* ada-lang.c (ada_decode_symbol): Check and set 'ada_mangled'.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, CORE_ADDR);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = allocate_symbol (objfile);
383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
385 SYMBOL_SET_LINKAGE_NAME
386 (sym, obstack_copy0 (&objfile->objfile_obstack,
387 name, pp - name));
388 pp += 2;
389 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
390 {
391 /* I don't think the linker does this with functions,
392 so as far as I know this is never executed.
393 But it doesn't hurt to check. */
394 SYMBOL_TYPE (sym) =
395 lookup_function_type (read_type (&pp, objfile));
396 }
397 else
398 {
399 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
400 }
401 add_symbol_to_list (sym, &global_symbols);
402 }
403 else
404 {
405 pp += 2;
406 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
407 {
408 SYMBOL_TYPE (sym) =
409 lookup_function_type (read_type (&pp, objfile));
410 }
411 else
412 {
413 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
414 }
415 }
416 }
417 }
418 }
419 \f
420
421 /* Read a number by which a type is referred to in dbx data,
422 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
423 Just a single number N is equivalent to (0,N).
424 Return the two numbers by storing them in the vector TYPENUMS.
425 TYPENUMS will then be used as an argument to dbx_lookup_type.
426
427 Returns 0 for success, -1 for error. */
428
429 static int
430 read_type_number (char **pp, int *typenums)
431 {
432 int nbits;
433
434 if (**pp == '(')
435 {
436 (*pp)++;
437 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
438 if (nbits != 0)
439 return -1;
440 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
441 if (nbits != 0)
442 return -1;
443 }
444 else
445 {
446 typenums[0] = 0;
447 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
448 if (nbits != 0)
449 return -1;
450 }
451 return 0;
452 }
453 \f
454
455 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
456 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
457 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
458 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
459
460 /* Structure for storing pointers to reference definitions for fast lookup
461 during "process_later". */
462
463 struct ref_map
464 {
465 char *stabs;
466 CORE_ADDR value;
467 struct symbol *sym;
468 };
469
470 #define MAX_CHUNK_REFS 100
471 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
472 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
473
474 static struct ref_map *ref_map;
475
476 /* Ptr to free cell in chunk's linked list. */
477 static int ref_count = 0;
478
479 /* Number of chunks malloced. */
480 static int ref_chunk = 0;
481
482 /* This file maintains a cache of stabs aliases found in the symbol
483 table. If the symbol table changes, this cache must be cleared
484 or we are left holding onto data in invalid obstacks. */
485 void
486 stabsread_clear_cache (void)
487 {
488 ref_count = 0;
489 ref_chunk = 0;
490 }
491
492 /* Create array of pointers mapping refids to symbols and stab strings.
493 Add pointers to reference definition symbols and/or their values as we
494 find them, using their reference numbers as our index.
495 These will be used later when we resolve references. */
496 void
497 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
498 {
499 if (ref_count == 0)
500 ref_chunk = 0;
501 if (refnum >= ref_count)
502 ref_count = refnum + 1;
503 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
504 {
505 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
506 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
507
508 ref_map = (struct ref_map *)
509 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
510 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
511 new_chunks * REF_CHUNK_SIZE);
512 ref_chunk += new_chunks;
513 }
514 ref_map[refnum].stabs = stabs;
515 ref_map[refnum].sym = sym;
516 ref_map[refnum].value = value;
517 }
518
519 /* Return defined sym for the reference REFNUM. */
520 struct symbol *
521 ref_search (int refnum)
522 {
523 if (refnum < 0 || refnum > ref_count)
524 return 0;
525 return ref_map[refnum].sym;
526 }
527
528 /* Parse a reference id in STRING and return the resulting
529 reference number. Move STRING beyond the reference id. */
530
531 static int
532 process_reference (char **string)
533 {
534 char *p;
535 int refnum = 0;
536
537 if (**string != '#')
538 return 0;
539
540 /* Advance beyond the initial '#'. */
541 p = *string + 1;
542
543 /* Read number as reference id. */
544 while (*p && isdigit (*p))
545 {
546 refnum = refnum * 10 + *p - '0';
547 p++;
548 }
549 *string = p;
550 return refnum;
551 }
552
553 /* If STRING defines a reference, store away a pointer to the reference
554 definition for later use. Return the reference number. */
555
556 int
557 symbol_reference_defined (char **string)
558 {
559 char *p = *string;
560 int refnum = 0;
561
562 refnum = process_reference (&p);
563
564 /* Defining symbols end in '='. */
565 if (*p == '=')
566 {
567 /* Symbol is being defined here. */
568 *string = p + 1;
569 return refnum;
570 }
571 else
572 {
573 /* Must be a reference. Either the symbol has already been defined,
574 or this is a forward reference to it. */
575 *string = p;
576 return -1;
577 }
578 }
579
580 static int
581 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
582 {
583 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
584
585 if (regno >= gdbarch_num_regs (gdbarch)
586 + gdbarch_num_pseudo_regs (gdbarch))
587 {
588 reg_value_complaint (regno,
589 gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch),
591 SYMBOL_PRINT_NAME (sym));
592
593 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
594 }
595
596 return regno;
597 }
598
599 static const struct symbol_register_ops stab_register_funcs = {
600 stab_reg_to_regnum
601 };
602
603 /* The "aclass" indices for computed symbols. */
604
605 static int stab_register_index;
606 static int stab_regparm_index;
607
608 struct symbol *
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 struct objfile *objfile)
611 {
612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
613 struct symbol *sym;
614 char *p = (char *) find_name_end (string);
615 int deftype;
616 int synonym = 0;
617 int i;
618 char *new_name = NULL;
619
620 /* We would like to eliminate nameless symbols, but keep their types.
621 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622 to type 2, but, should not create a symbol to address that type. Since
623 the symbol will be nameless, there is no way any user can refer to it. */
624
625 int nameless;
626
627 /* Ignore syms with empty names. */
628 if (string[0] == 0)
629 return 0;
630
631 /* Ignore old-style symbols from cc -go. */
632 if (p == 0)
633 return 0;
634
635 while (p[1] == ':')
636 {
637 p += 2;
638 p = strchr (p, ':');
639 if (p == NULL)
640 {
641 complaint (&symfile_complaints,
642 _("Bad stabs string '%s'"), string);
643 return NULL;
644 }
645 }
646
647 /* If a nameless stab entry, all we need is the type, not the symbol.
648 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
649 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
650
651 current_symbol = sym = allocate_symbol (objfile);
652
653 switch (type & N_TYPE)
654 {
655 case N_TEXT:
656 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
657 break;
658 case N_DATA:
659 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
660 break;
661 case N_BSS:
662 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
663 break;
664 }
665
666 if (processing_gcc_compilation)
667 {
668 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
669 number of bytes occupied by a type or object, which we ignore. */
670 SYMBOL_LINE (sym) = desc;
671 }
672 else
673 {
674 SYMBOL_LINE (sym) = 0; /* unknown */
675 }
676
677 if (is_cplus_marker (string[0]))
678 {
679 /* Special GNU C++ names. */
680 switch (string[1])
681 {
682 case 't':
683 SYMBOL_SET_LINKAGE_NAME (sym, "this");
684 break;
685
686 case 'v': /* $vtbl_ptr_type */
687 goto normal;
688
689 case 'e':
690 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
691 break;
692
693 case '_':
694 /* This was an anonymous type that was never fixed up. */
695 goto normal;
696
697 case 'X':
698 /* SunPRO (3.0 at least) static variable encoding. */
699 if (gdbarch_static_transform_name_p (gdbarch))
700 goto normal;
701 /* ... fall through ... */
702
703 default:
704 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
705 string);
706 goto normal; /* Do *something* with it. */
707 }
708 }
709 else
710 {
711 normal:
712 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
713 &objfile->objfile_obstack);
714 if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 {
716 char *name = alloca (p - string + 1);
717
718 memcpy (name, string, p - string);
719 name[p - string] = '\0';
720 new_name = cp_canonicalize_string (name);
721 }
722 if (new_name != NULL)
723 {
724 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 xfree (new_name);
726 }
727 else
728 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729
730 if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 cp_scan_for_anonymous_namespaces (sym, objfile);
732
733 }
734 p++;
735
736 /* Determine the type of name being defined. */
737 #if 0
738 /* Getting GDB to correctly skip the symbol on an undefined symbol
739 descriptor and not ever dump core is a very dodgy proposition if
740 we do things this way. I say the acorn RISC machine can just
741 fix their compiler. */
742 /* The Acorn RISC machine's compiler can put out locals that don't
743 start with "234=" or "(3,4)=", so assume anything other than the
744 deftypes we know how to handle is a local. */
745 if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747 if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749 deftype = 'l';
750 else
751 deftype = *p++;
752
753 switch (deftype)
754 {
755 case 'c':
756 /* c is a special case, not followed by a type-number.
757 SYMBOL:c=iVALUE for an integer constant symbol.
758 SYMBOL:c=rVALUE for a floating constant symbol.
759 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760 e.g. "b:c=e6,0" for "const b = blob1"
761 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
762 if (*p != '=')
763 {
764 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
765 SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 add_symbol_to_list (sym, &file_symbols);
768 return sym;
769 }
770 ++p;
771 switch (*p++)
772 {
773 case 'r':
774 {
775 double d = atof (p);
776 gdb_byte *dbl_valu;
777 struct type *dbl_type;
778
779 /* FIXME-if-picky-about-floating-accuracy: Should be using
780 target arithmetic to get the value. real.c in GCC
781 probably has the necessary code. */
782
783 dbl_type = objfile_type (objfile)->builtin_double;
784 dbl_valu =
785 obstack_alloc (&objfile->objfile_obstack,
786 TYPE_LENGTH (dbl_type));
787 store_typed_floating (dbl_valu, dbl_type, d);
788
789 SYMBOL_TYPE (sym) = dbl_type;
790 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
792 }
793 break;
794 case 'i':
795 {
796 /* Defining integer constants this way is kind of silly,
797 since 'e' constants allows the compiler to give not
798 only the value, but the type as well. C has at least
799 int, long, unsigned int, and long long as constant
800 types; other languages probably should have at least
801 unsigned as well as signed constants. */
802
803 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 SYMBOL_VALUE (sym) = atoi (p);
805 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
806 }
807 break;
808
809 case 'c':
810 {
811 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 SYMBOL_VALUE (sym) = atoi (p);
813 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
814 }
815 break;
816
817 case 's':
818 {
819 struct type *range_type;
820 int ind = 0;
821 char quote = *p++;
822 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 gdb_byte *string_value;
824
825 if (quote != '\'' && quote != '"')
826 {
827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 add_symbol_to_list (sym, &file_symbols);
831 return sym;
832 }
833
834 /* Find matching quote, rejecting escaped quotes. */
835 while (*p && *p != quote)
836 {
837 if (*p == '\\' && p[1] == quote)
838 {
839 string_local[ind] = (gdb_byte) quote;
840 ind++;
841 p += 2;
842 }
843 else if (*p)
844 {
845 string_local[ind] = (gdb_byte) (*p);
846 ind++;
847 p++;
848 }
849 }
850 if (*p != quote)
851 {
852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* NULL terminate the string. */
860 string_local[ind] = 0;
861 range_type
862 = create_range_type (NULL,
863 objfile_type (objfile)->builtin_int,
864 0, ind);
865 SYMBOL_TYPE (sym) = create_array_type (NULL,
866 objfile_type (objfile)->builtin_char,
867 range_type);
868 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 memcpy (string_value, string_local, ind + 1);
870 p++;
871
872 SYMBOL_VALUE_BYTES (sym) = string_value;
873 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
874 }
875 break;
876
877 case 'e':
878 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 can be represented as integral.
880 e.g. "b:c=e6,0" for "const b = blob1"
881 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
882 {
883 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
884 SYMBOL_TYPE (sym) = read_type (&p, objfile);
885
886 if (*p != ',')
887 {
888 SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 break;
890 }
891 ++p;
892
893 /* If the value is too big to fit in an int (perhaps because
894 it is unsigned), or something like that, we silently get
895 a bogus value. The type and everything else about it is
896 correct. Ideally, we should be using whatever we have
897 available for parsing unsigned and long long values,
898 however. */
899 SYMBOL_VALUE (sym) = atoi (p);
900 }
901 break;
902 default:
903 {
904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 }
907 }
908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909 add_symbol_to_list (sym, &file_symbols);
910 return sym;
911
912 case 'C':
913 /* The name of a caught exception. */
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
916 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917 SYMBOL_VALUE_ADDRESS (sym) = valu;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'f':
922 /* A static function definition. */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
925 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926 add_symbol_to_list (sym, &file_symbols);
927 /* fall into process_function_types. */
928
929 process_function_types:
930 /* Function result types are described as the result type in stabs.
931 We need to convert this to the function-returning-type-X type
932 in GDB. E.g. "int" is converted to "function returning int". */
933 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935
936 /* All functions in C++ have prototypes. Stabs does not offer an
937 explicit way to identify prototyped or unprototyped functions,
938 but both GCC and Sun CC emit stabs for the "call-as" type rather
939 than the "declared-as" type for unprototyped functions, so
940 we treat all functions as if they were prototyped. This is used
941 primarily for promotion when calling the function from GDB. */
942 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943
944 /* fall into process_prototype_types. */
945
946 process_prototype_types:
947 /* Sun acc puts declared types of arguments here. */
948 if (*p == ';')
949 {
950 struct type *ftype = SYMBOL_TYPE (sym);
951 int nsemi = 0;
952 int nparams = 0;
953 char *p1 = p;
954
955 /* Obtain a worst case guess for the number of arguments
956 by counting the semicolons. */
957 while (*p1)
958 {
959 if (*p1++ == ';')
960 nsemi++;
961 }
962
963 /* Allocate parameter information fields and fill them in. */
964 TYPE_FIELDS (ftype) = (struct field *)
965 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 while (*p++ == ';')
967 {
968 struct type *ptype;
969
970 /* A type number of zero indicates the start of varargs.
971 FIXME: GDB currently ignores vararg functions. */
972 if (p[0] == '0' && p[1] == '\0')
973 break;
974 ptype = read_type (&p, objfile);
975
976 /* The Sun compilers mark integer arguments, which should
977 be promoted to the width of the calling conventions, with
978 a type which references itself. This type is turned into
979 a TYPE_CODE_VOID type by read_type, and we have to turn
980 it back into builtin_int here.
981 FIXME: Do we need a new builtin_promoted_int_arg ? */
982 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 ptype = objfile_type (objfile)->builtin_int;
984 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 }
987 TYPE_NFIELDS (ftype) = nparams;
988 TYPE_PROTOTYPED (ftype) = 1;
989 }
990 break;
991
992 case 'F':
993 /* A global function definition. */
994 SYMBOL_TYPE (sym) = read_type (&p, objfile);
995 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
996 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997 add_symbol_to_list (sym, &global_symbols);
998 goto process_function_types;
999
1000 case 'G':
1001 /* For a class G (global) symbol, it appears that the
1002 value is not correct. It is necessary to search for the
1003 corresponding linker definition to find the value.
1004 These definitions appear at the end of the namelist. */
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008 /* Don't add symbol references to global_sym_chain.
1009 Symbol references don't have valid names and wont't match up with
1010 minimal symbols when the global_sym_chain is relocated.
1011 We'll fixup symbol references when we fixup the defining symbol. */
1012 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 {
1014 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 global_sym_chain[i] = sym;
1017 }
1018 add_symbol_to_list (sym, &global_symbols);
1019 break;
1020
1021 /* This case is faked by a conditional above,
1022 when there is no code letter in the dbx data.
1023 Dbx data never actually contains 'l'. */
1024 case 's':
1025 case 'l':
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1028 SYMBOL_VALUE (sym) = valu;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 add_symbol_to_list (sym, &local_symbols);
1031 break;
1032
1033 case 'p':
1034 if (*p == 'F')
1035 /* pF is a two-letter code that means a function parameter in Fortran.
