2009-01-05 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include "gdb_string.h"
61 #include "gdb_stat.h"
62 #include <ctype.h>
63 #include <time.h>
64 #include <sys/time.h>
65
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct section_table *start,
372 const struct section_table *end)
373 {
374 struct section_addr_info *sap;
375 const struct section_table *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 MAINLINE is nonzero if this is the main symbol file, or zero if
745 it's an extra symbol file such as dynamically loaded code.
746
747 VERBO is nonzero if the caller has printed a verbose message about
748 the symbol reading (and complaints can be more terse about it). */
749
750 void
751 syms_from_objfile (struct objfile *objfile,
752 struct section_addr_info *addrs,
753 struct section_offsets *offsets,
754 int num_offsets,
755 int mainline,
756 int verbo)
757 {
758 struct section_addr_info *local_addr = NULL;
759 struct cleanup *old_chain;
760
761 gdb_assert (! (addrs && offsets));
762
763 init_entry_point_info (objfile);
764 objfile->sf = find_sym_fns (objfile->obfd);
765
766 if (objfile->sf == NULL)
767 return; /* No symbols. */
768
769 /* Make sure that partially constructed symbol tables will be cleaned up
770 if an error occurs during symbol reading. */
771 old_chain = make_cleanup_free_objfile (objfile);
772
773 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
774 list. We now establish the convention that an addr of zero means
775 no load address was specified. */
776 if (! addrs && ! offsets)
777 {
778 local_addr
779 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
780 make_cleanup (xfree, local_addr);
781 addrs = local_addr;
782 }
783
784 /* Now either addrs or offsets is non-zero. */
785
786 if (mainline)
787 {
788 /* We will modify the main symbol table, make sure that all its users
789 will be cleaned up if an error occurs during symbol reading. */
790 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791
792 /* Since no error yet, throw away the old symbol table. */
793
794 if (symfile_objfile != NULL)
795 {
796 free_objfile (symfile_objfile);
797 symfile_objfile = NULL;
798 }
799
800 /* Currently we keep symbols from the add-symbol-file command.
801 If the user wants to get rid of them, they should do "symbol-file"
802 without arguments first. Not sure this is the best behavior
803 (PR 2207). */
804
805 (*objfile->sf->sym_new_init) (objfile);
806 }
807
808 /* Convert addr into an offset rather than an absolute address.
809 We find the lowest address of a loaded segment in the objfile,
810 and assume that <addr> is where that got loaded.
811
812 We no longer warn if the lowest section is not a text segment (as
813 happens for the PA64 port. */
814 if (!mainline && addrs && addrs->other[0].name)
815 {
816 asection *lower_sect;
817 asection *sect;
818 CORE_ADDR lower_offset;
819 int i;
820
821 /* Find lowest loadable section to be used as starting point for
822 continguous sections. FIXME!! won't work without call to find
823 .text first, but this assumes text is lowest section. */
824 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
825 if (lower_sect == NULL)
826 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 &lower_sect);
828 if (lower_sect == NULL)
829 {
830 warning (_("no loadable sections found in added symbol-file %s"),
831 objfile->name);
832 lower_offset = 0;
833 }
834 else
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, mainline);
898
899 /* Discard cleanups as symbol reading was successful. */
900
901 discard_cleanups (old_chain);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (mainline)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, verbo);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 FROM_TTY says how verbose to be.
938
939 MAINLINE specifies whether this is the main symbol file, or whether
940 it's an extra symbol file such as dynamically loaded code.
941
942 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
943 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
944 non-zero.
945
946 Upon success, returns a pointer to the objfile that was added.
947 Upon failure, jumps back to command level (never returns). */
948 static struct objfile *
949 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int mainline, int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961
962 my_cleanups = make_cleanup_bfd_close (abfd);
963
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && mainline
969 && from_tty
970 && !query ("Load new symbol table from \"%s\"? ", name))
971 error (_("Not confirmed."));
972
973 objfile = allocate_objfile (abfd, flags);
974 discard_cleanups (my_cleanups);
975
976 if (addrs)
977 {
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
980 }
981
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
986 {
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
989 else
990 {
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
997 }
998 }
999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1000 mainline, from_tty);
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1008 {
1009 if ((from_tty || info_verbose) && print_symbol_loading)
1010 {
1011 printf_unfiltered (_("expanding to full symbols..."));
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
1016 for (psymtab = objfile->psymtabs;
1017 psymtab != NULL;
1018 psymtab = psymtab->next)
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
1029 if (debugfile)
1030 {
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
1034 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
1043
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
1047
1048 xfree (debugfile);
1049 }
1050
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
1053 {
1054 wrap_here ("");
1055 printf_unfiltered (_("(no debugging symbols found)"));
1056 if (from_tty || info_verbose)
1057 printf_unfiltered ("...");
1058 else
1059 printf_unfiltered ("\n");
1060 wrap_here ("");
1061 }
1062
1063 if (from_tty || info_verbose)
1064 {
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
1067 else
1068 {
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
1071 }
1072 }
1073
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
1079 do_cleanups (my_cleanups);
1080
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
1084 new_symfile_objfile (objfile, mainline, from_tty);
1085
1086 observer_notify_new_objfile (objfile);
1087
1088 bfd_cache_close_all ();
1089 return (objfile);
1090 }
1091
1092
1093 /* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098 struct objfile *
1099 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1100 struct section_addr_info *addrs,
1101 int mainline, int flags)
1102 {
1103 return symbol_file_add_with_addrs_or_offsets (abfd,
1104 from_tty, addrs, 0, 0,
1105 mainline, flags);
1106 }
1107
1108
1109 /* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112 struct objfile *
1113 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1114 int mainline, int flags)
1115 {
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1117 addrs, mainline, flags);
1118 }
1119
1120
1121 /* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
1128
1129 void
1130 symbol_file_add_main (char *args, int from_tty)
1131 {
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133 }
1134
1135 static void
1136 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137 {
1138 symbol_file_add (args, from_tty, NULL, 1, flags);
1139
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1145 }
1146
1147 void
1148 symbol_file_clear (int from_tty)
1149 {
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
1156 error (_("Not confirmed."));
1157 free_all_objfiles ();
1158
1159 /* solib descriptors may have handles to objfiles. Since their
1160 storage has just been released, we'd better wipe the solib
1161 descriptors as well.
1162 */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1168 }
1169
1170 struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178 static struct build_id *
1179 build_id_bfd_get (bfd *abfd)
1180 {
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193 }
1194
1195 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197 static int
1198 build_id_verify (const char *filename, struct build_id *check)
1199 {
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
1225
1226 xfree (found);
1227
1228 return retval;
1229 }
1230
1231 static char *
1232 build_id_to_debug_filename (struct build_id *build_id)
1233 {
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 static int
1299 separate_debug_file_exists (const char *name, unsigned long crc)
1300 {
1301 unsigned long file_crc = 0;
1302 bfd *abfd;
1303 gdb_byte buffer[8*1024];
1304 int count;
1305
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
1312 return 0;
1313
1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
1317 bfd_close (abfd);
1318
1319 return crc == file_crc;
1320 }
1321
1322 char *debug_file_directory = NULL;
1323 static void
1324 show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326 {
1327 fprintf_filtered (file, _("\
1328 The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330 }
1331
1332 #if ! defined (DEBUG_SUBDIRECTORY)
1333 #define DEBUG_SUBDIRECTORY ".debug"
1334 #endif
1335
1336 static char *
1337 find_separate_debug_file (struct objfile *objfile)
1338 {
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
1344 char *canon_name;
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
1356 xfree (build_id);
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
1372
1373 dir = xstrdup (objfile->name);
1374
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 dir[i+1] = '\0';
1386
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
1391 + strlen (basename)
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
1417
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
1430
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458 }
1459
1460
1461 /* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
1473 conventions (because it is confusing and inconvenient). */
1474
1475 void
1476 symbol_file_command (char *args, int from_tty)
1477 {
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1482 symbol_file_clear (from_tty);
1483 }
1484 else
1485 {
1486 char **argv = gdb_buildargv (args);
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
1491 cleanups = make_cleanup_freeargv (argv);
1492 while (*argv != NULL)
1493 {
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
1497 error (_("unknown option `%s'"), *argv);
1498 else
1499 {
1500 symbol_file_add_main_1 (*argv, from_tty, flags);
1501 name = *argv;
1502 }
1503
1504 argv++;
1505 }
1506
1507 if (name == NULL)
1508 error (_("no symbol file name was specified"));
1509
1510 do_cleanups (cleanups);
1511 }
1512 }
1513
1514 /* Set the initial language.
