update copyright year range in GDB files
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
48
49 /* Ask stabsread.h to define the vars it normally declares `extern'. */
50 #define EXTERN
51 /**/
52 #include "stabsread.h" /* Our own declarations */
53 #undef EXTERN
54
55 extern void _initialize_stabsread (void);
56
57 struct nextfield
58 {
59 struct nextfield *next;
60
61 /* This is the raw visibility from the stab. It is not checked
62 for being one of the visibilities we recognize, so code which
63 examines this field better be able to deal. */
64 int visibility;
65
66 struct field field;
67 };
68
69 struct next_fnfieldlist
70 {
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73 };
74
75 /* The routines that read and process a complete stabs for a C struct or
76 C++ class pass lists of data member fields and lists of member function
77 fields in an instance of a field_info structure, as defined below.
78 This is part of some reorganization of low level C++ support and is
79 expected to eventually go away... (FIXME) */
80
81 struct field_info
82 {
83 struct nextfield *list;
84 struct next_fnfieldlist *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("bad register number %d (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210
211 /* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217 static struct type **type_vector;
218
219 /* Number of elements allocated for type_vector currently. */
220
221 static int type_vector_length;
222
223 /* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226 #define INITIAL_TYPE_VECTOR_LENGTH 160
227 \f
228
229 /* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
236 static struct type **
237 dbx_lookup_type (int typenums[2], struct objfile *objfile)
238 {
239 int filenum = typenums[0];
240 int index = typenums[1];
241 unsigned old_len;
242 int real_filenum;
243 struct header_file *f;
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
251 complaint (&symfile_complaints,
252 _("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
254 filenum, index, symnum);
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
269 temp_type = rs6000_builtin_type (index, objfile);
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
274 Find it in this object file's type vector. */
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
281 type_vector = XNEWVEC (struct type *, type_vector_length);
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* Allocate a floating-point type of size BITS. */
358
359 static struct type *
360 dbx_init_float_type (struct objfile *objfile, int bits)
361 {
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, NULL);
371
372 return type;
373 }
374
375 /* for all the stabs in a given stab vector, build appropriate types
376 and fix their symbols in given symbol vector. */
377
378 static void
379 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
381 {
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
389 /* for all the stab entries, find their corresponding symbols and
390 patch their types! */
391
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
395 pp = (char *) strchr (name, ':');
396 gdb_assert (pp); /* Must find a ':' or game's over. */
397 while (pp[1] == ':')
398 {
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
401 }
402 sym = find_symbol_in_list (symbols, name, pp - name);
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
412
413 /* On xcoff, if a global is defined and never referenced,
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
416 sym = allocate_symbol (objfile);
417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
419 SYMBOL_SET_LINKAGE_NAME
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
422 pp += 2;
423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, &global_symbols);
436 }
437 else
438 {
439 pp += 2;
440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452 }
453 \f
454
455 /* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463 static int
464 read_type_number (char **pp, int *typenums)
465 {
466 int nbits;
467
468 if (**pp == '(')
469 {
470 (*pp)++;
471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
472 if (nbits != 0)
473 return -1;
474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
475 if (nbits != 0)
476 return -1;
477 }
478 else
479 {
480 typenums[0] = 0;
481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 return 0;
486 }
487 \f
488
489 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
494 /* Structure for storing pointers to reference definitions for fast lookup
495 during "process_later". */
496
497 struct ref_map
498 {
499 char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502 };
503
504 #define MAX_CHUNK_REFS 100
505 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
508 static struct ref_map *ref_map;
509
510 /* Ptr to free cell in chunk's linked list. */
511 static int ref_count = 0;
512
513 /* Number of chunks malloced. */
514 static int ref_chunk = 0;
515
516 /* This file maintains a cache of stabs aliases found in the symbol
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
519 void
520 stabsread_clear_cache (void)
521 {
522 ref_count = 0;
523 ref_chunk = 0;
524 }
525
526 /* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
530 void
531 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
532 {
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
541
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551 }
552
553 /* Return defined sym for the reference REFNUM. */
554 struct symbol *
555 ref_search (int refnum)
556 {
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560 }
561
562 /* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
565 static int
566 process_reference (char **string)
567 {
568 char *p;
569 int refnum = 0;
570
571 if (**string != '#')
572 return 0;
573
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
577 /* Read number as reference id. */
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585 }
586
587 /* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590 int
591 symbol_reference_defined (char **string)
592 {
593 char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
598 /* Defining symbols end in '='. */
599 if (*p == '=')
600 {
601 /* Symbol is being defined here. */
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
607 /* Must be a reference. Either the symbol has already been defined,
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612 }
613
614 static int
615 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616 {
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
619 if (regno < 0
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
622 {
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
627
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
629 }
630
631 return regno;
632 }
633
634 static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
636 };
637
638 /* The "aclass" indices for computed symbols. */
639
640 static int stab_register_index;
641 static int stab_regparm_index;
642
643 struct symbol *
644 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
645 struct objfile *objfile)
646 {
647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
648 struct symbol *sym;
649 char *p = (char *) find_name_end (string);
650 int deftype;
651 int synonym = 0;
652 int i;
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
674 {
675 complaint (&symfile_complaints,
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
685 current_symbol = sym = allocate_symbol (objfile);
686
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
692 }
693 else
694 {
695 SYMBOL_LINE (sym) = 0; /* unknown */
696 }
697
698 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
699 &objfile->objfile_obstack);
700
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
706 case 't':
707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
708 break;
709
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
712
713 case 'e':
714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
715 break;
716
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
720
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
723 if (gdbarch_static_transform_name_p (gdbarch))
724 goto normal;
725 /* ... fall through ... */
726
727 default:
728 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
729 string);
730 goto normal; /* Do *something* with it. */
731 }
732 }
733 else
734 {
735 normal:
736 std::string new_name;
737
738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
739 {
740 char *name = (char *) alloca (p - string + 1);
741
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
745 }
746 if (!new_name.empty ())
747 {
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
750 1, objfile);
751 }
752 else
753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
754
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
756 cp_scan_for_anonymous_namespaces (sym, objfile);
757
758 }
759 p++;
760
761 /* Determine the type of name being defined. */
762 #if 0
763 /* Getting GDB to correctly skip the symbol on an undefined symbol
764 descriptor and not ever dump core is a very dodgy proposition if
765 we do things this way. I say the acorn RISC machine can just
766 fix their compiler. */
767 /* The Acorn RISC machine's compiler can put out locals that don't
768 start with "234=" or "(3,4)=", so assume anything other than the
769 deftypes we know how to handle is a local. */
770 if (!strchr ("cfFGpPrStTvVXCR", *p))
771 #else
772 if (isdigit (*p) || *p == '(' || *p == '-')
773 #endif
774 deftype = 'l';
775 else
776 deftype = *p++;
777
778 switch (deftype)
779 {
780 case 'c':
781 /* c is a special case, not followed by a type-number.
782 SYMBOL:c=iVALUE for an integer constant symbol.
783 SYMBOL:c=rVALUE for a floating constant symbol.
784 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
787 if (*p != '=')
788 {
789 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
792 add_symbol_to_list (sym, &file_symbols);
793 return sym;
794 }
795 ++p;
796 switch (*p++)
797 {
798 case 'r':
799 {
800 double d = atof (p);
801 gdb_byte *dbl_valu;
802 struct type *dbl_type;
803
804 /* FIXME-if-picky-about-floating-accuracy: Should be using
805 target arithmetic to get the value. real.c in GCC
806 probably has the necessary code. */
807
808 dbl_type = objfile_type (objfile)->builtin_double;
809 dbl_valu
810 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
811 TYPE_LENGTH (dbl_type));
812 store_typed_floating (dbl_valu, dbl_type, d);
813
814 SYMBOL_TYPE (sym) = dbl_type;
815 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
817 }
818 break;
819 case 'i':
820 {
821 /* Defining integer constants this way is kind of silly,
822 since 'e' constants allows the compiler to give not
823 only the value, but the type as well. C has at least
824 int, long, unsigned int, and long long as constant
825 types; other languages probably should have at least
826 unsigned as well as signed constants. */
827
828 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
829 SYMBOL_VALUE (sym) = atoi (p);
830 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
831 }
832 break;
833
834 case 'c':
835 {
836 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
837 SYMBOL_VALUE (sym) = atoi (p);
838 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
839 }
840 break;
841
842 case 's':
843 {
844 struct type *range_type;
845 int ind = 0;
846 char quote = *p++;
847 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
848 gdb_byte *string_value;
849
850 if (quote != '\'' && quote != '"')
851 {
852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* Find matching quote, rejecting escaped quotes. */
860 while (*p && *p != quote)
861 {
862 if (*p == '\\' && p[1] == quote)
863 {
864 string_local[ind] = (gdb_byte) quote;
865 ind++;
866 p += 2;
867 }
868 else if (*p)
869 {
870 string_local[ind] = (gdb_byte) (*p);
871 ind++;
872 p++;
873 }
874 }
875 if (*p != quote)
876 {
877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
878 SYMBOL_TYPE (sym) = error_type (&p, objfile);
879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
880 add_symbol_to_list (sym, &file_symbols);
881 return sym;
882 }
883
884 /* NULL terminate the string. */
885 string_local[ind] = 0;
886 range_type
887 = create_static_range_type (NULL,
888 objfile_type (objfile)->builtin_int,
889 0, ind);
890 SYMBOL_TYPE (sym) = create_array_type (NULL,
891 objfile_type (objfile)->builtin_char,
892 range_type);
893 string_value
894 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
895 memcpy (string_value, string_local, ind + 1);
896 p++;
897
898 SYMBOL_VALUE_BYTES (sym) = string_value;
899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
900 }
901 break;
902
903 case 'e':
904 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
905 can be represented as integral.
906 e.g. "b:c=e6,0" for "const b = blob1"
907 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911
912 if (*p != ',')
913 {
914 SYMBOL_TYPE (sym) = error_type (&p, objfile);
915 break;
916 }
917 ++p;
918
919 /* If the value is too big to fit in an int (perhaps because
920 it is unsigned), or something like that, we silently get
921 a bogus value. The type and everything else about it is
922 correct. Ideally, we should be using whatever we have
923 available for parsing unsigned and long long values,
924 however. */
925 SYMBOL_VALUE (sym) = atoi (p);
926 }
927 break;
928 default:
929 {
930 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
931 SYMBOL_TYPE (sym) = error_type (&p, objfile);
932 }
933 }
934 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
935 add_symbol_to_list (sym, &file_symbols);
936 return sym;
937
938 case 'C':
939 /* The name of a caught exception. */
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
941 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
943 SYMBOL_VALUE_ADDRESS (sym) = valu;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'f':
948 /* A static function definition. */
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
950 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
951 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
952 add_symbol_to_list (sym, &file_symbols);
953 /* fall into process_function_types. */
954
955 process_function_types:
956 /* Function result types are described as the result type in stabs.
957 We need to convert this to the function-returning-type-X type
958 in GDB. E.g. "int" is converted to "function returning int". */
959 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
960 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
961
962 /* All functions in C++ have prototypes. Stabs does not offer an
963 explicit way to identify prototyped or unprototyped functions,
964 but both GCC and Sun CC emit stabs for the "call-as" type rather
965 than the "declared-as" type for unprototyped functions, so
966 we treat all functions as if they were prototyped. This is used
967 primarily for promotion when calling the function from GDB. */
968 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
969
970 /* fall into process_prototype_types. */
971
972 process_prototype_types:
973 /* Sun acc puts declared types of arguments here. */
974 if (*p == ';')
975 {
976 struct type *ftype = SYMBOL_TYPE (sym);
977 int nsemi = 0;
978 int nparams = 0;
979 char *p1 = p;
980
981 /* Obtain a worst case guess for the number of arguments
982 by counting the semicolons. */
983 while (*p1)
984 {
985 if (*p1++ == ';')
986 nsemi++;
987 }
988
989 /* Allocate parameter information fields and fill them in. */
990 TYPE_FIELDS (ftype) = (struct field *)
991 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
992 while (*p++ == ';')
993 {
994 struct type *ptype;
995
996 /* A type number of zero indicates the start of varargs.
997 FIXME: GDB currently ignores vararg functions. */
998 if (p[0] == '0' && p[1] == '\0')
999 break;
1000 ptype = read_type (&p, objfile);
1001
1002 /* The Sun compilers mark integer arguments, which should
1003 be promoted to the width of the calling conventions, with
1004 a type which references itself. This type is turned into
1005 a TYPE_CODE_VOID type by read_type, and we have to turn
1006 it back into builtin_int here.
1007 FIXME: Do we need a new builtin_promoted_int_arg ? */
1008 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1009 ptype = objfile_type (objfile)->builtin_int;
1010 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1011 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1012 }
1013 TYPE_NFIELDS (ftype) = nparams;
1014 TYPE_PROTOTYPED (ftype) = 1;
1015 }
1016 break;
1017
1018 case 'F':
1019 /* A global function definition. */
1020 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1021 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023 add_symbol_to_list (sym, &global_symbols);
1024 goto process_function_types;
1025
1026 case 'G':
1027 /* For a class G (global) symbol, it appears that the
1028 value is not correct. It is necessary to search for the
1029 corresponding linker definition to find the value.
1030 These definitions appear at the end of the namelist. */
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 /* Don't add symbol references to global_sym_chain.
1035 Symbol references don't have valid names and wont't match up with
1036 minimal symbols when the global_sym_chain is relocated.
1037 We'll fixup symbol references when we fixup the defining symbol. */
1038 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1039 {
1040 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1041 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1042 global_sym_chain[i] = sym;
1043 }
1044 add_symbol_to_list (sym, &global_symbols);
1045 break;
1046
1047 /* This case is faked by a conditional above,
1048 when there is no code letter in the dbx data.
1049 Dbx data never actually contains 'l'. */
1050 case 's':
1051 case 'l':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1054 SYMBOL_VALUE (sym) = valu;
1055 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1056 add_symbol_to_list (sym, &local_symbols);
1057 break;
1058
1059 case 'p':
1060 if (*p == 'F')
1061 /* pF is a two-letter code that means a function parameter in Fortran.
1062 The type-number specifies the type of the return value.
1063 Translate it into a pointer-to-function type. */
1064 {
1065 p++;
1066 SYMBOL_TYPE (sym)
1067 = lookup_pointer_type
1068 (lookup_function_type (read_type (&p, objfile)));
1069 }
1070 else
1071 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1072
1073 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1074 SYMBOL_VALUE (sym) = valu;
1075 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1076 SYMBOL_IS_ARGUMENT (sym) = 1;
1077 add_symbol_to_list (sym, &local_symbols);
1078
1079 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1080 {
1081 /* On little-endian machines, this crud is never necessary,
1082 and, if the extra bytes contain garbage, is harmful. */
1083 break;
1084 }
1085
1086 /* If it's gcc-compiled, if it says `short', believe it. */
1087 if (processing_gcc_compilation
1088 || gdbarch_believe_pcc_promotion (gdbarch))
1089 break;
1090
1091 if (!gdbarch_believe_pcc_promotion (gdbarch))
1092 {
1093 /* If PCC says a parameter is a short or a char, it is
1094 really an int. */
1095 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1096 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1097 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1098 {
1099 SYMBOL_TYPE (sym) =
1100 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1101 ? objfile_type (objfile)->builtin_unsigned_int
1102 : objfile_type (objfile)->builtin_int;
1103 }
1104 break;
1105 }
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
1116 /*FALLTHROUGH */
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1122 SYMBOL_IS_ARGUMENT (sym) = 1;
1123 SYMBOL_VALUE (sym) = valu;
1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1125 add_symbol_to_list (sym, &local_symbols);
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1132 SYMBOL_VALUE (sym) = valu;
1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134 if (within_function)
1135 {
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
1140 For Sun cc we need to do this regardless of
1141 stabs_argument_has_addr, because the compiler puts out
1142 the 'p' symbol even if it never saves the argument onto
1143 the stack.
