it are embedded
3655 in a larger type the semicolon may be the only way to know where
3656 the type ends. If this type is at the end of the stabstring we
3657 can deal with the omitted semicolon (but we don't have to like
3658 it). Don't bother to complain(), Sun's compiler omits the semicolon
3659 for "void". */
3660 if (**pp == ';')
3661 ++(*pp);
3662
3663 if (type_bits == 0)
3664 return init_type (TYPE_CODE_VOID, 1,
3665 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3666 objfile);
3667 else
3668 return init_type (code,
3669 type_bits / TARGET_CHAR_BIT,
3670 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3671 objfile);
3672 }
3673
3674 static struct type *
3675 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3676 {
3677 int nbits;
3678 int details;
3679 int nbytes;
3680 struct type *rettype;
3681
3682 /* The first number has more details about the type, for example
3683 FN_COMPLEX. */
3684 details = read_huge_number (pp, ';', &nbits, 0);
3685 if (nbits != 0)
3686 return error_type (pp, objfile);
3687
3688 /* The second number is the number of bytes occupied by this type */
3689 nbytes = read_huge_number (pp, ';', &nbits, 0);
3690 if (nbits != 0)
3691 return error_type (pp, objfile);
3692
3693 if (details == NF_COMPLEX || details == NF_COMPLEX16
3694 || details == NF_COMPLEX32)
3695 {
3696 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3697 TYPE_TARGET_TYPE (rettype)
3698 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3699 return rettype;
3700 }
3701
3702 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3703 }
3704
3705 /* Read a number from the string pointed to by *PP.
3706 The value of *PP is advanced over the number.
3707 If END is nonzero, the character that ends the
3708 number must match END, or an error happens;
3709 and that character is skipped if it does match.
3710 If END is zero, *PP is left pointing to that character.
3711
3712 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3713 the number is represented in an octal representation, assume that
3714 it is represented in a 2's complement representation with a size of
3715 TWOS_COMPLEMENT_BITS.
3716
3717 If the number fits in a long, set *BITS to 0 and return the value.
3718 If not, set *BITS to be the number of bits in the number and return 0.
3719
3720 If encounter garbage, set *BITS to -1 and return 0. */
3721
3722 static long
3723 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3724 {
3725 char *p = *pp;
3726 int sign = 1;
3727 int sign_bit = 0;
3728 long n = 0;
3729 int radix = 10;
3730 char overflow = 0;
3731 int nbits = 0;
3732 int c;
3733 long upper_limit;
3734 int twos_complement_representation = 0;
3735
3736 if (*p == '-')
3737 {
3738 sign = -1;
3739 p++;
3740 }
3741
3742 /* Leading zero means octal. GCC uses this to output values larger
3743 than an int (because that would be hard in decimal). */
3744 if (*p == '0')
3745 {
3746 radix = 8;
3747 p++;
3748 }
3749
3750 /* Skip extra zeros. */
3751 while (*p == '0')
3752 p++;
3753
3754 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3755 {
3756 /* Octal, possibly signed. Check if we have enough chars for a
3757 negative number. */
3758
3759 size_t len;
3760 char *p1 = p;
3761 while ((c = *p1) >= '0' && c < '8')
3762 p1++;
3763
3764 len = p1 - p;
3765 if (len > twos_complement_bits / 3
3766 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3767 {
3768 /* Ok, we have enough characters for a signed value, check
3769 for signness by testing if the sign bit is set. */
3770 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3771 c = *p - '0';
3772 if (c & (1 << sign_bit))
3773 {
3774 /* Definitely signed. */
3775 twos_complement_representation = 1;
3776 sign = -1;
3777 }
3778 }
3779 }
3780
3781 upper_limit = LONG_MAX / radix;
3782
3783 while ((c = *p++) >= '0' && c < ('0' + radix))
3784 {
3785 if (n <= upper_limit)
3786 {
3787 if (twos_complement_representation)
3788 {
3789 /* Octal, signed, twos complement representation. In
3790 this case, n is the corresponding absolute value. */
3791 if (n == 0)
3792 {
3793 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3794 n = -sn;
3795 }
3796 else
3797 {
3798 n *= radix;
3799 n -= c - '0';
3800 }
3801 }
3802 else
3803 {
3804 /* unsigned representation */
3805 n *= radix;
3806 n += c - '0'; /* FIXME this overflows anyway */
3807 }
3808 }
3809 else
3810 overflow = 1;
3811
3812 /* This depends on large values being output in octal, which is