1036 The type-number specifies the type of the return value.
1037 Translate it into a pointer-to-function type. */
1038 {
1039 p++;
1040 SYMBOL_TYPE (sym)
1041 = lookup_pointer_type
1042 (lookup_function_type (read_type (&p, objfile)));
1043 }
1044 else
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046
1047 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1048 SYMBOL_VALUE (sym) = valu;
1049 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050 SYMBOL_IS_ARGUMENT (sym) = 1;
1051 add_symbol_to_list (sym, &local_symbols);
1052
1053 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 {
1055 /* On little-endian machines, this crud is never necessary,
1056 and, if the extra bytes contain garbage, is harmful. */
1057 break;
1058 }
1059
1060 /* If it's gcc-compiled, if it says `short', believe it. */
1061 if (processing_gcc_compilation
1062 || gdbarch_believe_pcc_promotion (gdbarch))
1063 break;
1064
1065 if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 {
1067 /* If PCC says a parameter is a short or a char, it is
1068 really an int. */
1069 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 {
1073 SYMBOL_TYPE (sym) =
1074 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 ? objfile_type (objfile)->builtin_unsigned_int
1076 : objfile_type (objfile)->builtin_int;
1077 }
1078 break;
1079 }
1080
1081 case 'P':
1082 /* acc seems to use P to declare the prototypes of functions that
1083 are referenced by this file. gdb is not prepared to deal
1084 with this extra information. FIXME, it ought to. */
1085 if (type == N_FUN)
1086 {
1087 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 goto process_prototype_types;
1089 }
1090 /*FALLTHROUGH */
1091
1092 case 'R':
1093 /* Parameter which is in a register. */
1094 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1096 SYMBOL_IS_ARGUMENT (sym) = 1;
1097 SYMBOL_VALUE (sym) = valu;
1098 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1099 add_symbol_to_list (sym, &local_symbols);
1100 break;
1101
1102 case 'r':
1103 /* Register variable (either global or local). */
1104 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1105 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1106 SYMBOL_VALUE (sym) = valu;
1107 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1108 if (within_function)
1109 {
1110 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1111 the same name to represent an argument passed in a
1112 register. GCC uses 'P' for the same case. So if we find
1113 such a symbol pair we combine it into one 'P' symbol.
1114 For Sun cc we need to do this regardless of
1115 stabs_argument_has_addr, because the compiler puts out
1116 the 'p' symbol even if it never saves the argument onto
1117 the stack.
1118
1119 On most machines, we want to preserve both symbols, so
1120 that we can still get information about what is going on
1121 with the stack (VAX for computing args_printed, using
1122 stack slots instead of saved registers in backtraces,
1123 etc.).
1124
1125 Note that this code illegally combines
1126 main(argc) struct foo argc; { register struct foo argc; }
1127 but this case is considered pathological and causes a warning
1128 from a decent compiler. */
1129
1130 if (local_symbols
1131 && local_symbols->nsyms > 0
1132 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1133 {
1134 struct symbol *prev_sym;
1135
1136 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1137 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1138 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1139 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1140 SYMBOL_LINKAGE_NAME (sym)) == 0)
1141 {
1142 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1143 /* Use the type from the LOC_REGISTER; that is the type
1144 that is actually in that register. */
1145 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1146 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1147 sym = prev_sym;
1148 break;
1149 }
1150 }
1151 add_symbol_to_list (sym, &local_symbols);
1152 }
1153 else
1154 add_symbol_to_list (sym, &file_symbols);
1155 break;
1156
1157 case 'S':
1158 /* Static symbol at top level of file. */
1159 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1160 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1161 SYMBOL_VALUE_ADDRESS (sym) = valu;
1162 if (gdbarch_static_transform_name_p (gdbarch)
1163 && gdbarch_static_transform_name (gdbarch,
1164 SYMBOL_LINKAGE_NAME (sym))
1165 != SYMBOL_LINKAGE_NAME (sym))
1166 {
1167 struct minimal_symbol *msym;
1168
1169 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1170 NULL, objfile);
1171 if (msym != NULL)
1172 {
1173 const char *new_name = gdbarch_static_transform_name
1174 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1175
1176 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1177 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1178 }
1179 }
1180 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1181 add_symbol_to_list (sym, &file_symbols);
1182 break;
1183
1184 case 't':
1185 /* In Ada, there is no distinction between typedef and non-typedef;
1186 any type declaration implicitly has the equivalent of a typedef,
1187 and thus 't' is in fact equivalent to 'Tt'.
1188
1189 Therefore, for Ada units, we check the character immediately
1190 before the 't', and if we do not find a 'T', then make sure to
1191 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1192 will be stored in the VAR_DOMAIN). If the symbol was indeed
1193 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1194 elsewhere, so we don't need to take care of that.
1195
1196 This is important to do, because of forward references:
1197 The cleanup of undefined types stored in undef_types only uses
1198 STRUCT_DOMAIN symbols to perform the replacement. */
1199 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1200
1201 /* Typedef */
1202 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1203
1204 /* For a nameless type, we don't want a create a symbol, thus we
1205 did not use `sym'. Return without further processing. */
1206 if (nameless)
1207 return NULL;
1208
1209 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1210 SYMBOL_VALUE (sym) = valu;
1211 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1212 /* C++ vagaries: we may have a type which is derived from
1213 a base type which did not have its name defined when the
1214 derived class was output. We fill in the derived class's
1215 base part member's name here in that case. */
1216 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1217 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1218 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1219 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1220 {
1221 int j;
1222
1223 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1224 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1225 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1226 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1227 }
1228
1229 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1230 {
1231 /* gcc-2.6 or later (when using -fvtable-thunks)
1232 emits a unique named type for a vtable entry.
1233 Some gdb code depends on that specific name. */
1234 extern const char vtbl_ptr_name[];
1235
1236 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1237 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1238 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1239 {
1240 /* If we are giving a name to a type such as "pointer to
1241 foo" or "function returning foo", we better not set
1242 the TYPE_NAME. If the program contains "typedef char
1243 *caddr_t;", we don't want all variables of type char
1244 * to print as caddr_t. This is not just a
1245 consequence of GDB's type management; PCC and GCC (at
1246 least through version 2.4) both output variables of
1247 either type char * or caddr_t with the type number
1248 defined in the 't' symbol for caddr_t. If a future
1249 compiler cleans this up it GDB is not ready for it
1250 yet, but if it becomes ready we somehow need to
1251 disable this check (without breaking the PCC/GCC2.4
1252 case).
1253
1254 Sigh.
1255
1256 Fortunately, this check seems not to be necessary
1257 for anything except pointers or functions. */
1258 /* ezannoni: 2000-10-26. This seems to apply for
1259 versions of gcc older than 2.8. This was the original
1260 problem: with the following code gdb would tell that
1261 the type for name1 is caddr_t, and func is char().
1262
1263 typedef char *caddr_t;
1264 char *name2;
1265 struct x
1266 {
1267 char *name1;
1268 } xx;
1269 char *func()
1270 {
1271 }
1272 main () {}
1273 */
1274
1275 /* Pascal accepts names for pointer types. */
1276 if (current_subfile->language == language_pascal)
1277 {
1278 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1279 }
1280 }
1281 else
1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1283 }
1284
1285 add_symbol_to_list (sym, &file_symbols);
1286
1287 if (synonym)
1288 {
1289 /* Create the STRUCT_DOMAIN clone. */
1290 struct symbol *struct_sym = allocate_symbol (objfile);
1291
1292 *struct_sym = *sym;
1293 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1294 SYMBOL_VALUE (struct_sym) = valu;
1295 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1296 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1297 TYPE_NAME (SYMBOL_TYPE (sym))
1298 = obconcat (&objfile->objfile_obstack,
1299 SYMBOL_LINKAGE_NAME (sym),
1300 (char *) NULL);
1301 add_symbol_to_list (struct_sym, &file_symbols);
1302 }
1303
1304 break;
1305
1306 case 'T':
1307 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1308 by 't' which means we are typedef'ing it as well. */
1309 synonym = *p == 't';
1310
1311 if (synonym)
1312 p++;
1313
1314 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1315
1316 /* For a nameless type, we don't want a create a symbol, thus we
1317 did not use `sym'. Return without further processing. */
1318 if (nameless)
1319 return NULL;
1320
1321 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1322 SYMBOL_VALUE (sym) = valu;
1323 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1324 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1325 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1326 = obconcat (&objfile->objfile_obstack,
1327 SYMBOL_LINKAGE_NAME (sym),
1328 (char *) NULL);
1329 add_symbol_to_list (sym, &file_symbols);
1330
1331 if (synonym)
1332 {
1333 /* Clone the sym and then modify it. */
1334 struct symbol *typedef_sym = allocate_symbol (objfile);
1335
1336 *typedef_sym = *sym;
1337 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1338 SYMBOL_VALUE (typedef_sym) = valu;
1339 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1340 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1341 TYPE_NAME (SYMBOL_TYPE (sym))
1342 = obconcat (&objfile->objfile_obstack,
1343 SYMBOL_LINKAGE_NAME (sym),
1344 (char *) NULL);
1345 add_symbol_to_list (typedef_sym, &file_symbols);
1346 }
1347 break;
1348
1349 case 'V':
1350 /* Static symbol of local scope. */
1351 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1352 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1353 SYMBOL_VALUE_ADDRESS (sym) = valu;
1354 if (gdbarch_static_transform_name_p (gdbarch)
1355 && gdbarch_static_transform_name (gdbarch,
1356 SYMBOL_LINKAGE_NAME (sym))
1357 != SYMBOL_LINKAGE_NAME (sym))
1358 {
1359 struct minimal_symbol *msym;
1360
1361 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1362 NULL, objfile);
1363 if (msym != NULL)
1364 {
1365 const char *new_name = gdbarch_static_transform_name
1366 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1367
1368 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1369 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1370 }
1371 }
1372 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1373 add_symbol_to_list (sym, &local_symbols);
1374 break;
1375
1376 case 'v':
1377 /* Reference parameter */
1378 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1379 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1380 SYMBOL_IS_ARGUMENT (sym) = 1;
1381 SYMBOL_VALUE (sym) = valu;
1382 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1383 add_symbol_to_list (sym, &local_symbols);
1384 break;
1385
1386 case 'a':
1387 /* Reference parameter which is in a register. */
1388 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1389 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1390 SYMBOL_IS_ARGUMENT (sym) = 1;
1391 SYMBOL_VALUE (sym) = valu;
1392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1393 add_symbol_to_list (sym, &local_symbols);
1394 break;
1395
1396 case 'X':
1397 /* This is used by Sun FORTRAN for "function result value".
1398 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1399 that Pascal uses it too, but when I tried it Pascal used
1400 "x:3" (local symbol) instead. */
1401 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1402 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1403 SYMBOL_VALUE (sym) = valu;
1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
1407
1408 default:
1409 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1410 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1411 SYMBOL_VALUE (sym) = 0;
1412 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1413 add_symbol_to_list (sym, &file_symbols);
1414 break;
1415 }
1416
1417 /* Some systems pass variables of certain types by reference instead
1418 of by value, i.e. they will pass the address of a structure (in a
1419 register or on the stack) instead of the structure itself. */
1420
1421 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1422 && SYMBOL_IS_ARGUMENT (sym))
1423 {
1424 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1425 variables passed in a register). */
1426 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1427 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1428 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1429 and subsequent arguments on SPARC, for example). */
1430 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1432 }
1433
1434 return sym;
1435 }
1436
1437 /* Skip rest of this symbol and return an error type.
1438
1439 General notes on error recovery: error_type always skips to the
1440 end of the symbol (modulo cretinous dbx symbol name continuation).
1441 Thus code like this:
1442
1443 if (*(*pp)++ != ';')
1444 return error_type (pp, objfile);
1445
1446 is wrong because if *pp starts out pointing at '\0' (typically as the
1447 result of an earlier error), it will be incremented to point to the
1448 start of the next symbol, which might produce strange results, at least
1449 if you run off the end of the string table. Instead use
1450
1451 if (**pp != ';')
1452 return error_type (pp, objfile);
1453 ++*pp;
1454
1455 or
1456
1457 if (**pp != ';')
1458 foo = error_type (pp, objfile);
1459 else
1460 ++*pp;
1461
1462 And in case it isn't obvious, the point of all this hair is so the compiler
1463 can define new types and new syntaxes, and old versions of the
1464 debugger will be able to read the new symbol tables. */
1465
1466 static struct type *
1467 error_type (char **pp, struct objfile *objfile)
1468 {
1469 complaint (&symfile_complaints,
1470 _("couldn't parse type; debugger out of date?"));
1471 while (1)
1472 {
1473 /* Skip to end of symbol. */
1474 while (**pp != '\0')
1475 {
1476 (*pp)++;
1477 }
1478
1479 /* Check for and handle cretinous dbx symbol name continuation! */
1480 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1481 {
1482 *pp = next_symbol_text (objfile);
1483 }
1484 else
1485 {
1486 break;
1487 }
1488 }
1489 return objfile_type (objfile)->builtin_error;
1490 }
1491 \f
1492
1493 /* Read type information or a type definition; return the type. Even
1494 though this routine accepts either type information or a type
1495 definition, the distinction is relevant--some parts of stabsread.c
1496 assume that type information starts with a digit, '-', or '(' in
1497 deciding whether to call read_type. */
1498
1499 static struct type *
1500 read_type (char **pp, struct objfile *objfile)
1501 {
1502 struct type *type = 0;
1503 struct type *type1;
1504 int typenums[2];
1505 char type_descriptor;
1506
1507 /* Size in bits of type if specified by a type attribute, or -1 if
1508 there is no size attribute. */
1509 int type_size = -1;
1510
1511 /* Used to distinguish string and bitstring from char-array and set. */
1512 int is_string = 0;
1513
1514 /* Used to distinguish vector from array. */
1515 int is_vector = 0;
1516
1517 /* Read type number if present. The type number may be omitted.
1518 for instance in a two-dimensional array declared with type
1519 "ar1;1;10;ar1;1;10;4". */
1520 if ((**pp >= '0' && **pp <= '9')
1521 || **pp == '('
1522 || **pp == '-')
1523 {
1524 if (read_type_number (pp, typenums) != 0)
1525 return error_type (pp, objfile);
1526
1527 if (**pp != '=')
1528 {
1529 /* Type is not being defined here. Either it already
1530 exists, or this is a forward reference to it.
1531 dbx_alloc_type handles both cases. */
1532 type = dbx_alloc_type (typenums, objfile);
1533
1534 /* If this is a forward reference, arrange to complain if it
1535 doesn't get patched up by the time we're done
1536 reading. */
1537 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1538 add_undefined_type (type, typenums);
1539
1540 return type;
1541 }
1542
1543 /* Type is being defined here. */
1544 /* Skip the '='.
