10617a13d2f4ddae1bdf9224b084d6ecf67839ce
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 static void symfile_find_segment_sections (struct objfile *objfile);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. First, check for a file with the standard
435 one or two segments. */
436
437 symfile_find_segment_sections (objfile);
438
439 /* Except when explicitly adding symbol files at some address,
440 section_offsets contains nothing but zeros, so it doesn't matter
441 which slot in section_offsets the individual sect_index_* members
442 index into. So if they are all zero, it is safe to just point
443 all the currently uninitialized indices to the first slot. But
444 beware: if this is the main executable, it may be relocated
445 later, e.g. by the remote qOffsets packet, and then this will
446 be wrong! That's why we try segments first. */
447
448 for (i = 0; i < objfile->num_sections; i++)
449 {
450 if (ANOFFSET (objfile->section_offsets, i) != 0)
451 {
452 break;
453 }
454 }
455 if (i == objfile->num_sections)
456 {
457 if (objfile->sect_index_text == -1)
458 objfile->sect_index_text = 0;
459 if (objfile->sect_index_data == -1)
460 objfile->sect_index_data = 0;
461 if (objfile->sect_index_bss == -1)
462 objfile->sect_index_bss = 0;
463 if (objfile->sect_index_rodata == -1)
464 objfile->sect_index_rodata = 0;
465 }
466 }
467
468 /* The arguments to place_section. */
469
470 struct place_section_arg
471 {
472 struct section_offsets *offsets;
473 CORE_ADDR lowest;
474 };
475
476 /* Find a unique offset to use for loadable section SECT if
477 the user did not provide an offset. */
478
479 void
480 place_section (bfd *abfd, asection *sect, void *obj)
481 {
482 struct place_section_arg *arg = obj;
483 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
484 int done;
485 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
486
487 /* We are only interested in allocated sections. */
488 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
489 return;
490
491 /* If the user specified an offset, honor it. */
492 if (offsets[sect->index] != 0)
493 return;
494
495 /* Otherwise, let's try to find a place for the section. */
496 start_addr = (arg->lowest + align - 1) & -align;
497
498 do {
499 asection *cur_sec;
500
501 done = 1;
502
503 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
504 {
505 int indx = cur_sec->index;
506 CORE_ADDR cur_offset;
507
508 /* We don't need to compare against ourself. */
509 if (cur_sec == sect)
510 continue;
511
512 /* We can only conflict with allocated sections. */
513 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
514 continue;
515
516 /* If the section offset is 0, either the section has not been placed
517 yet, or it was the lowest section placed (in which case LOWEST
518 will be past its end). */
519 if (offsets[indx] == 0)
520 continue;
521
522 /* If this section would overlap us, then we must move up. */
523 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
524 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525 {
526 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
527 start_addr = (start_addr + align - 1) & -align;
528 done = 0;
529 break;
530 }
531
532 /* Otherwise, we appear to be OK. So far. */
533 }
534 }
535 while (!done);
536
537 offsets[sect->index] = start_addr;
538 arg->lowest = start_addr + bfd_get_section_size (sect);
539
540 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
541 }
542
543 /* Parse the user's idea of an offset for dynamic linking, into our idea
544 of how to represent it for fast symbol reading. This is the default
545 version of the sym_fns.sym_offsets function for symbol readers that
546 don't need to do anything special. It allocates a section_offsets table
547 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
548
549 void
550 default_symfile_offsets (struct objfile *objfile,
551 struct section_addr_info *addrs)
552 {
553 int i;
554
555 objfile->num_sections = bfd_count_sections (objfile->obfd);
556 objfile->section_offsets = (struct section_offsets *)
557 obstack_alloc (&objfile->objfile_obstack,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559 memset (objfile->section_offsets, 0,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561
562 /* Now calculate offsets for section that were specified by the
563 caller. */
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 {
566 struct other_sections *osp ;
567
568 osp = &addrs->other[i] ;
569 if (osp->addr == 0)
570 continue;
571
572 /* Record all sections in offsets */
573 /* The section_offsets in the objfile are here filled in using
574 the BFD index. */
575 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
576 }
577
578 /* For relocatable files, all loadable sections will start at zero.
579 The zero is meaningless, so try to pick arbitrary addresses such
580 that no loadable sections overlap. This algorithm is quadratic,
581 but the number of sections in a single object file is generally
582 small. */
583 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
584 {
585 struct place_section_arg arg;
586 bfd *abfd = objfile->obfd;
587 asection *cur_sec;
588 CORE_ADDR lowest = 0;
589
590 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
591 /* We do not expect this to happen; just skip this step if the
592 relocatable file has a section with an assigned VMA. */
593 if (bfd_section_vma (abfd, cur_sec) != 0)
594 break;
595
596 if (cur_sec == NULL)
597 {
598 CORE_ADDR *offsets = objfile->section_offsets->offsets;
599
600 /* Pick non-overlapping offsets for sections the user did not
601 place explicitly. */
602 arg.offsets = objfile->section_offsets;
603 arg.lowest = 0;
604 bfd_map_over_sections (objfile->obfd, place_section, &arg);
605
606 /* Correctly filling in the section offsets is not quite
607 enough. Relocatable files have two properties that
608 (most) shared objects do not:
609
610 - Their debug information will contain relocations. Some
611 shared libraries do also, but many do not, so this can not
612 be assumed.
613
614 - If there are multiple code sections they will be loaded
615 at different relative addresses in memory than they are
616 in the objfile, since all sections in the file will start
617 at address zero.
618
619 Because GDB has very limited ability to map from an
620 address in debug info to the correct code section,
621 it relies on adding SECT_OFF_TEXT to things which might be
622 code. If we clear all the section offsets, and set the
623 section VMAs instead, then symfile_relocate_debug_section
624 will return meaningful debug information pointing at the
625 correct sections.
626
627 GDB has too many different data structures for section
628 addresses - a bfd, objfile, and so_list all have section
629 tables, as does exec_ops. Some of these could probably
630 be eliminated. */
631
632 for (cur_sec = abfd->sections; cur_sec != NULL;
633 cur_sec = cur_sec->next)
634 {
635 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
636 continue;
637
638 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
639 offsets[cur_sec->index] = 0;
640 }
641 }
642 }
643
644 /* Remember the bfd indexes for the .text, .data, .bss and
645 .rodata sections. */
646 init_objfile_sect_indices (objfile);
647 }
648
649
650 /* Divide the file into segments, which are individual relocatable units.
651 This is the default version of the sym_fns.sym_segments function for
652 symbol readers that do not have an explicit representation of segments.
653 It assumes that object files do not have segments, and fully linked
654 files have a single segment. */
655
656 struct symfile_segment_data *
657 default_symfile_segments (bfd *abfd)
658 {
659 int num_sections, i;
660 asection *sect;
661 struct symfile_segment_data *data;
662 CORE_ADDR low, high;
663
664 /* Relocatable files contain enough information to position each
665 loadable section independently; they should not be relocated
666 in segments. */
667 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
668 return NULL;
669
670 /* Make sure there is at least one loadable section in the file. */
671 for (sect = abfd->sections; sect != NULL; sect = sect->next)
672 {
673 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
674 continue;
675
676 break;
677 }
678 if (sect == NULL)
679 return NULL;
680
681 low = bfd_get_section_vma (abfd, sect);
682 high = low + bfd_get_section_size (sect);
683
684 data = XZALLOC (struct symfile_segment_data);
685 data->num_segments = 1;
686 data->segment_bases = XCALLOC (1, CORE_ADDR);
687 data->segment_sizes = XCALLOC (1, CORE_ADDR);
688
689 num_sections = bfd_count_sections (abfd);
690 data->segment_info = XCALLOC (num_sections, int);
691
692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
693 {
694 CORE_ADDR vma;
695
696 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
697 continue;
698
699 vma = bfd_get_section_vma (abfd, sect);
700 if (vma < low)
701 low = vma;
702 if (vma + bfd_get_section_size (sect) > high)
703 high = vma + bfd_get_section_size (sect);
704
705 data->segment_info[i] = 1;
706 }
707
708 data->segment_bases[0] = low;
709 data->segment_sizes[0] = high - low;
710
711 return data;
712 }
713
714 /* Process a symbol file, as either the main file or as a dynamically
715 loaded file.
716
717 OBJFILE is where the symbols are to be read from.
718
719 ADDRS is the list of section load addresses. If the user has given
720 an 'add-symbol-file' command, then this is the list of offsets and
721 addresses he or she provided as arguments to the command; or, if
722 we're handling a shared library, these are the actual addresses the
723 sections are loaded at, according to the inferior's dynamic linker
724 (as gleaned by GDB's shared library code). We convert each address
725 into an offset from the section VMA's as it appears in the object
726 file, and then call the file's sym_offsets function to convert this
727 into a format-specific offset table --- a `struct section_offsets'.
728 If ADDRS is non-zero, OFFSETS must be zero.
729
730 OFFSETS is a table of section offsets already in the right
731 format-specific representation. NUM_OFFSETS is the number of
732 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
733 assume this is the proper table the call to sym_offsets described
734 above would produce. Instead of calling sym_offsets, we just dump
735 it right into objfile->section_offsets. (When we're re-reading
736 symbols from an objfile, we don't have the original load address
737 list any more; all we have is the section offset table.) If
738 OFFSETS is non-zero, ADDRS must be zero.
739
740 MAINLINE is nonzero if this is the main symbol file, or zero if
741 it's an extra symbol file such as dynamically loaded code.
742
743 VERBO is nonzero if the caller has printed a verbose message about
744 the symbol reading (and complaints can be more terse about it). */
745
746 void
747 syms_from_objfile (struct objfile *objfile,
748 struct section_addr_info *addrs,
749 struct section_offsets *offsets,
750 int num_offsets,
751 int mainline,
752 int verbo)
753 {
754 struct section_addr_info *local_addr = NULL;
755 struct cleanup *old_chain;
756
757 gdb_assert (! (addrs && offsets));
758
759 init_entry_point_info (objfile);
760 objfile->sf = find_sym_fns (objfile->obfd);
761
762 if (objfile->sf == NULL)
763 return; /* No symbols. */
764
765 /* Make sure that partially constructed symbol tables will be cleaned up
766 if an error occurs during symbol reading. */
767 old_chain = make_cleanup_free_objfile (objfile);
768
769 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
770 list. We now establish the convention that an addr of zero means
771 no load address was specified. */
772 if (! addrs && ! offsets)
773 {
774 local_addr
775 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
776 make_cleanup (xfree, local_addr);
777 addrs = local_addr;
778 }
779
780 /* Now either addrs or offsets is non-zero. */
781
782 if (mainline)
783 {
784 /* We will modify the main symbol table, make sure that all its users
785 will be cleaned up if an error occurs during symbol reading. */
786 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
787
788 /* Since no error yet, throw away the old symbol table. */
789
790 if (symfile_objfile != NULL)
791 {
792 free_objfile (symfile_objfile);
793 symfile_objfile = NULL;
794 }
795
796 /* Currently we keep symbols from the add-symbol-file command.
797 If the user wants to get rid of them, they should do "symbol-file"
798 without arguments first. Not sure this is the best behavior
799 (PR 2207). */
800
801 (*objfile->sf->sym_new_init) (objfile);
802 }
803
804 /* Convert addr into an offset rather than an absolute address.
805 We find the lowest address of a loaded segment in the objfile,
806 and assume that <addr> is where that got loaded.
807
808 We no longer warn if the lowest section is not a text segment (as
809 happens for the PA64 port. */
810 if (!mainline && addrs && addrs->other[0].name)
811 {
812 asection *lower_sect;
813 asection *sect;
814 CORE_ADDR lower_offset;
815 int i;
816
817 /* Find lowest loadable section to be used as starting point for
818 continguous sections. FIXME!! won't work without call to find
819 .text first, but this assumes text is lowest section. */
820 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
821 if (lower_sect == NULL)
822 bfd_map_over_sections (objfile->obfd, find_lowest_section,
823 &lower_sect);
824 if (lower_sect == NULL)
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 else
828 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
829 warning (_("Lowest section in %s is %s at %s"),
830 objfile->name,
831 bfd_section_name (objfile->obfd, lower_sect),
832 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
833 if (lower_sect != NULL)
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835 else
836 lower_offset = 0;
837
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
841
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
881
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
897
898 #ifndef DEPRECATED_IBM6000_TARGET
899 /* This is a SVR4/SunOS specific hack, I think. In any event, it
900 screws RS/6000. sym_offsets should be doing this sort of thing,
901 because it knows the mapping between bfd sections and
902 section_offsets. */
903 /* This is a hack. As far as I can tell, section offsets are not
904 target dependent. They are all set to addr with a couple of
905 exceptions. The exceptions are sysvr4 shared libraries, whose
906 offsets are kept in solib structures anyway and rs6000 xcoff
907 which handles shared libraries in a completely unique way.
908
909 Section offsets are built similarly, except that they are built
910 by adding addr in all cases because there is no clear mapping
911 from section_offsets into actual sections. Note that solib.c
912 has a different algorithm for finding section offsets.
913
914 These should probably all be collapsed into some target
915 independent form of shared library support. FIXME. */
916
917 if (addrs)
918 {
919 struct obj_section *s;
920
921 /* Map section offsets in "addr" back to the object's
922 sections by comparing the section names with bfd's
923 section names. Then adjust the section address by
924 the offset. */ /* for gdb/13815 */
925
926 ALL_OBJFILE_OSECTIONS (objfile, s)
927 {
928 CORE_ADDR s_addr = 0;
929 int i;
930
931 for (i = 0;
932 !s_addr && i < addrs->num_sections && addrs->other[i].name;
933 i++)
934 if (strcmp (bfd_section_name (s->objfile->obfd,
935 s->the_bfd_section),
936 addrs->other[i].name) == 0)
937 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
938
939 s->addr -= s->offset;
940 s->addr += s_addr;
941 s->endaddr -= s->offset;
942 s->endaddr += s_addr;
943 s->offset += s_addr;
944 }
945 }
946 #endif /* not DEPRECATED_IBM6000_TARGET */
947
948 (*objfile->sf->sym_read) (objfile, mainline);
949
950 /* Don't allow char * to have a typename (else would get caddr_t).
