2008-05-27 Martin Schwidefsky <schwidefsky@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2])
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
284 {
285 static struct type **temp_type_p;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type_p = &builtin_type_error;
291 return temp_type_p;
292 }
293
294 f = HEADER_FILES (current_objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 DEPRECATED_SYMBOL_NAME (sym) =
391 obsavestring (name, pp - name, &objfile->objfile_obstack);
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437 if (**pp == '(')
438 {
439 (*pp)++;
440 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
441 if (nbits != 0)
442 return -1;
443 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
444 if (nbits != 0)
445 return -1;
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
451 if (nbits != 0)
452 return -1;
453 }
454 return 0;
455 }
456 \f
457
458 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
459 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
460 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
461 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
462
463 /* Structure for storing pointers to reference definitions for fast lookup
464 during "process_later". */
465
466 struct ref_map
467 {
468 char *stabs;
469 CORE_ADDR value;
470 struct symbol *sym;
471 };
472
473 #define MAX_CHUNK_REFS 100
474 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
475 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
476
477 static struct ref_map *ref_map;
478
479 /* Ptr to free cell in chunk's linked list. */
480 static int ref_count = 0;
481
482 /* Number of chunks malloced. */
483 static int ref_chunk = 0;
484
485 /* This file maintains a cache of stabs aliases found in the symbol
486 table. If the symbol table changes, this cache must be cleared
487 or we are left holding onto data in invalid obstacks. */
488 void
489 stabsread_clear_cache (void)
490 {
491 ref_count = 0;
492 ref_chunk = 0;
493 }
494
495 /* Create array of pointers mapping refids to symbols and stab strings.
496 Add pointers to reference definition symbols and/or their values as we
497 find them, using their reference numbers as our index.
498 These will be used later when we resolve references. */
499 void
500 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
501 {
502 if (ref_count == 0)
503 ref_chunk = 0;
504 if (refnum >= ref_count)
505 ref_count = refnum + 1;
506 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
507 {
508 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
509 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
510 ref_map = (struct ref_map *)
511 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
512 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
513 ref_chunk += new_chunks;
514 }
515 ref_map[refnum].stabs = stabs;
516 ref_map[refnum].sym = sym;
517 ref_map[refnum].value = value;
518 }
519
520 /* Return defined sym for the reference REFNUM. */
521 struct symbol *
522 ref_search (int refnum)
523 {
524 if (refnum < 0 || refnum > ref_count)
525 return 0;
526 return ref_map[refnum].sym;
527 }
528
529 /* Parse a reference id in STRING and return the resulting
530 reference number. Move STRING beyond the reference id. */
531
532 static int
533 process_reference (char **string)
534 {
535 char *p;
536 int refnum = 0;
537
538 if (**string != '#')
539 return 0;
540
541 /* Advance beyond the initial '#'. */
542 p = *string + 1;
543
544 /* Read number as reference id. */
545 while (*p && isdigit (*p))
546 {
547 refnum = refnum * 10 + *p - '0';
548 p++;
549 }
550 *string = p;
551 return refnum;
552 }
553
554 /* If STRING defines a reference, store away a pointer to the reference
555 definition for later use. Return the reference number. */
556
557 int
558 symbol_reference_defined (char **string)
559 {
560 char *p = *string;
561 int refnum = 0;
562
563 refnum = process_reference (&p);
564
565 /* Defining symbols end in '=' */
566 if (*p == '=')
567 {
568 /* Symbol is being defined here. */
569 *string = p + 1;
570 return refnum;
571 }
572 else
573 {
574 /* Must be a reference. Either the symbol has already been defined,
575 or this is a forward reference to it. */
576 *string = p;
577 return -1;
578 }
579 }
580
581 struct symbol *
582 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
583 struct objfile *objfile)
584 {
585 struct gdbarch *gdbarch = get_objfile_arch (objfile);
586 struct symbol *sym;
587 char *p = (char *) find_name_end (string);
588 int deftype;
589 int synonym = 0;
590 int i;
591
592 /* We would like to eliminate nameless symbols, but keep their types.
593 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
594 to type 2, but, should not create a symbol to address that type. Since
595 the symbol will be nameless, there is no way any user can refer to it. */
596
597 int nameless;
598
599 /* Ignore syms with empty names. */
600 if (string[0] == 0)
601 return 0;
602
603 /* Ignore old-style symbols from cc -go */
604 if (p == 0)
605 return 0;
606
607 while (p[1] == ':')
608 {
609 p += 2;
610 p = strchr (p, ':');
611 }
612
613 /* If a nameless stab entry, all we need is the type, not the symbol.
614 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
615 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
616
617 current_symbol = sym = (struct symbol *)
618 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
619 memset (sym, 0, sizeof (struct symbol));
620
621 switch (type & N_TYPE)
622 {
623 case N_TEXT:
624 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
625 break;
626 case N_DATA:
627 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
628 break;
629 case N_BSS:
630 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
631 break;
632 }
633
634 if (processing_gcc_compilation)
635 {
636 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
637 number of bytes occupied by a type or object, which we ignore. */
638 SYMBOL_LINE (sym) = desc;
639 }
640 else
641 {
642 SYMBOL_LINE (sym) = 0; /* unknown */
643 }
644
645 if (is_cplus_marker (string[0]))
646 {
647 /* Special GNU C++ names. */
648 switch (string[1])
649 {
650 case 't':
651 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
652 &objfile->objfile_obstack);
653 break;
654
655 case 'v': /* $vtbl_ptr_type */
656 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
657 goto normal;
658
659 case 'e':
660 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
661 &objfile->objfile_obstack);
662 break;
663
664 case '_':
665 /* This was an anonymous type that was never fixed up. */
666 goto normal;
667
668 case 'X':
669 /* SunPRO (3.0 at least) static variable encoding. */
670 if (gdbarch_static_transform_name_p (gdbarch))
671 goto normal;
672 /* ... fall through ... */
673
674 default:
675 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
676 string);
677 goto normal; /* Do *something* with it */
678 }
679 }
680 else
681 {
682 normal:
683 SYMBOL_LANGUAGE (sym) = current_subfile->language;
684 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
685 }
686 p++;
687
688 /* Determine the type of name being defined. */
689 #if 0
690 /* Getting GDB to correctly skip the symbol on an undefined symbol
691 descriptor and not ever dump core is a very dodgy proposition if
692 we do things this way. I say the acorn RISC machine can just
693 fix their compiler. */
694 /* The Acorn RISC machine's compiler can put out locals that don't
695 start with "234=" or "(3,4)=", so assume anything other than the
696 deftypes we know how to handle is a local. */
697 if (!strchr ("cfFGpPrStTvVXCR", *p))
698 #else
699 if (isdigit (*p) || *p == '(' || *p == '-')
700 #endif
701 deftype = 'l';
702 else
703 deftype = *p++;
704
705 switch (deftype)
706 {
707 case 'c':
708 /* c is a special case, not followed by a type-number.
709 SYMBOL:c=iVALUE for an integer constant symbol.
710 SYMBOL:c=rVALUE for a floating constant symbol.
711 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
712 e.g. "b:c=e6,0" for "const b = blob1"
713 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
714 if (*p != '=')
715 {
716 SYMBOL_CLASS (sym) = LOC_CONST;
717 SYMBOL_TYPE (sym) = error_type (&p, objfile);
718 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
719 add_symbol_to_list (sym, &file_symbols);
720 return sym;
721 }
722 ++p;
723 switch (*p++)
724 {
725 case 'r':
726 {
727 double d = atof (p);
728 gdb_byte *dbl_valu;
729 struct type *dbl_type;
730
731 /* FIXME-if-picky-about-floating-accuracy: Should be using
732 target arithmetic to get the value. real.c in GCC
733 probably has the necessary code. */
734
735 dbl_type = builtin_type (gdbarch)->builtin_double;
736 dbl_valu =
737 obstack_alloc (&objfile->objfile_obstack,
738 TYPE_LENGTH (dbl_type));
739 store_typed_floating (dbl_valu, dbl_type, d);
740
741 SYMBOL_TYPE (sym) = dbl_type;
742 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
743 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
744 }
745 break;
746 case 'i':
747 {
748 /* Defining integer constants this way is kind of silly,
749 since 'e' constants allows the compiler to give not
750 only the value, but the type as well. C has at least
751 int, long, unsigned int, and long long as constant
752 types; other languages probably should have at least
753 unsigned as well as signed constants. */
754
755 SYMBOL_TYPE (sym) = builtin_type (gdbarch)->builtin_long;
756 SYMBOL_VALUE (sym) = atoi (p);
757 SYMBOL_CLASS (sym) = LOC_CONST;
758 }
759 break;
760 case 'e':
761 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
762 can be represented as integral.
763 e.g. "b:c=e6,0" for "const b = blob1"
764 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
765 {
766 SYMBOL_CLASS (sym) = LOC_CONST;
767 SYMBOL_TYPE (sym) = read_type (&p, objfile);
768
769 if (*p != ',')
770 {
771 SYMBOL_TYPE (sym) = error_type (&p, objfile);
772 break;
773 }
774 ++p;
775
776 /* If the value is too big to fit in an int (perhaps because
777 it is unsigned), or something like that, we silently get
778 a bogus value. The type and everything else about it is
779 correct. Ideally, we should be using whatever we have
780 available for parsing unsigned and long long values,
781 however. */
782 SYMBOL_VALUE (sym) = atoi (p);
783 }
784 break;
785 default:
786 {
787 SYMBOL_CLASS (sym) = LOC_CONST;
788 SYMBOL_TYPE (sym) = error_type (&p, objfile);
789 }
790 }
791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
792 add_symbol_to_list (sym, &file_symbols);
793 return sym;
794
795 case 'C':
796 /* The name of a caught exception. */
797 SYMBOL_TYPE (sym) = read_type (&p, objfile);
798 SYMBOL_CLASS (sym) = LOC_LABEL;
799 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
800 SYMBOL_VALUE_ADDRESS (sym) = valu;
801 add_symbol_to_list (sym, &local_symbols);
802 break;
803
804 case 'f':
805 /* A static function definition. */
806 SYMBOL_TYPE (sym) = read_type (&p, objfile);
807 SYMBOL_CLASS (sym) = LOC_BLOCK;
808 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
809 add_symbol_to_list (sym, &file_symbols);
810 /* fall into process_function_types. */
811
812 process_function_types:
813 /* Function result types are described as the result type in stabs.
814 We need to convert this to the function-returning-type-X type
815 in GDB. E.g. "int" is converted to "function returning int". */
816 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
817 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
818
819 /* All functions in C++ have prototypes. Stabs does not offer an
820 explicit way to identify prototyped or unprototyped functions,
821 but both GCC and Sun CC emit stabs for the "call-as" type rather
822 than the "declared-as" type for unprototyped functions, so
823 we treat all functions as if they were prototyped. This is used
824 primarily for promotion when calling the function from GDB. */
825 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
826
827 /* fall into process_prototype_types */
828
829 process_prototype_types:
830 /* Sun acc puts declared types of arguments here. */
831 if (*p == ';')
832 {
833 struct type *ftype = SYMBOL_TYPE (sym);
834 int nsemi = 0;
835 int nparams = 0;
836 char *p1 = p;
837
838 /* Obtain a worst case guess for the number of arguments
839 by counting the semicolons. */
840 while (*p1)
841 {
842 if (*p1++ == ';')
843 nsemi++;
844 }
845
846 /* Allocate parameter information fields and fill them in. */
847 TYPE_FIELDS (ftype) = (struct field *)
848 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
849 while (*p++ == ';')
850 {
851 struct type *ptype;
852
853 /* A type number of zero indicates the start of varargs.
854 FIXME: GDB currently ignores vararg functions. */
855 if (p[0] == '0' && p[1] == '\0')
856 break;
857 ptype = read_type (&p, objfile);
858
859 /* The Sun compilers mark integer arguments, which should
860 be promoted to the width of the calling conventions, with
861 a type which references itself. This type is turned into
862 a TYPE_CODE_VOID type by read_type, and we have to turn
863 it back into builtin_int here.
864 FIXME: Do we need a new builtin_promoted_int_arg ? */
865 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
866 ptype = builtin_type (gdbarch)->builtin_int;
867 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
868 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
869 }
870 TYPE_NFIELDS (ftype) = nparams;
871 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
872 }
873 break;
874
875 case 'F':
876 /* A global function definition. */
877 SYMBOL_TYPE (sym) = read_type (&p, objfile);
878 SYMBOL_CLASS (sym) = LOC_BLOCK;
879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
880 add_symbol_to_list (sym, &global_symbols);
881 goto process_function_types;
882
883 case 'G':
884 /* For a class G (global) symbol, it appears that the
885 value is not correct. It is necessary to search for the
886 corresponding linker definition to find the value.
887 These definitions appear at the end of the namelist. */
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889 SYMBOL_CLASS (sym) = LOC_STATIC;
890 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
891 /* Don't add symbol references to global_sym_chain.
892 Symbol references don't have valid names and wont't match up with
893 minimal symbols when the global_sym_chain is relocated.
894 We'll fixup symbol references when we fixup the defining symbol. */
895 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
896 {
897 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
898 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
899 global_sym_chain[i] = sym;
900 }
901 add_symbol_to_list (sym, &global_symbols);
902 break;
903
904 /* This case is faked by a conditional above,
905 when there is no code letter in the dbx data.
906 Dbx data never actually contains 'l'. */
907 case 's':
908 case 'l':
909 SYMBOL_TYPE (sym) = read_type (&p, objfile);
910 SYMBOL_CLASS (sym) = LOC_LOCAL;
911 SYMBOL_VALUE (sym) = valu;
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &local_symbols);
914 break;
915
916 case 'p':
917 if (*p == 'F')
918 /* pF is a two-letter code that means a function parameter in Fortran.
919 The type-number specifies the type of the return value.
920 Translate it into a pointer-to-function type. */
921 {
922 p++;
923 SYMBOL_TYPE (sym)
924 = lookup_pointer_type
925 (lookup_function_type (read_type (&p, objfile)));
926 }
927 else
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929
930 SYMBOL_CLASS (sym) = LOC_ARG;
931 SYMBOL_VALUE (sym) = valu;
932 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
933 add_symbol_to_list (sym, &local_symbols);
934
935 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
936 {
937 /* On little-endian machines, this crud is never necessary,
938 and, if the extra bytes contain garbage, is harmful. */
939 break;
940 }
941
942 /* If it's gcc-compiled, if it says `short', believe it. */
943 if (processing_gcc_compilation
944 || gdbarch_believe_pcc_promotion (gdbarch))
945 break;
946
947 if (!gdbarch_believe_pcc_promotion (gdbarch))
948 {
949 /* If PCC says a parameter is a short or a char, it is
950 really an int. */
951 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
952 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
953 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
954 {
955 SYMBOL_TYPE (sym) =
956 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
957 ? builtin_type (gdbarch)->builtin_unsigned_int
958 : builtin_type (gdbarch)->builtin_int;
959 }
960 break;
961 }
962
963 case 'P':
964 /* acc seems to use P to declare the prototypes of functions that
965 are referenced by this file. gdb is not prepared to deal
966 with this extra information. FIXME, it ought to. */
967 if (type == N_FUN)
968 {
969 SYMBOL_TYPE (sym) = read_type (&p, objfile);
970 goto process_prototype_types;
971 }
972 /*FALLTHROUGH */
973
974 case 'R':
975 /* Parameter which is in a register. */
976 SYMBOL_TYPE (sym) = read_type (&p, objfile);
977 SYMBOL_CLASS (sym) = LOC_REGPARM;
978 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
979 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
980 + gdbarch_num_pseudo_regs (current_gdbarch))
981 {
982 reg_value_complaint (SYMBOL_VALUE (sym),
983 gdbarch_num_regs (current_gdbarch)
984 + gdbarch_num_pseudo_regs (current_gdbarch),
985 SYMBOL_PRINT_NAME (sym));
986 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
987 /* Known safe, though useless */
988 }
989 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
990 add_symbol_to_list (sym, &local_symbols);
991 break;
992
993 case 'r':
994 /* Register variable (either global or local). */
995 SYMBOL_TYPE (sym) = read_type (&p, objfile);
996 SYMBOL_CLASS (sym) = LOC_REGISTER;
997 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
998 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
999 + gdbarch_num_pseudo_regs (current_gdbarch))
1000 {
1001 reg_value_complaint (SYMBOL_VALUE (sym),
1002 gdbarch_num_regs (current_gdbarch)
1003 + gdbarch_num_pseudo_regs (current_gdbarch),
1004 SYMBOL_PRINT_NAME (sym));
1005 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1006 /* Known safe, though useless */
1007 }
1008 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1009 if (within_function)
1010 {
1011 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1012 the same name to represent an argument passed in a
1013 register. GCC uses 'P' for the same case. So if we find
1014 such a symbol pair we combine it into one 'P' symbol.
