2004-02-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
212 SYMBOL_NATURAL_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306 void
307 find_lowest_section (bfd *abfd, asection *sect, void *obj)
308 {
309 asection **lowest = (asection **) obj;
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321 }
322
323 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325 struct section_addr_info *
326 alloc_section_addr_info (size_t num_sections)
327 {
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338 }
339
340 /* Build (allocate and populate) a section_addr_info struct from
341 an existing section table. */
342
343 extern struct section_addr_info *
344 build_section_addr_info_from_section_table (const struct section_table *start,
345 const struct section_table *end)
346 {
347 struct section_addr_info *sap;
348 const struct section_table *stp;
349 int oidx;
350
351 sap = alloc_section_addr_info (end - start);
352
353 for (stp = start, oidx = 0; stp != end; stp++)
354 {
355 if (bfd_get_section_flags (stp->bfd,
356 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
357 && oidx < end - start)
358 {
359 sap->other[oidx].addr = stp->addr;
360 sap->other[oidx].name
361 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
362 sap->other[oidx].sectindex = stp->the_bfd_section->index;
363 oidx++;
364 }
365 }
366
367 return sap;
368 }
369
370
371 /* Free all memory allocated by build_section_addr_info_from_section_table. */
372
373 extern void
374 free_section_addr_info (struct section_addr_info *sap)
375 {
376 int idx;
377
378 for (idx = 0; idx < sap->num_sections; idx++)
379 if (sap->other[idx].name)
380 xfree (sap->other[idx].name);
381 xfree (sap);
382 }
383
384
385 /* Initialize OBJFILE's sect_index_* members. */
386 static void
387 init_objfile_sect_indices (struct objfile *objfile)
388 {
389 asection *sect;
390 int i;
391
392 sect = bfd_get_section_by_name (objfile->obfd, ".text");
393 if (sect)
394 objfile->sect_index_text = sect->index;
395
396 sect = bfd_get_section_by_name (objfile->obfd, ".data");
397 if (sect)
398 objfile->sect_index_data = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
401 if (sect)
402 objfile->sect_index_bss = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
405 if (sect)
406 objfile->sect_index_rodata = sect->index;
407
408 /* This is where things get really weird... We MUST have valid
409 indices for the various sect_index_* members or gdb will abort.
410 So if for example, there is no ".text" section, we have to
411 accomodate that. Except when explicitly adding symbol files at
412 some address, section_offsets contains nothing but zeros, so it
413 doesn't matter which slot in section_offsets the individual
414 sect_index_* members index into. So if they are all zero, it is
415 safe to just point all the currently uninitialized indices to the
416 first slot. */
417
418 for (i = 0; i < objfile->num_sections; i++)
419 {
420 if (ANOFFSET (objfile->section_offsets, i) != 0)
421 {
422 break;
423 }
424 }
425 if (i == objfile->num_sections)
426 {
427 if (objfile->sect_index_text == -1)
428 objfile->sect_index_text = 0;
429 if (objfile->sect_index_data == -1)
430 objfile->sect_index_data = 0;
431 if (objfile->sect_index_bss == -1)
432 objfile->sect_index_bss = 0;
433 if (objfile->sect_index_rodata == -1)
434 objfile->sect_index_rodata = 0;
435 }
436 }
437
438
439 /* Parse the user's idea of an offset for dynamic linking, into our idea
440 of how to represent it for fast symbol reading. This is the default
441 version of the sym_fns.sym_offsets function for symbol readers that
442 don't need to do anything special. It allocates a section_offsets table
443 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
444
445 void
446 default_symfile_offsets (struct objfile *objfile,
447 struct section_addr_info *addrs)
448 {
449 int i;
450
451 objfile->num_sections = bfd_count_sections (objfile->obfd);
452 objfile->section_offsets = (struct section_offsets *)
453 obstack_alloc (&objfile->objfile_obstack,
454 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
455 memset (objfile->section_offsets, 0,
456 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
457
458 /* Now calculate offsets for section that were specified by the
459 caller. */
460 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
461 {
462 struct other_sections *osp ;
463
464 osp = &addrs->other[i] ;
465 if (osp->addr == 0)
466 continue;
467
468 /* Record all sections in offsets */
469 /* The section_offsets in the objfile are here filled in using
470 the BFD index. */
471 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
472 }
473
474 /* Remember the bfd indexes for the .text, .data, .bss and
475 .rodata sections. */
476 init_objfile_sect_indices (objfile);
477 }
478
479
480 /* Process a symbol file, as either the main file or as a dynamically
481 loaded file.