951 Ditto void *. FIXME: Check whether this is now done by all the
952 symbol readers themselves (many of them now do), and if so remove
953 it from here. */
954
955 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
956 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
957
958 /* Mark the objfile has having had initial symbol read attempted. Note
959 that this does not mean we found any symbols... */
960
961 objfile->flags |= OBJF_SYMS;
962
963 /* Discard cleanups as symbol reading was successful. */
964
965 discard_cleanups (old_chain);
966 }
967
968 /* Perform required actions after either reading in the initial
969 symbols for a new objfile, or mapping in the symbols from a reusable
970 objfile. */
971
972 void
973 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
974 {
975
976 /* If this is the main symbol file we have to clean up all users of the
977 old main symbol file. Otherwise it is sufficient to fixup all the
978 breakpoints that may have been redefined by this symbol file. */
979 if (mainline)
980 {
981 /* OK, make it the "real" symbol file. */
982 symfile_objfile = objfile;
983
984 clear_symtab_users ();
985 }
986 else
987 {
988 breakpoint_re_set ();
989 }
990
991 /* We're done reading the symbol file; finish off complaints. */
992 clear_complaints (&symfile_complaints, 0, verbo);
993 }
994
995 /* Process a symbol file, as either the main file or as a dynamically
996 loaded file.
997
998 ABFD is a BFD already open on the file, as from symfile_bfd_open.
999 This BFD will be closed on error, and is always consumed by this function.
1000
1001 FROM_TTY says how verbose to be.
1002
1003 MAINLINE specifies whether this is the main symbol file, or whether
1004 it's an extra symbol file such as dynamically loaded code.
1005
1006 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1007 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1008 non-zero.
1009
1010 Upon success, returns a pointer to the objfile that was added.
1011 Upon failure, jumps back to command level (never returns). */
1012 static struct objfile *
1013 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1014 struct section_addr_info *addrs,
1015 struct section_offsets *offsets,
1016 int num_offsets,
1017 int mainline, int flags)
1018 {
1019 struct objfile *objfile;
1020 struct partial_symtab *psymtab;
1021 char *debugfile = NULL;
1022 struct section_addr_info *orig_addrs = NULL;
1023 struct cleanup *my_cleanups;
1024 const char *name = bfd_get_filename (abfd);
1025
1026 my_cleanups = make_cleanup_bfd_close (abfd);
1027
1028 /* Give user a chance to burp if we'd be
1029 interactively wiping out any existing symbols. */
1030
1031 if ((have_full_symbols () || have_partial_symbols ())
1032 && mainline
1033 && from_tty
1034 && !query ("Load new symbol table from \"%s\"? ", name))
1035 error (_("Not confirmed."));
1036
1037 objfile = allocate_objfile (abfd, flags);
1038 discard_cleanups (my_cleanups);
1039
1040 if (addrs)
1041 {
1042 orig_addrs = copy_section_addr_info (addrs);
1043 make_cleanup_free_section_addr_info (orig_addrs);
1044 }
1045
1046 /* We either created a new mapped symbol table, mapped an existing
1047 symbol table file which has not had initial symbol reading
1048 performed, or need to read an unmapped symbol table. */
1049 if (from_tty || info_verbose)
1050 {
1051 if (deprecated_pre_add_symbol_hook)
1052 deprecated_pre_add_symbol_hook (name);
1053 else
1054 {
1055 printf_unfiltered (_("Reading symbols from %s..."), name);
1056 wrap_here ("");
1057 gdb_flush (gdb_stdout);
1058 }
1059 }
1060 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1061 mainline, from_tty);
1062
1063 /* We now have at least a partial symbol table. Check to see if the
1064 user requested that all symbols be read on initial access via either
1065 the gdb startup command line or on a per symbol file basis. Expand
1066 all partial symbol tables for this objfile if so. */
1067
1068 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1069 {
1070 if (from_tty || info_verbose)
1071 {
1072 printf_unfiltered (_("expanding to full symbols..."));
1073 wrap_here ("");
1074 gdb_flush (gdb_stdout);
1075 }
1076
1077 for (psymtab = objfile->psymtabs;
1078 psymtab != NULL;
1079 psymtab = psymtab->next)
1080 {
1081 psymtab_to_symtab (psymtab);
1082 }
1083 }
1084
1085 /* If the file has its own symbol tables it has no separate debug info.
1086 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1087 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1088 if (objfile->psymtabs == NULL)
1089 debugfile = find_separate_debug_file (objfile);
1090 if (debugfile)
1091 {
1092 if (addrs != NULL)
1093 {
1094 objfile->separate_debug_objfile
1095 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1096 }
1097 else
1098 {
1099 objfile->separate_debug_objfile
1100 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1101 }
1102 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1103 = objfile;
1104
1105 /* Put the separate debug object before the normal one, this is so that
1106 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1107 put_objfile_before (objfile->separate_debug_objfile, objfile);
1108
1109 xfree (debugfile);
1110 }
1111
1112 if (!have_partial_symbols () && !have_full_symbols ())
1113 {
1114 wrap_here ("");
1115 printf_filtered (_("(no debugging symbols found)"));
1116 if (from_tty || info_verbose)
1117 printf_filtered ("...");
1118 else
1119 printf_filtered ("\n");
1120 wrap_here ("");
1121 }
1122
1123 if (from_tty || info_verbose)
1124 {
1125 if (deprecated_post_add_symbol_hook)
1126 deprecated_post_add_symbol_hook ();
1127 else
1128 {
1129 printf_unfiltered (_("done.\n"));
1130 }
1131 }
1132
1133 /* We print some messages regardless of whether 'from_tty ||
1134 info_verbose' is true, so make sure they go out at the right
1135 time. */
1136 gdb_flush (gdb_stdout);
1137
1138 do_cleanups (my_cleanups);
1139
1140 if (objfile->sf == NULL)
1141 return objfile; /* No symbols. */
1142
1143 new_symfile_objfile (objfile, mainline, from_tty);
1144
1145 observer_notify_new_objfile (objfile);
1146
1147 bfd_cache_close_all ();
1148 return (objfile);
1149 }
1150
1151
1152 /* Process the symbol file ABFD, as either the main file or as a
1153 dynamically loaded file.
1154
1155 See symbol_file_add_with_addrs_or_offsets's comments for
1156 details. */
1157 struct objfile *
1158 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1159 struct section_addr_info *addrs,
1160 int mainline, int flags)
1161 {
1162 return symbol_file_add_with_addrs_or_offsets (abfd,
1163 from_tty, addrs, 0, 0,
1164 mainline, flags);
1165 }
1166
1167
1168 /* Process a symbol file, as either the main file or as a dynamically
1169 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1170 for details. */
1171 struct objfile *
1172 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1173 int mainline, int flags)
1174 {
1175 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1176 addrs, mainline, flags);
1177 }
1178
1179
1180 /* Call symbol_file_add() with default values and update whatever is
1181 affected by the loading of a new main().
1182 Used when the file is supplied in the gdb command line
1183 and by some targets with special loading requirements.
1184 The auxiliary function, symbol_file_add_main_1(), has the flags
1185 argument for the switches that can only be specified in the symbol_file
1186 command itself. */
1187
1188 void
1189 symbol_file_add_main (char *args, int from_tty)
1190 {
1191 symbol_file_add_main_1 (args, from_tty, 0);
1192 }
1193
1194 static void
1195 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1196 {
1197 symbol_file_add (args, from_tty, NULL, 1, flags);
1198
1199 /* Getting new symbols may change our opinion about
1200 what is frameless. */
1201 reinit_frame_cache ();
1202
1203 set_initial_language ();
1204 }
1205
1206 void
1207 symbol_file_clear (int from_tty)
1208 {
1209 if ((have_full_symbols () || have_partial_symbols ())
1210 && from_tty
1211 && (symfile_objfile
1212 ? !query (_("Discard symbol table from `%s'? "),
1213 symfile_objfile->name)
1214 : !query (_("Discard symbol table? "))))
1215 error (_("Not confirmed."));
1216 free_all_objfiles ();
1217
1218 /* solib descriptors may have handles to objfiles. Since their
1219 storage has just been released, we'd better wipe the solib
1220 descriptors as well.
1221 */
1222 #if defined(SOLIB_RESTART)
1223 SOLIB_RESTART ();
1224 #endif
1225
1226 symfile_objfile = NULL;
1227 if (from_tty)
1228 printf_unfiltered (_("No symbol file now.\n"));
1229 }
1230
1231 struct build_id
1232 {
1233 size_t size;
1234 gdb_byte data[1];
1235 };
1236
1237 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1238
1239 static struct build_id *
1240 build_id_bfd_get (bfd *abfd)
1241 {
1242 struct build_id *retval;
1243
1244 if (!bfd_check_format (abfd, bfd_object)
1245 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1246 || elf_tdata (abfd)->build_id == NULL)
1247 return NULL;
1248
1249 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1250 retval->size = elf_tdata (abfd)->build_id_size;
1251 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1252
1253 return retval;
1254 }
1255
1256 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1257
1258 static int
1259 build_id_verify (const char *filename, struct build_id *check)
1260 {
1261 bfd *abfd;
1262 struct build_id *found = NULL;
1263 int retval = 0;
1264
1265 /* We expect to be silent on the non-existing files. */
1266 abfd = bfd_openr (filename, gnutarget);
1267 if (abfd == NULL)
1268 return 0;
1269
1270 found = build_id_bfd_get (abfd);
1271
1272 if (found == NULL)
1273 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1274 else if (found->size != check->size
1275 || memcmp (found->data, check->data, found->size) != 0)
1276 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1277 else
1278 retval = 1;
1279
1280 if (!bfd_close (abfd))
1281 warning (_("cannot close \"%s\": %s"), filename,
1282 bfd_errmsg (bfd_get_error ()));
1283 return retval;
1284 }
1285
1286 static char *
1287 build_id_to_debug_filename (struct build_id *build_id)
1288 {
1289 char *link, *s, *retval = NULL;
1290 gdb_byte *data = build_id->data;
1291 size_t size = build_id->size;
1292
1293 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1294 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1295 + 2 * size + (sizeof ".debug" - 1) + 1);
1296 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1297 if (size > 0)
1298 {
1299 size--;
1300 s += sprintf (s, "%02x", (unsigned) *data++);
1301 }
1302 if (size > 0)
1303 *s++ = '/';
1304 while (size-- > 0)
1305 s += sprintf (s, "%02x", (unsigned) *data++);
1306 strcpy (s, ".debug");
1307
1308 /* lrealpath() is expensive even for the usually non-existent files. */
1309 if (access (link, F_OK) == 0)
1310 retval = lrealpath (link);
1311 xfree (link);
1312
1313 if (retval != NULL && !build_id_verify (retval, build_id))
1314 {
1315 xfree (retval);
1316 retval = NULL;
1317 }
1318
1319 return retval;
1320 }
1321
1322 static char *
1323 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1324 {
1325 asection *sect;
1326 bfd_size_type debuglink_size;
1327 unsigned long crc32;
1328 char *contents;
1329 int crc_offset;
1330 unsigned char *p;
1331
1332 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1333
1334 if (sect == NULL)
1335 return NULL;
1336
1337 debuglink_size = bfd_section_size (objfile->obfd, sect);
1338
1339 contents = xmalloc (debuglink_size);
1340 bfd_get_section_contents (objfile->obfd, sect, contents,
1341 (file_ptr)0, (bfd_size_type)debuglink_size);
1342
1343 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1344 crc_offset = strlen (contents) + 1;
1345 crc_offset = (crc_offset + 3) & ~3;
1346
1347 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1348
1349 *crc32_out = crc32;
1350 return contents;
1351 }
1352
1353 static int
1354 separate_debug_file_exists (const char *name, unsigned long crc)
1355 {
1356 unsigned long file_crc = 0;
1357 int fd;
1358 gdb_byte buffer[8*1024];
1359 int count;
1360
1361 fd = open (name, O_RDONLY | O_BINARY);
1362 if (fd < 0)
1363 return 0;
1364
1365 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1366 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1367
1368 close (fd);
1369
1370 return crc == file_crc;
1371 }
1372
1373 char *debug_file_directory = NULL;
1374 static void
1375 show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377 {
1378 fprintf_filtered (file, _("\
1379 The directory where separate debug symbols are searched for is \"%s\".\n"),
1380 value);
1381 }
1382
1383 #if ! defined (DEBUG_SUBDIRECTORY)
1384 #define DEBUG_SUBDIRECTORY ".debug"
1385 #endif
1386
1387 static char *
1388 find_separate_debug_file (struct objfile *objfile)
1389 {
1390 asection *sect;
1391 char *basename;
1392 char *dir;
1393 char *debugfile;
1394 char *name_copy;
1395 char *canon_name;
1396 bfd_size_type debuglink_size;
1397 unsigned long crc32;
1398 int i;
1399 struct build_id *build_id;
1400
1401 build_id = build_id_bfd_get (objfile->obfd);
1402 if (build_id != NULL)
1403 {
1404 char *build_id_name;
1405
1406 build_id_name = build_id_to_debug_filename (build_id);
1407 free (build_id);
1408 /* Prevent looping on a stripped .debug file. */
1409 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1410 {
1411 warning (_("\"%s\": separate debug info file has no debug info"),
1412 build_id_name);
1413 xfree (build_id_name);
1414 }
1415 else if (build_id_name != NULL)
1416 return build_id_name;
1417 }
1418
1419 basename = get_debug_link_info (objfile, &crc32);
1420
1421 if (basename == NULL)
1422 return NULL;
1423
1424 dir = xstrdup (objfile->name);
1425
1426 /* Strip off the final filename part, leaving the directory name,
1427 followed by a slash. Objfile names should always be absolute and
1428 tilde-expanded, so there should always be a slash in there
1429 somewhere. */
1430 for (i = strlen(dir) - 1; i >= 0; i--)
1431 {
1432 if (IS_DIR_SEPARATOR (dir[i]))
1433 break;
1434 }
1435 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1436 dir[i+1] = '\0';
1437
1438 debugfile = alloca (strlen (debug_file_directory) + 1
1439 + strlen (dir)
1440 + strlen (DEBUG_SUBDIRECTORY)
1441 + strlen ("/")
1442 + strlen (basename)
1443 + 1);
1444
1445 /* First try in the same directory as the original file. */
1446 strcpy (debugfile, dir);
1447 strcat (debugfile, basename);
1448
1449 if (separate_debug_file_exists (debugfile, crc32))
1450 {
1451 xfree (basename);
1452 xfree (dir);
1453 return xstrdup (debugfile);
1454 }
1455
1456 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1457 strcpy (debugfile, dir);
1458 strcat (debugfile, DEBUG_SUBDIRECTORY);
1459 strcat (debugfile, "/");
1460 strcat (debugfile, basename);
1461
1462 if (separate_debug_file_exists (debugfile, crc32))
1463 {
1464 xfree (basename);
1465 xfree (dir);
1466 return xstrdup (debugfile);
1467 }
1468
1469 /* Then try in the global debugfile directory. */
1470 strcpy (debugfile, debug_file_directory);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, dir);
1473 strcat (debugfile, basename);
1474
1475 if (separate_debug_file_exists (debugfile, crc32))
1476 {
1477 xfree (basename);
1478 xfree (dir);
1479 return xstrdup (debugfile);
1480 }
1481
1482 /* If the file is in the sysroot, try using its base path in the
1483 global debugfile directory. */
1484 canon_name = lrealpath (dir);
1485 if (canon_name
1486 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1487 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1488 {
1489 strcpy (debugfile, debug_file_directory);
1490 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1491 strcat (debugfile, "/");
1492 strcat (debugfile, basename);
1493
1494 if (separate_debug_file_exists (debugfile, crc32))
1495 {
1496 xfree (canon_name);
1497 xfree (basename);
1498 xfree (dir);
1499 return xstrdup (debugfile);
1500 }
1501 }
1502
1503 if (canon_name)
1504 xfree (canon_name);
1505
1506 xfree (basename);
1507 xfree (dir);
1508 return NULL;
1509 }
1510
1511
1512 /* This is the symbol-file command. Read the file, analyze its
1513 symbols, and add a struct symtab to a symtab list. The syntax of
1514 the command is rather bizarre:
1515
1516 1. The function buildargv implements various quoting conventions
1517 which are undocumented and have little or nothing in common with
1518 the way things are quoted (or not quoted) elsewhere in GDB.
