fb031c71116ffe25838a9da9052c5eb089c96e13
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2])
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
284 {
285 static struct type **temp_type_p;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type_p = &builtin_type_error;
291 return temp_type_p;
292 }
293
294 f = HEADER_FILES (current_objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 DEPRECATED_SYMBOL_NAME (sym) =
391 obsavestring (name, pp - name, &objfile->objfile_obstack);
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437 if (**pp == '(')
438 {
439 (*pp)++;
440 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
441 if (nbits != 0)
442 return -1;
443 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
444 if (nbits != 0)
445 return -1;
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
451 if (nbits != 0)
452 return -1;
453 }
454 return 0;
455 }
456 \f
457
458 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
459 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
460 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
461 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
462
463 /* Structure for storing pointers to reference definitions for fast lookup
464 during "process_later". */
465
466 struct ref_map
467 {
468 char *stabs;
469 CORE_ADDR value;
470 struct symbol *sym;
471 };
472
473 #define MAX_CHUNK_REFS 100
474 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
475 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
476
477 static struct ref_map *ref_map;
478
479 /* Ptr to free cell in chunk's linked list. */
480 static int ref_count = 0;
481
482 /* Number of chunks malloced. */
483 static int ref_chunk = 0;
484
485 /* This file maintains a cache of stabs aliases found in the symbol
486 table. If the symbol table changes, this cache must be cleared
487 or we are left holding onto data in invalid obstacks. */
488 void
489 stabsread_clear_cache (void)
490 {
491 ref_count = 0;
492 ref_chunk = 0;
493 }
494
495 /* Create array of pointers mapping refids to symbols and stab strings.
496 Add pointers to reference definition symbols and/or their values as we
497 find them, using their reference numbers as our index.
498 These will be used later when we resolve references. */
499 void
500 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
501 {
502 if (ref_count == 0)
503 ref_chunk = 0;
504 if (refnum >= ref_count)
505 ref_count = refnum + 1;
506 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
507 {
508 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
509 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
510 ref_map = (struct ref_map *)
511 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
512 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
513 ref_chunk += new_chunks;
514 }
515 ref_map[refnum].stabs = stabs;
516 ref_map[refnum].sym = sym;
517 ref_map[refnum].value = value;
518 }
519
520 /* Return defined sym for the reference REFNUM. */
521 struct symbol *
522 ref_search (int refnum)
523 {
524 if (refnum < 0 || refnum > ref_count)
525 return 0;
526 return ref_map[refnum].sym;
527 }
528
529 /* Parse a reference id in STRING and return the resulting
530 reference number. Move STRING beyond the reference id. */
531
532 static int
533 process_reference (char **string)
534 {
535 char *p;
536 int refnum = 0;
537
538 if (**string != '#')
539 return 0;
540
541 /* Advance beyond the initial '#'. */
542 p = *string + 1;
543
544 /* Read number as reference id. */
545 while (*p && isdigit (*p))
546 {
547 refnum = refnum * 10 + *p - '0';
548 p++;
549 }
550 *string = p;
551 return refnum;
552 }
553
554 /* If STRING defines a reference, store away a pointer to the reference
555 definition for later use. Return the reference number. */
556
557 int
558 symbol_reference_defined (char **string)
559 {
560 char *p = *string;
561 int refnum = 0;
562
563 refnum = process_reference (&p);
564
565 /* Defining symbols end in '=' */
566 if (*p == '=')
567 {
568 /* Symbol is being defined here. */
569 *string = p + 1;
570 return refnum;
571 }
572 else
573 {
574 /* Must be a reference. Either the symbol has already been defined,
575 or this is a forward reference to it. */
576 *string = p;
577 return -1;
578 }
579 }
580
581 struct symbol *
582 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
583 struct objfile *objfile)
584 {
585 struct symbol *sym;
586 char *p = (char *) find_name_end (string);
587 int deftype;
588 int synonym = 0;
589 int i;
590
591 /* We would like to eliminate nameless symbols, but keep their types.
592 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
593 to type 2, but, should not create a symbol to address that type. Since
594 the symbol will be nameless, there is no way any user can refer to it. */
595
596 int nameless;
597
598 /* Ignore syms with empty names. */
599 if (string[0] == 0)
600 return 0;
601
602 /* Ignore old-style symbols from cc -go */
603 if (p == 0)
604 return 0;
605
606 while (p[1] == ':')
607 {
608 p += 2;
609 p = strchr (p, ':');
610 }
611
612 /* If a nameless stab entry, all we need is the type, not the symbol.
613 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
614 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
615
616 current_symbol = sym = (struct symbol *)
617 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
618 memset (sym, 0, sizeof (struct symbol));
619
620 switch (type & N_TYPE)
621 {
622 case N_TEXT:
623 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
624 break;
625 case N_DATA:
626 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
627 break;
628 case N_BSS:
629 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
630 break;
631 }
632
633 if (processing_gcc_compilation)
634 {
635 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
636 number of bytes occupied by a type or object, which we ignore. */
637 SYMBOL_LINE (sym) = desc;
638 }
639 else
640 {
641 SYMBOL_LINE (sym) = 0; /* unknown */
642 }
643
644 if (is_cplus_marker (string[0]))
645 {
646 /* Special GNU C++ names. */
647 switch (string[1])
648 {
649 case 't':
650 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
651 &objfile->objfile_obstack);
652 break;
653
654 case 'v': /* $vtbl_ptr_type */
655 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
656 goto normal;
657
658 case 'e':
659 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
660 &objfile->objfile_obstack);
661 break;
662
663 case '_':
664 /* This was an anonymous type that was never fixed up. */
665 goto normal;
666
667 case 'X':
668 /* SunPRO (3.0 at least) static variable encoding. */
669 if (gdbarch_static_transform_name_p (current_gdbarch))
670 goto normal;
671 /* ... fall through ... */
672
673 default:
674 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
675 string);
676 goto normal; /* Do *something* with it */
677 }
678 }
679 else
680 {
681 normal:
682 SYMBOL_LANGUAGE (sym) = current_subfile->language;
683 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
684 }
685 p++;
686
687 /* Determine the type of name being defined. */
688 #if 0
689 /* Getting GDB to correctly skip the symbol on an undefined symbol
690 descriptor and not ever dump core is a very dodgy proposition if
691 we do things this way. I say the acorn RISC machine can just
692 fix their compiler. */
693 /* The Acorn RISC machine's compiler can put out locals that don't
694 start with "234=" or "(3,4)=", so assume anything other than the
695 deftypes we know how to handle is a local. */
696 if (!strchr ("cfFGpPrStTvVXCR", *p))
697 #else
698 if (isdigit (*p) || *p == '(' || *p == '-')
699 #endif
700 deftype = 'l';
701 else
702 deftype = *p++;
703
704 switch (deftype)
705 {
706 case 'c':
707 /* c is a special case, not followed by a type-number.
708 SYMBOL:c=iVALUE for an integer constant symbol.
709 SYMBOL:c=rVALUE for a floating constant symbol.
710 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
711 e.g. "b:c=e6,0" for "const b = blob1"
712 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
713 if (*p != '=')
714 {
715 SYMBOL_CLASS (sym) = LOC_CONST;
716 SYMBOL_TYPE (sym) = error_type (&p, objfile);
717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
718 add_symbol_to_list (sym, &file_symbols);
719 return sym;
720 }
721 ++p;
722 switch (*p++)
723 {
724 case 'r':
725 {
726 double d = atof (p);
727 gdb_byte *dbl_valu;
728
729 /* FIXME-if-picky-about-floating-accuracy: Should be using
730 target arithmetic to get the value. real.c in GCC
731 probably has the necessary code. */
732
733 /* FIXME: lookup_fundamental_type is a hack. We should be
734 creating a type especially for the type of float constants.
735 Problem is, what type should it be?
736
737 Also, what should the name of this type be? Should we
738 be using 'S' constants (see stabs.texinfo) instead? */
739
740 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
741 FT_DBL_PREC_FLOAT);
742 dbl_valu =
743 obstack_alloc (&objfile->objfile_obstack,
744 TYPE_LENGTH (SYMBOL_TYPE (sym)));
745 store_typed_floating (dbl_valu, SYMBOL_TYPE (sym), d);
746 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
747 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
748 }
749 break;
750 case 'i':
751 {
752 /* Defining integer constants this way is kind of silly,
753 since 'e' constants allows the compiler to give not
754 only the value, but the type as well. C has at least
755 int, long, unsigned int, and long long as constant
756 types; other languages probably should have at least
757 unsigned as well as signed constants. */
758
759 /* We just need one int constant type for all objfiles.
760 It doesn't depend on languages or anything (arguably its
761 name should be a language-specific name for a type of
762 that size, but I'm inclined to say that if the compiler
763 wants a nice name for the type, it can use 'e'). */
764 static struct type *int_const_type;
765
766 /* Yes, this is as long as a *host* int. That is because we
767 use atoi. */
768 if (int_const_type == NULL)
769 int_const_type =
770 init_type (TYPE_CODE_INT,
771 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
772 "integer constant",
773 (struct objfile *) NULL);
774 SYMBOL_TYPE (sym) = int_const_type;
775 SYMBOL_VALUE (sym) = atoi (p);
776 SYMBOL_CLASS (sym) = LOC_CONST;
777 }
778 break;
779 case 'e':
780 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
781 can be represented as integral.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 {
785 SYMBOL_CLASS (sym) = LOC_CONST;
786 SYMBOL_TYPE (sym) = read_type (&p, objfile);
787
788 if (*p != ',')
789 {
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
791 break;
792 }
793 ++p;
794
795 /* If the value is too big to fit in an int (perhaps because
796 it is unsigned), or something like that, we silently get
797 a bogus value. The type and everything else about it is
798 correct. Ideally, we should be using whatever we have
799 available for parsing unsigned and long long values,
800 however. */
801 SYMBOL_VALUE (sym) = atoi (p);
802 }
803 break;
804 default:
805 {
806 SYMBOL_CLASS (sym) = LOC_CONST;
807 SYMBOL_TYPE (sym) = error_type (&p, objfile);
808 }
809 }
810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
811 add_symbol_to_list (sym, &file_symbols);
812 return sym;
813
814 case 'C':
815 /* The name of a caught exception. */
816 SYMBOL_TYPE (sym) = read_type (&p, objfile);
817 SYMBOL_CLASS (sym) = LOC_LABEL;
818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
819 SYMBOL_VALUE_ADDRESS (sym) = valu;
820 add_symbol_to_list (sym, &local_symbols);
821 break;
822
823 case 'f':
824 /* A static function definition. */
825 SYMBOL_TYPE (sym) = read_type (&p, objfile);
826 SYMBOL_CLASS (sym) = LOC_BLOCK;
827 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
828 add_symbol_to_list (sym, &file_symbols);
829 /* fall into process_function_types. */
830
831 process_function_types:
832 /* Function result types are described as the result type in stabs.
833 We need to convert this to the function-returning-type-X type
834 in GDB. E.g. "int" is converted to "function returning int". */
835 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
836 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
837
838 /* All functions in C++ have prototypes. Stabs does not offer an
839 explicit way to identify prototyped or unprototyped functions,
840 but both GCC and Sun CC emit stabs for the "call-as" type rather
841 than the "declared-as" type for unprototyped functions, so
842 we treat all functions as if they were prototyped. This is used
843 primarily for promotion when calling the function from GDB. */
844 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
845
846 /* fall into process_prototype_types */
847
848 process_prototype_types:
849 /* Sun acc puts declared types of arguments here. */
850 if (*p == ';')
851 {
852 struct type *ftype = SYMBOL_TYPE (sym);
853 int nsemi = 0;
854 int nparams = 0;
855 char *p1 = p;
856
857 /* Obtain a worst case guess for the number of arguments
858 by counting the semicolons. */
859 while (*p1)
860 {
861 if (*p1++ == ';')
862 nsemi++;
863 }
864
865 /* Allocate parameter information fields and fill them in. */
866 TYPE_FIELDS (ftype) = (struct field *)
867 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
868 while (*p++ == ';')
869 {
870 struct type *ptype;
871
872 /* A type number of zero indicates the start of varargs.
873 FIXME: GDB currently ignores vararg functions. */
874 if (p[0] == '0' && p[1] == '\0')
875 break;
876 ptype = read_type (&p, objfile);
877
878 /* The Sun compilers mark integer arguments, which should
879 be promoted to the width of the calling conventions, with
880 a type which references itself. This type is turned into
881 a TYPE_CODE_VOID type by read_type, and we have to turn
882 it back into builtin_type_int here.
883 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
884 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
885 ptype = builtin_type_int;
886 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
887 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
888 }
889 TYPE_NFIELDS (ftype) = nparams;
890 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
891 }
892 break;
893
894 case 'F':
895 /* A global function definition. */
896 SYMBOL_TYPE (sym) = read_type (&p, objfile);
897 SYMBOL_CLASS (sym) = LOC_BLOCK;
898 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
899 add_symbol_to_list (sym, &global_symbols);
900 goto process_function_types;
901
902 case 'G':
903 /* For a class G (global) symbol, it appears that the
904 value is not correct. It is necessary to search for the
905 corresponding linker definition to find the value.
906 These definitions appear at the end of the namelist. */
907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
908 SYMBOL_CLASS (sym) = LOC_STATIC;
909 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
910 /* Don't add symbol references to global_sym_chain.
911 Symbol references don't have valid names and wont't match up with
912 minimal symbols when the global_sym_chain is relocated.
913 We'll fixup symbol references when we fixup the defining symbol. */
914 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
915 {
916 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
917 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
918 global_sym_chain[i] = sym;
919 }
920 add_symbol_to_list (sym, &global_symbols);
921 break;
922
923 /* This case is faked by a conditional above,
924 when there is no code letter in the dbx data.
925 Dbx data never actually contains 'l'. */
926 case 's':
927 case 'l':
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_CLASS (sym) = LOC_LOCAL;
930 SYMBOL_VALUE (sym) = valu;
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &local_symbols);
933 break;
934
935 case 'p':
936 if (*p == 'F')
937 /* pF is a two-letter code that means a function parameter in Fortran.
