Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "complaints.h"
34 #include "cli/cli-utils.h"
35 #include "linespec.h"
36 #include "user-regs.h"
37 #include "parser-defs.h"
38 #include "language.h"
39 #include "elf-bfd.h"
40
41 #include <ctype.h>
42
43 /* The name of the SystemTap section where we will find information about
44 the probes. */
45
46 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
47
48 /* Forward declaration. */
49
50 static const struct probe_ops stap_probe_ops;
51
52 /* Should we display debug information for the probe's argument expression
53 parsing? */
54
55 static unsigned int stap_expression_debug = 0;
56
57 /* The various possibilities of bitness defined for a probe's argument.
58
59 The relationship is:
60
61 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
62 - STAP_ARG_BITNESS_8BIT_UNSIGNED: argument string starts with `1@'.
63 - STAP_ARG_BITNESS_8BIT_SIGNED: argument string starts with `-1@'.
64 - STAP_ARG_BITNESS_16BIT_UNSIGNED: argument string starts with `2@'.
65 - STAP_ARG_BITNESS_16BIT_SIGNED: argument string starts with `-2@'.
66 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
67 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
68 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
69 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
70
71 enum stap_arg_bitness
72 {
73 STAP_ARG_BITNESS_UNDEFINED,
74 STAP_ARG_BITNESS_8BIT_UNSIGNED,
75 STAP_ARG_BITNESS_8BIT_SIGNED,
76 STAP_ARG_BITNESS_16BIT_UNSIGNED,
77 STAP_ARG_BITNESS_16BIT_SIGNED,
78 STAP_ARG_BITNESS_32BIT_UNSIGNED,
79 STAP_ARG_BITNESS_32BIT_SIGNED,
80 STAP_ARG_BITNESS_64BIT_UNSIGNED,
81 STAP_ARG_BITNESS_64BIT_SIGNED,
82 };
83
84 /* The following structure represents a single argument for the probe. */
85
86 struct stap_probe_arg
87 {
88 /* The bitness of this argument. */
89 enum stap_arg_bitness bitness;
90
91 /* The corresponding `struct type *' to the bitness. */
92 struct type *atype;
93
94 /* The argument converted to an internal GDB expression. */
95 struct expression *aexpr;
96 };
97
98 typedef struct stap_probe_arg stap_probe_arg_s;
99 DEF_VEC_O (stap_probe_arg_s);
100
101 struct stap_probe
102 {
103 /* Generic information about the probe. This shall be the first element
104 of this struct, in order to maintain binary compatibility with the
105 `struct probe' and be able to fully abstract it. */
106 struct probe p;
107
108 /* If the probe has a semaphore associated, then this is the value of
109 it, relative to SECT_OFF_DATA. */
110 CORE_ADDR sem_addr;
111
112 /* One if the arguments have been parsed. */
113 unsigned int args_parsed : 1;
114
115 union
116 {
117 const char *text;
118
119 /* Information about each argument. This is an array of `stap_probe_arg',
120 with each entry representing one argument. */
121 VEC (stap_probe_arg_s) *vec;
122 }
123 args_u;
124 };
125
126 /* When parsing the arguments, we have to establish different precedences
127 for the various kinds of asm operators. This enumeration represents those
128 precedences.
129
130 This logic behind this is available at
131 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
132 the command "info '(as)Infix Ops'". */
133
134 enum stap_operand_prec
135 {
136 /* Lowest precedence, used for non-recognized operands or for the beginning
137 of the parsing process. */
138 STAP_OPERAND_PREC_NONE = 0,
139
140 /* Precedence of logical OR. */
141 STAP_OPERAND_PREC_LOGICAL_OR,
142
143 /* Precedence of logical AND. */
144 STAP_OPERAND_PREC_LOGICAL_AND,
145
146 /* Precedence of additive (plus, minus) and comparative (equal, less,
147 greater-than, etc) operands. */
148 STAP_OPERAND_PREC_ADD_CMP,
149
150 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
151 logical NOT). */
152 STAP_OPERAND_PREC_BITWISE,
153
154 /* Precedence of multiplicative operands (multiplication, division,
155 remainder, left shift and right shift). */
156 STAP_OPERAND_PREC_MUL
157 };
158
159 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
160 enum stap_operand_prec prec);
161
162 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
163
164 /* Returns 1 if *S is an operator, zero otherwise. */
165
166 static int stap_is_operator (const char *op);
167
168 static void
169 show_stapexpressiondebug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
173 value);
174 }
175
176 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
177 if the operator code was not recognized. */
178
179 static enum stap_operand_prec
180 stap_get_operator_prec (enum exp_opcode op)
181 {
182 switch (op)
183 {
184 case BINOP_LOGICAL_OR:
185 return STAP_OPERAND_PREC_LOGICAL_OR;
186
187 case BINOP_LOGICAL_AND:
188 return STAP_OPERAND_PREC_LOGICAL_AND;
189
190 case BINOP_ADD:
191 case BINOP_SUB:
192 case BINOP_EQUAL:
193 case BINOP_NOTEQUAL:
194 case BINOP_LESS:
195 case BINOP_LEQ:
196 case BINOP_GTR:
197 case BINOP_GEQ:
198 return STAP_OPERAND_PREC_ADD_CMP;
199
200 case BINOP_BITWISE_IOR:
201 case BINOP_BITWISE_AND:
202 case BINOP_BITWISE_XOR:
203 case UNOP_LOGICAL_NOT:
204 return STAP_OPERAND_PREC_BITWISE;
205
206 case BINOP_MUL:
207 case BINOP_DIV:
208 case BINOP_REM:
209 case BINOP_LSH:
210 case BINOP_RSH:
211 return STAP_OPERAND_PREC_MUL;
212
213 default:
214 return STAP_OPERAND_PREC_NONE;
215 }
216 }
217
218 /* Given S, read the operator in it and fills the OP pointer with its code.