482
483 OBJFILE is where the symbols are to be read from.
484
485 ADDRS is the list of section load addresses. If the user has given
486 an 'add-symbol-file' command, then this is the list of offsets and
487 addresses he or she provided as arguments to the command; or, if
488 we're handling a shared library, these are the actual addresses the
489 sections are loaded at, according to the inferior's dynamic linker
490 (as gleaned by GDB's shared library code). We convert each address
491 into an offset from the section VMA's as it appears in the object
492 file, and then call the file's sym_offsets function to convert this
493 into a format-specific offset table --- a `struct section_offsets'.
494 If ADDRS is non-zero, OFFSETS must be zero.
495
496 OFFSETS is a table of section offsets already in the right
497 format-specific representation. NUM_OFFSETS is the number of
498 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
499 assume this is the proper table the call to sym_offsets described
500 above would produce. Instead of calling sym_offsets, we just dump
501 it right into objfile->section_offsets. (When we're re-reading
502 symbols from an objfile, we don't have the original load address
503 list any more; all we have is the section offset table.) If
504 OFFSETS is non-zero, ADDRS must be zero.
505
506 MAINLINE is nonzero if this is the main symbol file, or zero if
507 it's an extra symbol file such as dynamically loaded code.
508
509 VERBO is nonzero if the caller has printed a verbose message about
510 the symbol reading (and complaints can be more terse about it). */
511
512 void
513 syms_from_objfile (struct objfile *objfile,
514 struct section_addr_info *addrs,
515 struct section_offsets *offsets,
516 int num_offsets,
517 int mainline,
518 int verbo)
519 {
520 struct section_addr_info *local_addr = NULL;
521 struct cleanup *old_chain;
522
523 gdb_assert (! (addrs && offsets));
524
525 init_entry_point_info (objfile);
526 find_sym_fns (objfile);
527
528 if (objfile->sf == NULL)
529 return; /* No symbols. */
530
531 /* Make sure that partially constructed symbol tables will be cleaned up
532 if an error occurs during symbol reading. */
533 old_chain = make_cleanup_free_objfile (objfile);
534
535 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
536 list. We now establish the convention that an addr of zero means
537 no load address was specified. */
538 if (! addrs && ! offsets)
539 {
540 local_addr
541 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
542 make_cleanup (xfree, local_addr);
543 addrs = local_addr;
544 }
545
546 /* Now either addrs or offsets is non-zero. */
547
548 if (mainline)
549 {
550 /* We will modify the main symbol table, make sure that all its users
551 will be cleaned up if an error occurs during symbol reading. */
552 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
553
554 /* Since no error yet, throw away the old symbol table. */
555
556 if (symfile_objfile != NULL)
557 {
558 free_objfile (symfile_objfile);
559 symfile_objfile = NULL;
560 }
561
562 /* Currently we keep symbols from the add-symbol-file command.
563 If the user wants to get rid of them, they should do "symbol-file"
564 without arguments first. Not sure this is the best behavior
565 (PR 2207). */
566
567 (*objfile->sf->sym_new_init) (objfile);
568 }
569
570 /* Convert addr into an offset rather than an absolute address.
571 We find the lowest address of a loaded segment in the objfile,
572 and assume that <addr> is where that got loaded.
