Use forward_scope_exit for scoped_finish_thread_state
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "bcache.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct field_info
89 {
90 struct nextfield *list;
91 struct next_fnfieldlist *fnlist;
92 };
93
94 static void
95 read_one_struct_field (struct field_info *, const char **, const char *,
96 struct type *, struct objfile *);
97
98 static struct type *dbx_alloc_type (int[2], struct objfile *);
99
100 static long read_huge_number (const char **, int, int *, int);
101
102 static struct type *error_type (const char **, struct objfile *);
103
104 static void
105 patch_block_stabs (struct pending *, struct pending_stabs *,
106 struct objfile *);
107
108 static void fix_common_block (struct symbol *, CORE_ADDR);
109
110 static int read_type_number (const char **, int *);
111
112 static struct type *read_type (const char **, struct objfile *);
113
114 static struct type *read_range_type (const char **, int[2],
115 int, struct objfile *);
116
117 static struct type *read_sun_builtin_type (const char **,
118 int[2], struct objfile *);
119
120 static struct type *read_sun_floating_type (const char **, int[2],
121 struct objfile *);
122
123 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
124
125 static struct type *rs6000_builtin_type (int, struct objfile *);
126
127 static int
128 read_member_functions (struct field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_struct_fields (struct field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int
136 read_baseclasses (struct field_info *, const char **, struct type *,
137 struct objfile *);
138
139 static int
140 read_tilde_fields (struct field_info *, const char **, struct type *,
141 struct objfile *);
142
143 static int attach_fn_fields_to_type (struct field_info *, struct type *);
144
145 static int attach_fields_to_type (struct field_info *, struct type *,
146 struct objfile *);
147
148 static struct type *read_struct_type (const char **, struct type *,
149 enum type_code,
150 struct objfile *);
151
152 static struct type *read_array_type (const char **, struct type *,
153 struct objfile *);
154
155 static struct field *read_args (const char **, int, struct objfile *,
156 int *, int *);
157
158 static void add_undefined_type (struct type *, int[2]);
159
160 static int
161 read_cpp_abbrev (struct field_info *, const char **, struct type *,
162 struct objfile *);
163
164 static const char *find_name_end (const char *name);
165
166 static int process_reference (const char **string);
167
168 void stabsread_clear_cache (void);
169
170 static const char vptr_name[] = "_vptr$";
171 static const char vb_name[] = "_vb$";
172
173 static void
174 invalid_cpp_abbrev_complaint (const char *arg1)
175 {
176 complaint (_("invalid C++ abbreviation `%s'"), arg1);
177 }
178
179 static void
180 reg_value_complaint (int regnum, int num_regs, const char *sym)
181 {
182 complaint (_("bad register number %d (max %d) in symbol %s"),
183 regnum, num_regs - 1, sym);
184 }
185
186 static void
187 stabs_general_complaint (const char *arg1)
188 {
189 complaint ("%s", arg1);
190 }
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197 static struct symbol *current_symbol = NULL;
198
199 /* Make a list of nameless types that are undefined.
200 This happens when another type is referenced by its number
201 before this type is actually defined. For instance "t(0,1)=k(0,2)"
202 and type (0,2) is defined only later. */
203
204 struct nat
205 {
206 int typenums[2];
207 struct type *type;
208 };
209 static struct nat *noname_undefs;
210 static int noname_undefs_allocated;
211 static int noname_undefs_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp,objfile) \
215 do { \
216 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
217 *(pp) = next_symbol_text (objfile); \
218 } while (0)
219
220 /* Vector of types defined so far, indexed by their type numbers.
221 (In newer sun systems, dbx uses a pair of numbers in parens,
222 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
223 Then these numbers must be translated through the type_translations
224 hash table to get the index into the type vector.) */
225
226 static struct type **type_vector;
227
228 /* Number of elements allocated for type_vector currently. */
229
230 static int type_vector_length;
231
232 /* Initial size of type vector. Is realloc'd larger if needed, and
233 realloc'd down to the size actually used, when completed. */
234
235 #define INITIAL_TYPE_VECTOR_LENGTH 160
236 \f
237
238 /* Look up a dbx type-number pair. Return the address of the slot
239 where the type for that number-pair is stored.
240 The number-pair is in TYPENUMS.
241
242 This can be used for finding the type associated with that pair
243 or for associating a new type with the pair. */
244
245 static struct type **
246 dbx_lookup_type (int typenums[2], struct objfile *objfile)
247 {
248 int filenum = typenums[0];
249 int index = typenums[1];
250 unsigned old_len;
251 int real_filenum;
252 struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 complaint (_("Invalid symbol data: type number "
261 "(%d,%d) out of range at symtab pos %d."),
262 filenum, index, symnum);
263 goto error_return;
264 }
265
266 if (filenum == 0)
267 {
268 if (index < 0)
269 {
270 /* Caller wants address of address of type. We think
271 that negative (rs6k builtin) types will never appear as
272 "lvalues", (nor should they), so we stuff the real type
273 pointer into a temp, and return its address. If referenced,
274 this will do the right thing. */
275 static struct type *temp_type;
276
277 temp_type = rs6000_builtin_type (index, objfile);
278 return &temp_type;
279 }
280
281 /* Type is defined outside of header files.
282 Find it in this object file's type vector. */
283 if (index >= type_vector_length)
284 {
285 old_len = type_vector_length;
286 if (old_len == 0)
287 {
288 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
289 type_vector = XNEWVEC (struct type *, type_vector_length);
290 }
291 while (index >= type_vector_length)
292 {
293 type_vector_length *= 2;
294 }
295 type_vector = (struct type **)
296 xrealloc ((char *) type_vector,
297 (type_vector_length * sizeof (struct type *)));
298 memset (&type_vector[old_len], 0,
299 (type_vector_length - old_len) * sizeof (struct type *));
300 }
301 return (&type_vector[index]);
302 }
303 else
304 {
305 real_filenum = this_object_header_files[filenum];
306
307 if (real_filenum >= N_HEADER_FILES (objfile))
308 {
309 static struct type *temp_type;
310
311 warning (_("GDB internal error: bad real_filenum"));
312
313 error_return:
314 temp_type = objfile_type (objfile)->builtin_error;
315 return &temp_type;
316 }
317
318 f = HEADER_FILES (objfile) + real_filenum;
319
320 f_orig_length = f->length;
321 if (index >= f_orig_length)
322 {
323 while (index >= f->length)
324 {
325 f->length *= 2;
326 }
327 f->vector = (struct type **)
328 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
329 memset (&f->vector[f_orig_length], 0,
330 (f->length - f_orig_length) * sizeof (struct type *));
331 }
332 return (&f->vector[index]);
333 }
334 }
335
336 /* Make sure there is a type allocated for type numbers TYPENUMS
337 and return the type object.
338 This can create an empty (zeroed) type object.
339 TYPENUMS may be (-1, -1) to return a new type object that is not
340 put into the type vector, and so may not be referred to by number. */
341
342 static struct type *
343 dbx_alloc_type (int typenums[2], struct objfile *objfile)
344 {
345 struct type **type_addr;
346
347 if (typenums[0] == -1)
348 {
349 return (alloc_type (objfile));
350 }
351
352 type_addr = dbx_lookup_type (typenums, objfile);
353
354 /* If we are referring to a type not known at all yet,
355 allocate an empty type for it.
356 We will fill it in later if we find out how. */
357 if (*type_addr == 0)
358 {
359 *type_addr = alloc_type (objfile);
360 }
361
362 return (*type_addr);
363 }
364
365 /* Allocate a floating-point type of size BITS. */
366
367 static struct type *
368 dbx_init_float_type (struct objfile *objfile, int bits)
369 {
370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
371 const struct floatformat **format;
372 struct type *type;
373
374 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
375 if (format)
376 type = init_float_type (objfile, bits, NULL, format);
377 else
378 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
379
380 return type;
381 }
382
383 /* for all the stabs in a given stab vector, build appropriate types
384 and fix their symbols in given symbol vector. */
385
386 static void
387 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
388 struct objfile *objfile)
389 {
390 int ii;
391 char *name;
392 const char *pp;
393 struct symbol *sym;
394
395 if (stabs)
396 {
397 /* for all the stab entries, find their corresponding symbols and
398 patch their types! */
399
400 for (ii = 0; ii < stabs->count; ++ii)
401 {
402 name = stabs->stab[ii];
403 pp = (char *) strchr (name, ':');
404 gdb_assert (pp); /* Must find a ':' or game's over. */
405 while (pp[1] == ':')
406 {
407 pp += 2;
408 pp = (char *) strchr (pp, ':');
409 }
410 sym = find_symbol_in_list (symbols, name, pp - name);
411 if (!sym)
412 {
413 /* FIXME-maybe: it would be nice if we noticed whether
414 the variable was defined *anywhere*, not just whether
415 it is defined in this compilation unit. But neither
416 xlc or GCC seem to need such a definition, and until
417 we do psymtabs (so that the minimal symbols from all
418 compilation units are available now), I'm not sure
419 how to get the information. */
420
421 /* On xcoff, if a global is defined and never referenced,
422 ld will remove it from the executable. There is then
423 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
424 sym = allocate_symbol (objfile);
425 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
426 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
427 SYMBOL_SET_LINKAGE_NAME
428 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
429 name, pp - name));
430 pp += 2;
431 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
432 {
433 /* I don't think the linker does this with functions,
434 so as far as I know this is never executed.
435 But it doesn't hurt to check. */
436 SYMBOL_TYPE (sym) =
437 lookup_function_type (read_type (&pp, objfile));
438 }
439 else
440 {
441 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
442 }
443 add_symbol_to_list (sym, get_global_symbols ());
444 }
445 else
446 {
447 pp += 2;
448 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
449 {
450 SYMBOL_TYPE (sym) =
451 lookup_function_type (read_type (&pp, objfile));
452 }
453 else
454 {
455 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
456 }
457 }
458 }
459 }
460 }
461 \f
462
463 /* Read a number by which a type is referred to in dbx data,
464 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
465 Just a single number N is equivalent to (0,N).
466 Return the two numbers by storing them in the vector TYPENUMS.
467 TYPENUMS will then be used as an argument to dbx_lookup_type.
468
469 Returns 0 for success, -1 for error. */
470
471 static int
472 read_type_number (const char **pp, int *typenums)
473 {
474 int nbits;
475
476 if (**pp == '(')
477 {
478 (*pp)++;
479 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
480 if (nbits != 0)
481 return -1;
482 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
483 if (nbits != 0)
484 return -1;
485 }
486 else
487 {
488 typenums[0] = 0;
489 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
490 if (nbits != 0)
491 return -1;
492 }
493 return 0;
494 }
495 \f
496
497 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
498 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
499 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
500 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
501
502 /* Structure for storing pointers to reference definitions for fast lookup
503 during "process_later". */
504
505 struct ref_map
506 {
507 const char *stabs;
508 CORE_ADDR value;
509 struct symbol *sym;
510 };
511
512 #define MAX_CHUNK_REFS 100
513 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
514 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
515
516 static struct ref_map *ref_map;
517
518 /* Ptr to free cell in chunk's linked list. */
519 static int ref_count = 0;
520
521 /* Number of chunks malloced. */
522 static int ref_chunk = 0;
523
524 /* This file maintains a cache of stabs aliases found in the symbol
525 table. If the symbol table changes, this cache must be cleared
526 or we are left holding onto data in invalid obstacks. */
527 void
528 stabsread_clear_cache (void)
529 {
530 ref_count = 0;
531 ref_chunk = 0;
532 }
533
534 /* Create array of pointers mapping refids to symbols and stab strings.
535 Add pointers to reference definition symbols and/or their values as we
536 find them, using their reference numbers as our index.
537 These will be used later when we resolve references. */
538 void
539 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
540 {
541 if (ref_count == 0)
542 ref_chunk = 0;
543 if (refnum >= ref_count)
544 ref_count = refnum + 1;
545 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
546 {
547 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
548 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
549
550 ref_map = (struct ref_map *)
551 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
552 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
553 new_chunks * REF_CHUNK_SIZE);
554 ref_chunk += new_chunks;
555 }
556 ref_map[refnum].stabs = stabs;
557 ref_map[refnum].sym = sym;
558 ref_map[refnum].value = value;
559 }
560
561 /* Return defined sym for the reference REFNUM. */
562 struct symbol *
563 ref_search (int refnum)
564 {
565 if (refnum < 0 || refnum > ref_count)
566 return 0;
567 return ref_map[refnum].sym;
568 }
569
570 /* Parse a reference id in STRING and return the resulting
571 reference number. Move STRING beyond the reference id. */
572
573 static int
574 process_reference (const char **string)
575 {
576 const char *p;
577 int refnum = 0;
578
579 if (**string != '#')
580 return 0;
581
582 /* Advance beyond the initial '#'. */
583 p = *string + 1;
584
585 /* Read number as reference id. */
586 while (*p && isdigit (*p))
587 {
588 refnum = refnum * 10 + *p - '0';
589 p++;
590 }
591 *string = p;
592 return refnum;
593 }
594
595 /* If STRING defines a reference, store away a pointer to the reference
596 definition for later use. Return the reference number. */
597
598 int
599 symbol_reference_defined (const char **string)
600 {
601 const char *p = *string;
602 int refnum = 0;
603
604 refnum = process_reference (&p);
605
606 /* Defining symbols end in '='. */
607 if (*p == '=')
608 {
609 /* Symbol is being defined here. */
610 *string = p + 1;
611 return refnum;
612 }
613 else
614 {
615 /* Must be a reference. Either the symbol has already been defined,
616 or this is a forward reference to it. */
617 *string = p;
618 return -1;
619 }
620 }
621
622 static int
623 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
624 {
625 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
626
627 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
628 {
629 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
630 SYMBOL_PRINT_NAME (sym));
631
632 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
633 }
634
635 return regno;
636 }
637
638 static const struct symbol_register_ops stab_register_funcs = {
639 stab_reg_to_regnum
640 };
641
642 /* The "aclass" indices for computed symbols. */
643
644 static int stab_register_index;
645 static int stab_regparm_index;
646
647 struct symbol *
648 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
649 struct objfile *objfile)
650 {
651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
652 struct symbol *sym;
653 const char *p = find_name_end (string);
654 int deftype;
655 int synonym = 0;
656 int i;
657
658 /* We would like to eliminate nameless symbols, but keep their types.
659 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
660 to type 2, but, should not create a symbol to address that type. Since
661 the symbol will be nameless, there is no way any user can refer to it. */
662
663 int nameless;
664
665 /* Ignore syms with empty names. */
666 if (string[0] == 0)
667 return 0;
668
669 /* Ignore old-style symbols from cc -go. */
670 if (p == 0)
671 return 0;
672
673 while (p[1] == ':')
674 {
675 p += 2;
676 p = strchr (p, ':');
677 if (p == NULL)
678 {
679 complaint (
680 _("Bad stabs string '%s'"), string);
681 return NULL;
682 }
683 }
684
685 /* If a nameless stab entry, all we need is the type, not the symbol.
686 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
687 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
688
689 current_symbol = sym = allocate_symbol (objfile);
690
691 if (processing_gcc_compilation)
692 {
693 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
694 number of bytes occupied by a type or object, which we ignore. */
695 SYMBOL_LINE (sym) = desc;
696 }
697 else
698 {
699 SYMBOL_LINE (sym) = 0; /* unknown */
700 }
701
702 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
703 &objfile->objfile_obstack);
704
705 if (is_cplus_marker (string[0]))
706 {
707 /* Special GNU C++ names. */
708 switch (string[1])
709 {
710 case 't':
711 SYMBOL_SET_LINKAGE_NAME (sym, "this");
712 break;
713
714 case 'v': /* $vtbl_ptr_type */
715 goto normal;
716
717 case 'e':
718 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
719 break;
720
721 case '_':
722 /* This was an anonymous type that was never fixed up. */
723 goto normal;
724
725 case 'X':
726 /* SunPRO (3.0 at least) static variable encoding. */
727 if (gdbarch_static_transform_name_p (gdbarch))
728 goto normal;
729 /* fall through */
730
731 default:
732 complaint (_("Unknown C++ symbol name `%s'"),
733 string);
734 goto normal; /* Do *something* with it. */
735 }
736 }
737 else
738 {
739 normal:
740 std::string new_name;
741
742 if (SYMBOL_LANGUAGE (sym) == language_cplus)
743 {
744 char *name = (char *) alloca (p - string + 1);
745
746 memcpy (name, string, p - string);
747 name[p - string] = '\0';
748 new_name = cp_canonicalize_string (name);
749 }
750 if (!new_name.empty ())
751 {
752 SYMBOL_SET_NAMES (sym,
753 new_name.c_str (), new_name.length (),
754 1, objfile);
755 }
756 else
757 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
758
759 if (SYMBOL_LANGUAGE (sym) == language_cplus)
760 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
761 objfile);
762
763 }
764 p++;
765
766 /* Determine the type of name being defined. */
767 #if 0
768 /* Getting GDB to correctly skip the symbol on an undefined symbol
769 descriptor and not ever dump core is a very dodgy proposition if
770 we do things this way. I say the acorn RISC machine can just
771 fix their compiler. */
772 /* The Acorn RISC machine's compiler can put out locals that don't
773 start with "234=" or "(3,4)=", so assume anything other than the
774 deftypes we know how to handle is a local. */
775 if (!strchr ("cfFGpPrStTvVXCR", *p))
776 #else
777 if (isdigit (*p) || *p == '(' || *p == '-')
778 #endif
779 deftype = 'l';
780 else
781 deftype = *p++;
782
783 switch (deftype)
784 {
785 case 'c':
786 /* c is a special case, not followed by a type-number.