1519
1520 2. Options are used, which are not generally used in GDB (perhaps
1521 "set mapped on", "set readnow on" would be better)
1522
1523 3. The order of options matters, which is contrary to GNU
1524 conventions (because it is confusing and inconvenient). */
1525
1526 void
1527 symbol_file_command (char *args, int from_tty)
1528 {
1529 dont_repeat ();
1530
1531 if (args == NULL)
1532 {
1533 symbol_file_clear (from_tty);
1534 }
1535 else
1536 {
1537 char **argv = buildargv (args);
1538 int flags = OBJF_USERLOADED;
1539 struct cleanup *cleanups;
1540 char *name = NULL;
1541
1542 if (argv == NULL)
1543 nomem (0);
1544
1545 cleanups = make_cleanup_freeargv (argv);
1546 while (*argv != NULL)
1547 {
1548 if (strcmp (*argv, "-readnow") == 0)
1549 flags |= OBJF_READNOW;
1550 else if (**argv == '-')
1551 error (_("unknown option `%s'"), *argv);
1552 else
1553 {
1554 symbol_file_add_main_1 (*argv, from_tty, flags);
1555 name = *argv;
1556 }
1557
1558 argv++;
1559 }
1560
1561 if (name == NULL)
1562 error (_("no symbol file name was specified"));
1563
1564 do_cleanups (cleanups);
1565 }
1566 }
1567
1568 /* Set the initial language.
1569
1570 FIXME: A better solution would be to record the language in the
1571 psymtab when reading partial symbols, and then use it (if known) to
1572 set the language. This would be a win for formats that encode the
1573 language in an easily discoverable place, such as DWARF. For
1574 stabs, we can jump through hoops looking for specially named
1575 symbols or try to intuit the language from the specific type of
1576 stabs we find, but we can't do that until later when we read in
1577 full symbols. */
1578
1579 static void
1580 set_initial_language (void)
1581 {
1582 struct partial_symtab *pst;
1583 enum language lang = language_unknown;
1584
1585 pst = find_main_psymtab ();
1586 if (pst != NULL)
1587 {
1588 if (pst->filename != NULL)
1589 lang = deduce_language_from_filename (pst->filename);
1590
1591 if (lang == language_unknown)
1592 {
1593 /* Make C the default language */
1594 lang = language_c;
1595 }
1596
1597 set_language (lang);
1598 expected_language = current_language; /* Don't warn the user. */
1599 }
1600 }
1601
1602 /* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
1606
1607 bfd *
1608 symfile_bfd_open (char *name)
1609 {
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
1614 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1615
1616 /* Look down path for it, allocate 2nd new malloc'd copy. */
1617 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1618 O_RDONLY | O_BINARY, 0, &absolute_name);
1619 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1620 if (desc < 0)
1621 {
1622 char *exename = alloca (strlen (name) + 5);
1623 strcat (strcpy (exename, name), ".exe");
1624 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1625 O_RDONLY | O_BINARY, 0, &absolute_name);
1626 }
1627 #endif
1628 if (desc < 0)
1629 {
1630 make_cleanup (xfree, name);
1631 perror_with_name (name);
1632 }
1633
1634 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1635 bfd. It'll be freed in free_objfile(). */
1636 xfree (name);
1637 name = absolute_name;
1638
1639 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1640 if (!sym_bfd)
1641 {
1642 close (desc);
1643 make_cleanup (xfree, name);
1644 error (_("\"%s\": can't open to read symbols: %s."), name,
1645 bfd_errmsg (bfd_get_error ()));
1646 }
1647 bfd_set_cacheable (sym_bfd, 1);
1648
1649 if (!bfd_check_format (sym_bfd, bfd_object))
1650 {
1651 /* FIXME: should be checking for errors from bfd_close (for one
1652 thing, on error it does not free all the storage associated
1653 with the bfd). */
1654 bfd_close (sym_bfd); /* This also closes desc. */
1655 make_cleanup (xfree, name);
1656 error (_("\"%s\": can't read symbols: %s."), name,
1657 bfd_errmsg (bfd_get_error ()));
1658 }
1659
1660 return sym_bfd;
1661 }
1662
1663 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1664 the section was not found. */
1665
1666 int
1667 get_section_index (struct objfile *objfile, char *section_name)
1668 {
1669 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1670
1671 if (sect)
1672 return sect->index;
1673 else
1674 return -1;
1675 }
1676
1677 /* Link SF into the global symtab_fns list. Called on startup by the
1678 _initialize routine in each object file format reader, to register
1679 information about each format the the reader is prepared to
1680 handle. */
1681
1682 void
1683 add_symtab_fns (struct sym_fns *sf)
1684 {
1685 sf->next = symtab_fns;
1686 symtab_fns = sf;
1687 }
1688
1689 /* Initialize OBJFILE to read symbols from its associated BFD. It
1690 either returns or calls error(). The result is an initialized
1691 struct sym_fns in the objfile structure, that contains cached
1692 information about the symbol file. */
1693
1694 static struct sym_fns *
1695 find_sym_fns (bfd *abfd)
1696 {
1697 struct sym_fns *sf;
1698 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1699
1700 if (our_flavour == bfd_target_srec_flavour
1701 || our_flavour == bfd_target_ihex_flavour
1702 || our_flavour == bfd_target_tekhex_flavour)
1703 return NULL; /* No symbols. */
1704
1705 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1706 if (our_flavour == sf->sym_flavour)
1707 return sf;
1708
1709 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1710 bfd_get_target (abfd));
1711 }
1712 \f
1713
1714 /* This function runs the load command of our current target. */
1715
1716 static void
1717 load_command (char *arg, int from_tty)
1718 {
1719 if (arg == NULL)
1720 {
1721 char *parg;
1722 int count = 0;
1723
1724 parg = arg = get_exec_file (1);
1725
1726 /* Count how many \ " ' tab space there are in the name. */
1727 while ((parg = strpbrk (parg, "\\\"'\t ")))
1728 {
1729 parg++;
1730 count++;
1731 }
1732
1733 if (count)
1734 {
1735 /* We need to quote this string so buildargv can pull it apart. */
1736 char *temp = xmalloc (strlen (arg) + count + 1 );
1737 char *ptemp = temp;
1738 char *prev;
1739
1740 make_cleanup (xfree, temp);
1741
1742 prev = parg = arg;
1743 while ((parg = strpbrk (parg, "\\\"'\t ")))
1744 {
1745 strncpy (ptemp, prev, parg - prev);
1746 ptemp += parg - prev;
1747 prev = parg++;
1748 *ptemp++ = '\\';
1749 }
1750 strcpy (ptemp, prev);
1751
1752 arg = temp;
1753 }
1754 }
1755
1756 /* The user might be reloading because the binary has changed. Take
1757 this opportunity to check. */
1758 reopen_exec_file ();
1759 reread_symbols ();
1760
1761 target_load (arg, from_tty);
1762
1763 /* After re-loading the executable, we don't really know which
1764 overlays are mapped any more. */
1765 overlay_cache_invalid = 1;
1766 }
1767
1768 /* This version of "load" should be usable for any target. Currently
1769 it is just used for remote targets, not inftarg.c or core files,
1770 on the theory that only in that case is it useful.
1771
1772 Avoiding xmodem and the like seems like a win (a) because we don't have
1773 to worry about finding it, and (b) On VMS, fork() is very slow and so
1774 we don't want to run a subprocess. On the other hand, I'm not sure how
1775 performance compares. */
1776
1777 static int validate_download = 0;
1778
1779 /* Callback service function for generic_load (bfd_map_over_sections). */
1780
1781 static void
1782 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1783 {
1784 bfd_size_type *sum = data;
1785
1786 *sum += bfd_get_section_size (asec);
1787 }
1788
1789 /* Opaque data for load_section_callback. */
1790 struct load_section_data {
1791 unsigned long load_offset;
1792 struct load_progress_data *progress_data;
1793 VEC(memory_write_request_s) *requests;
1794 };
1795
1796 /* Opaque data for load_progress. */
1797 struct load_progress_data {
1798 /* Cumulative data. */
1799 unsigned long write_count;
1800 unsigned long data_count;
1801 bfd_size_type total_size;
1802 };
1803
1804 /* Opaque data for load_progress for a single section. */
1805 struct load_progress_section_data {
1806 struct load_progress_data *cumulative;
1807
1808 /* Per-section data. */
1809 const char *section_name;
1810 ULONGEST section_sent;
1811 ULONGEST section_size;
1812 CORE_ADDR lma;
1813 gdb_byte *buffer;
1814 };
1815
1816 /* Target write callback routine for progress reporting. */
1817
1818 static void
1819 load_progress (ULONGEST bytes, void *untyped_arg)
1820 {
1821 struct load_progress_section_data *args = untyped_arg;
1822 struct load_progress_data *totals;
1823
1824 if (args == NULL)
1825 /* Writing padding data. No easy way to get at the cumulative
1826 stats, so just ignore this. */
1827 return;
1828
1829 totals = args->cumulative;
1830
1831 if (bytes == 0 && args->section_sent == 0)
1832 {
1833 /* The write is just starting. Let the user know we've started
1834 this section. */
1835 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1836 args->section_name, paddr_nz (args->section_size),
1837 paddr_nz (args->lma));
1838 return;
1839 }
1840
1841 if (validate_download)
1842 {
1843 /* Broken memories and broken monitors manifest themselves here
1844 when bring new computers to life. This doubles already slow
1845 downloads. */
1846 /* NOTE: cagney/1999-10-18: A more efficient implementation
1847 might add a verify_memory() method to the target vector and
1848 then use that. remote.c could implement that method using
1849 the ``qCRC'' packet. */
1850 gdb_byte *check = xmalloc (bytes);
1851 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1852
1853 if (target_read_memory (args->lma, check, bytes) != 0)
1854 error (_("Download verify read failed at 0x%s"),
1855 paddr (args->lma));
1856 if (memcmp (args->buffer, check, bytes) != 0)
1857 error (_("Download verify compare failed at 0x%s"),
1858 paddr (args->lma));
1859 do_cleanups (verify_cleanups);
1860 }
1861 totals->data_count += bytes;
1862 args->lma += bytes;
1863 args->buffer += bytes;
1864 totals->write_count += 1;
1865 args->section_sent += bytes;
1866 if (quit_flag
1867 || (deprecated_ui_load_progress_hook != NULL
1868 && deprecated_ui_load_progress_hook (args->section_name,
1869 args->section_sent)))
1870 error (_("Canceled the download"));
1871
1872 if (deprecated_show_load_progress != NULL)
1873 deprecated_show_load_progress (args->section_name,
1874 args->section_sent,
1875 args->section_size,
1876 totals->data_count,
1877 totals->total_size);
1878 }
1879
1880 /* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882 static void
1883 load_section_callback (bfd *abfd, asection *asec, void *data)
1884 {
1885 struct memory_write_request *new_request;
1886 struct load_section_data *args = data;
1887 struct load_progress_section_data *section_data;
1888 bfd_size_type size = bfd_get_section_size (asec);
1889 gdb_byte *buffer;
1890 const char *sect_name = bfd_get_section_name (abfd, asec);
1891
1892 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1893 return;
1894
1895 if (size == 0)
1896 return;
1897
1898 new_request = VEC_safe_push (memory_write_request_s,
1899 args->requests, NULL);
1900 memset (new_request, 0, sizeof (struct memory_write_request));
1901 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1902 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1903 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1904 new_request->data = xmalloc (size);
1905 new_request->baton = section_data;
1906
1907 buffer = new_request->data;
1908
1909 section_data->cumulative = args->progress_data;
1910 section_data->section_name = sect_name;
1911 section_data->section_size = size;
1912 section_data->lma = new_request->begin;
1913 section_data->buffer = buffer;
1914
1915 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1916 }
1917
1918 /* Clean up an entire memory request vector, including load
1919 data and progress records. */
1920
1921 static void
1922 clear_memory_write_data (void *arg)
1923 {
1924 VEC(memory_write_request_s) **vec_p = arg;
1925 VEC(memory_write_request_s) *vec = *vec_p;
1926 int i;
1927 struct memory_write_request *mr;
1928
1929 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1930 {
1931 xfree (mr->data);
1932 xfree (mr->baton);
1933 }
1934 VEC_free (memory_write_request_s, vec);
1935 }
1936
1937 void
1938 generic_load (char *args, int from_tty)
1939 {
1940 bfd *loadfile_bfd;
1941 struct timeval start_time, end_time;
1942 char *filename;
1943 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1944 struct load_section_data cbdata;
1945 struct load_progress_data total_progress;
1946
1947 CORE_ADDR entry;
1948 char **argv;
1949
1950 memset (&cbdata, 0, sizeof (cbdata));
1951 memset (&total_progress, 0, sizeof (total_progress));
1952 cbdata.progress_data = &total_progress;
1953
1954 make_cleanup (clear_memory_write_data, &cbdata.requests);
1955
1956 argv = buildargv (args);
1957
1958 if (argv == NULL)
1959 nomem(0);
1960
1961 make_cleanup_freeargv (argv);
1962
1963 filename = tilde_expand (argv[0]);
1964 make_cleanup (xfree, filename);
1965
1966 if (argv[1] != NULL)
1967 {
1968 char *endptr;
1969
1970 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1971
1972 /* If the last word was not a valid number then
1973 treat it as a file name with spaces in. */
1974 if (argv[1] == endptr)
1975 error (_("Invalid download offset:%s."), argv[1]);
1976
1977 if (argv[2] != NULL)
1978 error (_("Too many parameters."));
1979 }
1980
1981 /* Open the file for loading. */
1982 loadfile_bfd = bfd_openr (filename, gnutarget);
1983 if (loadfile_bfd == NULL)
1984 {
1985 perror_with_name (filename);
1986 return;
1987 }
1988
1989 /* FIXME: should be checking for errors from bfd_close (for one thing,
1990 on error it does not free all the storage associated with the
1991 bfd). */
1992 make_cleanup_bfd_close (loadfile_bfd);
1993
1994 if (!bfd_check_format (loadfile_bfd, bfd_object))
1995 {
1996 error (_("\"%s\" is not an object file: %s"), filename,
1997 bfd_errmsg (bfd_get_error ()));
1998 }
1999
2000 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2001 (void *) &total_progress.total_size);
2002
2003 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2004
2005 gettimeofday (&start_time, NULL);
2006
2007 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2008 load_progress) != 0)
2009 error (_("Load failed"));
2010
2011 gettimeofday (&end_time, NULL);
2012
2013 entry = bfd_get_start_address (loadfile_bfd);
2014 ui_out_text (uiout, "Start address ");
2015 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2016 ui_out_text (uiout, ", load size ");