1015 For Sun cc we need to do this regardless of
1016 stabs_argument_has_addr, because the compiler puts out
1017 the 'p' symbol even if it never saves the argument onto
1018 the stack.
1019
1020 On most machines, we want to preserve both symbols, so
1021 that we can still get information about what is going on
1022 with the stack (VAX for computing args_printed, using
1023 stack slots instead of saved registers in backtraces,
1024 etc.).
1025
1026 Note that this code illegally combines
1027 main(argc) struct foo argc; { register struct foo argc; }
1028 but this case is considered pathological and causes a warning
1029 from a decent compiler. */
1030
1031 if (local_symbols
1032 && local_symbols->nsyms > 0
1033 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1034 {
1035 struct symbol *prev_sym;
1036 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1037 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1038 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1039 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1040 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1041 {
1042 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1043 /* Use the type from the LOC_REGISTER; that is the type
1044 that is actually in that register. */
1045 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1046 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1047 sym = prev_sym;
1048 break;
1049 }
1050 }
1051 add_symbol_to_list (sym, &local_symbols);
1052 }
1053 else
1054 add_symbol_to_list (sym, &file_symbols);
1055 break;
1056
1057 case 'S':
1058 /* Static symbol at top level of file */
1059 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1060 SYMBOL_CLASS (sym) = LOC_STATIC;
1061 SYMBOL_VALUE_ADDRESS (sym) = valu;
1062 if (gdbarch_static_transform_name_p (gdbarch)
1063 && gdbarch_static_transform_name (gdbarch,
1064 DEPRECATED_SYMBOL_NAME (sym))
1065 != DEPRECATED_SYMBOL_NAME (sym))
1066 {
1067 struct minimal_symbol *msym;
1068 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1069 if (msym != NULL)
1070 {
1071 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1072 (gdbarch,
1073 DEPRECATED_SYMBOL_NAME (sym));
1074 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1075 }
1076 }
1077 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1078 add_symbol_to_list (sym, &file_symbols);
1079 break;
1080
1081 case 't':
1082 /* In Ada, there is no distinction between typedef and non-typedef;
1083 any type declaration implicitly has the equivalent of a typedef,
1084 and thus 't' is in fact equivalent to 'Tt'.
1085
1086 Therefore, for Ada units, we check the character immediately
1087 before the 't', and if we do not find a 'T', then make sure to
1088 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1089 will be stored in the VAR_DOMAIN). If the symbol was indeed
1090 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1091 elsewhere, so we don't need to take care of that.
1092
1093 This is important to do, because of forward references:
1094 The cleanup of undefined types stored in undef_types only uses
1095 STRUCT_DOMAIN symbols to perform the replacement. */
1096 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1097
1098 /* Typedef */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100
1101 /* For a nameless type, we don't want a create a symbol, thus we
1102 did not use `sym'. Return without further processing. */
1103 if (nameless)
1104 return NULL;
1105
1106 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1107 SYMBOL_VALUE (sym) = valu;
1108 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1109 /* C++ vagaries: we may have a type which is derived from
1110 a base type which did not have its name defined when the
1111 derived class was output. We fill in the derived class's
1112 base part member's name here in that case. */
1113 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1114 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1115 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1116 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1117 {
1118 int j;
1119 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1120 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1121 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1122 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1123 }
1124
1125 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1126 {
1127 /* gcc-2.6 or later (when using -fvtable-thunks)
1128 emits a unique named type for a vtable entry.
1129 Some gdb code depends on that specific name. */
1130 extern const char vtbl_ptr_name[];
1131
1132 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1133 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1134 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1135 {
1136 /* If we are giving a name to a type such as "pointer to
1137 foo" or "function returning foo", we better not set
1138 the TYPE_NAME. If the program contains "typedef char
1139 *caddr_t;", we don't want all variables of type char
1140 * to print as caddr_t. This is not just a
1141 consequence of GDB's type management; PCC and GCC (at
1142 least through version 2.4) both output variables of
1143 either type char * or caddr_t with the type number
1144 defined in the 't' symbol for caddr_t. If a future
1145 compiler cleans this up it GDB is not ready for it
1146 yet, but if it becomes ready we somehow need to
1147 disable this check (without breaking the PCC/GCC2.4
1148 case).
1149
1150 Sigh.
1151
1152 Fortunately, this check seems not to be necessary
1153 for anything except pointers or functions. */
1154 /* ezannoni: 2000-10-26. This seems to apply for
1155 versions of gcc older than 2.8. This was the original
1156 problem: with the following code gdb would tell that
1157 the type for name1 is caddr_t, and func is char()
1158 typedef char *caddr_t;
1159 char *name2;
1160 struct x
1161 {
1162 char *name1;
1163 } xx;
1164 char *func()
1165 {
1166 }
1167 main () {}
1168 */
1169
1170 /* Pascal accepts names for pointer types. */
1171 if (current_subfile->language == language_pascal)
1172 {
1173 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1174 }
1175 }
1176 else
1177 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1178 }
1179
1180 add_symbol_to_list (sym, &file_symbols);
1181
1182 if (synonym)
1183 {
1184 /* Create the STRUCT_DOMAIN clone. */
1185 struct symbol *struct_sym = (struct symbol *)
1186 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1187
1188 *struct_sym = *sym;
1189 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1190 SYMBOL_VALUE (struct_sym) = valu;
1191 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1192 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1193 TYPE_NAME (SYMBOL_TYPE (sym))
1194 = obconcat (&objfile->objfile_obstack, "", "",
1195 DEPRECATED_SYMBOL_NAME (sym));
1196 add_symbol_to_list (struct_sym, &file_symbols);
1197 }
1198
1199 break;
1200
1201 case 'T':
1202 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1203 by 't' which means we are typedef'ing it as well. */
1204 synonym = *p == 't';
1205
1206 if (synonym)
1207 p++;
1208
1209 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1210
1211 /* For a nameless type, we don't want a create a symbol, thus we
1212 did not use `sym'. Return without further processing. */
1213 if (nameless)
1214 return NULL;
1215
1216 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1217 SYMBOL_VALUE (sym) = valu;
1218 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1219 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1220 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1221 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1222 add_symbol_to_list (sym, &file_symbols);
1223
1224 if (synonym)
1225 {
1226 /* Clone the sym and then modify it. */
1227 struct symbol *typedef_sym = (struct symbol *)
1228 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1229 *typedef_sym = *sym;
1230 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1231 SYMBOL_VALUE (typedef_sym) = valu;
1232 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1234 TYPE_NAME (SYMBOL_TYPE (sym))
1235 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1236 add_symbol_to_list (typedef_sym, &file_symbols);
1237 }
1238 break;
1239
1240 case 'V':
1241 /* Static symbol of local scope */
1242 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1243 SYMBOL_CLASS (sym) = LOC_STATIC;
1244 SYMBOL_VALUE_ADDRESS (sym) = valu;
1245 if (gdbarch_static_transform_name_p (gdbarch)
1246 && gdbarch_static_transform_name (gdbarch,
1247 DEPRECATED_SYMBOL_NAME (sym))
1248 != DEPRECATED_SYMBOL_NAME (sym))
1249 {
1250 struct minimal_symbol *msym;
1251 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1252 if (msym != NULL)
1253 {
1254 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1255 (gdbarch,
1256 DEPRECATED_SYMBOL_NAME (sym));
1257 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1258 }
1259 }
1260 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1261 add_symbol_to_list (sym, &local_symbols);
1262 break;
1263
1264 case 'v':
1265 /* Reference parameter */
1266 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1267 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1268 SYMBOL_VALUE (sym) = valu;
1269 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1270 add_symbol_to_list (sym, &local_symbols);
1271 break;
1272
1273 case 'a':
1274 /* Reference parameter which is in a register. */
1275 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1276 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1277 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1278 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1279 + gdbarch_num_pseudo_regs (current_gdbarch))
1280 {
1281 reg_value_complaint (SYMBOL_VALUE (sym),
1282 gdbarch_num_regs (current_gdbarch)
1283 + gdbarch_num_pseudo_regs (current_gdbarch),
1284 SYMBOL_PRINT_NAME (sym));
1285 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1286 /* Known safe, though useless */
1287 }
1288 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1289 add_symbol_to_list (sym, &local_symbols);
1290 break;
1291
1292 case 'X':
1293 /* This is used by Sun FORTRAN for "function result value".
1294 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1295 that Pascal uses it too, but when I tried it Pascal used
1296 "x:3" (local symbol) instead. */
1297 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1298 SYMBOL_CLASS (sym) = LOC_LOCAL;
1299 SYMBOL_VALUE (sym) = valu;
1300 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1301 add_symbol_to_list (sym, &local_symbols);
1302 break;
1303
1304 default:
1305 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1306 SYMBOL_CLASS (sym) = LOC_CONST;
1307 SYMBOL_VALUE (sym) = 0;
1308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1309 add_symbol_to_list (sym, &file_symbols);
1310 break;
1311 }
1312
1313 /* Some systems pass variables of certain types by reference instead
1314 of by value, i.e. they will pass the address of a structure (in a
1315 register or on the stack) instead of the structure itself. */
1316
1317 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1318 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1319 {
1320 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1321 variables passed in a register). */
1322 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1323 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1324 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1325 and subsequent arguments on SPARC, for example). */
1326 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1327 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1328 }
1329
1330 return sym;
1331 }
1332
1333 /* Skip rest of this symbol and return an error type.
1334
1335 General notes on error recovery: error_type always skips to the
1336 end of the symbol (modulo cretinous dbx symbol name continuation).
1337 Thus code like this:
1338
1339 if (*(*pp)++ != ';')
1340 return error_type (pp, objfile);
1341
1342 is wrong because if *pp starts out pointing at '\0' (typically as the
1343 result of an earlier error), it will be incremented to point to the
1344 start of the next symbol, which might produce strange results, at least
1345 if you run off the end of the string table. Instead use
1346
1347 if (**pp != ';')
1348 return error_type (pp, objfile);
1349 ++*pp;
1350
1351 or
1352
1353 if (**pp != ';')
1354 foo = error_type (pp, objfile);
1355 else
1356 ++*pp;
1357
1358 And in case it isn't obvious, the point of all this hair is so the compiler
1359 can define new types and new syntaxes, and old versions of the
1360 debugger will be able to read the new symbol tables. */
1361
1362 static struct type *
1363 error_type (char **pp, struct objfile *objfile)
1364 {
1365 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1366 while (1)
1367 {
1368 /* Skip to end of symbol. */
1369 while (**pp != '\0')
1370 {
1371 (*pp)++;
1372 }
1373
1374 /* Check for and handle cretinous dbx symbol name continuation! */
1375 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1376 {
1377 *pp = next_symbol_text (objfile);
1378 }
1379 else
1380 {
1381 break;
1382 }
1383 }
1384 return (builtin_type_error);
1385 }
1386 \f
1387
1388 /* Read type information or a type definition; return the type. Even
1389 though this routine accepts either type information or a type
1390 definition, the distinction is relevant--some parts of stabsread.c
1391 assume that type information starts with a digit, '-', or '(' in
1392 deciding whether to call read_type. */
1393
1394 static struct type *
1395 read_type (char **pp, struct objfile *objfile)
1396 {
1397 struct type *type = 0;
1398 struct type *type1;
1399 int typenums[2];
1400 char type_descriptor;
1401
1402 /* Size in bits of type if specified by a type attribute, or -1 if
1403 there is no size attribute. */
1404 int type_size = -1;
1405
1406 /* Used to distinguish string and bitstring from char-array and set. */
1407 int is_string = 0;
1408
1409 /* Used to distinguish vector from array. */
1410 int is_vector = 0;
1411
1412 /* Read type number if present. The type number may be omitted.
1413 for instance in a two-dimensional array declared with type
1414 "ar1;1;10;ar1;1;10;4". */
1415 if ((**pp >= '0' && **pp <= '9')
1416 || **pp == '('
1417 || **pp == '-')
1418 {
1419 if (read_type_number (pp, typenums) != 0)
1420 return error_type (pp, objfile);
1421
1422 if (**pp != '=')
1423 {
1424 /* Type is not being defined here. Either it already
1425 exists, or this is a forward reference to it.
1426 dbx_alloc_type handles both cases. */
1427 type = dbx_alloc_type (typenums, objfile);
1428
1429 /* If this is a forward reference, arrange to complain if it
1430 doesn't get patched up by the time we're done
1431 reading. */
1432 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1433 add_undefined_type (type, typenums);
1434
1435 return type;
1436 }
1437
1438 /* Type is being defined here. */
1439 /* Skip the '='.