938 The type-number specifies the type of the return value.
939 Translate it into a pointer-to-function type. */
940 {
941 p++;
942 SYMBOL_TYPE (sym)
943 = lookup_pointer_type
944 (lookup_function_type (read_type (&p, objfile)));
945 }
946 else
947 SYMBOL_TYPE (sym) = read_type (&p, objfile);
948
949 SYMBOL_CLASS (sym) = LOC_ARG;
950 SYMBOL_VALUE (sym) = valu;
951 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
952 add_symbol_to_list (sym, &local_symbols);
953
954 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
955 {
956 /* On little-endian machines, this crud is never necessary,
957 and, if the extra bytes contain garbage, is harmful. */
958 break;
959 }
960
961 /* If it's gcc-compiled, if it says `short', believe it. */
962 if (processing_gcc_compilation
963 || gdbarch_believe_pcc_promotion (current_gdbarch))
964 break;
965
966 if (!gdbarch_believe_pcc_promotion (current_gdbarch))
967 {
968 /* This is the signed type which arguments get promoted to. */
969 static struct type *pcc_promotion_type;
970 /* This is the unsigned type which arguments get promoted to. */
971 static struct type *pcc_unsigned_promotion_type;
972
973 /* Call it "int" because this is mainly C lossage. */
974 if (pcc_promotion_type == NULL)
975 pcc_promotion_type =
976 init_type (TYPE_CODE_INT,
977 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
978 0, "int", NULL);
979
980 if (pcc_unsigned_promotion_type == NULL)
981 pcc_unsigned_promotion_type =
982 init_type (TYPE_CODE_INT,
983 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
984 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
985
986 /* If PCC says a parameter is a short or a char, it is
987 really an int. */
988 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
989 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
990 {
991 SYMBOL_TYPE (sym) =
992 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
993 ? pcc_unsigned_promotion_type
994 : pcc_promotion_type;
995 }
996 break;
997 }
998
999 case 'P':
1000 /* acc seems to use P to declare the prototypes of functions that
1001 are referenced by this file. gdb is not prepared to deal
1002 with this extra information. FIXME, it ought to. */
1003 if (type == N_FUN)
1004 {
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 goto process_prototype_types;
1007 }
1008 /*FALLTHROUGH */
1009
1010 case 'R':
1011 /* Parameter which is in a register. */
1012 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1013 SYMBOL_CLASS (sym) = LOC_REGPARM;
1014 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1015 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1016 + gdbarch_num_pseudo_regs (current_gdbarch))
1017 {
1018 reg_value_complaint (SYMBOL_VALUE (sym),
1019 gdbarch_num_regs (current_gdbarch)
1020 + gdbarch_num_pseudo_regs (current_gdbarch),
1021 SYMBOL_PRINT_NAME (sym));
1022 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1023 /* Known safe, though useless */
1024 }
1025 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1026 add_symbol_to_list (sym, &local_symbols);
1027 break;
1028
1029 case 'r':
1030 /* Register variable (either global or local). */
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_CLASS (sym) = LOC_REGISTER;
1033 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1034 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1035 + gdbarch_num_pseudo_regs (current_gdbarch))
1036 {
1037 reg_value_complaint (SYMBOL_VALUE (sym),
1038 gdbarch_num_regs (current_gdbarch)
1039 + gdbarch_num_pseudo_regs (current_gdbarch),
1040 SYMBOL_PRINT_NAME (sym));
1041 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1042 /* Known safe, though useless */
1043 }
1044 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1045 if (within_function)
1046 {
1047 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1048 the same name to represent an argument passed in a
1049 register. GCC uses 'P' for the same case. So if we find
1050 such a symbol pair we combine it into one 'P' symbol.
1051 For Sun cc we need to do this regardless of
1052 stabs_argument_has_addr, because the compiler puts out
1053 the 'p' symbol even if it never saves the argument onto
1054 the stack.
1055
1056 On most machines, we want to preserve both symbols, so
1057 that we can still get information about what is going on
1058 with the stack (VAX for computing args_printed, using
1059 stack slots instead of saved registers in backtraces,
1060 etc.).
1061
1062 Note that this code illegally combines
1063 main(argc) struct foo argc; { register struct foo argc; }
1064 but this case is considered pathological and causes a warning
1065 from a decent compiler. */
1066
1067 if (local_symbols
1068 && local_symbols->nsyms > 0
1069 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1070 SYMBOL_TYPE (sym)))
1071 {
1072 struct symbol *prev_sym;
1073 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1074 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1075 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1076 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1077 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1078 {
1079 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1080 /* Use the type from the LOC_REGISTER; that is the type
1081 that is actually in that register. */
1082 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1083 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1084 sym = prev_sym;
1085 break;
1086 }
1087 }
1088 add_symbol_to_list (sym, &local_symbols);
1089 }
1090 else
1091 add_symbol_to_list (sym, &file_symbols);
1092 break;
1093
1094 case 'S':
1095 /* Static symbol at top level of file */
1096 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1097 SYMBOL_CLASS (sym) = LOC_STATIC;
1098 SYMBOL_VALUE_ADDRESS (sym) = valu;
1099 if (gdbarch_static_transform_name_p (current_gdbarch)
1100 && gdbarch_static_transform_name (current_gdbarch,
1101 DEPRECATED_SYMBOL_NAME (sym))
1102 != DEPRECATED_SYMBOL_NAME (sym))
1103 {
1104 struct minimal_symbol *msym;
1105 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1106 if (msym != NULL)
1107 {
1108 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1109 (current_gdbarch,
1110 DEPRECATED_SYMBOL_NAME (sym));
1111 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1112 }
1113 }
1114 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1115 add_symbol_to_list (sym, &file_symbols);
1116 break;
1117
1118 case 't':
1119 /* In Ada, there is no distinction between typedef and non-typedef;
1120 any type declaration implicitly has the equivalent of a typedef,
1121 and thus 't' is in fact equivalent to 'Tt'.
1122
1123 Therefore, for Ada units, we check the character immediately
1124 before the 't', and if we do not find a 'T', then make sure to
1125 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1126 will be stored in the VAR_DOMAIN). If the symbol was indeed
1127 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1128 elsewhere, so we don't need to take care of that.
1129
1130 This is important to do, because of forward references:
1131 The cleanup of undefined types stored in undef_types only uses
1132 STRUCT_DOMAIN symbols to perform the replacement. */
1133 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1134
1135 /* Typedef */
1136 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1137
1138 /* For a nameless type, we don't want a create a symbol, thus we
1139 did not use `sym'. Return without further processing. */
1140 if (nameless)
1141 return NULL;
1142
1143 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1144 SYMBOL_VALUE (sym) = valu;
1145 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1146 /* C++ vagaries: we may have a type which is derived from
1147 a base type which did not have its name defined when the
1148 derived class was output. We fill in the derived class's
1149 base part member's name here in that case. */
1150 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1151 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1152 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1153 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1154 {
1155 int j;
1156 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1157 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1158 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1159 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1160 }
1161
1162 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1163 {
1164 /* gcc-2.6 or later (when using -fvtable-thunks)
1165 emits a unique named type for a vtable entry.
1166 Some gdb code depends on that specific name. */
1167 extern const char vtbl_ptr_name[];
1168
1169 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1170 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1171 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1172 {
1173 /* If we are giving a name to a type such as "pointer to
1174 foo" or "function returning foo", we better not set
1175 the TYPE_NAME. If the program contains "typedef char
1176 *caddr_t;", we don't want all variables of type char
1177 * to print as caddr_t. This is not just a
1178 consequence of GDB's type management; PCC and GCC (at
1179 least through version 2.4) both output variables of
1180 either type char * or caddr_t with the type number
1181 defined in the 't' symbol for caddr_t. If a future
1182 compiler cleans this up it GDB is not ready for it
1183 yet, but if it becomes ready we somehow need to
1184 disable this check (without breaking the PCC/GCC2.4
1185 case).
1186
1187 Sigh.
1188
1189 Fortunately, this check seems not to be necessary
1190 for anything except pointers or functions. */
1191 /* ezannoni: 2000-10-26. This seems to apply for
1192 versions of gcc older than 2.8. This was the original
1193 problem: with the following code gdb would tell that
1194 the type for name1 is caddr_t, and func is char()
1195 typedef char *caddr_t;
1196 char *name2;
1197 struct x
1198 {
1199 char *name1;
1200 } xx;
1201 char *func()
1202 {
1203 }
1204 main () {}
1205 */
1206
1207 /* Pascal accepts names for pointer types. */
1208 if (current_subfile->language == language_pascal)
1209 {
1210 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1211 }
1212 }
1213 else
1214 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1215 }
1216
1217 add_symbol_to_list (sym, &file_symbols);
1218
1219 if (synonym)
1220 {
1221 /* Create the STRUCT_DOMAIN clone. */
1222 struct symbol *struct_sym = (struct symbol *)
1223 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1224
1225 *struct_sym = *sym;
1226 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1227 SYMBOL_VALUE (struct_sym) = valu;
1228 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1229 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1230 TYPE_NAME (SYMBOL_TYPE (sym))
1231 = obconcat (&objfile->objfile_obstack, "", "",
1232 DEPRECATED_SYMBOL_NAME (sym));
1233 add_symbol_to_list (struct_sym, &file_symbols);
1234 }
1235
1236 break;
1237
1238 case 'T':
1239 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1240 by 't' which means we are typedef'ing it as well. */
1241 synonym = *p == 't';
1242
1243 if (synonym)
1244 p++;
1245
1246 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1247
1248 /* For a nameless type, we don't want a create a symbol, thus we
1249 did not use `sym'. Return without further processing. */
1250 if (nameless)
1251 return NULL;
1252
1253 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1254 SYMBOL_VALUE (sym) = valu;
1255 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1256 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1257 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1258 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1259 add_symbol_to_list (sym, &file_symbols);
1260
1261 if (synonym)
1262 {
1263 /* Clone the sym and then modify it. */
1264 struct symbol *typedef_sym = (struct symbol *)
1265 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1266 *typedef_sym = *sym;
1267 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1268 SYMBOL_VALUE (typedef_sym) = valu;
1269 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1270 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1271 TYPE_NAME (SYMBOL_TYPE (sym))
1272 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1273 add_symbol_to_list (typedef_sym, &file_symbols);
1274 }
1275 break;
1276
1277 case 'V':
1278 /* Static symbol of local scope */
1279 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1280 SYMBOL_CLASS (sym) = LOC_STATIC;
1281 SYMBOL_VALUE_ADDRESS (sym) = valu;
1282 if (gdbarch_static_transform_name_p (current_gdbarch)
1283 && gdbarch_static_transform_name (current_gdbarch,
1284 DEPRECATED_SYMBOL_NAME (sym))
1285 != DEPRECATED_SYMBOL_NAME (sym))
1286 {
1287 struct minimal_symbol *msym;
1288 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1289 if (msym != NULL)
1290 {
1291 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1292 (current_gdbarch,
1293 DEPRECATED_SYMBOL_NAME (sym));
1294 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1295 }
1296 }
1297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1298 add_symbol_to_list (sym, &local_symbols);
1299 break;
1300
1301 case 'v':
1302 /* Reference parameter */
1303 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1304 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1305 SYMBOL_VALUE (sym) = valu;
1306 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1307 add_symbol_to_list (sym, &local_symbols);
1308 break;
1309
1310 case 'a':
1311 /* Reference parameter which is in a register. */
1312 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1313 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1314 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1315 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1316 + gdbarch_num_pseudo_regs (current_gdbarch))
1317 {
1318 reg_value_complaint (SYMBOL_VALUE (sym),
1319 gdbarch_num_regs (current_gdbarch)
1320 + gdbarch_num_pseudo_regs (current_gdbarch),
1321 SYMBOL_PRINT_NAME (sym));
1322 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1323 /* Known safe, though useless */
1324 }
1325 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1326 add_symbol_to_list (sym, &local_symbols);
1327 break;
1328
1329 case 'X':
1330 /* This is used by Sun FORTRAN for "function result value".
1331 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1332 that Pascal uses it too, but when I tried it Pascal used
1333 "x:3" (local symbol) instead. */
1334 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1335 SYMBOL_CLASS (sym) = LOC_LOCAL;
1336 SYMBOL_VALUE (sym) = valu;
1337 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1338 add_symbol_to_list (sym, &local_symbols);
1339 break;
1340
1341 default:
1342 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1343 SYMBOL_CLASS (sym) = LOC_CONST;
1344 SYMBOL_VALUE (sym) = 0;
1345 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1346 add_symbol_to_list (sym, &file_symbols);
1347 break;
1348 }
1349
1350 /* Some systems pass variables of certain types by reference instead
1351 of by value, i.e. they will pass the address of a structure (in a
1352 register or on the stack) instead of the structure itself. */
1353
1354 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1355 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1356 {
1357 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1358 variables passed in a register). */
1359 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1360 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1361 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1362 and subsequent arguments on SPARC, for example). */
1363 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1364 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1365 }
1366
1367 return sym;
1368 }
1369
1370 /* Skip rest of this symbol and return an error type.
1371
1372 General notes on error recovery: error_type always skips to the
1373 end of the symbol (modulo cretinous dbx symbol name continuation).
1374 Thus code like this:
1375
1376 if (*(*pp)++ != ';')
1377 return error_type (pp, objfile);
1378
1379 is wrong because if *pp starts out pointing at '\0' (typically as the
1380 result of an earlier error), it will be incremented to point to the
1381 start of the next symbol, which might produce strange results, at least
1382 if you run off the end of the string table. Instead use
1383
1384 if (**pp != ';')
1385 return error_type (pp, objfile);
1386 ++*pp;
1387
1388 or
1389
1390 if (**pp != ';')
1391 foo = error_type (pp, objfile);
1392 else
1393 ++*pp;
1394
1395 And in case it isn't obvious, the point of all this hair is so the compiler
1396 can define new types and new syntaxes, and old versions of the
1397 debugger will be able to read the new symbol tables. */
1398
1399 static struct type *
1400 error_type (char **pp, struct objfile *objfile)
1401 {
1402 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1403 while (1)
1404 {
1405 /* Skip to end of symbol. */
1406 while (**pp != '\0')
1407 {
1408 (*pp)++;
1409 }
1410
1411 /* Check for and handle cretinous dbx symbol name continuation! */
1412 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1413 {
1414 *pp = next_symbol_text (objfile);
1415 }
1416 else
1417 {
1418 break;
1419 }
1420 }
1421 return (builtin_type_error);
1422 }
1423 \f
1424
1425 /* Read type information or a type definition; return the type. Even
1426 though this routine accepts either type information or a type
1427 definition, the distinction is relevant--some parts of stabsread.c
1428 assume that type information starts with a digit, '-', or '(' in
1429 deciding whether to call read_type. */
1430
1431 static struct type *
1432 read_type (char **pp, struct objfile *objfile)
1433 {
1434 struct type *type = 0;
1435 struct type *type1;
1436 int typenums[2];
1437 char type_descriptor;
1438
1439 /* Size in bits of type if specified by a type attribute, or -1 if
1440 there is no size attribute. */
1441 int type_size = -1;
1442
1443 /* Used to distinguish string and bitstring from char-array and set. */
1444 int is_string = 0;
1445
1446 /* Used to distinguish vector from array. */
1447 int is_vector = 0;
1448
1449 /* Read type number if present. The type number may be omitted.
1450 for instance in a two-dimensional array declared with type
1451 "ar1;1;10;ar1;1;10;4". */
1452 if ((**pp >= '0' && **pp <= '9')
1453 || **pp == '('
1454 || **pp == '-')
1455 {
1456 if (read_type_number (pp, typenums) != 0)
1457 return error_type (pp, objfile);
1458
1459 if (**pp != '=')
1460 {
1461 /* Type is not being defined here. Either it already
1462 exists, or this is a forward reference to it.
1463 dbx_alloc_type handles both cases. */
1464 type = dbx_alloc_type (typenums, objfile);
1465
1466 /* If this is a forward reference, arrange to complain if it
1467 doesn't get patched up by the time we're done
1468 reading. */
1469 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1470 add_undefined_type (type, typenums);
1471
1472 return type;
1473 }
1474
1475 /* Type is being defined here. */
1476 /* Skip the '='.