1545 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1546 (*pp) += 2;
1547 }
1548 else
1549 {
1550 /* 'typenums=' not present, type is anonymous. Read and return
1551 the definition, but don't put it in the type vector. */
1552 typenums[0] = typenums[1] = -1;
1553 (*pp)++;
1554 }
1555
1556 again:
1557 type_descriptor = (*pp)[-1];
1558 switch (type_descriptor)
1559 {
1560 case 'x':
1561 {
1562 enum type_code code;
1563
1564 /* Used to index through file_symbols. */
1565 struct pending *ppt;
1566 int i;
1567
1568 /* Name including "struct", etc. */
1569 char *type_name;
1570
1571 {
1572 char *from, *to, *p, *q1, *q2;
1573
1574 /* Set the type code according to the following letter. */
1575 switch ((*pp)[0])
1576 {
1577 case 's':
1578 code = TYPE_CODE_STRUCT;
1579 break;
1580 case 'u':
1581 code = TYPE_CODE_UNION;
1582 break;
1583 case 'e':
1584 code = TYPE_CODE_ENUM;
1585 break;
1586 default:
1587 {
1588 /* Complain and keep going, so compilers can invent new
1589 cross-reference types. */
1590 complaint (&symfile_complaints,
1591 _("Unrecognized cross-reference type `%c'"),
1592 (*pp)[0]);
1593 code = TYPE_CODE_STRUCT;
1594 break;
1595 }
1596 }
1597
1598 q1 = strchr (*pp, '<');
1599 p = strchr (*pp, ':');
1600 if (p == NULL)
1601 return error_type (pp, objfile);
1602 if (q1 && p > q1 && p[1] == ':')
1603 {
1604 int nesting_level = 0;
1605
1606 for (q2 = q1; *q2; q2++)
1607 {
1608 if (*q2 == '<')
1609 nesting_level++;
1610 else if (*q2 == '>')
1611 nesting_level--;
1612 else if (*q2 == ':' && nesting_level == 0)
1613 break;
1614 }
1615 p = q2;
1616 if (*p != ':')
1617 return error_type (pp, objfile);
1618 }
1619 type_name = NULL;
1620 if (current_subfile->language == language_cplus)
1621 {
1622 char *new_name, *name = alloca (p - *pp + 1);
1623
1624 memcpy (name, *pp, p - *pp);
1625 name[p - *pp] = '\0';
1626 new_name = cp_canonicalize_string (name);
1627 if (new_name != NULL)
1628 {
1629 type_name = obstack_copy0 (&objfile->objfile_obstack,
1630 new_name, strlen (new_name));
1631 xfree (new_name);
1632 }
1633 }
1634 if (type_name == NULL)
1635 {
1636 to = type_name = (char *)
1637 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1638
1639 /* Copy the name. */
1640 from = *pp + 1;
1641 while (from < p)
1642 *to++ = *from++;
1643 *to = '\0';
1644 }
1645
1646 /* Set the pointer ahead of the name which we just read, and
1647 the colon. */
1648 *pp = p + 1;
1649 }
1650
1651 /* If this type has already been declared, then reuse the same
1652 type, rather than allocating a new one. This saves some
1653 memory. */
1654
1655 for (ppt = file_symbols; ppt; ppt = ppt->next)
1656 for (i = 0; i < ppt->nsyms; i++)
1657 {
1658 struct symbol *sym = ppt->symbol[i];
1659
1660 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1661 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1662 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1663 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1664 {
1665 obstack_free (&objfile->objfile_obstack, type_name);
1666 type = SYMBOL_TYPE (sym);
1667 if (typenums[0] != -1)
1668 *dbx_lookup_type (typenums, objfile) = type;
1669 return type;
1670 }
1671 }
1672
1673 /* Didn't find the type to which this refers, so we must
1674 be dealing with a forward reference. Allocate a type
1675 structure for it, and keep track of it so we can
1676 fill in the rest of the fields when we get the full
1677 type. */
1678 type = dbx_alloc_type (typenums, objfile);
1679 TYPE_CODE (type) = code;
1680 TYPE_TAG_NAME (type) = type_name;
1681 INIT_CPLUS_SPECIFIC (type);
1682 TYPE_STUB (type) = 1;
1683
1684 add_undefined_type (type, typenums);
1685 return type;
1686 }
1687
1688 case '-': /* RS/6000 built-in type */
1689 case '0':
1690 case '1':
1691 case '2':
1692 case '3':
1693 case '4':
1694 case '5':
1695 case '6':
1696 case '7':
1697 case '8':
1698 case '9':
1699 case '(':
1700 (*pp)--;
1701
1702 /* We deal with something like t(1,2)=(3,4)=... which
1703 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1704
1705 /* Allocate and enter the typedef type first.
1706 This handles recursive types. */
1707 type = dbx_alloc_type (typenums, objfile);
1708 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1709 {
1710 struct type *xtype = read_type (pp, objfile);
1711
1712 if (type == xtype)
1713 {
1714 /* It's being defined as itself. That means it is "void". */
1715 TYPE_CODE (type) = TYPE_CODE_VOID;
1716 TYPE_LENGTH (type) = 1;
1717 }
1718 else if (type_size >= 0 || is_string)
1719 {
1720 /* This is the absolute wrong way to construct types. Every
1721 other debug format has found a way around this problem and
1722 the related problems with unnecessarily stubbed types;
1723 someone motivated should attempt to clean up the issue
1724 here as well. Once a type pointed to has been created it
1725 should not be modified.
1726
1727 Well, it's not *absolutely* wrong. Constructing recursive
1728 types (trees, linked lists) necessarily entails modifying
1729 types after creating them. Constructing any loop structure
1730 entails side effects. The Dwarf 2 reader does handle this
1731 more gracefully (it never constructs more than once
1732 instance of a type object, so it doesn't have to copy type
1733 objects wholesale), but it still mutates type objects after
1734 other folks have references to them.
1735
1736 Keep in mind that this circularity/mutation issue shows up
1737 at the source language level, too: C's "incomplete types",
1738 for example. So the proper cleanup, I think, would be to
1739 limit GDB's type smashing to match exactly those required
1740 by the source language. So GDB could have a
1741 "complete_this_type" function, but never create unnecessary
1742 copies of a type otherwise. */
1743 replace_type (type, xtype);
1744 TYPE_NAME (type) = NULL;
1745 TYPE_TAG_NAME (type) = NULL;
1746 }
1747 else
1748 {
1749 TYPE_TARGET_STUB (type) = 1;
1750 TYPE_TARGET_TYPE (type) = xtype;
1751 }
1752 }
1753 break;
1754
1755 /* In the following types, we must be sure to overwrite any existing
1756 type that the typenums refer to, rather than allocating a new one
1757 and making the typenums point to the new one. This is because there
1758 may already be pointers to the existing type (if it had been
1759 forward-referenced), and we must change it to a pointer, function,
1760 reference, or whatever, *in-place*. */
1761
1762 case '*': /* Pointer to another type */
1763 type1 = read_type (pp, objfile);
1764 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1765 break;
1766
1767 case '&': /* Reference to another type */
1768 type1 = read_type (pp, objfile);
1769 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1770 break;
1771
1772 case 'f': /* Function returning another type */
1773 type1 = read_type (pp, objfile);
1774 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1775 break;
1776
1777 case 'g': /* Prototyped function. (Sun) */
1778 {
1779 /* Unresolved questions:
1780
1781 - According to Sun's ``STABS Interface Manual'', for 'f'
1782 and 'F' symbol descriptors, a `0' in the argument type list
1783 indicates a varargs function. But it doesn't say how 'g'
1784 type descriptors represent that info. Someone with access
1785 to Sun's toolchain should try it out.
1786
1787 - According to the comment in define_symbol (search for
1788 `process_prototype_types:'), Sun emits integer arguments as
1789 types which ref themselves --- like `void' types. Do we
1790 have to deal with that here, too? Again, someone with
1791 access to Sun's toolchain should try it out and let us
1792 know. */
1793
1794 const char *type_start = (*pp) - 1;
1795 struct type *return_type = read_type (pp, objfile);
1796 struct type *func_type
1797 = make_function_type (return_type,
1798 dbx_lookup_type (typenums, objfile));
1799 struct type_list {
1800 struct type *type;
1801 struct type_list *next;
1802 } *arg_types = 0;
1803 int num_args = 0;
1804
1805 while (**pp && **pp != '#')
1806 {
1807 struct type *arg_type = read_type (pp, objfile);
1808 struct type_list *new = alloca (sizeof (*new));
1809 new->type = arg_type;
1810 new->next = arg_types;
1811 arg_types = new;
1812 num_args++;
1813 }
1814 if (**pp == '#')
1815 ++*pp;
1816 else
1817 {
1818 complaint (&symfile_complaints,
1819 _("Prototyped function type didn't "
1820 "end arguments with `#':\n%s"),
1821 type_start);
1822 }
1823
1824 /* If there is just one argument whose type is `void', then
1825 that's just an empty argument list. */
1826 if (arg_types
1827 && ! arg_types->next
1828 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1829 num_args = 0;
1830
1831 TYPE_FIELDS (func_type)
1832 = (struct field *) TYPE_ALLOC (func_type,
1833 num_args * sizeof (struct field));
1834 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1835 {
1836 int i;
1837 struct type_list *t;
1838
1839 /* We stuck each argument type onto the front of the list
1840 when we read it, so the list is reversed. Build the
1841 fields array right-to-left. */
1842 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1843 TYPE_FIELD_TYPE (func_type, i) = t->type;
1844 }
1845 TYPE_NFIELDS (func_type) = num_args;
1846 TYPE_PROTOTYPED (func_type) = 1;
1847
1848 type = func_type;
1849 break;
1850 }
1851
1852 case 'k': /* Const qualifier on some type (Sun) */
1853 type = read_type (pp, objfile);
1854 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1855 dbx_lookup_type (typenums, objfile));
1856 break;
1857
1858 case 'B': /* Volatile qual on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (TYPE_CONST (type), 1, type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case '@':
1865 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1866 { /* Member (class & variable) type */
1867 /* FIXME -- we should be doing smash_to_XXX types here. */
1868
1869 struct type *domain = read_type (pp, objfile);
1870 struct type *memtype;
1871
1872 if (**pp != ',')
1873 /* Invalid member type data format. */
1874 return error_type (pp, objfile);
1875 ++*pp;
1876
1877 memtype = read_type (pp, objfile);
1878 type = dbx_alloc_type (typenums, objfile);
1879 smash_to_memberptr_type (type, domain, memtype);
1880 }
1881 else
1882 /* type attribute */
1883 {
1884 char *attr = *pp;
1885
1886 /* Skip to the semicolon. */
1887 while (**pp != ';' && **pp != '\0')
1888 ++(*pp);
1889 if (**pp == '\0')
1890 return error_type (pp, objfile);
1891 else
1892 ++ * pp; /* Skip the semicolon. */
1893
1894 switch (*attr)
1895 {
1896 case 's': /* Size attribute */
1897 type_size = atoi (attr + 1);
1898 if (type_size <= 0)
1899 type_size = -1;
1900 break;
1901
1902 case 'S': /* String attribute */
1903 /* FIXME: check to see if following type is array? */
1904 is_string = 1;
1905 break;
1906
1907 case 'V': /* Vector attribute */
1908 /* FIXME: check to see if following type is array? */
1909 is_vector = 1;
1910 break;
1911
1912 default:
1913 /* Ignore unrecognized type attributes, so future compilers
1914 can invent new ones. */
1915 break;
1916 }
1917 ++*pp;
1918 goto again;
1919 }
1920 break;
1921
1922 case '#': /* Method (class & fn) type */
1923 if ((*pp)[0] == '#')
1924 {
1925 /* We'll get the parameter types from the name. */
1926 struct type *return_type;
1927
1928 (*pp)++;
1929 return_type = read_type (pp, objfile);
1930 if (*(*pp)++ != ';')
1931 complaint (&symfile_complaints,
1932 _("invalid (minimal) member type "
1933 "data format at symtab pos %d."),
1934 symnum);
1935 type = allocate_stub_method (return_type);
1936 if (typenums[0] != -1)
1937 *dbx_lookup_type (typenums, objfile) = type;
1938 }
1939 else
1940 {
1941 struct type *domain = read_type (pp, objfile);
1942 struct type *return_type;
1943 struct field *args;
1944 int nargs, varargs;
1945
1946 if (**pp != ',')
1947 /* Invalid member type data format. */
1948 return error_type (pp, objfile);
1949 else
1950 ++(*pp);
1951
1952 return_type = read_type (pp, objfile);
1953 args = read_args (pp, ';', objfile, &nargs, &varargs);
1954 if (args == NULL)
1955 return error_type (pp, objfile);
1956 type = dbx_alloc_type (typenums, objfile);
1957 smash_to_method_type (type, domain, return_type, args,
1958 nargs, varargs);
1959 }
1960 break;
1961
1962 case 'r': /* Range type */
1963 type = read_range_type (pp, typenums, type_size, objfile);
1964 if (typenums[0] != -1)
1965 *dbx_lookup_type (typenums, objfile) = type;
1966 break;
1967
1968 case 'b':
1969 {
1970 /* Sun ACC builtin int type */
1971 type = read_sun_builtin_type (pp, typenums, objfile);
1972 if (typenums[0] != -1)
1973 *dbx_lookup_type (typenums, objfile) = type;
1974 }
1975 break;
1976
1977 case 'R': /* Sun ACC builtin float type */
1978 type = read_sun_floating_type (pp, typenums, objfile);
1979 if (typenums[0] != -1)
1980 *dbx_lookup_type (typenums, objfile) = type;
1981 break;
1982
1983 case 'e': /* Enumeration type */
1984 type = dbx_alloc_type (typenums, objfile);
1985 type = read_enum_type (pp, type, objfile);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums, objfile) = type;
1988 break;
1989
1990 case 's': /* Struct type */
1991 case 'u': /* Union type */
1992 {
1993 enum type_code type_code = TYPE_CODE_UNDEF;
1994 type = dbx_alloc_type (typenums, objfile);
1995 switch (type_descriptor)
1996 {
1997 case 's':
1998 type_code = TYPE_CODE_STRUCT;
1999 break;
2000 case 'u':
2001 type_code = TYPE_CODE_UNION;
2002 break;
2003 }
2004 type = read_struct_type (pp, type, type_code, objfile);
2005 break;
2006 }
2007
2008 case 'a': /* Array type */
2009 if (**pp != 'r')
2010 return error_type (pp, objfile);
2011 ++*pp;
2012
2013 type = dbx_alloc_type (typenums, objfile);
2014 type = read_array_type (pp, type, objfile);
2015 if (is_string)
2016 TYPE_CODE (type) = TYPE_CODE_STRING;
2017 if (is_vector)
2018 make_vector_type (type);
2019 break;
2020
2021 case 'S': /* Set type */
2022 type1 = read_type (pp, objfile);
2023 type = create_set_type ((struct type *) NULL, type1);
2024 if (typenums[0] != -1)
2025 *dbx_lookup_type (typenums, objfile) = type;
2026 break;
2027
2028 default:
2029 --*pp; /* Go back to the symbol in error. */
2030 /* Particularly important if it was \0! */
2031 return error_type (pp, objfile);
2032 }
2033
2034 if (type == 0)
2035 {
2036 warning (_("GDB internal error, type is NULL in stabsread.c."));
2037 return error_type (pp, objfile);
2038 }
2039
2040 /* Size specified in a type attribute overrides any other size. */
2041 if (type_size != -1)
2042 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2043
2044 return type;
2045 }
2046 \f
2047 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2048 Return the proper type node for a given builtin type number. */
2049
2050 static const struct objfile_data *rs6000_builtin_type_data;
2051
2052 static struct type *
2053 rs6000_builtin_type (int typenum, struct objfile *objfile)
2054 {
2055 struct type **negative_types = objfile_data (objfile,
2056 rs6000_builtin_type_data);
2057
2058 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2059 #define NUMBER_RECOGNIZED 34
2060 struct type *rettype = NULL;
2061
2062 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2063 {
2064 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2065 return objfile_type (objfile)->builtin_error;
2066 }
2067
2068 if (!negative_types)
2069 {
2070 /* This includes an empty slot for type number -0. */
2071 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2072 NUMBER_RECOGNIZED + 1, struct type *);
2073 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2074 }
2075
2076 if (negative_types[-typenum] != NULL)
2077 return negative_types[-typenum];
2078
2079 #if TARGET_CHAR_BIT != 8
2080 #error This code wrong for TARGET_CHAR_BIT not 8
2081 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2082 that if that ever becomes not true, the correct fix will be to
2083 make the size in the struct type to be in bits, not in units of
2084 TARGET_CHAR_BIT. */
2085 #endif
2086
2087 switch (-typenum)
2088 {
2089 case 1:
2090 /* The size of this and all the other types are fixed, defined
2091 by the debugging format. If there is a type called "int" which
2092 is other than 32 bits, then it should use a new negative type
2093 number (or avoid negative type numbers for that case).