2017 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2018 ui_out_text (uiout, "\n");
2019 /* We were doing this in remote-mips.c, I suspect it is right
2020 for other targets too. */
2021 write_pc (entry);
2022
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
2027 others don't (or didn't - perhaps they have all been deleted). */
2028
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
2032
2033 do_cleanups (old_cleanups);
2034 }
2035
2036 /* Report how fast the transfer went. */
2037
2038 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2041
2042 void
2043 report_transfer_performance (unsigned long data_count, time_t start_time,
2044 time_t end_time)
2045 {
2046 struct timeval start, end;
2047
2048 start.tv_sec = start_time;
2049 start.tv_usec = 0;
2050 end.tv_sec = end_time;
2051 end.tv_usec = 0;
2052
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2054 }
2055
2056 void
2057 print_transfer_performance (struct ui_file *stream,
2058 unsigned long data_count,
2059 unsigned long write_count,
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
2062 {
2063 ULONGEST time_count;
2064
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
2070 ui_out_text (uiout, "Transfer rate: ");
2071 if (time_count > 0)
2072 {
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075 if (ui_out_is_mi_like_p (uiout))
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2079 }
2080 else if (rate < 1024)
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2084 }
2085 else
2086 {
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2089 }
2090 }
2091 else
2092 {
2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2094 ui_out_text (uiout, " bits in <1 sec");
2095 }
2096 if (write_count > 0)
2097 {
2098 ui_out_text (uiout, ", ");
2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2100 ui_out_text (uiout, " bytes/write");
2101 }
2102 ui_out_text (uiout, ".\n");
2103 }
2104
2105 /* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
2107 /* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
2113
2114 static void
2115 add_symbol_file_command (char *args, int from_tty)
2116 {
2117 char *filename = NULL;
2118 int flags = OBJF_USERLOADED;
2119 char *arg;
2120 int expecting_option = 0;
2121 int section_index = 0;
2122 int argcnt = 0;
2123 int sec_num = 0;
2124 int i;
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
2127 char **argv;
2128
2129 struct sect_opt
2130 {
2131 char *name;
2132 char *value;
2133 };
2134
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2139
2140 num_sect_opts = 16;
2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2142 * sizeof (struct sect_opt));
2143
2144 dont_repeat ();
2145
2146 if (args == NULL)
2147 error (_("add-symbol-file takes a file name and an address"));
2148
2149 argv = buildargv (args);
2150 make_cleanup_freeargv (argv);
2151
2152 if (argv == NULL)
2153 nomem (0);
2154
2155 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2156 {
2157 /* Process the argument. */
2158 if (argcnt == 0)
2159 {
2160 /* The first argument is the file name. */
2161 filename = tilde_expand (arg);
2162 make_cleanup (xfree, filename);
2163 }
2164 else
2165 if (argcnt == 1)
2166 {
2167 /* The second argument is always the text address at which
2168 to load the program. */
2169 sect_opts[section_index].name = ".text";
2170 sect_opts[section_index].value = arg;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 {
2182 /* It's an option (starting with '-') or it's an argument
2183 to an option */
2184
2185 if (*arg == '-')
2186 {
2187 if (strcmp (arg, "-readnow") == 0)
2188 flags |= OBJF_READNOW;
2189 else if (strcmp (arg, "-s") == 0)
2190 {
2191 expecting_sec_name = 1;
2192 expecting_sec_addr = 1;
2193 }
2194 }
2195 else
2196 {
2197 if (expecting_sec_name)
2198 {
2199 sect_opts[section_index].name = arg;
2200 expecting_sec_name = 0;
2201 }
2202 else
2203 if (expecting_sec_addr)
2204 {
2205 sect_opts[section_index].value = arg;
2206 expecting_sec_addr = 0;
2207 if (++section_index >= num_sect_opts)
2208 {
2209 num_sect_opts *= 2;
2210 sect_opts = ((struct sect_opt *)
2211 xrealloc (sect_opts,
2212 num_sect_opts
2213 * sizeof (struct sect_opt)));
2214 }
2215 }
2216 else
2217 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2218 }
2219 }
2220 }
2221
2222 /* This command takes at least two arguments. The first one is a
2223 filename, and the second is the address where this file has been
2224 loaded. Abort now if this address hasn't been provided by the
2225 user. */
2226 if (section_index < 1)
2227 error (_("The address where %s has been loaded is missing"), filename);
2228
2229 /* Print the prompt for the query below. And save the arguments into
2230 a sect_addr_info structure to be passed around to other
2231 functions. We have to split this up into separate print
2232 statements because hex_string returns a local static
2233 string. */
2234
2235 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2236 section_addrs = alloc_section_addr_info (section_index);
2237 make_cleanup (xfree, section_addrs);
2238 for (i = 0; i < section_index; i++)
2239 {
2240 CORE_ADDR addr;
2241 char *val = sect_opts[i].value;
2242 char *sec = sect_opts[i].name;
2243
2244 addr = parse_and_eval_address (val);
2245
2246 /* Here we store the section offsets in the order they were
2247 entered on the command line. */
2248 section_addrs->other[sec_num].name = sec;
2249 section_addrs->other[sec_num].addr = addr;
2250 printf_unfiltered ("\t%s_addr = %s\n",
2251 sec, hex_string ((unsigned long)addr));
2252 sec_num++;
2253
2254 /* The object's sections are initialized when a
2255 call is made to build_objfile_section_table (objfile).
2256 This happens in reread_symbols.
2257 At this point, we don't know what file type this is,
2258 so we can't determine what section names are valid. */
2259 }
2260
2261 if (from_tty && (!query ("%s", "")))
2262 error (_("Not confirmed."));
2263
2264 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2265
2266 /* Getting new symbols may change our opinion about what is
2267 frameless. */
2268 reinit_frame_cache ();
2269 do_cleanups (my_cleanups);
2270 }
2271 \f
2272 static void
2273 add_shared_symbol_files_command (char *args, int from_tty)
2274 {
2275 #ifdef ADD_SHARED_SYMBOL_FILES
2276 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2277 #else
2278 error (_("This command is not available in this configuration of GDB."));
2279 #endif
2280 }
2281 \f
2282 /* Re-read symbols if a symbol-file has changed. */
2283 void
2284 reread_symbols (void)
2285 {
2286 struct objfile *objfile;
2287 long new_modtime;
2288 int reread_one = 0;
2289 struct stat new_statbuf;
2290 int res;
2291
2292 /* With the addition of shared libraries, this should be modified,
2293 the load time should be saved in the partial symbol tables, since
2294 different tables may come from different source files. FIXME.
2295 This routine should then walk down each partial symbol table
2296 and see if the symbol table that it originates from has been changed */
2297
2298 for (objfile = object_files; objfile; objfile = objfile->next)
2299 {
2300 if (objfile->obfd)
2301 {
2302 #ifdef DEPRECATED_IBM6000_TARGET
2303 /* If this object is from a shared library, then you should
2304 stat on the library name, not member name. */
2305
2306 if (objfile->obfd->my_archive)
2307 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2308 else
2309 #endif
2310 res = stat (objfile->name, &new_statbuf);
2311 if (res != 0)
2312 {
2313 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2314 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2315 objfile->name);
2316 continue;
2317 }
2318 new_modtime = new_statbuf.st_mtime;
2319 if (new_modtime != objfile->mtime)
2320 {
2321 struct cleanup *old_cleanups;
2322 struct section_offsets *offsets;
2323 int num_offsets;
2324 char *obfd_filename;
2325
2326 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2327 objfile->name);
2328
2329 /* There are various functions like symbol_file_add,
2330 symfile_bfd_open, syms_from_objfile, etc., which might
2331 appear to do what we want. But they have various other
2332 effects which we *don't* want. So we just do stuff
2333 ourselves. We don't worry about mapped files (for one thing,
2334 any mapped file will be out of date). */
2335
2336 /* If we get an error, blow away this objfile (not sure if
2337 that is the correct response for things like shared
2338 libraries). */
2339 old_cleanups = make_cleanup_free_objfile (objfile);
2340 /* We need to do this whenever any symbols go away. */
2341 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2342
2343 /* Clean up any state BFD has sitting around. We don't need
2344 to close the descriptor but BFD lacks a way of closing the
2345 BFD without closing the descriptor. */
2346 obfd_filename = bfd_get_filename (objfile->obfd);
2347 if (!bfd_close (objfile->obfd))
2348 error (_("Can't close BFD for %s: %s"), objfile->name,
2349 bfd_errmsg (bfd_get_error ()));
2350 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2351 if (objfile->obfd == NULL)
2352 error (_("Can't open %s to read symbols."), objfile->name);
2353 /* bfd_openr sets cacheable to true, which is what we want. */
2354 if (!bfd_check_format (objfile->obfd, bfd_object))
2355 error (_("Can't read symbols from %s: %s."), objfile->name,
2356 bfd_errmsg (bfd_get_error ()));
2357
2358 /* Save the offsets, we will nuke them with the rest of the
2359 objfile_obstack. */
2360 num_offsets = objfile->num_sections;
2361 offsets = ((struct section_offsets *)
2362 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2363 memcpy (offsets, objfile->section_offsets,
2364 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2365
2366 /* Remove any references to this objfile in the global
2367 value lists. */
2368 preserve_values (objfile);
2369
2370 /* Nuke all the state that we will re-read. Much of the following
2371 code which sets things to NULL really is necessary to tell
2372 other parts of GDB that there is nothing currently there. */
2373
2374 /* FIXME: Do we have to free a whole linked list, or is this
2375 enough? */
2376 if (objfile->global_psymbols.list)
2377 xfree (objfile->global_psymbols.list);
2378 memset (&objfile->global_psymbols, 0,
2379 sizeof (objfile->global_psymbols));
2380 if (objfile->static_psymbols.list)
2381 xfree (objfile->static_psymbols.list);
2382 memset (&objfile->static_psymbols, 0,
2383 sizeof (objfile->static_psymbols));
2384
2385 /* Free the obstacks for non-reusable objfiles */
2386 bcache_xfree (objfile->psymbol_cache);
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 bcache_xfree (objfile->macro_cache);
2389 objfile->macro_cache = bcache_xmalloc ();
2390 if (objfile->demangled_names_hash != NULL)
2391 {
2392 htab_delete (objfile->demangled_names_hash);
2393 objfile->demangled_names_hash = NULL;
2394 }
2395 obstack_free (&objfile->objfile_obstack, 0);
2396 objfile->sections = NULL;
2397 objfile->symtabs = NULL;
2398 objfile->psymtabs = NULL;
2399 objfile->free_psymtabs = NULL;
2400 objfile->cp_namespace_symtab = NULL;
2401 objfile->msymbols = NULL;
2402 objfile->deprecated_sym_private = NULL;
2403 objfile->minimal_symbol_count = 0;
2404 memset (&objfile->msymbol_hash, 0,
2405 sizeof (objfile->msymbol_hash));
2406 memset (&objfile->msymbol_demangled_hash, 0,
2407 sizeof (objfile->msymbol_demangled_hash));
2408 objfile->fundamental_types = NULL;
2409 clear_objfile_data (objfile);
2410 if (objfile->sf != NULL)
2411 {
2412 (*objfile->sf->sym_finish) (objfile);
2413 }
2414
2415 /* We never make this a mapped file. */
2416 objfile->md = NULL;
2417 objfile->psymbol_cache = bcache_xmalloc ();
2418 objfile->macro_cache = bcache_xmalloc ();
2419 /* obstack_init also initializes the obstack so it is
2420 empty. We could use obstack_specify_allocation but
2421 gdb_obstack.h specifies the alloc/dealloc
2422 functions. */
2423 obstack_init (&objfile->objfile_obstack);
2424 if (build_objfile_section_table (objfile))
2425 {
2426 error (_("Can't find the file sections in `%s': %s"),
2427 objfile->name, bfd_errmsg (bfd_get_error ()));
2428 }
2429 terminate_minimal_symbol_table (objfile);
2430
2431 /* We use the same section offsets as from last time. I'm not
2432 sure whether that is always correct for shared libraries. */
2433 objfile->section_offsets = (struct section_offsets *)
2434 obstack_alloc (&objfile->objfile_obstack,
2435 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2436 memcpy (objfile->section_offsets, offsets,
2437 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2438 objfile->num_sections = num_offsets;
2439
2440 /* What the hell is sym_new_init for, anyway? The concept of
2441 distinguishing between the main file and additional files
2442 in this way seems rather dubious. */
2443 if (objfile == symfile_objfile)
2444 {
2445 (*objfile->sf->sym_new_init) (objfile);
2446 }
2447
2448 (*objfile->sf->sym_init) (objfile);
2449 clear_complaints (&symfile_complaints, 1, 1);
2450 /* The "mainline" parameter is a hideous hack; I think leaving it
2451 zero is OK since dbxread.c also does what it needs to do if
2452 objfile->global_psymbols.size is 0. */
2453 (*objfile->sf->sym_read) (objfile, 0);
2454 if (!have_partial_symbols () && !have_full_symbols ())
2455 {
2456 wrap_here ("");
2457 printf_unfiltered (_("(no debugging symbols found)\n"));
2458 wrap_here ("");
2459 }
2460 objfile->flags |= OBJF_SYMS;
2461
2462 /* We're done reading the symbol file; finish off complaints. */
2463 clear_complaints (&symfile_complaints, 0, 1);
2464
2465 /* Getting new symbols may change our opinion about what is
2466 frameless. */
2467
2468 reinit_frame_cache ();
2469
2470 /* Discard cleanups as symbol reading was successful. */
2471 discard_cleanups (old_cleanups);
2472
2473 /* If the mtime has changed between the time we set new_modtime
2474 and now, we *want* this to be out of date, so don't call stat
2475 again now. */
2476 objfile->mtime = new_modtime;
2477 reread_one = 1;
2478 reread_separate_symbols (objfile);
2479 }
2480 }
2481 }
2482
2483 if (reread_one)
2484 {
2485 clear_symtab_users ();
2486 /* At least one objfile has changed, so we can consider that
2487 the executable we're debugging has changed too. */
2488 observer_notify_executable_changed (NULL);
2489 }
2490
2491 }
2492
2493
2494 /* Handle separate debug info for OBJFILE, which has just been
2495 re-read:
2496 - If we had separate debug info before, but now we don't, get rid
2497 of the separated objfile.