1144
1145 On most machines, we want to preserve both symbols, so
1146 that we can still get information about what is going on
1147 with the stack (VAX for computing args_printed, using
1148 stack slots instead of saved registers in backtraces,
1149 etc.).
1150
1151 Note that this code illegally combines
1152 main(argc) struct foo argc; { register struct foo argc; }
1153 but this case is considered pathological and causes a warning
1154 from a decent compiler. */
1155
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1159 {
1160 struct symbol *prev_sym;
1161
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1165 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1166 SYMBOL_LINKAGE_NAME (sym)) == 0)
1167 {
1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
1177 add_symbol_to_list (sym, &local_symbols);
1178 }
1179 else
1180 add_symbol_to_list (sym, &file_symbols);
1181 break;
1182
1183 case 'S':
1184 /* Static symbol at top level of file. */
1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1187 SYMBOL_VALUE_ADDRESS (sym) = valu;
1188 if (gdbarch_static_transform_name_p (gdbarch)
1189 && gdbarch_static_transform_name (gdbarch,
1190 SYMBOL_LINKAGE_NAME (sym))
1191 != SYMBOL_LINKAGE_NAME (sym))
1192 {
1193 struct bound_minimal_symbol msym;
1194
1195 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1196 NULL, objfile);
1197 if (msym.minsym != NULL)
1198 {
1199 const char *new_name = gdbarch_static_transform_name
1200 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1201
1202 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1203 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1204 }
1205 }
1206 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1207 add_symbol_to_list (sym, &file_symbols);
1208 break;
1209
1210 case 't':
1211 /* In Ada, there is no distinction between typedef and non-typedef;
1212 any type declaration implicitly has the equivalent of a typedef,
1213 and thus 't' is in fact equivalent to 'Tt'.
1214
1215 Therefore, for Ada units, we check the character immediately
1216 before the 't', and if we do not find a 'T', then make sure to
1217 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1218 will be stored in the VAR_DOMAIN). If the symbol was indeed
1219 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1220 elsewhere, so we don't need to take care of that.
1221
1222 This is important to do, because of forward references:
1223 The cleanup of undefined types stored in undef_types only uses
1224 STRUCT_DOMAIN symbols to perform the replacement. */
1225 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1226
1227 /* Typedef */
1228 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1229
1230 /* For a nameless type, we don't want a create a symbol, thus we
1231 did not use `sym'. Return without further processing. */
1232 if (nameless)
1233 return NULL;
1234
1235 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1236 SYMBOL_VALUE (sym) = valu;
1237 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1238 /* C++ vagaries: we may have a type which is derived from
1239 a base type which did not have its name defined when the
1240 derived class was output. We fill in the derived class's
1241 base part member's name here in that case. */
1242 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1243 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1244 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1245 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1246 {
1247 int j;
1248
1249 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1250 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1251 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1252 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1253 }
1254
1255 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1256 {
1257 /* gcc-2.6 or later (when using -fvtable-thunks)
1258 emits a unique named type for a vtable entry.
1259 Some gdb code depends on that specific name. */
1260 extern const char vtbl_ptr_name[];
1261
1262 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1263 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1264 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1265 {
1266 /* If we are giving a name to a type such as "pointer to
1267 foo" or "function returning foo", we better not set
1268 the TYPE_NAME. If the program contains "typedef char
1269 *caddr_t;", we don't want all variables of type char
1270 * to print as caddr_t. This is not just a
1271 consequence of GDB's type management; PCC and GCC (at
1272 least through version 2.4) both output variables of
1273 either type char * or caddr_t with the type number
1274 defined in the 't' symbol for caddr_t. If a future
1275 compiler cleans this up it GDB is not ready for it
1276 yet, but if it becomes ready we somehow need to
1277 disable this check (without breaking the PCC/GCC2.4
1278 case).
1279
1280 Sigh.
1281
1282 Fortunately, this check seems not to be necessary
1283 for anything except pointers or functions. */
1284 /* ezannoni: 2000-10-26. This seems to apply for
1285 versions of gcc older than 2.8. This was the original
1286 problem: with the following code gdb would tell that
1287 the type for name1 is caddr_t, and func is char().
1288
1289 typedef char *caddr_t;
1290 char *name2;
1291 struct x
1292 {
1293 char *name1;
1294 } xx;
1295 char *func()
1296 {
1297 }
1298 main () {}
1299 */
1300
1301 /* Pascal accepts names for pointer types. */
1302 if (current_subfile->language == language_pascal)
1303 {
1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1305 }
1306 }
1307 else
1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1309 }
1310
1311 add_symbol_to_list (sym, &file_symbols);
1312
1313 if (synonym)
1314 {
1315 /* Create the STRUCT_DOMAIN clone. */
1316 struct symbol *struct_sym = allocate_symbol (objfile);
1317
1318 *struct_sym = *sym;
1319 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1320 SYMBOL_VALUE (struct_sym) = valu;
1321 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1322 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1323 TYPE_NAME (SYMBOL_TYPE (sym))
1324 = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1326 (char *) NULL);
1327 add_symbol_to_list (struct_sym, &file_symbols);
1328 }
1329
1330 break;
1331
1332 case 'T':
1333 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1334 by 't' which means we are typedef'ing it as well. */
1335 synonym = *p == 't';
1336
1337 if (synonym)
1338 p++;
1339
1340 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1341
1342 /* For a nameless type, we don't want a create a symbol, thus we
1343 did not use `sym'. Return without further processing. */
1344 if (nameless)
1345 return NULL;
1346
1347 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1348 SYMBOL_VALUE (sym) = valu;
1349 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1350 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1351 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1352 = obconcat (&objfile->objfile_obstack,
1353 SYMBOL_LINKAGE_NAME (sym),
1354 (char *) NULL);
1355 add_symbol_to_list (sym, &file_symbols);
1356
1357 if (synonym)
1358 {
1359 /* Clone the sym and then modify it. */
1360 struct symbol *typedef_sym = allocate_symbol (objfile);
1361
1362 *typedef_sym = *sym;
1363 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1364 SYMBOL_VALUE (typedef_sym) = valu;
1365 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1366 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1367 TYPE_NAME (SYMBOL_TYPE (sym))
1368 = obconcat (&objfile->objfile_obstack,
1369 SYMBOL_LINKAGE_NAME (sym),
1370 (char *) NULL);
1371 add_symbol_to_list (typedef_sym, &file_symbols);
1372 }
1373 break;
1374
1375 case 'V':
1376 /* Static symbol of local scope. */
1377 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1378 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1379 SYMBOL_VALUE_ADDRESS (sym) = valu;
1380 if (gdbarch_static_transform_name_p (gdbarch)
1381 && gdbarch_static_transform_name (gdbarch,
1382 SYMBOL_LINKAGE_NAME (sym))
1383 != SYMBOL_LINKAGE_NAME (sym))
1384 {
1385 struct bound_minimal_symbol msym;
1386
1387 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1388 NULL, objfile);
1389 if (msym.minsym != NULL)
1390 {
1391 const char *new_name = gdbarch_static_transform_name
1392 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1393
1394 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1395 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1396 }
1397 }
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'v':
1403 /* Reference parameter */
1404 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1405 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1406 SYMBOL_IS_ARGUMENT (sym) = 1;
1407 SYMBOL_VALUE (sym) = valu;
1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 case 'a':
1413 /* Reference parameter which is in a register. */
1414 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1416 SYMBOL_IS_ARGUMENT (sym) = 1;
1417 SYMBOL_VALUE (sym) = valu;
1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419 add_symbol_to_list (sym, &local_symbols);
1420 break;
1421
1422 case 'X':
1423 /* This is used by Sun FORTRAN for "function result value".
1424 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1425 that Pascal uses it too, but when I tried it Pascal used
1426 "x:3" (local symbol) instead. */
1427 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1428 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1429 SYMBOL_VALUE (sym) = valu;
1430 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1431 add_symbol_to_list (sym, &local_symbols);
1432 break;
1433
1434 default:
1435 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1437 SYMBOL_VALUE (sym) = 0;
1438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1439 add_symbol_to_list (sym, &file_symbols);
1440 break;
1441 }
1442
1443 /* Some systems pass variables of certain types by reference instead
1444 of by value, i.e. they will pass the address of a structure (in a
1445 register or on the stack) instead of the structure itself. */
1446
1447 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1448 && SYMBOL_IS_ARGUMENT (sym))
1449 {
1450 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1451 variables passed in a register). */
1452 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1454 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1455 and subsequent arguments on SPARC, for example). */
1456 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1458 }
1459
1460 return sym;
1461 }
1462
1463 /* Skip rest of this symbol and return an error type.
1464
1465 General notes on error recovery: error_type always skips to the
1466 end of the symbol (modulo cretinous dbx symbol name continuation).
1467 Thus code like this:
1468
1469 if (*(*pp)++ != ';')
1470 return error_type (pp, objfile);
1471
1472 is wrong because if *pp starts out pointing at '\0' (typically as the
1473 result of an earlier error), it will be incremented to point to the
1474 start of the next symbol, which might produce strange results, at least
1475 if you run off the end of the string table. Instead use
1476
1477 if (**pp != ';')
1478 return error_type (pp, objfile);
1479 ++*pp;
1480
1481 or
1482
1483 if (**pp != ';')
1484 foo = error_type (pp, objfile);
1485 else
1486 ++*pp;
1487
1488 And in case it isn't obvious, the point of all this hair is so the compiler
1489 can define new types and new syntaxes, and old versions of the
1490 debugger will be able to read the new symbol tables. */
1491
1492 static struct type *
1493 error_type (char **pp, struct objfile *objfile)
1494 {
1495 complaint (&symfile_complaints,
1496 _("couldn't parse type; debugger out of date?"));
1497 while (1)
1498 {
1499 /* Skip to end of symbol. */
1500 while (**pp != '\0')
1501 {
1502 (*pp)++;
1503 }
1504
1505 /* Check for and handle cretinous dbx symbol name continuation! */
1506 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1507 {
1508 *pp = next_symbol_text (objfile);
1509 }
1510 else
1511 {
1512 break;
1513 }
1514 }
1515 return objfile_type (objfile)->builtin_error;
1516 }
1517 \f
1518
1519 /* Read type information or a type definition; return the type. Even
1520 though this routine accepts either type information or a type
1521 definition, the distinction is relevant--some parts of stabsread.c
1522 assume that type information starts with a digit, '-', or '(' in
1523 deciding whether to call read_type. */
1524
1525 static struct type *
1526 read_type (char **pp, struct objfile *objfile)
1527 {
1528 struct type *type = 0;
1529 struct type *type1;
1530 int typenums[2];
1531 char type_descriptor;
1532
1533 /* Size in bits of type if specified by a type attribute, or -1 if
1534 there is no size attribute. */
1535 int type_size = -1;
1536
1537 /* Used to distinguish string and bitstring from char-array and set. */
1538 int is_string = 0;
1539
1540 /* Used to distinguish vector from array. */
1541 int is_vector = 0;
1542
1543 /* Read type number if present. The type number may be omitted.
1544 for instance in a two-dimensional array declared with type
1545 "ar1;1;10;ar1;1;10;4". */
1546 if ((**pp >= '0' && **pp <= '9')
1547 || **pp == '('
1548 || **pp == '-')
1549 {
1550 if (read_type_number (pp, typenums) != 0)
1551 return error_type (pp, objfile);
1552
1553 if (**pp != '=')
1554 {
1555 /* Type is not being defined here. Either it already
1556 exists, or this is a forward reference to it.
1557 dbx_alloc_type handles both cases. */
1558 type = dbx_alloc_type (typenums, objfile);
1559
1560 /* If this is a forward reference, arrange to complain if it
1561 doesn't get patched up by the time we're done
1562 reading. */
1563 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1564 add_undefined_type (type, typenums);
1565
1566 return type;
1567 }
1568
1569 /* Type is being defined here. */
1570 /* Skip the '='.
1571 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1572 (*pp) += 2;
1573 }
1574 else
1575 {
1576 /* 'typenums=' not present, type is anonymous. Read and return
1577 the definition, but don't put it in the type vector. */
1578 typenums[0] = typenums[1] = -1;
1579 (*pp)++;
1580 }
1581
1582 again:
1583 type_descriptor = (*pp)[-1];
1584 switch (type_descriptor)
1585 {
1586 case 'x':
1587 {
1588 enum type_code code;
1589
1590 /* Used to index through file_symbols. */
1591 struct pending *ppt;
1592 int i;
1593
1594 /* Name including "struct", etc. */
1595 char *type_name;
1596
1597 {
1598 char *from, *to, *p, *q1, *q2;
1599
1600 /* Set the type code according to the following letter. */
1601 switch ((*pp)[0])
1602 {
1603 case 's':
1604 code = TYPE_CODE_STRUCT;
1605 break;
1606 case 'u':
1607 code = TYPE_CODE_UNION;
1608 break;
1609 case 'e':
1610 code = TYPE_CODE_ENUM;
1611 break;
1612 default:
1613 {
1614 /* Complain and keep going, so compilers can invent new
1615 cross-reference types. */
1616 complaint (&symfile_complaints,
1617 _("Unrecognized cross-reference type `%c'"),
1618 (*pp)[0]);
1619 code = TYPE_CODE_STRUCT;
1620 break;
1621 }
1622 }
1623
1624 q1 = strchr (*pp, '<');
1625 p = strchr (*pp, ':');
1626 if (p == NULL)
1627 return error_type (pp, objfile);
1628 if (q1 && p > q1 && p[1] == ':')
1629 {
1630 int nesting_level = 0;
1631
1632 for (q2 = q1; *q2; q2++)
1633 {
1634 if (*q2 == '<')
1635 nesting_level++;
1636 else if (*q2 == '>')
1637 nesting_level--;
1638 else if (*q2 == ':' && nesting_level == 0)
1639 break;
1640 }
1641 p = q2;
1642 if (*p != ':')
1643 return error_type (pp, objfile);
1644 }
1645 type_name = NULL;
1646 if (current_subfile->language == language_cplus)
1647 {
1648 char *name = (char *) alloca (p - *pp + 1);
1649
1650 memcpy (name, *pp, p - *pp);
1651 name[p - *pp] = '\0';
1652
1653 std::string new_name = cp_canonicalize_string (name);
1654 if (!new_name.empty ())
1655 {
1656 type_name
1657 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1658 new_name.c_str (),
1659 new_name.length ());
1660 }
1661 }
1662 if (type_name == NULL)
1663 {
1664 to = type_name = (char *)
1665 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1666
1667 /* Copy the name. */
1668 from = *pp + 1;
1669 while (from < p)
1670 *to++ = *from++;
1671 *to = '\0';
1672 }
1673
1674 /* Set the pointer ahead of the name which we just read, and
1675 the colon. */
1676 *pp = p + 1;
1677 }
1678
1679 /* If this type has already been declared, then reuse the same
1680 type, rather than allocating a new one. This saves some
1681 memory. */
1682
1683 for (ppt = file_symbols; ppt; ppt = ppt->next)
1684 for (i = 0; i < ppt->nsyms; i++)
1685 {
1686 struct symbol *sym = ppt->symbol[i];
1687
1688 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1689 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1690 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1691 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1692 {
1693 obstack_free (&objfile->objfile_obstack, type_name);
1694 type = SYMBOL_TYPE (sym);
1695 if (typenums[0] != -1)
1696 *dbx_lookup_type (typenums, objfile) = type;
1697 return type;
1698 }
1699 }
1700
1701 /* Didn't find the type to which this refers, so we must
1702 be dealing with a forward reference. Allocate a type
1703 structure for it, and keep track of it so we can
1704 fill in the rest of the fields when we get the full
1705 type. */
1706 type = dbx_alloc_type (typenums, objfile);
1707 TYPE_CODE (type) = code;
1708 TYPE_TAG_NAME (type) = type_name;
1709 INIT_CPLUS_SPECIFIC (type);
1710 TYPE_STUB (type) = 1;
1711
1712 add_undefined_type (type, typenums);
1713 return type;
1714 }
1715
1716 case '-': /* RS/6000 built-in type */
1717 case '0':
1718 case '1':
1719 case '2':
1720 case '3':
1721 case '4':
1722 case '5':
1723 case '6':
1724 case '7':
1725 case '8':
1726 case '9':
1727 case '(':
1728 (*pp)--;
1729
1730 /* We deal with something like t(1,2)=(3,4)=... which
1731 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1732
1733 /* Allocate and enter the typedef type first.