573
574 We no longer warn if the lowest section is not a text segment (as
575 happens for the PA64 port. */
576 if (!mainline && addrs && addrs->other[0].name)
577 {
578 asection *lower_sect;
579 asection *sect;
580 CORE_ADDR lower_offset;
581 int i;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. FIXME!! won't work without call to find
585 .text first, but this assumes text is lowest section. */
586 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
587 if (lower_sect == NULL)
588 bfd_map_over_sections (objfile->obfd, find_lowest_section,
589 &lower_sect);
590 if (lower_sect == NULL)
591 warning ("no loadable sections found in added symbol-file %s",
592 objfile->name);
593 else
594 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
595 warning ("Lowest section in %s is %s at %s",
596 objfile->name,
597 bfd_section_name (objfile->obfd, lower_sect),
598 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
599 if (lower_sect != NULL)
600 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
601 else
602 lower_offset = 0;
603
604 /* Calculate offsets for the loadable sections.
605 FIXME! Sections must be in order of increasing loadable section
606 so that contiguous sections can use the lower-offset!!!
607
608 Adjust offsets if the segments are not contiguous.
609 If the section is contiguous, its offset should be set to
610 the offset of the highest loadable section lower than it
611 (the loadable section directly below it in memory).
612 this_offset = lower_offset = lower_addr - lower_orig_addr */
613
614 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
615 {
616 if (addrs->other[i].addr != 0)
617 {
618 sect = bfd_get_section_by_name (objfile->obfd,
619 addrs->other[i].name);
620 if (sect)
621 {
622 addrs->other[i].addr
623 -= bfd_section_vma (objfile->obfd, sect);
624 lower_offset = addrs->other[i].addr;
625 /* This is the index used by BFD. */
626 addrs->other[i].sectindex = sect->index ;
627 }
628 else
629 {
630 warning ("section %s not found in %s",
631 addrs->other[i].name,
632 objfile->name);
633 addrs->other[i].addr = 0;
634 }
635 }
636 else
637 addrs->other[i].addr = lower_offset;
638 }
639 }
640
641 /* Initialize symbol reading routines for this objfile, allow complaints to
642 appear for this new file, and record how verbose to be, then do the
643 initial symbol reading for this file. */
644
645 (*objfile->sf->sym_init) (objfile);
646 clear_complaints (&symfile_complaints, 1, verbo);
647
648 if (addrs)
649 (*objfile->sf->sym_offsets) (objfile, addrs);
650 else
651 {
652 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
653
654 /* Just copy in the offset table directly as given to us. */
655 objfile->num_sections = num_offsets;
656 objfile->section_offsets
657 = ((struct section_offsets *)
658 obstack_alloc (&objfile->objfile_obstack, size));
659 memcpy (objfile->section_offsets, offsets, size);
660
661 init_objfile_sect_indices (objfile);
662 }
663
664 #ifndef DEPRECATED_IBM6000_TARGET
665 /* This is a SVR4/SunOS specific hack, I think. In any event, it
666 screws RS/6000. sym_offsets should be doing this sort of thing,
667 because it knows the mapping between bfd sections and
668 section_offsets. */
669 /* This is a hack. As far as I can tell, section offsets are not
670 target dependent. They are all set to addr with a couple of
671 exceptions. The exceptions are sysvr4 shared libraries, whose
672 offsets are kept in solib structures anyway and rs6000 xcoff
673 which handles shared libraries in a completely unique way.
674
675 Section offsets are built similarly, except that they are built
676 by adding addr in all cases because there is no clear mapping
677 from section_offsets into actual sections. Note that solib.c
678 has a different algorithm for finding section offsets.