1515
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
1524
1525 void
1526 set_initial_language (void)
1527 {
1528 struct partial_symtab *pst;
1529 enum language lang = language_unknown;
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
1534 if (pst->filename != NULL)
1535 lang = deduce_language_from_filename (pst->filename);
1536
1537 if (lang == language_unknown)
1538 {
1539 /* Make C the default language */
1540 lang = language_c;
1541 }
1542
1543 set_language (lang);
1544 expected_language = current_language; /* Don't warn the user. */
1545 }
1546 }
1547
1548 /* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
1552
1553 bfd *
1554 symfile_bfd_open (char *name)
1555 {
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1586 O_RDONLY | O_BINARY, 0, &absolute_name);
1587 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1593 O_RDONLY | O_BINARY, 0, &absolute_name);
1594 }
1595 #endif
1596 if (desc < 0)
1597 {
1598 make_cleanup (xfree, name);
1599 perror_with_name (name);
1600 }
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
1606
1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1608 if (!sym_bfd)
1609 {
1610 close (desc);
1611 make_cleanup (xfree, name);
1612 error (_("`%s': can't open to read symbols: %s."), name,
1613 bfd_errmsg (bfd_get_error ()));
1614 }
1615 bfd_set_cacheable (sym_bfd, 1);
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627
1628 return sym_bfd;
1629 }
1630
1631 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
1634 int
1635 get_section_index (struct objfile *objfile, char *section_name)
1636 {
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1638
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643 }
1644
1645 /* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
1649
1650 void
1651 add_symtab_fns (struct sym_fns *sf)
1652 {
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655 }
1656
1657 /* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
1661
1662 static struct sym_fns *
1663 find_sym_fns (bfd *abfd)
1664 {
1665 struct sym_fns *sf;
1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1667
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
1671 return NULL; /* No symbols. */
1672
1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
1676
1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1678 bfd_get_target (abfd));
1679 }
1680 \f
1681
1682 /* This function runs the load command of our current target. */
1683
1684 static void
1685 load_command (char *arg, int from_tty)
1686 {
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
1692 if (arg == NULL)
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
1729 target_load (arg, from_tty);
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
1734 }
1735
1736 /* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
1744
1745 static int validate_download = 0;
1746
1747 /* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749 static void
1750 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751 {
1752 bfd_size_type *sum = data;
1753
1754 *sum += bfd_get_section_size (asec);
1755 }
1756
1757 /* Opaque data for load_section_callback. */
1758 struct load_section_data {
1759 unsigned long load_offset;
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762 };
1763
1764 /* Opaque data for load_progress. */
1765 struct load_progress_data {
1766 /* Cumulative data. */
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
1770 };
1771
1772 /* Opaque data for load_progress for a single section. */
1773 struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
1775
1776 /* Per-section data. */
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
1782 };
1783
1784 /* Target write callback routine for progress reporting. */
1785
1786 static void
1787 load_progress (ULONGEST bytes, void *untyped_arg)
1788 {
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1804 args->section_name, paddr_nz (args->section_size),
1805 paddr_nz (args->lma));
1806 return;
1807 }
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at 0x%s"),
1823 paddr (args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at 0x%s"),
1826 paddr (args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
1829 totals->data_count += bytes;
1830 args->lma += bytes;
1831 args->buffer += bytes;
1832 totals->write_count += 1;
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
1844 totals->data_count,
1845 totals->total_size);
1846 }
1847
1848 /* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850 static void
1851 load_section_callback (bfd *abfd, asection *asec, void *data)
1852 {
1853 struct memory_write_request *new_request;
1854 struct load_section_data *args = data;
1855 struct load_progress_section_data *section_data;
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
1858 const char *sect_name = bfd_get_section_name (abfd, asec);
1859
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
1862
1863 if (size == 0)
1864 return;
1865
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
1874
1875 buffer = new_request->data;
1876
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1884 }
1885
1886 /* Clean up an entire memory request vector, including load
1887 data and progress records. */
1888
1889 static void
1890 clear_memory_write_data (void *arg)
1891 {
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
1896
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
1903 }
1904
1905 void
1906 generic_load (char *args, int from_tty)
1907 {
1908 bfd *loadfile_bfd;
1909 struct timeval start_time, end_time;
1910 char *filename;
1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1912 struct load_section_data cbdata;
1913 struct load_progress_data total_progress;
1914
1915 CORE_ADDR entry;
1916 char **argv;
1917
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
1923
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1926
1927 argv = gdb_buildargv (args);
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
1934 {
1935 char *endptr;
1936
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
1946 }
1947
1948 /* Open the file for loading. */
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
1955
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
1959 make_cleanup_bfd_close (loadfile_bfd);
1960
1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
1962 {
1963 error (_("\"%s\" is not an object file: %s"), filename,
1964 bfd_errmsg (bfd_get_error ()));
1965 }
1966
1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1971
1972 gettimeofday (&start_time, NULL);
1973
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
1977
1978 gettimeofday (&end_time, NULL);
1979
1980 entry = bfd_get_start_address (loadfile_bfd);
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1983 ui_out_text (uiout, ", load size ");
1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1985 ui_out_text (uiout, "\n");
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
1988 write_pc (entry);
1989
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
1994 others don't (or didn't - perhaps they have all been deleted). */
1995
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
1999
2000 do_cleanups (old_cleanups);
2001 }
2002
2003 /* Report how fast the transfer went. */
2004
2005 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
2009 void
2010 report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
2012 {
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2021 }
2022
2023 void
2024 print_transfer_performance (struct ui_file *stream,
2025 unsigned long data_count,
2026 unsigned long write_count,
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
2029 {
2030 ULONGEST time_count;
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
2057 }
2058 else
2059 {
2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2061 ui_out_text (uiout, " bits in <1 sec");
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
2070 }
2071
2072 /* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
2074 /* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
2080
2081 static void
2082 add_symbol_file_command (char *args, int from_tty)
2083 {
2084 char *filename = NULL;
2085 int flags = OBJF_USERLOADED;
2086 char *arg;
2087 int expecting_option = 0;
2088 int section_index = 0;
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
2094 char **argv;
2095
2096 struct sect_opt
2097 {
2098 char *name;
2099 char *value;
2100 };
2101
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2106
2107 num_sect_opts = 16;
2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2109 * sizeof (struct sect_opt));
2110
2111 dont_repeat ();
2112
2113 if (args == NULL)
2114 error (_("add-symbol-file takes a file name and an address"));
2115
2116 argv = gdb_buildargv (args);
2117 make_cleanup_freeargv (argv);
2118
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
2122 if (argcnt == 0)
2123 {
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
2126 make_cleanup (xfree, filename);
2127 }
2128 else
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
2135 if (++section_index >= num_sect_opts)
2136 {
2137 num_sect_opts *= 2;
2138 sect_opts = ((struct sect_opt *)
2139 xrealloc (sect_opts,
2140 num_sect_opts
2141 * sizeof (struct sect_opt)));
2142 }
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
2162 {
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
2165 }
2166 else
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2182 }
2183 }
2184 }
2185
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
2196 statements because hex_string returns a local static
2197 string. */
2198
2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
2202 for (i = 0; i < section_index; i++)
2203 {
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
2207
2208 addr = parse_and_eval_address (val);
2209
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
2214 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2215 sec_num++;
2216
2217 /* The object's sections are initialized when a
2218 call is made to build_objfile_section_table (objfile).
2219 This happens in reread_symbols.
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2222 }
2223
2224 if (from_tty && (!query ("%s", "")))
2225 error (_("Not confirmed."));
2226
2227 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
2232 do_cleanups (my_cleanups);
2233 }
2234 \f
2235 static void
2236 add_shared_symbol_files_command (char *args, int from_tty)
2237 {
2238 #ifdef ADD_SHARED_SYMBOL_FILES
2239 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2240 #else
2241 error (_("This command is not available in this configuration of GDB."));
2242 #endif
2243 }
2244 \f
2245 /* Re-read symbols if a symbol-file has changed. */
2246 void
2247 reread_symbols (void)
2248 {
2249 struct objfile *objfile;
2250 long new_modtime;
2251 int reread_one = 0;
2252 struct stat new_statbuf;
2253 int res;
2254
2255 /* With the addition of shared libraries, this should be modified,
2256 the load time should be saved in the partial symbol tables, since
2257 different tables may come from different source files. FIXME.
2258 This routine should then walk down each partial symbol table
2259 and see if the symbol table that it originates from has been changed */
2260
2261 for (objfile = object_files; objfile; objfile = objfile->next)
2262 {
2263 if (objfile->obfd)
2264 {
2265 #ifdef DEPRECATED_IBM6000_TARGET
2266 /* If this object is from a shared library, then you should
2267 stat on the library name, not member name. */
2268
2269 if (objfile->obfd->my_archive)
2270 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2271 else
2272 #endif
2273 res = stat (objfile->name, &new_statbuf);
2274 if (res != 0)
2275 {
2276 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2277 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2278 objfile->name);
2279 continue;
2280 }
2281 new_modtime = new_statbuf.st_mtime;
2282 if (new_modtime != objfile->mtime)
2283 {
2284 struct cleanup *old_cleanups;
2285 struct section_offsets *offsets;
2286 int num_offsets;
2287 char *obfd_filename;
2288
2289 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2290 objfile->name);
2291
2292 /* There are various functions like symbol_file_add,
2293 symfile_bfd_open, syms_from_objfile, etc., which might
2294 appear to do what we want. But they have various other
2295 effects which we *don't* want. So we just do stuff
2296 ourselves. We don't worry about mapped files (for one thing,
2297 any mapped file will be out of date). */
2298
2299 /* If we get an error, blow away this objfile (not sure if
2300 that is the correct response for things like shared
2301 libraries). */
2302 old_cleanups = make_cleanup_free_objfile (objfile);
2303 /* We need to do this whenever any symbols go away. */