1734 This handles recursive types. */
1735 type = dbx_alloc_type (typenums, objfile);
1736 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1737 {
1738 struct type *xtype = read_type (pp, objfile);
1739
1740 if (type == xtype)
1741 {
1742 /* It's being defined as itself. That means it is "void". */
1743 TYPE_CODE (type) = TYPE_CODE_VOID;
1744 TYPE_LENGTH (type) = 1;
1745 }
1746 else if (type_size >= 0 || is_string)
1747 {
1748 /* This is the absolute wrong way to construct types. Every
1749 other debug format has found a way around this problem and
1750 the related problems with unnecessarily stubbed types;
1751 someone motivated should attempt to clean up the issue
1752 here as well. Once a type pointed to has been created it
1753 should not be modified.
1754
1755 Well, it's not *absolutely* wrong. Constructing recursive
1756 types (trees, linked lists) necessarily entails modifying
1757 types after creating them. Constructing any loop structure
1758 entails side effects. The Dwarf 2 reader does handle this
1759 more gracefully (it never constructs more than once
1760 instance of a type object, so it doesn't have to copy type
1761 objects wholesale), but it still mutates type objects after
1762 other folks have references to them.
1763
1764 Keep in mind that this circularity/mutation issue shows up
1765 at the source language level, too: C's "incomplete types",
1766 for example. So the proper cleanup, I think, would be to
1767 limit GDB's type smashing to match exactly those required
1768 by the source language. So GDB could have a
1769 "complete_this_type" function, but never create unnecessary
1770 copies of a type otherwise. */
1771 replace_type (type, xtype);
1772 TYPE_NAME (type) = NULL;
1773 TYPE_TAG_NAME (type) = NULL;
1774 }
1775 else
1776 {
1777 TYPE_TARGET_STUB (type) = 1;
1778 TYPE_TARGET_TYPE (type) = xtype;
1779 }
1780 }
1781 break;
1782
1783 /* In the following types, we must be sure to overwrite any existing
1784 type that the typenums refer to, rather than allocating a new one
1785 and making the typenums point to the new one. This is because there
1786 may already be pointers to the existing type (if it had been
1787 forward-referenced), and we must change it to a pointer, function,
1788 reference, or whatever, *in-place*. */
1789
1790 case '*': /* Pointer to another type */
1791 type1 = read_type (pp, objfile);
1792 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1793 break;
1794
1795 case '&': /* Reference to another type */
1796 type1 = read_type (pp, objfile);
1797 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1798 break;
1799
1800 case 'f': /* Function returning another type */
1801 type1 = read_type (pp, objfile);
1802 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1803 break;
1804
1805 case 'g': /* Prototyped function. (Sun) */
1806 {
1807 /* Unresolved questions:
1808
1809 - According to Sun's ``STABS Interface Manual'', for 'f'
1810 and 'F' symbol descriptors, a `0' in the argument type list
1811 indicates a varargs function. But it doesn't say how 'g'
1812 type descriptors represent that info. Someone with access
1813 to Sun's toolchain should try it out.
1814
1815 - According to the comment in define_symbol (search for
1816 `process_prototype_types:'), Sun emits integer arguments as
1817 types which ref themselves --- like `void' types. Do we
1818 have to deal with that here, too? Again, someone with
1819 access to Sun's toolchain should try it out and let us
1820 know. */
1821
1822 const char *type_start = (*pp) - 1;
1823 struct type *return_type = read_type (pp, objfile);
1824 struct type *func_type
1825 = make_function_type (return_type,
1826 dbx_lookup_type (typenums, objfile));
1827 struct type_list {
1828 struct type *type;
1829 struct type_list *next;
1830 } *arg_types = 0;
1831 int num_args = 0;
1832
1833 while (**pp && **pp != '#')
1834 {
1835 struct type *arg_type = read_type (pp, objfile);
1836 struct type_list *newobj = XALLOCA (struct type_list);
1837 newobj->type = arg_type;
1838 newobj->next = arg_types;
1839 arg_types = newobj;
1840 num_args++;
1841 }
1842 if (**pp == '#')
1843 ++*pp;
1844 else
1845 {
1846 complaint (&symfile_complaints,
1847 _("Prototyped function type didn't "
1848 "end arguments with `#':\n%s"),
1849 type_start);
1850 }
1851
1852 /* If there is just one argument whose type is `void', then
1853 that's just an empty argument list. */
1854 if (arg_types
1855 && ! arg_types->next
1856 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1857 num_args = 0;
1858
1859 TYPE_FIELDS (func_type)
1860 = (struct field *) TYPE_ALLOC (func_type,
1861 num_args * sizeof (struct field));
1862 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1863 {
1864 int i;
1865 struct type_list *t;
1866
1867 /* We stuck each argument type onto the front of the list
1868 when we read it, so the list is reversed. Build the
1869 fields array right-to-left. */
1870 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1871 TYPE_FIELD_TYPE (func_type, i) = t->type;
1872 }
1873 TYPE_NFIELDS (func_type) = num_args;
1874 TYPE_PROTOTYPED (func_type) = 1;
1875
1876 type = func_type;
1877 break;
1878 }
1879
1880 case 'k': /* Const qualifier on some type (Sun) */
1881 type = read_type (pp, objfile);
1882 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1883 dbx_lookup_type (typenums, objfile));
1884 break;
1885
1886 case 'B': /* Volatile qual on some type (Sun) */
1887 type = read_type (pp, objfile);
1888 type = make_cv_type (TYPE_CONST (type), 1, type,
1889 dbx_lookup_type (typenums, objfile));
1890 break;
1891
1892 case '@':
1893 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1894 { /* Member (class & variable) type */
1895 /* FIXME -- we should be doing smash_to_XXX types here. */
1896
1897 struct type *domain = read_type (pp, objfile);
1898 struct type *memtype;
1899
1900 if (**pp != ',')
1901 /* Invalid member type data format. */
1902 return error_type (pp, objfile);
1903 ++*pp;
1904
1905 memtype = read_type (pp, objfile);
1906 type = dbx_alloc_type (typenums, objfile);
1907 smash_to_memberptr_type (type, domain, memtype);
1908 }
1909 else
1910 /* type attribute */
1911 {
1912 char *attr = *pp;
1913
1914 /* Skip to the semicolon. */
1915 while (**pp != ';' && **pp != '\0')
1916 ++(*pp);
1917 if (**pp == '\0')
1918 return error_type (pp, objfile);
1919 else
1920 ++ * pp; /* Skip the semicolon. */
1921
1922 switch (*attr)
1923 {
1924 case 's': /* Size attribute */
1925 type_size = atoi (attr + 1);
1926 if (type_size <= 0)
1927 type_size = -1;
1928 break;
1929
1930 case 'S': /* String attribute */
1931 /* FIXME: check to see if following type is array? */
1932 is_string = 1;
1933 break;
1934
1935 case 'V': /* Vector attribute */
1936 /* FIXME: check to see if following type is array? */
1937 is_vector = 1;
1938 break;
1939
1940 default:
1941 /* Ignore unrecognized type attributes, so future compilers
1942 can invent new ones. */
1943 break;
1944 }
1945 ++*pp;
1946 goto again;
1947 }
1948 break;
1949
1950 case '#': /* Method (class & fn) type */
1951 if ((*pp)[0] == '#')
1952 {
1953 /* We'll get the parameter types from the name. */
1954 struct type *return_type;
1955
1956 (*pp)++;
1957 return_type = read_type (pp, objfile);
1958 if (*(*pp)++ != ';')
1959 complaint (&symfile_complaints,
1960 _("invalid (minimal) member type "
1961 "data format at symtab pos %d."),
1962 symnum);
1963 type = allocate_stub_method (return_type);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1966 }
1967 else
1968 {
1969 struct type *domain = read_type (pp, objfile);
1970 struct type *return_type;
1971 struct field *args;
1972 int nargs, varargs;
1973
1974 if (**pp != ',')
1975 /* Invalid member type data format. */
1976 return error_type (pp, objfile);
1977 else
1978 ++(*pp);
1979
1980 return_type = read_type (pp, objfile);
1981 args = read_args (pp, ';', objfile, &nargs, &varargs);
1982 if (args == NULL)
1983 return error_type (pp, objfile);
1984 type = dbx_alloc_type (typenums, objfile);
1985 smash_to_method_type (type, domain, return_type, args,
1986 nargs, varargs);
1987 }
1988 break;
1989
1990 case 'r': /* Range type */
1991 type = read_range_type (pp, typenums, type_size, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 'b':
1997 {
1998 /* Sun ACC builtin int type */
1999 type = read_sun_builtin_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
2001 *dbx_lookup_type (typenums, objfile) = type;
2002 }
2003 break;
2004
2005 case 'R': /* Sun ACC builtin float type */
2006 type = read_sun_floating_type (pp, typenums, objfile);
2007 if (typenums[0] != -1)
2008 *dbx_lookup_type (typenums, objfile) = type;
2009 break;
2010
2011 case 'e': /* Enumeration type */
2012 type = dbx_alloc_type (typenums, objfile);
2013 type = read_enum_type (pp, type, objfile);
2014 if (typenums[0] != -1)
2015 *dbx_lookup_type (typenums, objfile) = type;
2016 break;
2017
2018 case 's': /* Struct type */
2019 case 'u': /* Union type */
2020 {
2021 enum type_code type_code = TYPE_CODE_UNDEF;
2022 type = dbx_alloc_type (typenums, objfile);
2023 switch (type_descriptor)
2024 {
2025 case 's':
2026 type_code = TYPE_CODE_STRUCT;
2027 break;
2028 case 'u':
2029 type_code = TYPE_CODE_UNION;
2030 break;
2031 }
2032 type = read_struct_type (pp, type, type_code, objfile);
2033 break;
2034 }
2035
2036 case 'a': /* Array type */
2037 if (**pp != 'r')
2038 return error_type (pp, objfile);
2039 ++*pp;
2040
2041 type = dbx_alloc_type (typenums, objfile);
2042 type = read_array_type (pp, type, objfile);
2043 if (is_string)
2044 TYPE_CODE (type) = TYPE_CODE_STRING;
2045 if (is_vector)
2046 make_vector_type (type);
2047 break;
2048
2049 case 'S': /* Set type */
2050 type1 = read_type (pp, objfile);
2051 type = create_set_type ((struct type *) NULL, type1);
2052 if (typenums[0] != -1)
2053 *dbx_lookup_type (typenums, objfile) = type;
2054 break;
2055
2056 default:
2057 --*pp; /* Go back to the symbol in error. */
2058 /* Particularly important if it was \0! */
2059 return error_type (pp, objfile);
2060 }
2061
2062 if (type == 0)
2063 {
2064 warning (_("GDB internal error, type is NULL in stabsread.c."));
2065 return error_type (pp, objfile);
2066 }
2067
2068 /* Size specified in a type attribute overrides any other size. */
2069 if (type_size != -1)
2070 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2071
2072 return type;
2073 }
2074 \f
2075 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2076 Return the proper type node for a given builtin type number. */
2077
2078 static const struct objfile_data *rs6000_builtin_type_data;
2079
2080 static struct type *
2081 rs6000_builtin_type (int typenum, struct objfile *objfile)
2082 {
2083 struct type **negative_types
2084 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2085
2086 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2087 #define NUMBER_RECOGNIZED 34
2088 struct type *rettype = NULL;
2089
2090 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2091 {
2092 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2093 return objfile_type (objfile)->builtin_error;
2094 }
2095
2096 if (!negative_types)
2097 {
2098 /* This includes an empty slot for type number -0. */
2099 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2100 NUMBER_RECOGNIZED + 1, struct type *);
2101 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2102 }
2103
2104 if (negative_types[-typenum] != NULL)
2105 return negative_types[-typenum];
2106
2107 #if TARGET_CHAR_BIT != 8
2108 #error This code wrong for TARGET_CHAR_BIT not 8
2109 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2110 that if that ever becomes not true, the correct fix will be to
2111 make the size in the struct type to be in bits, not in units of
2112 TARGET_CHAR_BIT. */
2113 #endif
2114
2115 switch (-typenum)
2116 {
2117 case 1:
2118 /* The size of this and all the other types are fixed, defined
2119 by the debugging format. If there is a type called "int" which
2120 is other than 32 bits, then it should use a new negative type
2121 number (or avoid negative type numbers for that case).