787 SYMBOL:c=iVALUE for an integer constant symbol.
788 SYMBOL:c=rVALUE for a floating constant symbol.
789 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
790 e.g. "b:c=e6,0" for "const b = blob1"
791 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
792 if (*p != '=')
793 {
794 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
795 SYMBOL_TYPE (sym) = error_type (&p, objfile);
796 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
797 add_symbol_to_list (sym, get_file_symbols ());
798 return sym;
799 }
800 ++p;
801 switch (*p++)
802 {
803 case 'r':
804 {
805 gdb_byte *dbl_valu;
806 struct type *dbl_type;
807
808 dbl_type = objfile_type (objfile)->builtin_double;
809 dbl_valu
810 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
811 TYPE_LENGTH (dbl_type));
812
813 target_float_from_string (dbl_valu, dbl_type, std::string (p));
814
815 SYMBOL_TYPE (sym) = dbl_type;
816 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
818 }
819 break;
820 case 'i':
821 {
822 /* Defining integer constants this way is kind of silly,
823 since 'e' constants allows the compiler to give not
824 only the value, but the type as well. C has at least
825 int, long, unsigned int, and long long as constant
826 types; other languages probably should have at least
827 unsigned as well as signed constants. */
828
829 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
830 SYMBOL_VALUE (sym) = atoi (p);
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 }
833 break;
834
835 case 'c':
836 {
837 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
838 SYMBOL_VALUE (sym) = atoi (p);
839 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
840 }
841 break;
842
843 case 's':
844 {
845 struct type *range_type;
846 int ind = 0;
847 char quote = *p++;
848 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
849 gdb_byte *string_value;
850
851 if (quote != '\'' && quote != '"')
852 {
853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
854 SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 add_symbol_to_list (sym, get_file_symbols ());
857 return sym;
858 }
859
860 /* Find matching quote, rejecting escaped quotes. */
861 while (*p && *p != quote)
862 {
863 if (*p == '\\' && p[1] == quote)
864 {
865 string_local[ind] = (gdb_byte) quote;
866 ind++;
867 p += 2;
868 }
869 else if (*p)
870 {
871 string_local[ind] = (gdb_byte) (*p);
872 ind++;
873 p++;
874 }
875 }
876 if (*p != quote)
877 {
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
879 SYMBOL_TYPE (sym) = error_type (&p, objfile);
880 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
881 add_symbol_to_list (sym, get_file_symbols ());
882 return sym;
883 }
884
885 /* NULL terminate the string. */
886 string_local[ind] = 0;
887 range_type
888 = create_static_range_type (NULL,
889 objfile_type (objfile)->builtin_int,
890 0, ind);
891 SYMBOL_TYPE (sym) = create_array_type (NULL,
892 objfile_type (objfile)->builtin_char,
893 range_type);
894 string_value
895 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
896 memcpy (string_value, string_local, ind + 1);
897 p++;
898
899 SYMBOL_VALUE_BYTES (sym) = string_value;
900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
901 }
902 break;
903
904 case 'e':
905 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
906 can be represented as integral.
907 e.g. "b:c=e6,0" for "const b = blob1"
908 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
909 {
910 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
911 SYMBOL_TYPE (sym) = read_type (&p, objfile);
912
913 if (*p != ',')
914 {
915 SYMBOL_TYPE (sym) = error_type (&p, objfile);
916 break;
917 }
918 ++p;
919
920 /* If the value is too big to fit in an int (perhaps because
921 it is unsigned), or something like that, we silently get
922 a bogus value. The type and everything else about it is
923 correct. Ideally, we should be using whatever we have
924 available for parsing unsigned and long long values,
925 however. */
926 SYMBOL_VALUE (sym) = atoi (p);
927 }
928 break;
929 default:
930 {
931 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
932 SYMBOL_TYPE (sym) = error_type (&p, objfile);
933 }
934 }
935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
936 add_symbol_to_list (sym, get_file_symbols ());
937 return sym;
938
939 case 'C':
940 /* The name of a caught exception. */
941 SYMBOL_TYPE (sym) = read_type (&p, objfile);
942 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
943 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
944 SYMBOL_VALUE_ADDRESS (sym) = valu;
945 add_symbol_to_list (sym, get_local_symbols ());
946 break;
947
948 case 'f':
949 /* A static function definition. */
950 SYMBOL_TYPE (sym) = read_type (&p, objfile);
951 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
952 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953 add_symbol_to_list (sym, get_file_symbols ());
954 /* fall into process_function_types. */
955
956 process_function_types:
957 /* Function result types are described as the result type in stabs.
958 We need to convert this to the function-returning-type-X type
959 in GDB. E.g. "int" is converted to "function returning int". */
960 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
961 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
962
963 /* All functions in C++ have prototypes. Stabs does not offer an
964 explicit way to identify prototyped or unprototyped functions,
965 but both GCC and Sun CC emit stabs for the "call-as" type rather
966 than the "declared-as" type for unprototyped functions, so
967 we treat all functions as if they were prototyped. This is used
968 primarily for promotion when calling the function from GDB. */
969 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
970
971 /* fall into process_prototype_types. */
972
973 process_prototype_types:
974 /* Sun acc puts declared types of arguments here. */
975 if (*p == ';')
976 {
977 struct type *ftype = SYMBOL_TYPE (sym);
978 int nsemi = 0;
979 int nparams = 0;
980 const char *p1 = p;
981
982 /* Obtain a worst case guess for the number of arguments
983 by counting the semicolons. */
984 while (*p1)
985 {
986 if (*p1++ == ';')
987 nsemi++;
988 }
989
990 /* Allocate parameter information fields and fill them in. */
991 TYPE_FIELDS (ftype) = (struct field *)
992 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
993 while (*p++ == ';')
994 {
995 struct type *ptype;
996
997 /* A type number of zero indicates the start of varargs.
998 FIXME: GDB currently ignores vararg functions. */
999 if (p[0] == '0' && p[1] == '\0')
1000 break;
1001 ptype = read_type (&p, objfile);
1002
1003 /* The Sun compilers mark integer arguments, which should
1004 be promoted to the width of the calling conventions, with
1005 a type which references itself. This type is turned into
1006 a TYPE_CODE_VOID type by read_type, and we have to turn
1007 it back into builtin_int here.
1008 FIXME: Do we need a new builtin_promoted_int_arg ? */
1009 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1010 ptype = objfile_type (objfile)->builtin_int;
1011 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1012 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1013 }
1014 TYPE_NFIELDS (ftype) = nparams;
1015 TYPE_PROTOTYPED (ftype) = 1;
1016 }
1017 break;
1018
1019 case 'F':
1020 /* A global function definition. */
1021 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1022 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1024 add_symbol_to_list (sym, get_global_symbols ());
1025 goto process_function_types;
1026
1027 case 'G':
1028 /* For a class G (global) symbol, it appears that the
1029 value is not correct. It is necessary to search for the
1030 corresponding linker definition to find the value.
1031 These definitions appear at the end of the namelist. */
1032 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1033 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 /* Don't add symbol references to global_sym_chain.
1036 Symbol references don't have valid names and wont't match up with
1037 minimal symbols when the global_sym_chain is relocated.
1038 We'll fixup symbol references when we fixup the defining symbol. */
1039 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1040 {
1041 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1042 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1043 global_sym_chain[i] = sym;
1044 }
1045 add_symbol_to_list (sym, get_global_symbols ());
1046 break;
1047
1048 /* This case is faked by a conditional above,
1049 when there is no code letter in the dbx data.
1050 Dbx data never actually contains 'l'. */
1051 case 's':
1052 case 'l':
1053 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1054 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1055 SYMBOL_VALUE (sym) = valu;
1056 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1057 add_symbol_to_list (sym, get_local_symbols ());
1058 break;
1059
1060 case 'p':
1061 if (*p == 'F')
1062 /* pF is a two-letter code that means a function parameter in Fortran.
1063 The type-number specifies the type of the return value.
1064 Translate it into a pointer-to-function type. */
1065 {
1066 p++;
1067 SYMBOL_TYPE (sym)
1068 = lookup_pointer_type
1069 (lookup_function_type (read_type (&p, objfile)));
1070 }
1071 else
1072 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1073
1074 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1075 SYMBOL_VALUE (sym) = valu;
1076 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1077 SYMBOL_IS_ARGUMENT (sym) = 1;
1078 add_symbol_to_list (sym, get_local_symbols ());
1079
1080 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1081 {
1082 /* On little-endian machines, this crud is never necessary,
1083 and, if the extra bytes contain garbage, is harmful. */
1084 break;
1085 }
1086
1087 /* If it's gcc-compiled, if it says `short', believe it. */
1088 if (processing_gcc_compilation
1089 || gdbarch_believe_pcc_promotion (gdbarch))
1090 break;
1091
1092 if (!gdbarch_believe_pcc_promotion (gdbarch))
1093 {
1094 /* If PCC says a parameter is a short or a char, it is
1095 really an int. */
1096 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1097 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1098 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1099 {
1100 SYMBOL_TYPE (sym) =
1101 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1102 ? objfile_type (objfile)->builtin_unsigned_int
1103 : objfile_type (objfile)->builtin_int;
1104 }
1105 break;
1106 }
1107 /* Fall through. */
1108
1109 case 'P':
1110 /* acc seems to use P to declare the prototypes of functions that
1111 are referenced by this file. gdb is not prepared to deal
1112 with this extra information. FIXME, it ought to. */
1113 if (type == N_FUN)
1114 {
1115 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1116 goto process_prototype_types;
1117 }
1118 /*FALLTHROUGH */
1119
1120 case 'R':
1121 /* Parameter which is in a register. */
1122 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1123 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1124 SYMBOL_IS_ARGUMENT (sym) = 1;
1125 SYMBOL_VALUE (sym) = valu;
1126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1127 add_symbol_to_list (sym, get_local_symbols ());
1128 break;
1129
1130 case 'r':
1131 /* Register variable (either global or local). */
1132 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1133 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1134 SYMBOL_VALUE (sym) = valu;
1135 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1136 if (within_function)
1137 {
1138 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1139 the same name to represent an argument passed in a
1140 register. GCC uses 'P' for the same case. So if we find
1141 such a symbol pair we combine it into one 'P' symbol.
1142 For Sun cc we need to do this regardless of
1143 stabs_argument_has_addr, because the compiler puts out
1144 the 'p' symbol even if it never saves the argument onto
1145 the stack.
1146
1147 On most machines, we want to preserve both symbols, so
1148 that we can still get information about what is going on
1149 with the stack (VAX for computing args_printed, using
1150 stack slots instead of saved registers in backtraces,
1151 etc.).
1152
1153 Note that this code illegally combines
1154 main(argc) struct foo argc; { register struct foo argc; }
1155 but this case is considered pathological and causes a warning
1156 from a decent compiler. */
1157
1158 struct pending *local_symbols = *get_local_symbols ();
1159 if (local_symbols
1160 && local_symbols->nsyms > 0
1161 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1162 {
1163 struct symbol *prev_sym;
1164
1165 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1166 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1167 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1168 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1169 SYMBOL_LINKAGE_NAME (sym)) == 0)
1170 {
1171 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1172 /* Use the type from the LOC_REGISTER; that is the type
1173 that is actually in that register. */
1174 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1175 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1176 sym = prev_sym;
1177 break;
1178 }
1179 }
1180 add_symbol_to_list (sym, get_local_symbols ());
1181 }
1182 else
1183 add_symbol_to_list (sym, get_file_symbols ());
1184 break;
1185
1186 case 'S':
1187 /* Static symbol at top level of file. */
1188 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1189 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1190 SYMBOL_VALUE_ADDRESS (sym) = valu;
1191 if (gdbarch_static_transform_name_p (gdbarch)
1192 && gdbarch_static_transform_name (gdbarch,
1193 SYMBOL_LINKAGE_NAME (sym))
1194 != SYMBOL_LINKAGE_NAME (sym))
1195 {
1196 struct bound_minimal_symbol msym;
1197
1198 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1199 NULL, objfile);
1200 if (msym.minsym != NULL)
1201 {
1202 const char *new_name = gdbarch_static_transform_name
1203 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1204
1205 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1206 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1207 }
1208 }
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 add_symbol_to_list (sym, get_file_symbols ());
1211 break;
1212
1213 case 't':
1214 /* In Ada, there is no distinction between typedef and non-typedef;
1215 any type declaration implicitly has the equivalent of a typedef,
1216 and thus 't' is in fact equivalent to 'Tt'.
1217
1218 Therefore, for Ada units, we check the character immediately
1219 before the 't', and if we do not find a 'T', then make sure to
1220 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1221 will be stored in the VAR_DOMAIN). If the symbol was indeed
1222 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1223 elsewhere, so we don't need to take care of that.
1224
1225 This is important to do, because of forward references:
1226 The cleanup of undefined types stored in undef_types only uses
1227 STRUCT_DOMAIN symbols to perform the replacement. */
1228 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1229
1230 /* Typedef */
1231 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1232
1233 /* For a nameless type, we don't want a create a symbol, thus we
1234 did not use `sym'. Return without further processing. */
1235 if (nameless)
1236 return NULL;
1237
1238 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1239 SYMBOL_VALUE (sym) = valu;
1240 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1241 /* C++ vagaries: we may have a type which is derived from
1242 a base type which did not have its name defined when the
1243 derived class was output. We fill in the derived class's
1244 base part member's name here in that case. */
1245 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1246 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1247 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1248 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1249 {
1250 int j;
1251
1252 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1253 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1254 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1255 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1256 }
1257
1258 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1259 {
1260 /* gcc-2.6 or later (when using -fvtable-thunks)
1261 emits a unique named type for a vtable entry.
1262 Some gdb code depends on that specific name. */
1263 extern const char vtbl_ptr_name[];
1264
1265 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1266 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1267 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1268 {
1269 /* If we are giving a name to a type such as "pointer to
1270 foo" or "function returning foo", we better not set
1271 the TYPE_NAME. If the program contains "typedef char
1272 *caddr_t;", we don't want all variables of type char
1273 * to print as caddr_t. This is not just a
1274 consequence of GDB's type management; PCC and GCC (at
1275 least through version 2.4) both output variables of
1276 either type char * or caddr_t with the type number
1277 defined in the 't' symbol for caddr_t. If a future
1278 compiler cleans this up it GDB is not ready for it
1279 yet, but if it becomes ready we somehow need to
1280 disable this check (without breaking the PCC/GCC2.4
1281 case).
1282
1283 Sigh.
1284
1285 Fortunately, this check seems not to be necessary
1286 for anything except pointers or functions. */
1287 /* ezannoni: 2000-10-26. This seems to apply for
1288 versions of gcc older than 2.8. This was the original
1289 problem: with the following code gdb would tell that
1290 the type for name1 is caddr_t, and func is char().