2304 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2305
2306 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2307 bfd_get_filename (exec_bfd)) == 0)
2308 {
2309 /* Reload EXEC_BFD without asking anything. */
2310
2311 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2312 }
2313
2314 /* Clean up any state BFD has sitting around. We don't need
2315 to close the descriptor but BFD lacks a way of closing the
2316 BFD without closing the descriptor. */
2317 obfd_filename = bfd_get_filename (objfile->obfd);
2318 if (!bfd_close (objfile->obfd))
2319 error (_("Can't close BFD for %s: %s"), objfile->name,
2320 bfd_errmsg (bfd_get_error ()));
2321 if (remote_filename_p (obfd_filename))
2322 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2323 else
2324 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2325 if (objfile->obfd == NULL)
2326 error (_("Can't open %s to read symbols."), objfile->name);
2327 /* bfd_openr sets cacheable to true, which is what we want. */
2328 if (!bfd_check_format (objfile->obfd, bfd_object))
2329 error (_("Can't read symbols from %s: %s."), objfile->name,
2330 bfd_errmsg (bfd_get_error ()));
2331
2332 /* Save the offsets, we will nuke them with the rest of the
2333 objfile_obstack. */
2334 num_offsets = objfile->num_sections;
2335 offsets = ((struct section_offsets *)
2336 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2337 memcpy (offsets, objfile->section_offsets,
2338 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2339
2340 /* Remove any references to this objfile in the global
2341 value lists. */
2342 preserve_values (objfile);
2343
2344 /* Nuke all the state that we will re-read. Much of the following
2345 code which sets things to NULL really is necessary to tell
2346 other parts of GDB that there is nothing currently there. */
2347
2348 /* FIXME: Do we have to free a whole linked list, or is this
2349 enough? */
2350 if (objfile->global_psymbols.list)
2351 xfree (objfile->global_psymbols.list);
2352 memset (&objfile->global_psymbols, 0,
2353 sizeof (objfile->global_psymbols));
2354 if (objfile->static_psymbols.list)
2355 xfree (objfile->static_psymbols.list);
2356 memset (&objfile->static_psymbols, 0,
2357 sizeof (objfile->static_psymbols));
2358
2359 /* Free the obstacks for non-reusable objfiles */
2360 bcache_xfree (objfile->psymbol_cache);
2361 objfile->psymbol_cache = bcache_xmalloc ();
2362 bcache_xfree (objfile->macro_cache);
2363 objfile->macro_cache = bcache_xmalloc ();
2364 if (objfile->demangled_names_hash != NULL)
2365 {
2366 htab_delete (objfile->demangled_names_hash);
2367 objfile->demangled_names_hash = NULL;
2368 }
2369 obstack_free (&objfile->objfile_obstack, 0);
2370 objfile->sections = NULL;
2371 objfile->symtabs = NULL;
2372 objfile->psymtabs = NULL;
2373 objfile->free_psymtabs = NULL;
2374 objfile->cp_namespace_symtab = NULL;
2375 objfile->msymbols = NULL;
2376 objfile->deprecated_sym_private = NULL;
2377 objfile->minimal_symbol_count = 0;
2378 memset (&objfile->msymbol_hash, 0,
2379 sizeof (objfile->msymbol_hash));
2380 memset (&objfile->msymbol_demangled_hash, 0,
2381 sizeof (objfile->msymbol_demangled_hash));
2382 clear_objfile_data (objfile);
2383 if (objfile->sf != NULL)
2384 {
2385 (*objfile->sf->sym_finish) (objfile);
2386 }
2387
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2393 functions. */
2394 obstack_init (&objfile->objfile_obstack);
2395 if (build_objfile_section_table (objfile))
2396 {
2397 error (_("Can't find the file sections in `%s': %s"),
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2399 }
2400 terminate_minimal_symbol_table (objfile);
2401
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
2405 obstack_alloc (&objfile->objfile_obstack,
2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2407 memcpy (objfile->section_offsets, offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409 objfile->num_sections = num_offsets;
2410
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2415 {
2416 (*objfile->sf->sym_new_init) (objfile);
2417 }
2418
2419 (*objfile->sf->sym_init) (objfile);
2420 clear_complaints (&symfile_complaints, 1, 1);
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
2424 (*objfile->sf->sym_read) (objfile, 0);
2425 if (!have_partial_symbols () && !have_full_symbols ())
2426 {
2427 wrap_here ("");
2428 printf_unfiltered (_("(no debugging symbols found)\n"));
2429 wrap_here ("");
2430 }
2431
2432 /* We're done reading the symbol file; finish off complaints. */
2433 clear_complaints (&symfile_complaints, 0, 1);
2434
2435 /* Getting new symbols may change our opinion about what is
2436 frameless. */
2437
2438 reinit_frame_cache ();
2439
2440 /* Discard cleanups as symbol reading was successful. */
2441 discard_cleanups (old_cleanups);
2442
2443 /* If the mtime has changed between the time we set new_modtime
2444 and now, we *want* this to be out of date, so don't call stat
2445 again now. */
2446 objfile->mtime = new_modtime;
2447 reread_one = 1;
2448 reread_separate_symbols (objfile);
2449 init_entry_point_info (objfile);
2450 }
2451 }
2452 }
2453
2454 if (reread_one)
2455 {
2456 clear_symtab_users ();
2457 /* At least one objfile has changed, so we can consider that
2458 the executable we're debugging has changed too. */
2459 observer_notify_executable_changed ();
2460 }
2461
2462 }
2463
2464
2465 /* Handle separate debug info for OBJFILE, which has just been
2466 re-read:
2467 - If we had separate debug info before, but now we don't, get rid
2468 of the separated objfile.
2469 - If we didn't have separated debug info before, but now we do,
2470 read in the new separated debug info file.
2471 - If the debug link points to a different file, toss the old one
2472 and read the new one.
2473 This function does *not* handle the case where objfile is still
2474 using the same separate debug info file, but that file's timestamp
2475 has changed. That case should be handled by the loop in
2476 reread_symbols already. */
2477 static void
2478 reread_separate_symbols (struct objfile *objfile)
2479 {
2480 char *debug_file;
2481 unsigned long crc32;
2482
2483 /* Does the updated objfile's debug info live in a
2484 separate file? */
2485 debug_file = find_separate_debug_file (objfile);
2486
2487 if (objfile->separate_debug_objfile)
2488 {
2489 /* There are two cases where we need to get rid of
2490 the old separated debug info objfile:
2491 - if the new primary objfile doesn't have
2492 separated debug info, or
2493 - if the new primary objfile has separate debug
2494 info, but it's under a different filename.
2495
2496 If the old and new objfiles both have separate
2497 debug info, under the same filename, then we're
2498 okay --- if the separated file's contents have
2499 changed, we will have caught that when we
2500 visited it in this function's outermost
2501 loop. */
2502 if (! debug_file
2503 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2504 free_objfile (objfile->separate_debug_objfile);
2505 }
2506
2507 /* If the new objfile has separate debug info, and we
2508 haven't loaded it already, do so now. */
2509 if (debug_file
2510 && ! objfile->separate_debug_objfile)
2511 {
2512 /* Use the same section offset table as objfile itself.
2513 Preserve the flags from objfile that make sense. */
2514 objfile->separate_debug_objfile
2515 = (symbol_file_add_with_addrs_or_offsets
2516 (symfile_bfd_open (debug_file),
2517 info_verbose, /* from_tty: Don't override the default. */
2518 0, /* No addr table. */
2519 objfile->section_offsets, objfile->num_sections,
2520 0, /* Not mainline. See comments about this above. */
2521 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2522 | OBJF_USERLOADED)));
2523 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2524 = objfile;
2525 }
2526 if (debug_file)
2527 xfree (debug_file);
2528 }
2529
2530
2531 \f
2532
2533
2534 typedef struct
2535 {
2536 char *ext;
2537 enum language lang;
2538 }
2539 filename_language;
2540
2541 static filename_language *filename_language_table;
2542 static int fl_table_size, fl_table_next;
2543
2544 static void
2545 add_filename_language (char *ext, enum language lang)
2546 {
2547 if (fl_table_next >= fl_table_size)
2548 {
2549 fl_table_size += 10;
2550 filename_language_table =
2551 xrealloc (filename_language_table,
2552 fl_table_size * sizeof (*filename_language_table));
2553 }
2554
2555 filename_language_table[fl_table_next].ext = xstrdup (ext);
2556 filename_language_table[fl_table_next].lang = lang;
2557 fl_table_next++;
2558 }
2559
2560 static char *ext_args;
2561 static void
2562 show_ext_args (struct ui_file *file, int from_tty,
2563 struct cmd_list_element *c, const char *value)
2564 {
2565 fprintf_filtered (file, _("\
2566 Mapping between filename extension and source language is \"%s\".\n"),
2567 value);
2568 }
2569
2570 static void
2571 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2572 {
2573 int i;
2574 char *cp = ext_args;
2575 enum language lang;
2576
2577 /* First arg is filename extension, starting with '.' */
2578 if (*cp != '.')
2579 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2580
2581 /* Find end of first arg. */
2582 while (*cp && !isspace (*cp))
2583 cp++;
2584
2585 if (*cp == '\0')
2586 error (_("'%s': two arguments required -- filename extension and language"),
2587 ext_args);
2588
2589 /* Null-terminate first arg */
2590 *cp++ = '\0';
2591
2592 /* Find beginning of second arg, which should be a source language. */
2593 while (*cp && isspace (*cp))
2594 cp++;
2595
2596 if (*cp == '\0')
2597 error (_("'%s': two arguments required -- filename extension and language"),
2598 ext_args);
2599
2600 /* Lookup the language from among those we know. */
2601 lang = language_enum (cp);
2602
2603 /* Now lookup the filename extension: do we already know it? */
2604 for (i = 0; i < fl_table_next; i++)
2605 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2606 break;
2607
2608 if (i >= fl_table_next)
2609 {
2610 /* new file extension */
2611 add_filename_language (ext_args, lang);
2612 }
2613 else
2614 {
2615 /* redefining a previously known filename extension */
2616
2617 /* if (from_tty) */
2618 /* query ("Really make files of type %s '%s'?", */
2619 /* ext_args, language_str (lang)); */
2620
2621 xfree (filename_language_table[i].ext);
2622 filename_language_table[i].ext = xstrdup (ext_args);
2623 filename_language_table[i].lang = lang;
2624 }
2625 }
2626
2627 static void
2628 info_ext_lang_command (char *args, int from_tty)
2629 {
2630 int i;
2631
2632 printf_filtered (_("Filename extensions and the languages they represent:"));
2633 printf_filtered ("\n\n");
2634 for (i = 0; i < fl_table_next; i++)
2635 printf_filtered ("\t%s\t- %s\n",
2636 filename_language_table[i].ext,
2637 language_str (filename_language_table[i].lang));
2638 }
2639
2640 static void
2641 init_filename_language_table (void)
2642 {
2643 if (fl_table_size == 0) /* protect against repetition */
2644 {
2645 fl_table_size = 20;
2646 fl_table_next = 0;
2647 filename_language_table =
2648 xmalloc (fl_table_size * sizeof (*filename_language_table));
2649 add_filename_language (".c", language_c);
2650 add_filename_language (".C", language_cplus);
2651 add_filename_language (".cc", language_cplus);
2652 add_filename_language (".cp", language_cplus);
2653 add_filename_language (".cpp", language_cplus);
2654 add_filename_language (".cxx", language_cplus);
2655 add_filename_language (".c++", language_cplus);
2656 add_filename_language (".java", language_java);
2657 add_filename_language (".class", language_java);
2658 add_filename_language (".m", language_objc);
2659 add_filename_language (".f", language_fortran);
2660 add_filename_language (".F", language_fortran);
2661 add_filename_language (".s", language_asm);
2662 add_filename_language (".sx", language_asm);
2663 add_filename_language (".S", language_asm);
2664 add_filename_language (".pas", language_pascal);
2665 add_filename_language (".p", language_pascal);
2666 add_filename_language (".pp", language_pascal);
2667 add_filename_language (".adb", language_ada);
2668 add_filename_language (".ads", language_ada);
2669 add_filename_language (".a", language_ada);
2670 add_filename_language (".ada", language_ada);
2671 }
2672 }
2673
2674 enum language
2675 deduce_language_from_filename (char *filename)
2676 {
2677 int i;
2678 char *cp;
2679
2680 if (filename != NULL)
2681 if ((cp = strrchr (filename, '.')) != NULL)
2682 for (i = 0; i < fl_table_next; i++)
2683 if (strcmp (cp, filename_language_table[i].ext) == 0)
2684 return filename_language_table[i].lang;
2685
2686 return language_unknown;
2687 }
2688 \f
2689 /* allocate_symtab:
2690
2691 Allocate and partly initialize a new symbol table. Return a pointer
2692 to it. error() if no space.