1477 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1478 (*pp) += 2;
1479 }
1480 else
1481 {
1482 /* 'typenums=' not present, type is anonymous. Read and return
1483 the definition, but don't put it in the type vector. */
1484 typenums[0] = typenums[1] = -1;
1485 (*pp)++;
1486 }
1487
1488 again:
1489 type_descriptor = (*pp)[-1];
1490 switch (type_descriptor)
1491 {
1492 case 'x':
1493 {
1494 enum type_code code;
1495
1496 /* Used to index through file_symbols. */
1497 struct pending *ppt;
1498 int i;
1499
1500 /* Name including "struct", etc. */
1501 char *type_name;
1502
1503 {
1504 char *from, *to, *p, *q1, *q2;
1505
1506 /* Set the type code according to the following letter. */
1507 switch ((*pp)[0])
1508 {
1509 case 's':
1510 code = TYPE_CODE_STRUCT;
1511 break;
1512 case 'u':
1513 code = TYPE_CODE_UNION;
1514 break;
1515 case 'e':
1516 code = TYPE_CODE_ENUM;
1517 break;
1518 default:
1519 {
1520 /* Complain and keep going, so compilers can invent new
1521 cross-reference types. */
1522 complaint (&symfile_complaints,
1523 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1524 code = TYPE_CODE_STRUCT;
1525 break;
1526 }
1527 }
1528
1529 q1 = strchr (*pp, '<');
1530 p = strchr (*pp, ':');
1531 if (p == NULL)
1532 return error_type (pp, objfile);
1533 if (q1 && p > q1 && p[1] == ':')
1534 {
1535 int nesting_level = 0;
1536 for (q2 = q1; *q2; q2++)
1537 {
1538 if (*q2 == '<')
1539 nesting_level++;
1540 else if (*q2 == '>')
1541 nesting_level--;
1542 else if (*q2 == ':' && nesting_level == 0)
1543 break;
1544 }
1545 p = q2;
1546 if (*p != ':')
1547 return error_type (pp, objfile);
1548 }
1549 to = type_name =
1550 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1551
1552 /* Copy the name. */
1553 from = *pp + 1;
1554 while (from < p)
1555 *to++ = *from++;
1556 *to = '\0';
1557
1558 /* Set the pointer ahead of the name which we just read, and
1559 the colon. */
1560 *pp = from + 1;
1561 }
1562
1563 /* If this type has already been declared, then reuse the same
1564 type, rather than allocating a new one. This saves some
1565 memory. */
1566
1567 for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 for (i = 0; i < ppt->nsyms; i++)
1569 {
1570 struct symbol *sym = ppt->symbol[i];
1571
1572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1576 {
1577 obstack_free (&objfile->objfile_obstack, type_name);
1578 type = SYMBOL_TYPE (sym);
1579 if (typenums[0] != -1)
1580 *dbx_lookup_type (typenums) = type;
1581 return type;
1582 }
1583 }
1584
1585 /* Didn't find the type to which this refers, so we must
1586 be dealing with a forward reference. Allocate a type
1587 structure for it, and keep track of it so we can
1588 fill in the rest of the fields when we get the full
1589 type. */
1590 type = dbx_alloc_type (typenums, objfile);
1591 TYPE_CODE (type) = code;
1592 TYPE_TAG_NAME (type) = type_name;
1593 INIT_CPLUS_SPECIFIC (type);
1594 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1595
1596 add_undefined_type (type, typenums);
1597 return type;
1598 }
1599
1600 case '-': /* RS/6000 built-in type */
1601 case '0':
1602 case '1':
1603 case '2':
1604 case '3':
1605 case '4':
1606 case '5':
1607 case '6':
1608 case '7':
1609 case '8':
1610 case '9':
1611 case '(':
1612 (*pp)--;
1613
1614 /* We deal with something like t(1,2)=(3,4)=... which
1615 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616
1617 /* Allocate and enter the typedef type first.
1618 This handles recursive types. */
1619 type = dbx_alloc_type (typenums, objfile);
1620 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621 {
1622 struct type *xtype = read_type (pp, objfile);
1623 if (type == xtype)
1624 {
1625 /* It's being defined as itself. That means it is "void". */
1626 TYPE_CODE (type) = TYPE_CODE_VOID;
1627 TYPE_LENGTH (type) = 1;
1628 }
1629 else if (type_size >= 0 || is_string)
1630 {
1631 /* This is the absolute wrong way to construct types. Every
1632 other debug format has found a way around this problem and
1633 the related problems with unnecessarily stubbed types;
1634 someone motivated should attempt to clean up the issue
1635 here as well. Once a type pointed to has been created it
1636 should not be modified.
1637
1638 Well, it's not *absolutely* wrong. Constructing recursive
1639 types (trees, linked lists) necessarily entails modifying
1640 types after creating them. Constructing any loop structure
1641 entails side effects. The Dwarf 2 reader does handle this
1642 more gracefully (it never constructs more than once
1643 instance of a type object, so it doesn't have to copy type
1644 objects wholesale), but it still mutates type objects after
1645 other folks have references to them.
1646
1647 Keep in mind that this circularity/mutation issue shows up
1648 at the source language level, too: C's "incomplete types",
1649 for example. So the proper cleanup, I think, would be to
1650 limit GDB's type smashing to match exactly those required
1651 by the source language. So GDB could have a
1652 "complete_this_type" function, but never create unnecessary
1653 copies of a type otherwise. */
1654 replace_type (type, xtype);
1655 TYPE_NAME (type) = NULL;
1656 TYPE_TAG_NAME (type) = NULL;
1657 }
1658 else
1659 {
1660 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1661 TYPE_TARGET_TYPE (type) = xtype;
1662 }
1663 }
1664 break;
1665
1666 /* In the following types, we must be sure to overwrite any existing
1667 type that the typenums refer to, rather than allocating a new one
1668 and making the typenums point to the new one. This is because there
1669 may already be pointers to the existing type (if it had been
1670 forward-referenced), and we must change it to a pointer, function,
1671 reference, or whatever, *in-place*. */
1672
1673 case '*': /* Pointer to another type */
1674 type1 = read_type (pp, objfile);
1675 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1676 break;
1677
1678 case '&': /* Reference to another type */
1679 type1 = read_type (pp, objfile);
1680 type = make_reference_type (type1, dbx_lookup_type (typenums));
1681 break;
1682
1683 case 'f': /* Function returning another type */
1684 type1 = read_type (pp, objfile);
1685 type = make_function_type (type1, dbx_lookup_type (typenums));
1686 break;
1687
1688 case 'g': /* Prototyped function. (Sun) */
1689 {
1690 /* Unresolved questions:
1691
1692 - According to Sun's ``STABS Interface Manual'', for 'f'
1693 and 'F' symbol descriptors, a `0' in the argument type list
1694 indicates a varargs function. But it doesn't say how 'g'
1695 type descriptors represent that info. Someone with access
1696 to Sun's toolchain should try it out.
1697
1698 - According to the comment in define_symbol (search for
1699 `process_prototype_types:'), Sun emits integer arguments as
1700 types which ref themselves --- like `void' types. Do we
1701 have to deal with that here, too? Again, someone with
1702 access to Sun's toolchain should try it out and let us
1703 know. */
1704
1705 const char *type_start = (*pp) - 1;
1706 struct type *return_type = read_type (pp, objfile);
1707 struct type *func_type
1708 = make_function_type (return_type, dbx_lookup_type (typenums));
1709 struct type_list {
1710 struct type *type;
1711 struct type_list *next;
1712 } *arg_types = 0;
1713 int num_args = 0;
1714
1715 while (**pp && **pp != '#')
1716 {
1717 struct type *arg_type = read_type (pp, objfile);
1718 struct type_list *new = alloca (sizeof (*new));
1719 new->type = arg_type;
1720 new->next = arg_types;
1721 arg_types = new;
1722 num_args++;
1723 }
1724 if (**pp == '#')
1725 ++*pp;
1726 else
1727 {
1728 complaint (&symfile_complaints,
1729 _("Prototyped function type didn't end arguments with `#':\n%s"),
1730 type_start);
1731 }
1732
1733 /* If there is just one argument whose type is `void', then
1734 that's just an empty argument list. */
1735 if (arg_types
1736 && ! arg_types->next
1737 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1738 num_args = 0;
1739
1740 TYPE_FIELDS (func_type)
1741 = (struct field *) TYPE_ALLOC (func_type,
1742 num_args * sizeof (struct field));
1743 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1744 {
1745 int i;
1746 struct type_list *t;
1747
1748 /* We stuck each argument type onto the front of the list
1749 when we read it, so the list is reversed. Build the
1750 fields array right-to-left. */
1751 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1752 TYPE_FIELD_TYPE (func_type, i) = t->type;
1753 }
1754 TYPE_NFIELDS (func_type) = num_args;
1755 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1756
1757 type = func_type;
1758 break;
1759 }
1760
1761 case 'k': /* Const qualifier on some type (Sun) */
1762 type = read_type (pp, objfile);
1763 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1764 dbx_lookup_type (typenums));
1765 break;
1766
1767 case 'B': /* Volatile qual on some type (Sun) */
1768 type = read_type (pp, objfile);
1769 type = make_cv_type (TYPE_CONST (type), 1, type,
1770 dbx_lookup_type (typenums));
1771 break;
1772
1773 case '@':
1774 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1775 { /* Member (class & variable) type */
1776 /* FIXME -- we should be doing smash_to_XXX types here. */
1777
1778 struct type *domain = read_type (pp, objfile);
1779 struct type *memtype;
1780
1781 if (**pp != ',')
1782 /* Invalid member type data format. */
1783 return error_type (pp, objfile);
1784 ++*pp;
1785
1786 memtype = read_type (pp, objfile);
1787 type = dbx_alloc_type (typenums, objfile);
1788 smash_to_memberptr_type (type, domain, memtype);
1789 }
1790 else
1791 /* type attribute */
1792 {
1793 char *attr = *pp;
1794 /* Skip to the semicolon. */
1795 while (**pp != ';' && **pp != '\0')
1796 ++(*pp);
1797 if (**pp == '\0')
1798 return error_type (pp, objfile);
1799 else
1800 ++ * pp; /* Skip the semicolon. */
1801
1802 switch (*attr)
1803 {
1804 case 's': /* Size attribute */
1805 type_size = atoi (attr + 1);
1806 if (type_size <= 0)
1807 type_size = -1;
1808 break;
1809
1810 case 'S': /* String attribute */
1811 /* FIXME: check to see if following type is array? */
1812 is_string = 1;
1813 break;
1814
1815 case 'V': /* Vector attribute */
1816 /* FIXME: check to see if following type is array? */
1817 is_vector = 1;
1818 break;
1819
1820 default:
1821 /* Ignore unrecognized type attributes, so future compilers
1822 can invent new ones. */
1823 break;
1824 }
1825 ++*pp;
1826 goto again;
1827 }
1828 break;
1829
1830 case '#': /* Method (class & fn) type */
1831 if ((*pp)[0] == '#')
1832 {
1833 /* We'll get the parameter types from the name. */
1834 struct type *return_type;
1835
1836 (*pp)++;
1837 return_type = read_type (pp, objfile);
1838 if (*(*pp)++ != ';')
1839 complaint (&symfile_complaints,
1840 _("invalid (minimal) member type data format at symtab pos %d."),
1841 symnum);
1842 type = allocate_stub_method (return_type);
1843 if (typenums[0] != -1)
1844 *dbx_lookup_type (typenums) = type;
1845 }
1846 else
1847 {
1848 struct type *domain = read_type (pp, objfile);
1849 struct type *return_type;
1850 struct field *args;
1851 int nargs, varargs;
1852
1853 if (**pp != ',')
1854 /* Invalid member type data format. */
1855 return error_type (pp, objfile);
1856 else
1857 ++(*pp);
1858
1859 return_type = read_type (pp, objfile);
1860 args = read_args (pp, ';', objfile, &nargs, &varargs);
1861 if (args == NULL)
1862 return error_type (pp, objfile);
1863 type = dbx_alloc_type (typenums, objfile);
1864 smash_to_method_type (type, domain, return_type, args,
1865 nargs, varargs);
1866 }
1867 break;
1868
1869 case 'r': /* Range type */
1870 type = read_range_type (pp, typenums, type_size, objfile);
1871 if (typenums[0] != -1)
1872 *dbx_lookup_type (typenums) = type;
1873 break;
1874
1875 case 'b':
1876 {
1877 /* Sun ACC builtin int type */
1878 type = read_sun_builtin_type (pp, typenums, objfile);
1879 if (typenums[0] != -1)
1880 *dbx_lookup_type (typenums) = type;
1881 }
1882 break;
1883
1884 case 'R': /* Sun ACC builtin float type */
1885 type = read_sun_floating_type (pp, typenums, objfile);
1886 if (typenums[0] != -1)
1887 *dbx_lookup_type (typenums) = type;
1888 break;
1889
1890 case 'e': /* Enumeration type */
1891 type = dbx_alloc_type (typenums, objfile);
1892 type = read_enum_type (pp, type, objfile);
1893 if (typenums[0] != -1)
1894 *dbx_lookup_type (typenums) = type;
1895 break;
1896
1897 case 's': /* Struct type */
1898 case 'u': /* Union type */
1899 {
1900 enum type_code type_code = TYPE_CODE_UNDEF;
1901 type = dbx_alloc_type (typenums, objfile);
1902 switch (type_descriptor)
1903 {
1904 case 's':
1905 type_code = TYPE_CODE_STRUCT;
1906 break;
1907 case 'u':
1908 type_code = TYPE_CODE_UNION;
1909 break;
1910 }
1911 type = read_struct_type (pp, type, type_code, objfile);
1912 break;
1913 }
1914
1915 case 'a': /* Array type */
1916 if (**pp != 'r')
1917 return error_type (pp, objfile);
1918 ++*pp;
1919
1920 type = dbx_alloc_type (typenums, objfile);
1921 type = read_array_type (pp, type, objfile);
1922 if (is_string)
1923 TYPE_CODE (type) = TYPE_CODE_STRING;
1924 if (is_vector)
1925 make_vector_type (type);
1926 break;
1927
1928 case 'S': /* Set or bitstring type */
1929 type1 = read_type (pp, objfile);
1930 type = create_set_type ((struct type *) NULL, type1);
1931 if (is_string)
1932 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1933 if (typenums[0] != -1)
1934 *dbx_lookup_type (typenums) = type;
1935 break;
1936
1937 default:
1938 --*pp; /* Go back to the symbol in error */
1939 /* Particularly important if it was \0! */
1940 return error_type (pp, objfile);
1941 }
1942
1943 if (type == 0)
1944 {
1945 warning (_("GDB internal error, type is NULL in stabsread.c."));
1946 return error_type (pp, objfile);
1947 }
1948
1949 /* Size specified in a type attribute overrides any other size. */
1950 if (type_size != -1)
1951 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1952
1953 return type;
1954 }
1955 \f
1956 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1957 Return the proper type node for a given builtin type number. */
1958
1959 static struct type *
1960 rs6000_builtin_type (int typenum)
1961 {
1962 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1963 #define NUMBER_RECOGNIZED 34
1964 /* This includes an empty slot for type number -0. */
1965 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1966 struct type *rettype = NULL;
1967
1968 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1969 {
1970 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1971 return builtin_type_error;
1972 }
1973 if (negative_types[-typenum] != NULL)
1974 return negative_types[-typenum];
1975
1976 #if TARGET_CHAR_BIT != 8
1977 #error This code wrong for TARGET_CHAR_BIT not 8
1978 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1979 that if that ever becomes not true, the correct fix will be to
1980 make the size in the struct type to be in bits, not in units of
1981 TARGET_CHAR_BIT. */
1982 #endif
1983
1984 switch (-typenum)
1985 {
1986 case 1:
1987 /* The size of this and all the other types are fixed, defined
1988 by the debugging format. If there is a type called "int" which
1989 is other than 32 bits, then it should use a new negative type
1990 number (or avoid negative type numbers for that case).