1291
1292 typedef char *caddr_t;
1293 char *name2;
1294 struct x
1295 {
1296 char *name1;
1297 } xx;
1298 char *func()
1299 {
1300 }
1301 main () {}
1302 */
1303
1304 /* Pascal accepts names for pointer types. */
1305 if (get_current_subfile ()->language == language_pascal)
1306 {
1307 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1308 }
1309 }
1310 else
1311 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1312 }
1313
1314 add_symbol_to_list (sym, get_file_symbols ());
1315
1316 if (synonym)
1317 {
1318 /* Create the STRUCT_DOMAIN clone. */
1319 struct symbol *struct_sym = allocate_symbol (objfile);
1320
1321 *struct_sym = *sym;
1322 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1323 SYMBOL_VALUE (struct_sym) = valu;
1324 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1325 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1326 TYPE_NAME (SYMBOL_TYPE (sym))
1327 = obconcat (&objfile->objfile_obstack,
1328 SYMBOL_LINKAGE_NAME (sym),
1329 (char *) NULL);
1330 add_symbol_to_list (struct_sym, get_file_symbols ());
1331 }
1332
1333 break;
1334
1335 case 'T':
1336 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1337 by 't' which means we are typedef'ing it as well. */
1338 synonym = *p == 't';
1339
1340 if (synonym)
1341 p++;
1342
1343 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1344
1345 /* For a nameless type, we don't want a create a symbol, thus we
1346 did not use `sym'. Return without further processing. */
1347 if (nameless)
1348 return NULL;
1349
1350 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1351 SYMBOL_VALUE (sym) = valu;
1352 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1353 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1354 TYPE_NAME (SYMBOL_TYPE (sym))
1355 = obconcat (&objfile->objfile_obstack,
1356 SYMBOL_LINKAGE_NAME (sym),
1357 (char *) NULL);
1358 add_symbol_to_list (sym, get_file_symbols ());
1359
1360 if (synonym)
1361 {
1362 /* Clone the sym and then modify it. */
1363 struct symbol *typedef_sym = allocate_symbol (objfile);
1364
1365 *typedef_sym = *sym;
1366 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1367 SYMBOL_VALUE (typedef_sym) = valu;
1368 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1369 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1370 TYPE_NAME (SYMBOL_TYPE (sym))
1371 = obconcat (&objfile->objfile_obstack,
1372 SYMBOL_LINKAGE_NAME (sym),
1373 (char *) NULL);
1374 add_symbol_to_list (typedef_sym, get_file_symbols ());
1375 }
1376 break;
1377
1378 case 'V':
1379 /* Static symbol of local scope. */
1380 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1381 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1382 SYMBOL_VALUE_ADDRESS (sym) = valu;
1383 if (gdbarch_static_transform_name_p (gdbarch)
1384 && gdbarch_static_transform_name (gdbarch,
1385 SYMBOL_LINKAGE_NAME (sym))
1386 != SYMBOL_LINKAGE_NAME (sym))
1387 {
1388 struct bound_minimal_symbol msym;
1389
1390 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1391 NULL, objfile);
1392 if (msym.minsym != NULL)
1393 {
1394 const char *new_name = gdbarch_static_transform_name
1395 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1396
1397 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1398 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1399 }
1400 }
1401 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1402 add_symbol_to_list (sym, get_local_symbols ());
1403 break;
1404
1405 case 'v':
1406 /* Reference parameter */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1409 SYMBOL_IS_ARGUMENT (sym) = 1;
1410 SYMBOL_VALUE (sym) = valu;
1411 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1412 add_symbol_to_list (sym, get_local_symbols ());
1413 break;
1414
1415 case 'a':
1416 /* Reference parameter which is in a register. */
1417 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1418 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1419 SYMBOL_IS_ARGUMENT (sym) = 1;
1420 SYMBOL_VALUE (sym) = valu;
1421 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1422 add_symbol_to_list (sym, get_local_symbols ());
1423 break;
1424
1425 case 'X':
1426 /* This is used by Sun FORTRAN for "function result value".
1427 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1428 that Pascal uses it too, but when I tried it Pascal used
1429 "x:3" (local symbol) instead. */
1430 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1432 SYMBOL_VALUE (sym) = valu;
1433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1434 add_symbol_to_list (sym, get_local_symbols ());
1435 break;
1436
1437 default:
1438 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1439 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1440 SYMBOL_VALUE (sym) = 0;
1441 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1442 add_symbol_to_list (sym, get_file_symbols ());
1443 break;
1444 }
1445
1446 /* Some systems pass variables of certain types by reference instead
1447 of by value, i.e. they will pass the address of a structure (in a
1448 register or on the stack) instead of the structure itself. */
1449
1450 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1451 && SYMBOL_IS_ARGUMENT (sym))
1452 {
1453 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1454 variables passed in a register). */
1455 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1456 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1457 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1458 and subsequent arguments on SPARC, for example). */
1459 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1460 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1461 }
1462
1463 return sym;
1464 }
1465
1466 /* Skip rest of this symbol and return an error type.
1467
1468 General notes on error recovery: error_type always skips to the
1469 end of the symbol (modulo cretinous dbx symbol name continuation).
1470 Thus code like this:
1471
1472 if (*(*pp)++ != ';')
1473 return error_type (pp, objfile);
1474
1475 is wrong because if *pp starts out pointing at '\0' (typically as the
1476 result of an earlier error), it will be incremented to point to the
1477 start of the next symbol, which might produce strange results, at least
1478 if you run off the end of the string table. Instead use
1479
1480 if (**pp != ';')
1481 return error_type (pp, objfile);
1482 ++*pp;
1483
1484 or
1485
1486 if (**pp != ';')
1487 foo = error_type (pp, objfile);
1488 else
1489 ++*pp;
1490
1491 And in case it isn't obvious, the point of all this hair is so the compiler
1492 can define new types and new syntaxes, and old versions of the
1493 debugger will be able to read the new symbol tables. */
1494
1495 static struct type *
1496 error_type (const char **pp, struct objfile *objfile)
1497 {
1498 complaint (_("couldn't parse type; debugger out of date?"));
1499 while (1)
1500 {
1501 /* Skip to end of symbol. */
1502 while (**pp != '\0')
1503 {
1504 (*pp)++;
1505 }
1506
1507 /* Check for and handle cretinous dbx symbol name continuation! */
1508 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1509 {
1510 *pp = next_symbol_text (objfile);
1511 }
1512 else
1513 {
1514 break;
1515 }
1516 }
1517 return objfile_type (objfile)->builtin_error;
1518 }
1519 \f
1520
1521 /* Read type information or a type definition; return the type. Even
1522 though this routine accepts either type information or a type
1523 definition, the distinction is relevant--some parts of stabsread.c
1524 assume that type information starts with a digit, '-', or '(' in
1525 deciding whether to call read_type. */
1526
1527 static struct type *
1528 read_type (const char **pp, struct objfile *objfile)
1529 {
1530 struct type *type = 0;
1531 struct type *type1;
1532 int typenums[2];
1533 char type_descriptor;
1534
1535 /* Size in bits of type if specified by a type attribute, or -1 if
1536 there is no size attribute. */
1537 int type_size = -1;
1538
1539 /* Used to distinguish string and bitstring from char-array and set. */
1540 int is_string = 0;
1541
1542 /* Used to distinguish vector from array. */
1543 int is_vector = 0;
1544
1545 /* Read type number if present. The type number may be omitted.
1546 for instance in a two-dimensional array declared with type
1547 "ar1;1;10;ar1;1;10;4". */
1548 if ((**pp >= '0' && **pp <= '9')
1549 || **pp == '('
1550 || **pp == '-')
1551 {
1552 if (read_type_number (pp, typenums) != 0)
1553 return error_type (pp, objfile);
1554
1555 if (**pp != '=')
1556 {
1557 /* Type is not being defined here. Either it already
1558 exists, or this is a forward reference to it.
1559 dbx_alloc_type handles both cases. */
1560 type = dbx_alloc_type (typenums, objfile);
1561
1562 /* If this is a forward reference, arrange to complain if it
1563 doesn't get patched up by the time we're done
1564 reading. */
1565 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1566 add_undefined_type (type, typenums);
1567
1568 return type;
1569 }
1570
1571 /* Type is being defined here. */
1572 /* Skip the '='.
1573 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1574 (*pp) += 2;
1575 }
1576 else
1577 {
1578 /* 'typenums=' not present, type is anonymous. Read and return
1579 the definition, but don't put it in the type vector. */
1580 typenums[0] = typenums[1] = -1;
1581 (*pp)++;
1582 }
1583
1584 again:
1585 type_descriptor = (*pp)[-1];
1586 switch (type_descriptor)
1587 {
1588 case 'x':
1589 {
1590 enum type_code code;
1591
1592 /* Used to index through file_symbols. */
1593 struct pending *ppt;
1594 int i;
1595
1596 /* Name including "struct", etc. */
1597 char *type_name;
1598
1599 {
1600 const char *from, *p, *q1, *q2;
1601
1602 /* Set the type code according to the following letter. */
1603 switch ((*pp)[0])
1604 {
1605 case 's':
1606 code = TYPE_CODE_STRUCT;
1607 break;
1608 case 'u':
1609 code = TYPE_CODE_UNION;
1610 break;
1611 case 'e':
1612 code = TYPE_CODE_ENUM;
1613 break;
1614 default:
1615 {
1616 /* Complain and keep going, so compilers can invent new
1617 cross-reference types. */
1618 complaint (_("Unrecognized cross-reference type `%c'"),
1619 (*pp)[0]);
1620 code = TYPE_CODE_STRUCT;
1621 break;
1622 }
1623 }
1624
1625 q1 = strchr (*pp, '<');
1626 p = strchr (*pp, ':');
1627 if (p == NULL)
1628 return error_type (pp, objfile);
1629 if (q1 && p > q1 && p[1] == ':')
1630 {
1631 int nesting_level = 0;
1632
1633 for (q2 = q1; *q2; q2++)
1634 {
1635 if (*q2 == '<')
1636 nesting_level++;
1637 else if (*q2 == '>')
1638 nesting_level--;
1639 else if (*q2 == ':' && nesting_level == 0)
1640 break;
1641 }
1642 p = q2;
1643 if (*p != ':')
1644 return error_type (pp, objfile);
1645 }
1646 type_name = NULL;
1647 if (get_current_subfile ()->language == language_cplus)
1648 {
1649 char *name = (char *) alloca (p - *pp + 1);
1650
1651 memcpy (name, *pp, p - *pp);
1652 name[p - *pp] = '\0';
1653
1654 std::string new_name = cp_canonicalize_string (name);
1655 if (!new_name.empty ())
1656 {
1657 type_name
1658 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1659 new_name.c_str (),
1660 new_name.length ());
1661 }
1662 }
1663 if (type_name == NULL)
1664 {
1665 char *to = type_name = (char *)
1666 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1667
1668 /* Copy the name. */
1669 from = *pp + 1;
1670 while (from < p)
1671 *to++ = *from++;
1672 *to = '\0';
1673 }
1674
1675 /* Set the pointer ahead of the name which we just read, and
1676 the colon. */
1677 *pp = p + 1;
1678 }
1679
1680 /* If this type has already been declared, then reuse the same
1681 type, rather than allocating a new one. This saves some
1682 memory. */
1683
1684 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1685 for (i = 0; i < ppt->nsyms; i++)
1686 {
1687 struct symbol *sym = ppt->symbol[i];
1688
1689 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1690 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1691 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1692 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1693 {
1694 obstack_free (&objfile->objfile_obstack, type_name);
1695 type = SYMBOL_TYPE (sym);
1696 if (typenums[0] != -1)
1697 *dbx_lookup_type (typenums, objfile) = type;
1698 return type;
1699 }
1700 }
1701
1702 /* Didn't find the type to which this refers, so we must
1703 be dealing with a forward reference. Allocate a type
1704 structure for it, and keep track of it so we can
1705 fill in the rest of the fields when we get the full
1706 type. */
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = code;
1709 TYPE_NAME (type) = type_name;
1710 INIT_CPLUS_SPECIFIC (type);
1711 TYPE_STUB (type) = 1;
1712
1713 add_undefined_type (type, typenums);
1714 return type;
1715 }
1716
1717 case '-': /* RS/6000 built-in type */
1718 case '0':
1719 case '1':
1720 case '2':
1721 case '3':
1722 case '4':
1723 case '5':
1724 case '6':
1725 case '7':
1726 case '8':
1727 case '9':
1728 case '(':
1729 (*pp)--;
1730
1731 /* We deal with something like t(1,2)=(3,4)=... which
1732 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1733
1734 /* Allocate and enter the typedef type first.
1735 This handles recursive types. */
1736 type = dbx_alloc_type (typenums, objfile);
1737 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1738 {
1739 struct type *xtype = read_type (pp, objfile);
1740
1741 if (type == xtype)
1742 {
1743 /* It's being defined as itself. That means it is "void". */
1744 TYPE_CODE (type) = TYPE_CODE_VOID;
1745 TYPE_LENGTH (type) = 1;
1746 }
1747 else if (type_size >= 0 || is_string)
1748 {
1749 /* This is the absolute wrong way to construct types. Every
1750 other debug format has found a way around this problem and
1751 the related problems with unnecessarily stubbed types;
1752 someone motivated should attempt to clean up the issue
1753 here as well. Once a type pointed to has been created it
1754 should not be modified.
1755
1756 Well, it's not *absolutely* wrong. Constructing recursive
1757 types (trees, linked lists) necessarily entails modifying
1758 types after creating them. Constructing any loop structure
1759 entails side effects. The Dwarf 2 reader does handle this
1760 more gracefully (it never constructs more than once
1761 instance of a type object, so it doesn't have to copy type
1762 objects wholesale), but it still mutates type objects after
1763 other folks have references to them.
1764
1765 Keep in mind that this circularity/mutation issue shows up
1766 at the source language level, too: C's "incomplete types",
1767 for example. So the proper cleanup, I think, would be to
1768 limit GDB's type smashing to match exactly those required
1769 by the source language. So GDB could have a
1770 "complete_this_type" function, but never create unnecessary
1771 copies of a type otherwise. */
1772 replace_type (type, xtype);
1773 TYPE_NAME (type) = NULL;
1774 }
1775 else
1776 {
1777 TYPE_TARGET_STUB (type) = 1;
1778 TYPE_TARGET_TYPE (type) = xtype;
1779 }
1780 }
1781 break;
1782
1783 /* In the following types, we must be sure to overwrite any existing
1784 type that the typenums refer to, rather than allocating a new one
1785 and making the typenums point to the new one. This is because there
1786 may already be pointers to the existing type (if it had been
1787 forward-referenced), and we must change it to a pointer, function,
1788 reference, or whatever, *in-place*. */
1789
1790 case '*': /* Pointer to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1793 break;
1794
1795 case '&': /* Reference to another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1798 TYPE_CODE_REF);
1799 break;
1800
1801 case 'f': /* Function returning another type */
1802 type1 = read_type (pp, objfile);
1803 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1804 break;
1805
1806 case 'g': /* Prototyped function. (Sun) */
1807 {
1808 /* Unresolved questions:
1809
1810 - According to Sun's ``STABS Interface Manual'', for 'f'
1811 and 'F' symbol descriptors, a `0' in the argument type list
1812 indicates a varargs function. But it doesn't say how 'g'
1813 type descriptors represent that info. Someone with access
1814 to Sun's toolchain should try it out.