1440 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1441 (*pp) += 2;
1442 }
1443 else
1444 {
1445 /* 'typenums=' not present, type is anonymous. Read and return
1446 the definition, but don't put it in the type vector. */
1447 typenums[0] = typenums[1] = -1;
1448 (*pp)++;
1449 }
1450
1451 again:
1452 type_descriptor = (*pp)[-1];
1453 switch (type_descriptor)
1454 {
1455 case 'x':
1456 {
1457 enum type_code code;
1458
1459 /* Used to index through file_symbols. */
1460 struct pending *ppt;
1461 int i;
1462
1463 /* Name including "struct", etc. */
1464 char *type_name;
1465
1466 {
1467 char *from, *to, *p, *q1, *q2;
1468
1469 /* Set the type code according to the following letter. */
1470 switch ((*pp)[0])
1471 {
1472 case 's':
1473 code = TYPE_CODE_STRUCT;
1474 break;
1475 case 'u':
1476 code = TYPE_CODE_UNION;
1477 break;
1478 case 'e':
1479 code = TYPE_CODE_ENUM;
1480 break;
1481 default:
1482 {
1483 /* Complain and keep going, so compilers can invent new
1484 cross-reference types. */
1485 complaint (&symfile_complaints,
1486 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1487 code = TYPE_CODE_STRUCT;
1488 break;
1489 }
1490 }
1491
1492 q1 = strchr (*pp, '<');
1493 p = strchr (*pp, ':');
1494 if (p == NULL)
1495 return error_type (pp, objfile);
1496 if (q1 && p > q1 && p[1] == ':')
1497 {
1498 int nesting_level = 0;
1499 for (q2 = q1; *q2; q2++)
1500 {
1501 if (*q2 == '<')
1502 nesting_level++;
1503 else if (*q2 == '>')
1504 nesting_level--;
1505 else if (*q2 == ':' && nesting_level == 0)
1506 break;
1507 }
1508 p = q2;
1509 if (*p != ':')
1510 return error_type (pp, objfile);
1511 }
1512 to = type_name =
1513 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1514
1515 /* Copy the name. */
1516 from = *pp + 1;
1517 while (from < p)
1518 *to++ = *from++;
1519 *to = '\0';
1520
1521 /* Set the pointer ahead of the name which we just read, and
1522 the colon. */
1523 *pp = from + 1;
1524 }
1525
1526 /* If this type has already been declared, then reuse the same
1527 type, rather than allocating a new one. This saves some
1528 memory. */
1529
1530 for (ppt = file_symbols; ppt; ppt = ppt->next)
1531 for (i = 0; i < ppt->nsyms; i++)
1532 {
1533 struct symbol *sym = ppt->symbol[i];
1534
1535 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1536 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1537 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1538 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1539 {
1540 obstack_free (&objfile->objfile_obstack, type_name);
1541 type = SYMBOL_TYPE (sym);
1542 if (typenums[0] != -1)
1543 *dbx_lookup_type (typenums) = type;
1544 return type;
1545 }
1546 }
1547
1548 /* Didn't find the type to which this refers, so we must
1549 be dealing with a forward reference. Allocate a type
1550 structure for it, and keep track of it so we can
1551 fill in the rest of the fields when we get the full
1552 type. */
1553 type = dbx_alloc_type (typenums, objfile);
1554 TYPE_CODE (type) = code;
1555 TYPE_TAG_NAME (type) = type_name;
1556 INIT_CPLUS_SPECIFIC (type);
1557 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1558
1559 add_undefined_type (type, typenums);
1560 return type;
1561 }
1562
1563 case '-': /* RS/6000 built-in type */
1564 case '0':
1565 case '1':
1566 case '2':
1567 case '3':
1568 case '4':
1569 case '5':
1570 case '6':
1571 case '7':
1572 case '8':
1573 case '9':
1574 case '(':
1575 (*pp)--;
1576
1577 /* We deal with something like t(1,2)=(3,4)=... which
1578 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1579
1580 /* Allocate and enter the typedef type first.
1581 This handles recursive types. */
1582 type = dbx_alloc_type (typenums, objfile);
1583 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1584 {
1585 struct type *xtype = read_type (pp, objfile);
1586 if (type == xtype)
1587 {
1588 /* It's being defined as itself. That means it is "void". */
1589 TYPE_CODE (type) = TYPE_CODE_VOID;
1590 TYPE_LENGTH (type) = 1;
1591 }
1592 else if (type_size >= 0 || is_string)
1593 {
1594 /* This is the absolute wrong way to construct types. Every
1595 other debug format has found a way around this problem and
1596 the related problems with unnecessarily stubbed types;
1597 someone motivated should attempt to clean up the issue
1598 here as well. Once a type pointed to has been created it
1599 should not be modified.
1600
1601 Well, it's not *absolutely* wrong. Constructing recursive
1602 types (trees, linked lists) necessarily entails modifying
1603 types after creating them. Constructing any loop structure
1604 entails side effects. The Dwarf 2 reader does handle this
1605 more gracefully (it never constructs more than once
1606 instance of a type object, so it doesn't have to copy type
1607 objects wholesale), but it still mutates type objects after
1608 other folks have references to them.
1609
1610 Keep in mind that this circularity/mutation issue shows up
1611 at the source language level, too: C's "incomplete types",
1612 for example. So the proper cleanup, I think, would be to
1613 limit GDB's type smashing to match exactly those required
1614 by the source language. So GDB could have a
1615 "complete_this_type" function, but never create unnecessary
1616 copies of a type otherwise. */
1617 replace_type (type, xtype);
1618 TYPE_NAME (type) = NULL;
1619 TYPE_TAG_NAME (type) = NULL;
1620 }
1621 else
1622 {
1623 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1624 TYPE_TARGET_TYPE (type) = xtype;
1625 }
1626 }
1627 break;
1628
1629 /* In the following types, we must be sure to overwrite any existing
1630 type that the typenums refer to, rather than allocating a new one
1631 and making the typenums point to the new one. This is because there
1632 may already be pointers to the existing type (if it had been
1633 forward-referenced), and we must change it to a pointer, function,
1634 reference, or whatever, *in-place*. */
1635
1636 case '*': /* Pointer to another type */
1637 type1 = read_type (pp, objfile);
1638 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1639 break;
1640
1641 case '&': /* Reference to another type */
1642 type1 = read_type (pp, objfile);
1643 type = make_reference_type (type1, dbx_lookup_type (typenums));
1644 break;
1645
1646 case 'f': /* Function returning another type */
1647 type1 = read_type (pp, objfile);
1648 type = make_function_type (type1, dbx_lookup_type (typenums));
1649 break;
1650
1651 case 'g': /* Prototyped function. (Sun) */
1652 {
1653 /* Unresolved questions:
1654
1655 - According to Sun's ``STABS Interface Manual'', for 'f'
1656 and 'F' symbol descriptors, a `0' in the argument type list
1657 indicates a varargs function. But it doesn't say how 'g'
1658 type descriptors represent that info. Someone with access
1659 to Sun's toolchain should try it out.
1660
1661 - According to the comment in define_symbol (search for
1662 `process_prototype_types:'), Sun emits integer arguments as
1663 types which ref themselves --- like `void' types. Do we
1664 have to deal with that here, too? Again, someone with
1665 access to Sun's toolchain should try it out and let us
1666 know. */
1667
1668 const char *type_start = (*pp) - 1;
1669 struct type *return_type = read_type (pp, objfile);
1670 struct type *func_type
1671 = make_function_type (return_type, dbx_lookup_type (typenums));
1672 struct type_list {
1673 struct type *type;
1674 struct type_list *next;
1675 } *arg_types = 0;
1676 int num_args = 0;
1677
1678 while (**pp && **pp != '#')
1679 {
1680 struct type *arg_type = read_type (pp, objfile);
1681 struct type_list *new = alloca (sizeof (*new));
1682 new->type = arg_type;
1683 new->next = arg_types;
1684 arg_types = new;
1685 num_args++;
1686 }
1687 if (**pp == '#')
1688 ++*pp;
1689 else
1690 {
1691 complaint (&symfile_complaints,
1692 _("Prototyped function type didn't end arguments with `#':\n%s"),
1693 type_start);
1694 }
1695
1696 /* If there is just one argument whose type is `void', then
1697 that's just an empty argument list. */
1698 if (arg_types
1699 && ! arg_types->next
1700 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1701 num_args = 0;
1702
1703 TYPE_FIELDS (func_type)
1704 = (struct field *) TYPE_ALLOC (func_type,
1705 num_args * sizeof (struct field));
1706 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1707 {
1708 int i;
1709 struct type_list *t;
1710
1711 /* We stuck each argument type onto the front of the list
1712 when we read it, so the list is reversed. Build the
1713 fields array right-to-left. */
1714 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1715 TYPE_FIELD_TYPE (func_type, i) = t->type;
1716 }
1717 TYPE_NFIELDS (func_type) = num_args;
1718 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1719
1720 type = func_type;
1721 break;
1722 }
1723
1724 case 'k': /* Const qualifier on some type (Sun) */
1725 type = read_type (pp, objfile);
1726 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1727 dbx_lookup_type (typenums));
1728 break;
1729
1730 case 'B': /* Volatile qual on some type (Sun) */
1731 type = read_type (pp, objfile);
1732 type = make_cv_type (TYPE_CONST (type), 1, type,
1733 dbx_lookup_type (typenums));
1734 break;
1735
1736 case '@':
1737 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1738 { /* Member (class & variable) type */
1739 /* FIXME -- we should be doing smash_to_XXX types here. */
1740
1741 struct type *domain = read_type (pp, objfile);
1742 struct type *memtype;
1743
1744 if (**pp != ',')
1745 /* Invalid member type data format. */
1746 return error_type (pp, objfile);
1747 ++*pp;
1748
1749 memtype = read_type (pp, objfile);
1750 type = dbx_alloc_type (typenums, objfile);
1751 smash_to_memberptr_type (type, domain, memtype);
1752 }
1753 else
1754 /* type attribute */
1755 {
1756 char *attr = *pp;
1757 /* Skip to the semicolon. */
1758 while (**pp != ';' && **pp != '\0')
1759 ++(*pp);
1760 if (**pp == '\0')
1761 return error_type (pp, objfile);
1762 else
1763 ++ * pp; /* Skip the semicolon. */
1764
1765 switch (*attr)
1766 {
1767 case 's': /* Size attribute */
1768 type_size = atoi (attr + 1);
1769 if (type_size <= 0)
1770 type_size = -1;
1771 break;
1772
1773 case 'S': /* String attribute */
1774 /* FIXME: check to see if following type is array? */
1775 is_string = 1;
1776 break;
1777
1778 case 'V': /* Vector attribute */
1779 /* FIXME: check to see if following type is array? */
1780 is_vector = 1;
1781 break;
1782
1783 default:
1784 /* Ignore unrecognized type attributes, so future compilers
1785 can invent new ones. */
1786 break;
1787 }
1788 ++*pp;
1789 goto again;
1790 }
1791 break;
1792
1793 case '#': /* Method (class & fn) type */
1794 if ((*pp)[0] == '#')
1795 {
1796 /* We'll get the parameter types from the name. */
1797 struct type *return_type;
1798
1799 (*pp)++;
1800 return_type = read_type (pp, objfile);
1801 if (*(*pp)++ != ';')
1802 complaint (&symfile_complaints,
1803 _("invalid (minimal) member type data format at symtab pos %d."),
1804 symnum);
1805 type = allocate_stub_method (return_type);
1806 if (typenums[0] != -1)
1807 *dbx_lookup_type (typenums) = type;
1808 }
1809 else
1810 {
1811 struct type *domain = read_type (pp, objfile);
1812 struct type *return_type;
1813 struct field *args;
1814 int nargs, varargs;
1815
1816 if (**pp != ',')
1817 /* Invalid member type data format. */
1818 return error_type (pp, objfile);
1819 else
1820 ++(*pp);
1821
1822 return_type = read_type (pp, objfile);
1823 args = read_args (pp, ';', objfile, &nargs, &varargs);
1824 if (args == NULL)
1825 return error_type (pp, objfile);
1826 type = dbx_alloc_type (typenums, objfile);
1827 smash_to_method_type (type, domain, return_type, args,
1828 nargs, varargs);
1829 }
1830 break;
1831
1832 case 'r': /* Range type */
1833 type = read_range_type (pp, typenums, type_size, objfile);
1834 if (typenums[0] != -1)
1835 *dbx_lookup_type (typenums) = type;
1836 break;
1837
1838 case 'b':
1839 {
1840 /* Sun ACC builtin int type */
1841 type = read_sun_builtin_type (pp, typenums, objfile);
1842 if (typenums[0] != -1)
1843 *dbx_lookup_type (typenums) = type;
1844 }
1845 break;
1846
1847 case 'R': /* Sun ACC builtin float type */
1848 type = read_sun_floating_type (pp, typenums, objfile);
1849 if (typenums[0] != -1)
1850 *dbx_lookup_type (typenums) = type;
1851 break;
1852
1853 case 'e': /* Enumeration type */
1854 type = dbx_alloc_type (typenums, objfile);
1855 type = read_enum_type (pp, type, objfile);
1856 if (typenums[0] != -1)
1857 *dbx_lookup_type (typenums) = type;
1858 break;
1859
1860 case 's': /* Struct type */
1861 case 'u': /* Union type */
1862 {
1863 enum type_code type_code = TYPE_CODE_UNDEF;
1864 type = dbx_alloc_type (typenums, objfile);
1865 switch (type_descriptor)
1866 {
1867 case 's':
1868 type_code = TYPE_CODE_STRUCT;
1869 break;
1870 case 'u':
1871 type_code = TYPE_CODE_UNION;
1872 break;
1873 }
1874 type = read_struct_type (pp, type, type_code, objfile);
1875 break;
1876 }
1877
1878 case 'a': /* Array type */
1879 if (**pp != 'r')
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 type = dbx_alloc_type (typenums, objfile);
1884 type = read_array_type (pp, type, objfile);
1885 if (is_string)
1886 TYPE_CODE (type) = TYPE_CODE_STRING;
1887 if (is_vector)
1888 make_vector_type (type);
1889 break;
1890
1891 case 'S': /* Set or bitstring type */
1892 type1 = read_type (pp, objfile);
1893 type = create_set_type ((struct type *) NULL, type1);
1894 if (is_string)
1895 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1896 if (typenums[0] != -1)
1897 *dbx_lookup_type (typenums) = type;
1898 break;
1899
1900 default:
1901 --*pp; /* Go back to the symbol in error */
1902 /* Particularly important if it was \0! */
1903 return error_type (pp, objfile);
1904 }
1905
1906 if (type == 0)
1907 {
1908 warning (_("GDB internal error, type is NULL in stabsread.c."));
1909 return error_type (pp, objfile);
1910 }
1911
1912 /* Size specified in a type attribute overrides any other size. */
1913 if (type_size != -1)
1914 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1915
1916 return type;
1917 }
1918 \f
1919 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1920 Return the proper type node for a given builtin type number. */
1921
1922 static struct type *
1923 rs6000_builtin_type (int typenum)
1924 {
1925 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1926 #define NUMBER_RECOGNIZED 34
1927 /* This includes an empty slot for type number -0. */
1928 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1929 struct type *rettype = NULL;
1930
1931 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1932 {
1933 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1934 return builtin_type_error;
1935 }
1936 if (negative_types[-typenum] != NULL)
1937 return negative_types[-typenum];
1938
1939 #if TARGET_CHAR_BIT != 8
1940 #error This code wrong for TARGET_CHAR_BIT not 8
1941 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1942 that if that ever becomes not true, the correct fix will be to
1943 make the size in the struct type to be in bits, not in units of
1944 TARGET_CHAR_BIT. */
1945 #endif
1946
1947 switch (-typenum)
1948 {
1949 case 1:
1950 /* The size of this and all the other types are fixed, defined
1951 by the debugging format. If there is a type called "int" which
1952 is other than 32 bits, then it should use a new negative type
1953 number (or avoid negative type numbers for that case).