1991 See stabs.texinfo. */
1992 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1993 break;
1994 case 2:
1995 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1996 break;
1997 case 3:
1998 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1999 break;
2000 case 4:
2001 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2002 break;
2003 case 5:
2004 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2005 "unsigned char", NULL);
2006 break;
2007 case 6:
2008 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2009 break;
2010 case 7:
2011 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2012 "unsigned short", NULL);
2013 break;
2014 case 8:
2015 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2016 "unsigned int", NULL);
2017 break;
2018 case 9:
2019 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2020 "unsigned", NULL);
2021 case 10:
2022 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2023 "unsigned long", NULL);
2024 break;
2025 case 11:
2026 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2027 break;
2028 case 12:
2029 /* IEEE single precision (32 bit). */
2030 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2031 break;
2032 case 13:
2033 /* IEEE double precision (64 bit). */
2034 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2035 break;
2036 case 14:
2037 /* This is an IEEE double on the RS/6000, and different machines with
2038 different sizes for "long double" should use different negative
2039 type numbers. See stabs.texinfo. */
2040 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2041 break;
2042 case 15:
2043 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2044 break;
2045 case 16:
2046 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2047 "boolean", NULL);
2048 break;
2049 case 17:
2050 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2051 break;
2052 case 18:
2053 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2054 break;
2055 case 19:
2056 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2057 break;
2058 case 20:
2059 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2060 "character", NULL);
2061 break;
2062 case 21:
2063 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2064 "logical*1", NULL);
2065 break;
2066 case 22:
2067 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2068 "logical*2", NULL);
2069 break;
2070 case 23:
2071 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2072 "logical*4", NULL);
2073 break;
2074 case 24:
2075 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2076 "logical", NULL);
2077 break;
2078 case 25:
2079 /* Complex type consisting of two IEEE single precision values. */
2080 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2081 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2082 NULL);
2083 break;
2084 case 26:
2085 /* Complex type consisting of two IEEE double precision values. */
2086 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2087 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2088 NULL);
2089 break;
2090 case 27:
2091 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2092 break;
2093 case 28:
2094 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2095 break;
2096 case 29:
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2098 break;
2099 case 30:
2100 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2101 break;
2102 case 31:
2103 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2104 break;
2105 case 32:
2106 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2107 "unsigned long long", NULL);
2108 break;
2109 case 33:
2110 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2111 "logical*8", NULL);
2112 break;
2113 case 34:
2114 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2115 break;
2116 }
2117 negative_types[-typenum] = rettype;
2118 return rettype;
2119 }
2120 \f
2121 /* This page contains subroutines of read_type. */
2122
2123 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2124
2125 static void
2126 update_method_name_from_physname (char **old_name, char *physname)
2127 {
2128 char *method_name;
2129
2130 method_name = method_name_from_physname (physname);
2131
2132 if (method_name == NULL)
2133 {
2134 complaint (&symfile_complaints,
2135 _("Method has bad physname %s\n"), physname);
2136 return;
2137 }
2138
2139 if (strcmp (*old_name, method_name) != 0)
2140 {
2141 xfree (*old_name);
2142 *old_name = method_name;
2143 }
2144 else
2145 xfree (method_name);
2146 }
2147
2148 /* Read member function stabs info for C++ classes. The form of each member
2149 function data is:
2150
2151 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2152
2153 An example with two member functions is:
2154
2155 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2156
2157 For the case of overloaded operators, the format is op$::*.funcs, where
2158 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2159 name (such as `+=') and `.' marks the end of the operator name.
2160
2161 Returns 1 for success, 0 for failure. */
2162
2163 static int
2164 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2165 struct objfile *objfile)
2166 {
2167 int nfn_fields = 0;
2168 int length = 0;
2169 /* Total number of member functions defined in this class. If the class
2170 defines two `f' functions, and one `g' function, then this will have
2171 the value 3. */
2172 int total_length = 0;
2173 int i;
2174 struct next_fnfield
2175 {
2176 struct next_fnfield *next;
2177 struct fn_field fn_field;
2178 }
2179 *sublist;
2180 struct type *look_ahead_type;
2181 struct next_fnfieldlist *new_fnlist;
2182 struct next_fnfield *new_sublist;
2183 char *main_fn_name;
2184 char *p;
2185
2186 /* Process each list until we find something that is not a member function
2187 or find the end of the functions. */
2188
2189 while (**pp != ';')
2190 {
2191 /* We should be positioned at the start of the function name.
2192 Scan forward to find the first ':' and if it is not the
2193 first of a "::" delimiter, then this is not a member function. */
2194 p = *pp;
2195 while (*p != ':')
2196 {
2197 p++;
2198 }
2199 if (p[1] != ':')
2200 {
2201 break;
2202 }
2203
2204 sublist = NULL;
2205 look_ahead_type = NULL;
2206 length = 0;
2207
2208 new_fnlist = (struct next_fnfieldlist *)
2209 xmalloc (sizeof (struct next_fnfieldlist));
2210 make_cleanup (xfree, new_fnlist);
2211 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2212
2213 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2214 {
2215 /* This is a completely wierd case. In order to stuff in the
2216 names that might contain colons (the usual name delimiter),
2217 Mike Tiemann defined a different name format which is
2218 signalled if the identifier is "op$". In that case, the
2219 format is "op$::XXXX." where XXXX is the name. This is
2220 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2221 /* This lets the user type "break operator+".
2222 We could just put in "+" as the name, but that wouldn't
2223 work for "*". */
2224 static char opname[32] = "op$";
2225 char *o = opname + 3;
2226
2227 /* Skip past '::'. */
2228 *pp = p + 2;
2229
2230 STABS_CONTINUE (pp, objfile);
2231 p = *pp;
2232 while (*p != '.')
2233 {
2234 *o++ = *p++;
2235 }
2236 main_fn_name = savestring (opname, o - opname);
2237 /* Skip past '.' */
2238 *pp = p + 1;
2239 }
2240 else
2241 {
2242 main_fn_name = savestring (*pp, p - *pp);
2243 /* Skip past '::'. */
2244 *pp = p + 2;
2245 }
2246 new_fnlist->fn_fieldlist.name = main_fn_name;
2247
2248 do
2249 {
2250 new_sublist =
2251 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2252 make_cleanup (xfree, new_sublist);
2253 memset (new_sublist, 0, sizeof (struct next_fnfield));
2254
2255 /* Check for and handle cretinous dbx symbol name continuation! */
2256 if (look_ahead_type == NULL)
2257 {
2258 /* Normal case. */
2259 STABS_CONTINUE (pp, objfile);
2260
2261 new_sublist->fn_field.type = read_type (pp, objfile);
2262 if (**pp != ':')
2263 {
2264 /* Invalid symtab info for member function. */
2265 return 0;
2266 }
2267 }
2268 else
2269 {
2270 /* g++ version 1 kludge */
2271 new_sublist->fn_field.type = look_ahead_type;
2272 look_ahead_type = NULL;
2273 }
2274
2275 (*pp)++;
2276 p = *pp;
2277 while (*p != ';')
2278 {
2279 p++;
2280 }
2281
2282 /* If this is just a stub, then we don't have the real name here. */
2283
2284 if (TYPE_STUB (new_sublist->fn_field.type))
2285 {
2286 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2287 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2288 new_sublist->fn_field.is_stub = 1;
2289 }
2290 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2291 *pp = p + 1;
2292
2293 /* Set this member function's visibility fields. */
2294 switch (*(*pp)++)
2295 {
2296 case VISIBILITY_PRIVATE:
2297 new_sublist->fn_field.is_private = 1;
2298 break;
2299 case VISIBILITY_PROTECTED:
2300 new_sublist->fn_field.is_protected = 1;
2301 break;
2302 }
2303
2304 STABS_CONTINUE (pp, objfile);
2305 switch (**pp)
2306 {
2307 case 'A': /* Normal functions. */
2308 new_sublist->fn_field.is_const = 0;
2309 new_sublist->fn_field.is_volatile = 0;
2310 (*pp)++;
2311 break;
2312 case 'B': /* `const' member functions. */
2313 new_sublist->fn_field.is_const = 1;
2314 new_sublist->fn_field.is_volatile = 0;
2315 (*pp)++;
2316 break;
2317 case 'C': /* `volatile' member function. */
2318 new_sublist->fn_field.is_const = 0;
2319 new_sublist->fn_field.is_volatile = 1;
2320 (*pp)++;
2321 break;
2322 case 'D': /* `const volatile' member function. */
2323 new_sublist->fn_field.is_const = 1;
2324 new_sublist->fn_field.is_volatile = 1;
2325 (*pp)++;
2326 break;
2327 case '*': /* File compiled with g++ version 1 -- no info */
2328 case '?':
2329 case '.':
2330 break;
2331 default:
2332 complaint (&symfile_complaints,
2333 _("const/volatile indicator missing, got '%c'"), **pp);
2334 break;
2335 }
2336
2337 switch (*(*pp)++)
2338 {
2339 case '*':
2340 {
2341 int nbits;
2342 /* virtual member function, followed by index.
2343 The sign bit is set to distinguish pointers-to-methods
2344 from virtual function indicies. Since the array is
2345 in words, the quantity must be shifted left by 1
2346 on 16 bit machine, and by 2 on 32 bit machine, forcing
2347 the sign bit out, and usable as a valid index into
2348 the array. Remove the sign bit here. */
2349 new_sublist->fn_field.voffset =
2350 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2351 if (nbits != 0)
2352 return 0;
2353
2354 STABS_CONTINUE (pp, objfile);
2355 if (**pp == ';' || **pp == '\0')
2356 {
2357 /* Must be g++ version 1. */
2358 new_sublist->fn_field.fcontext = 0;
2359 }
2360 else
2361 {
2362 /* Figure out from whence this virtual function came.
2363 It may belong to virtual function table of
2364 one of its baseclasses. */
2365 look_ahead_type = read_type (pp, objfile);
2366 if (**pp == ':')
2367 {
2368 /* g++ version 1 overloaded methods. */
2369 }
2370 else
2371 {
2372 new_sublist->fn_field.fcontext = look_ahead_type;
2373 if (**pp != ';')
2374 {
2375 return 0;
2376 }
2377 else
2378 {
2379 ++*pp;
2380 }
2381 look_ahead_type = NULL;
2382 }
2383 }
2384 break;
2385 }
2386 case '?':
2387 /* static member function. */
2388 {
2389 int slen = strlen (main_fn_name);
2390
2391 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2392
2393 /* For static member functions, we can't tell if they
2394 are stubbed, as they are put out as functions, and not as
2395 methods.
2396 GCC v2 emits the fully mangled name if
2397 dbxout.c:flag_minimal_debug is not set, so we have to
2398 detect a fully mangled physname here and set is_stub
2399 accordingly. Fully mangled physnames in v2 start with
2400 the member function name, followed by two underscores.
2401 GCC v3 currently always emits stubbed member functions,
2402 but with fully mangled physnames, which start with _Z. */
2403 if (!(strncmp (new_sublist->fn_field.physname,
2404 main_fn_name, slen) == 0
2405 && new_sublist->fn_field.physname[slen] == '_'
2406 && new_sublist->fn_field.physname[slen + 1] == '_'))
2407 {
2408 new_sublist->fn_field.is_stub = 1;
2409 }
2410 break;
2411 }
2412
2413 default:
2414 /* error */
2415 complaint (&symfile_complaints,
2416 _("member function type missing, got '%c'"), (*pp)[-1]);
2417 /* Fall through into normal member function. */
2418
2419 case '.':
2420 /* normal member function. */
2421 new_sublist->fn_field.voffset = 0;
2422 new_sublist->fn_field.fcontext = 0;
2423 break;
2424 }
2425
2426 new_sublist->next = sublist;
2427 sublist = new_sublist;
2428 length++;
2429 STABS_CONTINUE (pp, objfile);
2430 }
2431 while (**pp != ';' && **pp != '\0');
2432
2433 (*pp)++;
2434 STABS_CONTINUE (pp, objfile);
2435
2436 /* Skip GCC 3.X member functions which are duplicates of the callable
2437 constructor/destructor. */
2438 if (strcmp (main_fn_name, "__base_ctor") == 0
2439 || strcmp (main_fn_name, "__base_dtor") == 0
2440 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2441 {
2442 xfree (main_fn_name);
2443 }
2444 else
2445 {
2446 int has_stub = 0;
2447 int has_destructor = 0, has_other = 0;
2448 int is_v3 = 0;
2449 struct next_fnfield *tmp_sublist;
2450
2451 /* Various versions of GCC emit various mostly-useless
2452 strings in the name field for special member functions.
2453
2454 For stub methods, we need to defer correcting the name
2455 until we are ready to unstub the method, because the current
2456 name string is used by gdb_mangle_name. The only stub methods
2457 of concern here are GNU v2 operators; other methods have their
2458 names correct (see caveat below).
2459
2460 For non-stub methods, in GNU v3, we have a complete physname.
2461 Therefore we can safely correct the name now. This primarily
2462 affects constructors and destructors, whose name will be
2463 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2464 operators will also have incorrect names; for instance,
2465 "operator int" will be named "operator i" (i.e. the type is
2466 mangled).
2467
2468 For non-stub methods in GNU v2, we have no easy way to
2469 know if we have a complete physname or not. For most
2470 methods the result depends on the platform (if CPLUS_MARKER
2471 can be `$' or `.', it will use minimal debug information, or
2472 otherwise the full physname will be included).
2473
2474 Rather than dealing with this, we take a different approach.
2475 For v3 mangled names, we can use the full physname; for v2,
2476 we use cplus_demangle_opname (which is actually v2 specific),
2477 because the only interesting names are all operators - once again
2478 barring the caveat below. Skip this process if any method in the
2479 group is a stub, to prevent our fouling up the workings of
2480 gdb_mangle_name.
2481
2482 The caveat: GCC 2.95.x (and earlier?) put constructors and
2483 destructors in the same method group. We need to split this
2484 into two groups, because they should have different names.
2485 So for each method group we check whether it contains both
2486 routines whose physname appears to be a destructor (the physnames
2487 for and destructors are always provided, due to quirks in v2
2488 mangling) and routines whose physname does not appear to be a
2489 destructor. If so then we break up the list into two halves.
2490 Even if the constructors and destructors aren't in the same group
2491 the destructor will still lack the leading tilde, so that also
2492 needs to be fixed.