3813 what GCC does. */
3814 if (radix == 8)
3815 {
3816 if (nbits == 0)
3817 {
3818 if (c == '0')
3819 /* Ignore leading zeroes. */
3820 ;
3821 else if (c == '1')
3822 nbits = 1;
3823 else if (c == '2' || c == '3')
3824 nbits = 2;
3825 else
3826 nbits = 3;
3827 }
3828 else
3829 nbits += 3;
3830 }
3831 }
3832 if (end)
3833 {
3834 if (c && c != end)
3835 {
3836 if (bits != NULL)
3837 *bits = -1;
3838 return 0;
3839 }
3840 }
3841 else
3842 --p;
3843
3844 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3845 {
3846 /* We were supposed to parse a number with maximum
3847 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3848 if (bits != NULL)
3849 *bits = -1;
3850 return 0;
3851 }
3852
3853 *pp = p;
3854 if (overflow)
3855 {
3856 if (nbits == 0)
3857 {
3858 /* Large decimal constants are an error (because it is hard to
3859 count how many bits are in them). */
3860 if (bits != NULL)
3861 *bits = -1;
3862 return 0;
3863 }
3864
3865 /* -0x7f is the same as 0x80. So deal with it by adding one to
3866 the number of bits. Two's complement represention octals
3867 can't have a '-' in front. */
3868 if (sign == -1 && !twos_complement_representation)
3869 ++nbits;
3870 if (bits)
3871 *bits = nbits;
3872 }
3873 else
3874 {
3875 if (bits)
3876 *bits = 0;
3877 return n * sign;
3878 }
3879 /* It's *BITS which has the interesting information. */
3880 return 0;
3881 }
3882
3883 static struct type *
3884 read_range_type (char **pp, int typenums[2], int type_size,
3885 struct objfile *objfile)
3886 {
3887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3888 char *orig_pp = *pp;
3889 int rangenums[2];
3890 long n2, n3;
3891 int n2bits, n3bits;
3892 int self_subrange;
3893 struct type *result_type;
3894 struct type *index_type = NULL;
3895
3896 /* First comes a type we are a subrange of.
3897 In C it is usually 0, 1 or the type being defined. */
3898 if (read_type_number (pp, rangenums) != 0)
3899 return error_type (pp, objfile);
3900 self_subrange = (rangenums[0] == typenums[0] &&
3901 rangenums[1] == typenums[1]);
3902
3903 if (**pp == '=')
3904 {
3905 *pp = orig_pp;
3906 index_type = read_type (pp, objfile);
3907 }
3908
3909 /* A semicolon should now follow; skip it. */
3910 if (**pp == ';')
3911 (*pp)++;
3912
3913 /* The remaining two operands are usually lower and upper bounds
3914 of the range. But in some special cases they mean something else. */
3915 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3916 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3917
3918 if (n2bits == -1 || n3bits == -1)
3919 return error_type (pp, objfile);
3920
3921 if (index_type)
3922 goto handle_true_range;
3923
3924 /* If limits are huge, must be large integral type. */
3925 if (n2bits != 0 || n3bits != 0)
3926 {
3927 char got_signed = 0;
3928 char got_unsigned = 0;
3929 /* Number of bits in the type. */
3930 int nbits = 0;
3931
3932 /* If a type size attribute has been specified, the bounds of
3933 the range should fit in this size. If the lower bounds needs
3934 more bits than the upper bound, then the type is signed. */
3935 if (n2bits <= type_size && n3bits <= type_size)
3936 {
3937 if (n2bits == type_size && n2bits > n3bits)
3938 got_signed = 1;
3939 else
3940 got_unsigned = 1;
3941 nbits = type_size;
3942 }
3943 /* Range from 0 to <large number> is an unsigned large integral type. */
3944 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3945 {
3946 got_unsigned = 1;
3947 nbits = n3bits;
3948 }
3949 /* Range from <large number> to <large number>-1 is a large signed
3950 integral type. Take care of the case where <large number> doesn't
3951 fit in a long but <large number>-1 does. */
3952 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3953 || (n2bits != 0 && n3bits == 0
3954 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3955 && n3 == LONG_MAX))
3956 {
3957 got_signed = 1;
3958 nbits = n2bits;
3959 }
3960
3961 if (got_signed || got_unsigned)
3962 {
3963 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3964 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3965 objfile);
3966 }
3967 else
3968 return error_type (pp, objfile);
3969 }
3970
3971 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3972 if (self_subrange && n2 == 0 && n3 == 0)
3973 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3974
3975 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3976 is the width in bytes.