2693
2694 Caller must set these fields:
2695 LINETABLE(symtab)
2696 symtab->blockvector
2697 symtab->dirname
2698 symtab->free_code
2699 symtab->free_ptr
2700 possibly free_named_symtabs (symtab->filename);
2701 */
2702
2703 struct symtab *
2704 allocate_symtab (char *filename, struct objfile *objfile)
2705 {
2706 struct symtab *symtab;
2707
2708 symtab = (struct symtab *)
2709 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2710 memset (symtab, 0, sizeof (*symtab));
2711 symtab->filename = obsavestring (filename, strlen (filename),
2712 &objfile->objfile_obstack);
2713 symtab->fullname = NULL;
2714 symtab->language = deduce_language_from_filename (filename);
2715 symtab->debugformat = obsavestring ("unknown", 7,
2716 &objfile->objfile_obstack);
2717
2718 /* Hook it to the objfile it comes from */
2719
2720 symtab->objfile = objfile;
2721 symtab->next = objfile->symtabs;
2722 objfile->symtabs = symtab;
2723
2724 return (symtab);
2725 }
2726
2727 struct partial_symtab *
2728 allocate_psymtab (char *filename, struct objfile *objfile)
2729 {
2730 struct partial_symtab *psymtab;
2731
2732 if (objfile->free_psymtabs)
2733 {
2734 psymtab = objfile->free_psymtabs;
2735 objfile->free_psymtabs = psymtab->next;
2736 }
2737 else
2738 psymtab = (struct partial_symtab *)
2739 obstack_alloc (&objfile->objfile_obstack,
2740 sizeof (struct partial_symtab));
2741
2742 memset (psymtab, 0, sizeof (struct partial_symtab));
2743 psymtab->filename = obsavestring (filename, strlen (filename),
2744 &objfile->objfile_obstack);
2745 psymtab->symtab = NULL;
2746
2747 /* Prepend it to the psymtab list for the objfile it belongs to.
2748 Psymtabs are searched in most recent inserted -> least recent
2749 inserted order. */
2750
2751 psymtab->objfile = objfile;
2752 psymtab->next = objfile->psymtabs;
2753 objfile->psymtabs = psymtab;
2754 #if 0
2755 {
2756 struct partial_symtab **prev_pst;
2757 psymtab->objfile = objfile;
2758 psymtab->next = NULL;
2759 prev_pst = &(objfile->psymtabs);
2760 while ((*prev_pst) != NULL)
2761 prev_pst = &((*prev_pst)->next);
2762 (*prev_pst) = psymtab;
2763 }
2764 #endif
2765
2766 return (psymtab);
2767 }
2768
2769 void
2770 discard_psymtab (struct partial_symtab *pst)
2771 {
2772 struct partial_symtab **prev_pst;
2773
2774 /* From dbxread.c:
2775 Empty psymtabs happen as a result of header files which don't
2776 have any symbols in them. There can be a lot of them. But this
2777 check is wrong, in that a psymtab with N_SLINE entries but
2778 nothing else is not empty, but we don't realize that. Fixing
2779 that without slowing things down might be tricky. */
2780
2781 /* First, snip it out of the psymtab chain */
2782
2783 prev_pst = &(pst->objfile->psymtabs);
2784 while ((*prev_pst) != pst)
2785 prev_pst = &((*prev_pst)->next);
2786 (*prev_pst) = pst->next;
2787
2788 /* Next, put it on a free list for recycling */
2789
2790 pst->next = pst->objfile->free_psymtabs;
2791 pst->objfile->free_psymtabs = pst;
2792 }
2793 \f
2794
2795 /* Reset all data structures in gdb which may contain references to symbol
2796 table data. */
2797
2798 void
2799 clear_symtab_users (void)
2800 {
2801 /* Someday, we should do better than this, by only blowing away
2802 the things that really need to be blown. */
2803
2804 /* Clear the "current" symtab first, because it is no longer valid.
2805 breakpoint_re_set may try to access the current symtab. */
2806 clear_current_source_symtab_and_line ();
2807
2808 clear_displays ();
2809 breakpoint_re_set ();
2810 set_default_breakpoint (0, 0, 0, 0);
2811 clear_pc_function_cache ();
2812 observer_notify_new_objfile (NULL);
2813
2814 /* Clear globals which might have pointed into a removed objfile.
2815 FIXME: It's not clear which of these are supposed to persist
2816 between expressions and which ought to be reset each time. */
2817 expression_context_block = NULL;
2818 innermost_block = NULL;
2819
2820 /* Varobj may refer to old symbols, perform a cleanup. */
2821 varobj_invalidate ();
2822
2823 }
2824
2825 static void
2826 clear_symtab_users_cleanup (void *ignore)
2827 {
2828 clear_symtab_users ();
2829 }
2830
2831 /* clear_symtab_users_once:
2832
2833 This function is run after symbol reading, or from a cleanup.
2834 If an old symbol table was obsoleted, the old symbol table
2835 has been blown away, but the other GDB data structures that may
2836 reference it have not yet been cleared or re-directed. (The old
2837 symtab was zapped, and the cleanup queued, in free_named_symtab()
2838 below.)
2839
2840 This function can be queued N times as a cleanup, or called
2841 directly; it will do all the work the first time, and then will be a
2842 no-op until the next time it is queued. This works by bumping a
2843 counter at queueing time. Much later when the cleanup is run, or at
2844 the end of symbol processing (in case the cleanup is discarded), if
2845 the queued count is greater than the "done-count", we do the work
2846 and set the done-count to the queued count. If the queued count is
2847 less than or equal to the done-count, we just ignore the call. This
2848 is needed because reading a single .o file will often replace many
2849 symtabs (one per .h file, for example), and we don't want to reset
2850 the breakpoints N times in the user's face.
2851
2852 The reason we both queue a cleanup, and call it directly after symbol
2853 reading, is because the cleanup protects us in case of errors, but is
2854 discarded if symbol reading is successful. */
2855
2856 #if 0
2857 /* FIXME: As free_named_symtabs is currently a big noop this function
2858 is no longer needed. */
2859 static void clear_symtab_users_once (void);
2860
2861 static int clear_symtab_users_queued;
2862 static int clear_symtab_users_done;
2863
2864 static void
2865 clear_symtab_users_once (void)
2866 {
2867 /* Enforce once-per-`do_cleanups'-semantics */
2868 if (clear_symtab_users_queued <= clear_symtab_users_done)
2869 return;
2870 clear_symtab_users_done = clear_symtab_users_queued;
2871
2872 clear_symtab_users ();
2873 }
2874 #endif
2875
2876 /* Delete the specified psymtab, and any others that reference it. */
2877
2878 static void
2879 cashier_psymtab (struct partial_symtab *pst)
2880 {
2881 struct partial_symtab *ps, *pprev = NULL;
2882 int i;
2883
2884 /* Find its previous psymtab in the chain */
2885 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2886 {
2887 if (ps == pst)
2888 break;
2889 pprev = ps;
2890 }
2891
2892 if (ps)
2893 {
2894 /* Unhook it from the chain. */
2895 if (ps == pst->objfile->psymtabs)
2896 pst->objfile->psymtabs = ps->next;
2897 else
2898 pprev->next = ps->next;
2899
2900 /* FIXME, we can't conveniently deallocate the entries in the
2901 partial_symbol lists (global_psymbols/static_psymbols) that
2902 this psymtab points to. These just take up space until all
2903 the psymtabs are reclaimed. Ditto the dependencies list and
2904 filename, which are all in the objfile_obstack. */
2905
2906 /* We need to cashier any psymtab that has this one as a dependency... */
2907 again:
2908 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2909 {
2910 for (i = 0; i < ps->number_of_dependencies; i++)
2911 {
2912 if (ps->dependencies[i] == pst)
2913 {
2914 cashier_psymtab (ps);
2915 goto again; /* Must restart, chain has been munged. */
2916 }
2917 }
2918 }
2919 }
2920 }
2921
2922 /* If a symtab or psymtab for filename NAME is found, free it along
2923 with any dependent breakpoints, displays, etc.
2924 Used when loading new versions of object modules with the "add-file"
2925 command. This is only called on the top-level symtab or psymtab's name;
2926 it is not called for subsidiary files such as .h files.