219 Return 1 on success, zero if the operator was not recognized. */
220
221 static enum exp_opcode
222 stap_get_opcode (const char **s)
223 {
224 const char c = **s;
225 enum exp_opcode op;
226
227 *s += 1;
228
229 switch (c)
230 {
231 case '*':
232 op = BINOP_MUL;
233 break;
234
235 case '/':
236 op = BINOP_DIV;
237 break;
238
239 case '%':
240 op = BINOP_REM;
241 break;
242
243 case '<':
244 op = BINOP_LESS;
245 if (**s == '<')
246 {
247 *s += 1;
248 op = BINOP_LSH;
249 }
250 else if (**s == '=')
251 {
252 *s += 1;
253 op = BINOP_LEQ;
254 }
255 else if (**s == '>')
256 {
257 *s += 1;
258 op = BINOP_NOTEQUAL;
259 }
260 break;
261
262 case '>':
263 op = BINOP_GTR;
264 if (**s == '>')
265 {
266 *s += 1;
267 op = BINOP_RSH;
268 }
269 else if (**s == '=')
270 {
271 *s += 1;
272 op = BINOP_GEQ;
273 }
274 break;
275
276 case '|':
277 op = BINOP_BITWISE_IOR;
278 if (**s == '|')
279 {
280 *s += 1;
281 op = BINOP_LOGICAL_OR;
282 }
283 break;
284
285 case '&':
286 op = BINOP_BITWISE_AND;
287 if (**s == '&')
288 {
289 *s += 1;
290 op = BINOP_LOGICAL_AND;
291 }
292 break;
293
294 case '^':
295 op = BINOP_BITWISE_XOR;
296 break;
297
298 case '!':
299 op = UNOP_LOGICAL_NOT;
300 break;
301
302 case '+':
303 op = BINOP_ADD;
304 break;
305
306 case '-':
307 op = BINOP_SUB;
308 break;
309
310 case '=':
311 gdb_assert (**s == '=');
312 op = BINOP_EQUAL;
313 break;
314
315 default:
316 internal_error (__FILE__, __LINE__,
317 _("Invalid opcode in expression `%s' for SystemTap"
318 "probe"), *s);
319 }
320
321 return op;
322 }
323
324 /* Given the bitness of the argument, represented by B, return the
325 corresponding `struct type *'. */
326
327 static struct type *
328 stap_get_expected_argument_type (struct gdbarch *gdbarch,
329 enum stap_arg_bitness b)
330 {
331 switch (b)
332 {
333 case STAP_ARG_BITNESS_UNDEFINED:
334 if (gdbarch_addr_bit (gdbarch) == 32)
335 return builtin_type (gdbarch)->builtin_uint32;
336 else
337 return builtin_type (gdbarch)->builtin_uint64;
338
339 case STAP_ARG_BITNESS_8BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint8;
341
342 case STAP_ARG_BITNESS_8BIT_SIGNED:
343 return builtin_type (gdbarch)->builtin_int8;
344
345 case STAP_ARG_BITNESS_16BIT_UNSIGNED:
346 return builtin_type (gdbarch)->builtin_uint16;
347
348 case STAP_ARG_BITNESS_16BIT_SIGNED:
349 return builtin_type (gdbarch)->builtin_int16;
350
351 case STAP_ARG_BITNESS_32BIT_SIGNED:
352 return builtin_type (gdbarch)->builtin_int32;
353
354 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
355 return builtin_type (gdbarch)->builtin_uint32;
356
357 case STAP_ARG_BITNESS_64BIT_SIGNED:
358 return builtin_type (gdbarch)->builtin_int64;
359
360 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
361 return builtin_type (gdbarch)->builtin_uint64;
362
363 default:
364 internal_error (__FILE__, __LINE__,
365 _("Undefined bitness for probe."));
366 break;
367 }
368 }
369
370 /* Helper function to check for a generic list of prefixes. GDBARCH
371 is the current gdbarch being used. S is the expression being
372 analyzed. If R is not NULL, it will be used to return the found
373 prefix. PREFIXES is the list of expected prefixes.
374
375 This function does a case-insensitive match.
376
377 Return 1 if any prefix has been found, zero otherwise. */
378
379 static int
380 stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
381 const char **r, const char *const *prefixes)
382 {
383 const char *const *p;
384
385 if (prefixes == NULL)
386 {
387 if (r != NULL)
388 *r = "";
389
390 return 1;
391 }
392
393 for (p = prefixes; *p != NULL; ++p)
394 if (strncasecmp (s, *p, strlen (*p)) == 0)
395 {
396 if (r != NULL)
397 *r = *p;
398
399 return 1;
400 }
401
402 return 0;
403 }
404
405 /* Return 1 if S points to a register prefix, zero otherwise. For a
406 description of the arguments, look at stap_is_generic_prefix. */
407
408 static int
409 stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
410 const char **r)
411 {
412 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
413
414 return stap_is_generic_prefix (gdbarch, s, r, t);
415 }
416
417 /* Return 1 if S points to a register indirection prefix, zero
418 otherwise. For a description of the arguments, look at
419 stap_is_generic_prefix. */
420
421 static int
422 stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
423 const char **r)
424 {
425 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
426
427 return stap_is_generic_prefix (gdbarch, s, r, t);
428 }
429
430 /* Return 1 if S points to an integer prefix, zero otherwise. For a
431 description of the arguments, look at stap_is_generic_prefix.
432
433 This function takes care of analyzing whether we are dealing with
434 an expected integer prefix, or, if there is no integer prefix to be
435 expected, whether we are dealing with a digit. It does a
436 case-insensitive match. */
437
438 static int
439 stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
440 const char **r)
441 {
442 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
443 const char *const *p;
444
445 if (t == NULL)
446 {
447 /* A NULL value here means that integers do not have a prefix.