2094 See stabs.texinfo. */
2095 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2096 break;
2097 case 2:
2098 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2099 break;
2100 case 3:
2101 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2102 break;
2103 case 4:
2104 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2105 break;
2106 case 5:
2107 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2108 "unsigned char", objfile);
2109 break;
2110 case 6:
2111 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2112 break;
2113 case 7:
2114 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2115 "unsigned short", objfile);
2116 break;
2117 case 8:
2118 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2119 "unsigned int", objfile);
2120 break;
2121 case 9:
2122 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2123 "unsigned", objfile);
2124 break;
2125 case 10:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 "unsigned long", objfile);
2128 break;
2129 case 11:
2130 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2131 break;
2132 case 12:
2133 /* IEEE single precision (32 bit). */
2134 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2135 break;
2136 case 13:
2137 /* IEEE double precision (64 bit). */
2138 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2139 break;
2140 case 14:
2141 /* This is an IEEE double on the RS/6000, and different machines with
2142 different sizes for "long double" should use different negative
2143 type numbers. See stabs.texinfo. */
2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2145 break;
2146 case 15:
2147 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2148 break;
2149 case 16:
2150 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2151 "boolean", objfile);
2152 break;
2153 case 17:
2154 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2155 break;
2156 case 18:
2157 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2158 break;
2159 case 19:
2160 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2161 break;
2162 case 20:
2163 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2164 "character", objfile);
2165 break;
2166 case 21:
2167 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2168 "logical*1", objfile);
2169 break;
2170 case 22:
2171 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2172 "logical*2", objfile);
2173 break;
2174 case 23:
2175 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2176 "logical*4", objfile);
2177 break;
2178 case 24:
2179 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2180 "logical", objfile);
2181 break;
2182 case 25:
2183 /* Complex type consisting of two IEEE single precision values. */
2184 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2185 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2186 objfile);
2187 break;
2188 case 26:
2189 /* Complex type consisting of two IEEE double precision values. */
2190 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2191 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2192 objfile);
2193 break;
2194 case 27:
2195 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2196 break;
2197 case 28:
2198 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2199 break;
2200 case 29:
2201 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2202 break;
2203 case 30:
2204 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2205 break;
2206 case 31:
2207 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2208 break;
2209 case 32:
2210 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2211 "unsigned long long", objfile);
2212 break;
2213 case 33:
2214 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2215 "logical*8", objfile);
2216 break;
2217 case 34:
2218 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2219 break;
2220 }
2221 negative_types[-typenum] = rettype;
2222 return rettype;
2223 }
2224 \f
2225 /* This page contains subroutines of read_type. */
2226
2227 /* Wrapper around method_name_from_physname to flag a complaint
2228 if there is an error. */
2229
2230 static char *
2231 stabs_method_name_from_physname (const char *physname)
2232 {
2233 char *method_name;
2234
2235 method_name = method_name_from_physname (physname);
2236
2237 if (method_name == NULL)
2238 {
2239 complaint (&symfile_complaints,
2240 _("Method has bad physname %s\n"), physname);
2241 return NULL;
2242 }
2243
2244 return method_name;
2245 }
2246
2247 /* Read member function stabs info for C++ classes. The form of each member
2248 function data is:
2249
2250 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2251
2252 An example with two member functions is:
2253
2254 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2255
2256 For the case of overloaded operators, the format is op$::*.funcs, where
2257 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2258 name (such as `+=') and `.' marks the end of the operator name.
2259
2260 Returns 1 for success, 0 for failure. */
2261
2262 static int
2263 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2264 struct objfile *objfile)
2265 {
2266 int nfn_fields = 0;
2267 int length = 0;
2268 int i;
2269 struct next_fnfield
2270 {
2271 struct next_fnfield *next;
2272 struct fn_field fn_field;
2273 }
2274 *sublist;
2275 struct type *look_ahead_type;
2276 struct next_fnfieldlist *new_fnlist;
2277 struct next_fnfield *new_sublist;
2278 char *main_fn_name;
2279 char *p;
2280
2281 /* Process each list until we find something that is not a member function
2282 or find the end of the functions. */
2283
2284 while (**pp != ';')
2285 {
2286 /* We should be positioned at the start of the function name.
2287 Scan forward to find the first ':' and if it is not the
2288 first of a "::" delimiter, then this is not a member function. */
2289 p = *pp;
2290 while (*p != ':')
2291 {
2292 p++;
2293 }
2294 if (p[1] != ':')
2295 {
2296 break;
2297 }
2298
2299 sublist = NULL;
2300 look_ahead_type = NULL;
2301 length = 0;
2302
2303 new_fnlist = (struct next_fnfieldlist *)
2304 xmalloc (sizeof (struct next_fnfieldlist));
2305 make_cleanup (xfree, new_fnlist);
2306 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2307
2308 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2309 {
2310 /* This is a completely wierd case. In order to stuff in the
2311 names that might contain colons (the usual name delimiter),
2312 Mike Tiemann defined a different name format which is
2313 signalled if the identifier is "op$". In that case, the
2314 format is "op$::XXXX." where XXXX is the name. This is
2315 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2316 /* This lets the user type "break operator+".
2317 We could just put in "+" as the name, but that wouldn't
2318 work for "*". */
2319 static char opname[32] = "op$";
2320 char *o = opname + 3;
2321
2322 /* Skip past '::'. */
2323 *pp = p + 2;
2324
2325 STABS_CONTINUE (pp, objfile);
2326 p = *pp;
2327 while (*p != '.')
2328 {
2329 *o++ = *p++;
2330 }
2331 main_fn_name = savestring (opname, o - opname);
2332 /* Skip past '.' */
2333 *pp = p + 1;
2334 }
2335 else
2336 {
2337 main_fn_name = savestring (*pp, p - *pp);
2338 /* Skip past '::'. */
2339 *pp = p + 2;
2340 }
2341 new_fnlist->fn_fieldlist.name = main_fn_name;
2342
2343 do
2344 {
2345 new_sublist =
2346 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2347 make_cleanup (xfree, new_sublist);
2348 memset (new_sublist, 0, sizeof (struct next_fnfield));
2349
2350 /* Check for and handle cretinous dbx symbol name continuation! */
2351 if (look_ahead_type == NULL)
2352 {
2353 /* Normal case. */
2354 STABS_CONTINUE (pp, objfile);
2355
2356 new_sublist->fn_field.type = read_type (pp, objfile);
2357 if (**pp != ':')
2358 {
2359 /* Invalid symtab info for member function. */
2360 return 0;
2361 }
2362 }
2363 else
2364 {
2365 /* g++ version 1 kludge */
2366 new_sublist->fn_field.type = look_ahead_type;
2367 look_ahead_type = NULL;
2368 }
2369
2370 (*pp)++;
2371 p = *pp;
2372 while (*p != ';')
2373 {
2374 p++;
2375 }
2376
2377 /* If this is just a stub, then we don't have the real name here. */
2378
2379 if (TYPE_STUB (new_sublist->fn_field.type))
2380 {
2381 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2382 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2383 new_sublist->fn_field.is_stub = 1;
2384 }
2385 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2386 *pp = p + 1;
2387
2388 /* Set this member function's visibility fields. */
2389 switch (*(*pp)++)
2390 {
2391 case VISIBILITY_PRIVATE:
2392 new_sublist->fn_field.is_private = 1;
2393 break;
2394 case VISIBILITY_PROTECTED:
2395 new_sublist->fn_field.is_protected = 1;
2396 break;
2397 }
2398
2399 STABS_CONTINUE (pp, objfile);
2400 switch (**pp)
2401 {
2402 case 'A': /* Normal functions. */
2403 new_sublist->fn_field.is_const = 0;
2404 new_sublist->fn_field.is_volatile = 0;
2405 (*pp)++;
2406 break;
2407 case 'B': /* `const' member functions. */
2408 new_sublist->fn_field.is_const = 1;
2409 new_sublist->fn_field.is_volatile = 0;
2410 (*pp)++;
2411 break;
2412 case 'C': /* `volatile' member function. */
2413 new_sublist->fn_field.is_const = 0;
2414 new_sublist->fn_field.is_volatile = 1;
2415 (*pp)++;
2416 break;
2417 case 'D': /* `const volatile' member function. */
2418 new_sublist->fn_field.is_const = 1;
2419 new_sublist->fn_field.is_volatile = 1;
2420 (*pp)++;
2421 break;
2422 case '*': /* File compiled with g++ version 1 --
2423 no info. */
2424 case '?':
2425 case '.':
2426 break;
2427 default:
2428 complaint (&symfile_complaints,
2429 _("const/volatile indicator missing, got '%c'"),
2430 **pp);
2431 break;
2432 }
2433
2434 switch (*(*pp)++)
2435 {
2436 case '*':
2437 {
2438 int nbits;
2439 /* virtual member function, followed by index.
2440 The sign bit is set to distinguish pointers-to-methods
2441 from virtual function indicies. Since the array is
2442 in words, the quantity must be shifted left by 1
2443 on 16 bit machine, and by 2 on 32 bit machine, forcing
2444 the sign bit out, and usable as a valid index into
2445 the array. Remove the sign bit here. */
2446 new_sublist->fn_field.voffset =
2447 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2448 if (nbits != 0)
2449 return 0;
2450
2451 STABS_CONTINUE (pp, objfile);
2452 if (**pp == ';' || **pp == '\0')
2453 {
2454 /* Must be g++ version 1. */
2455 new_sublist->fn_field.fcontext = 0;
2456 }
2457 else
2458 {
2459 /* Figure out from whence this virtual function came.
2460 It may belong to virtual function table of
2461 one of its baseclasses. */
2462 look_ahead_type = read_type (pp, objfile);
2463 if (**pp == ':')
2464 {
2465 /* g++ version 1 overloaded methods. */
2466 }
2467 else
2468 {
2469 new_sublist->fn_field.fcontext = look_ahead_type;
2470 if (**pp != ';')
2471 {
2472 return 0;
2473 }
2474 else
2475 {
2476 ++*pp;
2477 }
2478 look_ahead_type = NULL;
2479 }
2480 }
2481 break;
2482 }
2483 case '?':
2484 /* static member function. */
2485 {
2486 int slen = strlen (main_fn_name);
2487
2488 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2489
2490 /* For static member functions, we can't tell if they
2491 are stubbed, as they are put out as functions, and not as
2492 methods.
2493 GCC v2 emits the fully mangled name if
2494 dbxout.c:flag_minimal_debug is not set, so we have to
2495 detect a fully mangled physname here and set is_stub
2496 accordingly. Fully mangled physnames in v2 start with
2497 the member function name, followed by two underscores.
2498 GCC v3 currently always emits stubbed member functions,
2499 but with fully mangled physnames, which start with _Z. */
2500 if (!(strncmp (new_sublist->fn_field.physname,
2501 main_fn_name, slen) == 0
2502 && new_sublist->fn_field.physname[slen] == '_'
2503 && new_sublist->fn_field.physname[slen + 1] == '_'))
2504 {
2505 new_sublist->fn_field.is_stub = 1;
2506 }
2507 break;
2508 }
2509
2510 default:
2511 /* error */
2512 complaint (&symfile_complaints,
2513 _("member function type missing, got '%c'"),
2514 (*pp)[-1]);
2515 /* Fall through into normal member function. */
2516
2517 case '.':
2518 /* normal member function. */
2519 new_sublist->fn_field.voffset = 0;
2520 new_sublist->fn_field.fcontext = 0;
2521 break;
2522 }
2523
2524 new_sublist->next = sublist;
2525 sublist = new_sublist;
2526 length++;
2527 STABS_CONTINUE (pp, objfile);
2528 }
2529 while (**pp != ';' && **pp != '\0');
2530
2531 (*pp)++;
2532 STABS_CONTINUE (pp, objfile);
2533
2534 /* Skip GCC 3.X member functions which are duplicates of the callable
2535 constructor/destructor. */
2536 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2537 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2538 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2539 {
2540 xfree (main_fn_name);
2541 }
2542 else
2543 {
2544 int has_stub = 0;
2545 int has_destructor = 0, has_other = 0;
2546 int is_v3 = 0;
2547 struct next_fnfield *tmp_sublist;
2548
2549 /* Various versions of GCC emit various mostly-useless
2550 strings in the name field for special member functions.
2551
2552 For stub methods, we need to defer correcting the name
2553 until we are ready to unstub the method, because the current
2554 name string is used by gdb_mangle_name. The only stub methods
2555 of concern here are GNU v2 operators; other methods have their
2556 names correct (see caveat below).
2557
2558 For non-stub methods, in GNU v3, we have a complete physname.
2559 Therefore we can safely correct the name now. This primarily
2560 affects constructors and destructors, whose name will be
2561 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2562 operators will also have incorrect names; for instance,
2563 "operator int" will be named "operator i" (i.e. the type is
2564 mangled).
2565
2566 For non-stub methods in GNU v2, we have no easy way to
2567 know if we have a complete physname or not. For most
2568 methods the result depends on the platform (if CPLUS_MARKER
2569 can be `$' or `.', it will use minimal debug information, or
2570 otherwise the full physname will be included).
2571
2572 Rather than dealing with this, we take a different approach.
2573 For v3 mangled names, we can use the full physname; for v2,
2574 we use cplus_demangle_opname (which is actually v2 specific),
2575 because the only interesting names are all operators - once again
2576 barring the caveat below. Skip this process if any method in the
2577 group is a stub, to prevent our fouling up the workings of
2578 gdb_mangle_name.
2579
2580 The caveat: GCC 2.95.x (and earlier?) put constructors and
2581 destructors in the same method group. We need to split this
2582 into two groups, because they should have different names.
2583 So for each method group we check whether it contains both
2584 routines whose physname appears to be a destructor (the physnames
2585 for and destructors are always provided, due to quirks in v2
2586 mangling) and routines whose physname does not appear to be a
2587 destructor. If so then we break up the list into two halves.
2588 Even if the constructors and destructors aren't in the same group
2589 the destructor will still lack the leading tilde, so that also
2590 needs to be fixed.