1815
1816 - According to the comment in define_symbol (search for
1817 `process_prototype_types:'), Sun emits integer arguments as
1818 types which ref themselves --- like `void' types. Do we
1819 have to deal with that here, too? Again, someone with
1820 access to Sun's toolchain should try it out and let us
1821 know. */
1822
1823 const char *type_start = (*pp) - 1;
1824 struct type *return_type = read_type (pp, objfile);
1825 struct type *func_type
1826 = make_function_type (return_type,
1827 dbx_lookup_type (typenums, objfile));
1828 struct type_list {
1829 struct type *type;
1830 struct type_list *next;
1831 } *arg_types = 0;
1832 int num_args = 0;
1833
1834 while (**pp && **pp != '#')
1835 {
1836 struct type *arg_type = read_type (pp, objfile);
1837 struct type_list *newobj = XALLOCA (struct type_list);
1838 newobj->type = arg_type;
1839 newobj->next = arg_types;
1840 arg_types = newobj;
1841 num_args++;
1842 }
1843 if (**pp == '#')
1844 ++*pp;
1845 else
1846 {
1847 complaint (_("Prototyped function type didn't "
1848 "end arguments with `#':\n%s"),
1849 type_start);
1850 }
1851
1852 /* If there is just one argument whose type is `void', then
1853 that's just an empty argument list. */
1854 if (arg_types
1855 && ! arg_types->next
1856 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1857 num_args = 0;
1858
1859 TYPE_FIELDS (func_type)
1860 = (struct field *) TYPE_ALLOC (func_type,
1861 num_args * sizeof (struct field));
1862 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1863 {
1864 int i;
1865 struct type_list *t;
1866
1867 /* We stuck each argument type onto the front of the list
1868 when we read it, so the list is reversed. Build the
1869 fields array right-to-left. */
1870 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1871 TYPE_FIELD_TYPE (func_type, i) = t->type;
1872 }
1873 TYPE_NFIELDS (func_type) = num_args;
1874 TYPE_PROTOTYPED (func_type) = 1;
1875
1876 type = func_type;
1877 break;
1878 }
1879
1880 case 'k': /* Const qualifier on some type (Sun) */
1881 type = read_type (pp, objfile);
1882 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1883 dbx_lookup_type (typenums, objfile));
1884 break;
1885
1886 case 'B': /* Volatile qual on some type (Sun) */
1887 type = read_type (pp, objfile);
1888 type = make_cv_type (TYPE_CONST (type), 1, type,
1889 dbx_lookup_type (typenums, objfile));
1890 break;
1891
1892 case '@':
1893 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1894 { /* Member (class & variable) type */
1895 /* FIXME -- we should be doing smash_to_XXX types here. */
1896
1897 struct type *domain = read_type (pp, objfile);
1898 struct type *memtype;
1899
1900 if (**pp != ',')
1901 /* Invalid member type data format. */
1902 return error_type (pp, objfile);
1903 ++*pp;
1904
1905 memtype = read_type (pp, objfile);
1906 type = dbx_alloc_type (typenums, objfile);
1907 smash_to_memberptr_type (type, domain, memtype);
1908 }
1909 else
1910 /* type attribute */
1911 {
1912 const char *attr = *pp;
1913
1914 /* Skip to the semicolon. */
1915 while (**pp != ';' && **pp != '\0')
1916 ++(*pp);
1917 if (**pp == '\0')
1918 return error_type (pp, objfile);
1919 else
1920 ++ * pp; /* Skip the semicolon. */
1921
1922 switch (*attr)
1923 {
1924 case 's': /* Size attribute */
1925 type_size = atoi (attr + 1);
1926 if (type_size <= 0)
1927 type_size = -1;
1928 break;
1929
1930 case 'S': /* String attribute */
1931 /* FIXME: check to see if following type is array? */
1932 is_string = 1;
1933 break;
1934
1935 case 'V': /* Vector attribute */
1936 /* FIXME: check to see if following type is array? */
1937 is_vector = 1;
1938 break;
1939
1940 default:
1941 /* Ignore unrecognized type attributes, so future compilers
1942 can invent new ones. */
1943 break;
1944 }
1945 ++*pp;
1946 goto again;
1947 }
1948 break;
1949
1950 case '#': /* Method (class & fn) type */
1951 if ((*pp)[0] == '#')
1952 {
1953 /* We'll get the parameter types from the name. */
1954 struct type *return_type;
1955
1956 (*pp)++;
1957 return_type = read_type (pp, objfile);
1958 if (*(*pp)++ != ';')
1959 complaint (_("invalid (minimal) member type "
1960 "data format at symtab pos %d."),
1961 symnum);
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums, objfile) = type;
1965 }
1966 else
1967 {
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1970 struct field *args;
1971 int nargs, varargs;
1972
1973 if (**pp != ',')
1974 /* Invalid member type data format. */
1975 return error_type (pp, objfile);
1976 else
1977 ++(*pp);
1978
1979 return_type = read_type (pp, objfile);
1980 args = read_args (pp, ';', objfile, &nargs, &varargs);
1981 if (args == NULL)
1982 return error_type (pp, objfile);
1983 type = dbx_alloc_type (typenums, objfile);
1984 smash_to_method_type (type, domain, return_type, args,
1985 nargs, varargs);
1986 }
1987 break;
1988
1989 case 'r': /* Range type */
1990 type = read_range_type (pp, typenums, type_size, objfile);
1991 if (typenums[0] != -1)
1992 *dbx_lookup_type (typenums, objfile) = type;
1993 break;
1994
1995 case 'b':
1996 {
1997 /* Sun ACC builtin int type */
1998 type = read_sun_builtin_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 }
2002 break;
2003
2004 case 'R': /* Sun ACC builtin float type */
2005 type = read_sun_floating_type (pp, typenums, objfile);
2006 if (typenums[0] != -1)
2007 *dbx_lookup_type (typenums, objfile) = type;
2008 break;
2009
2010 case 'e': /* Enumeration type */
2011 type = dbx_alloc_type (typenums, objfile);
2012 type = read_enum_type (pp, type, objfile);
2013 if (typenums[0] != -1)
2014 *dbx_lookup_type (typenums, objfile) = type;
2015 break;
2016
2017 case 's': /* Struct type */
2018 case 'u': /* Union type */
2019 {
2020 enum type_code type_code = TYPE_CODE_UNDEF;
2021 type = dbx_alloc_type (typenums, objfile);
2022 switch (type_descriptor)
2023 {
2024 case 's':
2025 type_code = TYPE_CODE_STRUCT;
2026 break;
2027 case 'u':
2028 type_code = TYPE_CODE_UNION;
2029 break;
2030 }
2031 type = read_struct_type (pp, type, type_code, objfile);
2032 break;
2033 }
2034
2035 case 'a': /* Array type */
2036 if (**pp != 'r')
2037 return error_type (pp, objfile);
2038 ++*pp;
2039
2040 type = dbx_alloc_type (typenums, objfile);
2041 type = read_array_type (pp, type, objfile);
2042 if (is_string)
2043 TYPE_CODE (type) = TYPE_CODE_STRING;
2044 if (is_vector)
2045 make_vector_type (type);
2046 break;
2047
2048 case 'S': /* Set type */
2049 type1 = read_type (pp, objfile);
2050 type = create_set_type ((struct type *) NULL, type1);
2051 if (typenums[0] != -1)
2052 *dbx_lookup_type (typenums, objfile) = type;
2053 break;
2054
2055 default:
2056 --*pp; /* Go back to the symbol in error. */
2057 /* Particularly important if it was \0! */
2058 return error_type (pp, objfile);
2059 }
2060
2061 if (type == 0)
2062 {
2063 warning (_("GDB internal error, type is NULL in stabsread.c."));
2064 return error_type (pp, objfile);
2065 }
2066
2067 /* Size specified in a type attribute overrides any other size. */
2068 if (type_size != -1)
2069 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2070
2071 return type;
2072 }
2073 \f
2074 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2075 Return the proper type node for a given builtin type number. */
2076
2077 static const struct objfile_data *rs6000_builtin_type_data;
2078
2079 static struct type *
2080 rs6000_builtin_type (int typenum, struct objfile *objfile)
2081 {
2082 struct type **negative_types
2083 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2084
2085 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2086 #define NUMBER_RECOGNIZED 34
2087 struct type *rettype = NULL;
2088
2089 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2090 {
2091 complaint (_("Unknown builtin type %d"), typenum);
2092 return objfile_type (objfile)->builtin_error;
2093 }
2094
2095 if (!negative_types)
2096 {
2097 /* This includes an empty slot for type number -0. */
2098 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2099 NUMBER_RECOGNIZED + 1, struct type *);
2100 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2101 }
2102
2103 if (negative_types[-typenum] != NULL)
2104 return negative_types[-typenum];
2105
2106 #if TARGET_CHAR_BIT != 8
2107 #error This code wrong for TARGET_CHAR_BIT not 8
2108 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2109 that if that ever becomes not true, the correct fix will be to
2110 make the size in the struct type to be in bits, not in units of
2111 TARGET_CHAR_BIT. */
2112 #endif
2113
2114 switch (-typenum)
2115 {
2116 case 1:
2117 /* The size of this and all the other types are fixed, defined
2118 by the debugging format. If there is a type called "int" which
2119 is other than 32 bits, then it should use a new negative type
2120 number (or avoid negative type numbers for that case).
2121 See stabs.texinfo. */
2122 rettype = init_integer_type (objfile, 32, 0, "int");
2123 break;
2124 case 2:
2125 rettype = init_integer_type (objfile, 8, 0, "char");
2126 TYPE_NOSIGN (rettype) = 1;
2127 break;
2128 case 3:
2129 rettype = init_integer_type (objfile, 16, 0, "short");
2130 break;
2131 case 4:
2132 rettype = init_integer_type (objfile, 32, 0, "long");
2133 break;
2134 case 5:
2135 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2136 break;
2137 case 6:
2138 rettype = init_integer_type (objfile, 8, 0, "signed char");
2139 break;
2140 case 7:
2141 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2142 break;
2143 case 8:
2144 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2145 break;
2146 case 9:
2147 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2148 break;
2149 case 10:
2150 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2151 break;
2152 case 11:
2153 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2154 break;
2155 case 12:
2156 /* IEEE single precision (32 bit). */
2157 rettype = init_float_type (objfile, 32, "float",
2158 floatformats_ieee_single);
2159 break;
2160 case 13:
2161 /* IEEE double precision (64 bit). */
2162 rettype = init_float_type (objfile, 64, "double",
2163 floatformats_ieee_double);
2164 break;
2165 case 14:
2166 /* This is an IEEE double on the RS/6000, and different machines with
2167 different sizes for "long double" should use different negative
2168 type numbers. See stabs.texinfo. */
2169 rettype = init_float_type (objfile, 64, "long double",
2170 floatformats_ieee_double);
2171 break;
2172 case 15:
2173 rettype = init_integer_type (objfile, 32, 0, "integer");
2174 break;
2175 case 16:
2176 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2177 break;
2178 case 17:
2179 rettype = init_float_type (objfile, 32, "short real",
2180 floatformats_ieee_single);
2181 break;
2182 case 18:
2183 rettype = init_float_type (objfile, 64, "real",
2184 floatformats_ieee_double);
2185 break;
2186 case 19:
2187 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2188 break;
2189 case 20:
2190 rettype = init_character_type (objfile, 8, 1, "character");
2191 break;
2192 case 21:
2193 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2194 break;
2195 case 22:
2196 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2197 break;
2198 case 23:
2199 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2200 break;
2201 case 24:
2202 rettype = init_boolean_type (objfile, 32, 1, "logical");
2203 break;
2204 case 25:
2205 /* Complex type consisting of two IEEE single precision values. */
2206 rettype = init_complex_type (objfile, "complex",
2207 rs6000_builtin_type (12, objfile));
2208 break;
2209 case 26:
2210 /* Complex type consisting of two IEEE double precision values. */
2211 rettype = init_complex_type (objfile, "double complex",
2212 rs6000_builtin_type (13, objfile));
2213 break;
2214 case 27:
2215 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2216 break;
2217 case 28:
2218 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2219 break;
2220 case 29:
2221 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2222 break;
2223 case 30:
2224 rettype = init_character_type (objfile, 16, 0, "wchar");
2225 break;
2226 case 31:
2227 rettype = init_integer_type (objfile, 64, 0, "long long");
2228 break;
2229 case 32:
2230 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2231 break;
2232 case 33:
2233 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2234 break;
2235 case 34:
2236 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2237 break;
2238 }
2239 negative_types[-typenum] = rettype;
2240 return rettype;
2241 }
2242 \f
2243 /* This page contains subroutines of read_type. */
2244
2245 /* Wrapper around method_name_from_physname to flag a complaint
2246 if there is an error. */
2247
2248 static char *
2249 stabs_method_name_from_physname (const char *physname)
2250 {
2251 char *method_name;
2252
2253 method_name = method_name_from_physname (physname);
2254
2255 if (method_name == NULL)
2256 {
2257 complaint (_("Method has bad physname %s\n"), physname);
2258 return NULL;
2259 }
2260
2261 return method_name;
2262 }
2263
2264 /* Read member function stabs info for C++ classes. The form of each member
2265 function data is:
2266
2267 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2268
2269 An example with two member functions is:
2270
2271 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2272
2273 For the case of overloaded operators, the format is op$::*.funcs, where
2274 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2275 name (such as `+=') and `.' marks the end of the operator name.
2276
2277 Returns 1 for success, 0 for failure. */
2278
2279 static int
2280 read_member_functions (struct field_info *fip, const char **pp,
2281 struct type *type, struct objfile *objfile)
2282 {
2283 int nfn_fields = 0;
2284 int length = 0;
2285 int i;
2286 struct next_fnfield
2287 {
2288 struct next_fnfield *next;
2289 struct fn_field fn_field;
2290 }
2291 *sublist;
2292 struct type *look_ahead_type;
2293 struct next_fnfieldlist *new_fnlist;
2294 struct next_fnfield *new_sublist;
2295 char *main_fn_name;
2296 const char *p;
2297
2298 /* Process each list until we find something that is not a member function
2299 or find the end of the functions. */
2300
2301 while (**pp != ';')
2302 {
2303 /* We should be positioned at the start of the function name.
2304 Scan forward to find the first ':' and if it is not the
2305 first of a "::" delimiter, then this is not a member function. */
2306 p = *pp;
2307 while (*p != ':')
2308 {
2309 p++;
2310 }
2311 if (p[1] != ':')
2312 {
2313 break;
2314 }
2315
2316 sublist = NULL;
2317 look_ahead_type = NULL;
2318 length = 0;
2319
2320 new_fnlist = XCNEW (struct next_fnfieldlist);
2321 make_cleanup (xfree, new_fnlist);
2322
2323 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2324 {
2325 /* This is a completely wierd case. In order to stuff in the
2326 names that might contain colons (the usual name delimiter),
2327 Mike Tiemann defined a different name format which is
2328 signalled if the identifier is "op$". In that case, the
2329 format is "op$::XXXX." where XXXX is the name. This is
2330 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2331 /* This lets the user type "break operator+".
2332 We could just put in "+" as the name, but that wouldn't
2333 work for "*". */
2334 static char opname[32] = "op$";
2335 char *o = opname + 3;
2336
2337 /* Skip past '::'. */
2338 *pp = p + 2;
2339
2340 STABS_CONTINUE (pp, objfile);
2341 p = *pp;
2342 while (*p != '.')
2343 {
2344 *o++ = *p++;
2345 }
2346 main_fn_name = savestring (opname, o - opname);
2347 /* Skip past '.' */
2348 *pp = p + 1;
2349 }
2350 else
2351 {
2352 main_fn_name = savestring (*pp, p - *pp);
2353 /* Skip past '::'. */
2354 *pp = p + 2;
2355 }
2356 new_fnlist->fn_fieldlist.name = main_fn_name;
2357
2358 do
2359 {
2360 new_sublist = XCNEW (struct next_fnfield);
2361 make_cleanup (xfree, new_sublist);
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* These are methods, not functions. */
2391 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2392 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2393 else
2394 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2395 == TYPE_CODE_METHOD);
2396
2397 /* If this is just a stub, then we don't have the real name here. */
2398 if (TYPE_STUB (new_sublist->fn_field.type))
2399 {
2400 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2401 set_type_self_type (new_sublist->fn_field.type, type);
2402 new_sublist->fn_field.is_stub = 1;
2403 }
2404
2405 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2406 *pp = p + 1;
2407
2408 /* Set this member function's visibility fields. */
2409 switch (*(*pp)++)
2410 {
2411 case VISIBILITY_PRIVATE:
2412 new_sublist->fn_field.is_private = 1;
2413 break;
2414 case VISIBILITY_PROTECTED:
2415 new_sublist->fn_field.is_protected = 1;
2416 break;
2417 }
2418
2419 STABS_CONTINUE (pp, objfile);
2420 switch (**pp)
2421 {
2422 case 'A': /* Normal functions. */
2423 new_sublist->fn_field.is_const = 0;
2424 new_sublist->fn_field.is_volatile = 0;
2425 (*pp)++;
2426 break;
2427 case 'B': /* `const' member functions. */
2428 new_sublist->fn_field.is_const = 1;
2429 new_sublist->fn_field.is_volatile = 0;
2430 (*pp)++;
2431 break;
2432 case 'C': /* `volatile' member function. */
2433 new_sublist->fn_field.is_const = 0;
2434 new_sublist->fn_field.is_volatile = 1;
2435 (*pp)++;
2436 break;
2437 case 'D': /* `const volatile' member function. */
2438 new_sublist->fn_field.is_const = 1;
2439 new_sublist->fn_field.is_volatile = 1;
2440 (*pp)++;
2441 break;
2442 case '*': /* File compiled with g++ version 1 --
2443 no info. */
2444 case '?':
2445 case '.':
2446 break;
2447 default:
2448 complaint (_("const/volatile indicator missing, got '%c'"),
2449 **pp);
2450 break;
2451 }
2452
2453 switch (*(*pp)++)
2454 {
2455 case '*':
2456 {
2457 int nbits;
2458 /* virtual member function, followed by index.
2459 The sign bit is set to distinguish pointers-to-methods
2460 from virtual function indicies. Since the array is
2461 in words, the quantity must be shifted left by 1
2462 on 16 bit machine, and by 2 on 32 bit machine, forcing
2463 the sign bit out, and usable as a valid index into
2464 the array. Remove the sign bit here. */
2465 new_sublist->fn_field.voffset =
2466 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2467 if (nbits != 0)
2468 return 0;
2469
2470 STABS_CONTINUE (pp, objfile);
2471 if (**pp == ';' || **pp == '\0')
2472 {
2473 /* Must be g++ version 1. */
2474 new_sublist->fn_field.fcontext = 0;
2475 }
2476 else
2477 {
2478 /* Figure out from whence this virtual function came.