2927
2928 Return value is 1 if we blew away the environment, 0 if not.
2929 FIXME. The return value appears to never be used.
2930
2931 FIXME. I think this is not the best way to do this. We should
2932 work on being gentler to the environment while still cleaning up
2933 all stray pointers into the freed symtab. */
2934
2935 int
2936 free_named_symtabs (char *name)
2937 {
2938 #if 0
2939 /* FIXME: With the new method of each objfile having it's own
2940 psymtab list, this function needs serious rethinking. In particular,
2941 why was it ever necessary to toss psymtabs with specific compilation
2942 unit filenames, as opposed to all psymtabs from a particular symbol
2943 file? -- fnf
2944 Well, the answer is that some systems permit reloading of particular
2945 compilation units. We want to blow away any old info about these
2946 compilation units, regardless of which objfiles they arrived in. --gnu. */
2947
2948 struct symtab *s;
2949 struct symtab *prev;
2950 struct partial_symtab *ps;
2951 struct blockvector *bv;
2952 int blewit = 0;
2953
2954 /* We only wack things if the symbol-reload switch is set. */
2955 if (!symbol_reloading)
2956 return 0;
2957
2958 /* Some symbol formats have trouble providing file names... */
2959 if (name == 0 || *name == '\0')
2960 return 0;
2961
2962 /* Look for a psymtab with the specified name. */
2963
2964 again2:
2965 for (ps = partial_symtab_list; ps; ps = ps->next)
2966 {
2967 if (strcmp (name, ps->filename) == 0)
2968 {
2969 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2970 goto again2; /* Must restart, chain has been munged */
2971 }
2972 }
2973
2974 /* Look for a symtab with the specified name. */
2975
2976 for (s = symtab_list; s; s = s->next)
2977 {
2978 if (strcmp (name, s->filename) == 0)
2979 break;
2980 prev = s;
2981 }
2982
2983 if (s)
2984 {
2985 if (s == symtab_list)
2986 symtab_list = s->next;
2987 else
2988 prev->next = s->next;
2989
2990 /* For now, queue a delete for all breakpoints, displays, etc., whether
2991 or not they depend on the symtab being freed. This should be
2992 changed so that only those data structures affected are deleted. */
2993
2994 /* But don't delete anything if the symtab is empty.
2995 This test is necessary due to a bug in "dbxread.c" that
2996 causes empty symtabs to be created for N_SO symbols that
2997 contain the pathname of the object file. (This problem
2998 has been fixed in GDB 3.9x). */
2999
3000 bv = BLOCKVECTOR (s);
3001 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3003 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3004 {
3005 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3006 name);
3007 clear_symtab_users_queued++;
3008 make_cleanup (clear_symtab_users_once, 0);
3009 blewit = 1;
3010 }
3011 else
3012 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3013 name);
3014
3015 free_symtab (s);
3016 }
3017 else
3018 {
3019 /* It is still possible that some breakpoints will be affected
3020 even though no symtab was found, since the file might have
3021 been compiled without debugging, and hence not be associated
3022 with a symtab. In order to handle this correctly, we would need
3023 to keep a list of text address ranges for undebuggable files.
3024 For now, we do nothing, since this is a fairly obscure case. */
3025 ;
3026 }
3027
3028 /* FIXME, what about the minimal symbol table? */
3029 return blewit;
3030 #else
3031 return (0);
3032 #endif
3033 }
3034 \f
3035 /* Allocate and partially fill a partial symtab. It will be
3036 completely filled at the end of the symbol list.
3037
3038 FILENAME is the name of the symbol-file we are reading from. */
3039
3040 struct partial_symtab *
3041 start_psymtab_common (struct objfile *objfile,
3042 struct section_offsets *section_offsets, char *filename,
3043 CORE_ADDR textlow, struct partial_symbol **global_syms,
3044 struct partial_symbol **static_syms)
3045 {
3046 struct partial_symtab *psymtab;
3047
3048 psymtab = allocate_psymtab (filename, objfile);
3049 psymtab->section_offsets = section_offsets;
3050 psymtab->textlow = textlow;
3051 psymtab->texthigh = psymtab->textlow; /* default */
3052 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3053 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3054 return (psymtab);
3055 }
3056 \f
3057 /* Helper function, initialises partial symbol structure and stashes
3058 it into objfile's bcache. Note that our caching mechanism will
3059 use all fields of struct partial_symbol to determine hash value of the
3060 structure. In other words, having two symbols with the same name but
3061 different domain (or address) is possible and correct. */
3062
3063 static const struct partial_symbol *
3064 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3065 enum address_class class,
3066 long val, /* Value as a long */
3067 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3068 enum language language, struct objfile *objfile,
3069 int *added)
3070 {
3071 char *buf = name;
3072 /* psymbol is static so that there will be no uninitialized gaps in the
3073 structure which might contain random data, causing cache misses in
3074 bcache. */
3075 static struct partial_symbol psymbol;
3076
3077 if (name[namelength] != '\0')
3078 {
3079 buf = alloca (namelength + 1);
3080 /* Create local copy of the partial symbol */
3081 memcpy (buf, name, namelength);
3082 buf[namelength] = '\0';
3083 }
3084 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3085 if (val != 0)
3086 {
3087 SYMBOL_VALUE (&psymbol) = val;
3088 }
3089 else
3090 {
3091 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3092 }
3093 SYMBOL_SECTION (&psymbol) = 0;
3094 SYMBOL_LANGUAGE (&psymbol) = language;
3095 PSYMBOL_DOMAIN (&psymbol) = domain;
3096 PSYMBOL_CLASS (&psymbol) = class;
3097
3098 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3099
3100 /* Stash the partial symbol away in the cache */
3101 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3102 objfile->psymbol_cache, added);
3103 }
3104
3105 /* Helper function, adds partial symbol to the given partial symbol
3106 list. */
3107
3108 static void
3109 append_psymbol_to_list (struct psymbol_allocation_list *list,
3110 const struct partial_symbol *psym,
3111 struct objfile *objfile)
3112 {
3113 if (list->next >= list->list + list->size)
3114 extend_psymbol_list (list, objfile);
3115 *list->next++ = (struct partial_symbol *) psym;
3116 OBJSTAT (objfile, n_psyms++);
3117 }
3118
3119 /* Add a symbol with a long value to a psymtab.
3120 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3121 Return the partial symbol that has been added. */
3122
3123 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3124 symbol is so that callers can get access to the symbol's demangled
3125 name, which they don't have any cheap way to determine otherwise.
3126 (Currenly, dwarf2read.c is the only file who uses that information,
3127 though it's possible that other readers might in the future.)
3128 Elena wasn't thrilled about that, and I don't blame her, but we
3129 couldn't come up with a better way to get that information. If
3130 it's needed in other situations, we could consider breaking up
3131 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3132 cache. */
3133
3134 const struct partial_symbol *
3135 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3136 enum address_class class,
3137 struct psymbol_allocation_list *list,
3138 long val, /* Value as a long */
3139 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3140 enum language language, struct objfile *objfile)
3141 {
3142 const struct partial_symbol *psym;
3143
3144 int added;
3145
3146 /* Stash the partial symbol away in the cache */
3147 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3148 val, coreaddr, language, objfile, &added);
3149
3150 /* Do not duplicate global partial symbols. */
3151 if (list == &objfile->global_psymbols
3152 && !added)
3153 return psym;
3154
3155 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3156 append_psymbol_to_list (list, psym, objfile);
3157 return psym;
3158 }
3159
3160 /* Initialize storage for partial symbols. */
3161
3162 void
3163 init_psymbol_list (struct objfile *objfile, int total_symbols)
3164 {
3165 /* Free any previously allocated psymbol lists. */
3166
3167 if (objfile->global_psymbols.list)
3168 {
3169 xfree (objfile->global_psymbols.list);
3170 }
3171 if (objfile->static_psymbols.list)
3172 {
3173 xfree (objfile->static_psymbols.list);
3174 }
3175
3176 /* Current best guess is that approximately a twentieth
3177 of the total symbols (in a debugging file) are global or static
3178 oriented symbols */
3179
3180 objfile->global_psymbols.size = total_symbols / 10;
3181 objfile->static_psymbols.size = total_symbols / 10;
3182
3183 if (objfile->global_psymbols.size > 0)
3184 {
3185 objfile->global_psymbols.next =
3186 objfile->global_psymbols.list = (struct partial_symbol **)
3187 xmalloc ((objfile->global_psymbols.size
3188 * sizeof (struct partial_symbol *)));
3189 }
3190 if (objfile->static_psymbols.size > 0)
3191 {
3192 objfile->static_psymbols.next =
3193 objfile->static_psymbols.list = (struct partial_symbol **)
3194 xmalloc ((objfile->static_psymbols.size
3195 * sizeof (struct partial_symbol *)));
3196 }
3197 }
3198
3199 /* OVERLAYS:
3200 The following code implements an abstraction for debugging overlay sections.
3201
3202 The target model is as follows:
3203 1) The gnu linker will permit multiple sections to be mapped into the
3204 same VMA, each with its own unique LMA (or load address).
3205 2) It is assumed that some runtime mechanism exists for mapping the
3206 sections, one by one, from the load address into the VMA address.
3207 3) This code provides a mechanism for gdb to keep track of which
3208 sections should be considered to be mapped from the VMA to the LMA.
3209 This information is used for symbol lookup, and memory read/write.
3210 For instance, if a section has been mapped then its contents
3211 should be read from the VMA, otherwise from the LMA.
3212
3213 Two levels of debugger support for overlays are available. One is
3214 "manual", in which the debugger relies on the user to tell it which
3215 overlays are currently mapped. This level of support is
3216 implemented entirely in the core debugger, and the information about
3217 whether a section is mapped is kept in the objfile->obj_section table.
3218
3219 The second level of support is "automatic", and is only available if
3220 the target-specific code provides functionality to read the target's
3221 overlay mapping table, and translate its contents for the debugger
3222 (by updating the mapped state information in the obj_section tables).
3223
3224 The interface is as follows:
3225 User commands:
3226 overlay map <name> -- tell gdb to consider this section mapped
3227 overlay unmap <name> -- tell gdb to consider this section unmapped
3228 overlay list -- list the sections that GDB thinks are mapped
3229 overlay read-target -- get the target's state of what's mapped
3230 overlay off/manual/auto -- set overlay debugging state
3231 Functional interface:
3232 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3233 section, return that section.