2591
2592 So, to summarize what we expect and handle here:
2593
2594 Given Given Real Real Action
2595 method name physname physname method name
2596
2597 __opi [none] __opi__3Foo operator int opname
2598 [now or later]
2599 Foo _._3Foo _._3Foo ~Foo separate and
2600 rename
2601 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2602 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2603 */
2604
2605 tmp_sublist = sublist;
2606 while (tmp_sublist != NULL)
2607 {
2608 if (tmp_sublist->fn_field.is_stub)
2609 has_stub = 1;
2610 if (tmp_sublist->fn_field.physname[0] == '_'
2611 && tmp_sublist->fn_field.physname[1] == 'Z')
2612 is_v3 = 1;
2613
2614 if (is_destructor_name (tmp_sublist->fn_field.physname))
2615 has_destructor++;
2616 else
2617 has_other++;
2618
2619 tmp_sublist = tmp_sublist->next;
2620 }
2621
2622 if (has_destructor && has_other)
2623 {
2624 struct next_fnfieldlist *destr_fnlist;
2625 struct next_fnfield *last_sublist;
2626
2627 /* Create a new fn_fieldlist for the destructors. */
2628
2629 destr_fnlist = (struct next_fnfieldlist *)
2630 xmalloc (sizeof (struct next_fnfieldlist));
2631 make_cleanup (xfree, destr_fnlist);
2632 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2633 destr_fnlist->fn_fieldlist.name
2634 = obconcat (&objfile->objfile_obstack, "~",
2635 new_fnlist->fn_fieldlist.name, (char *) NULL);
2636
2637 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2638 obstack_alloc (&objfile->objfile_obstack,
2639 sizeof (struct fn_field) * has_destructor);
2640 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2641 sizeof (struct fn_field) * has_destructor);
2642 tmp_sublist = sublist;
2643 last_sublist = NULL;
2644 i = 0;
2645 while (tmp_sublist != NULL)
2646 {
2647 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2648 {
2649 tmp_sublist = tmp_sublist->next;
2650 continue;
2651 }
2652
2653 destr_fnlist->fn_fieldlist.fn_fields[i++]
2654 = tmp_sublist->fn_field;
2655 if (last_sublist)
2656 last_sublist->next = tmp_sublist->next;
2657 else
2658 sublist = tmp_sublist->next;
2659 last_sublist = tmp_sublist;
2660 tmp_sublist = tmp_sublist->next;
2661 }
2662
2663 destr_fnlist->fn_fieldlist.length = has_destructor;
2664 destr_fnlist->next = fip->fnlist;
2665 fip->fnlist = destr_fnlist;
2666 nfn_fields++;
2667 length -= has_destructor;
2668 }
2669 else if (is_v3)
2670 {
2671 /* v3 mangling prevents the use of abbreviated physnames,
2672 so we can do this here. There are stubbed methods in v3
2673 only:
2674 - in -gstabs instead of -gstabs+
2675 - or for static methods, which are output as a function type
2676 instead of a method type. */
2677 char *new_method_name =
2678 stabs_method_name_from_physname (sublist->fn_field.physname);
2679
2680 if (new_method_name != NULL
2681 && strcmp (new_method_name,
2682 new_fnlist->fn_fieldlist.name) != 0)
2683 {
2684 new_fnlist->fn_fieldlist.name = new_method_name;
2685 xfree (main_fn_name);
2686 }
2687 else
2688 xfree (new_method_name);
2689 }
2690 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2691 {
2692 new_fnlist->fn_fieldlist.name =
2693 obconcat (&objfile->objfile_obstack,
2694 "~", main_fn_name, (char *)NULL);
2695 xfree (main_fn_name);
2696 }
2697 else if (!has_stub)
2698 {
2699 char dem_opname[256];
2700 int ret;
2701
2702 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2703 dem_opname, DMGL_ANSI);
2704 if (!ret)
2705 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2706 dem_opname, 0);
2707 if (ret)
2708 new_fnlist->fn_fieldlist.name
2709 = obstack_copy0 (&objfile->objfile_obstack,
2710 dem_opname, strlen (dem_opname));
2711 xfree (main_fn_name);
2712 }
2713
2714 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2715 obstack_alloc (&objfile->objfile_obstack,
2716 sizeof (struct fn_field) * length);
2717 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2718 sizeof (struct fn_field) * length);
2719 for (i = length; (i--, sublist); sublist = sublist->next)
2720 {
2721 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2722 }
2723
2724 new_fnlist->fn_fieldlist.length = length;
2725 new_fnlist->next = fip->fnlist;
2726 fip->fnlist = new_fnlist;
2727 nfn_fields++;
2728 }
2729 }
2730
2731 if (nfn_fields)
2732 {
2733 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2734 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2735 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2736 memset (TYPE_FN_FIELDLISTS (type), 0,
2737 sizeof (struct fn_fieldlist) * nfn_fields);
2738 TYPE_NFN_FIELDS (type) = nfn_fields;
2739 }
2740
2741 return 1;
2742 }
2743
2744 /* Special GNU C++ name.
2745
2746 Returns 1 for success, 0 for failure. "failure" means that we can't
2747 keep parsing and it's time for error_type(). */
2748
2749 static int
2750 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2751 struct objfile *objfile)
2752 {
2753 char *p;
2754 const char *name;
2755 char cpp_abbrev;
2756 struct type *context;
2757
2758 p = *pp;
2759 if (*++p == 'v')
2760 {
2761 name = NULL;
2762 cpp_abbrev = *++p;
2763
2764 *pp = p + 1;
2765
2766 /* At this point, *pp points to something like "22:23=*22...",
2767 where the type number before the ':' is the "context" and
2768 everything after is a regular type definition. Lookup the
2769 type, find it's name, and construct the field name. */
2770
2771 context = read_type (pp, objfile);
2772
2773 switch (cpp_abbrev)
2774 {
2775 case 'f': /* $vf -- a virtual function table pointer */
2776 name = type_name_no_tag (context);
2777 if (name == NULL)
2778 {
2779 name = "";
2780 }
2781 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2782 vptr_name, name, (char *) NULL);
2783 break;
2784
2785 case 'b': /* $vb -- a virtual bsomethingorother */
2786 name = type_name_no_tag (context);
2787 if (name == NULL)
2788 {
2789 complaint (&symfile_complaints,
2790 _("C++ abbreviated type name "
2791 "unknown at symtab pos %d"),
2792 symnum);
2793 name = "FOO";
2794 }
2795 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2796 name, (char *) NULL);
2797 break;
2798
2799 default:
2800 invalid_cpp_abbrev_complaint (*pp);
2801 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2802 "INVALID_CPLUSPLUS_ABBREV",
2803 (char *) NULL);
2804 break;
2805 }
2806
2807 /* At this point, *pp points to the ':'. Skip it and read the
2808 field type. */
2809
2810 p = ++(*pp);
2811 if (p[-1] != ':')
2812 {
2813 invalid_cpp_abbrev_complaint (*pp);
2814 return 0;
2815 }
2816 fip->list->field.type = read_type (pp, objfile);
2817 if (**pp == ',')
2818 (*pp)++; /* Skip the comma. */
2819 else
2820 return 0;
2821
2822 {
2823 int nbits;
2824
2825 SET_FIELD_BITPOS (fip->list->field,
2826 read_huge_number (pp, ';', &nbits, 0));
2827 if (nbits != 0)
2828 return 0;
2829 }
2830 /* This field is unpacked. */
2831 FIELD_BITSIZE (fip->list->field) = 0;
2832 fip->list->visibility = VISIBILITY_PRIVATE;
2833 }
2834 else
2835 {
2836 invalid_cpp_abbrev_complaint (*pp);
2837 /* We have no idea what syntax an unrecognized abbrev would have, so
2838 better return 0. If we returned 1, we would need to at least advance
2839 *pp to avoid an infinite loop. */
2840 return 0;
2841 }
2842 return 1;
2843 }
2844
2845 static void
2846 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2847 struct type *type, struct objfile *objfile)
2848 {
2849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2850
2851 fip->list->field.name =
2852 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2853 *pp = p + 1;
2854
2855 /* This means we have a visibility for a field coming. */
2856 if (**pp == '/')
2857 {
2858 (*pp)++;
2859 fip->list->visibility = *(*pp)++;
2860 }
2861 else
2862 {
2863 /* normal dbx-style format, no explicit visibility */
2864 fip->list->visibility = VISIBILITY_PUBLIC;
2865 }
2866
2867 fip->list->field.type = read_type (pp, objfile);
2868 if (**pp == ':')
2869 {
2870 p = ++(*pp);
2871 #if 0
2872 /* Possible future hook for nested types. */
2873 if (**pp == '!')
2874 {
2875 fip->list->field.bitpos = (long) -2; /* nested type */
2876 p = ++(*pp);
2877 }
2878 else
2879 ...;
2880 #endif
2881 while (*p != ';')
2882 {
2883 p++;
2884 }
2885 /* Static class member. */
2886 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2887 *pp = p + 1;
2888 return;
2889 }
2890 else if (**pp != ',')
2891 {
2892 /* Bad structure-type format. */
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2895 }
2896
2897 (*pp)++; /* Skip the comma. */
2898
2899 {
2900 int nbits;
2901
2902 SET_FIELD_BITPOS (fip->list->field,
2903 read_huge_number (pp, ',', &nbits, 0));
2904 if (nbits != 0)
2905 {
2906 stabs_general_complaint ("bad structure-type format");
2907 return;
2908 }
2909 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2910 if (nbits != 0)
2911 {
2912 stabs_general_complaint ("bad structure-type format");
2913 return;
2914 }
2915 }
2916
2917 if (FIELD_BITPOS (fip->list->field) == 0
2918 && FIELD_BITSIZE (fip->list->field) == 0)
2919 {
2920 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2921 it is a field which has been optimized out. The correct stab for
2922 this case is to use VISIBILITY_IGNORE, but that is a recent
2923 invention. (2) It is a 0-size array. For example
2924 union { int num; char str[0]; } foo. Printing _("<no value>" for
2925 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2926 will continue to work, and a 0-size array as a whole doesn't
2927 have any contents to print.
2928
2929 I suspect this probably could also happen with gcc -gstabs (not
2930 -gstabs+) for static fields, and perhaps other C++ extensions.
2931 Hopefully few people use -gstabs with gdb, since it is intended
2932 for dbx compatibility. */
2933
2934 /* Ignore this field. */
2935 fip->list->visibility = VISIBILITY_IGNORE;
2936 }
2937 else
2938 {
2939 /* Detect an unpacked field and mark it as such.
2940 dbx gives a bit size for all fields.
2941 Note that forward refs cannot be packed,
2942 and treat enums as if they had the width of ints. */
2943
2944 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2945
2946 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2947 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2948 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2949 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2950 {
2951 FIELD_BITSIZE (fip->list->field) = 0;
2952 }
2953 if ((FIELD_BITSIZE (fip->list->field)
2954 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2955 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2956 && FIELD_BITSIZE (fip->list->field)
2957 == gdbarch_int_bit (gdbarch))
2958 )
2959 &&
2960 FIELD_BITPOS (fip->list->field) % 8 == 0)
2961 {
2962 FIELD_BITSIZE (fip->list->field) = 0;
2963 }
2964 }
2965 }
2966
2967
2968 /* Read struct or class data fields. They have the form:
2969
2970 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2971
2972 At the end, we see a semicolon instead of a field.
2973
2974 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2975 a static field.
2976
2977 The optional VISIBILITY is one of:
2978
2979 '/0' (VISIBILITY_PRIVATE)
2980 '/1' (VISIBILITY_PROTECTED)
2981 '/2' (VISIBILITY_PUBLIC)
2982 '/9' (VISIBILITY_IGNORE)
2983
2984 or nothing, for C style fields with public visibility.
2985
2986 Returns 1 for success, 0 for failure. */
2987
2988 static int
2989 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2990 struct objfile *objfile)
2991 {
2992 char *p;
2993 struct nextfield *new;
2994
2995 /* We better set p right now, in case there are no fields at all... */
2996
2997 p = *pp;
2998
2999 /* Read each data member type until we find the terminating ';' at the end of
3000 the data member list, or break for some other reason such as finding the
3001 start of the member function list. */
3002 /* Stab string for structure/union does not end with two ';' in
3003 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3004
3005 while (**pp != ';' && **pp != '\0')
3006 {
3007 STABS_CONTINUE (pp, objfile);
3008 /* Get space to record the next field's data. */
3009 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3010 make_cleanup (xfree, new);
3011 memset (new, 0, sizeof (struct nextfield));
3012 new->next = fip->list;
3013 fip->list = new;
3014
3015 /* Get the field name. */
3016 p = *pp;
3017
3018 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3019 unless the CPLUS_MARKER is followed by an underscore, in
3020 which case it is just the name of an anonymous type, which we
3021 should handle like any other type name. */
3022
3023 if (is_cplus_marker (p[0]) && p[1] != '_')
3024 {
3025 if (!read_cpp_abbrev (fip, pp, type, objfile))
3026 return 0;
3027 continue;
3028 }
3029
3030 /* Look for the ':' that separates the field name from the field
3031 values. Data members are delimited by a single ':', while member
3032 functions are delimited by a pair of ':'s. When we hit the member
3033 functions (if any), terminate scan loop and return. */
3034
3035 while (*p != ':' && *p != '\0')
3036 {
3037 p++;
3038 }
3039 if (*p == '\0')
3040 return 0;
3041
3042 /* Check to see if we have hit the member functions yet. */
3043 if (p[1] == ':')
3044 {
3045 break;
3046 }
3047 read_one_struct_field (fip, pp, p, type, objfile);
3048 }
3049 if (p[0] == ':' && p[1] == ':')
3050 {
3051 /* (the deleted) chill the list of fields: the last entry (at
3052 the head) is a partially constructed entry which we now
3053 scrub. */
3054 fip->list = fip->list->next;
3055 }
3056 return 1;
3057 }
3058 /* *INDENT-OFF* */
3059 /* The stabs for C++ derived classes contain baseclass information which
3060 is marked by a '!' character after the total size. This function is
3061 called when we encounter the baseclass marker, and slurps up all the
3062 baseclass information.
3063
3064 Immediately following the '!' marker is the number of base classes that
3065 the class is derived from, followed by information for each base class.
3066 For each base class, there are two visibility specifiers, a bit offset
3067 to the base class information within the derived class, a reference to
3068 the type for the base class, and a terminating semicolon.
3069
3070 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3071 ^^ ^ ^ ^ ^ ^ ^
3072 Baseclass information marker __________________|| | | | | | |
3073 Number of baseclasses __________________________| | | | | | |
3074 Visibility specifiers (2) ________________________| | | | | |
3075 Offset in bits from start of class _________________| | | | |
3076 Type number for base class ___________________________| | | |
3077 Visibility specifiers (2) _______________________________| | |
3078 Offset in bits from start of class ________________________| |
3079 Type number of base class ____________________________________|
3080
3081 Return 1 for success, 0 for (error-type-inducing) failure. */
3082 /* *INDENT-ON* */
3083
3084
3085
3086 static int
3087 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3088 struct objfile *objfile)
3089 {
3090 int i;
3091 struct nextfield *new;
3092
3093 if (**pp != '!')
3094 {
3095 return 1;
3096 }
3097 else
3098 {
3099 /* Skip the '!' baseclass information marker. */
3100 (*pp)++;
3101 }
3102
3103 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3104 {
3105 int nbits;
3106
3107 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3108 if (nbits != 0)
3109 return 0;
3110 }
3111
3112 #if 0
3113 /* Some stupid compilers have trouble with the following, so break
3114 it up into simpler expressions. */
3115 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3116 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3117 #else
3118 {
3119 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3120 char *pointer;
3121
3122 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3124 }
3125 #endif /* 0 */
3126
3127 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3128
3129 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3130 {
3131 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3132 make_cleanup (xfree, new);
3133 memset (new, 0, sizeof (struct nextfield));
3134 new->next = fip->list;
3135 fip->list = new;
3136 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3137 field! */
3138
3139 STABS_CONTINUE (pp, objfile);
3140 switch (**pp)
3141 {
3142 case '0':
3143 /* Nothing to do. */
3144 break;
3145 case '1':
3146 SET_TYPE_FIELD_VIRTUAL (type, i);
3147 break;
3148 default:
3149 /* Unknown character. Complain and treat it as non-virtual. */
3150 {
3151 complaint (&symfile_complaints,
3152 _("Unknown virtual character `%c' for baseclass"),
3153 **pp);
3154 }
3155 }
3156 ++(*pp);
3157
3158 new->visibility = *(*pp)++;
3159 switch (new->visibility)
3160 {
3161 case VISIBILITY_PRIVATE:
3162 case VISIBILITY_PROTECTED:
3163 case VISIBILITY_PUBLIC:
3164 break;
3165 default:
3166 /* Bad visibility format. Complain and treat it as
3167 public. */
3168 {
3169 complaint (&symfile_complaints,
3170 _("Unknown visibility `%c' for baseclass"),
3171 new->visibility);
3172 new->visibility = VISIBILITY_PUBLIC;
3173 }
3174 }
3175
3176 {
3177 int nbits;
3178
3179 /* The remaining value is the bit offset of the portion of the object
3180 corresponding to this baseclass. Always zero in the absence of
3181 multiple inheritance. */
3182
3183 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3184 if (nbits != 0)
3185 return 0;
3186 }
3187
3188 /* The last piece of baseclass information is the type of the
3189 base class. Read it, and remember it's type name as this
3190 field's name. */
3191
3192 new->field.type = read_type (pp, objfile);
3193 new->field.name = type_name_no_tag (new->field.type);
3194
3195 /* Skip trailing ';' and bump count of number of fields seen. */
3196 if (**pp == ';')
3197 (*pp)++;
3198 else
3199 return 0;
3200 }
3201 return 1;
3202 }
3203
3204 /* The tail end of stabs for C++ classes that contain a virtual function
3205 pointer contains a tilde, a %, and a type number.