448 We just check for a digit then. */
449 if (r != NULL)
450 *r = "";
451
452 return isdigit (*s);
453 }
454
455 for (p = t; *p != NULL; ++p)
456 {
457 size_t len = strlen (*p);
458
459 if ((len == 0 && isdigit (*s))
460 || (len > 0 && strncasecmp (s, *p, len) == 0))
461 {
462 /* Integers may or may not have a prefix. The "len == 0"
463 check covers the case when integers do not have a prefix
464 (therefore, we just check if we have a digit). The call
465 to "strncasecmp" covers the case when they have a
466 prefix. */
467 if (r != NULL)
468 *r = *p;
469
470 return 1;
471 }
472 }
473
474 return 0;
475 }
476
477 /* Helper function to check for a generic list of suffixes. If we are
478 not expecting any suffixes, then it just returns 1. If we are
479 expecting at least one suffix, then it returns 1 if a suffix has
480 been found, zero otherwise. GDBARCH is the current gdbarch being
481 used. S is the expression being analyzed. If R is not NULL, it
482 will be used to return the found suffix. SUFFIXES is the list of
483 expected suffixes. This function does a case-insensitive
484 match. */
485
486 static int
487 stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
488 const char **r, const char *const *suffixes)
489 {
490 const char *const *p;
491 int found = 0;
492
493 if (suffixes == NULL)
494 {
495 if (r != NULL)
496 *r = "";
497
498 return 1;
499 }
500
501 for (p = suffixes; *p != NULL; ++p)
502 if (strncasecmp (s, *p, strlen (*p)) == 0)
503 {
504 if (r != NULL)
505 *r = *p;
506
507 found = 1;
508 break;
509 }
510
511 return found;
512 }
513
514 /* Return 1 if S points to an integer suffix, zero otherwise. For a
515 description of the arguments, look at
516 stap_generic_check_suffix. */
517
518 static int
519 stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
520 const char **r)
521 {
522 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
523
524 return stap_generic_check_suffix (gdbarch, s, r, p);
525 }
526
527 /* Return 1 if S points to a register suffix, zero otherwise. For a
528 description of the arguments, look at
529 stap_generic_check_suffix. */
530
531 static int
532 stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
533 const char **r)
534 {
535 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
536
537 return stap_generic_check_suffix (gdbarch, s, r, p);
538 }
539
540 /* Return 1 if S points to a register indirection suffix, zero
541 otherwise. For a description of the arguments, look at
542 stap_generic_check_suffix. */
543
544 static int
545 stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
546 const char **r)
547 {
548 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
549
550 return stap_generic_check_suffix (gdbarch, s, r, p);
551 }
552
553 /* Function responsible for parsing a register operand according to
554 SystemTap parlance. Assuming:
555
556 RP = register prefix
557 RS = register suffix
558 RIP = register indirection prefix
559 RIS = register indirection suffix
560
561 Then a register operand can be:
562
563 [RIP] [RP] REGISTER [RS] [RIS]
564
565 This function takes care of a register's indirection, displacement and
566 direct access. It also takes into consideration the fact that some
567 registers are named differently inside and outside GDB, e.g., PPC's
568 general-purpose registers are represented by integers in the assembly
569 language (e.g., `15' is the 15th general-purpose register), but inside
570 GDB they have a prefix (the letter `r') appended. */
571
572 static void
573 stap_parse_register_operand (struct stap_parse_info *p)
574 {
575 /* Simple flag to indicate whether we have seen a minus signal before
576 certain number. */
577 int got_minus = 0;
578 /* Flags to indicate whether this register access is being displaced and/or
579 indirected. */
580 int disp_p = 0, indirect_p = 0;
581 struct gdbarch *gdbarch = p->gdbarch;
582 /* Needed to generate the register name as a part of an expression. */
583 struct stoken str;
584 /* Variables used to extract the register name from the probe's
585 argument. */
586 const char *start;
587 char *regname;
588 int len;
589 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
590 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
591 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
592 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
593 const char *reg_prefix;
594 const char *reg_ind_prefix;
595 const char *reg_suffix;
596 const char *reg_ind_suffix;
597
598 /* Checking for a displacement argument. */
599 if (*p->arg == '+')
600 {
601 /* If it's a plus sign, we don't need to do anything, just advance the
602 pointer. */
603 ++p->arg;
604 }
605
606 if (*p->arg == '-')
607 {
608 got_minus = 1;
609 ++p->arg;
610 }
611
612 if (isdigit (*p->arg))
613 {
614 /* The value of the displacement. */
615 long displacement;
616 char *endp;
617
618 disp_p = 1;
619 displacement = strtol (p->arg, &endp, 10);
620 p->arg = endp;
621
622 /* Generating the expression for the displacement. */
623 write_exp_elt_opcode (&p->pstate, OP_LONG);
624 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
625 write_exp_elt_longcst (&p->pstate, displacement);
626 write_exp_elt_opcode (&p->pstate, OP_LONG);
627 if (got_minus)
628 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
629 }
630
631 /* Getting rid of register indirection prefix. */
632 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
633 {
634 indirect_p = 1;
635 p->arg += strlen (reg_ind_prefix);
636 }
637
638 if (disp_p && !indirect_p)
639 error (_("Invalid register displacement syntax on expression `%s'."),
640 p->saved_arg);
641
642 /* Getting rid of register prefix. */
643 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
644 p->arg += strlen (reg_prefix);
645
646 /* Now we should have only the register name. Let's extract it and get
647 the associated number. */
648 start = p->arg;
649
650 /* We assume the register name is composed by letters and numbers. */
651 while (isalnum (*p->arg))
652 ++p->arg;
653
654 len = p->arg - start;
655
656 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
657 regname[0] = '\0';
658
659 /* We only add the GDB's register prefix/suffix if we are dealing with
660 a numeric register. */
661 if (gdb_reg_prefix && isdigit (*start))
662 {
663 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
664 strncpy (regname + gdb_reg_prefix_len, start, len);
665
666 if (gdb_reg_suffix)
667 strncpy (regname + gdb_reg_prefix_len + len,
668 gdb_reg_suffix, gdb_reg_suffix_len);
669
670 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
671 }
672 else
673 strncpy (regname, start, len);
674
675 regname[len] = '\0';
676
677 /* Is this a valid register name? */
678 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
679 error (_("Invalid register name `%s' on expression `%s'."),
680 regname, p->saved_arg);
681
682 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
683 str.ptr = regname;
684 str.length = len;
685 write_exp_string (&p->pstate, str);
686 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
687
688 if (indirect_p)
689 {
690 if (disp_p)
691 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
692
693 /* Casting to the expected type. */
694 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
695 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
696 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
697
698 write_exp_elt_opcode (&p->pstate, UNOP_IND);
699 }
700
701 /* Getting rid of the register name suffix. */
702 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
703 p->arg += strlen (reg_suffix);
704 else
705 error (_("Missing register name suffix on expression `%s'."),
706 p->saved_arg);
707
708 /* Getting rid of the register indirection suffix. */
709 if (indirect_p)
710 {
711 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
712 &reg_ind_suffix))
713 p->arg += strlen (reg_ind_suffix);
714 else
715 error (_("Missing indirection suffix on expression `%s'."),
716 p->saved_arg);
717 }
718 }
719
720 /* This function is responsible for parsing a single operand.