3234 find_pc_overlay(pc): find any overlay section that contains
3235 the pc, either in its VMA or its LMA
3236 section_is_mapped(sect): true if overlay is marked as mapped
3237 section_is_overlay(sect): true if section's VMA != LMA
3238 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3239 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3240 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3241 overlay_mapped_address(...): map an address from section's LMA to VMA
3242 overlay_unmapped_address(...): map an address from section's VMA to LMA
3243 symbol_overlayed_address(...): Return a "current" address for symbol:
3244 either in VMA or LMA depending on whether
3245 the symbol's section is currently mapped
3246 */
3247
3248 /* Overlay debugging state: */
3249
3250 enum overlay_debugging_state overlay_debugging = ovly_off;
3251 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3252
3253 /* Function: section_is_overlay (SECTION)
3254 Returns true if SECTION has VMA not equal to LMA, ie.
3255 SECTION is loaded at an address different from where it will "run". */
3256
3257 int
3258 section_is_overlay (struct obj_section *section)
3259 {
3260 if (overlay_debugging && section)
3261 {
3262 bfd *abfd = section->objfile->obfd;
3263 asection *bfd_section = section->the_bfd_section;
3264
3265 if (bfd_section_lma (abfd, bfd_section) != 0
3266 && bfd_section_lma (abfd, bfd_section)
3267 != bfd_section_vma (abfd, bfd_section))
3268 return 1;
3269 }
3270
3271 return 0;
3272 }
3273
3274 /* Function: overlay_invalidate_all (void)
3275 Invalidate the mapped state of all overlay sections (mark it as stale). */
3276
3277 static void
3278 overlay_invalidate_all (void)
3279 {
3280 struct objfile *objfile;
3281 struct obj_section *sect;
3282
3283 ALL_OBJSECTIONS (objfile, sect)
3284 if (section_is_overlay (sect))
3285 sect->ovly_mapped = -1;
3286 }
3287
3288 /* Function: section_is_mapped (SECTION)
3289 Returns true if section is an overlay, and is currently mapped.
3290
3291 Access to the ovly_mapped flag is restricted to this function, so
3292 that we can do automatic update. If the global flag
3293 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3294 overlay_invalidate_all. If the mapped state of the particular
3295 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3296
3297 int
3298 section_is_mapped (struct obj_section *osect)
3299 {
3300 if (osect == 0 || !section_is_overlay (osect))
3301 return 0;
3302
3303 switch (overlay_debugging)
3304 {
3305 default:
3306 case ovly_off:
3307 return 0; /* overlay debugging off */
3308 case ovly_auto: /* overlay debugging automatic */
3309 /* Unles there is a gdbarch_overlay_update function,
3310 there's really nothing useful to do here (can't really go auto) */
3311 if (gdbarch_overlay_update_p (current_gdbarch))
3312 {
3313 if (overlay_cache_invalid)
3314 {
3315 overlay_invalidate_all ();
3316 overlay_cache_invalid = 0;
3317 }
3318 if (osect->ovly_mapped == -1)
3319 gdbarch_overlay_update (current_gdbarch, osect);
3320 }
3321 /* fall thru to manual case */
3322 case ovly_on: /* overlay debugging manual */
3323 return osect->ovly_mapped == 1;
3324 }
3325 }
3326
3327 /* Function: pc_in_unmapped_range
3328 If PC falls into the lma range of SECTION, return true, else false. */
3329
3330 CORE_ADDR
3331 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3332 {
3333 if (section_is_overlay (section))
3334 {
3335 bfd *abfd = section->objfile->obfd;
3336 asection *bfd_section = section->the_bfd_section;
3337
3338 /* We assume the LMA is relocated by the same offset as the VMA. */
3339 bfd_vma size = bfd_get_section_size (bfd_section);
3340 CORE_ADDR offset = obj_section_offset (section);
3341
3342 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3343 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3344 return 1;
3345 }
3346
3347 return 0;
3348 }
3349
3350 /* Function: pc_in_mapped_range
3351 If PC falls into the vma range of SECTION, return true, else false. */
3352
3353 CORE_ADDR
3354 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3355 {
3356 if (section_is_overlay (section))
3357 {
3358 if (obj_section_addr (section) <= pc
3359 && pc < obj_section_endaddr (section))
3360 return 1;
3361 }
3362
3363 return 0;
3364 }
3365
3366
3367 /* Return true if the mapped ranges of sections A and B overlap, false
3368 otherwise. */
3369 static int
3370 sections_overlap (struct obj_section *a, struct obj_section *b)
3371 {
3372 CORE_ADDR a_start = obj_section_addr (a);
3373 CORE_ADDR a_end = obj_section_endaddr (a);
3374 CORE_ADDR b_start = obj_section_addr (b);
3375 CORE_ADDR b_end = obj_section_endaddr (b);
3376
3377 return (a_start < b_end && b_start < a_end);
3378 }
3379
3380 /* Function: overlay_unmapped_address (PC, SECTION)
3381 Returns the address corresponding to PC in the unmapped (load) range.
3382 May be the same as PC. */
3383
3384 CORE_ADDR
3385 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3386 {
3387 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3388 {
3389 bfd *abfd = section->objfile->obfd;
3390 asection *bfd_section = section->the_bfd_section;
3391
3392 return pc + bfd_section_lma (abfd, bfd_section)
3393 - bfd_section_vma (abfd, bfd_section);
3394 }
3395
3396 return pc;
3397 }
3398
3399 /* Function: overlay_mapped_address (PC, SECTION)
3400 Returns the address corresponding to PC in the mapped (runtime) range.
3401 May be the same as PC. */
3402
3403 CORE_ADDR
3404 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3405 {
3406 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3407 {
3408 bfd *abfd = section->objfile->obfd;
3409 asection *bfd_section = section->the_bfd_section;
3410
3411 return pc + bfd_section_vma (abfd, bfd_section)
3412 - bfd_section_lma (abfd, bfd_section);
3413 }
3414
3415 return pc;
3416 }
3417
3418
3419 /* Function: symbol_overlayed_address
3420 Return one of two addresses (relative to the VMA or to the LMA),
3421 depending on whether the section is mapped or not. */
3422
3423 CORE_ADDR
3424 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3425 {
3426 if (overlay_debugging)
3427 {
3428 /* If the symbol has no section, just return its regular address. */
3429 if (section == 0)
3430 return address;
3431 /* If the symbol's section is not an overlay, just return its address */
3432 if (!section_is_overlay (section))
3433 return address;
3434 /* If the symbol's section is mapped, just return its address */
3435 if (section_is_mapped (section))
3436 return address;
3437 /*
3438 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3439 * then return its LOADED address rather than its vma address!!
3440 */
3441 return overlay_unmapped_address (address, section);
3442 }
3443 return address;
3444 }
3445
3446 /* Function: find_pc_overlay (PC)
3447 Return the best-match overlay section for PC:
3448 If PC matches a mapped overlay section's VMA, return that section.
3449 Else if PC matches an unmapped section's VMA, return that section.
3450 Else if PC matches an unmapped section's LMA, return that section. */
3451
3452 struct obj_section *
3453 find_pc_overlay (CORE_ADDR pc)
3454 {
3455 struct objfile *objfile;
3456 struct obj_section *osect, *best_match = NULL;
3457
3458 if (overlay_debugging)
3459 ALL_OBJSECTIONS (objfile, osect)
3460 if (section_is_overlay (osect))
3461 {
3462 if (pc_in_mapped_range (pc, osect))
3463 {
3464 if (section_is_mapped (osect))
3465 return osect;
3466 else
3467 best_match = osect;
3468 }
3469 else if (pc_in_unmapped_range (pc, osect))
3470 best_match = osect;
3471 }
3472 return best_match;
3473 }
3474
3475 /* Function: find_pc_mapped_section (PC)
3476 If PC falls into the VMA address range of an overlay section that is
3477 currently marked as MAPPED, return that section. Else return NULL. */
3478
3479 struct obj_section *
3480 find_pc_mapped_section (CORE_ADDR pc)
3481 {
3482 struct objfile *objfile;
3483 struct obj_section *osect;
3484
3485 if (overlay_debugging)
3486 ALL_OBJSECTIONS (objfile, osect)
3487 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3488 return osect;
3489
3490 return NULL;
3491 }
3492
3493 /* Function: list_overlays_command
3494 Print a list of mapped sections and their PC ranges */
3495
3496 void
3497 list_overlays_command (char *args, int from_tty)
3498 {
3499 int nmapped = 0;
3500 struct objfile *objfile;
3501 struct obj_section *osect;
3502
3503 if (overlay_debugging)
3504 ALL_OBJSECTIONS (objfile, osect)
3505 if (section_is_mapped (osect))
3506 {
3507 const char *name;
3508 bfd_vma lma, vma;
3509 int size;
3510
3511 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3512 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3513 size = bfd_get_section_size (osect->the_bfd_section);
3514 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3515
3516 printf_filtered ("Section %s, loaded at ", name);
3517 fputs_filtered (paddress (lma), gdb_stdout);
3518 puts_filtered (" - ");
3519 fputs_filtered (paddress (lma + size), gdb_stdout);
3520 printf_filtered (", mapped at ");
3521 fputs_filtered (paddress (vma), gdb_stdout);
3522 puts_filtered (" - ");
3523 fputs_filtered (paddress (vma + size), gdb_stdout);
3524 puts_filtered ("\n");
3525
3526 nmapped++;
3527 }
3528 if (nmapped == 0)
3529 printf_filtered (_("No sections are mapped.\n"));
3530 }
3531
3532 /* Function: map_overlay_command
3533 Mark the named section as mapped (ie. residing at its VMA address). */
3534
3535 void
3536 map_overlay_command (char *args, int from_tty)
3537 {
3538 struct objfile *objfile, *objfile2;
3539 struct obj_section *sec, *sec2;
3540
3541 if (!overlay_debugging)
3542 error (_("\
3543 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3544 the 'overlay manual' command."));
3545
3546 if (args == 0 || *args == 0)
3547 error (_("Argument required: name of an overlay section"));
3548
3549 /* First, find a section matching the user supplied argument */
3550 ALL_OBJSECTIONS (objfile, sec)
3551 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3552 {
3553 /* Now, check to see if the section is an overlay. */
3554 if (!section_is_overlay (sec))
3555 continue; /* not an overlay section */
3556
3557 /* Mark the overlay as "mapped" */
3558 sec->ovly_mapped = 1;
3559
3560 /* Next, make a pass and unmap any sections that are
3561 overlapped by this new section: */
3562 ALL_OBJSECTIONS (objfile2, sec2)
3563 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3564 {
3565 if (info_verbose)
3566 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3567 bfd_section_name (objfile->obfd,
3568 sec2->the_bfd_section));
3569 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3570 }
3571 return;
3572 }
3573 error (_("No overlay section called %s"), args);
3574 }
3575
3576 /* Function: unmap_overlay_command
3577 Mark the overlay section as unmapped
3578 (ie. resident in its LMA address range, rather than the VMA range). */
3579
3580 void
3581 unmap_overlay_command (char *args, int from_tty)
3582 {
3583 struct objfile *objfile;
3584 struct obj_section *sec;
3585
3586 if (!overlay_debugging)
3587 error (_("\
3588 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3589 the 'overlay manual' command."));
3590
3591 if (args == 0 || *args == 0)
3592 error (_("Argument required: name of an overlay section"));
3593
3594 /* First, find a section matching the user supplied argument */
3595 ALL_OBJSECTIONS (objfile, sec)
3596 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3597 {
3598 if (!sec->ovly_mapped)
3599 error (_("Section %s is not mapped"), args);
3600 sec->ovly_mapped = 0;
3601 return;
3602 }
3603 error (_("No overlay section called %s"), args);