2122 See stabs.texinfo. */
2123 rettype = init_integer_type (objfile, 32, 0, "int");
2124 break;
2125 case 2:
2126 rettype = init_integer_type (objfile, 8, 0, "char");
2127 TYPE_NOSIGN (rettype) = 1;
2128 break;
2129 case 3:
2130 rettype = init_integer_type (objfile, 16, 0, "short");
2131 break;
2132 case 4:
2133 rettype = init_integer_type (objfile, 32, 0, "long");
2134 break;
2135 case 5:
2136 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2137 break;
2138 case 6:
2139 rettype = init_integer_type (objfile, 8, 0, "signed char");
2140 break;
2141 case 7:
2142 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2143 break;
2144 case 8:
2145 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2146 break;
2147 case 9:
2148 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2149 break;
2150 case 10:
2151 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2152 break;
2153 case 11:
2154 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2155 break;
2156 case 12:
2157 /* IEEE single precision (32 bit). */
2158 rettype = init_float_type (objfile, 32, "float",
2159 floatformats_ieee_single);
2160 break;
2161 case 13:
2162 /* IEEE double precision (64 bit). */
2163 rettype = init_float_type (objfile, 64, "double",
2164 floatformats_ieee_double);
2165 break;
2166 case 14:
2167 /* This is an IEEE double on the RS/6000, and different machines with
2168 different sizes for "long double" should use different negative
2169 type numbers. See stabs.texinfo. */
2170 rettype = init_float_type (objfile, 64, "long double",
2171 floatformats_ieee_double);
2172 break;
2173 case 15:
2174 rettype = init_integer_type (objfile, 32, 0, "integer");
2175 break;
2176 case 16:
2177 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2178 break;
2179 case 17:
2180 rettype = init_float_type (objfile, 32, "short real",
2181 floatformats_ieee_single);
2182 break;
2183 case 18:
2184 rettype = init_float_type (objfile, 64, "real",
2185 floatformats_ieee_double);
2186 break;
2187 case 19:
2188 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2189 break;
2190 case 20:
2191 rettype = init_character_type (objfile, 8, 1, "character");
2192 break;
2193 case 21:
2194 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2195 break;
2196 case 22:
2197 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2198 break;
2199 case 23:
2200 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2201 break;
2202 case 24:
2203 rettype = init_boolean_type (objfile, 32, 1, "logical");
2204 break;
2205 case 25:
2206 /* Complex type consisting of two IEEE single precision values. */
2207 rettype = init_complex_type (objfile, "complex",
2208 rs6000_builtin_type (12, objfile));
2209 break;
2210 case 26:
2211 /* Complex type consisting of two IEEE double precision values. */
2212 rettype = init_complex_type (objfile, "double complex",
2213 rs6000_builtin_type (13, objfile));
2214 break;
2215 case 27:
2216 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2217 break;
2218 case 28:
2219 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2220 break;
2221 case 29:
2222 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2223 break;
2224 case 30:
2225 rettype = init_character_type (objfile, 16, 0, "wchar");
2226 break;
2227 case 31:
2228 rettype = init_integer_type (objfile, 64, 0, "long long");
2229 break;
2230 case 32:
2231 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2232 break;
2233 case 33:
2234 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2235 break;
2236 case 34:
2237 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2238 break;
2239 }
2240 negative_types[-typenum] = rettype;
2241 return rettype;
2242 }
2243 \f
2244 /* This page contains subroutines of read_type. */
2245
2246 /* Wrapper around method_name_from_physname to flag a complaint
2247 if there is an error. */
2248
2249 static char *
2250 stabs_method_name_from_physname (const char *physname)
2251 {
2252 char *method_name;
2253
2254 method_name = method_name_from_physname (physname);
2255
2256 if (method_name == NULL)
2257 {
2258 complaint (&symfile_complaints,
2259 _("Method has bad physname %s\n"), physname);
2260 return NULL;
2261 }
2262
2263 return method_name;
2264 }
2265
2266 /* Read member function stabs info for C++ classes. The form of each member
2267 function data is:
2268
2269 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2270
2271 An example with two member functions is:
2272
2273 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2274
2275 For the case of overloaded operators, the format is op$::*.funcs, where
2276 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2277 name (such as `+=') and `.' marks the end of the operator name.
2278
2279 Returns 1 for success, 0 for failure. */
2280
2281 static int
2282 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2283 struct objfile *objfile)
2284 {
2285 int nfn_fields = 0;
2286 int length = 0;
2287 int i;
2288 struct next_fnfield
2289 {
2290 struct next_fnfield *next;
2291 struct fn_field fn_field;
2292 }
2293 *sublist;
2294 struct type *look_ahead_type;
2295 struct next_fnfieldlist *new_fnlist;
2296 struct next_fnfield *new_sublist;
2297 char *main_fn_name;
2298 char *p;
2299
2300 /* Process each list until we find something that is not a member function
2301 or find the end of the functions. */
2302
2303 while (**pp != ';')
2304 {
2305 /* We should be positioned at the start of the function name.
2306 Scan forward to find the first ':' and if it is not the
2307 first of a "::" delimiter, then this is not a member function. */
2308 p = *pp;
2309 while (*p != ':')
2310 {
2311 p++;
2312 }
2313 if (p[1] != ':')
2314 {
2315 break;
2316 }
2317
2318 sublist = NULL;
2319 look_ahead_type = NULL;
2320 length = 0;
2321
2322 new_fnlist = XCNEW (struct next_fnfieldlist);
2323 make_cleanup (xfree, new_fnlist);
2324
2325 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2326 {
2327 /* This is a completely wierd case. In order to stuff in the
2328 names that might contain colons (the usual name delimiter),
2329 Mike Tiemann defined a different name format which is
2330 signalled if the identifier is "op$". In that case, the
2331 format is "op$::XXXX." where XXXX is the name. This is
2332 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2333 /* This lets the user type "break operator+".
2334 We could just put in "+" as the name, but that wouldn't
2335 work for "*". */
2336 static char opname[32] = "op$";
2337 char *o = opname + 3;
2338
2339 /* Skip past '::'. */
2340 *pp = p + 2;
2341
2342 STABS_CONTINUE (pp, objfile);
2343 p = *pp;
2344 while (*p != '.')
2345 {
2346 *o++ = *p++;
2347 }
2348 main_fn_name = savestring (opname, o - opname);
2349 /* Skip past '.' */
2350 *pp = p + 1;
2351 }
2352 else
2353 {
2354 main_fn_name = savestring (*pp, p - *pp);
2355 /* Skip past '::'. */
2356 *pp = p + 2;
2357 }
2358 new_fnlist->fn_fieldlist.name = main_fn_name;
2359
2360 do
2361 {
2362 new_sublist = XCNEW (struct next_fnfield);
2363 make_cleanup (xfree, new_sublist);
2364
2365 /* Check for and handle cretinous dbx symbol name continuation! */
2366 if (look_ahead_type == NULL)
2367 {
2368 /* Normal case. */
2369 STABS_CONTINUE (pp, objfile);
2370
2371 new_sublist->fn_field.type = read_type (pp, objfile);
2372 if (**pp != ':')
2373 {
2374 /* Invalid symtab info for member function. */
2375 return 0;
2376 }
2377 }
2378 else
2379 {
2380 /* g++ version 1 kludge */
2381 new_sublist->fn_field.type = look_ahead_type;
2382 look_ahead_type = NULL;
2383 }
2384
2385 (*pp)++;
2386 p = *pp;
2387 while (*p != ';')
2388 {
2389 p++;
2390 }
2391
2392 /* These are methods, not functions. */
2393 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2394 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2395 else
2396 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2397 == TYPE_CODE_METHOD);
2398
2399 /* If this is just a stub, then we don't have the real name here. */
2400 if (TYPE_STUB (new_sublist->fn_field.type))
2401 {
2402 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2403 set_type_self_type (new_sublist->fn_field.type, type);
2404 new_sublist->fn_field.is_stub = 1;
2405 }
2406
2407 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2408 *pp = p + 1;
2409
2410 /* Set this member function's visibility fields. */
2411 switch (*(*pp)++)
2412 {
2413 case VISIBILITY_PRIVATE:
2414 new_sublist->fn_field.is_private = 1;
2415 break;
2416 case VISIBILITY_PROTECTED:
2417 new_sublist->fn_field.is_protected = 1;
2418 break;
2419 }
2420
2421 STABS_CONTINUE (pp, objfile);
2422 switch (**pp)
2423 {
2424 case 'A': /* Normal functions. */
2425 new_sublist->fn_field.is_const = 0;
2426 new_sublist->fn_field.is_volatile = 0;
2427 (*pp)++;
2428 break;
2429 case 'B': /* `const' member functions. */
2430 new_sublist->fn_field.is_const = 1;
2431 new_sublist->fn_field.is_volatile = 0;
2432 (*pp)++;
2433 break;
2434 case 'C': /* `volatile' member function. */
2435 new_sublist->fn_field.is_const = 0;
2436 new_sublist->fn_field.is_volatile = 1;
2437 (*pp)++;
2438 break;
2439 case 'D': /* `const volatile' member function. */
2440 new_sublist->fn_field.is_const = 1;
2441 new_sublist->fn_field.is_volatile = 1;
2442 (*pp)++;
2443 break;
2444 case '*': /* File compiled with g++ version 1 --
2445 no info. */
2446 case '?':
2447 case '.':
2448 break;
2449 default:
2450 complaint (&symfile_complaints,
2451 _("const/volatile indicator missing, got '%c'"),
2452 **pp);
2453 break;
2454 }
2455
2456 switch (*(*pp)++)
2457 {
2458 case '*':
2459 {
2460 int nbits;
2461 /* virtual member function, followed by index.
2462 The sign bit is set to distinguish pointers-to-methods
2463 from virtual function indicies. Since the array is
2464 in words, the quantity must be shifted left by 1
2465 on 16 bit machine, and by 2 on 32 bit machine, forcing
2466 the sign bit out, and usable as a valid index into
2467 the array. Remove the sign bit here. */
2468 new_sublist->fn_field.voffset =
2469 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2470 if (nbits != 0)
2471 return 0;
2472
2473 STABS_CONTINUE (pp, objfile);
2474 if (**pp == ';' || **pp == '\0')
2475 {
2476 /* Must be g++ version 1. */
2477 new_sublist->fn_field.fcontext = 0;
2478 }
2479 else
2480 {
2481 /* Figure out from whence this virtual function came.
2482 It may belong to virtual function table of
2483 one of its baseclasses. */
2484 look_ahead_type = read_type (pp, objfile);
2485 if (**pp == ':')
2486 {
2487 /* g++ version 1 overloaded methods. */
2488 }
2489 else
2490 {
2491 new_sublist->fn_field.fcontext = look_ahead_type;
2492 if (**pp != ';')
2493 {
2494 return 0;
2495 }
2496 else
2497 {
2498 ++*pp;
2499 }
2500 look_ahead_type = NULL;
2501 }
2502 }
2503 break;
2504 }
2505 case '?':
2506 /* static member function. */
2507 {
2508 int slen = strlen (main_fn_name);
2509
2510 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2511
2512 /* For static member functions, we can't tell if they
2513 are stubbed, as they are put out as functions, and not as
2514 methods.
2515 GCC v2 emits the fully mangled name if
2516 dbxout.c:flag_minimal_debug is not set, so we have to
2517 detect a fully mangled physname here and set is_stub
2518 accordingly. Fully mangled physnames in v2 start with
2519 the member function name, followed by two underscores.
2520 GCC v3 currently always emits stubbed member functions,
2521 but with fully mangled physnames, which start with _Z. */
2522 if (!(strncmp (new_sublist->fn_field.physname,
2523 main_fn_name, slen) == 0
2524 && new_sublist->fn_field.physname[slen] == '_'
2525 && new_sublist->fn_field.physname[slen + 1] == '_'))
2526 {
2527 new_sublist->fn_field.is_stub = 1;
2528 }
2529 break;
2530 }
2531
2532 default:
2533 /* error */
2534 complaint (&symfile_complaints,
2535 _("member function type missing, got '%c'"),
2536 (*pp)[-1]);
2537 /* Fall through into normal member function. */
2538
2539 case '.':
2540 /* normal member function. */
2541 new_sublist->fn_field.voffset = 0;
2542 new_sublist->fn_field.fcontext = 0;
2543 break;
2544 }
2545
2546 new_sublist->next = sublist;
2547 sublist = new_sublist;
2548 length++;
2549 STABS_CONTINUE (pp, objfile);
2550 }
2551 while (**pp != ';' && **pp != '\0');
2552
2553 (*pp)++;
2554 STABS_CONTINUE (pp, objfile);
2555
2556 /* Skip GCC 3.X member functions which are duplicates of the callable
2557 constructor/destructor. */
2558 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2559 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2560 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2561 {
2562 xfree (main_fn_name);
2563 }
2564 else
2565 {
2566 int has_stub = 0;
2567 int has_destructor = 0, has_other = 0;
2568 int is_v3 = 0;
2569 struct next_fnfield *tmp_sublist;
2570
2571 /* Various versions of GCC emit various mostly-useless
2572 strings in the name field for special member functions.
2573
2574 For stub methods, we need to defer correcting the name
2575 until we are ready to unstub the method, because the current
2576 name string is used by gdb_mangle_name. The only stub methods
2577 of concern here are GNU v2 operators; other methods have their
2578 names correct (see caveat below).
2579
2580 For non-stub methods, in GNU v3, we have a complete physname.
2581 Therefore we can safely correct the name now. This primarily
2582 affects constructors and destructors, whose name will be
2583 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2584 operators will also have incorrect names; for instance,
2585 "operator int" will be named "operator i" (i.e. the type is
2586 mangled).
2587
2588 For non-stub methods in GNU v2, we have no easy way to
2589 know if we have a complete physname or not. For most
2590 methods the result depends on the platform (if CPLUS_MARKER
2591 can be `$' or `.', it will use minimal debug information, or
2592 otherwise the full physname will be included).
2593
2594 Rather than dealing with this, we take a different approach.
2595 For v3 mangled names, we can use the full physname; for v2,
2596 we use cplus_demangle_opname (which is actually v2 specific),
2597 because the only interesting names are all operators - once again
2598 barring the caveat below. Skip this process if any method in the
2599 group is a stub, to prevent our fouling up the workings of
2600 gdb_mangle_name.
2601
2602 The caveat: GCC 2.95.x (and earlier?) put constructors and
2603 destructors in the same method group. We need to split this
2604 into two groups, because they should have different names.
2605 So for each method group we check whether it contains both
2606 routines whose physname appears to be a destructor (the physnames
2607 for and destructors are always provided, due to quirks in v2
2608 mangling) and routines whose physname does not appear to be a
2609 destructor. If so then we break up the list into two halves.
2610 Even if the constructors and destructors aren't in the same group
2611 the destructor will still lack the leading tilde, so that also
2612 needs to be fixed.
2613
2614 So, to summarize what we expect and handle here:
2615
2616 Given Given Real Real Action
2617 method name physname physname method name
2618
2619 __opi [none] __opi__3Foo operator int opname
2620 [now or later]
2621 Foo _._3Foo _._3Foo ~Foo separate and
2622 rename
2623 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2624 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2625 */
2626
2627 tmp_sublist = sublist;
2628 while (tmp_sublist != NULL)
2629 {
2630 if (tmp_sublist->fn_field.is_stub)
2631 has_stub = 1;
2632 if (tmp_sublist->fn_field.physname[0] == '_'
2633 && tmp_sublist->fn_field.physname[1] == 'Z')
2634 is_v3 = 1;
2635
2636 if (is_destructor_name (tmp_sublist->fn_field.physname))
2637 has_destructor++;
2638 else
2639 has_other++;
2640
2641 tmp_sublist = tmp_sublist->next;
2642 }
2643
2644 if (has_destructor && has_other)
2645 {
2646 struct next_fnfieldlist *destr_fnlist;
2647 struct next_fnfield *last_sublist;
2648
2649 /* Create a new fn_fieldlist for the destructors. */
2650
2651 destr_fnlist = XCNEW (struct next_fnfieldlist);
2652 make_cleanup (xfree, destr_fnlist);
2653
2654 destr_fnlist->fn_fieldlist.name
2655 = obconcat (&objfile->objfile_obstack, "~",
2656 new_fnlist->fn_fieldlist.name, (char *) NULL);
2657
2658 destr_fnlist->fn_fieldlist.fn_fields =
2659 XOBNEWVEC (&objfile->objfile_obstack,
2660 struct fn_field, has_destructor);
2661 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2662 sizeof (struct fn_field) * has_destructor);
2663 tmp_sublist = sublist;
2664 last_sublist = NULL;
2665 i = 0;
2666 while (tmp_sublist != NULL)
2667 {
2668 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2669 {
2670 tmp_sublist = tmp_sublist->next;
2671 continue;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.fn_fields[i++]
2675 = tmp_sublist->fn_field;
2676 if (last_sublist)
2677 last_sublist->next = tmp_sublist->next;
2678 else
2679 sublist = tmp_sublist->next;
2680 last_sublist = tmp_sublist;
2681 tmp_sublist = tmp_sublist->next;
2682 }
2683
2684 destr_fnlist->fn_fieldlist.length = has_destructor;
2685 destr_fnlist->next = fip->fnlist;
2686 fip->fnlist = destr_fnlist;
2687 nfn_fields++;
2688 length -= has_destructor;
2689 }
2690 else if (is_v3)
2691 {
2692 /* v3 mangling prevents the use of abbreviated physnames,
2693 so we can do this here. There are stubbed methods in v3
2694 only:
2695 - in -gstabs instead of -gstabs+
2696 - or for static methods, which are output as a function type
2697 instead of a method type. */
2698 char *new_method_name =
2699 stabs_method_name_from_physname (sublist->fn_field.physname);
2700
2701 if (new_method_name != NULL
2702 && strcmp (new_method_name,
2703 new_fnlist->fn_fieldlist.name) != 0)
2704 {
2705 new_fnlist->fn_fieldlist.name = new_method_name;
2706 xfree (main_fn_name);
2707 }
2708 else
2709 xfree (new_method_name);
2710 }
2711 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2712 {
2713 new_fnlist->fn_fieldlist.name =
2714 obconcat (&objfile->objfile_obstack,
2715 "~", main_fn_name, (char *)NULL);
2716 xfree (main_fn_name);
2717 }
2718 else if (!has_stub)
2719 {
2720 char dem_opname[256];
2721 int ret;
2722
2723 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2724 dem_opname, DMGL_ANSI);
2725 if (!ret)
2726 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2727 dem_opname, 0);
2728 if (ret)
2729 new_fnlist->fn_fieldlist.name
2730 = ((const char *)
2731 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2732 strlen (dem_opname)));
2733 xfree (main_fn_name);
2734 }
2735
2736 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2737 obstack_alloc (&objfile->objfile_obstack,
2738 sizeof (struct fn_field) * length);
2739 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2740 sizeof (struct fn_field) * length);
2741 for (i = length; (i--, sublist); sublist = sublist->next)
2742 {
2743 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2744 }
2745
2746 new_fnlist->fn_fieldlist.length = length;
2747 new_fnlist->next = fip->fnlist;
2748 fip->fnlist = new_fnlist;
2749 nfn_fields++;
2750 }
2751 }
2752
2753 if (nfn_fields)
2754 {
2755 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2756 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2757 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2758 memset (TYPE_FN_FIELDLISTS (type), 0,
2759 sizeof (struct fn_fieldlist) * nfn_fields);
2760 TYPE_NFN_FIELDS (type) = nfn_fields;
2761 }
2762
2763 return 1;
2764 }
2765
2766 /* Special GNU C++ name.