1954 See stabs.texinfo. */
1955 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1956 break;
1957 case 2:
1958 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1959 break;
1960 case 3:
1961 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1962 break;
1963 case 4:
1964 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1965 break;
1966 case 5:
1967 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1968 "unsigned char", NULL);
1969 break;
1970 case 6:
1971 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1972 break;
1973 case 7:
1974 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1975 "unsigned short", NULL);
1976 break;
1977 case 8:
1978 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1979 "unsigned int", NULL);
1980 break;
1981 case 9:
1982 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1983 "unsigned", NULL);
1984 case 10:
1985 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1986 "unsigned long", NULL);
1987 break;
1988 case 11:
1989 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
1990 break;
1991 case 12:
1992 /* IEEE single precision (32 bit). */
1993 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1994 break;
1995 case 13:
1996 /* IEEE double precision (64 bit). */
1997 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1998 break;
1999 case 14:
2000 /* This is an IEEE double on the RS/6000, and different machines with
2001 different sizes for "long double" should use different negative
2002 type numbers. See stabs.texinfo. */
2003 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2004 break;
2005 case 15:
2006 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2007 break;
2008 case 16:
2009 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2010 "boolean", NULL);
2011 break;
2012 case 17:
2013 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2014 break;
2015 case 18:
2016 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2017 break;
2018 case 19:
2019 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2020 break;
2021 case 20:
2022 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2023 "character", NULL);
2024 break;
2025 case 21:
2026 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2027 "logical*1", NULL);
2028 break;
2029 case 22:
2030 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2031 "logical*2", NULL);
2032 break;
2033 case 23:
2034 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2035 "logical*4", NULL);
2036 break;
2037 case 24:
2038 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2039 "logical", NULL);
2040 break;
2041 case 25:
2042 /* Complex type consisting of two IEEE single precision values. */
2043 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2044 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2045 NULL);
2046 break;
2047 case 26:
2048 /* Complex type consisting of two IEEE double precision values. */
2049 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2050 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2051 NULL);
2052 break;
2053 case 27:
2054 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2055 break;
2056 case 28:
2057 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2058 break;
2059 case 29:
2060 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2061 break;
2062 case 30:
2063 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2064 break;
2065 case 31:
2066 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2067 break;
2068 case 32:
2069 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2070 "unsigned long long", NULL);
2071 break;
2072 case 33:
2073 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2074 "logical*8", NULL);
2075 break;
2076 case 34:
2077 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2078 break;
2079 }
2080 negative_types[-typenum] = rettype;
2081 return rettype;
2082 }
2083 \f
2084 /* This page contains subroutines of read_type. */
2085
2086 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2087
2088 static void
2089 update_method_name_from_physname (char **old_name, char *physname)
2090 {
2091 char *method_name;
2092
2093 method_name = method_name_from_physname (physname);
2094
2095 if (method_name == NULL)
2096 {
2097 complaint (&symfile_complaints,
2098 _("Method has bad physname %s\n"), physname);
2099 return;
2100 }
2101
2102 if (strcmp (*old_name, method_name) != 0)
2103 {
2104 xfree (*old_name);
2105 *old_name = method_name;
2106 }
2107 else
2108 xfree (method_name);
2109 }
2110
2111 /* Read member function stabs info for C++ classes. The form of each member
2112 function data is:
2113
2114 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2115
2116 An example with two member functions is:
2117
2118 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2119
2120 For the case of overloaded operators, the format is op$::*.funcs, where
2121 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2122 name (such as `+=') and `.' marks the end of the operator name.
2123
2124 Returns 1 for success, 0 for failure. */
2125
2126 static int
2127 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2128 struct objfile *objfile)
2129 {
2130 int nfn_fields = 0;
2131 int length = 0;
2132 /* Total number of member functions defined in this class. If the class
2133 defines two `f' functions, and one `g' function, then this will have
2134 the value 3. */
2135 int total_length = 0;
2136 int i;
2137 struct next_fnfield
2138 {
2139 struct next_fnfield *next;
2140 struct fn_field fn_field;
2141 }
2142 *sublist;
2143 struct type *look_ahead_type;
2144 struct next_fnfieldlist *new_fnlist;
2145 struct next_fnfield *new_sublist;
2146 char *main_fn_name;
2147 char *p;
2148
2149 /* Process each list until we find something that is not a member function
2150 or find the end of the functions. */
2151
2152 while (**pp != ';')
2153 {
2154 /* We should be positioned at the start of the function name.
2155 Scan forward to find the first ':' and if it is not the
2156 first of a "::" delimiter, then this is not a member function. */
2157 p = *pp;
2158 while (*p != ':')
2159 {
2160 p++;
2161 }
2162 if (p[1] != ':')
2163 {
2164 break;
2165 }
2166
2167 sublist = NULL;
2168 look_ahead_type = NULL;
2169 length = 0;
2170
2171 new_fnlist = (struct next_fnfieldlist *)
2172 xmalloc (sizeof (struct next_fnfieldlist));
2173 make_cleanup (xfree, new_fnlist);
2174 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2175
2176 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2177 {
2178 /* This is a completely wierd case. In order to stuff in the
2179 names that might contain colons (the usual name delimiter),
2180 Mike Tiemann defined a different name format which is
2181 signalled if the identifier is "op$". In that case, the
2182 format is "op$::XXXX." where XXXX is the name. This is
2183 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2184 /* This lets the user type "break operator+".
2185 We could just put in "+" as the name, but that wouldn't
2186 work for "*". */
2187 static char opname[32] = "op$";
2188 char *o = opname + 3;
2189
2190 /* Skip past '::'. */
2191 *pp = p + 2;
2192
2193 STABS_CONTINUE (pp, objfile);
2194 p = *pp;
2195 while (*p != '.')
2196 {
2197 *o++ = *p++;
2198 }
2199 main_fn_name = savestring (opname, o - opname);
2200 /* Skip past '.' */
2201 *pp = p + 1;
2202 }
2203 else
2204 {
2205 main_fn_name = savestring (*pp, p - *pp);
2206 /* Skip past '::'. */
2207 *pp = p + 2;
2208 }
2209 new_fnlist->fn_fieldlist.name = main_fn_name;
2210
2211 do
2212 {
2213 new_sublist =
2214 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2215 make_cleanup (xfree, new_sublist);
2216 memset (new_sublist, 0, sizeof (struct next_fnfield));
2217
2218 /* Check for and handle cretinous dbx symbol name continuation! */
2219 if (look_ahead_type == NULL)
2220 {
2221 /* Normal case. */
2222 STABS_CONTINUE (pp, objfile);
2223
2224 new_sublist->fn_field.type = read_type (pp, objfile);
2225 if (**pp != ':')
2226 {
2227 /* Invalid symtab info for member function. */
2228 return 0;
2229 }
2230 }
2231 else
2232 {
2233 /* g++ version 1 kludge */
2234 new_sublist->fn_field.type = look_ahead_type;
2235 look_ahead_type = NULL;
2236 }
2237
2238 (*pp)++;
2239 p = *pp;
2240 while (*p != ';')
2241 {
2242 p++;
2243 }
2244
2245 /* If this is just a stub, then we don't have the real name here. */
2246
2247 if (TYPE_STUB (new_sublist->fn_field.type))
2248 {
2249 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2250 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2251 new_sublist->fn_field.is_stub = 1;
2252 }
2253 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2254 *pp = p + 1;
2255
2256 /* Set this member function's visibility fields. */
2257 switch (*(*pp)++)
2258 {
2259 case VISIBILITY_PRIVATE:
2260 new_sublist->fn_field.is_private = 1;
2261 break;
2262 case VISIBILITY_PROTECTED:
2263 new_sublist->fn_field.is_protected = 1;
2264 break;
2265 }
2266
2267 STABS_CONTINUE (pp, objfile);
2268 switch (**pp)
2269 {
2270 case 'A': /* Normal functions. */
2271 new_sublist->fn_field.is_const = 0;
2272 new_sublist->fn_field.is_volatile = 0;
2273 (*pp)++;
2274 break;
2275 case 'B': /* `const' member functions. */
2276 new_sublist->fn_field.is_const = 1;
2277 new_sublist->fn_field.is_volatile = 0;
2278 (*pp)++;
2279 break;
2280 case 'C': /* `volatile' member function. */
2281 new_sublist->fn_field.is_const = 0;
2282 new_sublist->fn_field.is_volatile = 1;
2283 (*pp)++;
2284 break;
2285 case 'D': /* `const volatile' member function. */
2286 new_sublist->fn_field.is_const = 1;
2287 new_sublist->fn_field.is_volatile = 1;
2288 (*pp)++;
2289 break;
2290 case '*': /* File compiled with g++ version 1 -- no info */
2291 case '?':
2292 case '.':
2293 break;
2294 default:
2295 complaint (&symfile_complaints,
2296 _("const/volatile indicator missing, got '%c'"), **pp);
2297 break;
2298 }
2299
2300 switch (*(*pp)++)
2301 {
2302 case '*':
2303 {
2304 int nbits;
2305 /* virtual member function, followed by index.
2306 The sign bit is set to distinguish pointers-to-methods
2307 from virtual function indicies. Since the array is
2308 in words, the quantity must be shifted left by 1
2309 on 16 bit machine, and by 2 on 32 bit machine, forcing
2310 the sign bit out, and usable as a valid index into
2311 the array. Remove the sign bit here. */
2312 new_sublist->fn_field.voffset =
2313 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2314 if (nbits != 0)
2315 return 0;
2316
2317 STABS_CONTINUE (pp, objfile);
2318 if (**pp == ';' || **pp == '\0')
2319 {
2320 /* Must be g++ version 1. */
2321 new_sublist->fn_field.fcontext = 0;
2322 }
2323 else
2324 {
2325 /* Figure out from whence this virtual function came.
2326 It may belong to virtual function table of
2327 one of its baseclasses. */
2328 look_ahead_type = read_type (pp, objfile);
2329 if (**pp == ':')
2330 {
2331 /* g++ version 1 overloaded methods. */
2332 }
2333 else
2334 {
2335 new_sublist->fn_field.fcontext = look_ahead_type;
2336 if (**pp != ';')
2337 {
2338 return 0;
2339 }
2340 else
2341 {
2342 ++*pp;
2343 }
2344 look_ahead_type = NULL;
2345 }
2346 }
2347 break;
2348 }
2349 case '?':
2350 /* static member function. */
2351 {
2352 int slen = strlen (main_fn_name);
2353
2354 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2355
2356 /* For static member functions, we can't tell if they
2357 are stubbed, as they are put out as functions, and not as
2358 methods.
2359 GCC v2 emits the fully mangled name if
2360 dbxout.c:flag_minimal_debug is not set, so we have to
2361 detect a fully mangled physname here and set is_stub
2362 accordingly. Fully mangled physnames in v2 start with
2363 the member function name, followed by two underscores.
2364 GCC v3 currently always emits stubbed member functions,
2365 but with fully mangled physnames, which start with _Z. */
2366 if (!(strncmp (new_sublist->fn_field.physname,
2367 main_fn_name, slen) == 0
2368 && new_sublist->fn_field.physname[slen] == '_'
2369 && new_sublist->fn_field.physname[slen + 1] == '_'))
2370 {
2371 new_sublist->fn_field.is_stub = 1;
2372 }
2373 break;
2374 }
2375
2376 default:
2377 /* error */
2378 complaint (&symfile_complaints,
2379 _("member function type missing, got '%c'"), (*pp)[-1]);
2380 /* Fall through into normal member function. */
2381
2382 case '.':
2383 /* normal member function. */
2384 new_sublist->fn_field.voffset = 0;
2385 new_sublist->fn_field.fcontext = 0;
2386 break;
2387 }
2388
2389 new_sublist->next = sublist;
2390 sublist = new_sublist;
2391 length++;
2392 STABS_CONTINUE (pp, objfile);
2393 }
2394 while (**pp != ';' && **pp != '\0');
2395
2396 (*pp)++;
2397 STABS_CONTINUE (pp, objfile);
2398
2399 /* Skip GCC 3.X member functions which are duplicates of the callable
2400 constructor/destructor. */
2401 if (strcmp (main_fn_name, "__base_ctor") == 0
2402 || strcmp (main_fn_name, "__base_dtor") == 0
2403 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2404 {
2405 xfree (main_fn_name);
2406 }
2407 else
2408 {
2409 int has_stub = 0;
2410 int has_destructor = 0, has_other = 0;
2411 int is_v3 = 0;
2412 struct next_fnfield *tmp_sublist;
2413
2414 /* Various versions of GCC emit various mostly-useless
2415 strings in the name field for special member functions.
2416
2417 For stub methods, we need to defer correcting the name
2418 until we are ready to unstub the method, because the current
2419 name string is used by gdb_mangle_name. The only stub methods
2420 of concern here are GNU v2 operators; other methods have their
2421 names correct (see caveat below).
2422
2423 For non-stub methods, in GNU v3, we have a complete physname.
2424 Therefore we can safely correct the name now. This primarily
2425 affects constructors and destructors, whose name will be
2426 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2427 operators will also have incorrect names; for instance,
2428 "operator int" will be named "operator i" (i.e. the type is
2429 mangled).
2430
2431 For non-stub methods in GNU v2, we have no easy way to
2432 know if we have a complete physname or not. For most
2433 methods the result depends on the platform (if CPLUS_MARKER
2434 can be `$' or `.', it will use minimal debug information, or
2435 otherwise the full physname will be included).
2436
2437 Rather than dealing with this, we take a different approach.
2438 For v3 mangled names, we can use the full physname; for v2,
2439 we use cplus_demangle_opname (which is actually v2 specific),
2440 because the only interesting names are all operators - once again
2441 barring the caveat below. Skip this process if any method in the
2442 group is a stub, to prevent our fouling up the workings of
2443 gdb_mangle_name.
2444
2445 The caveat: GCC 2.95.x (and earlier?) put constructors and
2446 destructors in the same method group. We need to split this
2447 into two groups, because they should have different names.
2448 So for each method group we check whether it contains both
2449 routines whose physname appears to be a destructor (the physnames
2450 for and destructors are always provided, due to quirks in v2
2451 mangling) and routines whose physname does not appear to be a
2452 destructor. If so then we break up the list into two halves.
2453 Even if the constructors and destructors aren't in the same group
2454 the destructor will still lack the leading tilde, so that also
2455 needs to be fixed.