3604 }
3605
3606 /* Function: overlay_auto_command
3607 A utility command to turn on overlay debugging.
3608 Possibly this should be done via a set/show command. */
3609
3610 static void
3611 overlay_auto_command (char *args, int from_tty)
3612 {
3613 overlay_debugging = ovly_auto;
3614 enable_overlay_breakpoints ();
3615 if (info_verbose)
3616 printf_unfiltered (_("Automatic overlay debugging enabled."));
3617 }
3618
3619 /* Function: overlay_manual_command
3620 A utility command to turn on overlay debugging.
3621 Possibly this should be done via a set/show command. */
3622
3623 static void
3624 overlay_manual_command (char *args, int from_tty)
3625 {
3626 overlay_debugging = ovly_on;
3627 disable_overlay_breakpoints ();
3628 if (info_verbose)
3629 printf_unfiltered (_("Overlay debugging enabled."));
3630 }
3631
3632 /* Function: overlay_off_command
3633 A utility command to turn on overlay debugging.
3634 Possibly this should be done via a set/show command. */
3635
3636 static void
3637 overlay_off_command (char *args, int from_tty)
3638 {
3639 overlay_debugging = ovly_off;
3640 disable_overlay_breakpoints ();
3641 if (info_verbose)
3642 printf_unfiltered (_("Overlay debugging disabled."));
3643 }
3644
3645 static void
3646 overlay_load_command (char *args, int from_tty)
3647 {
3648 if (gdbarch_overlay_update_p (current_gdbarch))
3649 gdbarch_overlay_update (current_gdbarch, NULL);
3650 else
3651 error (_("This target does not know how to read its overlay state."));
3652 }
3653
3654 /* Function: overlay_command
3655 A place-holder for a mis-typed command */
3656
3657 /* Command list chain containing all defined "overlay" subcommands. */
3658 struct cmd_list_element *overlaylist;
3659
3660 static void
3661 overlay_command (char *args, int from_tty)
3662 {
3663 printf_unfiltered
3664 ("\"overlay\" must be followed by the name of an overlay command.\n");
3665 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3666 }
3667
3668
3669 /* Target Overlays for the "Simplest" overlay manager:
3670
3671 This is GDB's default target overlay layer. It works with the
3672 minimal overlay manager supplied as an example by Cygnus. The
3673 entry point is via a function pointer "gdbarch_overlay_update",
3674 so targets that use a different runtime overlay manager can
3675 substitute their own overlay_update function and take over the
3676 function pointer.
3677
3678 The overlay_update function pokes around in the target's data structures
3679 to see what overlays are mapped, and updates GDB's overlay mapping with
3680 this information.
3681
3682 In this simple implementation, the target data structures are as follows:
3683 unsigned _novlys; /# number of overlay sections #/
3684 unsigned _ovly_table[_novlys][4] = {
3685 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3686 {..., ..., ..., ...},
3687 }
3688 unsigned _novly_regions; /# number of overlay regions #/
3689 unsigned _ovly_region_table[_novly_regions][3] = {
3690 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3691 {..., ..., ...},
3692 }
3693 These functions will attempt to update GDB's mappedness state in the
3694 symbol section table, based on the target's mappedness state.
3695
3696 To do this, we keep a cached copy of the target's _ovly_table, and
3697 attempt to detect when the cached copy is invalidated. The main
3698 entry point is "simple_overlay_update(SECT), which looks up SECT in
3699 the cached table and re-reads only the entry for that section from
3700 the target (whenever possible).
3701 */
3702
3703 /* Cached, dynamically allocated copies of the target data structures: */
3704 static unsigned (*cache_ovly_table)[4] = 0;
3705 #if 0
3706 static unsigned (*cache_ovly_region_table)[3] = 0;
3707 #endif
3708 static unsigned cache_novlys = 0;
3709 #if 0
3710 static unsigned cache_novly_regions = 0;
3711 #endif
3712 static CORE_ADDR cache_ovly_table_base = 0;
3713 #if 0
3714 static CORE_ADDR cache_ovly_region_table_base = 0;
3715 #endif
3716 enum ovly_index
3717 {
3718 VMA, SIZE, LMA, MAPPED
3719 };
3720 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3721 / TARGET_CHAR_BIT)
3722
3723 /* Throw away the cached copy of _ovly_table */
3724 static void
3725 simple_free_overlay_table (void)
3726 {
3727 if (cache_ovly_table)
3728 xfree (cache_ovly_table);
3729 cache_novlys = 0;
3730 cache_ovly_table = NULL;
3731 cache_ovly_table_base = 0;
3732 }
3733
3734 #if 0
3735 /* Throw away the cached copy of _ovly_region_table */
3736 static void
3737 simple_free_overlay_region_table (void)
3738 {
3739 if (cache_ovly_region_table)
3740 xfree (cache_ovly_region_table);
3741 cache_novly_regions = 0;
3742 cache_ovly_region_table = NULL;
3743 cache_ovly_region_table_base = 0;
3744 }
3745 #endif
3746
3747 /* Read an array of ints from the target into a local buffer.
3748 Convert to host order. int LEN is number of ints */
3749 static void
3750 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3751 {
3752 /* FIXME (alloca): Not safe if array is very large. */
3753 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3754 int i;
3755
3756 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3757 for (i = 0; i < len; i++)
3758 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3759 TARGET_LONG_BYTES);
3760 }
3761
3762 /* Find and grab a copy of the target _ovly_table
3763 (and _novlys, which is needed for the table's size) */
3764 static int
3765 simple_read_overlay_table (void)
3766 {
3767 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3768
3769 simple_free_overlay_table ();
3770 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3771 if (! novlys_msym)
3772 {
3773 error (_("Error reading inferior's overlay table: "
3774 "couldn't find `_novlys' variable\n"
3775 "in inferior. Use `overlay manual' mode."));
3776 return 0;
3777 }
3778
3779 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3780 if (! ovly_table_msym)
3781 {
3782 error (_("Error reading inferior's overlay table: couldn't find "
3783 "`_ovly_table' array\n"
3784 "in inferior. Use `overlay manual' mode."));
3785 return 0;
3786 }
3787
3788 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3789 cache_ovly_table
3790 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3791 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3792 read_target_long_array (cache_ovly_table_base,
3793 (unsigned int *) cache_ovly_table,
3794 cache_novlys * 4);
3795
3796 return 1; /* SUCCESS */
3797 }
3798
3799 #if 0
3800 /* Find and grab a copy of the target _ovly_region_table
3801 (and _novly_regions, which is needed for the table's size) */
3802 static int
3803 simple_read_overlay_region_table (void)
3804 {
3805 struct minimal_symbol *msym;
3806
3807 simple_free_overlay_region_table ();
3808 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3809 if (msym != NULL)
3810 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3811 else
3812 return 0; /* failure */
3813 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3814 if (cache_ovly_region_table != NULL)
3815 {
3816 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3817 if (msym != NULL)
3818 {
3819 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3820 read_target_long_array (cache_ovly_region_table_base,
3821 (unsigned int *) cache_ovly_region_table,
3822 cache_novly_regions * 3);
3823 }
3824 else
3825 return 0; /* failure */
3826 }
3827 else
3828 return 0; /* failure */
3829 return 1; /* SUCCESS */
3830 }
3831 #endif
3832
3833 /* Function: simple_overlay_update_1
3834 A helper function for simple_overlay_update. Assuming a cached copy
3835 of _ovly_table exists, look through it to find an entry whose vma,
3836 lma and size match those of OSECT. Re-read the entry and make sure
3837 it still matches OSECT (else the table may no longer be valid).
3838 Set OSECT's mapped state to match the entry. Return: 1 for
3839 success, 0 for failure. */
3840
3841 static int
3842 simple_overlay_update_1 (struct obj_section *osect)
3843 {
3844 int i, size;
3845 bfd *obfd = osect->objfile->obfd;
3846 asection *bsect = osect->the_bfd_section;
3847
3848 size = bfd_get_section_size (osect->the_bfd_section);
3849 for (i = 0; i < cache_novlys; i++)
3850 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3851 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3852 /* && cache_ovly_table[i][SIZE] == size */ )
3853 {
3854 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3855 (unsigned int *) cache_ovly_table[i], 4);
3856 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3857 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3858 /* && cache_ovly_table[i][SIZE] == size */ )
3859 {
3860 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3861 return 1;
3862 }
3863 else /* Warning! Warning! Target's ovly table has changed! */
3864 return 0;
3865 }
3866 return 0;
3867 }
3868
3869 /* Function: simple_overlay_update
3870 If OSECT is NULL, then update all sections' mapped state
3871 (after re-reading the entire target _ovly_table).
3872 If OSECT is non-NULL, then try to find a matching entry in the
3873 cached ovly_table and update only OSECT's mapped state.
3874 If a cached entry can't be found or the cache isn't valid, then
3875 re-read the entire cache, and go ahead and update all sections. */
3876
3877 void
3878 simple_overlay_update (struct obj_section *osect)
3879 {
3880 struct objfile *objfile;
3881
3882 /* Were we given an osect to look up? NULL means do all of them. */
3883 if (osect)
3884 /* Have we got a cached copy of the target's overlay table? */
3885 if (cache_ovly_table != NULL)
3886 /* Does its cached location match what's currently in the symtab? */
3887 if (cache_ovly_table_base ==
3888 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3889 /* Then go ahead and try to look up this single section in the cache */
3890 if (simple_overlay_update_1 (osect))
3891 /* Found it! We're done. */
3892 return;
3893
3894 /* Cached table no good: need to read the entire table anew.