2479 It may belong to virtual function table of
2480 one of its baseclasses. */
2481 look_ahead_type = read_type (pp, objfile);
2482 if (**pp == ':')
2483 {
2484 /* g++ version 1 overloaded methods. */
2485 }
2486 else
2487 {
2488 new_sublist->fn_field.fcontext = look_ahead_type;
2489 if (**pp != ';')
2490 {
2491 return 0;
2492 }
2493 else
2494 {
2495 ++*pp;
2496 }
2497 look_ahead_type = NULL;
2498 }
2499 }
2500 break;
2501 }
2502 case '?':
2503 /* static member function. */
2504 {
2505 int slen = strlen (main_fn_name);
2506
2507 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2508
2509 /* For static member functions, we can't tell if they
2510 are stubbed, as they are put out as functions, and not as
2511 methods.
2512 GCC v2 emits the fully mangled name if
2513 dbxout.c:flag_minimal_debug is not set, so we have to
2514 detect a fully mangled physname here and set is_stub
2515 accordingly. Fully mangled physnames in v2 start with
2516 the member function name, followed by two underscores.
2517 GCC v3 currently always emits stubbed member functions,
2518 but with fully mangled physnames, which start with _Z. */
2519 if (!(strncmp (new_sublist->fn_field.physname,
2520 main_fn_name, slen) == 0
2521 && new_sublist->fn_field.physname[slen] == '_'
2522 && new_sublist->fn_field.physname[slen + 1] == '_'))
2523 {
2524 new_sublist->fn_field.is_stub = 1;
2525 }
2526 break;
2527 }
2528
2529 default:
2530 /* error */
2531 complaint (_("member function type missing, got '%c'"),
2532 (*pp)[-1]);
2533 /* Normal member function. */
2534 /* Fall through. */
2535
2536 case '.':
2537 /* normal member function. */
2538 new_sublist->fn_field.voffset = 0;
2539 new_sublist->fn_field.fcontext = 0;
2540 break;
2541 }
2542
2543 new_sublist->next = sublist;
2544 sublist = new_sublist;
2545 length++;
2546 STABS_CONTINUE (pp, objfile);
2547 }
2548 while (**pp != ';' && **pp != '\0');
2549
2550 (*pp)++;
2551 STABS_CONTINUE (pp, objfile);
2552
2553 /* Skip GCC 3.X member functions which are duplicates of the callable
2554 constructor/destructor. */
2555 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2556 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2557 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2558 {
2559 xfree (main_fn_name);
2560 }
2561 else
2562 {
2563 int has_destructor = 0, has_other = 0;
2564 int is_v3 = 0;
2565 struct next_fnfield *tmp_sublist;
2566
2567 /* Various versions of GCC emit various mostly-useless
2568 strings in the name field for special member functions.
2569
2570 For stub methods, we need to defer correcting the name
2571 until we are ready to unstub the method, because the current
2572 name string is used by gdb_mangle_name. The only stub methods
2573 of concern here are GNU v2 operators; other methods have their
2574 names correct (see caveat below).
2575
2576 For non-stub methods, in GNU v3, we have a complete physname.
2577 Therefore we can safely correct the name now. This primarily
2578 affects constructors and destructors, whose name will be
2579 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2580 operators will also have incorrect names; for instance,
2581 "operator int" will be named "operator i" (i.e. the type is
2582 mangled).
2583
2584 For non-stub methods in GNU v2, we have no easy way to
2585 know if we have a complete physname or not. For most
2586 methods the result depends on the platform (if CPLUS_MARKER
2587 can be `$' or `.', it will use minimal debug information, or
2588 otherwise the full physname will be included).
2589
2590 Rather than dealing with this, we take a different approach.
2591 For v3 mangled names, we can use the full physname; for v2,
2592 we use cplus_demangle_opname (which is actually v2 specific),
2593 because the only interesting names are all operators - once again
2594 barring the caveat below. Skip this process if any method in the
2595 group is a stub, to prevent our fouling up the workings of
2596 gdb_mangle_name.
2597
2598 The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 destructors in the same method group. We need to split this
2600 into two groups, because they should have different names.
2601 So for each method group we check whether it contains both
2602 routines whose physname appears to be a destructor (the physnames
2603 for and destructors are always provided, due to quirks in v2
2604 mangling) and routines whose physname does not appear to be a
2605 destructor. If so then we break up the list into two halves.
2606 Even if the constructors and destructors aren't in the same group
2607 the destructor will still lack the leading tilde, so that also
2608 needs to be fixed.
2609
2610 So, to summarize what we expect and handle here:
2611
2612 Given Given Real Real Action
2613 method name physname physname method name
2614
2615 __opi [none] __opi__3Foo operator int opname
2616 [now or later]
2617 Foo _._3Foo _._3Foo ~Foo separate and
2618 rename
2619 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2620 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2621 */
2622
2623 tmp_sublist = sublist;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (tmp_sublist->fn_field.physname[0] == '_'
2627 && tmp_sublist->fn_field.physname[1] == 'Z')
2628 is_v3 = 1;
2629
2630 if (is_destructor_name (tmp_sublist->fn_field.physname))
2631 has_destructor++;
2632 else
2633 has_other++;
2634
2635 tmp_sublist = tmp_sublist->next;
2636 }
2637
2638 if (has_destructor && has_other)
2639 {
2640 struct next_fnfieldlist *destr_fnlist;
2641 struct next_fnfield *last_sublist;
2642
2643 /* Create a new fn_fieldlist for the destructors. */
2644
2645 destr_fnlist = XCNEW (struct next_fnfieldlist);
2646 make_cleanup (xfree, destr_fnlist);
2647
2648 destr_fnlist->fn_fieldlist.name
2649 = obconcat (&objfile->objfile_obstack, "~",
2650 new_fnlist->fn_fieldlist.name, (char *) NULL);
2651
2652 destr_fnlist->fn_fieldlist.fn_fields =
2653 XOBNEWVEC (&objfile->objfile_obstack,
2654 struct fn_field, has_destructor);
2655 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2656 sizeof (struct fn_field) * has_destructor);
2657 tmp_sublist = sublist;
2658 last_sublist = NULL;
2659 i = 0;
2660 while (tmp_sublist != NULL)
2661 {
2662 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2663 {
2664 tmp_sublist = tmp_sublist->next;
2665 continue;
2666 }
2667
2668 destr_fnlist->fn_fieldlist.fn_fields[i++]
2669 = tmp_sublist->fn_field;
2670 if (last_sublist)
2671 last_sublist->next = tmp_sublist->next;
2672 else
2673 sublist = tmp_sublist->next;
2674 last_sublist = tmp_sublist;
2675 tmp_sublist = tmp_sublist->next;
2676 }
2677
2678 destr_fnlist->fn_fieldlist.length = has_destructor;
2679 destr_fnlist->next = fip->fnlist;
2680 fip->fnlist = destr_fnlist;
2681 nfn_fields++;
2682 length -= has_destructor;
2683 }
2684 else if (is_v3)
2685 {
2686 /* v3 mangling prevents the use of abbreviated physnames,
2687 so we can do this here. There are stubbed methods in v3
2688 only:
2689 - in -gstabs instead of -gstabs+
2690 - or for static methods, which are output as a function type
2691 instead of a method type. */
2692 char *new_method_name =
2693 stabs_method_name_from_physname (sublist->fn_field.physname);
2694
2695 if (new_method_name != NULL
2696 && strcmp (new_method_name,
2697 new_fnlist->fn_fieldlist.name) != 0)
2698 {
2699 new_fnlist->fn_fieldlist.name = new_method_name;
2700 xfree (main_fn_name);
2701 }
2702 else
2703 xfree (new_method_name);
2704 }
2705 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2706 {
2707 new_fnlist->fn_fieldlist.name =
2708 obconcat (&objfile->objfile_obstack,
2709 "~", main_fn_name, (char *)NULL);
2710 xfree (main_fn_name);
2711 }
2712
2713 new_fnlist->fn_fieldlist.fn_fields
2714 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2715 for (i = length; (i--, sublist); sublist = sublist->next)
2716 {
2717 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2718 }
2719
2720 new_fnlist->fn_fieldlist.length = length;
2721 new_fnlist->next = fip->fnlist;
2722 fip->fnlist = new_fnlist;
2723 nfn_fields++;
2724 }
2725 }
2726
2727 if (nfn_fields)
2728 {
2729 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2730 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2731 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2732 memset (TYPE_FN_FIELDLISTS (type), 0,
2733 sizeof (struct fn_fieldlist) * nfn_fields);
2734 TYPE_NFN_FIELDS (type) = nfn_fields;
2735 }
2736
2737 return 1;
2738 }
2739
2740 /* Special GNU C++ name.
2741
2742 Returns 1 for success, 0 for failure. "failure" means that we can't
2743 keep parsing and it's time for error_type(). */
2744
2745 static int
2746 read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
2747 struct objfile *objfile)
2748 {
2749 const char *p;
2750 const char *name;
2751 char cpp_abbrev;
2752 struct type *context;
2753
2754 p = *pp;
2755 if (*++p == 'v')
2756 {
2757 name = NULL;
2758 cpp_abbrev = *++p;
2759
2760 *pp = p + 1;
2761
2762 /* At this point, *pp points to something like "22:23=*22...",
2763 where the type number before the ':' is the "context" and
2764 everything after is a regular type definition. Lookup the
2765 type, find it's name, and construct the field name. */
2766
2767 context = read_type (pp, objfile);
2768
2769 switch (cpp_abbrev)
2770 {
2771 case 'f': /* $vf -- a virtual function table pointer */
2772 name = TYPE_NAME (context);
2773 if (name == NULL)
2774 {
2775 name = "";
2776 }
2777 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2778 vptr_name, name, (char *) NULL);
2779 break;
2780
2781 case 'b': /* $vb -- a virtual bsomethingorother */
2782 name = TYPE_NAME (context);
2783 if (name == NULL)
2784 {
2785 complaint (_("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2787 symnum);
2788 name = "FOO";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2792 break;
2793
2794 default:
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2798 (char *) NULL);
2799 break;
2800 }
2801
2802 /* At this point, *pp points to the ':'. Skip it and read the
2803 field type. */
2804
2805 p = ++(*pp);
2806 if (p[-1] != ':')
2807 {
2808 invalid_cpp_abbrev_complaint (*pp);
2809 return 0;
2810 }
2811 fip->list->field.type = read_type (pp, objfile);
2812 if (**pp == ',')
2813 (*pp)++; /* Skip the comma. */
2814 else
2815 return 0;
2816
2817 {
2818 int nbits;
2819
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2822 if (nbits != 0)
2823 return 0;
2824 }
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2828 }
2829 else
2830 {
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2835 return 0;
2836 }
2837 return 1;
2838 }
2839
2840 static void
2841 read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
2842 struct type *type, struct objfile *objfile)
2843 {
2844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2845
2846 fip->list->field.name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2848 *pp = p + 1;
2849
2850 /* This means we have a visibility for a field coming. */
2851 if (**pp == '/')
2852 {
2853 (*pp)++;
2854 fip->list->visibility = *(*pp)++;
2855 }
2856 else
2857 {
2858 /* normal dbx-style format, no explicit visibility */
2859 fip->list->visibility = VISIBILITY_PUBLIC;
2860 }
2861
2862 fip->list->field.type = read_type (pp, objfile);
2863 if (**pp == ':')
2864 {
2865 p = ++(*pp);
2866 #if 0
2867 /* Possible future hook for nested types. */
2868 if (**pp == '!')
2869 {
2870 fip->list->field.bitpos = (long) -2; /* nested type */
2871 p = ++(*pp);
2872 }
2873 else
2874 ...;
2875 #endif
2876 while (*p != ';')
2877 {
2878 p++;
2879 }
2880 /* Static class member. */
2881 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2882 *pp = p + 1;
2883 return;
2884 }
2885 else if (**pp != ',')
2886 {
2887 /* Bad structure-type format. */
2888 stabs_general_complaint ("bad structure-type format");
2889 return;
2890 }
2891
2892 (*pp)++; /* Skip the comma. */
2893
2894 {
2895 int nbits;
2896
2897 SET_FIELD_BITPOS (fip->list->field,
2898 read_huge_number (pp, ',', &nbits, 0));
2899 if (nbits != 0)
2900 {
2901 stabs_general_complaint ("bad structure-type format");
2902 return;
2903 }
2904 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2905 if (nbits != 0)
2906 {
2907 stabs_general_complaint ("bad structure-type format");
2908 return;
2909 }
2910 }
2911
2912 if (FIELD_BITPOS (fip->list->field) == 0
2913 && FIELD_BITSIZE (fip->list->field) == 0)
2914 {
2915 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2916 it is a field which has been optimized out. The correct stab for
2917 this case is to use VISIBILITY_IGNORE, but that is a recent
2918 invention. (2) It is a 0-size array. For example
2919 union { int num; char str[0]; } foo. Printing _("<no value>" for
2920 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2921 will continue to work, and a 0-size array as a whole doesn't
2922 have any contents to print.
2923
2924 I suspect this probably could also happen with gcc -gstabs (not
2925 -gstabs+) for static fields, and perhaps other C++ extensions.
2926 Hopefully few people use -gstabs with gdb, since it is intended
2927 for dbx compatibility. */
2928
2929 /* Ignore this field. */
2930 fip->list->visibility = VISIBILITY_IGNORE;
2931 }
2932 else
2933 {
2934 /* Detect an unpacked field and mark it as such.
2935 dbx gives a bit size for all fields.
2936 Note that forward refs cannot be packed,
2937 and treat enums as if they had the width of ints. */
2938
2939 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2940
2941 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2942 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2943 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2944 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2945 {
2946 FIELD_BITSIZE (fip->list->field) = 0;
2947 }
2948 if ((FIELD_BITSIZE (fip->list->field)
2949 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2950 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2951 && FIELD_BITSIZE (fip->list->field)
2952 == gdbarch_int_bit (gdbarch))
2953 )
2954 &&
2955 FIELD_BITPOS (fip->list->field) % 8 == 0)
2956 {
2957 FIELD_BITSIZE (fip->list->field) = 0;
2958 }
2959 }
2960 }
2961
2962
2963 /* Read struct or class data fields. They have the form:
2964
2965 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2966
2967 At the end, we see a semicolon instead of a field.
2968
2969 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2970 a static field.
2971
2972 The optional VISIBILITY is one of:
2973
2974 '/0' (VISIBILITY_PRIVATE)
2975 '/1' (VISIBILITY_PROTECTED)
2976 '/2' (VISIBILITY_PUBLIC)
2977 '/9' (VISIBILITY_IGNORE)
2978
2979 or nothing, for C style fields with public visibility.
2980
2981 Returns 1 for success, 0 for failure. */
2982
2983 static int
2984 read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
2985 struct objfile *objfile)
2986 {
2987 const char *p;
2988 struct nextfield *newobj;
2989
2990 /* We better set p right now, in case there are no fields at all... */
2991
2992 p = *pp;
2993
2994 /* Read each data member type until we find the terminating ';' at the end of
2995 the data member list, or break for some other reason such as finding the
2996 start of the member function list. */
2997 /* Stab string for structure/union does not end with two ';' in
2998 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2999
3000 while (**pp != ';' && **pp != '\0')
3001 {
3002 STABS_CONTINUE (pp, objfile);
3003 /* Get space to record the next field's data. */
3004 newobj = XCNEW (struct nextfield);
3005 make_cleanup (xfree, newobj);
3006
3007 newobj->next = fip->list;
3008 fip->list = newobj;
3009
3010 /* Get the field name. */
3011 p = *pp;
3012
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3017
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 {
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 return 0;
3022 continue;
3023 }
3024
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3029
3030 while (*p != ':' && *p != '\0')
3031 {
3032 p++;
3033 }
3034 if (*p == '\0')
3035 return 0;
3036
3037 /* Check to see if we have hit the member functions yet. */
3038 if (p[1] == ':')
3039 {
3040 break;
3041 }
3042 read_one_struct_field (fip, pp, p, type, objfile);
3043 }
3044 if (p[0] == ':' && p[1] == ':')
3045 {
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3048 scrub. */
3049 fip->list = fip->list->next;
3050 }
3051 return 1;
3052 }
3053 /* *INDENT-OFF* */
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3058
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3064
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 ^^ ^ ^ ^ ^ ^ ^
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3075
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3077 /* *INDENT-ON* */
3078
3079
3080
3081 static int
3082 read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
3083 struct objfile *objfile)
3084 {
3085 int i;
3086 struct nextfield *newobj;
3087
3088 if (**pp != '!')