2498 - If we didn't have separated debug info before, but now we do,
2499 read in the new separated debug info file.
2500 - If the debug link points to a different file, toss the old one
2501 and read the new one.
2502 This function does *not* handle the case where objfile is still
2503 using the same separate debug info file, but that file's timestamp
2504 has changed. That case should be handled by the loop in
2505 reread_symbols already. */
2506 static void
2507 reread_separate_symbols (struct objfile *objfile)
2508 {
2509 char *debug_file;
2510 unsigned long crc32;
2511
2512 /* Does the updated objfile's debug info live in a
2513 separate file? */
2514 debug_file = find_separate_debug_file (objfile);
2515
2516 if (objfile->separate_debug_objfile)
2517 {
2518 /* There are two cases where we need to get rid of
2519 the old separated debug info objfile:
2520 - if the new primary objfile doesn't have
2521 separated debug info, or
2522 - if the new primary objfile has separate debug
2523 info, but it's under a different filename.
2524
2525 If the old and new objfiles both have separate
2526 debug info, under the same filename, then we're
2527 okay --- if the separated file's contents have
2528 changed, we will have caught that when we
2529 visited it in this function's outermost
2530 loop. */
2531 if (! debug_file
2532 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2533 free_objfile (objfile->separate_debug_objfile);
2534 }
2535
2536 /* If the new objfile has separate debug info, and we
2537 haven't loaded it already, do so now. */
2538 if (debug_file
2539 && ! objfile->separate_debug_objfile)
2540 {
2541 /* Use the same section offset table as objfile itself.
2542 Preserve the flags from objfile that make sense. */
2543 objfile->separate_debug_objfile
2544 = (symbol_file_add_with_addrs_or_offsets
2545 (symfile_bfd_open (debug_file),
2546 info_verbose, /* from_tty: Don't override the default. */
2547 0, /* No addr table. */
2548 objfile->section_offsets, objfile->num_sections,
2549 0, /* Not mainline. See comments about this above. */
2550 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2551 | OBJF_USERLOADED)));
2552 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2553 = objfile;
2554 }
2555 if (debug_file)
2556 xfree (debug_file);
2557 }
2558
2559
2560 \f
2561
2562
2563 typedef struct
2564 {
2565 char *ext;
2566 enum language lang;
2567 }
2568 filename_language;
2569
2570 static filename_language *filename_language_table;
2571 static int fl_table_size, fl_table_next;
2572
2573 static void
2574 add_filename_language (char *ext, enum language lang)
2575 {
2576 if (fl_table_next >= fl_table_size)
2577 {
2578 fl_table_size += 10;
2579 filename_language_table =
2580 xrealloc (filename_language_table,
2581 fl_table_size * sizeof (*filename_language_table));
2582 }
2583
2584 filename_language_table[fl_table_next].ext = xstrdup (ext);
2585 filename_language_table[fl_table_next].lang = lang;
2586 fl_table_next++;
2587 }
2588
2589 static char *ext_args;
2590 static void
2591 show_ext_args (struct ui_file *file, int from_tty,
2592 struct cmd_list_element *c, const char *value)
2593 {
2594 fprintf_filtered (file, _("\
2595 Mapping between filename extension and source language is \"%s\".\n"),
2596 value);
2597 }
2598
2599 static void
2600 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2601 {
2602 int i;
2603 char *cp = ext_args;
2604 enum language lang;
2605
2606 /* First arg is filename extension, starting with '.' */
2607 if (*cp != '.')
2608 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2609
2610 /* Find end of first arg. */
2611 while (*cp && !isspace (*cp))
2612 cp++;
2613
2614 if (*cp == '\0')
2615 error (_("'%s': two arguments required -- filename extension and language"),
2616 ext_args);
2617
2618 /* Null-terminate first arg */
2619 *cp++ = '\0';
2620
2621 /* Find beginning of second arg, which should be a source language. */
2622 while (*cp && isspace (*cp))
2623 cp++;
2624
2625 if (*cp == '\0')
2626 error (_("'%s': two arguments required -- filename extension and language"),
2627 ext_args);
2628
2629 /* Lookup the language from among those we know. */
2630 lang = language_enum (cp);
2631
2632 /* Now lookup the filename extension: do we already know it? */
2633 for (i = 0; i < fl_table_next; i++)
2634 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2635 break;
2636
2637 if (i >= fl_table_next)
2638 {
2639 /* new file extension */
2640 add_filename_language (ext_args, lang);
2641 }
2642 else
2643 {
2644 /* redefining a previously known filename extension */
2645
2646 /* if (from_tty) */
2647 /* query ("Really make files of type %s '%s'?", */
2648 /* ext_args, language_str (lang)); */
2649
2650 xfree (filename_language_table[i].ext);
2651 filename_language_table[i].ext = xstrdup (ext_args);
2652 filename_language_table[i].lang = lang;
2653 }
2654 }
2655
2656 static void
2657 info_ext_lang_command (char *args, int from_tty)
2658 {
2659 int i;
2660
2661 printf_filtered (_("Filename extensions and the languages they represent:"));
2662 printf_filtered ("\n\n");
2663 for (i = 0; i < fl_table_next; i++)
2664 printf_filtered ("\t%s\t- %s\n",
2665 filename_language_table[i].ext,
2666 language_str (filename_language_table[i].lang));
2667 }
2668
2669 static void
2670 init_filename_language_table (void)
2671 {
2672 if (fl_table_size == 0) /* protect against repetition */
2673 {
2674 fl_table_size = 20;
2675 fl_table_next = 0;
2676 filename_language_table =
2677 xmalloc (fl_table_size * sizeof (*filename_language_table));
2678 add_filename_language (".c", language_c);
2679 add_filename_language (".C", language_cplus);
2680 add_filename_language (".cc", language_cplus);
2681 add_filename_language (".cp", language_cplus);
2682 add_filename_language (".cpp", language_cplus);
2683 add_filename_language (".cxx", language_cplus);
2684 add_filename_language (".c++", language_cplus);
2685 add_filename_language (".java", language_java);
2686 add_filename_language (".class", language_java);
2687 add_filename_language (".m", language_objc);
2688 add_filename_language (".f", language_fortran);
2689 add_filename_language (".F", language_fortran);
2690 add_filename_language (".s", language_asm);
2691 add_filename_language (".S", language_asm);
2692 add_filename_language (".pas", language_pascal);
2693 add_filename_language (".p", language_pascal);
2694 add_filename_language (".pp", language_pascal);
2695 add_filename_language (".adb", language_ada);
2696 add_filename_language (".ads", language_ada);
2697 add_filename_language (".a", language_ada);
2698 add_filename_language (".ada", language_ada);
2699 }
2700 }
2701
2702 enum language
2703 deduce_language_from_filename (char *filename)
2704 {
2705 int i;
2706 char *cp;
2707
2708 if (filename != NULL)
2709 if ((cp = strrchr (filename, '.')) != NULL)
2710 for (i = 0; i < fl_table_next; i++)
2711 if (strcmp (cp, filename_language_table[i].ext) == 0)
2712 return filename_language_table[i].lang;
2713
2714 return language_unknown;
2715 }
2716 \f
2717 /* allocate_symtab:
2718
2719 Allocate and partly initialize a new symbol table. Return a pointer
2720 to it. error() if no space.
2721
2722 Caller must set these fields:
2723 LINETABLE(symtab)
2724 symtab->blockvector
2725 symtab->dirname
2726 symtab->free_code
2727 symtab->free_ptr
2728 possibly free_named_symtabs (symtab->filename);
2729 */
2730
2731 struct symtab *
2732 allocate_symtab (char *filename, struct objfile *objfile)
2733 {
2734 struct symtab *symtab;
2735
2736 symtab = (struct symtab *)
2737 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2738 memset (symtab, 0, sizeof (*symtab));
2739 symtab->filename = obsavestring (filename, strlen (filename),
2740 &objfile->objfile_obstack);
2741 symtab->fullname = NULL;
2742 symtab->language = deduce_language_from_filename (filename);
2743 symtab->debugformat = obsavestring ("unknown", 7,
2744 &objfile->objfile_obstack);
2745
2746 /* Hook it to the objfile it comes from */
2747
2748 symtab->objfile = objfile;
2749 symtab->next = objfile->symtabs;
2750 objfile->symtabs = symtab;
2751
2752 return (symtab);
2753 }
2754
2755 struct partial_symtab *
2756 allocate_psymtab (char *filename, struct objfile *objfile)
2757 {
2758 struct partial_symtab *psymtab;
2759
2760 if (objfile->free_psymtabs)
2761 {
2762 psymtab = objfile->free_psymtabs;
2763 objfile->free_psymtabs = psymtab->next;
2764 }
2765 else
2766 psymtab = (struct partial_symtab *)
2767 obstack_alloc (&objfile->objfile_obstack,
2768 sizeof (struct partial_symtab));
2769
2770 memset (psymtab, 0, sizeof (struct partial_symtab));
2771 psymtab->filename = obsavestring (filename, strlen (filename),
2772 &objfile->objfile_obstack);
2773 psymtab->symtab = NULL;
2774
2775 /* Prepend it to the psymtab list for the objfile it belongs to.
2776 Psymtabs are searched in most recent inserted -> least recent
2777 inserted order. */
2778
2779 psymtab->objfile = objfile;
2780 psymtab->next = objfile->psymtabs;
2781 objfile->psymtabs = psymtab;
2782 #if 0
2783 {
2784 struct partial_symtab **prev_pst;
2785 psymtab->objfile = objfile;
2786 psymtab->next = NULL;
2787 prev_pst = &(objfile->psymtabs);
2788 while ((*prev_pst) != NULL)
2789 prev_pst = &((*prev_pst)->next);
2790 (*prev_pst) = psymtab;
2791 }
2792 #endif
2793
2794 return (psymtab);
2795 }
2796
2797 void
2798 discard_psymtab (struct partial_symtab *pst)
2799 {
2800 struct partial_symtab **prev_pst;
2801
2802 /* From dbxread.c:
2803 Empty psymtabs happen as a result of header files which don't
2804 have any symbols in them. There can be a lot of them. But this
2805 check is wrong, in that a psymtab with N_SLINE entries but
2806 nothing else is not empty, but we don't realize that. Fixing
2807 that without slowing things down might be tricky. */
2808
2809 /* First, snip it out of the psymtab chain */
2810
2811 prev_pst = &(pst->objfile->psymtabs);
2812 while ((*prev_pst) != pst)
2813 prev_pst = &((*prev_pst)->next);
2814 (*prev_pst) = pst->next;
2815
2816 /* Next, put it on a free list for recycling */
2817
2818 pst->next = pst->objfile->free_psymtabs;
2819 pst->objfile->free_psymtabs = pst;
2820 }
2821 \f
2822
2823 /* Reset all data structures in gdb which may contain references to symbol
2824 table data. */
2825
2826 void
2827 clear_symtab_users (void)
2828 {
2829 /* Someday, we should do better than this, by only blowing away
2830 the things that really need to be blown. */
2831
2832 /* Clear the "current" symtab first, because it is no longer valid.
2833 breakpoint_re_set may try to access the current symtab. */
2834 clear_current_source_symtab_and_line ();
2835
2836 clear_displays ();
2837 breakpoint_re_set ();
2838 set_default_breakpoint (0, 0, 0, 0);
2839 clear_pc_function_cache ();
2840 observer_notify_new_objfile (NULL);
2841
2842 /* Clear globals which might have pointed into a removed objfile.