3895 Or else we want all the sections, in which case it's actually
3896 more efficient to read the whole table in one block anyway. */
3897
3898 if (! simple_read_overlay_table ())
3899 return;
3900
3901 /* Now may as well update all sections, even if only one was requested. */
3902 ALL_OBJSECTIONS (objfile, osect)
3903 if (section_is_overlay (osect))
3904 {
3905 int i, size;
3906 bfd *obfd = osect->objfile->obfd;
3907 asection *bsect = osect->the_bfd_section;
3908
3909 size = bfd_get_section_size (bsect);
3910 for (i = 0; i < cache_novlys; i++)
3911 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3912 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3913 /* && cache_ovly_table[i][SIZE] == size */ )
3914 { /* obj_section matches i'th entry in ovly_table */
3915 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3916 break; /* finished with inner for loop: break out */
3917 }
3918 }
3919 }
3920
3921 /* Set the output sections and output offsets for section SECTP in
3922 ABFD. The relocation code in BFD will read these offsets, so we
3923 need to be sure they're initialized. We map each section to itself,
3924 with no offset; this means that SECTP->vma will be honored. */
3925
3926 static void
3927 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3928 {
3929 sectp->output_section = sectp;
3930 sectp->output_offset = 0;
3931 }
3932
3933 /* Relocate the contents of a debug section SECTP in ABFD. The
3934 contents are stored in BUF if it is non-NULL, or returned in a
3935 malloc'd buffer otherwise.
3936
3937 For some platforms and debug info formats, shared libraries contain
3938 relocations against the debug sections (particularly for DWARF-2;
3939 one affected platform is PowerPC GNU/Linux, although it depends on
3940 the version of the linker in use). Also, ELF object files naturally
3941 have unresolved relocations for their debug sections. We need to apply
3942 the relocations in order to get the locations of symbols correct. */
3943
3944 bfd_byte *
3945 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3946 {
3947 /* We're only interested in debugging sections with relocation
3948 information. */
3949 if ((sectp->flags & SEC_RELOC) == 0)
3950 return NULL;
3951 if ((sectp->flags & SEC_DEBUGGING) == 0)
3952 return NULL;
3953
3954 /* We will handle section offsets properly elsewhere, so relocate as if
3955 all sections begin at 0. */
3956 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3957
3958 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3959 }
3960
3961 struct symfile_segment_data *
3962 get_symfile_segment_data (bfd *abfd)
3963 {
3964 struct sym_fns *sf = find_sym_fns (abfd);
3965
3966 if (sf == NULL)
3967 return NULL;
3968
3969 return sf->sym_segments (abfd);
3970 }
3971
3972 void
3973 free_symfile_segment_data (struct symfile_segment_data *data)
3974 {
3975 xfree (data->segment_bases);
3976 xfree (data->segment_sizes);
3977 xfree (data->segment_info);
3978 xfree (data);
3979 }
3980
3981
3982 /* Given:
3983 - DATA, containing segment addresses from the object file ABFD, and
3984 the mapping from ABFD's sections onto the segments that own them,
3985 and
3986 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3987 segment addresses reported by the target,
3988 store the appropriate offsets for each section in OFFSETS.
3989
3990 If there are fewer entries in SEGMENT_BASES than there are segments
3991 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3992
3993 If there are more entries, then ignore the extra. The target may
3994 not be able to distinguish between an empty data segment and a
3995 missing data segment; a missing text segment is less plausible. */
3996 int
3997 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3998 struct section_offsets *offsets,
3999 int num_segment_bases,
4000 const CORE_ADDR *segment_bases)
4001 {
4002 int i;
4003 asection *sect;
4004
4005 /* It doesn't make sense to call this function unless you have some
4006 segment base addresses. */
4007 gdb_assert (segment_bases > 0);
4008
4009 /* If we do not have segment mappings for the object file, we
4010 can not relocate it by segments. */
4011 gdb_assert (data != NULL);
4012 gdb_assert (data->num_segments > 0);
4013
4014 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4015 {
4016 int which = data->segment_info[i];
4017
4018 gdb_assert (0 <= which && which <= data->num_segments);
4019
4020 /* Don't bother computing offsets for sections that aren't
4021 loaded as part of any segment. */
4022 if (! which)
4023 continue;
4024
4025 /* Use the last SEGMENT_BASES entry as the address of any extra
4026 segments mentioned in DATA->segment_info. */
4027 if (which > num_segment_bases)
4028 which = num_segment_bases;
4029
4030 offsets->offsets[i] = (segment_bases[which - 1]
4031 - data->segment_bases[which - 1]);
4032 }
4033
4034 return 1;
4035 }
4036
4037 static void
4038 symfile_find_segment_sections (struct objfile *objfile)
4039 {
4040 bfd *abfd = objfile->obfd;
4041 int i;
4042 asection *sect;
4043 struct symfile_segment_data *data;
4044
4045 data = get_symfile_segment_data (objfile->obfd);
4046 if (data == NULL)
4047 return;
4048
4049 if (data->num_segments != 1 && data->num_segments != 2)
4050 {
4051 free_symfile_segment_data (data);
4052 return;
4053 }
4054
4055 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4056 {
4057 CORE_ADDR vma;
4058 int which = data->segment_info[i];
4059
4060 if (which == 1)
4061 {
4062 if (objfile->sect_index_text == -1)
4063 objfile->sect_index_text = sect->index;
4064
4065 if (objfile->sect_index_rodata == -1)
4066 objfile->sect_index_rodata = sect->index;
4067 }
4068 else if (which == 2)
4069 {
4070 if (objfile->sect_index_data == -1)
4071 objfile->sect_index_data = sect->index;
4072
4073 if (objfile->sect_index_bss == -1)
4074 objfile->sect_index_bss = sect->index;
4075 }
4076 }
4077
4078 free_symfile_segment_data (data);
4079 }
4080
4081 void
4082 _initialize_symfile (void)
4083 {
4084 struct cmd_list_element *c;
4085
4086 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4087 Load symbol table from executable file FILE.\n\
4088 The `file' command can also load symbol tables, as well as setting the file\n\
4089 to execute."), &cmdlist);
4090 set_cmd_completer (c, filename_completer);
4091
4092 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4093 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4094 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4095 ADDR is the starting address of the file's text.\n\
4096 The optional arguments are section-name section-address pairs and\n\
4097 should be specified if the data and bss segments are not contiguous\n\
4098 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4099 &cmdlist);
4100 set_cmd_completer (c, filename_completer);
4101
4102 c = add_cmd ("add-shared-symbol-files", class_files,
4103 add_shared_symbol_files_command, _("\
4104 Load the symbols from shared objects in the dynamic linker's link map."),
4105 &cmdlist);
4106 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4107 &cmdlist);
4108
4109 c = add_cmd ("load", class_files, load_command, _("\
4110 Dynamically load FILE into the running program, and record its symbols\n\
4111 for access from GDB.\n\
4112 A load OFFSET may also be given."), &cmdlist);
4113 set_cmd_completer (c, filename_completer);
4114
4115 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4116 &symbol_reloading, _("\
4117 Set dynamic symbol table reloading multiple times in one run."), _("\
4118 Show dynamic symbol table reloading multiple times in one run."), NULL,
4119 NULL,
4120 show_symbol_reloading,
4121 &setlist, &showlist);
4122
4123 add_prefix_cmd ("overlay", class_support, overlay_command,
4124 _("Commands for debugging overlays."), &overlaylist,
4125 "overlay ", 0, &cmdlist);
4126
4127 add_com_alias ("ovly", "overlay", class_alias, 1);
4128 add_com_alias ("ov", "overlay", class_alias, 1);
4129
4130 add_cmd ("map-overlay", class_support, map_overlay_command,
4131 _("Assert that an overlay section is mapped."), &overlaylist);
4132
4133 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4134 _("Assert that an overlay section is unmapped."), &overlaylist);
4135
4136 add_cmd ("list-overlays", class_support, list_overlays_command,
4137 _("List mappings of overlay sections."), &overlaylist);
4138
4139 add_cmd ("manual", class_support, overlay_manual_command,
4140 _("Enable overlay debugging."), &overlaylist);
4141 add_cmd ("off", class_support, overlay_off_command,
4142 _("Disable overlay debugging."), &overlaylist);
4143 add_cmd ("auto", class_support, overlay_auto_command,
4144 _("Enable automatic overlay debugging."), &overlaylist);
4145 add_cmd ("load-target", class_support, overlay_load_command,
4146 _("Read the overlay mapping state from the target."), &overlaylist);
4147
4148 /* Filename extension to source language lookup table: */
4149 init_filename_language_table ();
4150 add_setshow_string_noescape_cmd ("extension-language", class_files,
4151 &ext_args, _("\
4152 Set mapping between filename extension and source language."), _("\
4153 Show mapping between filename extension and source language."), _("\
4154 Usage: set extension-language .foo bar"),
4155 set_ext_lang_command,
4156 show_ext_args,
4157 &setlist, &showlist);
4158
4159 add_info ("extensions", info_ext_lang_command,
4160 _("All filename extensions associated with a source language."));
4161
4162 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4163 &debug_file_directory, _("\
4164 Set the directory where separate debug symbols are searched for."), _("\
4165 Show the directory where separate debug symbols are searched for."), _("\
4166 Separate debug symbols are first searched for in the same\n\
4167 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4168 and lastly at the path of the directory of the binary with\n\
4169 the global debug-file directory prepended."),
4170 NULL,
4171 show_debug_file_directory,
4172 &setlist, &showlist);
4173
4174 add_setshow_boolean_cmd ("symbol-loading", no_class,
4175 &print_symbol_loading, _("\
4176 Set printing of symbol loading messages."), _("\
4177 Show printing of symbol loading messages."), NULL,
4178 NULL,
4179 NULL,
4180 &setprintlist, &showprintlist);
4181 }
This page took 0.117634 seconds and 4 git commands to generate.