3089 {
3090 return 1;
3091 }
3092 else
3093 {
3094 /* Skip the '!' baseclass information marker. */
3095 (*pp)++;
3096 }
3097
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3099 {
3100 int nbits;
3101
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3103 if (nbits != 0)
3104 return 0;
3105 }
3106
3107 #if 0
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3112 #else
3113 {
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3115 char *pointer;
3116
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3119 }
3120 #endif /* 0 */
3121
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 {
3126 newobj = XCNEW (struct nextfield);
3127 make_cleanup (xfree, newobj);
3128
3129 newobj->next = fip->list;
3130 fip->list = newobj;
3131 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3132 field! */
3133
3134 STABS_CONTINUE (pp, objfile);
3135 switch (**pp)
3136 {
3137 case '0':
3138 /* Nothing to do. */
3139 break;
3140 case '1':
3141 SET_TYPE_FIELD_VIRTUAL (type, i);
3142 break;
3143 default:
3144 /* Unknown character. Complain and treat it as non-virtual. */
3145 {
3146 complaint (_("Unknown virtual character `%c' for baseclass"),
3147 **pp);
3148 }
3149 }
3150 ++(*pp);
3151
3152 newobj->visibility = *(*pp)++;
3153 switch (newobj->visibility)
3154 {
3155 case VISIBILITY_PRIVATE:
3156 case VISIBILITY_PROTECTED:
3157 case VISIBILITY_PUBLIC:
3158 break;
3159 default:
3160 /* Bad visibility format. Complain and treat it as
3161 public. */
3162 {
3163 complaint (_("Unknown visibility `%c' for baseclass"),
3164 newobj->visibility);
3165 newobj->visibility = VISIBILITY_PUBLIC;
3166 }
3167 }
3168
3169 {
3170 int nbits;
3171
3172 /* The remaining value is the bit offset of the portion of the object
3173 corresponding to this baseclass. Always zero in the absence of
3174 multiple inheritance. */
3175
3176 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3177 if (nbits != 0)
3178 return 0;
3179 }
3180
3181 /* The last piece of baseclass information is the type of the
3182 base class. Read it, and remember it's type name as this
3183 field's name. */
3184
3185 newobj->field.type = read_type (pp, objfile);
3186 newobj->field.name = TYPE_NAME (newobj->field.type);
3187
3188 /* Skip trailing ';' and bump count of number of fields seen. */
3189 if (**pp == ';')
3190 (*pp)++;
3191 else
3192 return 0;
3193 }
3194 return 1;
3195 }
3196
3197 /* The tail end of stabs for C++ classes that contain a virtual function
3198 pointer contains a tilde, a %, and a type number.
3199 The type number refers to the base class (possibly this class itself) which
3200 contains the vtable pointer for the current class.
3201
3202 This function is called when we have parsed all the method declarations,
3203 so we can look for the vptr base class info. */
3204
3205 static int
3206 read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
3207 struct objfile *objfile)
3208 {
3209 const char *p;
3210
3211 STABS_CONTINUE (pp, objfile);
3212
3213 /* If we are positioned at a ';', then skip it. */
3214 if (**pp == ';')
3215 {
3216 (*pp)++;
3217 }
3218
3219 if (**pp == '~')
3220 {
3221 (*pp)++;
3222
3223 if (**pp == '=' || **pp == '+' || **pp == '-')
3224 {
3225 /* Obsolete flags that used to indicate the presence
3226 of constructors and/or destructors. */
3227 (*pp)++;
3228 }
3229
3230 /* Read either a '%' or the final ';'. */
3231 if (*(*pp)++ == '%')
3232 {
3233 /* The next number is the type number of the base class
3234 (possibly our own class) which supplies the vtable for
3235 this class. Parse it out, and search that class to find
3236 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3237 and TYPE_VPTR_FIELDNO. */
3238
3239 struct type *t;
3240 int i;
3241
3242 t = read_type (pp, objfile);
3243 p = (*pp)++;
3244 while (*p != '\0' && *p != ';')
3245 {
3246 p++;
3247 }
3248 if (*p == '\0')
3249 {
3250 /* Premature end of symbol. */
3251 return 0;
3252 }
3253
3254 set_type_vptr_basetype (type, t);
3255 if (type == t) /* Our own class provides vtbl ptr. */
3256 {
3257 for (i = TYPE_NFIELDS (t) - 1;
3258 i >= TYPE_N_BASECLASSES (t);
3259 --i)
3260 {
3261 const char *name = TYPE_FIELD_NAME (t, i);
3262
3263 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3264 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3265 {
3266 set_type_vptr_fieldno (type, i);
3267 goto gotit;
3268 }
3269 }
3270 /* Virtual function table field not found. */
3271 complaint (_("virtual function table pointer "
3272 "not found when defining class `%s'"),
3273 TYPE_NAME (type));
3274 return 0;
3275 }
3276 else
3277 {
3278 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3279 }
3280
3281 gotit:
3282 *pp = p + 1;
3283 }
3284 }
3285 return 1;
3286 }
3287
3288 static int
3289 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3290 {
3291 int n;
3292
3293 for (n = TYPE_NFN_FIELDS (type);
3294 fip->fnlist != NULL;
3295 fip->fnlist = fip->fnlist->next)
3296 {
3297 --n; /* Circumvent Sun3 compiler bug. */
3298 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3299 }
3300 return 1;
3301 }
3302
3303 /* Create the vector of fields, and record how big it is.
3304 We need this info to record proper virtual function table information
3305 for this class's virtual functions. */
3306
3307 static int
3308 attach_fields_to_type (struct field_info *fip, struct type *type,
3309 struct objfile *objfile)
3310 {
3311 int nfields = 0;
3312 int non_public_fields = 0;
3313 struct nextfield *scan;
3314
3315 /* Count up the number of fields that we have, as well as taking note of
3316 whether or not there are any non-public fields, which requires us to
3317 allocate and build the private_field_bits and protected_field_bits
3318 bitfields. */
3319
3320 for (scan = fip->list; scan != NULL; scan = scan->next)
3321 {
3322 nfields++;
3323 if (scan->visibility != VISIBILITY_PUBLIC)
3324 {
3325 non_public_fields++;
3326 }
3327 }
3328
3329 /* Now we know how many fields there are, and whether or not there are any
3330 non-public fields. Record the field count, allocate space for the
3331 array of fields, and create blank visibility bitfields if necessary. */
3332
3333 TYPE_NFIELDS (type) = nfields;
3334 TYPE_FIELDS (type) = (struct field *)
3335 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3336 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3337
3338 if (non_public_fields)
3339 {
3340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3341
3342 TYPE_FIELD_PRIVATE_BITS (type) =
3343 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3344 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3345
3346 TYPE_FIELD_PROTECTED_BITS (type) =
3347 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3348 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3349
3350 TYPE_FIELD_IGNORE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3353 }
3354
3355 /* Copy the saved-up fields into the field vector. Start from the
3356 head of the list, adding to the tail of the field array, so that
3357 they end up in the same order in the array in which they were
3358 added to the list. */
3359
3360 while (nfields-- > 0)
3361 {
3362 TYPE_FIELD (type, nfields) = fip->list->field;
3363 switch (fip->list->visibility)
3364 {
3365 case VISIBILITY_PRIVATE:
3366 SET_TYPE_FIELD_PRIVATE (type, nfields);
3367 break;
3368
3369 case VISIBILITY_PROTECTED:
3370 SET_TYPE_FIELD_PROTECTED (type, nfields);
3371 break;
3372
3373 case VISIBILITY_IGNORE:
3374 SET_TYPE_FIELD_IGNORE (type, nfields);
3375 break;
3376
3377 case VISIBILITY_PUBLIC:
3378 break;
3379
3380 default:
3381 /* Unknown visibility. Complain and treat it as public. */
3382 {
3383 complaint (_("Unknown visibility `%c' for field"),
3384 fip->list->visibility);
3385 }
3386 break;
3387 }
3388 fip->list = fip->list->next;
3389 }
3390 return 1;
3391 }
3392
3393
3394 /* Complain that the compiler has emitted more than one definition for the
3395 structure type TYPE. */
3396 static void
3397 complain_about_struct_wipeout (struct type *type)
3398 {
3399 const char *name = "";
3400 const char *kind = "";
3401
3402 if (TYPE_NAME (type))
3403 {
3404 name = TYPE_NAME (type);
3405 switch (TYPE_CODE (type))
3406 {
3407 case TYPE_CODE_STRUCT: kind = "struct "; break;
3408 case TYPE_CODE_UNION: kind = "union "; break;
3409 case TYPE_CODE_ENUM: kind = "enum "; break;
3410 default: kind = "";
3411 }
3412 }
3413 else
3414 {
3415 name = "<unknown>";
3416 kind = "";
3417 }
3418
3419 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3420 }
3421
3422 /* Set the length for all variants of a same main_type, which are
3423 connected in the closed chain.
3424
3425 This is something that needs to be done when a type is defined *after*
3426 some cross references to this type have already been read. Consider
3427 for instance the following scenario where we have the following two
3428 stabs entries:
3429
3430 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3431 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3432
3433 A stubbed version of type dummy is created while processing the first
3434 stabs entry. The length of that type is initially set to zero, since
3435 it is unknown at this point. Also, a "constant" variation of type
3436 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3437 the stabs line).
3438
3439 The second stabs entry allows us to replace the stubbed definition
3440 with the real definition. However, we still need to adjust the length
3441 of the "constant" variation of that type, as its length was left
3442 untouched during the main type replacement... */
3443
3444 static void
3445 set_length_in_type_chain (struct type *type)
3446 {
3447 struct type *ntype = TYPE_CHAIN (type);
3448
3449 while (ntype != type)
3450 {
3451 if (TYPE_LENGTH(ntype) == 0)
3452 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3453 else
3454 complain_about_struct_wipeout (ntype);
3455 ntype = TYPE_CHAIN (ntype);
3456 }
3457 }
3458
3459 /* Read the description of a structure (or union type) and return an object
3460 describing the type.
3461
3462 PP points to a character pointer that points to the next unconsumed token
3463 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3464 *PP will point to "4a:1,0,32;;".
3465
3466 TYPE points to an incomplete type that needs to be filled in.
3467
3468 OBJFILE points to the current objfile from which the stabs information is
3469 being read. (Note that it is redundant in that TYPE also contains a pointer
3470 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3471 */
3472
3473 static struct type *
3474 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3475 struct objfile *objfile)
3476 {
3477 struct cleanup *back_to;
3478 struct field_info fi;
3479
3480 fi.list = NULL;
3481 fi.fnlist = NULL;
3482
3483 /* When describing struct/union/class types in stabs, G++ always drops
3484 all qualifications from the name. So if you've got:
3485 struct A { ... struct B { ... }; ... };
3486 then G++ will emit stabs for `struct A::B' that call it simply
3487 `struct B'. Obviously, if you've got a real top-level definition for
3488 `struct B', or other nested definitions, this is going to cause
3489 problems.
3490
3491 Obviously, GDB can't fix this by itself, but it can at least avoid
3492 scribbling on existing structure type objects when new definitions
3493 appear. */
3494 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3495 || TYPE_STUB (type)))
3496 {
3497 complain_about_struct_wipeout (type);
3498
3499 /* It's probably best to return the type unchanged. */
3500 return type;
3501 }
3502
3503 back_to = make_cleanup (null_cleanup, 0);
3504
3505 INIT_CPLUS_SPECIFIC (type);
3506 TYPE_CODE (type) = type_code;
3507 TYPE_STUB (type) = 0;
3508
3509 /* First comes the total size in bytes. */
3510
3511 {
3512 int nbits;
3513
3514 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3515 if (nbits != 0)
3516 {
3517 do_cleanups (back_to);
3518 return error_type (pp, objfile);
3519 }
3520 set_length_in_type_chain (type);
3521 }
3522
3523 /* Now read the baseclasses, if any, read the regular C struct or C++
3524 class member fields, attach the fields to the type, read the C++
3525 member functions, attach them to the type, and then read any tilde
3526 field (baseclass specifier for the class holding the main vtable). */
3527
3528 if (!read_baseclasses (&fi, pp, type, objfile)
3529 || !read_struct_fields (&fi, pp, type, objfile)
3530 || !attach_fields_to_type (&fi, type, objfile)
3531 || !read_member_functions (&fi, pp, type, objfile)
3532 || !attach_fn_fields_to_type (&fi, type)
3533 || !read_tilde_fields (&fi, pp, type, objfile))
3534 {
3535 type = error_type (pp, objfile);
3536 }
3537
3538 do_cleanups (back_to);
3539 return (type);
3540 }
3541
3542 /* Read a definition of an array type,
3543 and create and return a suitable type object.
3544 Also creates a range type which represents the bounds of that
3545 array. */
3546
3547 static struct type *
3548 read_array_type (const char **pp, struct type *type,
3549 struct objfile *objfile)
3550 {
3551 struct type *index_type, *element_type, *range_type;
3552 int lower, upper;
3553 int adjustable = 0;
3554 int nbits;
3555
3556 /* Format of an array type:
3557 "ar<index type>;lower;upper;<array_contents_type>".
3558 OS9000: "arlower,upper;<array_contents_type>".
3559
3560 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3561 for these, produce a type like float[][]. */
3562
3563 {
3564 index_type = read_type (pp, objfile);
3565 if (**pp != ';')
3566 /* Improper format of array type decl. */
3567 return error_type (pp, objfile);
3568 ++*pp;
3569 }
3570
3571 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3572 {
3573 (*pp)++;
3574 adjustable = 1;
3575 }
3576 lower = read_huge_number (pp, ';', &nbits, 0);
3577
3578 if (nbits != 0)
3579 return error_type (pp, objfile);
3580
3581 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3582 {
3583 (*pp)++;
3584 adjustable = 1;
3585 }
3586 upper = read_huge_number (pp, ';', &nbits, 0);
3587 if (nbits != 0)
3588 return error_type (pp, objfile);
3589
3590 element_type = read_type (pp, objfile);
3591
3592 if (adjustable)
3593 {
3594 lower = 0;
3595 upper = -1;
3596 }
3597
3598 range_type =
3599 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3600 type = create_array_type (type, element_type, range_type);
3601
3602 return type;
3603 }
3604
3605
3606 /* Read a definition of an enumeration type,
3607 and create and return a suitable type object.
3608 Also defines the symbols that represent the values of the type. */
3609
3610 static struct type *
3611 read_enum_type (const char **pp, struct type *type,
3612 struct objfile *objfile)
3613 {
3614 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3615 const char *p;
3616 char *name;
3617 long n;
3618 struct symbol *sym;
3619 int nsyms = 0;
3620 struct pending **symlist;
3621 struct pending *osyms, *syms;
3622 int o_nsyms;
3623 int nbits;
3624 int unsigned_enum = 1;
3625
3626 #if 0
3627 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3628 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3629 to do? For now, force all enum values to file scope. */
3630 if (within_function)
3631 symlist = get_local_symbols ();
3632 else
3633 #endif
3634 symlist = get_file_symbols ();
3635 osyms = *symlist;
3636 o_nsyms = osyms ? osyms->nsyms : 0;
3637
3638 /* The aix4 compiler emits an extra field before the enum members;
3639 my guess is it's a type of some sort. Just ignore it. */
3640 if (**pp == '-')
3641 {
3642 /* Skip over the type. */
3643 while (**pp != ':')
3644 (*pp)++;
3645
3646 /* Skip over the colon. */
3647 (*pp)++;
3648 }
3649
3650 /* Read the value-names and their values.
3651 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3652 A semicolon or comma instead of a NAME means the end. */
3653 while (**pp && **pp != ';' && **pp != ',')
3654 {
3655 STABS_CONTINUE (pp, objfile);
3656 p = *pp;
3657 while (*p != ':')
3658 p++;
3659 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3660 *pp = p + 1;
3661 n = read_huge_number (pp, ',', &nbits, 0);
3662 if (nbits != 0)
3663 return error_type (pp, objfile);
3664
3665 sym = allocate_symbol (objfile);
3666 SYMBOL_SET_LINKAGE_NAME (sym, name);
3667 SYMBOL_SET_LANGUAGE (sym, get_current_subfile ()->language,
3668 &objfile->objfile_obstack);
3669 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3670 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3671 SYMBOL_VALUE (sym) = n;
3672 if (n < 0)
3673 unsigned_enum = 0;
3674 add_symbol_to_list (sym, symlist);
3675 nsyms++;
3676 }
3677
3678 if (**pp == ';')
3679 (*pp)++; /* Skip the semicolon. */
3680
3681 /* Now fill in the fields of the type-structure. */
3682
3683 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3684 set_length_in_type_chain (type);
3685 TYPE_CODE (type) = TYPE_CODE_ENUM;
3686 TYPE_STUB (type) = 0;
3687 if (unsigned_enum)
3688 TYPE_UNSIGNED (type) = 1;
3689 TYPE_NFIELDS (type) = nsyms;
3690 TYPE_FIELDS (type) = (struct field *)
3691 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3692 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3693
3694 /* Find the symbols for the values and put them into the type.