2493
2494 So, to summarize what we expect and handle here:
2495
2496 Given Given Real Real Action
2497 method name physname physname method name
2498
2499 __opi [none] __opi__3Foo operator int opname
2500 [now or later]
2501 Foo _._3Foo _._3Foo ~Foo separate and
2502 rename
2503 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2504 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2505 */
2506
2507 tmp_sublist = sublist;
2508 while (tmp_sublist != NULL)
2509 {
2510 if (tmp_sublist->fn_field.is_stub)
2511 has_stub = 1;
2512 if (tmp_sublist->fn_field.physname[0] == '_'
2513 && tmp_sublist->fn_field.physname[1] == 'Z')
2514 is_v3 = 1;
2515
2516 if (is_destructor_name (tmp_sublist->fn_field.physname))
2517 has_destructor++;
2518 else
2519 has_other++;
2520
2521 tmp_sublist = tmp_sublist->next;
2522 }
2523
2524 if (has_destructor && has_other)
2525 {
2526 struct next_fnfieldlist *destr_fnlist;
2527 struct next_fnfield *last_sublist;
2528
2529 /* Create a new fn_fieldlist for the destructors. */
2530
2531 destr_fnlist = (struct next_fnfieldlist *)
2532 xmalloc (sizeof (struct next_fnfieldlist));
2533 make_cleanup (xfree, destr_fnlist);
2534 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2535 destr_fnlist->fn_fieldlist.name
2536 = obconcat (&objfile->objfile_obstack, "", "~",
2537 new_fnlist->fn_fieldlist.name);
2538
2539 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2540 obstack_alloc (&objfile->objfile_obstack,
2541 sizeof (struct fn_field) * has_destructor);
2542 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2543 sizeof (struct fn_field) * has_destructor);
2544 tmp_sublist = sublist;
2545 last_sublist = NULL;
2546 i = 0;
2547 while (tmp_sublist != NULL)
2548 {
2549 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2550 {
2551 tmp_sublist = tmp_sublist->next;
2552 continue;
2553 }
2554
2555 destr_fnlist->fn_fieldlist.fn_fields[i++]
2556 = tmp_sublist->fn_field;
2557 if (last_sublist)
2558 last_sublist->next = tmp_sublist->next;
2559 else
2560 sublist = tmp_sublist->next;
2561 last_sublist = tmp_sublist;
2562 tmp_sublist = tmp_sublist->next;
2563 }
2564
2565 destr_fnlist->fn_fieldlist.length = has_destructor;
2566 destr_fnlist->next = fip->fnlist;
2567 fip->fnlist = destr_fnlist;
2568 nfn_fields++;
2569 total_length += has_destructor;
2570 length -= has_destructor;
2571 }
2572 else if (is_v3)
2573 {
2574 /* v3 mangling prevents the use of abbreviated physnames,
2575 so we can do this here. There are stubbed methods in v3
2576 only:
2577 - in -gstabs instead of -gstabs+
2578 - or for static methods, which are output as a function type
2579 instead of a method type. */
2580
2581 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2582 sublist->fn_field.physname);
2583 }
2584 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2585 {
2586 new_fnlist->fn_fieldlist.name =
2587 concat ("~", main_fn_name, (char *)NULL);
2588 xfree (main_fn_name);
2589 }
2590 else if (!has_stub)
2591 {
2592 char dem_opname[256];
2593 int ret;
2594 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2595 dem_opname, DMGL_ANSI);
2596 if (!ret)
2597 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2598 dem_opname, 0);
2599 if (ret)
2600 new_fnlist->fn_fieldlist.name
2601 = obsavestring (dem_opname, strlen (dem_opname),
2602 &objfile->objfile_obstack);
2603 }
2604
2605 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2606 obstack_alloc (&objfile->objfile_obstack,
2607 sizeof (struct fn_field) * length);
2608 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2609 sizeof (struct fn_field) * length);
2610 for (i = length; (i--, sublist); sublist = sublist->next)
2611 {
2612 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2613 }
2614
2615 new_fnlist->fn_fieldlist.length = length;
2616 new_fnlist->next = fip->fnlist;
2617 fip->fnlist = new_fnlist;
2618 nfn_fields++;
2619 total_length += length;
2620 }
2621 }
2622
2623 if (nfn_fields)
2624 {
2625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2626 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2627 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2628 memset (TYPE_FN_FIELDLISTS (type), 0,
2629 sizeof (struct fn_fieldlist) * nfn_fields);
2630 TYPE_NFN_FIELDS (type) = nfn_fields;
2631 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2632 }
2633
2634 return 1;
2635 }
2636
2637 /* Special GNU C++ name.
2638
2639 Returns 1 for success, 0 for failure. "failure" means that we can't
2640 keep parsing and it's time for error_type(). */
2641
2642 static int
2643 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2644 struct objfile *objfile)
2645 {
2646 char *p;
2647 char *name;
2648 char cpp_abbrev;
2649 struct type *context;
2650
2651 p = *pp;
2652 if (*++p == 'v')
2653 {
2654 name = NULL;
2655 cpp_abbrev = *++p;
2656
2657 *pp = p + 1;
2658
2659 /* At this point, *pp points to something like "22:23=*22...",
2660 where the type number before the ':' is the "context" and
2661 everything after is a regular type definition. Lookup the
2662 type, find it's name, and construct the field name. */
2663
2664 context = read_type (pp, objfile);
2665
2666 switch (cpp_abbrev)
2667 {
2668 case 'f': /* $vf -- a virtual function table pointer */
2669 name = type_name_no_tag (context);
2670 if (name == NULL)
2671 {
2672 name = "";
2673 }
2674 fip->list->field.name =
2675 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2676 break;
2677
2678 case 'b': /* $vb -- a virtual bsomethingorother */
2679 name = type_name_no_tag (context);
2680 if (name == NULL)
2681 {
2682 complaint (&symfile_complaints,
2683 _("C++ abbreviated type name unknown at symtab pos %d"),
2684 symnum);
2685 name = "FOO";
2686 }
2687 fip->list->field.name =
2688 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2689 break;
2690
2691 default:
2692 invalid_cpp_abbrev_complaint (*pp);
2693 fip->list->field.name =
2694 obconcat (&objfile->objfile_obstack,
2695 "INVALID_CPLUSPLUS_ABBREV", "", "");
2696 break;
2697 }
2698
2699 /* At this point, *pp points to the ':'. Skip it and read the
2700 field type. */
2701
2702 p = ++(*pp);
2703 if (p[-1] != ':')
2704 {
2705 invalid_cpp_abbrev_complaint (*pp);
2706 return 0;
2707 }
2708 fip->list->field.type = read_type (pp, objfile);
2709 if (**pp == ',')
2710 (*pp)++; /* Skip the comma. */
2711 else
2712 return 0;
2713
2714 {
2715 int nbits;
2716 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2717 0);
2718 if (nbits != 0)
2719 return 0;
2720 }
2721 /* This field is unpacked. */
2722 FIELD_BITSIZE (fip->list->field) = 0;
2723 fip->list->visibility = VISIBILITY_PRIVATE;
2724 }
2725 else
2726 {
2727 invalid_cpp_abbrev_complaint (*pp);
2728 /* We have no idea what syntax an unrecognized abbrev would have, so
2729 better return 0. If we returned 1, we would need to at least advance
2730 *pp to avoid an infinite loop. */
2731 return 0;
2732 }
2733 return 1;
2734 }
2735
2736 static void
2737 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2738 struct type *type, struct objfile *objfile)
2739 {
2740 fip->list->field.name =
2741 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2742 *pp = p + 1;
2743
2744 /* This means we have a visibility for a field coming. */
2745 if (**pp == '/')
2746 {
2747 (*pp)++;
2748 fip->list->visibility = *(*pp)++;
2749 }
2750 else
2751 {
2752 /* normal dbx-style format, no explicit visibility */
2753 fip->list->visibility = VISIBILITY_PUBLIC;
2754 }
2755
2756 fip->list->field.type = read_type (pp, objfile);
2757 if (**pp == ':')
2758 {
2759 p = ++(*pp);
2760 #if 0
2761 /* Possible future hook for nested types. */
2762 if (**pp == '!')
2763 {
2764 fip->list->field.bitpos = (long) -2; /* nested type */
2765 p = ++(*pp);
2766 }
2767 else
2768 ...;
2769 #endif
2770 while (*p != ';')
2771 {
2772 p++;
2773 }
2774 /* Static class member. */
2775 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2776 *pp = p + 1;
2777 return;
2778 }
2779 else if (**pp != ',')
2780 {
2781 /* Bad structure-type format. */
2782 stabs_general_complaint ("bad structure-type format");
2783 return;
2784 }
2785
2786 (*pp)++; /* Skip the comma. */
2787
2788 {
2789 int nbits;
2790 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2791 if (nbits != 0)
2792 {
2793 stabs_general_complaint ("bad structure-type format");
2794 return;
2795 }
2796 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2797 if (nbits != 0)
2798 {
2799 stabs_general_complaint ("bad structure-type format");
2800 return;
2801 }
2802 }
2803
2804 if (FIELD_BITPOS (fip->list->field) == 0
2805 && FIELD_BITSIZE (fip->list->field) == 0)
2806 {
2807 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2808 it is a field which has been optimized out. The correct stab for
2809 this case is to use VISIBILITY_IGNORE, but that is a recent
2810 invention. (2) It is a 0-size array. For example
2811 union { int num; char str[0]; } foo. Printing _("<no value>" for
2812 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2813 will continue to work, and a 0-size array as a whole doesn't
2814 have any contents to print.
2815
2816 I suspect this probably could also happen with gcc -gstabs (not
2817 -gstabs+) for static fields, and perhaps other C++ extensions.
2818 Hopefully few people use -gstabs with gdb, since it is intended
2819 for dbx compatibility. */
2820
2821 /* Ignore this field. */
2822 fip->list->visibility = VISIBILITY_IGNORE;
2823 }
2824 else
2825 {
2826 /* Detect an unpacked field and mark it as such.
2827 dbx gives a bit size for all fields.
2828 Note that forward refs cannot be packed,
2829 and treat enums as if they had the width of ints. */
2830
2831 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2832
2833 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2834 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2835 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2836 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2837 {
2838 FIELD_BITSIZE (fip->list->field) = 0;
2839 }
2840 if ((FIELD_BITSIZE (fip->list->field)
2841 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2842 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2843 && FIELD_BITSIZE (fip->list->field)
2844 == gdbarch_int_bit (current_gdbarch))
2845 )
2846 &&
2847 FIELD_BITPOS (fip->list->field) % 8 == 0)
2848 {
2849 FIELD_BITSIZE (fip->list->field) = 0;
2850 }
2851 }
2852 }
2853
2854
2855 /* Read struct or class data fields. They have the form:
2856
2857 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2858
2859 At the end, we see a semicolon instead of a field.
2860
2861 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2862 a static field.
2863
2864 The optional VISIBILITY is one of:
2865
2866 '/0' (VISIBILITY_PRIVATE)
2867 '/1' (VISIBILITY_PROTECTED)
2868 '/2' (VISIBILITY_PUBLIC)
2869 '/9' (VISIBILITY_IGNORE)
2870
2871 or nothing, for C style fields with public visibility.
2872
2873 Returns 1 for success, 0 for failure. */
2874
2875 static int
2876 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2877 struct objfile *objfile)
2878 {
2879 char *p;
2880 struct nextfield *new;
2881
2882 /* We better set p right now, in case there are no fields at all... */
2883
2884 p = *pp;
2885
2886 /* Read each data member type until we find the terminating ';' at the end of
2887 the data member list, or break for some other reason such as finding the
2888 start of the member function list. */
2889 /* Stab string for structure/union does not end with two ';' in
2890 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2891
2892 while (**pp != ';' && **pp != '\0')
2893 {
2894 STABS_CONTINUE (pp, objfile);
2895 /* Get space to record the next field's data. */
2896 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2897 make_cleanup (xfree, new);
2898 memset (new, 0, sizeof (struct nextfield));
2899 new->next = fip->list;
2900 fip->list = new;
2901
2902 /* Get the field name. */
2903 p = *pp;
2904
2905 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2906 unless the CPLUS_MARKER is followed by an underscore, in
2907 which case it is just the name of an anonymous type, which we
2908 should handle like any other type name. */
2909
2910 if (is_cplus_marker (p[0]) && p[1] != '_')
2911 {
2912 if (!read_cpp_abbrev (fip, pp, type, objfile))
2913 return 0;
2914 continue;
2915 }
2916
2917 /* Look for the ':' that separates the field name from the field
2918 values. Data members are delimited by a single ':', while member
2919 functions are delimited by a pair of ':'s. When we hit the member
2920 functions (if any), terminate scan loop and return. */
2921
2922 while (*p != ':' && *p != '\0')
2923 {
2924 p++;
2925 }
2926 if (*p == '\0')
2927 return 0;
2928
2929 /* Check to see if we have hit the member functions yet. */
2930 if (p[1] == ':')
2931 {
2932 break;
2933 }
2934 read_one_struct_field (fip, pp, p, type, objfile);
2935 }
2936 if (p[0] == ':' && p[1] == ':')
2937 {
2938 /* (the deleted) chill the list of fields: the last entry (at
2939 the head) is a partially constructed entry which we now
2940 scrub. */
2941 fip->list = fip->list->next;
2942 }
2943 return 1;
2944 }
2945 /* *INDENT-OFF* */
2946 /* The stabs for C++ derived classes contain baseclass information which
2947 is marked by a '!' character after the total size. This function is
2948 called when we encounter the baseclass marker, and slurps up all the
2949 baseclass information.
2950
2951 Immediately following the '!' marker is the number of base classes that
2952 the class is derived from, followed by information for each base class.
2953 For each base class, there are two visibility specifiers, a bit offset
2954 to the base class information within the derived class, a reference to
2955 the type for the base class, and a terminating semicolon.
2956
2957 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2958 ^^ ^ ^ ^ ^ ^ ^
2959 Baseclass information marker __________________|| | | | | | |
2960 Number of baseclasses __________________________| | | | | | |
2961 Visibility specifiers (2) ________________________| | | | | |
2962 Offset in bits from start of class _________________| | | | |
2963 Type number for base class ___________________________| | | |
2964 Visibility specifiers (2) _______________________________| | |
2965 Offset in bits from start of class ________________________| |
2966 Type number of base class ____________________________________|
2967
2968 Return 1 for success, 0 for (error-type-inducing) failure. */
2969 /* *INDENT-ON* */
2970
2971
2972
2973 static int
2974 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2975 struct objfile *objfile)
2976 {
2977 int i;
2978 struct nextfield *new;
2979
2980 if (**pp != '!')