3977
3978 Fortran programs appear to use this for complex types also. To
3979 distinguish between floats and complex, g77 (and others?) seem
3980 to use self-subranges for the complexes, and subranges of int for
3981 the floats.
3982
3983 Also note that for complexes, g77 sets n2 to the size of one of
3984 the member floats, not the whole complex beast. My guess is that
3985 this was to work well with pre-COMPLEX versions of gdb. */
3986
3987 if (n3 == 0 && n2 > 0)
3988 {
3989 struct type *float_type
3990 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3991
3992 if (self_subrange)
3993 {
3994 struct type *complex_type =
3995 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3996 TYPE_TARGET_TYPE (complex_type) = float_type;
3997 return complex_type;
3998 }
3999 else
4000 return float_type;
4001 }
4002
4003 /* If the upper bound is -1, it must really be an unsigned integral. */
4004
4005 else if (n2 == 0 && n3 == -1)
4006 {
4007 int bits = type_size;
4008 if (bits <= 0)
4009 {
4010 /* We don't know its size. It is unsigned int or unsigned
4011 long. GCC 2.3.3 uses this for long long too, but that is
4012 just a GDB 3.5 compatibility hack. */
4013 bits = gdbarch_int_bit (gdbarch);
4014 }
4015
4016 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4017 TYPE_FLAG_UNSIGNED, NULL, objfile);
4018 }
4019
4020 /* Special case: char is defined (Who knows why) as a subrange of
4021 itself with range 0-127. */
4022 else if (self_subrange && n2 == 0 && n3 == 127)
4023 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4024
4025 /* We used to do this only for subrange of self or subrange of int. */
4026 else if (n2 == 0)
4027 {
4028 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4029 "unsigned long", and we already checked for that,
4030 so don't need to test for it here. */
4031
4032 if (n3 < 0)
4033 /* n3 actually gives the size. */
4034 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4035 NULL, objfile);
4036
4037 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4038 unsigned n-byte integer. But do require n to be a power of
4039 two; we don't want 3- and 5-byte integers flying around. */
4040 {
4041 int bytes;
4042 unsigned long bits;
4043
4044 bits = n3;
4045 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4046 bits >>= 8;
4047 if (bits == 0
4048 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4049 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4050 objfile);
4051 }
4052 }
4053 /* I think this is for Convex "long long". Since I don't know whether
4054 Convex sets self_subrange, I also accept that particular size regardless
4055 of self_subrange. */
4056 else if (n3 == 0 && n2 < 0
4057 && (self_subrange
4058 || n2 == -gdbarch_long_long_bit
4059 (gdbarch) / TARGET_CHAR_BIT))
4060 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4061 else if (n2 == -n3 - 1)
4062 {
4063 if (n3 == 0x7f)
4064 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4065 if (n3 == 0x7fff)
4066 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4067 if (n3 == 0x7fffffff)
4068 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4069 }
4070
4071 /* We have a real range type on our hands. Allocate space and
4072 return a real pointer. */
4073 handle_true_range:
4074
4075 if (self_subrange)
4076 index_type = objfile_type (objfile)->builtin_int;
4077 else
4078 index_type = *dbx_lookup_type (rangenums, objfile);
4079 if (index_type == NULL)
4080 {
4081 /* Does this actually ever happen? Is that why we are worrying
4082 about dealing with it rather than just calling error_type? */
4083
4084 complaint (&symfile_complaints,
4085 _("base type %d of range type is not defined"), rangenums[1]);
4086
4087 index_type = objfile_type (objfile)->builtin_int;
4088 }
4089
4090 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4091 return (result_type);
4092 }
4093
4094 /* Read in an argument list. This is a list of types, separated by commas