3695 The symbols can be found in the symlist that we put them on
3696 to cause them to be defined. osyms contains the old value
3697 of that symlist; everything up to there was defined by us. */
3698 /* Note that we preserve the order of the enum constants, so
3699 that in something like "enum {FOO, LAST_THING=FOO}" we print
3700 FOO, not LAST_THING. */
3701
3702 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3703 {
3704 int last = syms == osyms ? o_nsyms : 0;
3705 int j = syms->nsyms;
3706
3707 for (; --j >= last; --n)
3708 {
3709 struct symbol *xsym = syms->symbol[j];
3710
3711 SYMBOL_TYPE (xsym) = type;
3712 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3713 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3714 TYPE_FIELD_BITSIZE (type, n) = 0;
3715 }
3716 if (syms == osyms)
3717 break;
3718 }
3719
3720 return type;
3721 }
3722
3723 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3724 typedefs in every file (for int, long, etc):
3725
3726 type = b <signed> <width> <format type>; <offset>; <nbits>
3727 signed = u or s.
3728 optional format type = c or b for char or boolean.
3729 offset = offset from high order bit to start bit of type.
3730 width is # bytes in object of this type, nbits is # bits in type.
3731
3732 The width/offset stuff appears to be for small objects stored in
3733 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3734 FIXME. */
3735
3736 static struct type *
3737 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3738 {
3739 int type_bits;
3740 int nbits;
3741 int unsigned_type;
3742 int boolean_type = 0;
3743
3744 switch (**pp)
3745 {
3746 case 's':
3747 unsigned_type = 0;
3748 break;
3749 case 'u':
3750 unsigned_type = 1;
3751 break;
3752 default:
3753 return error_type (pp, objfile);
3754 }
3755 (*pp)++;
3756
3757 /* For some odd reason, all forms of char put a c here. This is strange
3758 because no other type has this honor. We can safely ignore this because
3759 we actually determine 'char'acterness by the number of bits specified in
3760 the descriptor.
3761 Boolean forms, e.g Fortran logical*X, put a b here. */
3762
3763 if (**pp == 'c')
3764 (*pp)++;
3765 else if (**pp == 'b')
3766 {
3767 boolean_type = 1;
3768 (*pp)++;
3769 }
3770
3771 /* The first number appears to be the number of bytes occupied
3772 by this type, except that unsigned short is 4 instead of 2.
3773 Since this information is redundant with the third number,
3774 we will ignore it. */
3775 read_huge_number (pp, ';', &nbits, 0);
3776 if (nbits != 0)
3777 return error_type (pp, objfile);
3778
3779 /* The second number is always 0, so ignore it too. */
3780 read_huge_number (pp, ';', &nbits, 0);
3781 if (nbits != 0)
3782 return error_type (pp, objfile);
3783
3784 /* The third number is the number of bits for this type. */
3785 type_bits = read_huge_number (pp, 0, &nbits, 0);
3786 if (nbits != 0)
3787 return error_type (pp, objfile);
3788 /* The type *should* end with a semicolon. If it are embedded
3789 in a larger type the semicolon may be the only way to know where
3790 the type ends. If this type is at the end of the stabstring we
3791 can deal with the omitted semicolon (but we don't have to like
3792 it). Don't bother to complain(), Sun's compiler omits the semicolon
3793 for "void". */
3794 if (**pp == ';')
3795 ++(*pp);
3796
3797 if (type_bits == 0)
3798 {
3799 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3800 TARGET_CHAR_BIT, NULL);
3801 if (unsigned_type)
3802 TYPE_UNSIGNED (type) = 1;
3803 return type;
3804 }
3805
3806 if (boolean_type)
3807 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3808 else
3809 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3810 }
3811
3812 static struct type *
3813 read_sun_floating_type (const char **pp, int typenums[2],
3814 struct objfile *objfile)
3815 {
3816 int nbits;
3817 int details;
3818 int nbytes;
3819 struct type *rettype;
3820
3821 /* The first number has more details about the type, for example
3822 FN_COMPLEX. */
3823 details = read_huge_number (pp, ';', &nbits, 0);
3824 if (nbits != 0)
3825 return error_type (pp, objfile);
3826
3827 /* The second number is the number of bytes occupied by this type. */
3828 nbytes = read_huge_number (pp, ';', &nbits, 0);
3829 if (nbits != 0)
3830 return error_type (pp, objfile);
3831
3832 nbits = nbytes * TARGET_CHAR_BIT;
3833
3834 if (details == NF_COMPLEX || details == NF_COMPLEX16
3835 || details == NF_COMPLEX32)
3836 {
3837 rettype = dbx_init_float_type (objfile, nbits / 2);
3838 return init_complex_type (objfile, NULL, rettype);
3839 }
3840
3841 return dbx_init_float_type (objfile, nbits);
3842 }
3843
3844 /* Read a number from the string pointed to by *PP.
3845 The value of *PP is advanced over the number.
3846 If END is nonzero, the character that ends the
3847 number must match END, or an error happens;
3848 and that character is skipped if it does match.
3849 If END is zero, *PP is left pointing to that character.
3850
3851 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3852 the number is represented in an octal representation, assume that
3853 it is represented in a 2's complement representation with a size of
3854 TWOS_COMPLEMENT_BITS.
3855
3856 If the number fits in a long, set *BITS to 0 and return the value.
3857 If not, set *BITS to be the number of bits in the number and return 0.
3858
3859 If encounter garbage, set *BITS to -1 and return 0. */
3860
3861 static long
3862 read_huge_number (const char **pp, int end, int *bits,
3863 int twos_complement_bits)
3864 {
3865 const char *p = *pp;
3866 int sign = 1;
3867 int sign_bit = 0;
3868 long n = 0;
3869 int radix = 10;
3870 char overflow = 0;
3871 int nbits = 0;
3872 int c;
3873 long upper_limit;
3874 int twos_complement_representation = 0;
3875
3876 if (*p == '-')
3877 {
3878 sign = -1;
3879 p++;
3880 }
3881
3882 /* Leading zero means octal. GCC uses this to output values larger
3883 than an int (because that would be hard in decimal). */
3884 if (*p == '0')
3885 {
3886 radix = 8;
3887 p++;
3888 }
3889
3890 /* Skip extra zeros. */
3891 while (*p == '0')
3892 p++;
3893
3894 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3895 {
3896 /* Octal, possibly signed. Check if we have enough chars for a
3897 negative number. */
3898
3899 size_t len;
3900 const char *p1 = p;
3901
3902 while ((c = *p1) >= '0' && c < '8')
3903 p1++;
3904
3905 len = p1 - p;
3906 if (len > twos_complement_bits / 3
3907 || (twos_complement_bits % 3 == 0
3908 && len == twos_complement_bits / 3))
3909 {
3910 /* Ok, we have enough characters for a signed value, check
3911 for signness by testing if the sign bit is set. */
3912 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3913 c = *p - '0';
3914 if (c & (1 << sign_bit))
3915 {
3916 /* Definitely signed. */
3917 twos_complement_representation = 1;
3918 sign = -1;
3919 }
3920 }
3921 }
3922
3923 upper_limit = LONG_MAX / radix;
3924
3925 while ((c = *p++) >= '0' && c < ('0' + radix))
3926 {
3927 if (n <= upper_limit)
3928 {
3929 if (twos_complement_representation)
3930 {
3931 /* Octal, signed, twos complement representation. In
3932 this case, n is the corresponding absolute value. */
3933 if (n == 0)
3934 {
3935 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3936
3937 n = -sn;
3938 }
3939 else
3940 {
3941 n *= radix;
3942 n -= c - '0';
3943 }
3944 }
3945 else
3946 {
3947 /* unsigned representation */
3948 n *= radix;
3949 n += c - '0'; /* FIXME this overflows anyway. */
3950 }
3951 }
3952 else
3953 overflow = 1;
3954
3955 /* This depends on large values being output in octal, which is
3956 what GCC does. */
3957 if (radix == 8)
3958 {
3959 if (nbits == 0)
3960 {
3961 if (c == '0')
3962 /* Ignore leading zeroes. */
3963 ;
3964 else if (c == '1')
3965 nbits = 1;
3966 else if (c == '2' || c == '3')
3967 nbits = 2;
3968 else
3969 nbits = 3;
3970 }
3971 else
3972 nbits += 3;
3973 }
3974 }
3975 if (end)
3976 {
3977 if (c && c != end)
3978 {
3979 if (bits != NULL)
3980 *bits = -1;
3981 return 0;
3982 }
3983 }
3984 else
3985 --p;
3986
3987 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3988 {
3989 /* We were supposed to parse a number with maximum
3990 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3991 if (bits != NULL)
3992 *bits = -1;
3993 return 0;
3994 }
3995
3996 *pp = p;
3997 if (overflow)
3998 {
3999 if (nbits == 0)
4000 {
4001 /* Large decimal constants are an error (because it is hard to
4002 count how many bits are in them). */
4003 if (bits != NULL)
4004 *bits = -1;
4005 return 0;
4006 }
4007
4008 /* -0x7f is the same as 0x80. So deal with it by adding one to
4009 the number of bits. Two's complement represention octals
4010 can't have a '-' in front. */
4011 if (sign == -1 && !twos_complement_representation)
4012 ++nbits;
4013 if (bits)
4014 *bits = nbits;
4015 }
4016 else
4017 {
4018 if (bits)
4019 *bits = 0;
4020 return n * sign;
4021 }
4022 /* It's *BITS which has the interesting information. */
4023 return 0;
4024 }
4025
4026 static struct type *
4027 read_range_type (const char **pp, int typenums[2], int type_size,
4028 struct objfile *objfile)
4029 {
4030 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4031 const char *orig_pp = *pp;
4032 int rangenums[2];
4033 long n2, n3;
4034 int n2bits, n3bits;
4035 int self_subrange;
4036 struct type *result_type;
4037 struct type *index_type = NULL;
4038
4039 /* First comes a type we are a subrange of.
4040 In C it is usually 0, 1 or the type being defined. */
4041 if (read_type_number (pp, rangenums) != 0)
4042 return error_type (pp, objfile);
4043 self_subrange = (rangenums[0] == typenums[0] &&
4044 rangenums[1] == typenums[1]);
4045
4046 if (**pp == '=')
4047 {
4048 *pp = orig_pp;
4049 index_type = read_type (pp, objfile);
4050 }
4051
4052 /* A semicolon should now follow; skip it. */
4053 if (**pp == ';')
4054 (*pp)++;
4055
4056 /* The remaining two operands are usually lower and upper bounds
4057 of the range. But in some special cases they mean something else. */
4058 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4059 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4060
4061 if (n2bits == -1 || n3bits == -1)
4062 return error_type (pp, objfile);
4063
4064 if (index_type)
4065 goto handle_true_range;
4066
4067 /* If limits are huge, must be large integral type. */
4068 if (n2bits != 0 || n3bits != 0)
4069 {
4070 char got_signed = 0;
4071 char got_unsigned = 0;
4072 /* Number of bits in the type. */
4073 int nbits = 0;
4074
4075 /* If a type size attribute has been specified, the bounds of
4076 the range should fit in this size. If the lower bounds needs
4077 more bits than the upper bound, then the type is signed. */
4078 if (n2bits <= type_size && n3bits <= type_size)
4079 {
4080 if (n2bits == type_size && n2bits > n3bits)
4081 got_signed = 1;
4082 else
4083 got_unsigned = 1;
4084 nbits = type_size;
4085 }
4086 /* Range from 0 to <large number> is an unsigned large integral type. */
4087 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4088 {
4089 got_unsigned = 1;
4090 nbits = n3bits;
4091 }
4092 /* Range from <large number> to <large number>-1 is a large signed
4093 integral type. Take care of the case where <large number> doesn't
4094 fit in a long but <large number>-1 does. */
4095 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4096 || (n2bits != 0 && n3bits == 0
4097 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4098 && n3 == LONG_MAX))
4099 {
4100 got_signed = 1;
4101 nbits = n2bits;
4102 }
4103
4104 if (got_signed || got_unsigned)
4105 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4106 else
4107 return error_type (pp, objfile);
4108 }
4109
4110 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4111 if (self_subrange && n2 == 0 && n3 == 0)
4112 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4113
4114 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4115 is the width in bytes.
4116
4117 Fortran programs appear to use this for complex types also. To
4118 distinguish between floats and complex, g77 (and others?) seem
4119 to use self-subranges for the complexes, and subranges of int for
4120 the floats.