721
722 A single operand can be:
723
724 - an unary operation (e.g., `-5', `~2', or even with subexpressions
725 like `-(2 + 1)')
726 - a register displacement, which will be treated as a register
727 operand (e.g., `-4(%eax)' on x86)
728 - a numeric constant, or
729 - a register operand (see function `stap_parse_register_operand')
730
731 The function also calls special-handling functions to deal with
732 unrecognized operands, allowing arch-specific parsers to be
733 created. */
734
735 static void
736 stap_parse_single_operand (struct stap_parse_info *p)
737 {
738 struct gdbarch *gdbarch = p->gdbarch;
739 const char *int_prefix = NULL;
740
741 /* We first try to parse this token as a "special token". */
742 if (gdbarch_stap_parse_special_token_p (gdbarch))
743 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
744 {
745 /* If the return value of the above function is not zero,
746 it means it successfully parsed the special token.
747
748 If it is NULL, we try to parse it using our method. */
749 return;
750 }
751
752 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
753 {
754 char c = *p->arg;
755 /* We use this variable to do a lookahead. */
756 const char *tmp = p->arg;
757 int has_digit = 0;
758
759 /* Skipping signal. */
760 ++tmp;
761
762 /* This is an unary operation. Here is a list of allowed tokens
763 here:
764
765 - numeric literal;
766 - number (from register displacement)
767 - subexpression (beginning with `(')
768
769 We handle the register displacement here, and the other cases
770 recursively. */
771 if (p->inside_paren_p)
772 tmp = skip_spaces_const (tmp);
773
774 while (isdigit (*tmp))
775 {
776 /* We skip the digit here because we are only interested in
777 knowing what kind of unary operation this is. The digit
778 will be handled by one of the functions that will be
779 called below ('stap_parse_argument_conditionally' or
780 'stap_parse_register_operand'). */
781 ++tmp;
782 has_digit = 1;
783 }
784
785 if (has_digit && stap_is_register_indirection_prefix (gdbarch, tmp,
786 NULL))
787 {
788 /* If we are here, it means it is a displacement. The only
789 operations allowed here are `-' and `+'. */
790 if (c == '~')
791 error (_("Invalid operator `%c' for register displacement "
792 "on expression `%s'."), c, p->saved_arg);
793
794 stap_parse_register_operand (p);
795 }
796 else
797 {
798 /* This is not a displacement. We skip the operator, and
799 deal with it when the recursion returns. */
800 ++p->arg;
801 stap_parse_argument_conditionally (p);
802 if (c == '-')
803 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
804 else if (c == '~')
805 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
806 }
807 }
808 else if (isdigit (*p->arg))
809 {
810 /* A temporary variable, needed for lookahead. */
811 const char *tmp = p->arg;
812 char *endp;
813 long number;
814
815 /* We can be dealing with a numeric constant, or with a register
816 displacement. */
817 number = strtol (tmp, &endp, 10);
818 tmp = endp;
819
820 if (p->inside_paren_p)
821 tmp = skip_spaces_const (tmp);
822
823 /* If "stap_is_integer_prefix" returns true, it means we can
824 accept integers without a prefix here. But we also need to
825 check whether the next token (i.e., "tmp") is not a register
826 indirection prefix. */
827 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
828 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
829 {
830 const char *int_suffix;
831
832 /* We are dealing with a numeric constant. */
833 write_exp_elt_opcode (&p->pstate, OP_LONG);
834 write_exp_elt_type (&p->pstate,
835 builtin_type (gdbarch)->builtin_long);
836 write_exp_elt_longcst (&p->pstate, number);
837 write_exp_elt_opcode (&p->pstate, OP_LONG);
838
839 p->arg = tmp;
840
841 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
842 p->arg += strlen (int_suffix);
843 else
844 error (_("Invalid constant suffix on expression `%s'."),
845 p->saved_arg);
846 }
847 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
848 stap_parse_register_operand (p);
849 else
850 error (_("Unknown numeric token on expression `%s'."),
851 p->saved_arg);
852 }
853 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
854 {
855 /* We are dealing with a numeric constant. */
856 long number;
857 char *endp;
858 const char *int_suffix;
859
860 p->arg += strlen (int_prefix);
861 number = strtol (p->arg, &endp, 10);
862 p->arg = endp;
863
864 write_exp_elt_opcode (&p->pstate, OP_LONG);
865 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
866 write_exp_elt_longcst (&p->pstate, number);
867 write_exp_elt_opcode (&p->pstate, OP_LONG);
868
869 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
870 p->arg += strlen (int_suffix);
871 else
872 error (_("Invalid constant suffix on expression `%s'."),
873 p->saved_arg);
874 }
875 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
876 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
877 stap_parse_register_operand (p);
878 else
879 error (_("Operator `%c' not recognized on expression `%s'."),
880 *p->arg, p->saved_arg);
881 }
882
883 /* This function parses an argument conditionally, based on single or
884 non-single operands. A non-single operand would be a parenthesized
885 expression (e.g., `(2 + 1)'), and a single operand is anything that
886 starts with `-', `~', `+' (i.e., unary operators), a digit, or
887 something recognized by `gdbarch_stap_is_single_operand'. */
888
889 static void
890 stap_parse_argument_conditionally (struct stap_parse_info *p)
891 {
892 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
893
894 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
895 || isdigit (*p->arg)
896 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
897 stap_parse_single_operand (p);
898 else if (*p->arg == '(')
899 {
900 /* We are dealing with a parenthesized operand. It means we
901 have to parse it as it was a separate expression, without
902 left-side or precedence. */
903 ++p->arg;
904 p->arg = skip_spaces_const (p->arg);
905 ++p->inside_paren_p;
906
907 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
908
909 --p->inside_paren_p;
910 if (*p->arg != ')')
911 error (_("Missign close-paren on expression `%s'."),
912 p->saved_arg);
913
914 ++p->arg;
915 if (p->inside_paren_p)
916 p->arg = skip_spaces_const (p->arg);
917 }
918 else
919 error (_("Cannot parse expression `%s'."), p->saved_arg);
920 }
921
922 /* Helper function for `stap_parse_argument'. Please, see its comments to
923 better understand what this function does. */
924
925 static void
926 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
927 enum stap_operand_prec prec)
928 {
929 /* This is an operator-precedence parser.
930
931 We work with left- and right-sides of expressions, and
932 parse them depending on the precedence of the operators
933 we find. */
934
935 gdb_assert (p->arg != NULL);
936
937 if (p->inside_paren_p)
938 p->arg = skip_spaces_const (p->arg);
939
940 if (!has_lhs)
941 {
942 /* We were called without a left-side, either because this is the
943 first call, or because we were called to parse a parenthesized
944 expression. It doesn't really matter; we have to parse the
945 left-side in order to continue the process. */
946 stap_parse_argument_conditionally (p);
947 }
948
949 /* Start to parse the right-side, and to "join" left and right sides
950 depending on the operation specified.