2456
2457 So, to summarize what we expect and handle here:
2458
2459 Given Given Real Real Action
2460 method name physname physname method name
2461
2462 __opi [none] __opi__3Foo operator int opname
2463 [now or later]
2464 Foo _._3Foo _._3Foo ~Foo separate and
2465 rename
2466 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2467 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2468 */
2469
2470 tmp_sublist = sublist;
2471 while (tmp_sublist != NULL)
2472 {
2473 if (tmp_sublist->fn_field.is_stub)
2474 has_stub = 1;
2475 if (tmp_sublist->fn_field.physname[0] == '_'
2476 && tmp_sublist->fn_field.physname[1] == 'Z')
2477 is_v3 = 1;
2478
2479 if (is_destructor_name (tmp_sublist->fn_field.physname))
2480 has_destructor++;
2481 else
2482 has_other++;
2483
2484 tmp_sublist = tmp_sublist->next;
2485 }
2486
2487 if (has_destructor && has_other)
2488 {
2489 struct next_fnfieldlist *destr_fnlist;
2490 struct next_fnfield *last_sublist;
2491
2492 /* Create a new fn_fieldlist for the destructors. */
2493
2494 destr_fnlist = (struct next_fnfieldlist *)
2495 xmalloc (sizeof (struct next_fnfieldlist));
2496 make_cleanup (xfree, destr_fnlist);
2497 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2498 destr_fnlist->fn_fieldlist.name
2499 = obconcat (&objfile->objfile_obstack, "", "~",
2500 new_fnlist->fn_fieldlist.name);
2501
2502 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2503 obstack_alloc (&objfile->objfile_obstack,
2504 sizeof (struct fn_field) * has_destructor);
2505 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2506 sizeof (struct fn_field) * has_destructor);
2507 tmp_sublist = sublist;
2508 last_sublist = NULL;
2509 i = 0;
2510 while (tmp_sublist != NULL)
2511 {
2512 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2513 {
2514 tmp_sublist = tmp_sublist->next;
2515 continue;
2516 }
2517
2518 destr_fnlist->fn_fieldlist.fn_fields[i++]
2519 = tmp_sublist->fn_field;
2520 if (last_sublist)
2521 last_sublist->next = tmp_sublist->next;
2522 else
2523 sublist = tmp_sublist->next;
2524 last_sublist = tmp_sublist;
2525 tmp_sublist = tmp_sublist->next;
2526 }
2527
2528 destr_fnlist->fn_fieldlist.length = has_destructor;
2529 destr_fnlist->next = fip->fnlist;
2530 fip->fnlist = destr_fnlist;
2531 nfn_fields++;
2532 total_length += has_destructor;
2533 length -= has_destructor;
2534 }
2535 else if (is_v3)
2536 {
2537 /* v3 mangling prevents the use of abbreviated physnames,
2538 so we can do this here. There are stubbed methods in v3
2539 only:
2540 - in -gstabs instead of -gstabs+
2541 - or for static methods, which are output as a function type
2542 instead of a method type. */
2543
2544 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2545 sublist->fn_field.physname);
2546 }
2547 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2548 {
2549 new_fnlist->fn_fieldlist.name =
2550 concat ("~", main_fn_name, (char *)NULL);
2551 xfree (main_fn_name);
2552 }
2553 else if (!has_stub)
2554 {
2555 char dem_opname[256];
2556 int ret;
2557 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2558 dem_opname, DMGL_ANSI);
2559 if (!ret)
2560 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2561 dem_opname, 0);
2562 if (ret)
2563 new_fnlist->fn_fieldlist.name
2564 = obsavestring (dem_opname, strlen (dem_opname),
2565 &objfile->objfile_obstack);
2566 }
2567
2568 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2569 obstack_alloc (&objfile->objfile_obstack,
2570 sizeof (struct fn_field) * length);
2571 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2572 sizeof (struct fn_field) * length);
2573 for (i = length; (i--, sublist); sublist = sublist->next)
2574 {
2575 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2576 }
2577
2578 new_fnlist->fn_fieldlist.length = length;
2579 new_fnlist->next = fip->fnlist;
2580 fip->fnlist = new_fnlist;
2581 nfn_fields++;
2582 total_length += length;
2583 }
2584 }
2585
2586 if (nfn_fields)
2587 {
2588 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2589 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2590 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2591 memset (TYPE_FN_FIELDLISTS (type), 0,
2592 sizeof (struct fn_fieldlist) * nfn_fields);
2593 TYPE_NFN_FIELDS (type) = nfn_fields;
2594 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2595 }
2596
2597 return 1;
2598 }
2599
2600 /* Special GNU C++ name.
2601
2602 Returns 1 for success, 0 for failure. "failure" means that we can't
2603 keep parsing and it's time for error_type(). */
2604
2605 static int
2606 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2607 struct objfile *objfile)
2608 {
2609 char *p;
2610 char *name;
2611 char cpp_abbrev;
2612 struct type *context;
2613
2614 p = *pp;
2615 if (*++p == 'v')
2616 {
2617 name = NULL;
2618 cpp_abbrev = *++p;
2619
2620 *pp = p + 1;
2621
2622 /* At this point, *pp points to something like "22:23=*22...",
2623 where the type number before the ':' is the "context" and
2624 everything after is a regular type definition. Lookup the
2625 type, find it's name, and construct the field name. */
2626
2627 context = read_type (pp, objfile);
2628
2629 switch (cpp_abbrev)
2630 {
2631 case 'f': /* $vf -- a virtual function table pointer */
2632 name = type_name_no_tag (context);
2633 if (name == NULL)
2634 {
2635 name = "";
2636 }
2637 fip->list->field.name =
2638 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2639 break;
2640
2641 case 'b': /* $vb -- a virtual bsomethingorother */
2642 name = type_name_no_tag (context);
2643 if (name == NULL)
2644 {
2645 complaint (&symfile_complaints,
2646 _("C++ abbreviated type name unknown at symtab pos %d"),
2647 symnum);
2648 name = "FOO";
2649 }
2650 fip->list->field.name =
2651 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2652 break;
2653
2654 default:
2655 invalid_cpp_abbrev_complaint (*pp);
2656 fip->list->field.name =
2657 obconcat (&objfile->objfile_obstack,
2658 "INVALID_CPLUSPLUS_ABBREV", "", "");
2659 break;
2660 }
2661
2662 /* At this point, *pp points to the ':'. Skip it and read the
2663 field type. */
2664
2665 p = ++(*pp);
2666 if (p[-1] != ':')
2667 {
2668 invalid_cpp_abbrev_complaint (*pp);
2669 return 0;
2670 }
2671 fip->list->field.type = read_type (pp, objfile);
2672 if (**pp == ',')
2673 (*pp)++; /* Skip the comma. */
2674 else
2675 return 0;
2676
2677 {
2678 int nbits;
2679 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2680 0);
2681 if (nbits != 0)
2682 return 0;
2683 }
2684 /* This field is unpacked. */
2685 FIELD_BITSIZE (fip->list->field) = 0;
2686 fip->list->visibility = VISIBILITY_PRIVATE;
2687 }
2688 else
2689 {
2690 invalid_cpp_abbrev_complaint (*pp);
2691 /* We have no idea what syntax an unrecognized abbrev would have, so
2692 better return 0. If we returned 1, we would need to at least advance
2693 *pp to avoid an infinite loop. */
2694 return 0;
2695 }
2696 return 1;
2697 }
2698
2699 static void
2700 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2701 struct type *type, struct objfile *objfile)
2702 {
2703 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2704
2705 fip->list->field.name =
2706 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2707 *pp = p + 1;
2708
2709 /* This means we have a visibility for a field coming. */
2710 if (**pp == '/')
2711 {
2712 (*pp)++;
2713 fip->list->visibility = *(*pp)++;
2714 }
2715 else
2716 {
2717 /* normal dbx-style format, no explicit visibility */
2718 fip->list->visibility = VISIBILITY_PUBLIC;
2719 }
2720
2721 fip->list->field.type = read_type (pp, objfile);
2722 if (**pp == ':')
2723 {
2724 p = ++(*pp);
2725 #if 0
2726 /* Possible future hook for nested types. */
2727 if (**pp == '!')
2728 {
2729 fip->list->field.bitpos = (long) -2; /* nested type */
2730 p = ++(*pp);
2731 }
2732 else
2733 ...;
2734 #endif
2735 while (*p != ';')
2736 {
2737 p++;
2738 }
2739 /* Static class member. */
2740 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2741 *pp = p + 1;
2742 return;
2743 }
2744 else if (**pp != ',')
2745 {
2746 /* Bad structure-type format. */
2747 stabs_general_complaint ("bad structure-type format");
2748 return;
2749 }
2750
2751 (*pp)++; /* Skip the comma. */
2752
2753 {
2754 int nbits;
2755 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2756 if (nbits != 0)
2757 {
2758 stabs_general_complaint ("bad structure-type format");
2759 return;
2760 }
2761 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2762 if (nbits != 0)
2763 {
2764 stabs_general_complaint ("bad structure-type format");
2765 return;
2766 }
2767 }
2768
2769 if (FIELD_BITPOS (fip->list->field) == 0
2770 && FIELD_BITSIZE (fip->list->field) == 0)
2771 {
2772 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2773 it is a field which has been optimized out. The correct stab for
2774 this case is to use VISIBILITY_IGNORE, but that is a recent
2775 invention. (2) It is a 0-size array. For example
2776 union { int num; char str[0]; } foo. Printing _("<no value>" for
2777 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2778 will continue to work, and a 0-size array as a whole doesn't
2779 have any contents to print.
2780
2781 I suspect this probably could also happen with gcc -gstabs (not
2782 -gstabs+) for static fields, and perhaps other C++ extensions.
2783 Hopefully few people use -gstabs with gdb, since it is intended
2784 for dbx compatibility. */
2785
2786 /* Ignore this field. */
2787 fip->list->visibility = VISIBILITY_IGNORE;
2788 }
2789 else
2790 {
2791 /* Detect an unpacked field and mark it as such.
2792 dbx gives a bit size for all fields.
2793 Note that forward refs cannot be packed,
2794 and treat enums as if they had the width of ints. */
2795
2796 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2797
2798 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2799 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2800 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2801 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2802 {
2803 FIELD_BITSIZE (fip->list->field) = 0;
2804 }
2805 if ((FIELD_BITSIZE (fip->list->field)
2806 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2807 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2808 && FIELD_BITSIZE (fip->list->field)
2809 == gdbarch_int_bit (gdbarch))
2810 )
2811 &&
2812 FIELD_BITPOS (fip->list->field) % 8 == 0)
2813 {
2814 FIELD_BITSIZE (fip->list->field) = 0;
2815 }
2816 }
2817 }
2818
2819
2820 /* Read struct or class data fields. They have the form:
2821
2822 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2823
2824 At the end, we see a semicolon instead of a field.
2825
2826 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2827 a static field.
2828
2829 The optional VISIBILITY is one of:
2830
2831 '/0' (VISIBILITY_PRIVATE)
2832 '/1' (VISIBILITY_PROTECTED)
2833 '/2' (VISIBILITY_PUBLIC)
2834 '/9' (VISIBILITY_IGNORE)
2835
2836 or nothing, for C style fields with public visibility.
2837
2838 Returns 1 for success, 0 for failure. */
2839
2840 static int
2841 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2842 struct objfile *objfile)
2843 {
2844 char *p;
2845 struct nextfield *new;
2846
2847 /* We better set p right now, in case there are no fields at all... */
2848
2849 p = *pp;
2850
2851 /* Read each data member type until we find the terminating ';' at the end of
2852 the data member list, or break for some other reason such as finding the
2853 start of the member function list. */
2854 /* Stab string for structure/union does not end with two ';' in
2855 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2856
2857 while (**pp != ';' && **pp != '\0')
2858 {
2859 STABS_CONTINUE (pp, objfile);
2860 /* Get space to record the next field's data. */
2861 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2862 make_cleanup (xfree, new);
2863 memset (new, 0, sizeof (struct nextfield));
2864 new->next = fip->list;
2865 fip->list = new;
2866
2867 /* Get the field name. */
2868 p = *pp;
2869
2870 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2871 unless the CPLUS_MARKER is followed by an underscore, in
2872 which case it is just the name of an anonymous type, which we
2873 should handle like any other type name. */
2874
2875 if (is_cplus_marker (p[0]) && p[1] != '_')
2876 {
2877 if (!read_cpp_abbrev (fip, pp, type, objfile))
2878 return 0;
2879 continue;
2880 }
2881
2882 /* Look for the ':' that separates the field name from the field
2883 values. Data members are delimited by a single ':', while member
2884 functions are delimited by a pair of ':'s. When we hit the member
2885 functions (if any), terminate scan loop and return. */
2886
2887 while (*p != ':' && *p != '\0')
2888 {
2889 p++;
2890 }
2891 if (*p == '\0')
2892 return 0;
2893
2894 /* Check to see if we have hit the member functions yet. */
2895 if (p[1] == ':')
2896 {
2897 break;
2898 }
2899 read_one_struct_field (fip, pp, p, type, objfile);
2900 }
2901 if (p[0] == ':' && p[1] == ':')
2902 {
2903 /* (the deleted) chill the list of fields: the last entry (at
2904 the head) is a partially constructed entry which we now
2905 scrub. */
2906 fip->list = fip->list->next;
2907 }
2908 return 1;
2909 }
2910 /* *INDENT-OFF* */
2911 /* The stabs for C++ derived classes contain baseclass information which
2912 is marked by a '!' character after the total size. This function is
2913 called when we encounter the baseclass marker, and slurps up all the
2914 baseclass information.
2915
2916 Immediately following the '!' marker is the number of base classes that
2917 the class is derived from, followed by information for each base class.
2918 For each base class, there are two visibility specifiers, a bit offset
2919 to the base class information within the derived class, a reference to
2920 the type for the base class, and a terminating semicolon.
2921
2922 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2923 ^^ ^ ^ ^ ^ ^ ^
2924 Baseclass information marker __________________|| | | | | | |
2925 Number of baseclasses __________________________| | | | | | |
2926 Visibility specifiers (2) ________________________| | | | | |
2927 Offset in bits from start of class _________________| | | | |
2928 Type number for base class ___________________________| | | |
2929 Visibility specifiers (2) _______________________________| | |
2930 Offset in bits from start of class ________________________| |
2931 Type number of base class ____________________________________|
2932
2933 Return 1 for success, 0 for (error-type-inducing) failure. */
2934 /* *INDENT-ON* */
2935
2936
2937
2938 static int
2939 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2940 struct objfile *objfile)
2941 {
2942 int i;
2943 struct nextfield *new;
2944
2945 if (**pp != '!')
2946 {
2947 return 1;
2948 }
2949 else
2950 {
2951 /* Skip the '!' baseclass information marker. */
2952 (*pp)++;
2953 }
2954
2955 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2956 {
2957 int nbits;
2958 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2959 if (nbits != 0)
2960 return 0;
2961 }
2962
2963 #if 0
2964 /* Some stupid compilers have trouble with the following, so break
2965 it up into simpler expressions. */
2966 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2967 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2968 #else
2969 {
2970 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2971 char *pointer;
2972
2973 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2974 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2975 }
2976 #endif /* 0 */
2977
2978 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2979
2980 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2981 {
2982 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2983 make_cleanup (xfree, new);
2984 memset (new, 0, sizeof (struct nextfield));
2985 new->next = fip->list;
2986 fip->list = new;
2987 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
2988
2989 STABS_CONTINUE (pp, objfile);
2990 switch (**pp)
2991 {
2992 case '0':
2993 /* Nothing to do. */
2994 break;
2995 case '1':
2996 SET_TYPE_FIELD_VIRTUAL (type, i);
2997 break;
2998 default:
2999 /* Unknown character. Complain and treat it as non-virtual. */
3000 {
3001 complaint (&symfile_complaints,
3002 _("Unknown virtual character `%c' for baseclass"), **pp);
3003 }
3004 }
3005 ++(*pp);
3006
3007 new->visibility = *(*pp)++;
3008 switch (new->visibility)
3009 {
3010 case VISIBILITY_PRIVATE:
3011 case VISIBILITY_PROTECTED:
3012 case VISIBILITY_PUBLIC:
3013 break;
3014 default:
3015 /* Bad visibility format. Complain and treat it as
3016 public. */
3017 {
3018 complaint (&symfile_complaints,
3019 _("Unknown visibility `%c' for baseclass"),
3020 new->visibility);
3021 new->visibility = VISIBILITY_PUBLIC;
3022 }
3023 }
3024
3025 {
3026 int nbits;
3027
3028 /* The remaining value is the bit offset of the portion of the object
3029 corresponding to this baseclass. Always zero in the absence of
3030 multiple inheritance. */
3031
3032 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3033 if (nbits != 0)
3034 return 0;
3035 }
3036
3037 /* The last piece of baseclass information is the type of the
3038 base class. Read it, and remember it's type name as this
3039 field's name. */
3040
3041 new->field.type = read_type (pp, objfile);
3042 new->field.name = type_name_no_tag (new->field.type);
3043
3044 /* skip trailing ';' and bump count of number of fields seen */
3045 if (**pp == ';')
3046 (*pp)++;
3047 else
3048 return 0;
3049 }
3050 return 1;
3051 }
3052
3053 /* The tail end of stabs for C++ classes that contain a virtual function
3054 pointer contains a tilde, a %, and a type number.