4121
4122 Also note that for complexes, g77 sets n2 to the size of one of
4123 the member floats, not the whole complex beast. My guess is that
4124 this was to work well with pre-COMPLEX versions of gdb. */
4125
4126 if (n3 == 0 && n2 > 0)
4127 {
4128 struct type *float_type
4129 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4130
4131 if (self_subrange)
4132 return init_complex_type (objfile, NULL, float_type);
4133 else
4134 return float_type;
4135 }
4136
4137 /* If the upper bound is -1, it must really be an unsigned integral. */
4138
4139 else if (n2 == 0 && n3 == -1)
4140 {
4141 int bits = type_size;
4142
4143 if (bits <= 0)
4144 {
4145 /* We don't know its size. It is unsigned int or unsigned
4146 long. GCC 2.3.3 uses this for long long too, but that is
4147 just a GDB 3.5 compatibility hack. */
4148 bits = gdbarch_int_bit (gdbarch);
4149 }
4150
4151 return init_integer_type (objfile, bits, 1, NULL);
4152 }
4153
4154 /* Special case: char is defined (Who knows why) as a subrange of
4155 itself with range 0-127. */
4156 else if (self_subrange && n2 == 0 && n3 == 127)
4157 {
4158 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4159 0, NULL);
4160 TYPE_NOSIGN (type) = 1;
4161 return type;
4162 }
4163 /* We used to do this only for subrange of self or subrange of int. */
4164 else if (n2 == 0)
4165 {
4166 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4167 "unsigned long", and we already checked for that,
4168 so don't need to test for it here. */
4169
4170 if (n3 < 0)
4171 /* n3 actually gives the size. */
4172 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4173
4174 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4175 unsigned n-byte integer. But do require n to be a power of
4176 two; we don't want 3- and 5-byte integers flying around. */
4177 {
4178 int bytes;
4179 unsigned long bits;
4180
4181 bits = n3;
4182 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4183 bits >>= 8;
4184 if (bits == 0
4185 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4186 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4187 }
4188 }
4189 /* I think this is for Convex "long long". Since I don't know whether
4190 Convex sets self_subrange, I also accept that particular size regardless
4191 of self_subrange. */
4192 else if (n3 == 0 && n2 < 0
4193 && (self_subrange
4194 || n2 == -gdbarch_long_long_bit
4195 (gdbarch) / TARGET_CHAR_BIT))
4196 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4197 else if (n2 == -n3 - 1)
4198 {
4199 if (n3 == 0x7f)
4200 return init_integer_type (objfile, 8, 0, NULL);
4201 if (n3 == 0x7fff)
4202 return init_integer_type (objfile, 16, 0, NULL);
4203 if (n3 == 0x7fffffff)
4204 return init_integer_type (objfile, 32, 0, NULL);
4205 }
4206
4207 /* We have a real range type on our hands. Allocate space and
4208 return a real pointer. */
4209 handle_true_range:
4210
4211 if (self_subrange)
4212 index_type = objfile_type (objfile)->builtin_int;
4213 else
4214 index_type = *dbx_lookup_type (rangenums, objfile);
4215 if (index_type == NULL)
4216 {
4217 /* Does this actually ever happen? Is that why we are worrying
4218 about dealing with it rather than just calling error_type? */
4219
4220 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4221
4222 index_type = objfile_type (objfile)->builtin_int;
4223 }
4224
4225 result_type
4226 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4227 return (result_type);
4228 }
4229
4230 /* Read in an argument list. This is a list of types, separated by commas
4231 and terminated with END. Return the list of types read in, or NULL
4232 if there is an error. */
4233
4234 static struct field *
4235 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4236 int *varargsp)
4237 {
4238 /* FIXME! Remove this arbitrary limit! */
4239 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4240 int n = 0, i;
4241 struct field *rval;
4242
4243 while (**pp != end)
4244 {
4245 if (**pp != ',')
4246 /* Invalid argument list: no ','. */
4247 return NULL;
4248 (*pp)++;
4249 STABS_CONTINUE (pp, objfile);
4250 types[n++] = read_type (pp, objfile);
4251 }
4252 (*pp)++; /* get past `end' (the ':' character). */
4253
4254 if (n == 0)
4255 {
4256 /* We should read at least the THIS parameter here. Some broken stabs
4257 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4258 have been present ";-16,(0,43)" reference instead. This way the
4259 excessive ";" marker prematurely stops the parameters parsing. */
4260
4261 complaint (_("Invalid (empty) method arguments"));
4262 *varargsp = 0;
4263 }
4264 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4265 *varargsp = 1;
4266 else
4267 {
4268 n--;
4269 *varargsp = 0;
4270 }
4271
4272 rval = XCNEWVEC (struct field, n);
4273 for (i = 0; i < n; i++)
4274 rval[i].type = types[i];
4275 *nargsp = n;
4276 return rval;
4277 }
4278 \f
4279 /* Common block handling. */
4280
4281 /* List of symbols declared since the last BCOMM. This list is a tail
4282 of local_symbols. When ECOMM is seen, the symbols on the list
4283 are noted so their proper addresses can be filled in later,
4284 using the common block base address gotten from the assembler
4285 stabs. */
4286
4287 static struct pending *common_block;
4288 static int common_block_i;
4289
4290 /* Name of the current common block. We get it from the BCOMM instead of the
4291 ECOMM to match IBM documentation (even though IBM puts the name both places
4292 like everyone else). */
4293 static char *common_block_name;
4294
4295 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4296 to remain after this function returns. */
4297
4298 void
4299 common_block_start (const char *name, struct objfile *objfile)
4300 {
4301 if (common_block_name != NULL)
4302 {
4303 complaint (_("Invalid symbol data: common block within common block"));
4304 }
4305 common_block = *get_local_symbols ();
4306 common_block_i = common_block ? common_block->nsyms : 0;
4307 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4308 strlen (name));
4309 }
4310
4311 /* Process a N_ECOMM symbol. */
4312
4313 void
4314 common_block_end (struct objfile *objfile)
4315 {
4316 /* Symbols declared since the BCOMM are to have the common block
4317 start address added in when we know it. common_block and
4318 common_block_i point to the first symbol after the BCOMM in
4319 the local_symbols list; copy the list and hang it off the
4320 symbol for the common block name for later fixup. */
4321 int i;
4322 struct symbol *sym;
4323 struct pending *newobj = 0;
4324 struct pending *next;
4325 int j;
4326
4327 if (common_block_name == NULL)
4328 {
4329 complaint (_("ECOMM symbol unmatched by BCOMM"));
4330 return;
4331 }
4332
4333 sym = allocate_symbol (objfile);
4334 /* Note: common_block_name already saved on objfile_obstack. */
4335 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4336 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4337
4338 /* Now we copy all the symbols which have been defined since the BCOMM. */
4339
4340 /* Copy all the struct pendings before common_block. */
4341 for (next = *get_local_symbols ();
4342 next != NULL && next != common_block;
4343 next = next->next)
4344 {
4345 for (j = 0; j < next->nsyms; j++)
4346 add_symbol_to_list (next->symbol[j], &newobj);
4347 }
4348
4349 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4350 NULL, it means copy all the local symbols (which we already did
4351 above). */
4352
4353 if (common_block != NULL)
4354 for (j = common_block_i; j < common_block->nsyms; j++)
4355 add_symbol_to_list (common_block->symbol[j], &newobj);
4356
4357 SYMBOL_TYPE (sym) = (struct type *) newobj;
4358
4359 /* Should we be putting local_symbols back to what it was?
4360 Does it matter? */
4361
4362 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4363 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4364 global_sym_chain[i] = sym;
4365 common_block_name = NULL;
4366 }
4367
4368 /* Add a common block's start address to the offset of each symbol
4369 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4370 the common block name). */
4371
4372 static void
4373 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4374 {
4375 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4376
4377 for (; next; next = next->next)
4378 {
4379 int j;
4380
4381 for (j = next->nsyms - 1; j >= 0; j--)
4382 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4383 }
4384 }
4385 \f
4386
4387
4388 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4389 See add_undefined_type for more details. */
4390
4391 static void
4392 add_undefined_type_noname (struct type *type, int typenums[2])
4393 {
4394 struct nat nat;
4395
4396 nat.typenums[0] = typenums [0];
4397 nat.typenums[1] = typenums [1];
4398 nat.type = type;
4399
4400 if (noname_undefs_length == noname_undefs_allocated)
4401 {
4402 noname_undefs_allocated *= 2;
4403 noname_undefs = (struct nat *)
4404 xrealloc ((char *) noname_undefs,
4405 noname_undefs_allocated * sizeof (struct nat));
4406 }
4407 noname_undefs[noname_undefs_length++] = nat;
4408 }
4409
4410 /* Add TYPE to the UNDEF_TYPES vector.
4411 See add_undefined_type for more details. */
4412
4413 static void
4414 add_undefined_type_1 (struct type *type)
4415 {
4416 if (undef_types_length == undef_types_allocated)
4417 {
4418 undef_types_allocated *= 2;
4419 undef_types = (struct type **)
4420 xrealloc ((char *) undef_types,
4421 undef_types_allocated * sizeof (struct type *));
4422 }
4423 undef_types[undef_types_length++] = type;
4424 }
4425
4426 /* What about types defined as forward references inside of a small lexical
4427 scope? */
4428 /* Add a type to the list of undefined types to be checked through
4429 once this file has been read in.
4430
4431 In practice, we actually maintain two such lists: The first list
4432 (UNDEF_TYPES) is used for types whose name has been provided, and
4433 concerns forward references (eg 'xs' or 'xu' forward references);
4434 the second list (NONAME_UNDEFS) is used for types whose name is
4435 unknown at creation time, because they were referenced through
4436 their type number before the actual type was declared.
4437 This function actually adds the given type to the proper list. */
4438
4439 static void
4440 add_undefined_type (struct type *type, int typenums[2])
4441 {
4442 if (TYPE_NAME (type) == NULL)
4443 add_undefined_type_noname (type, typenums);
4444 else
4445 add_undefined_type_1 (type);
4446 }
4447
4448 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4449
4450 static void
4451 cleanup_undefined_types_noname (struct objfile *objfile)
4452 {
4453 int i;
4454
4455 for (i = 0; i < noname_undefs_length; i++)
4456 {
4457 struct nat nat = noname_undefs[i];
4458 struct type **type;
4459
4460 type = dbx_lookup_type (nat.typenums, objfile);
4461 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4462 {
4463 /* The instance flags of the undefined type are still unset,
4464 and needs to be copied over from the reference type.
4465 Since replace_type expects them to be identical, we need
4466 to set these flags manually before hand. */
4467 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4468 replace_type (nat.type, *type);
4469 }
4470 }
4471
4472 noname_undefs_length = 0;
4473 }
4474
4475 /* Go through each undefined type, see if it's still undefined, and fix it
4476 up if possible. We have two kinds of undefined types:
4477
4478 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4479 Fix: update array length using the element bounds
4480 and the target type's length.
4481 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4482 yet defined at the time a pointer to it was made.
4483 Fix: Do a full lookup on the struct/union tag. */
4484
4485 static void
4486 cleanup_undefined_types_1 (void)
4487 {
4488 struct type **type;
4489
4490 /* Iterate over every undefined type, and look for a symbol whose type
4491 matches our undefined type. The symbol matches if:
4492 1. It is a typedef in the STRUCT domain;
4493 2. It has the same name, and same type code;
4494 3. The instance flags are identical.
4495
4496 It is important to check the instance flags, because we have seen
4497 examples where the debug info contained definitions such as:
4498
4499 "foo_t:t30=B31=xefoo_t:"
4500
4501 In this case, we have created an undefined type named "foo_t" whose
4502 instance flags is null (when processing "xefoo_t"), and then created
4503 another type with the same name, but with different instance flags
4504 ('B' means volatile). I think that the definition above is wrong,
4505 since the same type cannot be volatile and non-volatile at the same
4506 time, but we need to be able to cope with it when it happens. The
4507 approach taken here is to treat these two types as different. */
4508
4509 for (type = undef_types; type < undef_types + undef_types_length; type++)
4510 {
4511 switch (TYPE_CODE (*type))
4512 {
4513
4514 case TYPE_CODE_STRUCT:
4515 case TYPE_CODE_UNION:
4516 case TYPE_CODE_ENUM:
4517 {
4518 /* Check if it has been defined since. Need to do this here
4519 as well as in check_typedef to deal with the (legitimate in
4520 C though not C++) case of several types with the same name
4521 in different source files. */
4522 if (TYPE_STUB (*type))
4523 {
4524 struct pending *ppt;
4525 int i;
4526 /* Name of the type, without "struct" or "union". */
4527 const char *type_name = TYPE_NAME (*type);
4528
4529 if (type_name == NULL)
4530 {
4531 complaint (_("need a type name"));
4532 break;
4533 }
4534 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4535 {
4536 for (i = 0; i < ppt->nsyms; i++)
4537 {
4538 struct symbol *sym = ppt->symbol[i];
4539
4540 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4541 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4542 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4543 TYPE_CODE (*type))
4544 && (TYPE_INSTANCE_FLAGS (*type) ==
4545 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4546 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4547 type_name) == 0)
4548 replace_type (*type, SYMBOL_TYPE (sym));
4549 }
4550 }
4551 }
4552 }
4553 break;
4554
4555 default:
4556 {
4557 complaint (_("forward-referenced types left unresolved, "
4558 "type code %d."),
4559 TYPE_CODE (*type));
4560 }
4561 break;
4562 }
4563 }
4564
4565 undef_types_length = 0;
4566 }
4567
4568 /* Try to fix all the undefined types we ecountered while processing
4569 this unit. */
4570
4571 void
4572 cleanup_undefined_stabs_types (struct objfile *objfile)
4573 {
4574 cleanup_undefined_types_1 ();
4575 cleanup_undefined_types_noname (objfile);
4576 }
4577
4578 /* See stabsread.h. */
4579
4580 void
4581 scan_file_globals (struct objfile *objfile)
4582 {
4583 int hash;
4584 struct symbol *sym, *prev;
4585 struct objfile *resolve_objfile;
4586
4587 /* SVR4 based linkers copy referenced global symbols from shared
4588 libraries to the main executable.
4589 If we are scanning the symbols for a shared library, try to resolve
4590 them from the minimal symbols of the main executable first. */
4591
4592 if (symfile_objfile && objfile != symfile_objfile)
4593 resolve_objfile = symfile_objfile;
4594 else
4595 resolve_objfile = objfile;
4596
4597 while (1)
4598 {
4599 /* Avoid expensive loop through all minimal symbols if there are
4600 no unresolved symbols. */
4601 for (hash = 0; hash < HASHSIZE; hash++)
4602 {
4603 if (global_sym_chain[hash])
4604 break;
4605 }
4606 if (hash >= HASHSIZE)
4607 return;
4608
4609 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4610 {
4611 QUIT;
4612
4613 /* Skip static symbols. */
4614 switch (MSYMBOL_TYPE (msymbol))
4615 {
4616 case mst_file_text:
4617 case mst_file_data:
4618 case mst_file_bss:
4619 continue;
4620 default:
4621 break;
4622 }
4623
4624 prev = NULL;
4625
4626 /* Get the hash index and check all the symbols
4627 under that hash index. */
4628
4629 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4630
4631 for (sym = global_sym_chain[hash]; sym;)
4632 {
4633 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4634 SYMBOL_LINKAGE_NAME (sym)) == 0)
4635 {
4636 /* Splice this symbol out of the hash chain and
4637 assign the value we have to it. */
4638 if (prev)
4639 {
4640 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4641 }
4642 else
4643 {
4644 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4645 }
4646
4647 /* Check to see whether we need to fix up a common block. */
4648 /* Note: this code might be executed several times for
4649 the same symbol if there are multiple references. */
4650 if (sym)
4651 {
4652 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4653 {
4654 fix_common_block (sym,
4655 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4656 msymbol));
4657 }
4658 else
4659 {
4660 SYMBOL_VALUE_ADDRESS (sym)
4661 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4662 }
4663 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4664 }
4665
4666 if (prev)
4667 {
4668 sym = SYMBOL_VALUE_CHAIN (prev);
4669 }
4670 else
4671 {
4672 sym = global_sym_chain[hash];
4673 }
4674 }
4675 else
4676 {
4677 prev = sym;
4678 sym = SYMBOL_VALUE_CHAIN (sym);
4679 }
4680 }
4681 }
4682 if (resolve_objfile == objfile)
4683 break;
4684 resolve_objfile = objfile;
4685 }
4686
4687 /* Change the storage class of any remaining unresolved globals to
4688 LOC_UNRESOLVED and remove them from the chain. */
4689 for (hash = 0; hash < HASHSIZE; hash++)
4690 {
4691 sym = global_sym_chain[hash];
4692 while (sym)
4693 {
4694 prev = sym;
4695 sym = SYMBOL_VALUE_CHAIN (sym);
4696
4697 /* Change the symbol address from the misleading chain value
4698 to address zero. */
4699 SYMBOL_VALUE_ADDRESS (prev) = 0;
4700
4701 /* Complain about unresolved common block symbols. */
4702 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4703 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4704 else
4705 complaint (_("%s: common block `%s' from "
4706 "global_sym_chain unresolved"),
4707 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4708 }
4709 }
4710 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4711 }
4712
4713 /* Initialize anything that needs initializing when starting to read
4714 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4715 to a psymtab. */
4716
4717 void
4718 stabsread_init (void)
4719 {
4720 }
4721
4722 /* Initialize anything that needs initializing when a completely new
4723 symbol file is specified (not just adding some symbols from another
4724 file, e.g. a shared library). */
4725
4726 void
4727 stabsread_new_init (void)
4728 {
4729 /* Empty the hash table of global syms looking for values. */
4730 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4731 }
4732
4733 /* Initialize anything that needs initializing at the same time as
4734 start_symtab() is called. */
4735
4736 void
4737 start_stabs (void)
4738 {
4739 global_stabs = NULL; /* AIX COFF */
4740 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4741 n_this_object_header_files = 1;
4742 type_vector_length = 0;
4743 type_vector = (struct type **) 0;
4744 within_function = 0;
4745
4746 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4747 common_block_name = NULL;
4748 }
4749
4750 /* Call after end_symtab(). */
4751
4752 void
4753 end_stabs (void)
4754 {
4755 if (type_vector)
4756 {
4757 xfree (type_vector);
4758 }
4759 type_vector = 0;
4760 type_vector_length = 0;
4761 previous_stab_code = 0;
4762 }
4763
4764 void
4765 finish_global_stabs (struct objfile *objfile)
4766 {
4767 if (global_stabs)
4768 {
4769 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4770 xfree (global_stabs);
4771 global_stabs = NULL;
4772 }
4773 }
4774
4775 /* Find the end of the name, delimited by a ':', but don't match
4776 ObjC symbols which look like -[Foo bar::]:bla. */
4777 static const char *
4778 find_name_end (const char *name)
4779 {
4780 const char *s = name;
4781
4782 if (s[0] == '-' || *s == '+')
4783 {
4784 /* Must be an ObjC method symbol. */
4785 if (s[1] != '[')
4786 {
4787 error (_("invalid symbol name \"%s\""), name);
4788 }
4789 s = strchr (s, ']');
4790 if (s == NULL)
4791 {
4792 error (_("invalid symbol name \"%s\""), name);
4793 }
4794 return strchr (s, ':');
4795 }
4796 else
4797 {
4798 return strchr (s, ':');
4799 }
4800 }
4801
4802 /* See stabsread.h. */
4803
4804 int
4805 hashname (const char *name)
4806 {
4807 return hash (name, strlen (name)) % HASHSIZE;
4808 }
4809
4810 /* Initializer for this module. */
4811
4812 void
4813 _initialize_stabsread (void)
4814 {
4815 rs6000_builtin_type_data = register_objfile_data ();
4816
4817 undef_types_allocated = 20;
4818 undef_types_length = 0;
4819 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4820
4821 noname_undefs_allocated = 20;
4822 noname_undefs_length = 0;
4823 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4824
4825 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4826 &stab_register_funcs);
4827 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4828 &stab_register_funcs);
4829 }
This page took 0.157058 seconds and 4 git commands to generate.