951
952 This loop shall continue until we run out of characters in the input,
953 or until we find a close-parenthesis, which means that we've reached
954 the end of a sub-expression. */
955 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
956 {
957 const char *tmp_exp_buf;
958 enum exp_opcode opcode;
959 enum stap_operand_prec cur_prec;
960
961 if (!stap_is_operator (p->arg))
962 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
963 p->saved_arg);
964
965 /* We have to save the current value of the expression buffer because
966 the `stap_get_opcode' modifies it in order to get the current
967 operator. If this operator's precedence is lower than PREC, we
968 should return and not advance the expression buffer pointer. */
969 tmp_exp_buf = p->arg;
970 opcode = stap_get_opcode (&tmp_exp_buf);
971
972 cur_prec = stap_get_operator_prec (opcode);
973 if (cur_prec < prec)
974 {
975 /* If the precedence of the operator that we are seeing now is
976 lower than the precedence of the first operator seen before
977 this parsing process began, it means we should stop parsing
978 and return. */
979 break;
980 }
981
982 p->arg = tmp_exp_buf;
983 if (p->inside_paren_p)
984 p->arg = skip_spaces_const (p->arg);
985
986 /* Parse the right-side of the expression. */
987 stap_parse_argument_conditionally (p);
988
989 /* While we still have operators, try to parse another
990 right-side, but using the current right-side as a left-side. */
991 while (*p->arg != '\0' && stap_is_operator (p->arg))
992 {
993 enum exp_opcode lookahead_opcode;
994 enum stap_operand_prec lookahead_prec;
995
996 /* Saving the current expression buffer position. The explanation
997 is the same as above. */
998 tmp_exp_buf = p->arg;
999 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
1000 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
1001
1002 if (lookahead_prec <= prec)
1003 {
1004 /* If we are dealing with an operator whose precedence is lower
1005 than the first one, just abandon the attempt. */
1006 break;
1007 }
1008
1009 /* Parse the right-side of the expression, but since we already
1010 have a left-side at this point, set `has_lhs' to 1. */
1011 stap_parse_argument_1 (p, 1, lookahead_prec);
1012 }
1013
1014 write_exp_elt_opcode (&p->pstate, opcode);
1015 }
1016 }
1017
1018 /* Parse a probe's argument.
1019
1020 Assuming that:
1021
1022 LP = literal integer prefix
1023 LS = literal integer suffix
1024
1025 RP = register prefix
1026 RS = register suffix
1027
1028 RIP = register indirection prefix
1029 RIS = register indirection suffix
1030
1031 This routine assumes that arguments' tokens are of the form:
1032
1033 - [LP] NUMBER [LS]
1034 - [RP] REGISTER [RS]
1035 - [RIP] [RP] REGISTER [RS] [RIS]
1036 - If we find a number without LP, we try to parse it as a literal integer
1037 constant (if LP == NULL), or as a register displacement.
1038 - We count parenthesis, and only skip whitespaces if we are inside them.
1039 - If we find an operator, we skip it.
1040
1041 This function can also call a special function that will try to match
1042 unknown tokens. It will return 1 if the argument has been parsed
1043 successfully, or zero otherwise. */
1044
1045 static struct expression *
1046 stap_parse_argument (const char **arg, struct type *atype,
1047 struct gdbarch *gdbarch)
1048 {
1049 struct stap_parse_info p;
1050 struct cleanup *back_to;
1051
1052 /* We need to initialize the expression buffer, in order to begin
1053 our parsing efforts. We use language_c here because we may need
1054 to do pointer arithmetics. */
1055 initialize_expout (&p.pstate, 10, language_def (language_c), gdbarch);
1056 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
1057
1058 p.saved_arg = *arg;
1059 p.arg = *arg;
1060 p.arg_type = atype;
1061 p.gdbarch = gdbarch;
1062 p.inside_paren_p = 0;
1063
1064 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1065
1066 discard_cleanups (back_to);
1067
1068 gdb_assert (p.inside_paren_p == 0);
1069
1070 /* Casting the final expression to the appropriate type. */
1071 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1072 write_exp_elt_type (&p.pstate, atype);
1073 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1074
1075 reallocate_expout (&p.pstate);
1076
1077 p.arg = skip_spaces_const (p.arg);
1078 *arg = p.arg;
1079
1080 /* We can safely return EXPOUT here. */
1081 return p.pstate.expout;
1082 }
1083
1084 /* Function which parses an argument string from PROBE, correctly splitting
1085 the arguments and storing their information in properly ways.