3206 The type number refers to the base class (possibly this class itself) which
3207 contains the vtable pointer for the current class.
3208
3209 This function is called when we have parsed all the method declarations,
3210 so we can look for the vptr base class info. */
3211
3212 static int
3213 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3214 struct objfile *objfile)
3215 {
3216 char *p;
3217
3218 STABS_CONTINUE (pp, objfile);
3219
3220 /* If we are positioned at a ';', then skip it. */
3221 if (**pp == ';')
3222 {
3223 (*pp)++;
3224 }
3225
3226 if (**pp == '~')
3227 {
3228 (*pp)++;
3229
3230 if (**pp == '=' || **pp == '+' || **pp == '-')
3231 {
3232 /* Obsolete flags that used to indicate the presence
3233 of constructors and/or destructors. */
3234 (*pp)++;
3235 }
3236
3237 /* Read either a '%' or the final ';'. */
3238 if (*(*pp)++ == '%')
3239 {
3240 /* The next number is the type number of the base class
3241 (possibly our own class) which supplies the vtable for
3242 this class. Parse it out, and search that class to find
3243 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3244 and TYPE_VPTR_FIELDNO. */
3245
3246 struct type *t;
3247 int i;
3248
3249 t = read_type (pp, objfile);
3250 p = (*pp)++;
3251 while (*p != '\0' && *p != ';')
3252 {
3253 p++;
3254 }
3255 if (*p == '\0')
3256 {
3257 /* Premature end of symbol. */
3258 return 0;
3259 }
3260
3261 TYPE_VPTR_BASETYPE (type) = t;
3262 if (type == t) /* Our own class provides vtbl ptr. */
3263 {
3264 for (i = TYPE_NFIELDS (t) - 1;
3265 i >= TYPE_N_BASECLASSES (t);
3266 --i)
3267 {
3268 const char *name = TYPE_FIELD_NAME (t, i);
3269
3270 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3271 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3272 {
3273 TYPE_VPTR_FIELDNO (type) = i;
3274 goto gotit;
3275 }
3276 }
3277 /* Virtual function table field not found. */
3278 complaint (&symfile_complaints,
3279 _("virtual function table pointer "
3280 "not found when defining class `%s'"),
3281 TYPE_NAME (type));
3282 return 0;
3283 }
3284 else
3285 {
3286 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3287 }
3288
3289 gotit:
3290 *pp = p + 1;
3291 }
3292 }
3293 return 1;
3294 }
3295
3296 static int
3297 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3298 {
3299 int n;
3300
3301 for (n = TYPE_NFN_FIELDS (type);
3302 fip->fnlist != NULL;
3303 fip->fnlist = fip->fnlist->next)
3304 {
3305 --n; /* Circumvent Sun3 compiler bug. */
3306 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3307 }
3308 return 1;
3309 }
3310
3311 /* Create the vector of fields, and record how big it is.
3312 We need this info to record proper virtual function table information
3313 for this class's virtual functions. */
3314
3315 static int
3316 attach_fields_to_type (struct field_info *fip, struct type *type,
3317 struct objfile *objfile)
3318 {
3319 int nfields = 0;
3320 int non_public_fields = 0;
3321 struct nextfield *scan;
3322
3323 /* Count up the number of fields that we have, as well as taking note of
3324 whether or not there are any non-public fields, which requires us to
3325 allocate and build the private_field_bits and protected_field_bits
3326 bitfields. */
3327
3328 for (scan = fip->list; scan != NULL; scan = scan->next)
3329 {
3330 nfields++;
3331 if (scan->visibility != VISIBILITY_PUBLIC)
3332 {
3333 non_public_fields++;
3334 }
3335 }
3336
3337 /* Now we know how many fields there are, and whether or not there are any
3338 non-public fields. Record the field count, allocate space for the
3339 array of fields, and create blank visibility bitfields if necessary. */
3340
3341 TYPE_NFIELDS (type) = nfields;
3342 TYPE_FIELDS (type) = (struct field *)
3343 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3344 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3345
3346 if (non_public_fields)
3347 {
3348 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3349
3350 TYPE_FIELD_PRIVATE_BITS (type) =
3351 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3352 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3353
3354 TYPE_FIELD_PROTECTED_BITS (type) =
3355 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3356 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3357
3358 TYPE_FIELD_IGNORE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3361 }
3362
3363 /* Copy the saved-up fields into the field vector. Start from the
3364 head of the list, adding to the tail of the field array, so that
3365 they end up in the same order in the array in which they were
3366 added to the list. */
3367
3368 while (nfields-- > 0)
3369 {
3370 TYPE_FIELD (type, nfields) = fip->list->field;
3371 switch (fip->list->visibility)
3372 {
3373 case VISIBILITY_PRIVATE:
3374 SET_TYPE_FIELD_PRIVATE (type, nfields);
3375 break;
3376
3377 case VISIBILITY_PROTECTED:
3378 SET_TYPE_FIELD_PROTECTED (type, nfields);
3379 break;
3380
3381 case VISIBILITY_IGNORE:
3382 SET_TYPE_FIELD_IGNORE (type, nfields);
3383 break;
3384
3385 case VISIBILITY_PUBLIC:
3386 break;
3387
3388 default:
3389 /* Unknown visibility. Complain and treat it as public. */
3390 {
3391 complaint (&symfile_complaints,
3392 _("Unknown visibility `%c' for field"),
3393 fip->list->visibility);
3394 }
3395 break;
3396 }
3397 fip->list = fip->list->next;
3398 }
3399 return 1;
3400 }
3401
3402
3403 /* Complain that the compiler has emitted more than one definition for the
3404 structure type TYPE. */
3405 static void
3406 complain_about_struct_wipeout (struct type *type)
3407 {
3408 const char *name = "";
3409 const char *kind = "";
3410
3411 if (TYPE_TAG_NAME (type))
3412 {
3413 name = TYPE_TAG_NAME (type);
3414 switch (TYPE_CODE (type))
3415 {
3416 case TYPE_CODE_STRUCT: kind = "struct "; break;
3417 case TYPE_CODE_UNION: kind = "union "; break;
3418 case TYPE_CODE_ENUM: kind = "enum "; break;
3419 default: kind = "";
3420 }
3421 }
3422 else if (TYPE_NAME (type))
3423 {
3424 name = TYPE_NAME (type);
3425 kind = "";
3426 }
3427 else
3428 {
3429 name = "<unknown>";
3430 kind = "";
3431 }
3432
3433 complaint (&symfile_complaints,
3434 _("struct/union type gets multiply defined: %s%s"), kind, name);
3435 }
3436
3437 /* Set the length for all variants of a same main_type, which are
3438 connected in the closed chain.
3439
3440 This is something that needs to be done when a type is defined *after*
3441 some cross references to this type have already been read. Consider
3442 for instance the following scenario where we have the following two
3443 stabs entries:
3444
3445 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3446 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3447
3448 A stubbed version of type dummy is created while processing the first
3449 stabs entry. The length of that type is initially set to zero, since
3450 it is unknown at this point. Also, a "constant" variation of type
3451 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3452 the stabs line).
3453
3454 The second stabs entry allows us to replace the stubbed definition
3455 with the real definition. However, we still need to adjust the length
3456 of the "constant" variation of that type, as its length was left
3457 untouched during the main type replacement... */
3458
3459 static void
3460 set_length_in_type_chain (struct type *type)
3461 {
3462 struct type *ntype = TYPE_CHAIN (type);
3463
3464 while (ntype != type)
3465 {
3466 if (TYPE_LENGTH(ntype) == 0)
3467 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3468 else
3469 complain_about_struct_wipeout (ntype);
3470 ntype = TYPE_CHAIN (ntype);
3471 }
3472 }
3473
3474 /* Read the description of a structure (or union type) and return an object
3475 describing the type.
3476
3477 PP points to a character pointer that points to the next unconsumed token
3478 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3479 *PP will point to "4a:1,0,32;;".
3480
3481 TYPE points to an incomplete type that needs to be filled in.
3482
3483 OBJFILE points to the current objfile from which the stabs information is
3484 being read. (Note that it is redundant in that TYPE also contains a pointer
3485 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3486 */
3487
3488 static struct type *
3489 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3490 struct objfile *objfile)
3491 {
3492 struct cleanup *back_to;
3493 struct field_info fi;
3494
3495 fi.list = NULL;
3496 fi.fnlist = NULL;
3497
3498 /* When describing struct/union/class types in stabs, G++ always drops
3499 all qualifications from the name. So if you've got:
3500 struct A { ... struct B { ... }; ... };
3501 then G++ will emit stabs for `struct A::B' that call it simply
3502 `struct B'. Obviously, if you've got a real top-level definition for
3503 `struct B', or other nested definitions, this is going to cause
3504 problems.
3505
3506 Obviously, GDB can't fix this by itself, but it can at least avoid
3507 scribbling on existing structure type objects when new definitions
3508 appear. */
3509 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3510 || TYPE_STUB (type)))
3511 {
3512 complain_about_struct_wipeout (type);
3513
3514 /* It's probably best to return the type unchanged. */
3515 return type;
3516 }
3517
3518 back_to = make_cleanup (null_cleanup, 0);
3519
3520 INIT_CPLUS_SPECIFIC (type);
3521 TYPE_CODE (type) = type_code;
3522 TYPE_STUB (type) = 0;
3523
3524 /* First comes the total size in bytes. */
3525
3526 {
3527 int nbits;
3528
3529 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3530 if (nbits != 0)
3531 return error_type (pp, objfile);
3532 set_length_in_type_chain (type);
3533 }
3534
3535 /* Now read the baseclasses, if any, read the regular C struct or C++
3536 class member fields, attach the fields to the type, read the C++
3537 member functions, attach them to the type, and then read any tilde
3538 field (baseclass specifier for the class holding the main vtable). */
3539
3540 if (!read_baseclasses (&fi, pp, type, objfile)
3541 || !read_struct_fields (&fi, pp, type, objfile)
3542 || !attach_fields_to_type (&fi, type, objfile)
3543 || !read_member_functions (&fi, pp, type, objfile)
3544 || !attach_fn_fields_to_type (&fi, type)
3545 || !read_tilde_fields (&fi, pp, type, objfile))
3546 {
3547 type = error_type (pp, objfile);
3548 }
3549
3550 do_cleanups (back_to);
3551 return (type);
3552 }
3553
3554 /* Read a definition of an array type,
3555 and create and return a suitable type object.
3556 Also creates a range type which represents the bounds of that
3557 array. */
3558
3559 static struct type *
3560 read_array_type (char **pp, struct type *type,
3561 struct objfile *objfile)
3562 {
3563 struct type *index_type, *element_type, *range_type;
3564 int lower, upper;
3565 int adjustable = 0;
3566 int nbits;
3567
3568 /* Format of an array type:
3569 "ar<index type>;lower;upper;<array_contents_type>".
3570 OS9000: "arlower,upper;<array_contents_type>".
3571
3572 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3573 for these, produce a type like float[][]. */
3574
3575 {
3576 index_type = read_type (pp, objfile);
3577 if (**pp != ';')
3578 /* Improper format of array type decl. */
3579 return error_type (pp, objfile);
3580 ++*pp;
3581 }
3582
3583 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3584 {
3585 (*pp)++;
3586 adjustable = 1;
3587 }
3588 lower = read_huge_number (pp, ';', &nbits, 0);
3589
3590 if (nbits != 0)
3591 return error_type (pp, objfile);
3592
3593 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3594 {
3595 (*pp)++;
3596 adjustable = 1;
3597 }
3598 upper = read_huge_number (pp, ';', &nbits, 0);
3599 if (nbits != 0)
3600 return error_type (pp, objfile);
3601
3602 element_type = read_type (pp, objfile);
3603
3604 if (adjustable)
3605 {
3606 lower = 0;
3607 upper = -1;
3608 }
3609
3610 range_type =
3611 create_range_type ((struct type *) NULL, index_type, lower, upper);
3612 type = create_array_type (type, element_type, range_type);
3613
3614 return type;
3615 }
3616
3617
3618 /* Read a definition of an enumeration type,
3619 and create and return a suitable type object.
3620 Also defines the symbols that represent the values of the type. */
3621
3622 static struct type *
3623 read_enum_type (char **pp, struct type *type,
3624 struct objfile *objfile)
3625 {
3626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3627 char *p;
3628 char *name;
3629 long n;
3630 struct symbol *sym;
3631 int nsyms = 0;
3632 struct pending **symlist;
3633 struct pending *osyms, *syms;
3634 int o_nsyms;
3635 int nbits;
3636 int unsigned_enum = 1;
3637
3638 #if 0
3639 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3640 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3641 to do? For now, force all enum values to file scope. */
3642 if (within_function)
3643 symlist = &local_symbols;
3644 else
3645 #endif
3646 symlist = &file_symbols;
3647 osyms = *symlist;
3648 o_nsyms = osyms ? osyms->nsyms : 0;
3649
3650 /* The aix4 compiler emits an extra field before the enum members;
3651 my guess is it's a type of some sort. Just ignore it. */
3652 if (**pp == '-')
3653 {
3654 /* Skip over the type. */
3655 while (**pp != ':')
3656 (*pp)++;
3657
3658 /* Skip over the colon. */
3659 (*pp)++;
3660 }
3661
3662 /* Read the value-names and their values.
3663 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3664 A semicolon or comma instead of a NAME means the end. */
3665 while (**pp && **pp != ';' && **pp != ',')
3666 {
3667 STABS_CONTINUE (pp, objfile);
3668 p = *pp;
3669 while (*p != ':')
3670 p++;
3671 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3672 *pp = p + 1;
3673 n = read_huge_number (pp, ',', &nbits, 0);
3674 if (nbits != 0)
3675 return error_type (pp, objfile);
3676
3677 sym = allocate_symbol (objfile);
3678 SYMBOL_SET_LINKAGE_NAME (sym, name);
3679 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3680 &objfile->objfile_obstack);
3681 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3683 SYMBOL_VALUE (sym) = n;
3684 if (n < 0)
3685 unsigned_enum = 0;
3686 add_symbol_to_list (sym, symlist);
3687 nsyms++;
3688 }
3689
3690 if (**pp == ';')
3691 (*pp)++; /* Skip the semicolon. */
3692
3693 /* Now fill in the fields of the type-structure. */
3694
3695 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3696 set_length_in_type_chain (type);
3697 TYPE_CODE (type) = TYPE_CODE_ENUM;
3698 TYPE_STUB (type) = 0;
3699 if (unsigned_enum)
3700 TYPE_UNSIGNED (type) = 1;
3701 TYPE_NFIELDS (type) = nsyms;
3702 TYPE_FIELDS (type) = (struct field *)
3703 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3705
3706 /* Find the symbols for the values and put them into the type.
3707 The symbols can be found in the symlist that we put them on
3708 to cause them to be defined. osyms contains the old value
3709 of that symlist; everything up to there was defined by us. */
3710 /* Note that we preserve the order of the enum constants, so
3711 that in something like "enum {FOO, LAST_THING=FOO}" we print
3712 FOO, not LAST_THING. */
3713
3714 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3715 {
3716 int last = syms == osyms ? o_nsyms : 0;
3717 int j = syms->nsyms;
3718
3719 for (; --j >= last; --n)
3720 {
3721 struct symbol *xsym = syms->symbol[j];
3722
3723 SYMBOL_TYPE (xsym) = type;
3724 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3725 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3726 TYPE_FIELD_BITSIZE (type, n) = 0;
3727 }
3728 if (syms == osyms)
3729 break;
3730 }
3731
3732 return type;
3733 }
3734
3735 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3736 typedefs in every file (for int, long, etc):
3737
3738 type = b <signed> <width> <format type>; <offset>; <nbits>
3739 signed = u or s.