2767
2768 Returns 1 for success, 0 for failure. "failure" means that we can't
2769 keep parsing and it's time for error_type(). */
2770
2771 static int
2772 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2773 struct objfile *objfile)
2774 {
2775 char *p;
2776 const char *name;
2777 char cpp_abbrev;
2778 struct type *context;
2779
2780 p = *pp;
2781 if (*++p == 'v')
2782 {
2783 name = NULL;
2784 cpp_abbrev = *++p;
2785
2786 *pp = p + 1;
2787
2788 /* At this point, *pp points to something like "22:23=*22...",
2789 where the type number before the ':' is the "context" and
2790 everything after is a regular type definition. Lookup the
2791 type, find it's name, and construct the field name. */
2792
2793 context = read_type (pp, objfile);
2794
2795 switch (cpp_abbrev)
2796 {
2797 case 'f': /* $vf -- a virtual function table pointer */
2798 name = type_name_no_tag (context);
2799 if (name == NULL)
2800 {
2801 name = "";
2802 }
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 vptr_name, name, (char *) NULL);
2805 break;
2806
2807 case 'b': /* $vb -- a virtual bsomethingorother */
2808 name = type_name_no_tag (context);
2809 if (name == NULL)
2810 {
2811 complaint (&symfile_complaints,
2812 _("C++ abbreviated type name "
2813 "unknown at symtab pos %d"),
2814 symnum);
2815 name = "FOO";
2816 }
2817 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2818 name, (char *) NULL);
2819 break;
2820
2821 default:
2822 invalid_cpp_abbrev_complaint (*pp);
2823 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2824 "INVALID_CPLUSPLUS_ABBREV",
2825 (char *) NULL);
2826 break;
2827 }
2828
2829 /* At this point, *pp points to the ':'. Skip it and read the
2830 field type. */
2831
2832 p = ++(*pp);
2833 if (p[-1] != ':')
2834 {
2835 invalid_cpp_abbrev_complaint (*pp);
2836 return 0;
2837 }
2838 fip->list->field.type = read_type (pp, objfile);
2839 if (**pp == ',')
2840 (*pp)++; /* Skip the comma. */
2841 else
2842 return 0;
2843
2844 {
2845 int nbits;
2846
2847 SET_FIELD_BITPOS (fip->list->field,
2848 read_huge_number (pp, ';', &nbits, 0));
2849 if (nbits != 0)
2850 return 0;
2851 }
2852 /* This field is unpacked. */
2853 FIELD_BITSIZE (fip->list->field) = 0;
2854 fip->list->visibility = VISIBILITY_PRIVATE;
2855 }
2856 else
2857 {
2858 invalid_cpp_abbrev_complaint (*pp);
2859 /* We have no idea what syntax an unrecognized abbrev would have, so
2860 better return 0. If we returned 1, we would need to at least advance
2861 *pp to avoid an infinite loop. */
2862 return 0;
2863 }
2864 return 1;
2865 }
2866
2867 static void
2868 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2869 struct type *type, struct objfile *objfile)
2870 {
2871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2872
2873 fip->list->field.name
2874 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2875 *pp = p + 1;
2876
2877 /* This means we have a visibility for a field coming. */
2878 if (**pp == '/')
2879 {
2880 (*pp)++;
2881 fip->list->visibility = *(*pp)++;
2882 }
2883 else
2884 {
2885 /* normal dbx-style format, no explicit visibility */
2886 fip->list->visibility = VISIBILITY_PUBLIC;
2887 }
2888
2889 fip->list->field.type = read_type (pp, objfile);
2890 if (**pp == ':')
2891 {
2892 p = ++(*pp);
2893 #if 0
2894 /* Possible future hook for nested types. */
2895 if (**pp == '!')
2896 {
2897 fip->list->field.bitpos = (long) -2; /* nested type */
2898 p = ++(*pp);
2899 }
2900 else
2901 ...;
2902 #endif
2903 while (*p != ';')
2904 {
2905 p++;
2906 }
2907 /* Static class member. */
2908 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2909 *pp = p + 1;
2910 return;
2911 }
2912 else if (**pp != ',')
2913 {
2914 /* Bad structure-type format. */
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918
2919 (*pp)++; /* Skip the comma. */
2920
2921 {
2922 int nbits;
2923
2924 SET_FIELD_BITPOS (fip->list->field,
2925 read_huge_number (pp, ',', &nbits, 0));
2926 if (nbits != 0)
2927 {
2928 stabs_general_complaint ("bad structure-type format");
2929 return;
2930 }
2931 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2932 if (nbits != 0)
2933 {
2934 stabs_general_complaint ("bad structure-type format");
2935 return;
2936 }
2937 }
2938
2939 if (FIELD_BITPOS (fip->list->field) == 0
2940 && FIELD_BITSIZE (fip->list->field) == 0)
2941 {
2942 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2943 it is a field which has been optimized out. The correct stab for
2944 this case is to use VISIBILITY_IGNORE, but that is a recent
2945 invention. (2) It is a 0-size array. For example
2946 union { int num; char str[0]; } foo. Printing _("<no value>" for
2947 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2948 will continue to work, and a 0-size array as a whole doesn't
2949 have any contents to print.
2950
2951 I suspect this probably could also happen with gcc -gstabs (not
2952 -gstabs+) for static fields, and perhaps other C++ extensions.
2953 Hopefully few people use -gstabs with gdb, since it is intended
2954 for dbx compatibility. */
2955
2956 /* Ignore this field. */
2957 fip->list->visibility = VISIBILITY_IGNORE;
2958 }
2959 else
2960 {
2961 /* Detect an unpacked field and mark it as such.
2962 dbx gives a bit size for all fields.
2963 Note that forward refs cannot be packed,
2964 and treat enums as if they had the width of ints. */
2965
2966 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2967
2968 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2969 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2970 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2971 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
2975 if ((FIELD_BITSIZE (fip->list->field)
2976 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2977 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2978 && FIELD_BITSIZE (fip->list->field)
2979 == gdbarch_int_bit (gdbarch))
2980 )
2981 &&
2982 FIELD_BITPOS (fip->list->field) % 8 == 0)
2983 {
2984 FIELD_BITSIZE (fip->list->field) = 0;
2985 }
2986 }
2987 }
2988
2989
2990 /* Read struct or class data fields. They have the form:
2991
2992 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2993
2994 At the end, we see a semicolon instead of a field.
2995
2996 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2997 a static field.
2998
2999 The optional VISIBILITY is one of:
3000
3001 '/0' (VISIBILITY_PRIVATE)
3002 '/1' (VISIBILITY_PROTECTED)
3003 '/2' (VISIBILITY_PUBLIC)
3004 '/9' (VISIBILITY_IGNORE)
3005
3006 or nothing, for C style fields with public visibility.
3007
3008 Returns 1 for success, 0 for failure. */
3009
3010 static int
3011 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3012 struct objfile *objfile)
3013 {
3014 char *p;
3015 struct nextfield *newobj;
3016
3017 /* We better set p right now, in case there are no fields at all... */
3018
3019 p = *pp;
3020
3021 /* Read each data member type until we find the terminating ';' at the end of
3022 the data member list, or break for some other reason such as finding the
3023 start of the member function list. */
3024 /* Stab string for structure/union does not end with two ';' in
3025 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3026
3027 while (**pp != ';' && **pp != '\0')
3028 {
3029 STABS_CONTINUE (pp, objfile);
3030 /* Get space to record the next field's data. */
3031 newobj = XCNEW (struct nextfield);
3032 make_cleanup (xfree, newobj);
3033
3034 newobj->next = fip->list;
3035 fip->list = newobj;
3036
3037 /* Get the field name. */
3038 p = *pp;
3039
3040 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3041 unless the CPLUS_MARKER is followed by an underscore, in
3042 which case it is just the name of an anonymous type, which we
3043 should handle like any other type name. */
3044
3045 if (is_cplus_marker (p[0]) && p[1] != '_')
3046 {
3047 if (!read_cpp_abbrev (fip, pp, type, objfile))
3048 return 0;
3049 continue;
3050 }
3051
3052 /* Look for the ':' that separates the field name from the field
3053 values. Data members are delimited by a single ':', while member
3054 functions are delimited by a pair of ':'s. When we hit the member
3055 functions (if any), terminate scan loop and return. */
3056
3057 while (*p != ':' && *p != '\0')
3058 {
3059 p++;
3060 }
3061 if (*p == '\0')
3062 return 0;
3063
3064 /* Check to see if we have hit the member functions yet. */
3065 if (p[1] == ':')
3066 {
3067 break;
3068 }
3069 read_one_struct_field (fip, pp, p, type, objfile);
3070 }
3071 if (p[0] == ':' && p[1] == ':')
3072 {
3073 /* (the deleted) chill the list of fields: the last entry (at
3074 the head) is a partially constructed entry which we now
3075 scrub. */
3076 fip->list = fip->list->next;
3077 }
3078 return 1;
3079 }
3080 /* *INDENT-OFF* */
3081 /* The stabs for C++ derived classes contain baseclass information which
3082 is marked by a '!' character after the total size. This function is
3083 called when we encounter the baseclass marker, and slurps up all the
3084 baseclass information.
3085
3086 Immediately following the '!' marker is the number of base classes that
3087 the class is derived from, followed by information for each base class.
3088 For each base class, there are two visibility specifiers, a bit offset
3089 to the base class information within the derived class, a reference to
3090 the type for the base class, and a terminating semicolon.
3091
3092 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3093 ^^ ^ ^ ^ ^ ^ ^
3094 Baseclass information marker __________________|| | | | | | |
3095 Number of baseclasses __________________________| | | | | | |
3096 Visibility specifiers (2) ________________________| | | | | |
3097 Offset in bits from start of class _________________| | | | |
3098 Type number for base class ___________________________| | | |
3099 Visibility specifiers (2) _______________________________| | |
3100 Offset in bits from start of class ________________________| |
3101 Type number of base class ____________________________________|
3102
3103 Return 1 for success, 0 for (error-type-inducing) failure. */
3104 /* *INDENT-ON* */
3105
3106
3107
3108 static int
3109 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3110 struct objfile *objfile)
3111 {
3112 int i;
3113 struct nextfield *newobj;
3114
3115 if (**pp != '!')
3116 {
3117 return 1;
3118 }
3119 else
3120 {
3121 /* Skip the '!' baseclass information marker. */
3122 (*pp)++;
3123 }
3124
3125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3126 {
3127 int nbits;
3128
3129 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3130 if (nbits != 0)
3131 return 0;
3132 }
3133
3134 #if 0
3135 /* Some stupid compilers have trouble with the following, so break
3136 it up into simpler expressions. */
3137 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3138 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3139 #else
3140 {
3141 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3142 char *pointer;
3143
3144 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3145 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3146 }
3147 #endif /* 0 */
3148
3149 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3150
3151 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3152 {
3153 newobj = XCNEW (struct nextfield);
3154 make_cleanup (xfree, newobj);
3155
3156 newobj->next = fip->list;
3157 fip->list = newobj;
3158 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3159 field! */
3160
3161 STABS_CONTINUE (pp, objfile);
3162 switch (**pp)
3163 {
3164 case '0':
3165 /* Nothing to do. */
3166 break;
3167 case '1':
3168 SET_TYPE_FIELD_VIRTUAL (type, i);
3169 break;
3170 default:
3171 /* Unknown character. Complain and treat it as non-virtual. */
3172 {
3173 complaint (&symfile_complaints,
3174 _("Unknown virtual character `%c' for baseclass"),
3175 **pp);
3176 }
3177 }
3178 ++(*pp);
3179
3180 newobj->visibility = *(*pp)++;
3181 switch (newobj->visibility)
3182 {
3183 case VISIBILITY_PRIVATE:
3184 case VISIBILITY_PROTECTED:
3185 case VISIBILITY_PUBLIC:
3186 break;
3187 default:
3188 /* Bad visibility format. Complain and treat it as
3189 public. */
3190 {
3191 complaint (&symfile_complaints,
3192 _("Unknown visibility `%c' for baseclass"),
3193 newobj->visibility);
3194 newobj->visibility = VISIBILITY_PUBLIC;
3195 }
3196 }
3197
3198 {
3199 int nbits;
3200
3201 /* The remaining value is the bit offset of the portion of the object
3202 corresponding to this baseclass. Always zero in the absence of
3203 multiple inheritance. */
3204
3205 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3206 if (nbits != 0)
3207 return 0;
3208 }
3209
3210 /* The last piece of baseclass information is the type of the
3211 base class. Read it, and remember it's type name as this
3212 field's name. */
3213
3214 newobj->field.type = read_type (pp, objfile);
3215 newobj->field.name = type_name_no_tag (newobj->field.type);
3216
3217 /* Skip trailing ';' and bump count of number of fields seen. */
3218 if (**pp == ';')
3219 (*pp)++;
3220 else
3221 return 0;
3222 }
3223 return 1;
3224 }
3225
3226 /* The tail end of stabs for C++ classes that contain a virtual function
3227 pointer contains a tilde, a %, and a type number.
3228 The type number refers to the base class (possibly this class itself) which
3229 contains the vtable pointer for the current class.