2981 {
2982 return 1;
2983 }
2984 else
2985 {
2986 /* Skip the '!' baseclass information marker. */
2987 (*pp)++;
2988 }
2989
2990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2991 {
2992 int nbits;
2993 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2994 if (nbits != 0)
2995 return 0;
2996 }
2997
2998 #if 0
2999 /* Some stupid compilers have trouble with the following, so break
3000 it up into simpler expressions. */
3001 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3002 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3003 #else
3004 {
3005 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3006 char *pointer;
3007
3008 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3009 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3010 }
3011 #endif /* 0 */
3012
3013 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3014
3015 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3016 {
3017 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3018 make_cleanup (xfree, new);
3019 memset (new, 0, sizeof (struct nextfield));
3020 new->next = fip->list;
3021 fip->list = new;
3022 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3023
3024 STABS_CONTINUE (pp, objfile);
3025 switch (**pp)
3026 {
3027 case '0':
3028 /* Nothing to do. */
3029 break;
3030 case '1':
3031 SET_TYPE_FIELD_VIRTUAL (type, i);
3032 break;
3033 default:
3034 /* Unknown character. Complain and treat it as non-virtual. */
3035 {
3036 complaint (&symfile_complaints,
3037 _("Unknown virtual character `%c' for baseclass"), **pp);
3038 }
3039 }
3040 ++(*pp);
3041
3042 new->visibility = *(*pp)++;
3043 switch (new->visibility)
3044 {
3045 case VISIBILITY_PRIVATE:
3046 case VISIBILITY_PROTECTED:
3047 case VISIBILITY_PUBLIC:
3048 break;
3049 default:
3050 /* Bad visibility format. Complain and treat it as
3051 public. */
3052 {
3053 complaint (&symfile_complaints,
3054 _("Unknown visibility `%c' for baseclass"),
3055 new->visibility);
3056 new->visibility = VISIBILITY_PUBLIC;
3057 }
3058 }
3059
3060 {
3061 int nbits;
3062
3063 /* The remaining value is the bit offset of the portion of the object
3064 corresponding to this baseclass. Always zero in the absence of
3065 multiple inheritance. */
3066
3067 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3068 if (nbits != 0)
3069 return 0;
3070 }
3071
3072 /* The last piece of baseclass information is the type of the
3073 base class. Read it, and remember it's type name as this
3074 field's name. */
3075
3076 new->field.type = read_type (pp, objfile);
3077 new->field.name = type_name_no_tag (new->field.type);
3078
3079 /* skip trailing ';' and bump count of number of fields seen */
3080 if (**pp == ';')
3081 (*pp)++;
3082 else
3083 return 0;
3084 }
3085 return 1;
3086 }
3087
3088 /* The tail end of stabs for C++ classes that contain a virtual function
3089 pointer contains a tilde, a %, and a type number.
3090 The type number refers to the base class (possibly this class itself) which
3091 contains the vtable pointer for the current class.
3092
3093 This function is called when we have parsed all the method declarations,
3094 so we can look for the vptr base class info. */
3095
3096 static int
3097 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3098 struct objfile *objfile)
3099 {
3100 char *p;
3101
3102 STABS_CONTINUE (pp, objfile);
3103
3104 /* If we are positioned at a ';', then skip it. */
3105 if (**pp == ';')
3106 {
3107 (*pp)++;
3108 }
3109
3110 if (**pp == '~')
3111 {
3112 (*pp)++;
3113
3114 if (**pp == '=' || **pp == '+' || **pp == '-')
3115 {
3116 /* Obsolete flags that used to indicate the presence
3117 of constructors and/or destructors. */
3118 (*pp)++;
3119 }
3120
3121 /* Read either a '%' or the final ';'. */
3122 if (*(*pp)++ == '%')
3123 {
3124 /* The next number is the type number of the base class
3125 (possibly our own class) which supplies the vtable for
3126 this class. Parse it out, and search that class to find
3127 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3128 and TYPE_VPTR_FIELDNO. */
3129
3130 struct type *t;
3131 int i;
3132
3133 t = read_type (pp, objfile);
3134 p = (*pp)++;
3135 while (*p != '\0' && *p != ';')
3136 {
3137 p++;
3138 }
3139 if (*p == '\0')
3140 {
3141 /* Premature end of symbol. */
3142 return 0;
3143 }
3144
3145 TYPE_VPTR_BASETYPE (type) = t;
3146 if (type == t) /* Our own class provides vtbl ptr */
3147 {
3148 for (i = TYPE_NFIELDS (t) - 1;
3149 i >= TYPE_N_BASECLASSES (t);
3150 --i)
3151 {
3152 char *name = TYPE_FIELD_NAME (t, i);
3153 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3154 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3155 {
3156 TYPE_VPTR_FIELDNO (type) = i;
3157 goto gotit;
3158 }
3159 }
3160 /* Virtual function table field not found. */
3161 complaint (&symfile_complaints,
3162 _("virtual function table pointer not found when defining class `%s'"),
3163 TYPE_NAME (type));
3164 return 0;
3165 }
3166 else
3167 {
3168 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3169 }
3170
3171 gotit:
3172 *pp = p + 1;
3173 }
3174 }
3175 return 1;
3176 }
3177
3178 static int
3179 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3180 {
3181 int n;
3182
3183 for (n = TYPE_NFN_FIELDS (type);
3184 fip->fnlist != NULL;
3185 fip->fnlist = fip->fnlist->next)
3186 {
3187 --n; /* Circumvent Sun3 compiler bug */
3188 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3189 }
3190 return 1;
3191 }
3192
3193 /* Create the vector of fields, and record how big it is.
3194 We need this info to record proper virtual function table information
3195 for this class's virtual functions. */
3196
3197 static int
3198 attach_fields_to_type (struct field_info *fip, struct type *type,
3199 struct objfile *objfile)
3200 {
3201 int nfields = 0;
3202 int non_public_fields = 0;
3203 struct nextfield *scan;
3204
3205 /* Count up the number of fields that we have, as well as taking note of
3206 whether or not there are any non-public fields, which requires us to
3207 allocate and build the private_field_bits and protected_field_bits
3208 bitfields. */
3209
3210 for (scan = fip->list; scan != NULL; scan = scan->next)
3211 {
3212 nfields++;
3213 if (scan->visibility != VISIBILITY_PUBLIC)
3214 {
3215 non_public_fields++;
3216 }
3217 }
3218
3219 /* Now we know how many fields there are, and whether or not there are any
3220 non-public fields. Record the field count, allocate space for the
3221 array of fields, and create blank visibility bitfields if necessary. */
3222
3223 TYPE_NFIELDS (type) = nfields;
3224 TYPE_FIELDS (type) = (struct field *)
3225 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3226 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3227
3228 if (non_public_fields)
3229 {
3230 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3231
3232 TYPE_FIELD_PRIVATE_BITS (type) =
3233 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3234 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3235
3236 TYPE_FIELD_PROTECTED_BITS (type) =
3237 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3238 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3239
3240 TYPE_FIELD_IGNORE_BITS (type) =
3241 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3242 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3243 }
3244
3245 /* Copy the saved-up fields into the field vector. Start from the head
3246 of the list, adding to the tail of the field array, so that they end
3247 up in the same order in the array in which they were added to the list. */
3248
3249 while (nfields-- > 0)
3250 {
3251 TYPE_FIELD (type, nfields) = fip->list->field;
3252 switch (fip->list->visibility)
3253 {
3254 case VISIBILITY_PRIVATE:
3255 SET_TYPE_FIELD_PRIVATE (type, nfields);
3256 break;
3257
3258 case VISIBILITY_PROTECTED:
3259 SET_TYPE_FIELD_PROTECTED (type, nfields);
3260 break;
3261
3262 case VISIBILITY_IGNORE:
3263 SET_TYPE_FIELD_IGNORE (type, nfields);
3264 break;
3265
3266 case VISIBILITY_PUBLIC:
3267 break;
3268
3269 default:
3270 /* Unknown visibility. Complain and treat it as public. */
3271 {
3272 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3273 fip->list->visibility);
3274 }
3275 break;
3276 }
3277 fip->list = fip->list->next;
3278 }
3279 return 1;
3280 }
3281
3282
3283 /* Complain that the compiler has emitted more than one definition for the
3284 structure type TYPE. */
3285 static void
3286 complain_about_struct_wipeout (struct type *type)
3287 {
3288 char *name = "";
3289 char *kind = "";
3290
3291 if (TYPE_TAG_NAME (type))
3292 {
3293 name = TYPE_TAG_NAME (type);
3294 switch (TYPE_CODE (type))
3295 {
3296 case TYPE_CODE_STRUCT: kind = "struct "; break;
3297 case TYPE_CODE_UNION: kind = "union "; break;
3298 case TYPE_CODE_ENUM: kind = "enum "; break;
3299 default: kind = "";
3300 }
3301 }
3302 else if (TYPE_NAME (type))
3303 {
3304 name = TYPE_NAME (type);
3305 kind = "";
3306 }
3307 else
3308 {
3309 name = "<unknown>";
3310 kind = "";
3311 }
3312
3313 complaint (&symfile_complaints,
3314 _("struct/union type gets multiply defined: %s%s"), kind, name);
3315 }
3316
3317
3318 /* Read the description of a structure (or union type) and return an object
3319 describing the type.
3320
3321 PP points to a character pointer that points to the next unconsumed token
3322 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3323 *PP will point to "4a:1,0,32;;".
3324
3325 TYPE points to an incomplete type that needs to be filled in.
3326
3327 OBJFILE points to the current objfile from which the stabs information is
3328 being read. (Note that it is redundant in that TYPE also contains a pointer
3329 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3330 */
3331
3332 static struct type *
3333 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3334 struct objfile *objfile)
3335 {
3336 struct cleanup *back_to;
3337 struct field_info fi;
3338
3339 fi.list = NULL;
3340 fi.fnlist = NULL;
3341
3342 /* When describing struct/union/class types in stabs, G++ always drops
3343 all qualifications from the name. So if you've got:
3344 struct A { ... struct B { ... }; ... };
3345 then G++ will emit stabs for `struct A::B' that call it simply
3346 `struct B'. Obviously, if you've got a real top-level definition for
3347 `struct B', or other nested definitions, this is going to cause
3348 problems.
3349
3350 Obviously, GDB can't fix this by itself, but it can at least avoid
3351 scribbling on existing structure type objects when new definitions
3352 appear. */
3353 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3354 || TYPE_STUB (type)))
3355 {
3356 complain_about_struct_wipeout (type);
3357
3358 /* It's probably best to return the type unchanged. */
3359 return type;
3360 }
3361
3362 back_to = make_cleanup (null_cleanup, 0);
3363
3364 INIT_CPLUS_SPECIFIC (type);
3365 TYPE_CODE (type) = type_code;
3366 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3367
3368 /* First comes the total size in bytes. */
3369
3370 {
3371 int nbits;
3372 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3373 if (nbits != 0)
3374 return error_type (pp, objfile);
3375 }
3376
3377 /* Now read the baseclasses, if any, read the regular C struct or C++
3378 class member fields, attach the fields to the type, read the C++
3379 member functions, attach them to the type, and then read any tilde
3380 field (baseclass specifier for the class holding the main vtable). */
3381
3382 if (!read_baseclasses (&fi, pp, type, objfile)
3383 || !read_struct_fields (&fi, pp, type, objfile)
3384 || !attach_fields_to_type (&fi, type, objfile)
3385 || !read_member_functions (&fi, pp, type, objfile)
3386 || !attach_fn_fields_to_type (&fi, type)
3387 || !read_tilde_fields (&fi, pp, type, objfile))
3388 {
3389 type = error_type (pp, objfile);
3390 }
3391
3392 do_cleanups (back_to);
3393 return (type);
3394 }
3395
3396 /* Read a definition of an array type,
3397 and create and return a suitable type object.
3398 Also creates a range type which represents the bounds of that
3399 array. */
3400
3401 static struct type *
3402 read_array_type (char **pp, struct type *type,
3403 struct objfile *objfile)
3404 {
3405 struct type *index_type, *element_type, *range_type;
3406 int lower, upper;
3407 int adjustable = 0;
3408 int nbits;
3409
3410 /* Format of an array type:
3411 "ar<index type>;lower;upper;<array_contents_type>".
3412 OS9000: "arlower,upper;<array_contents_type>".
3413
3414 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3415 for these, produce a type like float[][]. */
3416
3417 {
3418 index_type = read_type (pp, objfile);
3419 if (**pp != ';')
3420 /* Improper format of array type decl. */
3421 return error_type (pp, objfile);
3422 ++*pp;
3423 }
3424
3425 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3426 {
3427 (*pp)++;
3428 adjustable = 1;
3429 }
3430 lower = read_huge_number (pp, ';', &nbits, 0);
3431
3432 if (nbits != 0)
3433 return error_type (pp, objfile);
3434
3435 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3436 {
3437 (*pp)++;
3438 adjustable = 1;
3439 }
3440 upper = read_huge_number (pp, ';', &nbits, 0);
3441 if (nbits != 0)
3442 return error_type (pp, objfile);
3443
3444 element_type = read_type (pp, objfile);
3445
3446 if (adjustable)
3447 {
3448 lower = 0;
3449 upper = -1;
3450 }
3451
3452 range_type =
3453 create_range_type ((struct type *) NULL, index_type, lower, upper);
3454 type = create_array_type (type, element_type, range_type);
3455
3456 return type;
3457 }
3458
3459
3460 /* Read a definition of an enumeration type,
3461 and create and return a suitable type object.
3462 Also defines the symbols that represent the values of the type. */
3463
3464 static struct type *
3465 read_enum_type (char **pp, struct type *type,
3466 struct objfile *objfile)
3467 {
3468 char *p;
3469 char *name;
3470 long n;
3471 struct symbol *sym;
3472 int nsyms = 0;
3473 struct pending **symlist;
3474 struct pending *osyms, *syms;
3475 int o_nsyms;
3476 int nbits;
3477 int unsigned_enum = 1;
3478
3479 #if 0
3480 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3481 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3482 to do? For now, force all enum values to file scope. */
3483 if (within_function)
3484 symlist = &local_symbols;
3485 else
3486 #endif
3487 symlist = &file_symbols;
3488 osyms = *symlist;
3489 o_nsyms = osyms ? osyms->nsyms : 0;
3490
3491 /* The aix4 compiler emits an extra field before the enum members;
3492 my guess is it's a type of some sort. Just ignore it. */
3493 if (**pp == '-')
3494 {
3495 /* Skip over the type. */
3496 while (**pp != ':')
3497 (*pp)++;
3498
3499 /* Skip over the colon. */
3500 (*pp)++;
3501 }
3502
3503 /* Read the value-names and their values.
3504 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3505 A semicolon or comma instead of a NAME means the end. */
3506 while (**pp && **pp != ';' && **pp != ',')
3507 {
3508 STABS_CONTINUE (pp, objfile);
3509 p = *pp;
3510 while (*p != ':')
3511 p++;
3512 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3513 *pp = p + 1;
3514 n = read_huge_number (pp, ',', &nbits, 0);
3515 if (nbits != 0)
3516 return error_type (pp, objfile);
3517
3518 sym = (struct symbol *)
3519 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3520 memset (sym, 0, sizeof (struct symbol));
3521 DEPRECATED_SYMBOL_NAME (sym) = name;
3522 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3523 SYMBOL_CLASS (sym) = LOC_CONST;
3524 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3525 SYMBOL_VALUE (sym) = n;
3526 if (n < 0)
3527 unsigned_enum = 0;
3528 add_symbol_to_list (sym, symlist);
3529 nsyms++;
3530 }
3531
3532 if (**pp == ';')
3533 (*pp)++; /* Skip the semicolon. */
3534
3535 /* Now fill in the fields of the type-structure. */
3536
3537 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3538 TYPE_CODE (type) = TYPE_CODE_ENUM;
3539 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3540 if (unsigned_enum)
3541 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3542 TYPE_NFIELDS (type) = nsyms;
3543 TYPE_FIELDS (type) = (struct field *)
3544 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3545 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3546
3547 /* Find the symbols for the values and put them into the type.
3548 The symbols can be found in the symlist that we put them on
3549 to cause them to be defined. osyms contains the old value
3550 of that symlist; everything up to there was defined by us. */
3551 /* Note that we preserve the order of the enum constants, so
3552 that in something like "enum {FOO, LAST_THING=FOO}" we print
3553 FOO, not LAST_THING. */
3554
3555 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3556 {
3557 int last = syms == osyms ? o_nsyms : 0;
3558 int j = syms->nsyms;
3559 for (; --j >= last; --n)
3560 {
3561 struct symbol *xsym = syms->symbol[j];
3562 SYMBOL_TYPE (xsym) = type;
3563 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3564 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3565 TYPE_FIELD_BITSIZE (type, n) = 0;
3566 }
3567 if (syms == osyms)
3568 break;
3569 }
3570
3571 return type;
3572 }
3573
3574 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3575 typedefs in every file (for int, long, etc):
3576
3577 type = b <signed> <width> <format type>; <offset>; <nbits>
3578 signed = u or s.