2843 FIXME: It's not clear which of these are supposed to persist
2844 between expressions and which ought to be reset each time. */
2845 expression_context_block = NULL;
2846 innermost_block = NULL;
2847
2848 /* Varobj may refer to old symbols, perform a cleanup. */
2849 varobj_invalidate ();
2850
2851 }
2852
2853 static void
2854 clear_symtab_users_cleanup (void *ignore)
2855 {
2856 clear_symtab_users ();
2857 }
2858
2859 /* clear_symtab_users_once:
2860
2861 This function is run after symbol reading, or from a cleanup.
2862 If an old symbol table was obsoleted, the old symbol table
2863 has been blown away, but the other GDB data structures that may
2864 reference it have not yet been cleared or re-directed. (The old
2865 symtab was zapped, and the cleanup queued, in free_named_symtab()
2866 below.)
2867
2868 This function can be queued N times as a cleanup, or called
2869 directly; it will do all the work the first time, and then will be a
2870 no-op until the next time it is queued. This works by bumping a
2871 counter at queueing time. Much later when the cleanup is run, or at
2872 the end of symbol processing (in case the cleanup is discarded), if
2873 the queued count is greater than the "done-count", we do the work
2874 and set the done-count to the queued count. If the queued count is
2875 less than or equal to the done-count, we just ignore the call. This
2876 is needed because reading a single .o file will often replace many
2877 symtabs (one per .h file, for example), and we don't want to reset
2878 the breakpoints N times in the user's face.
2879
2880 The reason we both queue a cleanup, and call it directly after symbol
2881 reading, is because the cleanup protects us in case of errors, but is
2882 discarded if symbol reading is successful. */
2883
2884 #if 0
2885 /* FIXME: As free_named_symtabs is currently a big noop this function
2886 is no longer needed. */
2887 static void clear_symtab_users_once (void);
2888
2889 static int clear_symtab_users_queued;
2890 static int clear_symtab_users_done;
2891
2892 static void
2893 clear_symtab_users_once (void)
2894 {
2895 /* Enforce once-per-`do_cleanups'-semantics */
2896 if (clear_symtab_users_queued <= clear_symtab_users_done)
2897 return;
2898 clear_symtab_users_done = clear_symtab_users_queued;
2899
2900 clear_symtab_users ();
2901 }
2902 #endif
2903
2904 /* Delete the specified psymtab, and any others that reference it. */
2905
2906 static void
2907 cashier_psymtab (struct partial_symtab *pst)
2908 {
2909 struct partial_symtab *ps, *pprev = NULL;
2910 int i;
2911
2912 /* Find its previous psymtab in the chain */
2913 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2914 {
2915 if (ps == pst)
2916 break;
2917 pprev = ps;
2918 }
2919
2920 if (ps)
2921 {
2922 /* Unhook it from the chain. */
2923 if (ps == pst->objfile->psymtabs)
2924 pst->objfile->psymtabs = ps->next;
2925 else
2926 pprev->next = ps->next;
2927
2928 /* FIXME, we can't conveniently deallocate the entries in the
2929 partial_symbol lists (global_psymbols/static_psymbols) that
2930 this psymtab points to. These just take up space until all
2931 the psymtabs are reclaimed. Ditto the dependencies list and
2932 filename, which are all in the objfile_obstack. */
2933
2934 /* We need to cashier any psymtab that has this one as a dependency... */
2935 again:
2936 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2937 {
2938 for (i = 0; i < ps->number_of_dependencies; i++)
2939 {
2940 if (ps->dependencies[i] == pst)
2941 {
2942 cashier_psymtab (ps);
2943 goto again; /* Must restart, chain has been munged. */
2944 }
2945 }
2946 }
2947 }
2948 }
2949
2950 /* If a symtab or psymtab for filename NAME is found, free it along
2951 with any dependent breakpoints, displays, etc.
2952 Used when loading new versions of object modules with the "add-file"
2953 command. This is only called on the top-level symtab or psymtab's name;
2954 it is not called for subsidiary files such as .h files.
2955
2956 Return value is 1 if we blew away the environment, 0 if not.
2957 FIXME. The return value appears to never be used.
2958
2959 FIXME. I think this is not the best way to do this. We should
2960 work on being gentler to the environment while still cleaning up
2961 all stray pointers into the freed symtab. */
2962
2963 int
2964 free_named_symtabs (char *name)
2965 {
2966 #if 0
2967 /* FIXME: With the new method of each objfile having it's own
2968 psymtab list, this function needs serious rethinking. In particular,
2969 why was it ever necessary to toss psymtabs with specific compilation
2970 unit filenames, as opposed to all psymtabs from a particular symbol
2971 file? -- fnf
2972 Well, the answer is that some systems permit reloading of particular
2973 compilation units. We want to blow away any old info about these
2974 compilation units, regardless of which objfiles they arrived in. --gnu. */
2975
2976 struct symtab *s;
2977 struct symtab *prev;
2978 struct partial_symtab *ps;
2979 struct blockvector *bv;
2980 int blewit = 0;
2981
2982 /* We only wack things if the symbol-reload switch is set. */
2983 if (!symbol_reloading)
2984 return 0;
2985
2986 /* Some symbol formats have trouble providing file names... */
2987 if (name == 0 || *name == '\0')
2988 return 0;
2989
2990 /* Look for a psymtab with the specified name. */
2991
2992 again2:
2993 for (ps = partial_symtab_list; ps; ps = ps->next)
2994 {
2995 if (strcmp (name, ps->filename) == 0)
2996 {
2997 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2998 goto again2; /* Must restart, chain has been munged */
2999 }
3000 }
3001
3002 /* Look for a symtab with the specified name. */
3003
3004 for (s = symtab_list; s; s = s->next)
3005 {
3006 if (strcmp (name, s->filename) == 0)
3007 break;
3008 prev = s;
3009 }
3010
3011 if (s)
3012 {
3013 if (s == symtab_list)
3014 symtab_list = s->next;
3015 else
3016 prev->next = s->next;
3017
3018 /* For now, queue a delete for all breakpoints, displays, etc., whether
3019 or not they depend on the symtab being freed. This should be
3020 changed so that only those data structures affected are deleted. */
3021
3022 /* But don't delete anything if the symtab is empty.
3023 This test is necessary due to a bug in "dbxread.c" that
3024 causes empty symtabs to be created for N_SO symbols that
3025 contain the pathname of the object file. (This problem
3026 has been fixed in GDB 3.9x). */
3027
3028 bv = BLOCKVECTOR (s);
3029 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3031 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3032 {
3033 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3034 name);
3035 clear_symtab_users_queued++;
3036 make_cleanup (clear_symtab_users_once, 0);
3037 blewit = 1;
3038 }
3039 else
3040 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3041 name);
3042
3043 free_symtab (s);
3044 }
3045 else
3046 {
3047 /* It is still possible that some breakpoints will be affected
3048 even though no symtab was found, since the file might have
3049 been compiled without debugging, and hence not be associated
3050 with a symtab. In order to handle this correctly, we would need
3051 to keep a list of text address ranges for undebuggable files.
3052 For now, we do nothing, since this is a fairly obscure case. */
3053 ;
3054 }
3055
3056 /* FIXME, what about the minimal symbol table? */
3057 return blewit;
3058 #else
3059 return (0);
3060 #endif
3061 }
3062 \f
3063 /* Allocate and partially fill a partial symtab. It will be
3064 completely filled at the end of the symbol list.
3065
3066 FILENAME is the name of the symbol-file we are reading from. */
3067
3068 struct partial_symtab *
3069 start_psymtab_common (struct objfile *objfile,
3070 struct section_offsets *section_offsets, char *filename,
3071 CORE_ADDR textlow, struct partial_symbol **global_syms,
3072 struct partial_symbol **static_syms)
3073 {
3074 struct partial_symtab *psymtab;
3075
3076 psymtab = allocate_psymtab (filename, objfile);
3077 psymtab->section_offsets = section_offsets;
3078 psymtab->textlow = textlow;
3079 psymtab->texthigh = psymtab->textlow; /* default */
3080 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3081 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3082 return (psymtab);
3083 }
3084 \f
3085 /* Add a symbol with a long value to a psymtab.
3086 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3087 Return the partial symbol that has been added. */
3088
3089 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3090 symbol is so that callers can get access to the symbol's demangled
3091 name, which they don't have any cheap way to determine otherwise.
3092 (Currenly, dwarf2read.c is the only file who uses that information,
3093 though it's possible that other readers might in the future.)
3094 Elena wasn't thrilled about that, and I don't blame her, but we
3095 couldn't come up with a better way to get that information. If
3096 it's needed in other situations, we could consider breaking up
3097 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3098 cache. */
3099
3100 const struct partial_symbol *
3101 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3102 enum address_class class,
3103 struct psymbol_allocation_list *list, long val, /* Value as a long */
3104 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3105 enum language language, struct objfile *objfile)
3106 {
3107 struct partial_symbol *psym;
3108 char *buf = alloca (namelength + 1);
3109 /* psymbol is static so that there will be no uninitialized gaps in the
3110 structure which might contain random data, causing cache misses in
3111 bcache. */
3112 static struct partial_symbol psymbol;
3113
3114 /* Create local copy of the partial symbol */
3115 memcpy (buf, name, namelength);
3116 buf[namelength] = '\0';
3117 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3118 if (val != 0)
3119 {
3120 SYMBOL_VALUE (&psymbol) = val;
3121 }
3122 else
3123 {
3124 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3125 }
3126 SYMBOL_SECTION (&psymbol) = 0;
3127 SYMBOL_LANGUAGE (&psymbol) = language;
3128 PSYMBOL_DOMAIN (&psymbol) = domain;
3129 PSYMBOL_CLASS (&psymbol) = class;
3130
3131 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3132
3133 /* Stash the partial symbol away in the cache */
3134 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3135 objfile->psymbol_cache);
3136
3137 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3138 if (list->next >= list->list + list->size)
3139 {
3140 extend_psymbol_list (list, objfile);
3141 }
3142 *list->next++ = psym;
3143 OBJSTAT (objfile, n_psyms++);
3144
3145 return psym;
3146 }
3147
3148 /* Initialize storage for partial symbols. */
3149
3150 void
3151 init_psymbol_list (struct objfile *objfile, int total_symbols)
3152 {
3153 /* Free any previously allocated psymbol lists. */
3154
3155 if (objfile->global_psymbols.list)
3156 {
3157 xfree (objfile->global_psymbols.list);
3158 }
3159 if (objfile->static_psymbols.list)
3160 {
3161 xfree (objfile->static_psymbols.list);
3162 }
3163
3164 /* Current best guess is that approximately a twentieth
3165 of the total symbols (in a debugging file) are global or static
3166 oriented symbols */
3167
3168 objfile->global_psymbols.size = total_symbols / 10;
3169 objfile->static_psymbols.size = total_symbols / 10;
3170
3171 if (objfile->global_psymbols.size > 0)
3172 {
3173 objfile->global_psymbols.next =
3174 objfile->global_psymbols.list = (struct partial_symbol **)
3175 xmalloc ((objfile->global_psymbols.size
3176 * sizeof (struct partial_symbol *)));
3177 }
3178 if (objfile->static_psymbols.size > 0)
3179 {
3180 objfile->static_psymbols.next =
3181 objfile->static_psymbols.list = (struct partial_symbol **)
3182 xmalloc ((objfile->static_psymbols.size
3183 * sizeof (struct partial_symbol *)));
3184 }
3185 }
3186
3187 /* OVERLAYS:
3188 The following code implements an abstraction for debugging overlay sections.
3189
3190 The target model is as follows:
3191 1) The gnu linker will permit multiple sections to be mapped into the
3192 same VMA, each with its own unique LMA (or load address).
3193 2) It is assumed that some runtime mechanism exists for mapping the
3194 sections, one by one, from the load address into the VMA address.
3195 3) This code provides a mechanism for gdb to keep track of which
3196 sections should be considered to be mapped from the VMA to the LMA.
3197 This information is used for symbol lookup, and memory read/write.
3198 For instance, if a section has been mapped then its contents
3199 should be read from the VMA, otherwise from the LMA.
3200
3201 Two levels of debugger support for overlays are available. One is
3202 "manual", in which the debugger relies on the user to tell it which
3203 overlays are currently mapped. This level of support is
3204 implemented entirely in the core debugger, and the information about
3205 whether a section is mapped is kept in the objfile->obj_section table.
3206
3207 The second level of support is "automatic", and is only available if
3208 the target-specific code provides functionality to read the target's
3209 overlay mapping table, and translate its contents for the debugger
3210 (by updating the mapped state information in the obj_section tables).
3211
3212 The interface is as follows:
3213 User commands:
3214 overlay map <name> -- tell gdb to consider this section mapped
3215 overlay unmap <name> -- tell gdb to consider this section unmapped
3216 overlay list -- list the sections that GDB thinks are mapped
3217 overlay read-target -- get the target's state of what's mapped
3218 overlay off/manual/auto -- set overlay debugging state
3219 Functional interface:
3220 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3221 section, return that section.