4095 and terminated with END. Return the list of types read in, or NULL
4096 if there is an error. */
4097
4098 static struct field *
4099 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4100 int *varargsp)
4101 {
4102 /* FIXME! Remove this arbitrary limit! */
4103 struct type *types[1024]; /* allow for fns of 1023 parameters */
4104 int n = 0, i;
4105 struct field *rval;
4106
4107 while (**pp != end)
4108 {
4109 if (**pp != ',')
4110 /* Invalid argument list: no ','. */
4111 return NULL;
4112 (*pp)++;
4113 STABS_CONTINUE (pp, objfile);
4114 types[n++] = read_type (pp, objfile);
4115 }
4116 (*pp)++; /* get past `end' (the ':' character) */
4117
4118 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4119 *varargsp = 1;
4120 else
4121 {
4122 n--;
4123 *varargsp = 0;
4124 }
4125
4126 rval = (struct field *) xmalloc (n * sizeof (struct field));
4127 memset (rval, 0, n * sizeof (struct field));
4128 for (i = 0; i < n; i++)
4129 rval[i].type = types[i];
4130 *nargsp = n;
4131 return rval;
4132 }
4133 \f
4134 /* Common block handling. */
4135
4136 /* List of symbols declared since the last BCOMM. This list is a tail
4137 of local_symbols. When ECOMM is seen, the symbols on the list
4138 are noted so their proper addresses can be filled in later,
4139 using the common block base address gotten from the assembler
4140 stabs. */
4141
4142 static struct pending *common_block;
4143 static int common_block_i;
4144
4145 /* Name of the current common block. We get it from the BCOMM instead of the
4146 ECOMM to match IBM documentation (even though IBM puts the name both places
4147 like everyone else). */
4148 static char *common_block_name;
4149
4150 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4151 to remain after this function returns. */
4152
4153 void
4154 common_block_start (char *name, struct objfile *objfile)
4155 {
4156 if (common_block_name != NULL)
4157 {
4158 complaint (&symfile_complaints,
4159 _("Invalid symbol data: common block within common block"));
4160 }
4161 common_block = local_symbols;
4162 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4163 common_block_name = obsavestring (name, strlen (name),
4164 &objfile->objfile_obstack);
4165 }
4166
4167 /* Process a N_ECOMM symbol. */
4168
4169 void
4170 common_block_end (struct objfile *objfile)
4171 {
4172 /* Symbols declared since the BCOMM are to have the common block
4173 start address added in when we know it. common_block and
4174 common_block_i point to the first symbol after the BCOMM in
4175 the local_symbols list; copy the list and hang it off the
4176 symbol for the common block name for later fixup. */
4177 int i;
4178 struct symbol *sym;
4179 struct pending *new = 0;
4180 struct pending *next;
4181 int j;
4182
4183 if (common_block_name == NULL)
4184 {
4185 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4186 return;
4187 }
4188
4189 sym = (struct symbol *)
4190 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4191 memset (sym, 0, sizeof (struct symbol));
4192 /* Note: common_block_name already saved on objfile_obstack */
4193 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4194 SYMBOL_CLASS (sym) = LOC_BLOCK;
4195
4196 /* Now we copy all the symbols which have been defined since the BCOMM. */
4197
4198 /* Copy all the struct pendings before common_block. */
4199 for (next = local_symbols;
4200 next != NULL && next != common_block;
4201 next = next->next)
4202 {
4203 for (j = 0; j < next->nsyms; j++)
4204 add_symbol_to_list (next->symbol[j], &new);
4205 }
4206
4207 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4208 NULL, it means copy all the local symbols (which we already did
4209 above). */
4210
4211 if (common_block != NULL)
4212 for (j = common_block_i; j < common_block->nsyms; j++)
4213 add_symbol_to_list (common_block->symbol[j], &new);
4214
4215 SYMBOL_TYPE (sym) = (struct type *) new;
4216
4217 /* Should we be putting local_symbols back to what it was?