1086
1087 Consider the following argument string (x86 syntax):
1088
1089 `4@%eax 4@$10'
1090
1091 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1092 This function basically handles them, properly filling some structures with
1093 this information. */
1094
1095 static void
1096 stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
1097 {
1098 const char *cur;
1099
1100 gdb_assert (!probe->args_parsed);
1101 cur = probe->args_u.text;
1102 probe->args_parsed = 1;
1103 probe->args_u.vec = NULL;
1104
1105 if (cur == NULL || *cur == '\0' || *cur == ':')
1106 return;
1107
1108 while (*cur != '\0')
1109 {
1110 struct stap_probe_arg arg;
1111 enum stap_arg_bitness b;
1112 int got_minus = 0;
1113 struct expression *expr;
1114
1115 memset (&arg, 0, sizeof (arg));
1116
1117 /* We expect to find something like:
1118
1119 N@OP
1120
1121 Where `N' can be [+,-][1,2,4,8]. This is not mandatory, so
1122 we check it here. If we don't find it, go to the next
1123 state. */
1124 if ((cur[0] == '-' && isdigit (cur[1]) && cur[2] == '@')
1125 || (isdigit (cur[0]) && cur[1] == '@'))
1126 {
1127 if (*cur == '-')
1128 {
1129 /* Discard the `-'. */
1130 ++cur;
1131 got_minus = 1;
1132 }
1133
1134 /* Defining the bitness. */
1135 switch (*cur)
1136 {
1137 case '1':
1138 b = (got_minus ? STAP_ARG_BITNESS_8BIT_SIGNED
1139 : STAP_ARG_BITNESS_8BIT_UNSIGNED);
1140 break;
1141
1142 case '2':
1143 b = (got_minus ? STAP_ARG_BITNESS_16BIT_SIGNED
1144 : STAP_ARG_BITNESS_16BIT_UNSIGNED);
1145 break;
1146
1147 case '4':
1148 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1149 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1150 break;
1151
1152 case '8':
1153 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1154 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1155 break;
1156
1157 default:
1158 {
1159 /* We have an error, because we don't expect anything
1160 except 1, 2, 4 and 8. */
1161 warning (_("unrecognized bitness %s%c' for probe `%s'"),
1162 got_minus ? "`-" : "`", *cur, probe->p.name);
1163 return;
1164 }
1165 }
1166
1167 arg.bitness = b;
1168
1169 /* Discard the number and the `@' sign. */
1170 cur += 2;
1171 }
1172 else
1173 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1174
1175 arg.atype = stap_get_expected_argument_type (gdbarch, arg.bitness);
1176
1177 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1178
1179 if (stap_expression_debug)
1180 dump_raw_expression (expr, gdb_stdlog,
1181 "before conversion to prefix form");
1182
1183 prefixify_expression (expr);
1184
1185 if (stap_expression_debug)
1186 dump_prefix_expression (expr, gdb_stdlog);
1187
1188 arg.aexpr = expr;
1189
1190 /* Start it over again. */
1191 cur = skip_spaces_const (cur);
1192
1193 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1194 }
1195 }
1196
1197 /* Implementation of the get_probe_address method. */
1198
1199 static CORE_ADDR
1200 stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1201 {
1202 return probe->address + ANOFFSET (objfile->section_offsets,
1203 SECT_OFF_DATA (objfile));
1204 }
1205
1206 /* Given PROBE, returns the number of arguments present in that probe's
1207 argument string. */
1208
1209 static unsigned
1210 stap_get_probe_argument_count (struct probe *probe_generic,
1211 struct frame_info *frame)
1212 {
1213 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1214 struct gdbarch *gdbarch = get_frame_arch (frame);
1215
1216 gdb_assert (probe_generic->pops == &stap_probe_ops);
1217
1218 if (!probe->args_parsed)
1219 {
1220 if (can_evaluate_probe_arguments (probe_generic))
1221 stap_parse_probe_arguments (probe, gdbarch);
1222 else
1223 {
1224 static int have_warned_stap_incomplete = 0;
1225
1226 if (!have_warned_stap_incomplete)
1227 {
1228 warning (_(
1229 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1230 "you will not be able to inspect the arguments of the probes.\n"
1231 "Please report a bug against GDB requesting a port to this target."));
1232 have_warned_stap_incomplete = 1;
1233 }
1234
1235 /* Marking the arguments as "already parsed". */
1236 probe->args_u.vec = NULL;
1237 probe->args_parsed = 1;
1238 }
1239 }
1240
1241 gdb_assert (probe->args_parsed);
1242 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1243 }
1244
1245 /* Return 1 if OP is a valid operator inside a probe argument, or zero
1246 otherwise. */
1247
1248 static int
1249 stap_is_operator (const char *op)
1250 {
1251 int ret = 1;
1252
1253 switch (*op)
1254 {
1255 case '*':
1256 case '/':
1257 case '%':
1258 case '^':
1259 case '!':
1260 case '+':
1261 case '-':
1262 case '<':
1263 case '>':
1264 case '|':
1265 case '&':
1266 break;
1267
1268 case '=':
1269 if (op[1] != '=')
1270 ret = 0;
1271 break;
1272
1273 default:
1274 /* We didn't find any operator. */
1275 ret = 0;
1276 }
1277
1278 return ret;
1279 }
1280
1281 static struct stap_probe_arg *
1282 stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
1283 {
1284 if (!probe->args_parsed)
1285 stap_parse_probe_arguments (probe, gdbarch);
1286
1287 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1288 }
1289
1290 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1291
1292 static int
1293 stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1294 {
1295 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1296 struct gdbarch *gdbarch = stap_probe->p.arch;
1297
1298 /* For SystemTap probes, we have to guarantee that the method
1299 stap_is_single_operand is defined on gdbarch. If it is not, then it
1300 means that argument evaluation is not implemented on this target. */
1301 return gdbarch_stap_is_single_operand_p (gdbarch);
1302 }
1303
1304 /* Evaluate the probe's argument N (indexed from 0), returning a value
1305 corresponding to it. Assertion is thrown if N does not exist. */
1306
1307 static struct value *
1308 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1309 struct frame_info *frame)
1310 {
1311 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1312 struct gdbarch *gdbarch = get_frame_arch (frame);
1313 struct stap_probe_arg *arg;
1314 int pos = 0;
1315
1316 gdb_assert (probe_generic->pops == &stap_probe_ops);
1317
1318 arg = stap_get_arg (stap_probe, n, gdbarch);
1319 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1320 }
1321
1322 /* Compile the probe's argument N (indexed from 0) to agent expression.