3222 find_pc_overlay(pc): find any overlay section that contains
3223 the pc, either in its VMA or its LMA
3224 overlay_is_mapped(sect): true if overlay is marked as mapped
3225 section_is_overlay(sect): true if section's VMA != LMA
3226 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3227 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3228 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3229 overlay_mapped_address(...): map an address from section's LMA to VMA
3230 overlay_unmapped_address(...): map an address from section's VMA to LMA
3231 symbol_overlayed_address(...): Return a "current" address for symbol:
3232 either in VMA or LMA depending on whether
3233 the symbol's section is currently mapped
3234 */
3235
3236 /* Overlay debugging state: */
3237
3238 enum overlay_debugging_state overlay_debugging = ovly_off;
3239 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3240
3241 /* Function: section_is_overlay (SECTION)
3242 Returns true if SECTION has VMA not equal to LMA, ie.
3243 SECTION is loaded at an address different from where it will "run". */
3244
3245 int
3246 section_is_overlay (asection *section)
3247 {
3248 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3249
3250 if (overlay_debugging)
3251 if (section && section->lma != 0 &&
3252 section->vma != section->lma)
3253 return 1;
3254
3255 return 0;
3256 }
3257
3258 /* Function: overlay_invalidate_all (void)
3259 Invalidate the mapped state of all overlay sections (mark it as stale). */
3260
3261 static void
3262 overlay_invalidate_all (void)
3263 {
3264 struct objfile *objfile;
3265 struct obj_section *sect;
3266
3267 ALL_OBJSECTIONS (objfile, sect)
3268 if (section_is_overlay (sect->the_bfd_section))
3269 sect->ovly_mapped = -1;
3270 }
3271
3272 /* Function: overlay_is_mapped (SECTION)
3273 Returns true if section is an overlay, and is currently mapped.
3274 Private: public access is thru function section_is_mapped.
3275
3276 Access to the ovly_mapped flag is restricted to this function, so
3277 that we can do automatic update. If the global flag
3278 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3279 overlay_invalidate_all. If the mapped state of the particular
3280 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3281
3282 static int
3283 overlay_is_mapped (struct obj_section *osect)
3284 {
3285 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3286 return 0;
3287
3288 switch (overlay_debugging)
3289 {
3290 default:
3291 case ovly_off:
3292 return 0; /* overlay debugging off */
3293 case ovly_auto: /* overlay debugging automatic */
3294 /* Unles there is a gdbarch_overlay_update function,
3295 there's really nothing useful to do here (can't really go auto) */
3296 if (gdbarch_overlay_update_p (current_gdbarch))
3297 {
3298 if (overlay_cache_invalid)
3299 {
3300 overlay_invalidate_all ();
3301 overlay_cache_invalid = 0;
3302 }
3303 if (osect->ovly_mapped == -1)
3304 gdbarch_overlay_update (current_gdbarch, osect);
3305 }
3306 /* fall thru to manual case */
3307 case ovly_on: /* overlay debugging manual */
3308 return osect->ovly_mapped == 1;
3309 }
3310 }
3311
3312 /* Function: section_is_mapped
3313 Returns true if section is an overlay, and is currently mapped. */
3314
3315 int
3316 section_is_mapped (asection *section)
3317 {
3318 struct objfile *objfile;
3319 struct obj_section *osect;
3320
3321 if (overlay_debugging)
3322 if (section && section_is_overlay (section))
3323 ALL_OBJSECTIONS (objfile, osect)
3324 if (osect->the_bfd_section == section)
3325 return overlay_is_mapped (osect);
3326
3327 return 0;
3328 }
3329
3330 /* Function: pc_in_unmapped_range
3331 If PC falls into the lma range of SECTION, return true, else false. */
3332
3333 CORE_ADDR
3334 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3335 {
3336 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3337
3338 int size;
3339
3340 if (overlay_debugging)
3341 if (section && section_is_overlay (section))
3342 {
3343 size = bfd_get_section_size (section);
3344 if (section->lma <= pc && pc < section->lma + size)
3345 return 1;
3346 }
3347 return 0;
3348 }
3349
3350 /* Function: pc_in_mapped_range
3351 If PC falls into the vma range of SECTION, return true, else false. */
3352
3353 CORE_ADDR
3354 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3355 {
3356 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3357
3358 int size;
3359
3360 if (overlay_debugging)
3361 if (section && section_is_overlay (section))
3362 {
3363 size = bfd_get_section_size (section);
3364 if (section->vma <= pc && pc < section->vma + size)
3365 return 1;
3366 }
3367 return 0;
3368 }
3369
3370
3371 /* Return true if the mapped ranges of sections A and B overlap, false
3372 otherwise. */
3373 static int
3374 sections_overlap (asection *a, asection *b)
3375 {
3376 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3377
3378 CORE_ADDR a_start = a->vma;
3379 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3380 CORE_ADDR b_start = b->vma;
3381 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3382
3383 return (a_start < b_end && b_start < a_end);
3384 }
3385
3386 /* Function: overlay_unmapped_address (PC, SECTION)
3387 Returns the address corresponding to PC in the unmapped (load) range.
3388 May be the same as PC. */
3389
3390 CORE_ADDR
3391 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3392 {
3393 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3394
3395 if (overlay_debugging)
3396 if (section && section_is_overlay (section) &&
3397 pc_in_mapped_range (pc, section))
3398 return pc + section->lma - section->vma;
3399
3400 return pc;
3401 }
3402
3403 /* Function: overlay_mapped_address (PC, SECTION)
3404 Returns the address corresponding to PC in the mapped (runtime) range.
3405 May be the same as PC. */
3406
3407 CORE_ADDR
3408 overlay_mapped_address (CORE_ADDR pc, asection *section)
3409 {
3410 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3411
3412 if (overlay_debugging)
3413 if (section && section_is_overlay (section) &&
3414 pc_in_unmapped_range (pc, section))
3415 return pc + section->vma - section->lma;
3416
3417 return pc;
3418 }
3419
3420
3421 /* Function: symbol_overlayed_address
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
3425 CORE_ADDR
3426 symbol_overlayed_address (CORE_ADDR address, asection *section)
3427 {
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446 }
3447
3448 /* Function: find_pc_overlay (PC)
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
3454 asection *
3455 find_pc_overlay (CORE_ADDR pc)
3456 {
3457 struct objfile *objfile;
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect->the_bfd_section))
3463 {
3464 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3465 {
3466 if (overlay_is_mapped (osect))
3467 return osect->the_bfd_section;
3468 else
3469 best_match = osect;
3470 }
3471 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3472 best_match = osect;
3473 }
3474 return best_match ? best_match->the_bfd_section : NULL;
3475 }
3476
3477 /* Function: find_pc_mapped_section (PC)
3478 If PC falls into the VMA address range of an overlay section that is
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
3481 asection *
3482 find_pc_mapped_section (CORE_ADDR pc)
3483 {
3484 struct objfile *objfile;
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3490 overlay_is_mapped (osect))
3491 return osect->the_bfd_section;
3492
3493 return NULL;
3494 }
3495
3496 /* Function: list_overlays_command
3497 Print a list of mapped sections and their PC ranges */
3498
3499 void
3500 list_overlays_command (char *args, int from_tty)
3501 {
3502 int nmapped = 0;
3503 struct objfile *objfile;
3504 struct obj_section *osect;
3505
3506 if (overlay_debugging)
3507 ALL_OBJSECTIONS (objfile, osect)
3508 if (overlay_is_mapped (osect))
3509 {
3510 const char *name;
3511 bfd_vma lma, vma;
3512 int size;
3513
3514 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3516 size = bfd_get_section_size (osect->the_bfd_section);
3517 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518
3519 printf_filtered ("Section %s, loaded at ", name);
3520 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3521 puts_filtered (" - ");
3522 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3523 printf_filtered (", mapped at ");
3524 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3525 puts_filtered (" - ");
3526 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3527 puts_filtered ("\n");
3528
3529 nmapped++;
3530 }
3531 if (nmapped == 0)
3532 printf_filtered (_("No sections are mapped.\n"));
3533 }
3534
3535 /* Function: map_overlay_command
3536 Mark the named section as mapped (ie. residing at its VMA address). */
3537
3538 void
3539 map_overlay_command (char *args, int from_tty)
3540 {
3541 struct objfile *objfile, *objfile2;
3542 struct obj_section *sec, *sec2;
3543 asection *bfdsec;
3544
3545 if (!overlay_debugging)
3546 error (_("\
3547 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3548 the 'overlay manual' command."));
3549
3550 if (args == 0 || *args == 0)
3551 error (_("Argument required: name of an overlay section"));
3552
3553 /* First, find a section matching the user supplied argument */
3554 ALL_OBJSECTIONS (objfile, sec)
3555 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3556 {
3557 /* Now, check to see if the section is an overlay. */
3558 bfdsec = sec->the_bfd_section;
3559 if (!section_is_overlay (bfdsec))
3560 continue; /* not an overlay section */
3561
3562 /* Mark the overlay as "mapped" */
3563 sec->ovly_mapped = 1;
3564
3565 /* Next, make a pass and unmap any sections that are
3566 overlapped by this new section: */
3567 ALL_OBJSECTIONS (objfile2, sec2)
3568 if (sec2->ovly_mapped
3569 && sec != sec2
3570 && sec->the_bfd_section != sec2->the_bfd_section
3571 && sections_overlap (sec->the_bfd_section,
3572 sec2->the_bfd_section))
3573 {
3574 if (info_verbose)
3575 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3576 bfd_section_name (objfile->obfd,
3577 sec2->the_bfd_section));
3578 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3579 }
3580 return;
3581 }
3582 error (_("No overlay section called %s"), args);
3583 }
3584
3585 /* Function: unmap_overlay_command
3586 Mark the overlay section as unmapped
3587 (ie. resident in its LMA address range, rather than the VMA range). */
3588
3589 void
3590 unmap_overlay_command (char *args, int from_tty)
3591 {
3592 struct objfile *objfile;
3593 struct obj_section *sec;
3594
3595 if (!overlay_debugging)
3596 error (_("\
3597 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3598 the 'overlay manual' command."));
3599
3600 if (args == 0 || *args == 0)
3601 error (_("Argument required: name of an overlay section"));
3602
3603 /* First, find a section matching the user supplied argument */
3604 ALL_OBJSECTIONS (objfile, sec)
3605 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3606 {
3607 if (!sec->ovly_mapped)
3608 error (_("Section %s is not mapped"), args);
3609 sec->ovly_mapped = 0;
3610 return;
3611 }
3612 error (_("No overlay section called %s"), args);
3613 }
3614
3615 /* Function: overlay_auto_command
3616 A utility command to turn on overlay debugging.
3617 Possibly this should be done via a set/show command. */
3618
3619 static void
3620 overlay_auto_command (char *args, int from_tty)
3621 {
3622 overlay_debugging = ovly_auto;
3623 enable_overlay_breakpoints ();
3624 if (info_verbose)
3625 printf_unfiltered (_("Automatic overlay debugging enabled."));
3626 }
3627
3628 /* Function: overlay_manual_command
3629 A utility command to turn on overlay debugging.
3630 Possibly this should be done via a set/show command. */
3631
3632 static void
3633 overlay_manual_command (char *args, int from_tty)
3634 {
3635 overlay_debugging = ovly_on;
3636 disable_overlay_breakpoints ();
3637 if (info_verbose)
3638 printf_unfiltered (_("Overlay debugging enabled."));
3639 }
3640
3641 /* Function: overlay_off_command
3642 A utility command to turn on overlay debugging.
3643 Possibly this should be done via a set/show command. */
3644
3645 static void
3646 overlay_off_command (char *args, int from_tty)
3647 {
3648 overlay_debugging = ovly_off;
3649 disable_overlay_breakpoints ();
3650 if (info_verbose)
3651 printf_unfiltered (_("Overlay debugging disabled."));
3652 }
3653
3654 static void
3655 overlay_load_command (char *args, int from_tty)
3656 {
3657 if (gdbarch_overlay_update_p (current_gdbarch))
3658 gdbarch_overlay_update (current_gdbarch, NULL);
3659 else
3660 error (_("This target does not know how to read its overlay state."));
3661 }
3662
3663 /* Function: overlay_command
3664 A place-holder for a mis-typed command */
3665
3666 /* Command list chain containing all defined "overlay" subcommands. */
3667 struct cmd_list_element *overlaylist;
3668
3669 static void
3670 overlay_command (char *args, int from_tty)
3671 {
3672 printf_unfiltered
3673 ("\"overlay\" must be followed by the name of an overlay command.\n");
3674 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3675 }
3676
3677
3678 /* Target Overlays for the "Simplest" overlay manager:
3679
3680 This is GDB's default target overlay layer. It works with the
3681 minimal overlay manager supplied as an example by Cygnus. The
3682 entry point is via a function pointer "gdbarch_overlay_update",
3683 so targets that use a different runtime overlay manager can
3684 substitute their own overlay_update function and take over the
3685 function pointer.
3686
3687 The overlay_update function pokes around in the target's data structures
3688 to see what overlays are mapped, and updates GDB's overlay mapping with
3689 this information.
3690
3691 In this simple implementation, the target data structures are as follows:
3692 unsigned _novlys; /# number of overlay sections #/
3693 unsigned _ovly_table[_novlys][4] = {
3694 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3695 {..., ..., ..., ...},
3696 }
3697 unsigned _novly_regions; /# number of overlay regions #/
3698 unsigned _ovly_region_table[_novly_regions][3] = {
3699 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3700 {..., ..., ...},
3701 }
3702 These functions will attempt to update GDB's mappedness state in the
3703 symbol section table, based on the target's mappedness state.
3704
3705 To do this, we keep a cached copy of the target's _ovly_table, and
3706 attempt to detect when the cached copy is invalidated. The main
3707 entry point is "simple_overlay_update(SECT), which looks up SECT in
3708 the cached table and re-reads only the entry for that section from
3709 the target (whenever possible).
3710 */
3711
3712 /* Cached, dynamically allocated copies of the target data structures: */
3713 static unsigned (*cache_ovly_table)[4] = 0;
3714 #if 0
3715 static unsigned (*cache_ovly_region_table)[3] = 0;
3716 #endif
3717 static unsigned cache_novlys = 0;
3718 #if 0
3719 static unsigned cache_novly_regions = 0;
3720 #endif
3721 static CORE_ADDR cache_ovly_table_base = 0;
3722 #if 0
3723 static CORE_ADDR cache_ovly_region_table_base = 0;
3724 #endif
3725 enum ovly_index
3726 {
3727 VMA, SIZE, LMA, MAPPED
3728 };
3729 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3730 / TARGET_CHAR_BIT)
3731
3732 /* Throw away the cached copy of _ovly_table */
3733 static void
3734 simple_free_overlay_table (void)
3735 {
3736 if (cache_ovly_table)
3737 xfree (cache_ovly_table);
3738 cache_novlys = 0;
3739 cache_ovly_table = NULL;
3740 cache_ovly_table_base = 0;
3741 }
3742
3743 #if 0
3744 /* Throw away the cached copy of _ovly_region_table */
3745 static void
3746 simple_free_overlay_region_table (void)
3747 {
3748 if (cache_ovly_region_table)
3749 xfree (cache_ovly_region_table);
3750 cache_novly_regions = 0;
3751 cache_ovly_region_table = NULL;
3752 cache_ovly_region_table_base = 0;
3753 }
3754 #endif
3755
3756 /* Read an array of ints from the target into a local buffer.