3740 optional format type = c or b for char or boolean.
3741 offset = offset from high order bit to start bit of type.
3742 width is # bytes in object of this type, nbits is # bits in type.
3743
3744 The width/offset stuff appears to be for small objects stored in
3745 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3746 FIXME. */
3747
3748 static struct type *
3749 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3750 {
3751 int type_bits;
3752 int nbits;
3753 int signed_type;
3754 enum type_code code = TYPE_CODE_INT;
3755
3756 switch (**pp)
3757 {
3758 case 's':
3759 signed_type = 1;
3760 break;
3761 case 'u':
3762 signed_type = 0;
3763 break;
3764 default:
3765 return error_type (pp, objfile);
3766 }
3767 (*pp)++;
3768
3769 /* For some odd reason, all forms of char put a c here. This is strange
3770 because no other type has this honor. We can safely ignore this because
3771 we actually determine 'char'acterness by the number of bits specified in
3772 the descriptor.
3773 Boolean forms, e.g Fortran logical*X, put a b here. */
3774
3775 if (**pp == 'c')
3776 (*pp)++;
3777 else if (**pp == 'b')
3778 {
3779 code = TYPE_CODE_BOOL;
3780 (*pp)++;
3781 }
3782
3783 /* The first number appears to be the number of bytes occupied
3784 by this type, except that unsigned short is 4 instead of 2.
3785 Since this information is redundant with the third number,
3786 we will ignore it. */
3787 read_huge_number (pp, ';', &nbits, 0);
3788 if (nbits != 0)
3789 return error_type (pp, objfile);
3790
3791 /* The second number is always 0, so ignore it too. */
3792 read_huge_number (pp, ';', &nbits, 0);
3793 if (nbits != 0)
3794 return error_type (pp, objfile);
3795
3796 /* The third number is the number of bits for this type. */
3797 type_bits = read_huge_number (pp, 0, &nbits, 0);
3798 if (nbits != 0)
3799 return error_type (pp, objfile);
3800 /* The type *should* end with a semicolon. If it are embedded
3801 in a larger type the semicolon may be the only way to know where
3802 the type ends. If this type is at the end of the stabstring we
3803 can deal with the omitted semicolon (but we don't have to like
3804 it). Don't bother to complain(), Sun's compiler omits the semicolon
3805 for "void". */
3806 if (**pp == ';')
3807 ++(*pp);
3808
3809 if (type_bits == 0)
3810 return init_type (TYPE_CODE_VOID, 1,
3811 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3812 objfile);
3813 else
3814 return init_type (code,
3815 type_bits / TARGET_CHAR_BIT,
3816 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3817 objfile);
3818 }
3819
3820 static struct type *
3821 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3822 {
3823 int nbits;
3824 int details;
3825 int nbytes;
3826 struct type *rettype;
3827
3828 /* The first number has more details about the type, for example
3829 FN_COMPLEX. */
3830 details = read_huge_number (pp, ';', &nbits, 0);
3831 if (nbits != 0)
3832 return error_type (pp, objfile);
3833
3834 /* The second number is the number of bytes occupied by this type. */
3835 nbytes = read_huge_number (pp, ';', &nbits, 0);
3836 if (nbits != 0)
3837 return error_type (pp, objfile);
3838
3839 if (details == NF_COMPLEX || details == NF_COMPLEX16
3840 || details == NF_COMPLEX32)
3841 {
3842 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3843 TYPE_TARGET_TYPE (rettype)
3844 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3845 return rettype;
3846 }
3847
3848 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3849 }
3850
3851 /* Read a number from the string pointed to by *PP.
3852 The value of *PP is advanced over the number.
3853 If END is nonzero, the character that ends the
3854 number must match END, or an error happens;
3855 and that character is skipped if it does match.
3856 If END is zero, *PP is left pointing to that character.
3857
3858 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3859 the number is represented in an octal representation, assume that
3860 it is represented in a 2's complement representation with a size of
3861 TWOS_COMPLEMENT_BITS.
3862
3863 If the number fits in a long, set *BITS to 0 and return the value.
3864 If not, set *BITS to be the number of bits in the number and return 0.
3865
3866 If encounter garbage, set *BITS to -1 and return 0. */
3867
3868 static long
3869 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3870 {
3871 char *p = *pp;
3872 int sign = 1;
3873 int sign_bit = 0;
3874 long n = 0;
3875 int radix = 10;
3876 char overflow = 0;
3877 int nbits = 0;
3878 int c;
3879 long upper_limit;
3880 int twos_complement_representation = 0;
3881
3882 if (*p == '-')
3883 {
3884 sign = -1;
3885 p++;
3886 }
3887
3888 /* Leading zero means octal. GCC uses this to output values larger
3889 than an int (because that would be hard in decimal). */
3890 if (*p == '0')
3891 {
3892 radix = 8;
3893 p++;
3894 }
3895
3896 /* Skip extra zeros. */
3897 while (*p == '0')
3898 p++;
3899
3900 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3901 {
3902 /* Octal, possibly signed. Check if we have enough chars for a
3903 negative number. */
3904
3905 size_t len;
3906 char *p1 = p;
3907
3908 while ((c = *p1) >= '0' && c < '8')
3909 p1++;
3910
3911 len = p1 - p;
3912 if (len > twos_complement_bits / 3
3913 || (twos_complement_bits % 3 == 0
3914 && len == twos_complement_bits / 3))
3915 {
3916 /* Ok, we have enough characters for a signed value, check
3917 for signness by testing if the sign bit is set. */
3918 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3919 c = *p - '0';
3920 if (c & (1 << sign_bit))
3921 {
3922 /* Definitely signed. */
3923 twos_complement_representation = 1;
3924 sign = -1;
3925 }
3926 }
3927 }
3928
3929 upper_limit = LONG_MAX / radix;
3930
3931 while ((c = *p++) >= '0' && c < ('0' + radix))
3932 {
3933 if (n <= upper_limit)
3934 {
3935 if (twos_complement_representation)
3936 {
3937 /* Octal, signed, twos complement representation. In
3938 this case, n is the corresponding absolute value. */
3939 if (n == 0)
3940 {
3941 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3942
3943 n = -sn;
3944 }
3945 else
3946 {
3947 n *= radix;
3948 n -= c - '0';
3949 }
3950 }
3951 else
3952 {
3953 /* unsigned representation */
3954 n *= radix;
3955 n += c - '0'; /* FIXME this overflows anyway. */
3956 }
3957 }
3958 else
3959 overflow = 1;
3960
3961 /* This depends on large values being output in octal, which is
3962 what GCC does. */
3963 if (radix == 8)
3964 {
3965 if (nbits == 0)
3966 {
3967 if (c == '0')
3968 /* Ignore leading zeroes. */
3969 ;
3970 else if (c == '1')
3971 nbits = 1;
3972 else if (c == '2' || c == '3')
3973 nbits = 2;
3974 else
3975 nbits = 3;
3976 }
3977 else
3978 nbits += 3;
3979 }
3980 }
3981 if (end)
3982 {
3983 if (c && c != end)
3984 {
3985 if (bits != NULL)
3986 *bits = -1;
3987 return 0;
3988 }
3989 }
3990 else
3991 --p;
3992
3993 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3994 {
3995 /* We were supposed to parse a number with maximum
3996 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001
4002 *pp = p;
4003 if (overflow)
4004 {
4005 if (nbits == 0)
4006 {
4007 /* Large decimal constants are an error (because it is hard to
4008 count how many bits are in them). */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013
4014 /* -0x7f is the same as 0x80. So deal with it by adding one to
4015 the number of bits. Two's complement represention octals
4016 can't have a '-' in front. */
4017 if (sign == -1 && !twos_complement_representation)
4018 ++nbits;
4019 if (bits)
4020 *bits = nbits;
4021 }
4022 else
4023 {
4024 if (bits)
4025 *bits = 0;
4026 return n * sign;
4027 }
4028 /* It's *BITS which has the interesting information. */
4029 return 0;
4030 }
4031
4032 static struct type *
4033 read_range_type (char **pp, int typenums[2], int type_size,
4034 struct objfile *objfile)
4035 {
4036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4037 char *orig_pp = *pp;
4038 int rangenums[2];
4039 long n2, n3;
4040 int n2bits, n3bits;
4041 int self_subrange;
4042 struct type *result_type;
4043 struct type *index_type = NULL;
4044
4045 /* First comes a type we are a subrange of.
4046 In C it is usually 0, 1 or the type being defined. */
4047 if (read_type_number (pp, rangenums) != 0)
4048 return error_type (pp, objfile);
4049 self_subrange = (rangenums[0] == typenums[0] &&
4050 rangenums[1] == typenums[1]);
4051
4052 if (**pp == '=')
4053 {
4054 *pp = orig_pp;
4055 index_type = read_type (pp, objfile);
4056 }
4057
4058 /* A semicolon should now follow; skip it. */
4059 if (**pp == ';')
4060 (*pp)++;
4061
4062 /* The remaining two operands are usually lower and upper bounds
4063 of the range. But in some special cases they mean something else. */
4064 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4065 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4066
4067 if (n2bits == -1 || n3bits == -1)
4068 return error_type (pp, objfile);
4069
4070 if (index_type)
4071 goto handle_true_range;
4072
4073 /* If limits are huge, must be large integral type. */
4074 if (n2bits != 0 || n3bits != 0)
4075 {
4076 char got_signed = 0;
4077 char got_unsigned = 0;
4078 /* Number of bits in the type. */
4079 int nbits = 0;
4080
4081 /* If a type size attribute has been specified, the bounds of
4082 the range should fit in this size. If the lower bounds needs
4083 more bits than the upper bound, then the type is signed. */
4084 if (n2bits <= type_size && n3bits <= type_size)
4085 {
4086 if (n2bits == type_size && n2bits > n3bits)
4087 got_signed = 1;
4088 else
4089 got_unsigned = 1;
4090 nbits = type_size;
4091 }
4092 /* Range from 0 to <large number> is an unsigned large integral type. */
4093 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4094 {
4095 got_unsigned = 1;
4096 nbits = n3bits;
4097 }
4098 /* Range from <large number> to <large number>-1 is a large signed
4099 integral type. Take care of the case where <large number> doesn't
4100 fit in a long but <large number>-1 does. */
4101 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4102 || (n2bits != 0 && n3bits == 0
4103 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4104 && n3 == LONG_MAX))
4105 {
4106 got_signed = 1;
4107 nbits = n2bits;
4108 }
4109
4110 if (got_signed || got_unsigned)
4111 {
4112 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4113 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4114 objfile);
4115 }
4116 else
4117 return error_type (pp, objfile);
4118 }
4119
4120 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4121 if (self_subrange && n2 == 0 && n3 == 0)
4122 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4123
4124 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4125 is the width in bytes.
4126
4127 Fortran programs appear to use this for complex types also. To
4128 distinguish between floats and complex, g77 (and others?) seem
4129 to use self-subranges for the complexes, and subranges of int for
4130 the floats.
4131
4132 Also note that for complexes, g77 sets n2 to the size of one of
4133 the member floats, not the whole complex beast. My guess is that
4134 this was to work well with pre-COMPLEX versions of gdb. */
4135
4136 if (n3 == 0 && n2 > 0)
4137 {
4138 struct type *float_type
4139 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4140
4141 if (self_subrange)
4142 {
4143 struct type *complex_type =
4144 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4145
4146 TYPE_TARGET_TYPE (complex_type) = float_type;
4147 return complex_type;
4148 }
4149 else
4150 return float_type;
4151 }
4152
4153 /* If the upper bound is -1, it must really be an unsigned integral. */
4154
4155 else if (n2 == 0 && n3 == -1)
4156 {
4157 int bits = type_size;
4158
4159 if (bits <= 0)
4160 {
4161 /* We don't know its size. It is unsigned int or unsigned
4162 long. GCC 2.3.3 uses this for long long too, but that is
4163 just a GDB 3.5 compatibility hack. */
4164 bits = gdbarch_int_bit (gdbarch);
4165 }
4166
4167 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4168 TYPE_FLAG_UNSIGNED, NULL, objfile);
4169 }
4170
4171 /* Special case: char is defined (Who knows why) as a subrange of
4172 itself with range 0-127. */
4173 else if (self_subrange && n2 == 0 && n3 == 127)
4174 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4175
4176 /* We used to do this only for subrange of self or subrange of int. */
4177 else if (n2 == 0)
4178 {
4179 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4180 "unsigned long", and we already checked for that,
4181 so don't need to test for it here. */
4182
4183 if (n3 < 0)
4184 /* n3 actually gives the size. */
4185 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4186 NULL, objfile);
4187
4188 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4189 unsigned n-byte integer. But do require n to be a power of
4190 two; we don't want 3- and 5-byte integers flying around. */
4191 {
4192 int bytes;
4193 unsigned long bits;
4194
4195 bits = n3;
4196 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4197 bits >>= 8;
4198 if (bits == 0
4199 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4200 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4201 objfile);
4202 }
4203 }
4204 /* I think this is for Convex "long long". Since I don't know whether
4205 Convex sets self_subrange, I also accept that particular size regardless
4206 of self_subrange. */
4207 else if (n3 == 0 && n2 < 0
4208 && (self_subrange
4209 || n2 == -gdbarch_long_long_bit
4210 (gdbarch) / TARGET_CHAR_BIT))
4211 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4212 else if (n2 == -n3 - 1)
4213 {
4214 if (n3 == 0x7f)
4215 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4216 if (n3 == 0x7fff)
4217 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4218 if (n3 == 0x7fffffff)
4219 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4220 }
4221
4222 /* We have a real range type on our hands. Allocate space and
4223 return a real pointer. */
4224 handle_true_range:
4225
4226 if (self_subrange)
4227 index_type = objfile_type (objfile)->builtin_int;
4228 else
4229 index_type = *dbx_lookup_type (rangenums, objfile);
4230 if (index_type == NULL)
4231 {
4232 /* Does this actually ever happen? Is that why we are worrying
4233 about dealing with it rather than just calling error_type? */
4234
4235 complaint (&symfile_complaints,
4236 _("base type %d of range type is not defined"), rangenums[1]);
4237
4238 index_type = objfile_type (objfile)->builtin_int;
4239 }
4240
4241 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4242 return (result_type);
4243 }
4244
4245 /* Read in an argument list. This is a list of types, separated by commas
4246 and terminated with END. Return the list of types read in, or NULL
4247 if there is an error. */
4248
4249 static struct field *
4250 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4251 int *varargsp)
4252 {
4253 /* FIXME! Remove this arbitrary limit! */
4254 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4255 int n = 0, i;
4256 struct field *rval;
4257
4258 while (**pp != end)
4259 {
4260 if (**pp != ',')
4261 /* Invalid argument list: no ','. */
4262 return NULL;
4263 (*pp)++;
4264 STABS_CONTINUE (pp, objfile);
4265 types[n++] = read_type (pp, objfile);
4266 }
4267 (*pp)++; /* get past `end' (the ':' character). */
4268
4269 if (n == 0)
4270 {
4271 /* We should read at least the THIS parameter here. Some broken stabs
4272 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4273 have been present ";-16,(0,43)" reference instead. This way the
4274 excessive ";" marker prematurely stops the parameters parsing. */
4275
4276 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4277 *varargsp = 0;
4278 }
4279 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4280 *varargsp = 1;
4281 else
4282 {
4283 n--;
4284 *varargsp = 0;
4285 }
4286
4287 rval = (struct field *) xmalloc (n * sizeof (struct field));
4288 memset (rval, 0, n * sizeof (struct field));
4289 for (i = 0; i < n; i++)
4290 rval[i].type = types[i];
4291 *nargsp = n;
4292 return rval;
4293 }
4294 \f
4295 /* Common block handling. */
4296
4297 /* List of symbols declared since the last BCOMM. This list is a tail
4298 of local_symbols. When ECOMM is seen, the symbols on the list
4299 are noted so their proper addresses can be filled in later,
4300 using the common block base address gotten from the assembler
4301 stabs. */
4302
4303 static struct pending *common_block;
4304 static int common_block_i;
4305
4306 /* Name of the current common block. We get it from the BCOMM instead of the
4307 ECOMM to match IBM documentation (even though IBM puts the name both places
4308 like everyone else). */
4309 static char *common_block_name;
4310
4311 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4312 to remain after this function returns. */
4313
4314 void
4315 common_block_start (char *name, struct objfile *objfile)
4316 {
4317 if (common_block_name != NULL)
4318 {
4319 complaint (&symfile_complaints,
4320 _("Invalid symbol data: common block within common block"));
4321 }
4322 common_block = local_symbols;
4323 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4324 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4325 name, strlen (name));
4326 }
4327
4328 /* Process a N_ECOMM symbol. */
4329
4330 void
4331 common_block_end (struct objfile *objfile)
4332 {
4333 /* Symbols declared since the BCOMM are to have the common block
4334 start address added in when we know it. common_block and
4335 common_block_i point to the first symbol after the BCOMM in
4336 the local_symbols list; copy the list and hang it off the
4337 symbol for the common block name for later fixup. */
4338 int i;
4339 struct symbol *sym;
4340 struct pending *new = 0;
4341 struct pending *next;
4342 int j;
4343
4344 if (common_block_name == NULL)
4345 {
4346 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4347 return;
4348 }
4349
4350 sym = allocate_symbol (objfile);
4351 /* Note: common_block_name already saved on objfile_obstack. */
4352 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4353 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4354
4355 /* Now we copy all the symbols which have been defined since the BCOMM. */
4356
4357 /* Copy all the struct pendings before common_block. */
4358 for (next = local_symbols;
4359 next != NULL && next != common_block;
4360 next = next->next)
4361 {
4362 for (j = 0; j < next->nsyms; j++)
4363 add_symbol_to_list (next->symbol[j], &new);
4364 }
4365
4366 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4367 NULL, it means copy all the local symbols (which we already did
4368 above). */
4369
4370 if (common_block != NULL)
4371 for (j = common_block_i; j < common_block->nsyms; j++)
4372 add_symbol_to_list (common_block->symbol[j], &new);
4373
4374 SYMBOL_TYPE (sym) = (struct type *) new;
4375
4376 /* Should we be putting local_symbols back to what it was?