3579 optional format type = c or b for char or boolean.
3580 offset = offset from high order bit to start bit of type.
3581 width is # bytes in object of this type, nbits is # bits in type.
3582
3583 The width/offset stuff appears to be for small objects stored in
3584 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3585 FIXME. */
3586
3587 static struct type *
3588 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3589 {
3590 int type_bits;
3591 int nbits;
3592 int signed_type;
3593 enum type_code code = TYPE_CODE_INT;
3594
3595 switch (**pp)
3596 {
3597 case 's':
3598 signed_type = 1;
3599 break;
3600 case 'u':
3601 signed_type = 0;
3602 break;
3603 default:
3604 return error_type (pp, objfile);
3605 }
3606 (*pp)++;
3607
3608 /* For some odd reason, all forms of char put a c here. This is strange
3609 because no other type has this honor. We can safely ignore this because
3610 we actually determine 'char'acterness by the number of bits specified in
3611 the descriptor.
3612 Boolean forms, e.g Fortran logical*X, put a b here. */
3613
3614 if (**pp == 'c')
3615 (*pp)++;
3616 else if (**pp == 'b')
3617 {
3618 code = TYPE_CODE_BOOL;
3619 (*pp)++;
3620 }
3621
3622 /* The first number appears to be the number of bytes occupied
3623 by this type, except that unsigned short is 4 instead of 2.
3624 Since this information is redundant with the third number,
3625 we will ignore it. */
3626 read_huge_number (pp, ';', &nbits, 0);
3627 if (nbits != 0)
3628 return error_type (pp, objfile);
3629
3630 /* The second number is always 0, so ignore it too. */
3631 read_huge_number (pp, ';', &nbits, 0);
3632 if (nbits != 0)
3633 return error_type (pp, objfile);
3634
3635 /* The third number is the number of bits for this type. */
3636 type_bits = read_huge_number (pp, 0, &nbits, 0);
3637 if (nbits != 0)
3638 return error_type (pp, objfile);
3639 /* The type *should* end with a semicolon. If it are embedded
3640 in a larger type the semicolon may be the only way to know where
3641 the type ends. If this type is at the end of the stabstring we
3642 can deal with the omitted semicolon (but we don't have to like
3643 it). Don't bother to complain(), Sun's compiler omits the semicolon
3644 for "void". */
3645 if (**pp == ';')
3646 ++(*pp);
3647
3648 if (type_bits == 0)
3649 return init_type (TYPE_CODE_VOID, 1,
3650 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3651 objfile);
3652 else
3653 return init_type (code,
3654 type_bits / TARGET_CHAR_BIT,
3655 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3656 objfile);
3657 }
3658
3659 static struct type *
3660 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3661 {
3662 int nbits;
3663 int details;
3664 int nbytes;
3665 struct type *rettype;
3666
3667 /* The first number has more details about the type, for example
3668 FN_COMPLEX. */
3669 details = read_huge_number (pp, ';', &nbits, 0);
3670 if (nbits != 0)
3671 return error_type (pp, objfile);
3672
3673 /* The second number is the number of bytes occupied by this type */
3674 nbytes = read_huge_number (pp, ';', &nbits, 0);
3675 if (nbits != 0)
3676 return error_type (pp, objfile);
3677
3678 if (details == NF_COMPLEX || details == NF_COMPLEX16
3679 || details == NF_COMPLEX32)
3680 {
3681 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3682 TYPE_TARGET_TYPE (rettype)
3683 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3684 return rettype;
3685 }
3686
3687 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3688 }
3689
3690 /* Read a number from the string pointed to by *PP.
3691 The value of *PP is advanced over the number.
3692 If END is nonzero, the character that ends the
3693 number must match END, or an error happens;
3694 and that character is skipped if it does match.
3695 If END is zero, *PP is left pointing to that character.
3696
3697 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3698 the number is represented in an octal representation, assume that
3699 it is represented in a 2's complement representation with a size of
3700 TWOS_COMPLEMENT_BITS.
3701
3702 If the number fits in a long, set *BITS to 0 and return the value.
3703 If not, set *BITS to be the number of bits in the number and return 0.
3704
3705 If encounter garbage, set *BITS to -1 and return 0. */
3706
3707 static long
3708 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3709 {
3710 char *p = *pp;
3711 int sign = 1;
3712 int sign_bit = 0;
3713 long n = 0;
3714 int radix = 10;
3715 char overflow = 0;
3716 int nbits = 0;
3717 int c;
3718 long upper_limit;
3719 int twos_complement_representation = 0;
3720
3721 if (*p == '-')
3722 {
3723 sign = -1;
3724 p++;
3725 }
3726
3727 /* Leading zero means octal. GCC uses this to output values larger
3728 than an int (because that would be hard in decimal). */
3729 if (*p == '0')
3730 {
3731 radix = 8;
3732 p++;
3733 }
3734
3735 /* Skip extra zeros. */
3736 while (*p == '0')
3737 p++;
3738
3739 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3740 {
3741 /* Octal, possibly signed. Check if we have enough chars for a
3742 negative number. */
3743
3744 size_t len;
3745 char *p1 = p;
3746 while ((c = *p1) >= '0' && c < '8')
3747 p1++;
3748
3749 len = p1 - p;
3750 if (len > twos_complement_bits / 3
3751 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3752 {
3753 /* Ok, we have enough characters for a signed value, check
3754 for signness by testing if the sign bit is set. */
3755 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3756 c = *p - '0';
3757 if (c & (1 << sign_bit))
3758 {
3759 /* Definitely signed. */
3760 twos_complement_representation = 1;
3761 sign = -1;
3762 }
3763 }
3764 }
3765
3766 upper_limit = LONG_MAX / radix;
3767
3768 while ((c = *p++) >= '0' && c < ('0' + radix))
3769 {
3770 if (n <= upper_limit)
3771 {
3772 if (twos_complement_representation)
3773 {
3774 /* Octal, signed, twos complement representation. In
3775 this case, n is the corresponding absolute value. */
3776 if (n == 0)
3777 {
3778 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3779 n = -sn;
3780 }
3781 else
3782 {
3783 n *= radix;
3784 n -= c - '0';
3785 }
3786 }
3787 else
3788 {
3789 /* unsigned representation */
3790 n *= radix;
3791 n += c - '0'; /* FIXME this overflows anyway */
3792 }
3793 }
3794 else
3795 overflow = 1;
3796
3797 /* This depends on large values being output in octal, which is
3798 what GCC does. */
3799 if (radix == 8)
3800 {
3801 if (nbits == 0)
3802 {
3803 if (c == '0')
3804 /* Ignore leading zeroes. */
3805 ;
3806 else if (c == '1')
3807 nbits = 1;
3808 else if (c == '2' || c == '3')
3809 nbits = 2;
3810 else
3811 nbits = 3;
3812 }
3813 else
3814 nbits += 3;
3815 }
3816 }
3817 if (end)
3818 {
3819 if (c && c != end)
3820 {
3821 if (bits != NULL)
3822 *bits = -1;
3823 return 0;
3824 }
3825 }
3826 else
3827 --p;
3828
3829 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3830 {
3831 /* We were supposed to parse a number with maximum
3832 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3833 if (bits != NULL)
3834 *bits = -1;
3835 return 0;
3836 }
3837
3838 *pp = p;
3839 if (overflow)
3840 {
3841 if (nbits == 0)
3842 {
3843 /* Large decimal constants are an error (because it is hard to
3844 count how many bits are in them). */
3845 if (bits != NULL)
3846 *bits = -1;
3847 return 0;
3848 }
3849
3850 /* -0x7f is the same as 0x80. So deal with it by adding one to
3851 the number of bits. Two's complement represention octals
3852 can't have a '-' in front. */
3853 if (sign == -1 && !twos_complement_representation)
3854 ++nbits;
3855 if (bits)
3856 *bits = nbits;
3857 }
3858 else
3859 {
3860 if (bits)
3861 *bits = 0;
3862 return n * sign;
3863 }
3864 /* It's *BITS which has the interesting information. */
3865 return 0;
3866 }
3867
3868 static struct type *
3869 read_range_type (char **pp, int typenums[2], int type_size,
3870 struct objfile *objfile)
3871 {
3872 char *orig_pp = *pp;
3873 int rangenums[2];
3874 long n2, n3;
3875 int n2bits, n3bits;
3876 int self_subrange;
3877 struct type *result_type;
3878 struct type *index_type = NULL;
3879
3880 /* First comes a type we are a subrange of.
3881 In C it is usually 0, 1 or the type being defined. */
3882 if (read_type_number (pp, rangenums) != 0)
3883 return error_type (pp, objfile);
3884 self_subrange = (rangenums[0] == typenums[0] &&
3885 rangenums[1] == typenums[1]);
3886
3887 if (**pp == '=')
3888 {
3889 *pp = orig_pp;
3890 index_type = read_type (pp, objfile);
3891 }
3892
3893 /* A semicolon should now follow; skip it. */
3894 if (**pp == ';')
3895 (*pp)++;
3896
3897 /* The remaining two operands are usually lower and upper bounds
3898 of the range. But in some special cases they mean something else. */
3899 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3900 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3901
3902 if (n2bits == -1 || n3bits == -1)
3903 return error_type (pp, objfile);
3904
3905 if (index_type)
3906 goto handle_true_range;
3907
3908 /* If limits are huge, must be large integral type. */
3909 if (n2bits != 0 || n3bits != 0)
3910 {
3911 char got_signed = 0;
3912 char got_unsigned = 0;
3913 /* Number of bits in the type. */
3914 int nbits = 0;
3915
3916 /* If a type size attribute has been specified, the bounds of
3917 the range should fit in this size. If the lower bounds needs
3918 more bits than the upper bound, then the type is signed. */
3919 if (n2bits <= type_size && n3bits <= type_size)
3920 {
3921 if (n2bits == type_size && n2bits > n3bits)
3922 got_signed = 1;
3923 else
3924 got_unsigned = 1;
3925 nbits = type_size;
3926 }
3927 /* Range from 0 to <large number> is an unsigned large integral type. */
3928 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3929 {
3930 got_unsigned = 1;
3931 nbits = n3bits;
3932 }
3933 /* Range from <large number> to <large number>-1 is a large signed
3934 integral type. Take care of the case where <large number> doesn't
3935 fit in a long but <large number>-1 does. */
3936 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3937 || (n2bits != 0 && n3bits == 0
3938 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3939 && n3 == LONG_MAX))
3940 {
3941 got_signed = 1;
3942 nbits = n2bits;
3943 }
3944
3945 if (got_signed || got_unsigned)
3946 {
3947 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3948 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3949 objfile);
3950 }
3951 else
3952 return error_type (pp, objfile);
3953 }
3954
3955 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3956 if (self_subrange && n2 == 0 && n3 == 0)
3957 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3958
3959 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3960 is the width in bytes.
3961
3962 Fortran programs appear to use this for complex types also. To
3963 distinguish between floats and complex, g77 (and others?) seem
3964 to use self-subranges for the complexes, and subranges of int for
3965 the floats.
3966
3967 Also note that for complexes, g77 sets n2 to the size of one of
3968 the member floats, not the whole complex beast. My guess is that
3969 this was to work well with pre-COMPLEX versions of gdb. */
3970
3971 if (n3 == 0 && n2 > 0)
3972 {
3973 struct type *float_type
3974 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3975
3976 if (self_subrange)
3977 {
3978 struct type *complex_type =
3979 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3980 TYPE_TARGET_TYPE (complex_type) = float_type;
3981 return complex_type;
3982 }
3983 else
3984 return float_type;
3985 }
3986
3987 /* If the upper bound is -1, it must really be an unsigned integral. */
3988
3989 else if (n2 == 0 && n3 == -1)
3990 {
3991 int bits = type_size;
3992 if (bits <= 0)
3993 {
3994 /* We don't know its size. It is unsigned int or unsigned
3995 long. GCC 2.3.3 uses this for long long too, but that is
3996 just a GDB 3.5 compatibility hack. */
3997 bits = gdbarch_int_bit (current_gdbarch);
3998 }
3999
4000 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4001 TYPE_FLAG_UNSIGNED, NULL, objfile);
4002 }
4003
4004 /* Special case: char is defined (Who knows why) as a subrange of
4005 itself with range 0-127. */
4006 else if (self_subrange && n2 == 0 && n3 == 127)
4007 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4008
4009 /* We used to do this only for subrange of self or subrange of int. */
4010 else if (n2 == 0)
4011 {
4012 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4013 "unsigned long", and we already checked for that,
4014 so don't need to test for it here. */
4015
4016 if (n3 < 0)
4017 /* n3 actually gives the size. */
4018 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4019 NULL, objfile);
4020
4021 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4022 unsigned n-byte integer. But do require n to be a power of
4023 two; we don't want 3- and 5-byte integers flying around. */
4024 {
4025 int bytes;
4026 unsigned long bits;
4027
4028 bits = n3;
4029 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4030 bits >>= 8;
4031 if (bits == 0
4032 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4033 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4034 objfile);
4035 }
4036 }
4037 /* I think this is for Convex "long long". Since I don't know whether
4038 Convex sets self_subrange, I also accept that particular size regardless
4039 of self_subrange. */
4040 else if (n3 == 0 && n2 < 0
4041 && (self_subrange
4042 || n2 == -gdbarch_long_long_bit
4043 (current_gdbarch) / TARGET_CHAR_BIT))
4044 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4045 else if (n2 == -n3 - 1)
4046 {
4047 if (n3 == 0x7f)
4048 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4049 if (n3 == 0x7fff)
4050 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4051 if (n3 == 0x7fffffff)
4052 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4053 }
4054
4055 /* We have a real range type on our hands. Allocate space and
4056 return a real pointer. */
4057 handle_true_range:
4058
4059 if (self_subrange)
4060 index_type = builtin_type_int;
4061 else
4062 index_type = *dbx_lookup_type (rangenums);
4063 if (index_type == NULL)
4064 {
4065 /* Does this actually ever happen? Is that why we are worrying
4066 about dealing with it rather than just calling error_type? */
4067
4068 static struct type *range_type_index;
4069
4070 complaint (&symfile_complaints,
4071 _("base type %d of range type is not defined"), rangenums[1]);
4072 if (range_type_index == NULL)
4073 range_type_index =
4074 init_type (TYPE_CODE_INT,
4075 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4076 0, "range type index type", NULL);
4077 index_type = range_type_index;
4078 }
4079
4080 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4081 return (result_type);
4082 }
4083
4084 /* Read in an argument list. This is a list of types, separated by commas
4085 and terminated with END. Return the list of types read in, or NULL
4086 if there is an error. */
4087
4088 static struct field *
4089 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4090 int *varargsp)
4091 {
4092 /* FIXME! Remove this arbitrary limit! */
4093 struct type *types[1024]; /* allow for fns of 1023 parameters */
4094 int n = 0, i;
4095 struct field *rval;
4096
4097 while (**pp != end)
4098 {
4099 if (**pp != ',')
4100 /* Invalid argument list: no ','. */
4101 return NULL;
4102 (*pp)++;
4103 STABS_CONTINUE (pp, objfile);
4104 types[n++] = read_type (pp, objfile);
4105 }
4106 (*pp)++; /* get past `end' (the ':' character) */
4107
4108 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4109 *varargsp = 1;
4110 else
4111 {
4112 n--;
4113 *varargsp = 0;
4114 }
4115
4116 rval = (struct field *) xmalloc (n * sizeof (struct field));
4117 memset (rval, 0, n * sizeof (struct field));
4118 for (i = 0; i < n; i++)
4119 rval[i].type = types[i];
4120 *nargsp = n;
4121 return rval;
4122 }
4123 \f
4124 /* Common block handling. */
4125
4126 /* List of symbols declared since the last BCOMM. This list is a tail
4127 of local_symbols. When ECOMM is seen, the symbols on the list
4128 are noted so their proper addresses can be filled in later,
4129 using the common block base address gotten from the assembler
4130 stabs. */
4131
4132 static struct pending *common_block;
4133 static int common_block_i;
4134
4135 /* Name of the current common block. We get it from the BCOMM instead of the
4136 ECOMM to match IBM documentation (even though IBM puts the name both places
4137 like everyone else). */
4138 static char *common_block_name;
4139
4140 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4141 to remain after this function returns. */
4142
4143 void
4144 common_block_start (char *name, struct objfile *objfile)
4145 {
4146 if (common_block_name != NULL)
4147 {
4148 complaint (&symfile_complaints,
4149 _("Invalid symbol data: common block within common block"));
4150 }
4151 common_block = local_symbols;
4152 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4153 common_block_name = obsavestring (name, strlen (name),
4154 &objfile->objfile_obstack);
4155 }
4156
4157 /* Process a N_ECOMM symbol. */
4158
4159 void
4160 common_block_end (struct objfile *objfile)
4161 {
4162 /* Symbols declared since the BCOMM are to have the common block
4163 start address added in when we know it. common_block and
4164 common_block_i point to the first symbol after the BCOMM in
4165 the local_symbols list; copy the list and hang it off the
4166 symbol for the common block name for later fixup. */
4167 int i;
4168 struct symbol *sym;
4169 struct pending *new = 0;
4170 struct pending *next;
4171 int j;
4172
4173 if (common_block_name == NULL)
4174 {
4175 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4176 return;
4177 }
4178
4179 sym = (struct symbol *)
4180 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4181 memset (sym, 0, sizeof (struct symbol));
4182 /* Note: common_block_name already saved on objfile_obstack */
4183 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4184 SYMBOL_CLASS (sym) = LOC_BLOCK;
4185
4186 /* Now we copy all the symbols which have been defined since the BCOMM. */
4187
4188 /* Copy all the struct pendings before common_block. */
4189 for (next = local_symbols;
4190 next != NULL && next != common_block;
4191 next = next->next)
4192 {
4193 for (j = 0; j < next->nsyms; j++)
4194 add_symbol_to_list (next->symbol[j], &new);
4195 }
4196
4197 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4198 NULL, it means copy all the local symbols (which we already did
4199 above). */
4200
4201 if (common_block != NULL)
4202 for (j = common_block_i; j < common_block->nsyms; j++)
4203 add_symbol_to_list (common_block->symbol[j], &new);
4204
4205 SYMBOL_TYPE (sym) = (struct type *) new;
4206
4207 /* Should we be putting local_symbols back to what it was?