4218 Does it matter? */
4219
4220 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4221 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4222 global_sym_chain[i] = sym;
4223 common_block_name = NULL;
4224 }
4225
4226 /* Add a common block's start address to the offset of each symbol
4227 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4228 the common block name). */
4229
4230 static void
4231 fix_common_block (struct symbol *sym, int valu)
4232 {
4233 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4234 for (; next; next = next->next)
4235 {
4236 int j;
4237 for (j = next->nsyms - 1; j >= 0; j--)
4238 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4239 }
4240 }
4241 \f
4242
4243
4244 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4245 See add_undefined_type for more details. */
4246
4247 static void
4248 add_undefined_type_noname (struct type *type, int typenums[2])
4249 {
4250 struct nat nat;
4251
4252 nat.typenums[0] = typenums [0];
4253 nat.typenums[1] = typenums [1];
4254 nat.type = type;
4255
4256 if (noname_undefs_length == noname_undefs_allocated)
4257 {
4258 noname_undefs_allocated *= 2;
4259 noname_undefs = (struct nat *)
4260 xrealloc ((char *) noname_undefs,
4261 noname_undefs_allocated * sizeof (struct nat));
4262 }
4263 noname_undefs[noname_undefs_length++] = nat;
4264 }
4265
4266 /* Add TYPE to the UNDEF_TYPES vector.
4267 See add_undefined_type for more details. */
4268
4269 static void
4270 add_undefined_type_1 (struct type *type)
4271 {
4272 if (undef_types_length == undef_types_allocated)
4273 {
4274 undef_types_allocated *= 2;
4275 undef_types = (struct type **)
4276 xrealloc ((char *) undef_types,
4277 undef_types_allocated * sizeof (struct type *));
4278 }
4279 undef_types[undef_types_length++] = type;
4280 }
4281
4282 /* What about types defined as forward references inside of a small lexical
4283 scope? */
4284 /* Add a type to the list of undefined types to be checked through
4285 once this file has been read in.
4286
4287 In practice, we actually maintain two such lists: The first list
4288 (UNDEF_TYPES) is used for types whose name has been provided, and
4289 concerns forward references (eg 'xs' or 'xu' forward references);
4290 the second list (NONAME_UNDEFS) is used for types whose name is
4291 unknown at creation time, because they were referenced through
4292 their type number before the actual type was declared.
4293 This function actually adds the given type to the proper list. */
4294
4295 static void
4296 add_undefined_type (struct type *type, int typenums[2])
4297 {
4298 if (TYPE_TAG_NAME (type) == NULL)
4299 add_undefined_type_noname (type, typenums);
4300 else
4301 add_undefined_type_1 (type);
4302 }
4303
4304 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4305
4306 static void
4307 cleanup_undefined_types_noname (struct objfile *objfile)
4308 {
4309 int i;
4310
4311 for (i = 0; i < noname_undefs_length; i++)
4312 {
4313 struct nat nat = noname_undefs[i];
4314 struct type **type;
4315
4316 type = dbx_lookup_type (nat.typenums, objfile);
4317 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4318 {
4319 /* The instance flags of the undefined type are still unset,
4320 and needs to be copied over from the reference type.
4321 Since replace_type expects them to be identical, we need
4322 to set these flags manually before hand. */
4323 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4324 replace_type (nat.type, *type);
4325 }
4326 }
4327
4328 noname_undefs_length = 0;
4329 }
4330
4331 /* Go through each undefined type, see if it's still undefined, and fix it
4332 up if possible. We have two kinds of undefined types:
4333
4334 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4335 Fix: update array length using the element bounds
4336 and the target type's length.
4337 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4338 yet defined at the time a pointer to it was made.
4339 Fix: Do a full lookup on the struct/union tag. */
4340
4341 static void
4342 cleanup_undefined_types_1 (void)
4343 {
4344 struct type **type;
4345
4346 /* Iterate over every undefined type, and look for a symbol whose type
4347 matches our undefined type. The symbol matches if:
4348 1. It is a typedef in the STRUCT domain;
4349 2. It has the same name, and same type code;
4350 3. The instance flags are identical.