3055 The type number refers to the base class (possibly this class itself) which
3056 contains the vtable pointer for the current class.
3057
3058 This function is called when we have parsed all the method declarations,
3059 so we can look for the vptr base class info. */
3060
3061 static int
3062 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3063 struct objfile *objfile)
3064 {
3065 char *p;
3066
3067 STABS_CONTINUE (pp, objfile);
3068
3069 /* If we are positioned at a ';', then skip it. */
3070 if (**pp == ';')
3071 {
3072 (*pp)++;
3073 }
3074
3075 if (**pp == '~')
3076 {
3077 (*pp)++;
3078
3079 if (**pp == '=' || **pp == '+' || **pp == '-')
3080 {
3081 /* Obsolete flags that used to indicate the presence
3082 of constructors and/or destructors. */
3083 (*pp)++;
3084 }
3085
3086 /* Read either a '%' or the final ';'. */
3087 if (*(*pp)++ == '%')
3088 {
3089 /* The next number is the type number of the base class
3090 (possibly our own class) which supplies the vtable for
3091 this class. Parse it out, and search that class to find
3092 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3093 and TYPE_VPTR_FIELDNO. */
3094
3095 struct type *t;
3096 int i;
3097
3098 t = read_type (pp, objfile);
3099 p = (*pp)++;
3100 while (*p != '\0' && *p != ';')
3101 {
3102 p++;
3103 }
3104 if (*p == '\0')
3105 {
3106 /* Premature end of symbol. */
3107 return 0;
3108 }
3109
3110 TYPE_VPTR_BASETYPE (type) = t;
3111 if (type == t) /* Our own class provides vtbl ptr */
3112 {
3113 for (i = TYPE_NFIELDS (t) - 1;
3114 i >= TYPE_N_BASECLASSES (t);
3115 --i)
3116 {
3117 char *name = TYPE_FIELD_NAME (t, i);
3118 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3119 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3120 {
3121 TYPE_VPTR_FIELDNO (type) = i;
3122 goto gotit;
3123 }
3124 }
3125 /* Virtual function table field not found. */
3126 complaint (&symfile_complaints,
3127 _("virtual function table pointer not found when defining class `%s'"),
3128 TYPE_NAME (type));
3129 return 0;
3130 }
3131 else
3132 {
3133 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3134 }
3135
3136 gotit:
3137 *pp = p + 1;
3138 }
3139 }
3140 return 1;
3141 }
3142
3143 static int
3144 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3145 {
3146 int n;
3147
3148 for (n = TYPE_NFN_FIELDS (type);
3149 fip->fnlist != NULL;
3150 fip->fnlist = fip->fnlist->next)
3151 {
3152 --n; /* Circumvent Sun3 compiler bug */
3153 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3154 }
3155 return 1;
3156 }
3157
3158 /* Create the vector of fields, and record how big it is.
3159 We need this info to record proper virtual function table information
3160 for this class's virtual functions. */
3161
3162 static int
3163 attach_fields_to_type (struct field_info *fip, struct type *type,
3164 struct objfile *objfile)
3165 {
3166 int nfields = 0;
3167 int non_public_fields = 0;
3168 struct nextfield *scan;
3169
3170 /* Count up the number of fields that we have, as well as taking note of
3171 whether or not there are any non-public fields, which requires us to
3172 allocate and build the private_field_bits and protected_field_bits
3173 bitfields. */
3174
3175 for (scan = fip->list; scan != NULL; scan = scan->next)
3176 {
3177 nfields++;
3178 if (scan->visibility != VISIBILITY_PUBLIC)
3179 {
3180 non_public_fields++;
3181 }
3182 }
3183
3184 /* Now we know how many fields there are, and whether or not there are any
3185 non-public fields. Record the field count, allocate space for the
3186 array of fields, and create blank visibility bitfields if necessary. */
3187
3188 TYPE_NFIELDS (type) = nfields;
3189 TYPE_FIELDS (type) = (struct field *)
3190 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3191 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3192
3193 if (non_public_fields)
3194 {
3195 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3196
3197 TYPE_FIELD_PRIVATE_BITS (type) =
3198 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3199 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3200
3201 TYPE_FIELD_PROTECTED_BITS (type) =
3202 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3203 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3204
3205 TYPE_FIELD_IGNORE_BITS (type) =
3206 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3207 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3208 }
3209
3210 /* Copy the saved-up fields into the field vector. Start from the head
3211 of the list, adding to the tail of the field array, so that they end
3212 up in the same order in the array in which they were added to the list. */
3213
3214 while (nfields-- > 0)
3215 {
3216 TYPE_FIELD (type, nfields) = fip->list->field;
3217 switch (fip->list->visibility)
3218 {
3219 case VISIBILITY_PRIVATE:
3220 SET_TYPE_FIELD_PRIVATE (type, nfields);
3221 break;
3222
3223 case VISIBILITY_PROTECTED:
3224 SET_TYPE_FIELD_PROTECTED (type, nfields);
3225 break;
3226
3227 case VISIBILITY_IGNORE:
3228 SET_TYPE_FIELD_IGNORE (type, nfields);
3229 break;
3230
3231 case VISIBILITY_PUBLIC:
3232 break;
3233
3234 default:
3235 /* Unknown visibility. Complain and treat it as public. */
3236 {
3237 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3238 fip->list->visibility);
3239 }
3240 break;
3241 }
3242 fip->list = fip->list->next;
3243 }
3244 return 1;
3245 }
3246
3247
3248 /* Complain that the compiler has emitted more than one definition for the
3249 structure type TYPE. */
3250 static void
3251 complain_about_struct_wipeout (struct type *type)
3252 {
3253 char *name = "";
3254 char *kind = "";
3255
3256 if (TYPE_TAG_NAME (type))
3257 {
3258 name = TYPE_TAG_NAME (type);
3259 switch (TYPE_CODE (type))
3260 {
3261 case TYPE_CODE_STRUCT: kind = "struct "; break;
3262 case TYPE_CODE_UNION: kind = "union "; break;
3263 case TYPE_CODE_ENUM: kind = "enum "; break;
3264 default: kind = "";
3265 }
3266 }
3267 else if (TYPE_NAME (type))
3268 {
3269 name = TYPE_NAME (type);
3270 kind = "";
3271 }
3272 else
3273 {
3274 name = "<unknown>";
3275 kind = "";
3276 }
3277
3278 complaint (&symfile_complaints,
3279 _("struct/union type gets multiply defined: %s%s"), kind, name);
3280 }
3281
3282
3283 /* Read the description of a structure (or union type) and return an object
3284 describing the type.
3285
3286 PP points to a character pointer that points to the next unconsumed token
3287 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3288 *PP will point to "4a:1,0,32;;".
3289
3290 TYPE points to an incomplete type that needs to be filled in.
3291
3292 OBJFILE points to the current objfile from which the stabs information is
3293 being read. (Note that it is redundant in that TYPE also contains a pointer
3294 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3295 */
3296
3297 static struct type *
3298 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3299 struct objfile *objfile)
3300 {
3301 struct cleanup *back_to;
3302 struct field_info fi;
3303
3304 fi.list = NULL;
3305 fi.fnlist = NULL;
3306
3307 /* When describing struct/union/class types in stabs, G++ always drops
3308 all qualifications from the name. So if you've got:
3309 struct A { ... struct B { ... }; ... };
3310 then G++ will emit stabs for `struct A::B' that call it simply
3311 `struct B'. Obviously, if you've got a real top-level definition for
3312 `struct B', or other nested definitions, this is going to cause
3313 problems.
3314
3315 Obviously, GDB can't fix this by itself, but it can at least avoid
3316 scribbling on existing structure type objects when new definitions
3317 appear. */
3318 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3319 || TYPE_STUB (type)))
3320 {
3321 complain_about_struct_wipeout (type);
3322
3323 /* It's probably best to return the type unchanged. */
3324 return type;
3325 }
3326
3327 back_to = make_cleanup (null_cleanup, 0);
3328
3329 INIT_CPLUS_SPECIFIC (type);
3330 TYPE_CODE (type) = type_code;
3331 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3332
3333 /* First comes the total size in bytes. */
3334
3335 {
3336 int nbits;
3337 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3338 if (nbits != 0)
3339 return error_type (pp, objfile);
3340 }
3341
3342 /* Now read the baseclasses, if any, read the regular C struct or C++
3343 class member fields, attach the fields to the type, read the C++
3344 member functions, attach them to the type, and then read any tilde
3345 field (baseclass specifier for the class holding the main vtable). */
3346
3347 if (!read_baseclasses (&fi, pp, type, objfile)
3348 || !read_struct_fields (&fi, pp, type, objfile)
3349 || !attach_fields_to_type (&fi, type, objfile)
3350 || !read_member_functions (&fi, pp, type, objfile)
3351 || !attach_fn_fields_to_type (&fi, type)
3352 || !read_tilde_fields (&fi, pp, type, objfile))
3353 {
3354 type = error_type (pp, objfile);
3355 }
3356
3357 do_cleanups (back_to);
3358 return (type);
3359 }
3360
3361 /* Read a definition of an array type,
3362 and create and return a suitable type object.
3363 Also creates a range type which represents the bounds of that
3364 array. */
3365
3366 static struct type *
3367 read_array_type (char **pp, struct type *type,
3368 struct objfile *objfile)
3369 {
3370 struct type *index_type, *element_type, *range_type;
3371 int lower, upper;
3372 int adjustable = 0;
3373 int nbits;
3374
3375 /* Format of an array type:
3376 "ar<index type>;lower;upper;<array_contents_type>".
3377 OS9000: "arlower,upper;<array_contents_type>".
3378
3379 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3380 for these, produce a type like float[][]. */
3381
3382 {
3383 index_type = read_type (pp, objfile);
3384 if (**pp != ';')
3385 /* Improper format of array type decl. */
3386 return error_type (pp, objfile);
3387 ++*pp;
3388 }
3389
3390 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3391 {
3392 (*pp)++;
3393 adjustable = 1;
3394 }
3395 lower = read_huge_number (pp, ';', &nbits, 0);
3396
3397 if (nbits != 0)
3398 return error_type (pp, objfile);
3399
3400 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3401 {
3402 (*pp)++;
3403 adjustable = 1;
3404 }
3405 upper = read_huge_number (pp, ';', &nbits, 0);
3406 if (nbits != 0)
3407 return error_type (pp, objfile);
3408
3409 element_type = read_type (pp, objfile);
3410
3411 if (adjustable)
3412 {
3413 lower = 0;
3414 upper = -1;
3415 }
3416
3417 range_type =
3418 create_range_type ((struct type *) NULL, index_type, lower, upper);
3419 type = create_array_type (type, element_type, range_type);
3420
3421 return type;
3422 }
3423
3424
3425 /* Read a definition of an enumeration type,
3426 and create and return a suitable type object.
3427 Also defines the symbols that represent the values of the type. */
3428
3429 static struct type *
3430 read_enum_type (char **pp, struct type *type,
3431 struct objfile *objfile)
3432 {
3433 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3434 char *p;
3435 char *name;
3436 long n;
3437 struct symbol *sym;
3438 int nsyms = 0;
3439 struct pending **symlist;
3440 struct pending *osyms, *syms;
3441 int o_nsyms;
3442 int nbits;
3443 int unsigned_enum = 1;
3444
3445 #if 0
3446 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3447 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3448 to do? For now, force all enum values to file scope. */
3449 if (within_function)
3450 symlist = &local_symbols;
3451 else
3452 #endif
3453 symlist = &file_symbols;
3454 osyms = *symlist;
3455 o_nsyms = osyms ? osyms->nsyms : 0;
3456
3457 /* The aix4 compiler emits an extra field before the enum members;
3458 my guess is it's a type of some sort. Just ignore it. */
3459 if (**pp == '-')
3460 {
3461 /* Skip over the type. */
3462 while (**pp != ':')
3463 (*pp)++;
3464
3465 /* Skip over the colon. */
3466 (*pp)++;
3467 }
3468
3469 /* Read the value-names and their values.
3470 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3471 A semicolon or comma instead of a NAME means the end. */
3472 while (**pp && **pp != ';' && **pp != ',')
3473 {
3474 STABS_CONTINUE (pp, objfile);
3475 p = *pp;
3476 while (*p != ':')
3477 p++;
3478 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3479 *pp = p + 1;
3480 n = read_huge_number (pp, ',', &nbits, 0);
3481 if (nbits != 0)
3482 return error_type (pp, objfile);
3483
3484 sym = (struct symbol *)
3485 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3486 memset (sym, 0, sizeof (struct symbol));
3487 DEPRECATED_SYMBOL_NAME (sym) = name;
3488 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3489 SYMBOL_CLASS (sym) = LOC_CONST;
3490 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3491 SYMBOL_VALUE (sym) = n;
3492 if (n < 0)
3493 unsigned_enum = 0;
3494 add_symbol_to_list (sym, symlist);
3495 nsyms++;
3496 }
3497
3498 if (**pp == ';')
3499 (*pp)++; /* Skip the semicolon. */
3500
3501 /* Now fill in the fields of the type-structure. */
3502
3503 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3504 TYPE_CODE (type) = TYPE_CODE_ENUM;
3505 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3506 if (unsigned_enum)
3507 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3508 TYPE_NFIELDS (type) = nsyms;
3509 TYPE_FIELDS (type) = (struct field *)
3510 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3511 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3512
3513 /* Find the symbols for the values and put them into the type.
3514 The symbols can be found in the symlist that we put them on
3515 to cause them to be defined. osyms contains the old value
3516 of that symlist; everything up to there was defined by us. */
3517 /* Note that we preserve the order of the enum constants, so
3518 that in something like "enum {FOO, LAST_THING=FOO}" we print
3519 FOO, not LAST_THING. */
3520
3521 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3522 {
3523 int last = syms == osyms ? o_nsyms : 0;
3524 int j = syms->nsyms;
3525 for (; --j >= last; --n)
3526 {
3527 struct symbol *xsym = syms->symbol[j];
3528 SYMBOL_TYPE (xsym) = type;
3529 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3530 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3531 TYPE_FIELD_BITSIZE (type, n) = 0;
3532 }
3533 if (syms == osyms)
3534 break;
3535 }
3536
3537 return type;
3538 }
3539
3540 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3541 typedefs in every file (for int, long, etc):
3542
3543 type = b <signed> <width> <format type>; <offset>; <nbits>
3544 signed = u or s.
3545 optional format type = c or b for char or boolean.
3546 offset = offset from high order bit to start bit of type.
3547 width is # bytes in object of this type, nbits is # bits in type.
3548
3549 The width/offset stuff appears to be for small objects stored in
3550 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3551 FIXME. */
3552
3553 static struct type *
3554 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3555 {
3556 int type_bits;
3557 int nbits;
3558 int signed_type;
3559 enum type_code code = TYPE_CODE_INT;
3560
3561 switch (**pp)
3562 {
3563 case 's':
3564 signed_type = 1;
3565 break;
3566 case 'u':
3567 signed_type = 0;
3568 break;
3569 default:
3570 return error_type (pp, objfile);
3571 }
3572 (*pp)++;
3573
3574 /* For some odd reason, all forms of char put a c here. This is strange
3575 because no other type has this honor. We can safely ignore this because
3576 we actually determine 'char'acterness by the number of bits specified in
3577 the descriptor.