3757 Convert to host order. int LEN is number of ints */
3758 static void
3759 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3760 {
3761 /* FIXME (alloca): Not safe if array is very large. */
3762 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3763 int i;
3764
3765 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3766 for (i = 0; i < len; i++)
3767 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3768 TARGET_LONG_BYTES);
3769 }
3770
3771 /* Find and grab a copy of the target _ovly_table
3772 (and _novlys, which is needed for the table's size) */
3773 static int
3774 simple_read_overlay_table (void)
3775 {
3776 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3777
3778 simple_free_overlay_table ();
3779 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3780 if (! novlys_msym)
3781 {
3782 error (_("Error reading inferior's overlay table: "
3783 "couldn't find `_novlys' variable\n"
3784 "in inferior. Use `overlay manual' mode."));
3785 return 0;
3786 }
3787
3788 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3789 if (! ovly_table_msym)
3790 {
3791 error (_("Error reading inferior's overlay table: couldn't find "
3792 "`_ovly_table' array\n"
3793 "in inferior. Use `overlay manual' mode."));
3794 return 0;
3795 }
3796
3797 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3798 cache_ovly_table
3799 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3800 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3801 read_target_long_array (cache_ovly_table_base,
3802 (unsigned int *) cache_ovly_table,
3803 cache_novlys * 4);
3804
3805 return 1; /* SUCCESS */
3806 }
3807
3808 #if 0
3809 /* Find and grab a copy of the target _ovly_region_table
3810 (and _novly_regions, which is needed for the table's size) */
3811 static int
3812 simple_read_overlay_region_table (void)
3813 {
3814 struct minimal_symbol *msym;
3815
3816 simple_free_overlay_region_table ();
3817 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3818 if (msym != NULL)
3819 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3820 else
3821 return 0; /* failure */
3822 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3823 if (cache_ovly_region_table != NULL)
3824 {
3825 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3826 if (msym != NULL)
3827 {
3828 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3829 read_target_long_array (cache_ovly_region_table_base,
3830 (unsigned int *) cache_ovly_region_table,
3831 cache_novly_regions * 3);
3832 }
3833 else
3834 return 0; /* failure */
3835 }
3836 else
3837 return 0; /* failure */
3838 return 1; /* SUCCESS */
3839 }
3840 #endif
3841
3842 /* Function: simple_overlay_update_1
3843 A helper function for simple_overlay_update. Assuming a cached copy
3844 of _ovly_table exists, look through it to find an entry whose vma,
3845 lma and size match those of OSECT. Re-read the entry and make sure
3846 it still matches OSECT (else the table may no longer be valid).
3847 Set OSECT's mapped state to match the entry. Return: 1 for
3848 success, 0 for failure. */
3849
3850 static int
3851 simple_overlay_update_1 (struct obj_section *osect)
3852 {
3853 int i, size;
3854 bfd *obfd = osect->objfile->obfd;
3855 asection *bsect = osect->the_bfd_section;
3856
3857 size = bfd_get_section_size (osect->the_bfd_section);
3858 for (i = 0; i < cache_novlys; i++)
3859 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3860 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3861 /* && cache_ovly_table[i][SIZE] == size */ )
3862 {
3863 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3864 (unsigned int *) cache_ovly_table[i], 4);
3865 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3866 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3867 /* && cache_ovly_table[i][SIZE] == size */ )
3868 {
3869 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3870 return 1;
3871 }
3872 else /* Warning! Warning! Target's ovly table has changed! */
3873 return 0;
3874 }
3875 return 0;
3876 }
3877
3878 /* Function: simple_overlay_update
3879 If OSECT is NULL, then update all sections' mapped state
3880 (after re-reading the entire target _ovly_table).
3881 If OSECT is non-NULL, then try to find a matching entry in the
3882 cached ovly_table and update only OSECT's mapped state.
3883 If a cached entry can't be found or the cache isn't valid, then
3884 re-read the entire cache, and go ahead and update all sections. */
3885
3886 void
3887 simple_overlay_update (struct obj_section *osect)
3888 {
3889 struct objfile *objfile;
3890
3891 /* Were we given an osect to look up? NULL means do all of them. */
3892 if (osect)
3893 /* Have we got a cached copy of the target's overlay table? */
3894 if (cache_ovly_table != NULL)
3895 /* Does its cached location match what's currently in the symtab? */
3896 if (cache_ovly_table_base ==
3897 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3898 /* Then go ahead and try to look up this single section in the cache */
3899 if (simple_overlay_update_1 (osect))
3900 /* Found it! We're done. */
3901 return;
3902
3903 /* Cached table no good: need to read the entire table anew.
3904 Or else we want all the sections, in which case it's actually
3905 more efficient to read the whole table in one block anyway. */
3906
3907 if (! simple_read_overlay_table ())
3908 return;
3909
3910 /* Now may as well update all sections, even if only one was requested. */
3911 ALL_OBJSECTIONS (objfile, osect)
3912 if (section_is_overlay (osect->the_bfd_section))
3913 {
3914 int i, size;
3915 bfd *obfd = osect->objfile->obfd;
3916 asection *bsect = osect->the_bfd_section;
3917
3918 size = bfd_get_section_size (bsect);
3919 for (i = 0; i < cache_novlys; i++)
3920 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3921 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3922 /* && cache_ovly_table[i][SIZE] == size */ )
3923 { /* obj_section matches i'th entry in ovly_table */
3924 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3925 break; /* finished with inner for loop: break out */
3926 }
3927 }
3928 }
3929
3930 /* Set the output sections and output offsets for section SECTP in
3931 ABFD. The relocation code in BFD will read these offsets, so we
3932 need to be sure they're initialized. We map each section to itself,
3933 with no offset; this means that SECTP->vma will be honored. */
3934
3935 static void
3936 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3937 {
3938 sectp->output_section = sectp;
3939 sectp->output_offset = 0;
3940 }
3941
3942 /* Relocate the contents of a debug section SECTP in ABFD. The
3943 contents are stored in BUF if it is non-NULL, or returned in a
3944 malloc'd buffer otherwise.
3945
3946 For some platforms and debug info formats, shared libraries contain
3947 relocations against the debug sections (particularly for DWARF-2;
3948 one affected platform is PowerPC GNU/Linux, although it depends on
3949 the version of the linker in use). Also, ELF object files naturally
3950 have unresolved relocations for their debug sections. We need to apply
3951 the relocations in order to get the locations of symbols correct. */
3952
3953 bfd_byte *
3954 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3955 {
3956 /* We're only interested in debugging sections with relocation
3957 information. */
3958 if ((sectp->flags & SEC_RELOC) == 0)
3959 return NULL;
3960 if ((sectp->flags & SEC_DEBUGGING) == 0)
3961 return NULL;
3962
3963 /* We will handle section offsets properly elsewhere, so relocate as if
3964 all sections begin at 0. */
3965 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3966
3967 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3968 }
3969
3970 struct symfile_segment_data *
3971 get_symfile_segment_data (bfd *abfd)
3972 {
3973 struct sym_fns *sf = find_sym_fns (abfd);
3974
3975 if (sf == NULL)
3976 return NULL;
3977
3978 return sf->sym_segments (abfd);
3979 }
3980
3981 void
3982 free_symfile_segment_data (struct symfile_segment_data *data)
3983 {
3984 xfree (data->segment_bases);
3985 xfree (data->segment_sizes);
3986 xfree (data->segment_info);
3987 xfree (data);
3988 }
3989
3990
3991 /* Given:
3992 - DATA, containing segment addresses from the object file ABFD, and
3993 the mapping from ABFD's sections onto the segments that own them,
3994 and
3995 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3996 segment addresses reported by the target,
3997 store the appropriate offsets for each section in OFFSETS.
3998
3999 If there are fewer entries in SEGMENT_BASES than there are segments
4000 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4001
4002 If there are more, then verify that all the excess addresses are
4003 the same as the last legitimate one, and then ignore them. This
4004 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4005 only a single segment. */
4006 int
4007 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4008 struct section_offsets *offsets,
4009 int num_segment_bases,
4010 const CORE_ADDR *segment_bases)
4011 {
4012 int i;
4013 asection *sect;
4014
4015 /* It doesn't make sense to call this function unless you have some
4016 segment base addresses. */
4017 gdb_assert (segment_bases > 0);
4018
4019 /* If we do not have segment mappings for the object file, we
4020 can not relocate it by segments. */
4021 gdb_assert (data != NULL);
4022 gdb_assert (data->num_segments > 0);
4023
4024 /* Check any extra SEGMENT_BASES entries. */
4025 if (num_segment_bases > data->num_segments)
4026 for (i = data->num_segments; i < num_segment_bases; i++)
4027 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4028 return 0;
4029
4030 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4031 {
4032 int which = data->segment_info[i];
4033
4034 gdb_assert (0 <= which && which <= data->num_segments);
4035
4036 /* Don't bother computing offsets for sections that aren't
4037 loaded as part of any segment. */
4038 if (! which)
4039 continue;
4040
4041 /* Use the last SEGMENT_BASES entry as the address of any extra
4042 segments mentioned in DATA->segment_info. */
4043 if (which > num_segment_bases)
4044 which = num_segment_bases;
4045
4046 offsets->offsets[i] = (segment_bases[which - 1]
4047 - data->segment_bases[which - 1]);
4048 }
4049
4050 return 1;
4051 }
4052
4053 static void
4054 symfile_find_segment_sections (struct objfile *objfile)
4055 {
4056 bfd *abfd = objfile->obfd;
4057 int i;
4058 asection *sect;
4059 struct symfile_segment_data *data;
4060
4061 data = get_symfile_segment_data (objfile->obfd);
4062 if (data == NULL)
4063 return;
4064
4065 if (data->num_segments != 1 && data->num_segments != 2)
4066 {
4067 free_symfile_segment_data (data);
4068 return;
4069 }
4070
4071 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4072 {
4073 CORE_ADDR vma;
4074 int which = data->segment_info[i];
4075
4076 if (which == 1)
4077 {
4078 if (objfile->sect_index_text == -1)
4079 objfile->sect_index_text = sect->index;
4080
4081 if (objfile->sect_index_rodata == -1)
4082 objfile->sect_index_rodata = sect->index;
4083 }
4084 else if (which == 2)
4085 {
4086 if (objfile->sect_index_data == -1)
4087 objfile->sect_index_data = sect->index;
4088
4089 if (objfile->sect_index_bss == -1)
4090 objfile->sect_index_bss = sect->index;
4091 }
4092 }
4093
4094 free_symfile_segment_data (data);
4095 }
4096
4097 void
4098 _initialize_symfile (void)
4099 {
4100 struct cmd_list_element *c;
4101
4102 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4103 Load symbol table from executable file FILE.\n\
4104 The `file' command can also load symbol tables, as well as setting the file\n\
4105 to execute."), &cmdlist);
4106 set_cmd_completer (c, filename_completer);
4107
4108 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4109 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4110 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4111 ADDR is the starting address of the file's text.\n\
4112 The optional arguments are section-name section-address pairs and\n\
4113 should be specified if the data and bss segments are not contiguous\n\
4114 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4115 &cmdlist);
4116 set_cmd_completer (c, filename_completer);
4117
4118 c = add_cmd ("add-shared-symbol-files", class_files,
4119 add_shared_symbol_files_command, _("\
4120 Load the symbols from shared objects in the dynamic linker's link map."),
4121 &cmdlist);
4122 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4123 &cmdlist);
4124
4125 c = add_cmd ("load", class_files, load_command, _("\
4126 Dynamically load FILE into the running program, and record its symbols\n\
4127 for access from GDB.\n\
4128 A load OFFSET may also be given."), &cmdlist);
4129 set_cmd_completer (c, filename_completer);
4130
4131 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4132 &symbol_reloading, _("\
4133 Set dynamic symbol table reloading multiple times in one run."), _("\
4134 Show dynamic symbol table reloading multiple times in one run."), NULL,
4135 NULL,
4136 show_symbol_reloading,
4137 &setlist, &showlist);
4138
4139 add_prefix_cmd ("overlay", class_support, overlay_command,
4140 _("Commands for debugging overlays."), &overlaylist,
4141 "overlay ", 0, &cmdlist);
4142
4143 add_com_alias ("ovly", "overlay", class_alias, 1);
4144 add_com_alias ("ov", "overlay", class_alias, 1);
4145
4146 add_cmd ("map-overlay", class_support, map_overlay_command,
4147 _("Assert that an overlay section is mapped."), &overlaylist);
4148
4149 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4150 _("Assert that an overlay section is unmapped."), &overlaylist);
4151
4152 add_cmd ("list-overlays", class_support, list_overlays_command,
4153 _("List mappings of overlay sections."), &overlaylist);
4154
4155 add_cmd ("manual", class_support, overlay_manual_command,
4156 _("Enable overlay debugging."), &overlaylist);
4157 add_cmd ("off", class_support, overlay_off_command,
4158 _("Disable overlay debugging."), &overlaylist);
4159 add_cmd ("auto", class_support, overlay_auto_command,
4160 _("Enable automatic overlay debugging."), &overlaylist);
4161 add_cmd ("load-target", class_support, overlay_load_command,
4162 _("Read the overlay mapping state from the target."), &overlaylist);
4163
4164 /* Filename extension to source language lookup table: */
4165 init_filename_language_table ();
4166 add_setshow_string_noescape_cmd ("extension-language", class_files,
4167 &ext_args, _("\
4168 Set mapping between filename extension and source language."), _("\
4169 Show mapping between filename extension and source language."), _("\
4170 Usage: set extension-language .foo bar"),
4171 set_ext_lang_command,
4172 show_ext_args,
4173 &setlist, &showlist);
4174
4175 add_info ("extensions", info_ext_lang_command,
4176 _("All filename extensions associated with a source language."));
4177
4178 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4179 &debug_file_directory, _("\
4180 Set the directory where separate debug symbols are searched for."), _("\
4181 Show the directory where separate debug symbols are searched for."), _("\
4182 Separate debug symbols are first searched for in the same\n\
4183 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4184 and lastly at the path of the directory of the binary with\n\
4185 the global debug-file directory prepended."),
4186 NULL,
4187 show_debug_file_directory,
4188 &setlist, &showlist);
4189 }
This page took 0.181155 seconds and 3 git commands to generate.