1323 Assertion is thrown if N does not exist. */
1324
1325 static void
1326 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1327 struct axs_value *value, unsigned n)
1328 {
1329 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1330 struct stap_probe_arg *arg;
1331 union exp_element *pc;
1332
1333 gdb_assert (probe_generic->pops == &stap_probe_ops);
1334
1335 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
1336
1337 pc = arg->aexpr->elts;
1338 gen_expr (arg->aexpr, &pc, expr, value);
1339
1340 require_rvalue (expr, value);
1341 value->type = arg->atype;
1342 }
1343
1344 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1345 as it is allocated on an obstack. */
1346
1347 static void
1348 stap_probe_destroy (struct probe *probe_generic)
1349 {
1350 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1351
1352 gdb_assert (probe_generic->pops == &stap_probe_ops);
1353
1354 if (probe->args_parsed)
1355 {
1356 struct stap_probe_arg *arg;
1357 int ix;
1358
1359 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1360 ++ix)
1361 xfree (arg->aexpr);
1362 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1363 }
1364 }
1365
1366 \f
1367
1368 /* This is called to compute the value of one of the $_probe_arg*
1369 convenience variables. */
1370
1371 static struct value *
1372 compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1373 void *data)
1374 {
1375 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1376 CORE_ADDR pc = get_frame_pc (frame);
1377 int sel = (int) (uintptr_t) data;
1378 struct bound_probe pc_probe;
1379 const struct sym_probe_fns *pc_probe_fns;
1380 unsigned n_args;
1381
1382 /* SEL == -1 means "_probe_argc". */
1383 gdb_assert (sel >= -1);
1384
1385 pc_probe = find_probe_by_pc (pc);
1386 if (pc_probe.probe == NULL)
1387 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1388
1389 n_args = get_probe_argument_count (pc_probe.probe, frame);
1390 if (sel == -1)
1391 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1392
1393 if (sel >= n_args)
1394 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1395 sel, n_args);
1396
1397 return evaluate_probe_argument (pc_probe.probe, sel, frame);
1398 }
1399
1400 /* This is called to compile one of the $_probe_arg* convenience
1401 variables into an agent expression. */
1402
1403 static void
1404 compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1405 struct axs_value *value, void *data)
1406 {
1407 CORE_ADDR pc = expr->scope;
1408 int sel = (int) (uintptr_t) data;
1409 struct bound_probe pc_probe;
1410 const struct sym_probe_fns *pc_probe_fns;
1411 int n_args;
1412 struct frame_info *frame = get_selected_frame (NULL);
1413
1414 /* SEL == -1 means "_probe_argc". */
1415 gdb_assert (sel >= -1);
1416
1417 pc_probe = find_probe_by_pc (pc);
1418 if (pc_probe.probe == NULL)
1419 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1420
1421 n_args = get_probe_argument_count (pc_probe.probe, frame);
1422
1423 if (sel == -1)
1424 {
1425 value->kind = axs_rvalue;
1426 value->type = builtin_type (expr->gdbarch)->builtin_int;
1427 ax_const_l (expr, n_args);
1428 return;
1429 }
1430
1431 gdb_assert (sel >= 0);
1432 if (sel >= n_args)
1433 error (_("Invalid probe argument %d -- probe has %d arguments available"),
1434 sel, n_args);
1435
1436 pc_probe.probe->pops->compile_to_ax (pc_probe.probe, expr, value, sel);
1437 }
1438
1439 \f
1440
1441 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1442 address. SET is zero if the semaphore should be cleared, or one
1443 if it should be set. This is a helper function for `stap_semaphore_down'
1444 and `stap_semaphore_up'. */
1445
1446 static void
1447 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1448 {
1449 gdb_byte bytes[sizeof (LONGEST)];
1450 /* The ABI specifies "unsigned short". */
1451 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1452 ULONGEST value;
1453
1454 if (address == 0)
1455 return;
1456
1457 /* Swallow errors. */
1458 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1459 {
1460 warning (_("Could not read the value of a SystemTap semaphore."));
1461 return;
1462 }
1463
1464 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1465 gdbarch_byte_order (gdbarch));
1466 /* Note that we explicitly don't worry about overflow or
1467 underflow. */
1468 if (set)
1469 ++value;
1470 else
1471 --value;
1472
1473 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1474 gdbarch_byte_order (gdbarch), value);
1475
1476 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1477 warning (_("Could not write the value of a SystemTap semaphore."));
1478 }
1479
1480 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1481 act as reference counters, so calls to this function must be paired with
1482 calls to `stap_semaphore_down'.
1483
1484 This function and `stap_semaphore_down' race with another tool changing
1485 the probes, but that is too rare to care. */
1486
1487 static void
1488 stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1489 struct gdbarch *gdbarch)
1490 {
1491 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1492 CORE_ADDR addr;
1493
1494 gdb_assert (probe_generic->pops == &stap_probe_ops);
1495
1496 addr = (probe->sem_addr
1497 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1498 stap_modify_semaphore (addr, 1, gdbarch);
1499 }
1500
1501 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1502
1503 static void
1504 stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1505 struct gdbarch *gdbarch)
1506 {
1507 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1508 CORE_ADDR addr;
1509
1510 gdb_assert (probe_generic->pops == &stap_probe_ops);
1511
1512 addr = (probe->sem_addr
1513 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1514 stap_modify_semaphore (addr, 0, gdbarch);
1515 }
1516
1517 /* Implementation of `$_probe_arg*' set of variables. */
1518
1519 static const struct internalvar_funcs probe_funcs =
1520 {
1521 compute_probe_arg,
1522 compile_probe_arg,
1523 NULL
1524 };
1525
1526 /* Helper function that parses the information contained in a
1527 SystemTap's probe. Basically, the information consists in:
1528
1529 - Probe's PC address;
1530 - Link-time section address of `.stapsdt.base' section;
1531 - Link-time address of the semaphore variable, or ZERO if the
1532 probe doesn't have an associated semaphore;
1533 - Probe's provider name;
1534 - Probe's name;
1535 - Probe's argument format
1536
1537 This function returns 1 if the handling was successful, and zero
1538 otherwise. */
1539
1540 static void
1541 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1542 VEC (probe_p) **probesp, CORE_ADDR base)
1543 {
1544 bfd *abfd = objfile->obfd;
1545 int size = bfd_get_arch_size (abfd) / 8;
1546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1548 CORE_ADDR base_ref;
1549 const char *probe_args = NULL;
1550 struct stap_probe *ret;
1551
1552 ret = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret));
1553 ret->p.pops = &stap_probe_ops;
1554 ret->p.arch = gdbarch;
1555
1556 /* Provider and the name of the probe. */
1557 ret->p.provider = (char *) &el->data[3 * size];
1558 ret->p.name = memchr (ret->p.provider, '\0',
1559 (char *) el->data + el->size - ret->p.provider);
1560 /* Making sure there is a name. */
1561 if (ret->p.name == NULL)
1562 {
1563 complaint (&symfile_complaints, _("corrupt probe name when "
1564 "reading `%s'"),
1565 objfile_name (objfile));
1566
1567 /* There is no way to use a probe without a name or a provider, so
1568 returning zero here makes sense. */
1569 return;
1570 }
1571 else
1572 ++ret->p.name;
1573
1574 /* Retrieving the probe's address. */
1575 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1576
1577 /* Link-time sh_addr of `.stapsdt.base' section. */
1578 base_ref = extract_typed_address (&el->data[size], ptr_type);
1579
1580 /* Semaphore address. */
1581 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1582
1583 ret->p.address += base - base_ref;
1584 if (ret->sem_addr != 0)
1585 ret->sem_addr += base - base_ref;
1586
1587 /* Arguments. We can only extract the argument format if there is a valid
1588 name for this probe. */
1589 probe_args = memchr (ret->p.name, '\0',
1590 (char *) el->data + el->size - ret->p.name);
1591
1592 if (probe_args != NULL)
1593 ++probe_args;
1594
1595 if (probe_args == NULL
1596 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1597 != el->data + el->size - 1))
1598 {
1599 complaint (&symfile_complaints, _("corrupt probe argument when "
1600 "reading `%s'"),
1601 objfile_name (objfile));
1602 /* If the argument string is NULL, it means some problem happened with
1603 it. So we return 0. */
1604 return;
1605 }
1606
1607 ret->args_parsed = 0;
1608 ret->args_u.text = (void *) probe_args;
1609
1610 /* Successfully created probe. */
1611 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1612 }
1613
1614 /* Helper function which tries to find the base address of the SystemTap
1615 base section named STAP_BASE_SECTION_NAME. */
1616
1617 static void
1618 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1619 {
1620 asection **ret = obj;
1621
1622 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1623 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1624 *ret = sect;
1625 }
1626
1627 /* Helper function which iterates over every section in the BFD file,
1628 trying to find the base address of the SystemTap base section.