4351
4352 It is important to check the instance flags, because we have seen
4353 examples where the debug info contained definitions such as:
4354
4355 "foo_t:t30=B31=xefoo_t:"
4356
4357 In this case, we have created an undefined type named "foo_t" whose
4358 instance flags is null (when processing "xefoo_t"), and then created
4359 another type with the same name, but with different instance flags
4360 ('B' means volatile). I think that the definition above is wrong,
4361 since the same type cannot be volatile and non-volatile at the same
4362 time, but we need to be able to cope with it when it happens. The
4363 approach taken here is to treat these two types as different. */
4364
4365 for (type = undef_types; type < undef_types + undef_types_length; type++)
4366 {
4367 switch (TYPE_CODE (*type))
4368 {
4369
4370 case TYPE_CODE_STRUCT:
4371 case TYPE_CODE_UNION:
4372 case TYPE_CODE_ENUM:
4373 {
4374 /* Check if it has been defined since. Need to do this here
4375 as well as in check_typedef to deal with the (legitimate in
4376 C though not C++) case of several types with the same name
4377 in different source files. */
4378 if (TYPE_STUB (*type))
4379 {
4380 struct pending *ppt;
4381 int i;
4382 /* Name of the type, without "struct" or "union" */
4383 char *typename = TYPE_TAG_NAME (*type);
4384
4385 if (typename == NULL)
4386 {
4387 complaint (&symfile_complaints, _("need a type name"));
4388 break;
4389 }
4390 for (ppt = file_symbols; ppt; ppt = ppt->next)
4391 {
4392 for (i = 0; i < ppt->nsyms; i++)
4393 {
4394 struct symbol *sym = ppt->symbol[i];
4395
4396 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4397 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4398 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4399 TYPE_CODE (*type))
4400 && (TYPE_INSTANCE_FLAGS (*type) ==
4401 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4402 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4403 typename) == 0)
4404 replace_type (*type, SYMBOL_TYPE (sym));
4405 }
4406 }
4407 }
4408 }
4409 break;
4410
4411 default:
4412 {
4413 complaint (&symfile_complaints,
4414 _("forward-referenced types left unresolved, "
4415 "type code %d."),
4416 TYPE_CODE (*type));
4417 }
4418 break;
4419 }
4420 }
4421
4422 undef_types_length = 0;
4423 }
4424
4425 /* Try to fix all the undefined types we ecountered while processing
4426 this unit. */
4427
4428 void
4429 cleanup_undefined_types (struct objfile *objfile)
4430 {
4431 cleanup_undefined_types_1 ();
4432 cleanup_undefined_types_noname (objfile);
4433 }
4434
4435 /* Scan through all of the global symbols defined in the object file,
4436 assigning values to the debugging symbols that need to be assigned
4437 to. Get these symbols from the minimal symbol table. */
4438
4439 void
4440 scan_file_globals (struct objfile *objfile)
4441 {
4442 int hash;
4443 struct minimal_symbol *msymbol;
4444 struct symbol *sym, *prev;
4445 struct objfile *resolve_objfile;
4446
4447 /* SVR4 based linkers copy referenced global symbols from shared
4448 libraries to the main executable.
4449 If we are scanning the symbols for a shared library, try to resolve
4450 them from the minimal symbols of the main executable first. */
4451
4452 if (symfile_objfile && objfile != symfile_objfile)
4453 resolve_objfile = symfile_objfile;
4454 else
4455 resolve_objfile = objfile;
4456
4457 while (1)
4458 {
4459 /* Avoid expensive loop through all minimal symbols if there are
4460 no unresolved symbols. */
4461 for (hash = 0; hash < HASHSIZE; hash++)
4462 {
4463 if (global_sym_chain[hash])
4464 break;
4465 }
4466 if (hash >= HASHSIZE)
4467 return;
4468
4469 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4470 {
4471 QUIT;
4472
4473 /* Skip static symbols. */
4474 switch (MSYMBOL_TYPE (msymbol))
4475 {
4476 case mst_file_text:
4477 case mst_file_data:
4478 case mst_file_bss:
4479 continue;
4480 default:
4481 break;
4482 }
4483
4484 prev = NULL;
4485
4486 /* Get the hash index and check all the symbols
4487 under that hash index. */
4488
4489 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4490
4491 for (sym = global_sym_chain[hash]; sym;)
4492 {
4493 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4494 SYMBOL_LINKAGE_NAME (sym)) == 0)
4495 {
4496 /* Splice this symbol out of the hash chain and
4497 assign the value we have to it. */
4498 if (prev)
4499 {
4500 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4501 }