4377 Does it matter? */
4378
4379 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4380 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4381 global_sym_chain[i] = sym;
4382 common_block_name = NULL;
4383 }
4384
4385 /* Add a common block's start address to the offset of each symbol
4386 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4387 the common block name). */
4388
4389 static void
4390 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4391 {
4392 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4393
4394 for (; next; next = next->next)
4395 {
4396 int j;
4397
4398 for (j = next->nsyms - 1; j >= 0; j--)
4399 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4400 }
4401 }
4402 \f
4403
4404
4405 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4406 See add_undefined_type for more details. */
4407
4408 static void
4409 add_undefined_type_noname (struct type *type, int typenums[2])
4410 {
4411 struct nat nat;
4412
4413 nat.typenums[0] = typenums [0];
4414 nat.typenums[1] = typenums [1];
4415 nat.type = type;
4416
4417 if (noname_undefs_length == noname_undefs_allocated)
4418 {
4419 noname_undefs_allocated *= 2;
4420 noname_undefs = (struct nat *)
4421 xrealloc ((char *) noname_undefs,
4422 noname_undefs_allocated * sizeof (struct nat));
4423 }
4424 noname_undefs[noname_undefs_length++] = nat;
4425 }
4426
4427 /* Add TYPE to the UNDEF_TYPES vector.
4428 See add_undefined_type for more details. */
4429
4430 static void
4431 add_undefined_type_1 (struct type *type)
4432 {
4433 if (undef_types_length == undef_types_allocated)
4434 {
4435 undef_types_allocated *= 2;
4436 undef_types = (struct type **)
4437 xrealloc ((char *) undef_types,
4438 undef_types_allocated * sizeof (struct type *));
4439 }
4440 undef_types[undef_types_length++] = type;
4441 }
4442
4443 /* What about types defined as forward references inside of a small lexical
4444 scope? */
4445 /* Add a type to the list of undefined types to be checked through
4446 once this file has been read in.
4447
4448 In practice, we actually maintain two such lists: The first list
4449 (UNDEF_TYPES) is used for types whose name has been provided, and
4450 concerns forward references (eg 'xs' or 'xu' forward references);
4451 the second list (NONAME_UNDEFS) is used for types whose name is
4452 unknown at creation time, because they were referenced through
4453 their type number before the actual type was declared.
4454 This function actually adds the given type to the proper list. */
4455
4456 static void
4457 add_undefined_type (struct type *type, int typenums[2])
4458 {
4459 if (TYPE_TAG_NAME (type) == NULL)
4460 add_undefined_type_noname (type, typenums);
4461 else
4462 add_undefined_type_1 (type);
4463 }
4464
4465 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4466
4467 static void
4468 cleanup_undefined_types_noname (struct objfile *objfile)
4469 {
4470 int i;
4471
4472 for (i = 0; i < noname_undefs_length; i++)
4473 {
4474 struct nat nat = noname_undefs[i];
4475 struct type **type;
4476
4477 type = dbx_lookup_type (nat.typenums, objfile);
4478 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4479 {
4480 /* The instance flags of the undefined type are still unset,
4481 and needs to be copied over from the reference type.
4482 Since replace_type expects them to be identical, we need
4483 to set these flags manually before hand. */
4484 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4485 replace_type (nat.type, *type);
4486 }
4487 }
4488
4489 noname_undefs_length = 0;
4490 }
4491
4492 /* Go through each undefined type, see if it's still undefined, and fix it
4493 up if possible. We have two kinds of undefined types:
4494
4495 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4496 Fix: update array length using the element bounds
4497 and the target type's length.
4498 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4499 yet defined at the time a pointer to it was made.
4500 Fix: Do a full lookup on the struct/union tag. */
4501
4502 static void
4503 cleanup_undefined_types_1 (void)
4504 {
4505 struct type **type;
4506
4507 /* Iterate over every undefined type, and look for a symbol whose type
4508 matches our undefined type. The symbol matches if:
4509 1. It is a typedef in the STRUCT domain;
4510 2. It has the same name, and same type code;
4511 3. The instance flags are identical.
4512
4513 It is important to check the instance flags, because we have seen
4514 examples where the debug info contained definitions such as:
4515
4516 "foo_t:t30=B31=xefoo_t:"
4517
4518 In this case, we have created an undefined type named "foo_t" whose
4519 instance flags is null (when processing "xefoo_t"), and then created
4520 another type with the same name, but with different instance flags
4521 ('B' means volatile). I think that the definition above is wrong,
4522 since the same type cannot be volatile and non-volatile at the same
4523 time, but we need to be able to cope with it when it happens. The
4524 approach taken here is to treat these two types as different. */
4525
4526 for (type = undef_types; type < undef_types + undef_types_length; type++)
4527 {
4528 switch (TYPE_CODE (*type))
4529 {
4530
4531 case TYPE_CODE_STRUCT:
4532 case TYPE_CODE_UNION:
4533 case TYPE_CODE_ENUM:
4534 {
4535 /* Check if it has been defined since. Need to do this here
4536 as well as in check_typedef to deal with the (legitimate in
4537 C though not C++) case of several types with the same name
4538 in different source files. */
4539 if (TYPE_STUB (*type))
4540 {
4541 struct pending *ppt;
4542 int i;
4543 /* Name of the type, without "struct" or "union". */
4544 const char *typename = TYPE_TAG_NAME (*type);
4545
4546 if (typename == NULL)
4547 {
4548 complaint (&symfile_complaints, _("need a type name"));
4549 break;
4550 }
4551 for (ppt = file_symbols; ppt; ppt = ppt->next)
4552 {
4553 for (i = 0; i < ppt->nsyms; i++)
4554 {
4555 struct symbol *sym = ppt->symbol[i];
4556
4557 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4558 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4559 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4560 TYPE_CODE (*type))
4561 && (TYPE_INSTANCE_FLAGS (*type) ==
4562 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4563 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4564 typename) == 0)
4565 replace_type (*type, SYMBOL_TYPE (sym));
4566 }
4567 }
4568 }
4569 }
4570 break;
4571
4572 default:
4573 {
4574 complaint (&symfile_complaints,
4575 _("forward-referenced types left unresolved, "
4576 "type code %d."),
4577 TYPE_CODE (*type));
4578 }
4579 break;
4580 }
4581 }
4582
4583 undef_types_length = 0;
4584 }
4585
4586 /* Try to fix all the undefined types we ecountered while processing
4587 this unit. */
4588
4589 void
4590 cleanup_undefined_stabs_types (struct objfile *objfile)
4591 {
4592 cleanup_undefined_types_1 ();
4593 cleanup_undefined_types_noname (objfile);
4594 }
4595
4596 /* Scan through all of the global symbols defined in the object file,
4597 assigning values to the debugging symbols that need to be assigned
4598 to. Get these symbols from the minimal symbol table. */
4599
4600 void
4601 scan_file_globals (struct objfile *objfile)
4602 {
4603 int hash;
4604 struct minimal_symbol *msymbol;
4605 struct symbol *sym, *prev;
4606 struct objfile *resolve_objfile;
4607
4608 /* SVR4 based linkers copy referenced global symbols from shared
4609 libraries to the main executable.
4610 If we are scanning the symbols for a shared library, try to resolve
4611 them from the minimal symbols of the main executable first. */
4612
4613 if (symfile_objfile && objfile != symfile_objfile)
4614 resolve_objfile = symfile_objfile;
4615 else
4616 resolve_objfile = objfile;
4617
4618 while (1)
4619 {
4620 /* Avoid expensive loop through all minimal symbols if there are
4621 no unresolved symbols. */
4622 for (hash = 0; hash < HASHSIZE; hash++)
4623 {
4624 if (global_sym_chain[hash])
4625 break;
4626 }
4627 if (hash >= HASHSIZE)
4628 return;
4629
4630 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4631 {
4632 QUIT;
4633
4634 /* Skip static symbols. */
4635 switch (MSYMBOL_TYPE (msymbol))
4636 {
4637 case mst_file_text:
4638 case mst_file_data:
4639 case mst_file_bss:
4640 continue;
4641 default:
4642 break;
4643 }
4644
4645 prev = NULL;
4646
4647 /* Get the hash index and check all the symbols
4648 under that hash index. */
4649
4650 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4651
4652 for (sym = global_sym_chain[hash]; sym;)
4653 {
4654 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4655 SYMBOL_LINKAGE_NAME (sym)) == 0)
4656 {
4657 /* Splice this symbol out of the hash chain and
4658 assign the value we have to it. */
4659 if (prev)
4660 {
4661 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4662 }
4663 else
4664 {
4665 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4666 }
4667
4668 /* Check to see whether we need to fix up a common block. */
4669 /* Note: this code might be executed several times for
4670 the same symbol if there are multiple references. */
4671 if (sym)
4672 {
4673 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4674 {
4675 fix_common_block (sym,
4676 SYMBOL_VALUE_ADDRESS (msymbol));
4677 }
4678 else
4679 {
4680 SYMBOL_VALUE_ADDRESS (sym)
4681 = SYMBOL_VALUE_ADDRESS (msymbol);
4682 }
4683 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4684 }
4685
4686 if (prev)
4687 {
4688 sym = SYMBOL_VALUE_CHAIN (prev);
4689 }
4690 else
4691 {
4692 sym = global_sym_chain[hash];
4693 }
4694 }
4695 else
4696 {
4697 prev = sym;
4698 sym = SYMBOL_VALUE_CHAIN (sym);
4699 }
4700 }
4701 }
4702 if (resolve_objfile == objfile)
4703 break;
4704 resolve_objfile = objfile;
4705 }
4706
4707 /* Change the storage class of any remaining unresolved globals to
4708 LOC_UNRESOLVED and remove them from the chain. */
4709 for (hash = 0; hash < HASHSIZE; hash++)
4710 {
4711 sym = global_sym_chain[hash];
4712 while (sym)
4713 {
4714 prev = sym;
4715 sym = SYMBOL_VALUE_CHAIN (sym);
4716
4717 /* Change the symbol address from the misleading chain value
4718 to address zero. */
4719 SYMBOL_VALUE_ADDRESS (prev) = 0;
4720
4721 /* Complain about unresolved common block symbols. */
4722 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4723 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4724 else
4725 complaint (&symfile_complaints,
4726 _("%s: common block `%s' from "
4727 "global_sym_chain unresolved"),
4728 objfile->name, SYMBOL_PRINT_NAME (prev));
4729 }
4730 }
4731 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4732 }
4733
4734 /* Initialize anything that needs initializing when starting to read
4735 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4736 to a psymtab. */
4737
4738 void
4739 stabsread_init (void)
4740 {
4741 }
4742
4743 /* Initialize anything that needs initializing when a completely new
4744 symbol file is specified (not just adding some symbols from another
4745 file, e.g. a shared library). */
4746
4747 void
4748 stabsread_new_init (void)
4749 {
4750 /* Empty the hash table of global syms looking for values. */
4751 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4752 }
4753
4754 /* Initialize anything that needs initializing at the same time as
4755 start_symtab() is called. */
4756
4757 void
4758 start_stabs (void)
4759 {
4760 global_stabs = NULL; /* AIX COFF */
4761 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4762 n_this_object_header_files = 1;
4763 type_vector_length = 0;
4764 type_vector = (struct type **) 0;
4765
4766 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4767 common_block_name = NULL;
4768 }
4769
4770 /* Call after end_symtab(). */
4771
4772 void
4773 end_stabs (void)
4774 {
4775 if (type_vector)
4776 {
4777 xfree (type_vector);
4778 }
4779 type_vector = 0;
4780 type_vector_length = 0;
4781 previous_stab_code = 0;
4782 }
4783
4784 void
4785 finish_global_stabs (struct objfile *objfile)
4786 {
4787 if (global_stabs)
4788 {
4789 patch_block_stabs (global_symbols, global_stabs, objfile);
4790 xfree (global_stabs);
4791 global_stabs = NULL;
4792 }
4793 }
4794
4795 /* Find the end of the name, delimited by a ':', but don't match
4796 ObjC symbols which look like -[Foo bar::]:bla. */
4797 static char *
4798 find_name_end (char *name)
4799 {
4800 char *s = name;
4801
4802 if (s[0] == '-' || *s == '+')
4803 {
4804 /* Must be an ObjC method symbol. */
4805 if (s[1] != '[')
4806 {
4807 error (_("invalid symbol name \"%s\""), name);
4808 }
4809 s = strchr (s, ']');
4810 if (s == NULL)
4811 {
4812 error (_("invalid symbol name \"%s\""), name);
4813 }
4814 return strchr (s, ':');
4815 }
4816 else
4817 {
4818 return strchr (s, ':');
4819 }
4820 }
4821
4822 /* Initializer for this module. */
4823
4824 void
4825 _initialize_stabsread (void)
4826 {
4827 rs6000_builtin_type_data = register_objfile_data ();
4828
4829 undef_types_allocated = 20;
4830 undef_types_length = 0;
4831 undef_types = (struct type **)
4832 xmalloc (undef_types_allocated * sizeof (struct type *));
4833
4834 noname_undefs_allocated = 20;
4835 noname_undefs_length = 0;
4836 noname_undefs = (struct nat *)
4837 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4838
4839 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4840 &stab_register_funcs);
4841 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4842 &stab_register_funcs);
4843 }
This page took 0.126148 seconds and 5 git commands to generate.