3578 Boolean forms, e.g Fortran logical*X, put a b here. */
3579
3580 if (**pp == 'c')
3581 (*pp)++;
3582 else if (**pp == 'b')
3583 {
3584 code = TYPE_CODE_BOOL;
3585 (*pp)++;
3586 }
3587
3588 /* The first number appears to be the number of bytes occupied
3589 by this type, except that unsigned short is 4 instead of 2.
3590 Since this information is redundant with the third number,
3591 we will ignore it. */
3592 read_huge_number (pp, ';', &nbits, 0);
3593 if (nbits != 0)
3594 return error_type (pp, objfile);
3595
3596 /* The second number is always 0, so ignore it too. */
3597 read_huge_number (pp, ';', &nbits, 0);
3598 if (nbits != 0)
3599 return error_type (pp, objfile);
3600
3601 /* The third number is the number of bits for this type. */
3602 type_bits = read_huge_number (pp, 0, &nbits, 0);
3603 if (nbits != 0)
3604 return error_type (pp, objfile);
3605 /* The type *should* end with a semicolon. If it are embedded
3606 in a larger type the semicolon may be the only way to know where
3607 the type ends. If this type is at the end of the stabstring we
3608 can deal with the omitted semicolon (but we don't have to like
3609 it). Don't bother to complain(), Sun's compiler omits the semicolon
3610 for "void". */
3611 if (**pp == ';')
3612 ++(*pp);
3613
3614 if (type_bits == 0)
3615 return init_type (TYPE_CODE_VOID, 1,
3616 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3617 objfile);
3618 else
3619 return init_type (code,
3620 type_bits / TARGET_CHAR_BIT,
3621 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3622 objfile);
3623 }
3624
3625 static struct type *
3626 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3627 {
3628 int nbits;
3629 int details;
3630 int nbytes;
3631 struct type *rettype;
3632
3633 /* The first number has more details about the type, for example
3634 FN_COMPLEX. */
3635 details = read_huge_number (pp, ';', &nbits, 0);
3636 if (nbits != 0)
3637 return error_type (pp, objfile);
3638
3639 /* The second number is the number of bytes occupied by this type */
3640 nbytes = read_huge_number (pp, ';', &nbits, 0);
3641 if (nbits != 0)
3642 return error_type (pp, objfile);
3643
3644 if (details == NF_COMPLEX || details == NF_COMPLEX16
3645 || details == NF_COMPLEX32)
3646 {
3647 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3648 TYPE_TARGET_TYPE (rettype)
3649 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3650 return rettype;
3651 }
3652
3653 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3654 }
3655
3656 /* Read a number from the string pointed to by *PP.
3657 The value of *PP is advanced over the number.
3658 If END is nonzero, the character that ends the
3659 number must match END, or an error happens;
3660 and that character is skipped if it does match.
3661 If END is zero, *PP is left pointing to that character.
3662
3663 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3664 the number is represented in an octal representation, assume that
3665 it is represented in a 2's complement representation with a size of
3666 TWOS_COMPLEMENT_BITS.
3667
3668 If the number fits in a long, set *BITS to 0 and return the value.
3669 If not, set *BITS to be the number of bits in the number and return 0.
3670
3671 If encounter garbage, set *BITS to -1 and return 0. */
3672
3673 static long
3674 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3675 {
3676 char *p = *pp;
3677 int sign = 1;
3678 int sign_bit = 0;
3679 long n = 0;
3680 int radix = 10;
3681 char overflow = 0;
3682 int nbits = 0;
3683 int c;
3684 long upper_limit;
3685 int twos_complement_representation = 0;
3686
3687 if (*p == '-')
3688 {
3689 sign = -1;
3690 p++;
3691 }
3692
3693 /* Leading zero means octal. GCC uses this to output values larger
3694 than an int (because that would be hard in decimal). */
3695 if (*p == '0')
3696 {
3697 radix = 8;
3698 p++;
3699 }
3700
3701 /* Skip extra zeros. */
3702 while (*p == '0')
3703 p++;
3704
3705 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3706 {
3707 /* Octal, possibly signed. Check if we have enough chars for a
3708 negative number. */
3709
3710 size_t len;
3711 char *p1 = p;
3712 while ((c = *p1) >= '0' && c < '8')
3713 p1++;
3714
3715 len = p1 - p;
3716 if (len > twos_complement_bits / 3
3717 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3718 {
3719 /* Ok, we have enough characters for a signed value, check
3720 for signness by testing if the sign bit is set. */
3721 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3722 c = *p - '0';
3723 if (c & (1 << sign_bit))
3724 {
3725 /* Definitely signed. */
3726 twos_complement_representation = 1;
3727 sign = -1;
3728 }
3729 }
3730 }
3731
3732 upper_limit = LONG_MAX / radix;
3733
3734 while ((c = *p++) >= '0' && c < ('0' + radix))
3735 {
3736 if (n <= upper_limit)
3737 {
3738 if (twos_complement_representation)
3739 {
3740 /* Octal, signed, twos complement representation. In
3741 this case, n is the corresponding absolute value. */
3742 if (n == 0)
3743 {
3744 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3745 n = -sn;
3746 }
3747 else
3748 {
3749 n *= radix;
3750 n -= c - '0';
3751 }
3752 }
3753 else
3754 {
3755 /* unsigned representation */
3756 n *= radix;
3757 n += c - '0'; /* FIXME this overflows anyway */
3758 }
3759 }
3760 else
3761 overflow = 1;
3762
3763 /* This depends on large values being output in octal, which is
3764 what GCC does. */
3765 if (radix == 8)
3766 {
3767 if (nbits == 0)
3768 {
3769 if (c == '0')
3770 /* Ignore leading zeroes. */
3771 ;
3772 else if (c == '1')
3773 nbits = 1;
3774 else if (c == '2' || c == '3')
3775 nbits = 2;
3776 else
3777 nbits = 3;
3778 }
3779 else
3780 nbits += 3;
3781 }
3782 }
3783 if (end)
3784 {
3785 if (c && c != end)
3786 {
3787 if (bits != NULL)
3788 *bits = -1;
3789 return 0;
3790 }
3791 }
3792 else
3793 --p;
3794
3795 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3796 {
3797 /* We were supposed to parse a number with maximum
3798 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3799 if (bits != NULL)
3800 *bits = -1;
3801 return 0;
3802 }
3803
3804 *pp = p;
3805 if (overflow)
3806 {
3807 if (nbits == 0)
3808 {
3809 /* Large decimal constants are an error (because it is hard to
3810 count how many bits are in them). */
3811 if (bits != NULL)
3812 *bits = -1;
3813 return 0;
3814 }
3815
3816 /* -0x7f is the same as 0x80. So deal with it by adding one to
3817 the number of bits. Two's complement represention octals
3818 can't have a '-' in front. */
3819 if (sign == -1 && !twos_complement_representation)
3820 ++nbits;
3821 if (bits)
3822 *bits = nbits;
3823 }
3824 else
3825 {
3826 if (bits)
3827 *bits = 0;
3828 return n * sign;
3829 }
3830 /* It's *BITS which has the interesting information. */
3831 return 0;
3832 }
3833
3834 static struct type *
3835 read_range_type (char **pp, int typenums[2], int type_size,
3836 struct objfile *objfile)
3837 {
3838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3839 char *orig_pp = *pp;
3840 int rangenums[2];
3841 long n2, n3;
3842 int n2bits, n3bits;
3843 int self_subrange;
3844 struct type *result_type;
3845 struct type *index_type = NULL;
3846
3847 /* First comes a type we are a subrange of.
3848 In C it is usually 0, 1 or the type being defined. */
3849 if (read_type_number (pp, rangenums) != 0)
3850 return error_type (pp, objfile);
3851 self_subrange = (rangenums[0] == typenums[0] &&
3852 rangenums[1] == typenums[1]);
3853
3854 if (**pp == '=')
3855 {
3856 *pp = orig_pp;
3857 index_type = read_type (pp, objfile);
3858 }
3859
3860 /* A semicolon should now follow; skip it. */
3861 if (**pp == ';')
3862 (*pp)++;
3863
3864 /* The remaining two operands are usually lower and upper bounds
3865 of the range. But in some special cases they mean something else. */
3866 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3867 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3868
3869 if (n2bits == -1 || n3bits == -1)
3870 return error_type (pp, objfile);
3871
3872 if (index_type)
3873 goto handle_true_range;
3874
3875 /* If limits are huge, must be large integral type. */
3876 if (n2bits != 0 || n3bits != 0)
3877 {
3878 char got_signed = 0;
3879 char got_unsigned = 0;
3880 /* Number of bits in the type. */
3881 int nbits = 0;
3882
3883 /* If a type size attribute has been specified, the bounds of
3884 the range should fit in this size. If the lower bounds needs
3885 more bits than the upper bound, then the type is signed. */
3886 if (n2bits <= type_size && n3bits <= type_size)
3887 {
3888 if (n2bits == type_size && n2bits > n3bits)
3889 got_signed = 1;
3890 else
3891 got_unsigned = 1;
3892 nbits = type_size;
3893 }
3894 /* Range from 0 to <large number> is an unsigned large integral type. */
3895 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3896 {
3897 got_unsigned = 1;
3898 nbits = n3bits;
3899 }
3900 /* Range from <large number> to <large number>-1 is a large signed
3901 integral type. Take care of the case where <large number> doesn't
3902 fit in a long but <large number>-1 does. */
3903 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3904 || (n2bits != 0 && n3bits == 0
3905 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3906 && n3 == LONG_MAX))
3907 {
3908 got_signed = 1;
3909 nbits = n2bits;
3910 }
3911
3912 if (got_signed || got_unsigned)
3913 {
3914 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3915 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3916 objfile);
3917 }
3918 else
3919 return error_type (pp, objfile);
3920 }
3921
3922 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3923 if (self_subrange && n2 == 0 && n3 == 0)
3924 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3925
3926 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3927 is the width in bytes.
3928
3929 Fortran programs appear to use this for complex types also. To
3930 distinguish between floats and complex, g77 (and others?) seem
3931 to use self-subranges for the complexes, and subranges of int for
3932 the floats.
3933
3934 Also note that for complexes, g77 sets n2 to the size of one of
3935 the member floats, not the whole complex beast. My guess is that
3936 this was to work well with pre-COMPLEX versions of gdb. */
3937
3938 if (n3 == 0 && n2 > 0)
3939 {
3940 struct type *float_type
3941 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3942
3943 if (self_subrange)
3944 {
3945 struct type *complex_type =
3946 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3947 TYPE_TARGET_TYPE (complex_type) = float_type;
3948 return complex_type;
3949 }
3950 else
3951 return float_type;
3952 }
3953
3954 /* If the upper bound is -1, it must really be an unsigned integral. */
3955
3956 else if (n2 == 0 && n3 == -1)
3957 {
3958 int bits = type_size;
3959 if (bits <= 0)
3960 {
3961 /* We don't know its size. It is unsigned int or unsigned
3962 long. GCC 2.3.3 uses this for long long too, but that is
3963 just a GDB 3.5 compatibility hack. */
3964 bits = gdbarch_int_bit (gdbarch);
3965 }
3966
3967 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
3968 TYPE_FLAG_UNSIGNED, NULL, objfile);
3969 }
3970
3971 /* Special case: char is defined (Who knows why) as a subrange of
3972 itself with range 0-127. */
3973 else if (self_subrange && n2 == 0 && n3 == 127)
3974 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3975
3976 /* We used to do this only for subrange of self or subrange of int. */
3977 else if (n2 == 0)
3978 {
3979 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3980 "unsigned long", and we already checked for that,
3981 so don't need to test for it here. */
3982
3983 if (n3 < 0)
3984 /* n3 actually gives the size. */
3985 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3986 NULL, objfile);
3987
3988 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3989 unsigned n-byte integer. But do require n to be a power of
3990 two; we don't want 3- and 5-byte integers flying around. */
3991 {
3992 int bytes;
3993 unsigned long bits;
3994
3995 bits = n3;
3996 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
3997 bits >>= 8;
3998 if (bits == 0
3999 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4000 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4001 objfile);
4002 }
4003 }
4004 /* I think this is for Convex "long long". Since I don't know whether
4005 Convex sets self_subrange, I also accept that particular size regardless
4006 of self_subrange. */
4007 else if (n3 == 0 && n2 < 0
4008 && (self_subrange
4009 || n2 == -gdbarch_long_long_bit
4010 (gdbarch) / TARGET_CHAR_BIT))
4011 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4012 else if (n2 == -n3 - 1)
4013 {
4014 if (n3 == 0x7f)
4015 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4016 if (n3 == 0x7fff)
4017 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4018 if (n3 == 0x7fffffff)
4019 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4020 }
4021
4022 /* We have a real range type on our hands. Allocate space and
4023 return a real pointer. */
4024 handle_true_range:
4025
4026 if (self_subrange)
4027 index_type = builtin_type (gdbarch)->builtin_int;
4028 else
4029 index_type = *dbx_lookup_type (rangenums);
4030 if (index_type == NULL)
4031 {
4032 /* Does this actually ever happen? Is that why we are worrying
4033 about dealing with it rather than just calling error_type? */
4034
4035 complaint (&symfile_complaints,
4036 _("base type %d of range type is not defined"), rangenums[1]);
4037
4038 index_type = builtin_type (gdbarch)->builtin_int;
4039 }
4040
4041 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4042 return (result_type);
4043 }
4044
4045 /* Read in an argument list. This is a list of types, separated by commas
4046 and terminated with END. Return the list of types read in, or NULL
4047 if there is an error. */
4048
4049 static struct field *
4050 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4051 int *varargsp)
4052 {
4053 /* FIXME! Remove this arbitrary limit! */
4054 struct type *types[1024]; /* allow for fns of 1023 parameters */
4055 int n = 0, i;
4056 struct field *rval;
4057
4058 while (**pp != end)
4059 {
4060 if (**pp != ',')
4061 /* Invalid argument list: no ','. */
4062 return NULL;
4063 (*pp)++;
4064 STABS_CONTINUE (pp, objfile);
4065 types[n++] = read_type (pp, objfile);
4066 }
4067 (*pp)++; /* get past `end' (the ':' character) */
4068
4069 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4070 *varargsp = 1;
4071 else
4072 {
4073 n--;
4074 *varargsp = 0;
4075 }
4076
4077 rval = (struct field *) xmalloc (n * sizeof (struct field));
4078 memset (rval, 0, n * sizeof (struct field));
4079 for (i = 0; i < n; i++)
4080 rval[i].type = types[i];
4081 *nargsp = n;
4082 return rval;
4083 }
4084 \f
4085 /* Common block handling. */
4086
4087 /* List of symbols declared since the last BCOMM. This list is a tail
4088 of local_symbols. When ECOMM is seen, the symbols on the list
4089 are noted so their proper addresses can be filled in later,
4090 using the common block base address gotten from the assembler
4091 stabs. */
4092
4093 static struct pending *common_block;
4094 static int common_block_i;
4095
4096 /* Name of the current common block. We get it from the BCOMM instead of the
4097 ECOMM to match IBM documentation (even though IBM puts the name both places
4098 like everyone else). */
4099 static char *common_block_name;
4100
4101 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4102 to remain after this function returns. */
4103
4104 void
4105 common_block_start (char *name, struct objfile *objfile)
4106 {
4107 if (common_block_name != NULL)
4108 {
4109 complaint (&symfile_complaints,
4110 _("Invalid symbol data: common block within common block"));
4111 }
4112 common_block = local_symbols;
4113 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4114 common_block_name = obsavestring (name, strlen (name),
4115 &objfile->objfile_obstack);
4116 }
4117
4118 /* Process a N_ECOMM symbol. */
4119
4120 void
4121 common_block_end (struct objfile *objfile)
4122 {
4123 /* Symbols declared since the BCOMM are to have the common block
4124 start address added in when we know it. common_block and
4125 common_block_i point to the first symbol after the BCOMM in
4126 the local_symbols list; copy the list and hang it off the
4127 symbol for the common block name for later fixup. */
4128 int i;
4129 struct symbol *sym;
4130 struct pending *new = 0;
4131 struct pending *next;
4132 int j;
4133
4134 if (common_block_name == NULL)
4135 {
4136 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4137 return;
4138 }
4139
4140 sym = (struct symbol *)
4141 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4142 memset (sym, 0, sizeof (struct symbol));
4143 /* Note: common_block_name already saved on objfile_obstack */
4144 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4145 SYMBOL_CLASS (sym) = LOC_BLOCK;
4146
4147 /* Now we copy all the symbols which have been defined since the BCOMM. */
4148
4149 /* Copy all the struct pendings before common_block. */
4150 for (next = local_symbols;
4151 next != NULL && next != common_block;
4152 next = next->next)
4153 {
4154 for (j = 0; j < next->nsyms; j++)
4155 add_symbol_to_list (next->symbol[j], &new);
4156 }
4157
4158 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4159 NULL, it means copy all the local symbols (which we already did
4160 above). */
4161
4162 if (common_block != NULL)
4163 for (j = common_block_i; j < common_block->nsyms; j++)
4164 add_symbol_to_list (common_block->symbol[j], &new);
4165
4166 SYMBOL_TYPE (sym) = (struct type *) new;
4167
4168 /* Should we be putting local_symbols back to what it was?