4502 else
4503 {
4504 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4505 }
4506
4507 /* Check to see whether we need to fix up a common block. */
4508 /* Note: this code might be executed several times for
4509 the same symbol if there are multiple references. */
4510 if (sym)
4511 {
4512 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4513 {
4514 fix_common_block (sym,
4515 SYMBOL_VALUE_ADDRESS (msymbol));
4516 }
4517 else
4518 {
4519 SYMBOL_VALUE_ADDRESS (sym)
4520 = SYMBOL_VALUE_ADDRESS (msymbol);
4521 }
4522 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4523 }
4524
4525 if (prev)
4526 {
4527 sym = SYMBOL_VALUE_CHAIN (prev);
4528 }
4529 else
4530 {
4531 sym = global_sym_chain[hash];
4532 }
4533 }
4534 else
4535 {
4536 prev = sym;
4537 sym = SYMBOL_VALUE_CHAIN (sym);
4538 }
4539 }
4540 }
4541 if (resolve_objfile == objfile)
4542 break;
4543 resolve_objfile = objfile;
4544 }
4545
4546 /* Change the storage class of any remaining unresolved globals to
4547 LOC_UNRESOLVED and remove them from the chain. */
4548 for (hash = 0; hash < HASHSIZE; hash++)
4549 {
4550 sym = global_sym_chain[hash];
4551 while (sym)
4552 {
4553 prev = sym;
4554 sym = SYMBOL_VALUE_CHAIN (sym);
4555
4556 /* Change the symbol address from the misleading chain value
4557 to address zero. */
4558 SYMBOL_VALUE_ADDRESS (prev) = 0;
4559
4560 /* Complain about unresolved common block symbols. */
4561 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4562 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4563 else
4564 complaint (&symfile_complaints,
4565 _("%s: common block `%s' from global_sym_chain unresolved"),
4566 objfile->name, SYMBOL_PRINT_NAME (prev));
4567 }
4568 }
4569 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4570 }
4571
4572 /* Initialize anything that needs initializing when starting to read
4573 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4574 to a psymtab. */
4575
4576 void
4577 stabsread_init (void)
4578 {
4579 }
4580
4581 /* Initialize anything that needs initializing when a completely new
4582 symbol file is specified (not just adding some symbols from another
4583 file, e.g. a shared library). */
4584
4585 void
4586 stabsread_new_init (void)
4587 {
4588 /* Empty the hash table of global syms looking for values. */
4589 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4590 }
4591
4592 /* Initialize anything that needs initializing at the same time as
4593 start_symtab() is called. */
4594
4595 void
4596 start_stabs (void)
4597 {
4598 global_stabs = NULL; /* AIX COFF */
4599 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4600 n_this_object_header_files = 1;
4601 type_vector_length = 0;
4602 type_vector = (struct type **) 0;
4603
4604 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4605 common_block_name = NULL;
4606 }
4607
4608 /* Call after end_symtab() */
4609
4610 void
4611 end_stabs (void)
4612 {
4613 if (type_vector)
4614 {
4615 xfree (type_vector);
4616 }
4617 type_vector = 0;
4618 type_vector_length = 0;
4619 previous_stab_code = 0;
4620 }
4621
4622 void
4623 finish_global_stabs (struct objfile *objfile)
4624 {
4625 if (global_stabs)
4626 {
4627 patch_block_stabs (global_symbols, global_stabs, objfile);
4628 xfree (global_stabs);
4629 global_stabs = NULL;
4630 }
4631 }
4632
4633 /* Find the end of the name, delimited by a ':', but don't match
4634 ObjC symbols which look like -[Foo bar::]:bla. */
4635 static char *
4636 find_name_end (char *name)
4637 {
4638 char *s = name;
4639 if (s[0] == '-' || *s == '+')
4640 {
4641 /* Must be an ObjC method symbol. */
4642 if (s[1] != '[')
4643 {
4644 error (_("invalid symbol name \"%s\""), name);
4645 }
4646 s = strchr (s, ']');
4647 if (s == NULL)
4648 {
4649 error (_("invalid symbol name \"%s\""), name);
4650 }
4651 return strchr (s, ':');
4652 }
4653 else
4654 {
4655 return strchr (s, ':');
4656 }
4657 }
4658
4659 /* Initializer for this module */
4660
4661 void
4662 _initialize_stabsread (void)
4663 {
4664 rs6000_builtin_type_data = register_objfile_data ();
4665
4666 undef_types_allocated = 20;
4667 undef_types_length = 0;
4668 undef_types = (struct type **)
4669 xmalloc (undef_types_allocated * sizeof (struct type *));
4670
4671 noname_undefs_allocated = 20;
4672 noname_undefs_length = 0;
4673 noname_undefs = (struct nat *)
4674 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4675 }
This page took 0.174293 seconds and 4 git commands to generate.