3230
3231 This function is called when we have parsed all the method declarations,
3232 so we can look for the vptr base class info. */
3233
3234 static int
3235 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3236 struct objfile *objfile)
3237 {
3238 char *p;
3239
3240 STABS_CONTINUE (pp, objfile);
3241
3242 /* If we are positioned at a ';', then skip it. */
3243 if (**pp == ';')
3244 {
3245 (*pp)++;
3246 }
3247
3248 if (**pp == '~')
3249 {
3250 (*pp)++;
3251
3252 if (**pp == '=' || **pp == '+' || **pp == '-')
3253 {
3254 /* Obsolete flags that used to indicate the presence
3255 of constructors and/or destructors. */
3256 (*pp)++;
3257 }
3258
3259 /* Read either a '%' or the final ';'. */
3260 if (*(*pp)++ == '%')
3261 {
3262 /* The next number is the type number of the base class
3263 (possibly our own class) which supplies the vtable for
3264 this class. Parse it out, and search that class to find
3265 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3266 and TYPE_VPTR_FIELDNO. */
3267
3268 struct type *t;
3269 int i;
3270
3271 t = read_type (pp, objfile);
3272 p = (*pp)++;
3273 while (*p != '\0' && *p != ';')
3274 {
3275 p++;
3276 }
3277 if (*p == '\0')
3278 {
3279 /* Premature end of symbol. */
3280 return 0;
3281 }
3282
3283 set_type_vptr_basetype (type, t);
3284 if (type == t) /* Our own class provides vtbl ptr. */
3285 {
3286 for (i = TYPE_NFIELDS (t) - 1;
3287 i >= TYPE_N_BASECLASSES (t);
3288 --i)
3289 {
3290 const char *name = TYPE_FIELD_NAME (t, i);
3291
3292 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3293 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3294 {
3295 set_type_vptr_fieldno (type, i);
3296 goto gotit;
3297 }
3298 }
3299 /* Virtual function table field not found. */
3300 complaint (&symfile_complaints,
3301 _("virtual function table pointer "
3302 "not found when defining class `%s'"),
3303 TYPE_NAME (type));
3304 return 0;
3305 }
3306 else
3307 {
3308 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3309 }
3310
3311 gotit:
3312 *pp = p + 1;
3313 }
3314 }
3315 return 1;
3316 }
3317
3318 static int
3319 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3320 {
3321 int n;
3322
3323 for (n = TYPE_NFN_FIELDS (type);
3324 fip->fnlist != NULL;
3325 fip->fnlist = fip->fnlist->next)
3326 {
3327 --n; /* Circumvent Sun3 compiler bug. */
3328 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3329 }
3330 return 1;
3331 }
3332
3333 /* Create the vector of fields, and record how big it is.
3334 We need this info to record proper virtual function table information
3335 for this class's virtual functions. */
3336
3337 static int
3338 attach_fields_to_type (struct field_info *fip, struct type *type,
3339 struct objfile *objfile)
3340 {
3341 int nfields = 0;
3342 int non_public_fields = 0;
3343 struct nextfield *scan;
3344
3345 /* Count up the number of fields that we have, as well as taking note of
3346 whether or not there are any non-public fields, which requires us to
3347 allocate and build the private_field_bits and protected_field_bits
3348 bitfields. */
3349
3350 for (scan = fip->list; scan != NULL; scan = scan->next)
3351 {
3352 nfields++;
3353 if (scan->visibility != VISIBILITY_PUBLIC)
3354 {
3355 non_public_fields++;
3356 }
3357 }
3358
3359 /* Now we know how many fields there are, and whether or not there are any
3360 non-public fields. Record the field count, allocate space for the
3361 array of fields, and create blank visibility bitfields if necessary. */
3362
3363 TYPE_NFIELDS (type) = nfields;
3364 TYPE_FIELDS (type) = (struct field *)
3365 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3366 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3367
3368 if (non_public_fields)
3369 {
3370 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3371
3372 TYPE_FIELD_PRIVATE_BITS (type) =
3373 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3374 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3375
3376 TYPE_FIELD_PROTECTED_BITS (type) =
3377 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3378 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3379
3380 TYPE_FIELD_IGNORE_BITS (type) =
3381 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3382 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3383 }
3384
3385 /* Copy the saved-up fields into the field vector. Start from the
3386 head of the list, adding to the tail of the field array, so that
3387 they end up in the same order in the array in which they were
3388 added to the list. */
3389
3390 while (nfields-- > 0)
3391 {
3392 TYPE_FIELD (type, nfields) = fip->list->field;
3393 switch (fip->list->visibility)
3394 {
3395 case VISIBILITY_PRIVATE:
3396 SET_TYPE_FIELD_PRIVATE (type, nfields);
3397 break;
3398
3399 case VISIBILITY_PROTECTED:
3400 SET_TYPE_FIELD_PROTECTED (type, nfields);
3401 break;
3402
3403 case VISIBILITY_IGNORE:
3404 SET_TYPE_FIELD_IGNORE (type, nfields);
3405 break;
3406
3407 case VISIBILITY_PUBLIC:
3408 break;
3409
3410 default:
3411 /* Unknown visibility. Complain and treat it as public. */
3412 {
3413 complaint (&symfile_complaints,
3414 _("Unknown visibility `%c' for field"),
3415 fip->list->visibility);
3416 }
3417 break;
3418 }
3419 fip->list = fip->list->next;
3420 }
3421 return 1;
3422 }
3423
3424
3425 /* Complain that the compiler has emitted more than one definition for the
3426 structure type TYPE. */
3427 static void
3428 complain_about_struct_wipeout (struct type *type)
3429 {
3430 const char *name = "";
3431 const char *kind = "";
3432
3433 if (TYPE_TAG_NAME (type))
3434 {
3435 name = TYPE_TAG_NAME (type);
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_STRUCT: kind = "struct "; break;
3439 case TYPE_CODE_UNION: kind = "union "; break;
3440 case TYPE_CODE_ENUM: kind = "enum "; break;
3441 default: kind = "";
3442 }
3443 }
3444 else if (TYPE_NAME (type))
3445 {
3446 name = TYPE_NAME (type);
3447 kind = "";
3448 }
3449 else
3450 {
3451 name = "<unknown>";
3452 kind = "";
3453 }
3454
3455 complaint (&symfile_complaints,
3456 _("struct/union type gets multiply defined: %s%s"), kind, name);
3457 }
3458
3459 /* Set the length for all variants of a same main_type, which are
3460 connected in the closed chain.
3461
3462 This is something that needs to be done when a type is defined *after*
3463 some cross references to this type have already been read. Consider
3464 for instance the following scenario where we have the following two
3465 stabs entries:
3466
3467 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3468 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3469
3470 A stubbed version of type dummy is created while processing the first
3471 stabs entry. The length of that type is initially set to zero, since
3472 it is unknown at this point. Also, a "constant" variation of type
3473 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3474 the stabs line).
3475
3476 The second stabs entry allows us to replace the stubbed definition
3477 with the real definition. However, we still need to adjust the length
3478 of the "constant" variation of that type, as its length was left
3479 untouched during the main type replacement... */
3480
3481 static void
3482 set_length_in_type_chain (struct type *type)
3483 {
3484 struct type *ntype = TYPE_CHAIN (type);
3485
3486 while (ntype != type)
3487 {
3488 if (TYPE_LENGTH(ntype) == 0)
3489 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3490 else
3491 complain_about_struct_wipeout (ntype);
3492 ntype = TYPE_CHAIN (ntype);
3493 }
3494 }
3495
3496 /* Read the description of a structure (or union type) and return an object
3497 describing the type.
3498
3499 PP points to a character pointer that points to the next unconsumed token
3500 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3501 *PP will point to "4a:1,0,32;;".
3502
3503 TYPE points to an incomplete type that needs to be filled in.
3504
3505 OBJFILE points to the current objfile from which the stabs information is
3506 being read. (Note that it is redundant in that TYPE also contains a pointer
3507 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3508 */
3509
3510 static struct type *
3511 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3512 struct objfile *objfile)
3513 {
3514 struct cleanup *back_to;
3515 struct field_info fi;
3516
3517 fi.list = NULL;
3518 fi.fnlist = NULL;
3519
3520 /* When describing struct/union/class types in stabs, G++ always drops
3521 all qualifications from the name. So if you've got:
3522 struct A { ... struct B { ... }; ... };
3523 then G++ will emit stabs for `struct A::B' that call it simply
3524 `struct B'. Obviously, if you've got a real top-level definition for
3525 `struct B', or other nested definitions, this is going to cause
3526 problems.
3527
3528 Obviously, GDB can't fix this by itself, but it can at least avoid
3529 scribbling on existing structure type objects when new definitions
3530 appear. */
3531 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3532 || TYPE_STUB (type)))
3533 {
3534 complain_about_struct_wipeout (type);
3535
3536 /* It's probably best to return the type unchanged. */
3537 return type;
3538 }
3539
3540 back_to = make_cleanup (null_cleanup, 0);
3541
3542 INIT_CPLUS_SPECIFIC (type);
3543 TYPE_CODE (type) = type_code;
3544 TYPE_STUB (type) = 0;
3545
3546 /* First comes the total size in bytes. */
3547
3548 {
3549 int nbits;
3550
3551 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3552 if (nbits != 0)
3553 {
3554 do_cleanups (back_to);
3555 return error_type (pp, objfile);
3556 }
3557 set_length_in_type_chain (type);
3558 }
3559
3560 /* Now read the baseclasses, if any, read the regular C struct or C++
3561 class member fields, attach the fields to the type, read the C++
3562 member functions, attach them to the type, and then read any tilde
3563 field (baseclass specifier for the class holding the main vtable). */
3564
3565 if (!read_baseclasses (&fi, pp, type, objfile)
3566 || !read_struct_fields (&fi, pp, type, objfile)
3567 || !attach_fields_to_type (&fi, type, objfile)
3568 || !read_member_functions (&fi, pp, type, objfile)
3569 || !attach_fn_fields_to_type (&fi, type)
3570 || !read_tilde_fields (&fi, pp, type, objfile))
3571 {
3572 type = error_type (pp, objfile);
3573 }
3574
3575 do_cleanups (back_to);
3576 return (type);
3577 }
3578
3579 /* Read a definition of an array type,
3580 and create and return a suitable type object.
3581 Also creates a range type which represents the bounds of that
3582 array. */
3583
3584 static struct type *
3585 read_array_type (char **pp, struct type *type,
3586 struct objfile *objfile)
3587 {
3588 struct type *index_type, *element_type, *range_type;
3589 int lower, upper;
3590 int adjustable = 0;
3591 int nbits;
3592
3593 /* Format of an array type:
3594 "ar<index type>;lower;upper;<array_contents_type>".
3595 OS9000: "arlower,upper;<array_contents_type>".
3596
3597 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3598 for these, produce a type like float[][]. */
3599
3600 {
3601 index_type = read_type (pp, objfile);
3602 if (**pp != ';')
3603 /* Improper format of array type decl. */
3604 return error_type (pp, objfile);
3605 ++*pp;
3606 }
3607
3608 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3609 {
3610 (*pp)++;
3611 adjustable = 1;
3612 }
3613 lower = read_huge_number (pp, ';', &nbits, 0);
3614
3615 if (nbits != 0)
3616 return error_type (pp, objfile);
3617
3618 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3619 {
3620 (*pp)++;
3621 adjustable = 1;
3622 }
3623 upper = read_huge_number (pp, ';', &nbits, 0);
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
3626
3627 element_type = read_type (pp, objfile);
3628
3629 if (adjustable)
3630 {
3631 lower = 0;
3632 upper = -1;
3633 }
3634
3635 range_type =
3636 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3637 type = create_array_type (type, element_type, range_type);
3638
3639 return type;
3640 }
3641
3642
3643 /* Read a definition of an enumeration type,
3644 and create and return a suitable type object.
3645 Also defines the symbols that represent the values of the type. */
3646
3647 static struct type *
3648 read_enum_type (char **pp, struct type *type,
3649 struct objfile *objfile)
3650 {
3651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3652 char *p;
3653 char *name;
3654 long n;
3655 struct symbol *sym;
3656 int nsyms = 0;
3657 struct pending **symlist;
3658 struct pending *osyms, *syms;
3659 int o_nsyms;
3660 int nbits;
3661 int unsigned_enum = 1;
3662
3663 #if 0
3664 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3665 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3666 to do? For now, force all enum values to file scope. */
3667 if (within_function)
3668 symlist = &local_symbols;
3669 else
3670 #endif
3671 symlist = &file_symbols;
3672 osyms = *symlist;
3673 o_nsyms = osyms ? osyms->nsyms : 0;
3674
3675 /* The aix4 compiler emits an extra field before the enum members;
3676 my guess is it's a type of some sort. Just ignore it. */
3677 if (**pp == '-')
3678 {
3679 /* Skip over the type. */
3680 while (**pp != ':')
3681 (*pp)++;
3682
3683 /* Skip over the colon. */
3684 (*pp)++;
3685 }
3686
3687 /* Read the value-names and their values.
3688 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3689 A semicolon or comma instead of a NAME means the end. */
3690 while (**pp && **pp != ';' && **pp != ',')
3691 {
3692 STABS_CONTINUE (pp, objfile);
3693 p = *pp;
3694 while (*p != ':')
3695 p++;
3696 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3697 *pp = p + 1;
3698 n = read_huge_number (pp, ',', &nbits, 0);
3699 if (nbits != 0)
3700 return error_type (pp, objfile);
3701
3702 sym = allocate_symbol (objfile);
3703 SYMBOL_SET_LINKAGE_NAME (sym, name);
3704 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3705 &objfile->objfile_obstack);
3706 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3708 SYMBOL_VALUE (sym) = n;
3709 if (n < 0)
3710 unsigned_enum = 0;
3711 add_symbol_to_list (sym, symlist);
3712 nsyms++;
3713 }
3714
3715 if (**pp == ';')
3716 (*pp)++; /* Skip the semicolon. */
3717
3718 /* Now fill in the fields of the type-structure. */
3719
3720 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3721 set_length_in_type_chain (type);
3722 TYPE_CODE (type) = TYPE_CODE_ENUM;
3723 TYPE_STUB (type) = 0;
3724 if (unsigned_enum)
3725 TYPE_UNSIGNED (type) = 1;
3726 TYPE_NFIELDS (type) = nsyms;
3727 TYPE_FIELDS (type) = (struct field *)
3728 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3729 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3730
3731 /* Find the symbols for the values and put them into the type.
3732 The symbols can be found in the symlist that we put them on
3733 to cause them to be defined. osyms contains the old value
3734 of that symlist; everything up to there was defined by us. */
3735 /* Note that we preserve the order of the enum constants, so
3736 that in something like "enum {FOO, LAST_THING=FOO}" we print
3737 FOO, not LAST_THING. */
3738
3739 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3740 {
3741 int last = syms == osyms ? o_nsyms : 0;
3742 int j = syms->nsyms;
3743
3744 for (; --j >= last; --n)
3745 {
3746 struct symbol *xsym = syms->symbol[j];
3747
3748 SYMBOL_TYPE (xsym) = type;
3749 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3750 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3751 TYPE_FIELD_BITSIZE (type, n) = 0;
3752 }
3753 if (syms == osyms)
3754 break;
3755 }
3756
3757 return type;
3758 }
3759
3760 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3761 typedefs in every file (for int, long, etc):
3762
3763 type = b <signed> <width> <format type>; <offset>; <nbits>
3764 signed = u or s.
3765 optional format type = c or b for char or boolean.
3766 offset = offset from high order bit to start bit of type.
3767 width is # bytes in object of this type, nbits is # bits in type.