4208 Does it matter? */
4209
4210 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4211 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4212 global_sym_chain[i] = sym;
4213 common_block_name = NULL;
4214 }
4215
4216 /* Add a common block's start address to the offset of each symbol
4217 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4218 the common block name). */
4219
4220 static void
4221 fix_common_block (struct symbol *sym, int valu)
4222 {
4223 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4224 for (; next; next = next->next)
4225 {
4226 int j;
4227 for (j = next->nsyms - 1; j >= 0; j--)
4228 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4229 }
4230 }
4231 \f
4232
4233
4234 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4235 See add_undefined_type for more details. */
4236
4237 static void
4238 add_undefined_type_noname (struct type *type, int typenums[2])
4239 {
4240 struct nat nat;
4241
4242 nat.typenums[0] = typenums [0];
4243 nat.typenums[1] = typenums [1];
4244 nat.type = type;
4245
4246 if (noname_undefs_length == noname_undefs_allocated)
4247 {
4248 noname_undefs_allocated *= 2;
4249 noname_undefs = (struct nat *)
4250 xrealloc ((char *) noname_undefs,
4251 noname_undefs_allocated * sizeof (struct nat));
4252 }
4253 noname_undefs[noname_undefs_length++] = nat;
4254 }
4255
4256 /* Add TYPE to the UNDEF_TYPES vector.
4257 See add_undefined_type for more details. */
4258
4259 static void
4260 add_undefined_type_1 (struct type *type)
4261 {
4262 if (undef_types_length == undef_types_allocated)
4263 {
4264 undef_types_allocated *= 2;
4265 undef_types = (struct type **)
4266 xrealloc ((char *) undef_types,
4267 undef_types_allocated * sizeof (struct type *));
4268 }
4269 undef_types[undef_types_length++] = type;
4270 }
4271
4272 /* What about types defined as forward references inside of a small lexical
4273 scope? */
4274 /* Add a type to the list of undefined types to be checked through
4275 once this file has been read in.
4276
4277 In practice, we actually maintain two such lists: The first list
4278 (UNDEF_TYPES) is used for types whose name has been provided, and
4279 concerns forward references (eg 'xs' or 'xu' forward references);
4280 the second list (NONAME_UNDEFS) is used for types whose name is
4281 unknown at creation time, because they were referenced through
4282 their type number before the actual type was declared.
4283 This function actually adds the given type to the proper list. */
4284
4285 static void
4286 add_undefined_type (struct type *type, int typenums[2])
4287 {
4288 if (TYPE_TAG_NAME (type) == NULL)
4289 add_undefined_type_noname (type, typenums);
4290 else
4291 add_undefined_type_1 (type);
4292 }
4293
4294 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4295
4296 void
4297 cleanup_undefined_types_noname (void)
4298 {
4299 int i;
4300
4301 for (i = 0; i < noname_undefs_length; i++)
4302 {
4303 struct nat nat = noname_undefs[i];
4304 struct type **type;
4305
4306 type = dbx_lookup_type (nat.typenums);
4307 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4308 replace_type (nat.type, *type);
4309 }
4310
4311 noname_undefs_length = 0;
4312 }
4313
4314 /* Go through each undefined type, see if it's still undefined, and fix it
4315 up if possible. We have two kinds of undefined types:
4316
4317 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4318 Fix: update array length using the element bounds
4319 and the target type's length.
4320 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4321 yet defined at the time a pointer to it was made.
4322 Fix: Do a full lookup on the struct/union tag. */
4323
4324 void
4325 cleanup_undefined_types_1 (void)
4326 {
4327 struct type **type;
4328
4329 for (type = undef_types; type < undef_types + undef_types_length; type++)
4330 {
4331 switch (TYPE_CODE (*type))
4332 {
4333
4334 case TYPE_CODE_STRUCT:
4335 case TYPE_CODE_UNION:
4336 case TYPE_CODE_ENUM:
4337 {
4338 /* Check if it has been defined since. Need to do this here
4339 as well as in check_typedef to deal with the (legitimate in
4340 C though not C++) case of several types with the same name
4341 in different source files. */
4342 if (TYPE_STUB (*type))
4343 {
4344 struct pending *ppt;
4345 int i;
4346 /* Name of the type, without "struct" or "union" */
4347 char *typename = TYPE_TAG_NAME (*type);
4348
4349 if (typename == NULL)
4350 {
4351 complaint (&symfile_complaints, _("need a type name"));
4352 break;
4353 }
4354 for (ppt = file_symbols; ppt; ppt = ppt->next)
4355 {
4356 for (i = 0; i < ppt->nsyms; i++)
4357 {
4358 struct symbol *sym = ppt->symbol[i];
4359
4360 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4361 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4362 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4363 TYPE_CODE (*type))
4364 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4365 replace_type (*type, SYMBOL_TYPE (sym));
4366 }
4367 }
4368 }
4369 }
4370 break;
4371
4372 default:
4373 {
4374 complaint (&symfile_complaints,
4375 _("forward-referenced types left unresolved, "
4376 "type code %d."),
4377 TYPE_CODE (*type));
4378 }
4379 break;
4380 }
4381 }
4382
4383 undef_types_length = 0;
4384 }
4385
4386 /* Try to fix all the undefined types we ecountered while processing
4387 this unit. */
4388
4389 void
4390 cleanup_undefined_types (void)
4391 {
4392 cleanup_undefined_types_1 ();
4393 cleanup_undefined_types_noname ();
4394 }
4395
4396 /* Scan through all of the global symbols defined in the object file,
4397 assigning values to the debugging symbols that need to be assigned
4398 to. Get these symbols from the minimal symbol table. */
4399
4400 void
4401 scan_file_globals (struct objfile *objfile)
4402 {
4403 int hash;
4404 struct minimal_symbol *msymbol;
4405 struct symbol *sym, *prev;
4406 struct objfile *resolve_objfile;
4407
4408 /* SVR4 based linkers copy referenced global symbols from shared
4409 libraries to the main executable.
4410 If we are scanning the symbols for a shared library, try to resolve
4411 them from the minimal symbols of the main executable first. */
4412
4413 if (symfile_objfile && objfile != symfile_objfile)
4414 resolve_objfile = symfile_objfile;
4415 else
4416 resolve_objfile = objfile;
4417
4418 while (1)
4419 {
4420 /* Avoid expensive loop through all minimal symbols if there are
4421 no unresolved symbols. */
4422 for (hash = 0; hash < HASHSIZE; hash++)
4423 {
4424 if (global_sym_chain[hash])
4425 break;
4426 }
4427 if (hash >= HASHSIZE)
4428 return;
4429
4430 for (msymbol = resolve_objfile->msymbols;
4431 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4432 msymbol++)
4433 {
4434 QUIT;
4435
4436 /* Skip static symbols. */
4437 switch (MSYMBOL_TYPE (msymbol))
4438 {
4439 case mst_file_text:
4440 case mst_file_data:
4441 case mst_file_bss:
4442 continue;
4443 default:
4444 break;
4445 }
4446
4447 prev = NULL;
4448
4449 /* Get the hash index and check all the symbols
4450 under that hash index. */
4451
4452 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4453
4454 for (sym = global_sym_chain[hash]; sym;)
4455 {
4456 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4457 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4458 {
4459 /* Splice this symbol out of the hash chain and
4460 assign the value we have to it. */
4461 if (prev)
4462 {
4463 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4464 }
4465 else
4466 {
4467 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4468 }
4469
4470 /* Check to see whether we need to fix up a common block. */
4471 /* Note: this code might be executed several times for
4472 the same symbol if there are multiple references. */
4473 if (sym)
4474 {
4475 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4476 {
4477 fix_common_block (sym,
4478 SYMBOL_VALUE_ADDRESS (msymbol));
4479 }
4480 else
4481 {
4482 SYMBOL_VALUE_ADDRESS (sym)
4483 = SYMBOL_VALUE_ADDRESS (msymbol);
4484 }
4485 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4486 }
4487
4488 if (prev)
4489 {
4490 sym = SYMBOL_VALUE_CHAIN (prev);
4491 }
4492 else
4493 {
4494 sym = global_sym_chain[hash];
4495 }
4496 }
4497 else
4498 {
4499 prev = sym;
4500 sym = SYMBOL_VALUE_CHAIN (sym);
4501 }
4502 }
4503 }
4504 if (resolve_objfile == objfile)
4505 break;
4506 resolve_objfile = objfile;
4507 }
4508
4509 /* Change the storage class of any remaining unresolved globals to
4510 LOC_UNRESOLVED and remove them from the chain. */
4511 for (hash = 0; hash < HASHSIZE; hash++)
4512 {
4513 sym = global_sym_chain[hash];
4514 while (sym)
4515 {
4516 prev = sym;
4517 sym = SYMBOL_VALUE_CHAIN (sym);
4518
4519 /* Change the symbol address from the misleading chain value
4520 to address zero. */
4521 SYMBOL_VALUE_ADDRESS (prev) = 0;
4522
4523 /* Complain about unresolved common block symbols. */
4524 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4525 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4526 else
4527 complaint (&symfile_complaints,
4528 _("%s: common block `%s' from global_sym_chain unresolved"),
4529 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4530 }
4531 }
4532 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4533 }
4534
4535 /* Initialize anything that needs initializing when starting to read
4536 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4537 to a psymtab. */
4538
4539 void
4540 stabsread_init (void)
4541 {
4542 }
4543
4544 /* Initialize anything that needs initializing when a completely new
4545 symbol file is specified (not just adding some symbols from another
4546 file, e.g. a shared library). */
4547
4548 void
4549 stabsread_new_init (void)
4550 {
4551 /* Empty the hash table of global syms looking for values. */
4552 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4553 }
4554
4555 /* Initialize anything that needs initializing at the same time as
4556 start_symtab() is called. */
4557
4558 void
4559 start_stabs (void)
4560 {
4561 global_stabs = NULL; /* AIX COFF */
4562 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4563 n_this_object_header_files = 1;
4564 type_vector_length = 0;
4565 type_vector = (struct type **) 0;
4566
4567 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4568 common_block_name = NULL;
4569 }
4570
4571 /* Call after end_symtab() */
4572
4573 void
4574 end_stabs (void)
4575 {
4576 if (type_vector)
4577 {
4578 xfree (type_vector);
4579 }
4580 type_vector = 0;
4581 type_vector_length = 0;
4582 previous_stab_code = 0;
4583 }
4584
4585 void
4586 finish_global_stabs (struct objfile *objfile)
4587 {
4588 if (global_stabs)
4589 {
4590 patch_block_stabs (global_symbols, global_stabs, objfile);
4591 xfree (global_stabs);
4592 global_stabs = NULL;
4593 }
4594 }
4595
4596 /* Find the end of the name, delimited by a ':', but don't match
4597 ObjC symbols which look like -[Foo bar::]:bla. */
4598 static char *
4599 find_name_end (char *name)
4600 {
4601 char *s = name;
4602 if (s[0] == '-' || *s == '+')
4603 {
4604 /* Must be an ObjC method symbol. */
4605 if (s[1] != '[')
4606 {
4607 error (_("invalid symbol name \"%s\""), name);
4608 }
4609 s = strchr (s, ']');
4610 if (s == NULL)
4611 {
4612 error (_("invalid symbol name \"%s\""), name);
4613 }
4614 return strchr (s, ':');
4615 }
4616 else
4617 {
4618 return strchr (s, ':');
4619 }
4620 }
4621
4622 /* Initializer for this module */
4623
4624 void
4625 _initialize_stabsread (void)
4626 {
4627 undef_types_allocated = 20;
4628 undef_types_length = 0;
4629 undef_types = (struct type **)
4630 xmalloc (undef_types_allocated * sizeof (struct type *));
4631
4632 noname_undefs_allocated = 20;
4633 noname_undefs_length = 0;
4634 noname_undefs = (struct nat *)
4635 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4636 }
This page took 0.134181 seconds and 3 git commands to generate.