1629 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1630
1631 static int
1632 get_stap_base_address (bfd *obfd, bfd_vma *base)
1633 {
1634 asection *ret = NULL;
1635
1636 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1637
1638 if (ret == NULL)
1639 {
1640 complaint (&symfile_complaints, _("could not obtain base address for "
1641 "SystemTap section on objfile `%s'."),
1642 obfd->filename);
1643 return 0;
1644 }
1645
1646 if (base != NULL)
1647 *base = ret->vma;
1648
1649 return 1;
1650 }
1651
1652 /* Helper function for `elf_get_probes', which gathers information about all
1653 SystemTap probes from OBJFILE. */
1654
1655 static void
1656 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1657 {
1658 /* If we are here, then this is the first time we are parsing the
1659 SystemTap probe's information. We basically have to count how many
1660 probes the objfile has, and then fill in the necessary information
1661 for each one. */
1662 bfd *obfd = objfile->obfd;
1663 bfd_vma base;
1664 struct sdt_note *iter;
1665 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1666
1667 if (objfile->separate_debug_objfile_backlink != NULL)
1668 {
1669 /* This is a .debug file, not the objfile itself. */
1670 return;
1671 }
1672
1673 if (elf_tdata (obfd)->sdt_note_head == NULL)
1674 {
1675 /* There isn't any probe here. */
1676 return;
1677 }
1678
1679 if (!get_stap_base_address (obfd, &base))
1680 {
1681 /* There was an error finding the base address for the section.
1682 Just return NULL. */
1683 return;
1684 }
1685
1686 /* Parsing each probe's information. */
1687 for (iter = elf_tdata (obfd)->sdt_note_head;
1688 iter != NULL;
1689 iter = iter->next)
1690 {
1691 /* We first have to handle all the information about the
1692 probe which is present in the section. */
1693 handle_stap_probe (objfile, iter, probesp, base);
1694 }
1695
1696 if (save_probesp_len == VEC_length (probe_p, *probesp))
1697 {
1698 /* If we are here, it means we have failed to parse every known
1699 probe. */
1700 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1701 "from inferior"));
1702 return;
1703 }
1704 }
1705
1706 static int
1707 stap_probe_is_linespec (const char **linespecp)
1708 {
1709 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1710
1711 return probe_is_linespec_by_keyword (linespecp, keywords);
1712 }
1713
1714 static void
1715 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1716 {
1717 info_probe_column_s stap_probe_column;
1718
1719 stap_probe_column.field_name = "semaphore";
1720 stap_probe_column.print_name = _("Semaphore");
1721
1722 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1723 }
1724
1725 static void
1726 stap_gen_info_probes_table_values (struct probe *probe_generic,
1727 VEC (const_char_ptr) **ret)
1728 {
1729 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1730 struct gdbarch *gdbarch;
1731 const char *val = NULL;
1732
1733 gdb_assert (probe_generic->pops == &stap_probe_ops);
1734
1735 gdbarch = probe->p.arch;
1736
1737 if (probe->sem_addr != 0)
1738 val = print_core_address (gdbarch, probe->sem_addr);
1739
1740 VEC_safe_push (const_char_ptr, *ret, val);
1741 }
1742
1743 /* SystemTap probe_ops. */
1744
1745 static const struct probe_ops stap_probe_ops =
1746 {
1747 stap_probe_is_linespec,
1748 stap_get_probes,
1749 stap_get_probe_address,
1750 stap_get_probe_argument_count,
1751 stap_can_evaluate_probe_arguments,
1752 stap_evaluate_probe_argument,
1753 stap_compile_to_ax,
1754 stap_set_semaphore,
1755 stap_clear_semaphore,
1756 stap_probe_destroy,
1757 stap_gen_info_probes_table_header,
1758 stap_gen_info_probes_table_values,
1759 };
1760
1761 /* Implementation of the `info probes stap' command. */
1762
1763 static void
1764 info_probes_stap_command (char *arg, int from_tty)
1765 {
1766 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1767 }
1768
1769 void _initialize_stap_probe (void);
1770
1771 void
1772 _initialize_stap_probe (void)
1773 {
1774 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1775
1776 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1777 &stap_expression_debug,
1778 _("Set SystemTap expression debugging."),
1779 _("Show SystemTap expression debugging."),
1780 _("When non-zero, the internal representation "
1781 "of SystemTap expressions will be printed."),
1782 NULL,
1783 show_stapexpressiondebug,
1784 &setdebuglist, &showdebuglist);
1785
1786 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1787 (void *) (uintptr_t) -1);
1788 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1789 (void *) (uintptr_t) 0);
1790 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1791 (void *) (uintptr_t) 1);
1792 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1793 (void *) (uintptr_t) 2);
1794 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1795 (void *) (uintptr_t) 3);
1796 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1797 (void *) (uintptr_t) 4);
1798 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1799 (void *) (uintptr_t) 5);
1800 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1801 (void *) (uintptr_t) 6);
1802 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1803 (void *) (uintptr_t) 7);
1804 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1805 (void *) (uintptr_t) 8);
1806 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1807 (void *) (uintptr_t) 9);
1808 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1809 (void *) (uintptr_t) 10);
1810 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1811 (void *) (uintptr_t) 11);
1812
1813 add_cmd ("stap", class_info, info_probes_stap_command,
1814 _("\
1815 Show information about SystemTap static probes.\n\
1816 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1817 Each argument is a regular expression, used to select probes.\n\
1818 PROVIDER matches probe provider names.\n\
1819 NAME matches the probe names.\n\
1820 OBJECT matches the executable or shared library name."),
1821 info_probes_cmdlist_get ());
1822
1823 }
This page took 0.092671 seconds and 4 git commands to generate.