3768
3769 The width/offset stuff appears to be for small objects stored in
3770 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3771 FIXME. */
3772
3773 static struct type *
3774 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3775 {
3776 int type_bits;
3777 int nbits;
3778 int unsigned_type;
3779 int boolean_type = 0;
3780
3781 switch (**pp)
3782 {
3783 case 's':
3784 unsigned_type = 0;
3785 break;
3786 case 'u':
3787 unsigned_type = 1;
3788 break;
3789 default:
3790 return error_type (pp, objfile);
3791 }
3792 (*pp)++;
3793
3794 /* For some odd reason, all forms of char put a c here. This is strange
3795 because no other type has this honor. We can safely ignore this because
3796 we actually determine 'char'acterness by the number of bits specified in
3797 the descriptor.
3798 Boolean forms, e.g Fortran logical*X, put a b here. */
3799
3800 if (**pp == 'c')
3801 (*pp)++;
3802 else if (**pp == 'b')
3803 {
3804 boolean_type = 1;
3805 (*pp)++;
3806 }
3807
3808 /* The first number appears to be the number of bytes occupied
3809 by this type, except that unsigned short is 4 instead of 2.
3810 Since this information is redundant with the third number,
3811 we will ignore it. */
3812 read_huge_number (pp, ';', &nbits, 0);
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
3816 /* The second number is always 0, so ignore it too. */
3817 read_huge_number (pp, ';', &nbits, 0);
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
3821 /* The third number is the number of bits for this type. */
3822 type_bits = read_huge_number (pp, 0, &nbits, 0);
3823 if (nbits != 0)
3824 return error_type (pp, objfile);
3825 /* The type *should* end with a semicolon. If it are embedded
3826 in a larger type the semicolon may be the only way to know where
3827 the type ends. If this type is at the end of the stabstring we
3828 can deal with the omitted semicolon (but we don't have to like
3829 it). Don't bother to complain(), Sun's compiler omits the semicolon
3830 for "void". */
3831 if (**pp == ';')
3832 ++(*pp);
3833
3834 if (type_bits == 0)
3835 {
3836 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3837 if (unsigned_type)
3838 TYPE_UNSIGNED (type) = 1;
3839 return type;
3840 }
3841
3842 if (boolean_type)
3843 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3844 else
3845 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3846 }
3847
3848 static struct type *
3849 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3850 {
3851 int nbits;
3852 int details;
3853 int nbytes;
3854 struct type *rettype;
3855
3856 /* The first number has more details about the type, for example
3857 FN_COMPLEX. */
3858 details = read_huge_number (pp, ';', &nbits, 0);
3859 if (nbits != 0)
3860 return error_type (pp, objfile);
3861
3862 /* The second number is the number of bytes occupied by this type. */
3863 nbytes = read_huge_number (pp, ';', &nbits, 0);
3864 if (nbits != 0)
3865 return error_type (pp, objfile);
3866
3867 nbits = nbytes * TARGET_CHAR_BIT;
3868
3869 if (details == NF_COMPLEX || details == NF_COMPLEX16
3870 || details == NF_COMPLEX32)
3871 {
3872 rettype = dbx_init_float_type (objfile, nbits / 2);
3873 return init_complex_type (objfile, NULL, rettype);
3874 }
3875
3876 return dbx_init_float_type (objfile, nbits);
3877 }
3878
3879 /* Read a number from the string pointed to by *PP.
3880 The value of *PP is advanced over the number.
3881 If END is nonzero, the character that ends the
3882 number must match END, or an error happens;
3883 and that character is skipped if it does match.
3884 If END is zero, *PP is left pointing to that character.
3885
3886 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3887 the number is represented in an octal representation, assume that
3888 it is represented in a 2's complement representation with a size of
3889 TWOS_COMPLEMENT_BITS.
3890
3891 If the number fits in a long, set *BITS to 0 and return the value.
3892 If not, set *BITS to be the number of bits in the number and return 0.
3893
3894 If encounter garbage, set *BITS to -1 and return 0. */
3895
3896 static long
3897 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3898 {
3899 char *p = *pp;
3900 int sign = 1;
3901 int sign_bit = 0;
3902 long n = 0;
3903 int radix = 10;
3904 char overflow = 0;
3905 int nbits = 0;
3906 int c;
3907 long upper_limit;
3908 int twos_complement_representation = 0;
3909
3910 if (*p == '-')
3911 {
3912 sign = -1;
3913 p++;
3914 }
3915
3916 /* Leading zero means octal. GCC uses this to output values larger
3917 than an int (because that would be hard in decimal). */
3918 if (*p == '0')
3919 {
3920 radix = 8;
3921 p++;
3922 }
3923
3924 /* Skip extra zeros. */
3925 while (*p == '0')
3926 p++;
3927
3928 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3929 {
3930 /* Octal, possibly signed. Check if we have enough chars for a
3931 negative number. */
3932
3933 size_t len;
3934 char *p1 = p;
3935
3936 while ((c = *p1) >= '0' && c < '8')
3937 p1++;
3938
3939 len = p1 - p;
3940 if (len > twos_complement_bits / 3
3941 || (twos_complement_bits % 3 == 0
3942 && len == twos_complement_bits / 3))
3943 {
3944 /* Ok, we have enough characters for a signed value, check
3945 for signness by testing if the sign bit is set. */
3946 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3947 c = *p - '0';
3948 if (c & (1 << sign_bit))
3949 {
3950 /* Definitely signed. */
3951 twos_complement_representation = 1;
3952 sign = -1;
3953 }
3954 }
3955 }
3956
3957 upper_limit = LONG_MAX / radix;
3958
3959 while ((c = *p++) >= '0' && c < ('0' + radix))
3960 {
3961 if (n <= upper_limit)
3962 {
3963 if (twos_complement_representation)
3964 {
3965 /* Octal, signed, twos complement representation. In
3966 this case, n is the corresponding absolute value. */
3967 if (n == 0)
3968 {
3969 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3970
3971 n = -sn;
3972 }
3973 else
3974 {
3975 n *= radix;
3976 n -= c - '0';
3977 }
3978 }
3979 else
3980 {
3981 /* unsigned representation */
3982 n *= radix;
3983 n += c - '0'; /* FIXME this overflows anyway. */
3984 }
3985 }
3986 else
3987 overflow = 1;
3988
3989 /* This depends on large values being output in octal, which is
3990 what GCC does. */
3991 if (radix == 8)
3992 {
3993 if (nbits == 0)
3994 {
3995 if (c == '0')
3996 /* Ignore leading zeroes. */
3997 ;
3998 else if (c == '1')
3999 nbits = 1;
4000 else if (c == '2' || c == '3')
4001 nbits = 2;
4002 else
4003 nbits = 3;
4004 }
4005 else
4006 nbits += 3;
4007 }
4008 }
4009 if (end)
4010 {
4011 if (c && c != end)
4012 {
4013 if (bits != NULL)
4014 *bits = -1;
4015 return 0;
4016 }
4017 }
4018 else
4019 --p;
4020
4021 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4022 {
4023 /* We were supposed to parse a number with maximum
4024 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4025 if (bits != NULL)
4026 *bits = -1;
4027 return 0;
4028 }
4029
4030 *pp = p;
4031 if (overflow)
4032 {
4033 if (nbits == 0)
4034 {
4035 /* Large decimal constants are an error (because it is hard to
4036 count how many bits are in them). */
4037 if (bits != NULL)
4038 *bits = -1;
4039 return 0;
4040 }
4041
4042 /* -0x7f is the same as 0x80. So deal with it by adding one to
4043 the number of bits. Two's complement represention octals
4044 can't have a '-' in front. */
4045 if (sign == -1 && !twos_complement_representation)
4046 ++nbits;
4047 if (bits)
4048 *bits = nbits;
4049 }
4050 else
4051 {
4052 if (bits)
4053 *bits = 0;
4054 return n * sign;
4055 }
4056 /* It's *BITS which has the interesting information. */
4057 return 0;
4058 }
4059
4060 static struct type *
4061 read_range_type (char **pp, int typenums[2], int type_size,
4062 struct objfile *objfile)
4063 {
4064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4065 char *orig_pp = *pp;
4066 int rangenums[2];
4067 long n2, n3;
4068 int n2bits, n3bits;
4069 int self_subrange;
4070 struct type *result_type;
4071 struct type *index_type = NULL;
4072
4073 /* First comes a type we are a subrange of.
4074 In C it is usually 0, 1 or the type being defined. */
4075 if (read_type_number (pp, rangenums) != 0)
4076 return error_type (pp, objfile);
4077 self_subrange = (rangenums[0] == typenums[0] &&
4078 rangenums[1] == typenums[1]);
4079
4080 if (**pp == '=')
4081 {
4082 *pp = orig_pp;
4083 index_type = read_type (pp, objfile);
4084 }
4085
4086 /* A semicolon should now follow; skip it. */
4087 if (**pp == ';')
4088 (*pp)++;
4089
4090 /* The remaining two operands are usually lower and upper bounds
4091 of the range. But in some special cases they mean something else. */
4092 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4093 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4094
4095 if (n2bits == -1 || n3bits == -1)
4096 return error_type (pp, objfile);
4097
4098 if (index_type)
4099 goto handle_true_range;
4100
4101 /* If limits are huge, must be large integral type. */
4102 if (n2bits != 0 || n3bits != 0)
4103 {
4104 char got_signed = 0;
4105 char got_unsigned = 0;
4106 /* Number of bits in the type. */
4107 int nbits = 0;
4108
4109 /* If a type size attribute has been specified, the bounds of
4110 the range should fit in this size. If the lower bounds needs
4111 more bits than the upper bound, then the type is signed. */
4112 if (n2bits <= type_size && n3bits <= type_size)
4113 {
4114 if (n2bits == type_size && n2bits > n3bits)
4115 got_signed = 1;
4116 else
4117 got_unsigned = 1;
4118 nbits = type_size;
4119 }
4120 /* Range from 0 to <large number> is an unsigned large integral type. */
4121 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4122 {
4123 got_unsigned = 1;
4124 nbits = n3bits;
4125 }
4126 /* Range from <large number> to <large number>-1 is a large signed
4127 integral type. Take care of the case where <large number> doesn't
4128 fit in a long but <large number>-1 does. */
4129 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4130 || (n2bits != 0 && n3bits == 0
4131 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4132 && n3 == LONG_MAX))
4133 {
4134 got_signed = 1;
4135 nbits = n2bits;
4136 }
4137
4138 if (got_signed || got_unsigned)
4139 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4140 else
4141 return error_type (pp, objfile);
4142 }
4143
4144 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4145 if (self_subrange && n2 == 0 && n3 == 0)
4146 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4147
4148 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4149 is the width in bytes.
4150
4151 Fortran programs appear to use this for complex types also. To
4152 distinguish between floats and complex, g77 (and others?) seem
4153 to use self-subranges for the complexes, and subranges of int for
4154 the floats.
4155
4156 Also note that for complexes, g77 sets n2 to the size of one of
4157 the member floats, not the whole complex beast. My guess is that
4158 this was to work well with pre-COMPLEX versions of gdb. */
4159
4160 if (n3 == 0 && n2 > 0)
4161 {
4162 struct type *float_type
4163 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4164
4165 if (self_subrange)
4166 return init_complex_type (objfile, NULL, float_type);
4167 else
4168 return float_type;
4169 }
4170
4171 /* If the upper bound is -1, it must really be an unsigned integral. */
4172
4173 else if (n2 == 0 && n3 == -1)
4174 {
4175 int bits = type_size;
4176
4177 if (bits <= 0)
4178 {
4179 /* We don't know its size. It is unsigned int or unsigned
4180 long. GCC 2.3.3 uses this for long long too, but that is
4181 just a GDB 3.5 compatibility hack. */
4182 bits = gdbarch_int_bit (gdbarch);
4183 }
4184
4185 return init_integer_type (objfile, bits, 1, NULL);
4186 }
4187
4188 /* Special case: char is defined (Who knows why) as a subrange of
4189 itself with range 0-127. */
4190 else if (self_subrange && n2 == 0 && n3 == 127)
4191 {
4192 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4193 TYPE_NOSIGN (type) = 1;
4194 return type;
4195 }
4196 /* We used to do this only for subrange of self or subrange of int. */
4197 else if (n2 == 0)
4198 {
4199 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4200 "unsigned long", and we already checked for that,
4201 so don't need to test for it here. */
4202
4203 if (n3 < 0)
4204 /* n3 actually gives the size. */
4205 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4206
4207 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4208 unsigned n-byte integer. But do require n to be a power of
4209 two; we don't want 3- and 5-byte integers flying around. */
4210 {
4211 int bytes;
4212 unsigned long bits;
4213
4214 bits = n3;
4215 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4216 bits >>= 8;
4217 if (bits == 0
4218 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4219 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4220 }
4221 }
4222 /* I think this is for Convex "long long". Since I don't know whether
4223 Convex sets self_subrange, I also accept that particular size regardless
4224 of self_subrange. */
4225 else if (n3 == 0 && n2 < 0
4226 && (self_subrange
4227 || n2 == -gdbarch_long_long_bit
4228 (gdbarch) / TARGET_CHAR_BIT))
4229 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4230 else if (n2 == -n3 - 1)
4231 {
4232 if (n3 == 0x7f)
4233 return init_integer_type (objfile, 8, 0, NULL);
4234 if (n3 == 0x7fff)
4235 return init_integer_type (objfile, 16, 0, NULL);
4236 if (n3 == 0x7fffffff)
4237 return init_integer_type (objfile, 32, 0, NULL);
4238 }
4239
4240 /* We have a real range type on our hands. Allocate space and
4241 return a real pointer. */
4242 handle_true_range:
4243
4244 if (self_subrange)
4245 index_type = objfile_type (objfile)->builtin_int;
4246 else
4247 index_type = *dbx_lookup_type (rangenums, objfile);
4248 if (index_type == NULL)
4249 {
4250 /* Does this actually ever happen? Is that why we are worrying
4251 about dealing with it rather than just calling error_type? */
4252
4253 complaint (&symfile_complaints,
4254 _("base type %d of range type is not defined"), rangenums[1]);
4255
4256 index_type = objfile_type (objfile)->builtin_int;
4257 }
4258
4259 result_type
4260 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4261 return (result_type);
4262 }
4263
4264 /* Read in an argument list. This is a list of types, separated by commas
4265 and terminated with END. Return the list of types read in, or NULL
4266 if there is an error. */
4267
4268 static struct field *
4269 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4270 int *varargsp)
4271 {
4272 /* FIXME! Remove this arbitrary limit! */
4273 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4274 int n = 0, i;
4275 struct field *rval;
4276
4277 while (**pp != end)
4278 {
4279 if (**pp != ',')
4280 /* Invalid argument list: no ','. */
4281 return NULL;
4282 (*pp)++;
4283 STABS_CONTINUE (pp, objfile);
4284 types[n++] = read_type (pp, objfile);
4285 }
4286 (*pp)++; /* get past `end' (the ':' character). */
4287
4288 if (n == 0)
4289 {
4290 /* We should read at least the THIS parameter here. Some broken stabs
4291 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4292 have been present ";-16,(0,43)" reference instead. This way the
4293 excessive ";" marker prematurely stops the parameters parsing. */
4294
4295 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4296 *varargsp = 0;
4297 }
4298 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4299 *varargsp = 1;
4300 else
4301 {
4302 n--;
4303 *varargsp = 0;
4304 }
4305
4306 rval = XCNEWVEC (struct field, n);
4307 for (i = 0; i < n; i++)
4308 rval[i].type = types[i];
4309 *nargsp = n;
4310 return rval;
4311 }
4312 \f
4313 /* Common block handling. */
4314
4315 /* List of symbols declared since the last BCOMM. This list is a tail
4316 of local_symbols. When ECOMM is seen, the symbols on the list
4317 are noted so their proper addresses can be filled in later,
4318 using the common block base address gotten from the assembler
4319 stabs. */
4320
4321 static struct pending *common_block;
4322 static int common_block_i;
4323
4324 /* Name of the current common block. We get it from the BCOMM instead of the
4325 ECOMM to match IBM documentation (even though IBM puts the name both places
4326 like everyone else). */
4327 static char *common_block_name;
4328
4329 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4330 to remain after this function returns. */
4331
4332 void
4333 common_block_start (char *name, struct objfile *objfile)
4334 {
4335 if (common_block_name != NULL)
4336 {
4337 complaint (&symfile_complaints,
4338 _("Invalid symbol data: common block within common block"));
4339 }
4340 common_block = local_symbols;
4341 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4342 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4343 strlen (name));
4344 }
4345
4346 /* Process a N_ECOMM symbol. */
4347
4348 void
4349 common_block_end (struct objfile *objfile)
4350 {
4351 /* Symbols declared since the BCOMM are to have the common block
4352 start address added in when we know it. common_block and
4353 common_block_i point to the first symbol after the BCOMM in
4354 the local_symbols list; copy the list and hang it off the
4355 symbol for the common block name for later fixup. */
4356 int i;
4357 struct symbol *sym;
4358 struct pending *newobj = 0;
4359 struct pending *next;
4360 int j;
4361
4362 if (common_block_name == NULL)
4363 {
4364 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4365 return;
4366 }
4367
4368 sym = allocate_symbol (objfile);
4369 /* Note: common_block_name already saved on objfile_obstack. */
4370 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4371 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4372
4373 /* Now we copy all the symbols which have been defined since the BCOMM. */
4374
4375 /* Copy all the struct pendings before common_block. */
4376 for (next = local_symbols;
4377 next != NULL && next != common_block;
4378 next = next->next)
4379 {
4380 for (j = 0; j < next->nsyms; j++)
4381 add_symbol_to_list (next->symbol[j], &newobj);
4382 }
4383
4384 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4385 NULL, it means copy all the local symbols (which we already did
4386 above). */
4387
4388 if (common_block != NULL)
4389 for (j = common_block_i; j < common_block->nsyms; j++)
4390 add_symbol_to_list (common_block->symbol[j], &newobj);
4391
4392 SYMBOL_TYPE (sym) = (struct type *) newobj;
4393
4394 /* Should we be putting local_symbols back to what it was?