4169 Does it matter? */
4170
4171 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4172 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4173 global_sym_chain[i] = sym;
4174 common_block_name = NULL;
4175 }
4176
4177 /* Add a common block's start address to the offset of each symbol
4178 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4179 the common block name). */
4180
4181 static void
4182 fix_common_block (struct symbol *sym, int valu)
4183 {
4184 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4185 for (; next; next = next->next)
4186 {
4187 int j;
4188 for (j = next->nsyms - 1; j >= 0; j--)
4189 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4190 }
4191 }
4192 \f
4193
4194
4195 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4196 See add_undefined_type for more details. */
4197
4198 static void
4199 add_undefined_type_noname (struct type *type, int typenums[2])
4200 {
4201 struct nat nat;
4202
4203 nat.typenums[0] = typenums [0];
4204 nat.typenums[1] = typenums [1];
4205 nat.type = type;
4206
4207 if (noname_undefs_length == noname_undefs_allocated)
4208 {
4209 noname_undefs_allocated *= 2;
4210 noname_undefs = (struct nat *)
4211 xrealloc ((char *) noname_undefs,
4212 noname_undefs_allocated * sizeof (struct nat));
4213 }
4214 noname_undefs[noname_undefs_length++] = nat;
4215 }
4216
4217 /* Add TYPE to the UNDEF_TYPES vector.
4218 See add_undefined_type for more details. */
4219
4220 static void
4221 add_undefined_type_1 (struct type *type)
4222 {
4223 if (undef_types_length == undef_types_allocated)
4224 {
4225 undef_types_allocated *= 2;
4226 undef_types = (struct type **)
4227 xrealloc ((char *) undef_types,
4228 undef_types_allocated * sizeof (struct type *));
4229 }
4230 undef_types[undef_types_length++] = type;
4231 }
4232
4233 /* What about types defined as forward references inside of a small lexical
4234 scope? */
4235 /* Add a type to the list of undefined types to be checked through
4236 once this file has been read in.
4237
4238 In practice, we actually maintain two such lists: The first list
4239 (UNDEF_TYPES) is used for types whose name has been provided, and
4240 concerns forward references (eg 'xs' or 'xu' forward references);
4241 the second list (NONAME_UNDEFS) is used for types whose name is
4242 unknown at creation time, because they were referenced through
4243 their type number before the actual type was declared.
4244 This function actually adds the given type to the proper list. */
4245
4246 static void
4247 add_undefined_type (struct type *type, int typenums[2])
4248 {
4249 if (TYPE_TAG_NAME (type) == NULL)
4250 add_undefined_type_noname (type, typenums);
4251 else
4252 add_undefined_type_1 (type);
4253 }
4254
4255 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4256
4257 void
4258 cleanup_undefined_types_noname (void)
4259 {
4260 int i;
4261
4262 for (i = 0; i < noname_undefs_length; i++)
4263 {
4264 struct nat nat = noname_undefs[i];
4265 struct type **type;
4266
4267 type = dbx_lookup_type (nat.typenums);
4268 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4269 {
4270 /* The instance flags of the undefined type are still unset,
4271 and needs to be copied over from the reference type.
4272 Since replace_type expects them to be identical, we need
4273 to set these flags manually before hand. */
4274 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4275 replace_type (nat.type, *type);
4276 }
4277 }
4278
4279 noname_undefs_length = 0;
4280 }
4281
4282 /* Go through each undefined type, see if it's still undefined, and fix it
4283 up if possible. We have two kinds of undefined types:
4284
4285 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4286 Fix: update array length using the element bounds
4287 and the target type's length.
4288 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4289 yet defined at the time a pointer to it was made.
4290 Fix: Do a full lookup on the struct/union tag. */
4291
4292 void
4293 cleanup_undefined_types_1 (void)
4294 {
4295 struct type **type;
4296
4297 /* Iterate over every undefined type, and look for a symbol whose type
4298 matches our undefined type. The symbol matches if:
4299 1. It is a typedef in the STRUCT domain;
4300 2. It has the same name, and same type code;
4301 3. The instance flags are identical.
4302
4303 It is important to check the instance flags, because we have seen
4304 examples where the debug info contained definitions such as:
4305
4306 "foo_t:t30=B31=xefoo_t:"
4307
4308 In this case, we have created an undefined type named "foo_t" whose
4309 instance flags is null (when processing "xefoo_t"), and then created
4310 another type with the same name, but with different instance flags
4311 ('B' means volatile). I think that the definition above is wrong,
4312 since the same type cannot be volatile and non-volatile at the same
4313 time, but we need to be able to cope with it when it happens. The
4314 approach taken here is to treat these two types as different. */
4315
4316 for (type = undef_types; type < undef_types + undef_types_length; type++)
4317 {
4318 switch (TYPE_CODE (*type))
4319 {
4320
4321 case TYPE_CODE_STRUCT:
4322 case TYPE_CODE_UNION:
4323 case TYPE_CODE_ENUM:
4324 {
4325 /* Check if it has been defined since. Need to do this here
4326 as well as in check_typedef to deal with the (legitimate in
4327 C though not C++) case of several types with the same name
4328 in different source files. */
4329 if (TYPE_STUB (*type))
4330 {
4331 struct pending *ppt;
4332 int i;
4333 /* Name of the type, without "struct" or "union" */
4334 char *typename = TYPE_TAG_NAME (*type);
4335
4336 if (typename == NULL)
4337 {
4338 complaint (&symfile_complaints, _("need a type name"));
4339 break;
4340 }
4341 for (ppt = file_symbols; ppt; ppt = ppt->next)
4342 {
4343 for (i = 0; i < ppt->nsyms; i++)
4344 {
4345 struct symbol *sym = ppt->symbol[i];
4346
4347 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4348 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4349 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4350 TYPE_CODE (*type))
4351 && (TYPE_INSTANCE_FLAGS (*type) ==
4352 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4353 && strcmp (DEPRECATED_SYMBOL_NAME (sym),
4354 typename) == 0)
4355 replace_type (*type, SYMBOL_TYPE (sym));
4356 }
4357 }
4358 }
4359 }
4360 break;
4361
4362 default:
4363 {
4364 complaint (&symfile_complaints,
4365 _("forward-referenced types left unresolved, "
4366 "type code %d."),
4367 TYPE_CODE (*type));
4368 }
4369 break;
4370 }
4371 }
4372
4373 undef_types_length = 0;
4374 }
4375
4376 /* Try to fix all the undefined types we ecountered while processing
4377 this unit. */
4378
4379 void
4380 cleanup_undefined_types (void)
4381 {
4382 cleanup_undefined_types_1 ();
4383 cleanup_undefined_types_noname ();
4384 }
4385
4386 /* Scan through all of the global symbols defined in the object file,
4387 assigning values to the debugging symbols that need to be assigned
4388 to. Get these symbols from the minimal symbol table. */
4389
4390 void
4391 scan_file_globals (struct objfile *objfile)
4392 {
4393 int hash;
4394 struct minimal_symbol *msymbol;
4395 struct symbol *sym, *prev;
4396 struct objfile *resolve_objfile;
4397
4398 /* SVR4 based linkers copy referenced global symbols from shared
4399 libraries to the main executable.
4400 If we are scanning the symbols for a shared library, try to resolve
4401 them from the minimal symbols of the main executable first. */
4402
4403 if (symfile_objfile && objfile != symfile_objfile)
4404 resolve_objfile = symfile_objfile;
4405 else
4406 resolve_objfile = objfile;
4407
4408 while (1)
4409 {
4410 /* Avoid expensive loop through all minimal symbols if there are
4411 no unresolved symbols. */
4412 for (hash = 0; hash < HASHSIZE; hash++)
4413 {
4414 if (global_sym_chain[hash])
4415 break;
4416 }
4417 if (hash >= HASHSIZE)
4418 return;
4419
4420 for (msymbol = resolve_objfile->msymbols;
4421 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4422 msymbol++)
4423 {
4424 QUIT;
4425
4426 /* Skip static symbols. */
4427 switch (MSYMBOL_TYPE (msymbol))
4428 {
4429 case mst_file_text:
4430 case mst_file_data:
4431 case mst_file_bss:
4432 continue;
4433 default:
4434 break;
4435 }
4436
4437 prev = NULL;
4438
4439 /* Get the hash index and check all the symbols
4440 under that hash index. */
4441
4442 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4443
4444 for (sym = global_sym_chain[hash]; sym;)
4445 {
4446 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4447 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4448 {
4449 /* Splice this symbol out of the hash chain and
4450 assign the value we have to it. */
4451 if (prev)
4452 {
4453 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4454 }
4455 else
4456 {
4457 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4458 }
4459
4460 /* Check to see whether we need to fix up a common block. */
4461 /* Note: this code might be executed several times for
4462 the same symbol if there are multiple references. */
4463 if (sym)
4464 {
4465 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4466 {
4467 fix_common_block (sym,
4468 SYMBOL_VALUE_ADDRESS (msymbol));
4469 }
4470 else
4471 {
4472 SYMBOL_VALUE_ADDRESS (sym)
4473 = SYMBOL_VALUE_ADDRESS (msymbol);
4474 }
4475 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4476 }
4477
4478 if (prev)
4479 {
4480 sym = SYMBOL_VALUE_CHAIN (prev);
4481 }
4482 else
4483 {
4484 sym = global_sym_chain[hash];
4485 }
4486 }
4487 else
4488 {
4489 prev = sym;
4490 sym = SYMBOL_VALUE_CHAIN (sym);
4491 }
4492 }
4493 }
4494 if (resolve_objfile == objfile)
4495 break;
4496 resolve_objfile = objfile;
4497 }
4498
4499 /* Change the storage class of any remaining unresolved globals to
4500 LOC_UNRESOLVED and remove them from the chain. */
4501 for (hash = 0; hash < HASHSIZE; hash++)
4502 {
4503 sym = global_sym_chain[hash];
4504 while (sym)
4505 {
4506 prev = sym;
4507 sym = SYMBOL_VALUE_CHAIN (sym);
4508
4509 /* Change the symbol address from the misleading chain value
4510 to address zero. */
4511 SYMBOL_VALUE_ADDRESS (prev) = 0;
4512
4513 /* Complain about unresolved common block symbols. */
4514 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4515 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4516 else
4517 complaint (&symfile_complaints,
4518 _("%s: common block `%s' from global_sym_chain unresolved"),
4519 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4520 }
4521 }
4522 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4523 }
4524
4525 /* Initialize anything that needs initializing when starting to read
4526 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4527 to a psymtab. */
4528
4529 void
4530 stabsread_init (void)
4531 {
4532 }
4533
4534 /* Initialize anything that needs initializing when a completely new
4535 symbol file is specified (not just adding some symbols from another
4536 file, e.g. a shared library). */
4537
4538 void
4539 stabsread_new_init (void)
4540 {
4541 /* Empty the hash table of global syms looking for values. */
4542 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4543 }
4544
4545 /* Initialize anything that needs initializing at the same time as
4546 start_symtab() is called. */
4547
4548 void
4549 start_stabs (void)
4550 {
4551 global_stabs = NULL; /* AIX COFF */
4552 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4553 n_this_object_header_files = 1;
4554 type_vector_length = 0;
4555 type_vector = (struct type **) 0;
4556
4557 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4558 common_block_name = NULL;
4559 }
4560
4561 /* Call after end_symtab() */
4562
4563 void
4564 end_stabs (void)
4565 {
4566 if (type_vector)
4567 {
4568 xfree (type_vector);
4569 }
4570 type_vector = 0;
4571 type_vector_length = 0;
4572 previous_stab_code = 0;
4573 }
4574
4575 void
4576 finish_global_stabs (struct objfile *objfile)
4577 {
4578 if (global_stabs)
4579 {
4580 patch_block_stabs (global_symbols, global_stabs, objfile);
4581 xfree (global_stabs);
4582 global_stabs = NULL;
4583 }
4584 }
4585
4586 /* Find the end of the name, delimited by a ':', but don't match
4587 ObjC symbols which look like -[Foo bar::]:bla. */
4588 static char *
4589 find_name_end (char *name)
4590 {
4591 char *s = name;
4592 if (s[0] == '-' || *s == '+')
4593 {
4594 /* Must be an ObjC method symbol. */
4595 if (s[1] != '[')
4596 {
4597 error (_("invalid symbol name \"%s\""), name);
4598 }
4599 s = strchr (s, ']');
4600 if (s == NULL)
4601 {
4602 error (_("invalid symbol name \"%s\""), name);
4603 }
4604 return strchr (s, ':');
4605 }
4606 else
4607 {
4608 return strchr (s, ':');
4609 }
4610 }
4611
4612 /* Initializer for this module */
4613
4614 void
4615 _initialize_stabsread (void)
4616 {
4617 undef_types_allocated = 20;
4618 undef_types_length = 0;
4619 undef_types = (struct type **)
4620 xmalloc (undef_types_allocated * sizeof (struct type *));
4621
4622 noname_undefs_allocated = 20;
4623 noname_undefs_length = 0;
4624 noname_undefs = (struct nat *)
4625 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4626 }
This page took 0.16908 seconds and 5 git commands to generate.