4395 Does it matter? */
4396
4397 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4398 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4399 global_sym_chain[i] = sym;
4400 common_block_name = NULL;
4401 }
4402
4403 /* Add a common block's start address to the offset of each symbol
4404 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4405 the common block name). */
4406
4407 static void
4408 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4409 {
4410 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4411
4412 for (; next; next = next->next)
4413 {
4414 int j;
4415
4416 for (j = next->nsyms - 1; j >= 0; j--)
4417 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4418 }
4419 }
4420 \f
4421
4422
4423 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4424 See add_undefined_type for more details. */
4425
4426 static void
4427 add_undefined_type_noname (struct type *type, int typenums[2])
4428 {
4429 struct nat nat;
4430
4431 nat.typenums[0] = typenums [0];
4432 nat.typenums[1] = typenums [1];
4433 nat.type = type;
4434
4435 if (noname_undefs_length == noname_undefs_allocated)
4436 {
4437 noname_undefs_allocated *= 2;
4438 noname_undefs = (struct nat *)
4439 xrealloc ((char *) noname_undefs,
4440 noname_undefs_allocated * sizeof (struct nat));
4441 }
4442 noname_undefs[noname_undefs_length++] = nat;
4443 }
4444
4445 /* Add TYPE to the UNDEF_TYPES vector.
4446 See add_undefined_type for more details. */
4447
4448 static void
4449 add_undefined_type_1 (struct type *type)
4450 {
4451 if (undef_types_length == undef_types_allocated)
4452 {
4453 undef_types_allocated *= 2;
4454 undef_types = (struct type **)
4455 xrealloc ((char *) undef_types,
4456 undef_types_allocated * sizeof (struct type *));
4457 }
4458 undef_types[undef_types_length++] = type;
4459 }
4460
4461 /* What about types defined as forward references inside of a small lexical
4462 scope? */
4463 /* Add a type to the list of undefined types to be checked through
4464 once this file has been read in.
4465
4466 In practice, we actually maintain two such lists: The first list
4467 (UNDEF_TYPES) is used for types whose name has been provided, and
4468 concerns forward references (eg 'xs' or 'xu' forward references);
4469 the second list (NONAME_UNDEFS) is used for types whose name is
4470 unknown at creation time, because they were referenced through
4471 their type number before the actual type was declared.
4472 This function actually adds the given type to the proper list. */
4473
4474 static void
4475 add_undefined_type (struct type *type, int typenums[2])
4476 {
4477 if (TYPE_TAG_NAME (type) == NULL)
4478 add_undefined_type_noname (type, typenums);
4479 else
4480 add_undefined_type_1 (type);
4481 }
4482
4483 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4484
4485 static void
4486 cleanup_undefined_types_noname (struct objfile *objfile)
4487 {
4488 int i;
4489
4490 for (i = 0; i < noname_undefs_length; i++)
4491 {
4492 struct nat nat = noname_undefs[i];
4493 struct type **type;
4494
4495 type = dbx_lookup_type (nat.typenums, objfile);
4496 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4497 {
4498 /* The instance flags of the undefined type are still unset,
4499 and needs to be copied over from the reference type.
4500 Since replace_type expects them to be identical, we need
4501 to set these flags manually before hand. */
4502 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4503 replace_type (nat.type, *type);
4504 }
4505 }
4506
4507 noname_undefs_length = 0;
4508 }
4509
4510 /* Go through each undefined type, see if it's still undefined, and fix it
4511 up if possible. We have two kinds of undefined types:
4512
4513 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4514 Fix: update array length using the element bounds
4515 and the target type's length.
4516 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4517 yet defined at the time a pointer to it was made.
4518 Fix: Do a full lookup on the struct/union tag. */
4519
4520 static void
4521 cleanup_undefined_types_1 (void)
4522 {
4523 struct type **type;
4524
4525 /* Iterate over every undefined type, and look for a symbol whose type
4526 matches our undefined type. The symbol matches if:
4527 1. It is a typedef in the STRUCT domain;
4528 2. It has the same name, and same type code;
4529 3. The instance flags are identical.
4530
4531 It is important to check the instance flags, because we have seen
4532 examples where the debug info contained definitions such as:
4533
4534 "foo_t:t30=B31=xefoo_t:"
4535
4536 In this case, we have created an undefined type named "foo_t" whose
4537 instance flags is null (when processing "xefoo_t"), and then created
4538 another type with the same name, but with different instance flags
4539 ('B' means volatile). I think that the definition above is wrong,
4540 since the same type cannot be volatile and non-volatile at the same
4541 time, but we need to be able to cope with it when it happens. The
4542 approach taken here is to treat these two types as different. */
4543
4544 for (type = undef_types; type < undef_types + undef_types_length; type++)
4545 {
4546 switch (TYPE_CODE (*type))
4547 {
4548
4549 case TYPE_CODE_STRUCT:
4550 case TYPE_CODE_UNION:
4551 case TYPE_CODE_ENUM:
4552 {
4553 /* Check if it has been defined since. Need to do this here
4554 as well as in check_typedef to deal with the (legitimate in
4555 C though not C++) case of several types with the same name
4556 in different source files. */
4557 if (TYPE_STUB (*type))
4558 {
4559 struct pending *ppt;
4560 int i;
4561 /* Name of the type, without "struct" or "union". */
4562 const char *type_name = TYPE_TAG_NAME (*type);
4563
4564 if (type_name == NULL)
4565 {
4566 complaint (&symfile_complaints, _("need a type name"));
4567 break;
4568 }
4569 for (ppt = file_symbols; ppt; ppt = ppt->next)
4570 {
4571 for (i = 0; i < ppt->nsyms; i++)
4572 {
4573 struct symbol *sym = ppt->symbol[i];
4574
4575 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4576 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4577 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4578 TYPE_CODE (*type))
4579 && (TYPE_INSTANCE_FLAGS (*type) ==
4580 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4581 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4582 type_name) == 0)
4583 replace_type (*type, SYMBOL_TYPE (sym));
4584 }
4585 }
4586 }
4587 }
4588 break;
4589
4590 default:
4591 {
4592 complaint (&symfile_complaints,
4593 _("forward-referenced types left unresolved, "
4594 "type code %d."),
4595 TYPE_CODE (*type));
4596 }
4597 break;
4598 }
4599 }
4600
4601 undef_types_length = 0;
4602 }
4603
4604 /* Try to fix all the undefined types we ecountered while processing
4605 this unit. */
4606
4607 void
4608 cleanup_undefined_stabs_types (struct objfile *objfile)
4609 {
4610 cleanup_undefined_types_1 ();
4611 cleanup_undefined_types_noname (objfile);
4612 }
4613
4614 /* Scan through all of the global symbols defined in the object file,
4615 assigning values to the debugging symbols that need to be assigned
4616 to. Get these symbols from the minimal symbol table. */
4617
4618 void
4619 scan_file_globals (struct objfile *objfile)
4620 {
4621 int hash;
4622 struct minimal_symbol *msymbol;
4623 struct symbol *sym, *prev;
4624 struct objfile *resolve_objfile;
4625
4626 /* SVR4 based linkers copy referenced global symbols from shared
4627 libraries to the main executable.
4628 If we are scanning the symbols for a shared library, try to resolve
4629 them from the minimal symbols of the main executable first. */
4630
4631 if (symfile_objfile && objfile != symfile_objfile)
4632 resolve_objfile = symfile_objfile;
4633 else
4634 resolve_objfile = objfile;
4635
4636 while (1)
4637 {
4638 /* Avoid expensive loop through all minimal symbols if there are
4639 no unresolved symbols. */
4640 for (hash = 0; hash < HASHSIZE; hash++)
4641 {
4642 if (global_sym_chain[hash])
4643 break;
4644 }
4645 if (hash >= HASHSIZE)
4646 return;
4647
4648 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4649 {
4650 QUIT;
4651
4652 /* Skip static symbols. */
4653 switch (MSYMBOL_TYPE (msymbol))
4654 {
4655 case mst_file_text:
4656 case mst_file_data:
4657 case mst_file_bss:
4658 continue;
4659 default:
4660 break;
4661 }
4662
4663 prev = NULL;
4664
4665 /* Get the hash index and check all the symbols
4666 under that hash index. */
4667
4668 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4669
4670 for (sym = global_sym_chain[hash]; sym;)
4671 {
4672 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4673 SYMBOL_LINKAGE_NAME (sym)) == 0)
4674 {
4675 /* Splice this symbol out of the hash chain and
4676 assign the value we have to it. */
4677 if (prev)
4678 {
4679 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4680 }
4681 else
4682 {
4683 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4684 }
4685
4686 /* Check to see whether we need to fix up a common block. */
4687 /* Note: this code might be executed several times for
4688 the same symbol if there are multiple references. */
4689 if (sym)
4690 {
4691 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4692 {
4693 fix_common_block (sym,
4694 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4695 msymbol));
4696 }
4697 else
4698 {
4699 SYMBOL_VALUE_ADDRESS (sym)
4700 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4701 }
4702 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4703 }
4704
4705 if (prev)
4706 {
4707 sym = SYMBOL_VALUE_CHAIN (prev);
4708 }
4709 else
4710 {
4711 sym = global_sym_chain[hash];
4712 }
4713 }
4714 else
4715 {
4716 prev = sym;
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4718 }
4719 }
4720 }
4721 if (resolve_objfile == objfile)
4722 break;
4723 resolve_objfile = objfile;
4724 }
4725
4726 /* Change the storage class of any remaining unresolved globals to
4727 LOC_UNRESOLVED and remove them from the chain. */
4728 for (hash = 0; hash < HASHSIZE; hash++)
4729 {
4730 sym = global_sym_chain[hash];
4731 while (sym)
4732 {
4733 prev = sym;
4734 sym = SYMBOL_VALUE_CHAIN (sym);
4735
4736 /* Change the symbol address from the misleading chain value
4737 to address zero. */
4738 SYMBOL_VALUE_ADDRESS (prev) = 0;
4739
4740 /* Complain about unresolved common block symbols. */
4741 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4742 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4743 else
4744 complaint (&symfile_complaints,
4745 _("%s: common block `%s' from "
4746 "global_sym_chain unresolved"),
4747 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4748 }
4749 }
4750 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4751 }
4752
4753 /* Initialize anything that needs initializing when starting to read
4754 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4755 to a psymtab. */
4756
4757 void
4758 stabsread_init (void)
4759 {
4760 }
4761
4762 /* Initialize anything that needs initializing when a completely new
4763 symbol file is specified (not just adding some symbols from another
4764 file, e.g. a shared library). */
4765
4766 void
4767 stabsread_new_init (void)
4768 {
4769 /* Empty the hash table of global syms looking for values. */
4770 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4771 }
4772
4773 /* Initialize anything that needs initializing at the same time as
4774 start_symtab() is called. */
4775
4776 void
4777 start_stabs (void)
4778 {
4779 global_stabs = NULL; /* AIX COFF */
4780 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4781 n_this_object_header_files = 1;
4782 type_vector_length = 0;
4783 type_vector = (struct type **) 0;
4784
4785 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4786 common_block_name = NULL;
4787 }
4788
4789 /* Call after end_symtab(). */
4790
4791 void
4792 end_stabs (void)
4793 {
4794 if (type_vector)
4795 {
4796 xfree (type_vector);
4797 }
4798 type_vector = 0;
4799 type_vector_length = 0;
4800 previous_stab_code = 0;
4801 }
4802
4803 void
4804 finish_global_stabs (struct objfile *objfile)
4805 {
4806 if (global_stabs)
4807 {
4808 patch_block_stabs (global_symbols, global_stabs, objfile);
4809 xfree (global_stabs);
4810 global_stabs = NULL;
4811 }
4812 }
4813
4814 /* Find the end of the name, delimited by a ':', but don't match
4815 ObjC symbols which look like -[Foo bar::]:bla. */
4816 static char *
4817 find_name_end (char *name)
4818 {
4819 char *s = name;
4820
4821 if (s[0] == '-' || *s == '+')
4822 {
4823 /* Must be an ObjC method symbol. */
4824 if (s[1] != '[')
4825 {
4826 error (_("invalid symbol name \"%s\""), name);
4827 }
4828 s = strchr (s, ']');
4829 if (s == NULL)
4830 {
4831 error (_("invalid symbol name \"%s\""), name);
4832 }
4833 return strchr (s, ':');
4834 }
4835 else
4836 {
4837 return strchr (s, ':');
4838 }
4839 }
4840
4841 /* Initializer for this module. */
4842
4843 void
4844 _initialize_stabsread (void)
4845 {
4846 rs6000_builtin_type_data = register_objfile_data ();
4847
4848 undef_types_allocated = 20;
4849 undef_types_length = 0;
4850 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4851
4852 noname_undefs_allocated = 20;
4853 noname_undefs_length = 0;
4854 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4855
4856 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4857 &stab_register_funcs);
4858 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4859 &stab_register_funcs);
4860 }
This page took 0.227012 seconds and 5 git commands to generate.