679
680 These should probably all be collapsed into some target
681 independent form of shared library support. FIXME. */
682
683 if (addrs)
684 {
685 struct obj_section *s;
686
687 /* Map section offsets in "addr" back to the object's
688 sections by comparing the section names with bfd's
689 section names. Then adjust the section address by
690 the offset. */ /* for gdb/13815 */
691
692 ALL_OBJFILE_OSECTIONS (objfile, s)
693 {
694 CORE_ADDR s_addr = 0;
695 int i;
696
697 for (i = 0;
698 !s_addr && i < addrs->num_sections && addrs->other[i].name;
699 i++)
700 if (strcmp (bfd_section_name (s->objfile->obfd,
701 s->the_bfd_section),
702 addrs->other[i].name) == 0)
703 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
704
705 s->addr -= s->offset;
706 s->addr += s_addr;
707 s->endaddr -= s->offset;
708 s->endaddr += s_addr;
709 s->offset += s_addr;
710 }
711 }
712 #endif /* not DEPRECATED_IBM6000_TARGET */
713
714 (*objfile->sf->sym_read) (objfile, mainline);
715
716 /* Don't allow char * to have a typename (else would get caddr_t).
717 Ditto void *. FIXME: Check whether this is now done by all the
718 symbol readers themselves (many of them now do), and if so remove
719 it from here. */
720
721 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
722 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
723
724 /* Mark the objfile has having had initial symbol read attempted. Note
725 that this does not mean we found any symbols... */
726
727 objfile->flags |= OBJF_SYMS;
728
729 /* Discard cleanups as symbol reading was successful. */
730
731 discard_cleanups (old_chain);
732 }
733
734 /* Perform required actions after either reading in the initial
735 symbols for a new objfile, or mapping in the symbols from a reusable
736 objfile. */
737
738 void
739 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
740 {
741
742 /* If this is the main symbol file we have to clean up all users of the
743 old main symbol file. Otherwise it is sufficient to fixup all the
744 breakpoints that may have been redefined by this symbol file. */
745 if (mainline)
746 {
747 /* OK, make it the "real" symbol file. */
748 symfile_objfile = objfile;
749
750 clear_symtab_users ();
751 }
752 else
753 {
754 breakpoint_re_set ();
755 }
756
757 /* We're done reading the symbol file; finish off complaints. */
758 clear_complaints (&symfile_complaints, 0, verbo);
759 }
760
761 /* Process a symbol file, as either the main file or as a dynamically
762 loaded file.
763
764 NAME is the file name (which will be tilde-expanded and made
765 absolute herein) (but we don't free or modify NAME itself).
766
767 FROM_TTY says how verbose to be.
768
769 MAINLINE specifies whether this is the main symbol file, or whether
770 it's an extra symbol file such as dynamically loaded code.
771
772 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
773 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
774 non-zero.
775
776 Upon success, returns a pointer to the objfile that was added.
777 Upon failure, jumps back to command level (never returns). */
778 static struct objfile *
779 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
780 struct section_addr_info *addrs,
781 struct section_offsets *offsets,
782 int num_offsets,
783 int mainline, int flags)
784 {
785 struct objfile *objfile;
786 struct partial_symtab *psymtab;
787 char *debugfile;
788 bfd *abfd;
789 struct section_addr_info *orig_addrs;
790 struct cleanup *my_cleanups;
791
792 /* Open a bfd for the file, and give user a chance to burp if we'd be
793 interactively wiping out any existing symbols. */
794
795 abfd = symfile_bfd_open (name);
796
797 if ((have_full_symbols () || have_partial_symbols ())
798 && mainline
799 && from_tty
800 && !query ("Load new symbol table from \"%s\"? ", name))
801 error ("Not confirmed.");
802
803 objfile = allocate_objfile (abfd, flags);
804
805 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
806 my_cleanups = make_cleanup (xfree, orig_addrs);
807 if (addrs)
808 {
809 int i;
810 orig_addrs->num_sections = addrs->num_sections;
811 for (i = 0; i < addrs->num_sections; i++)
812 orig_addrs->other[i] = addrs->other[i];
813 }
814
815 /* We either created a new mapped symbol table, mapped an existing
816 symbol table file which has not had initial symbol reading
817 performed, or need to read an unmapped symbol table. */
818 if (from_tty || info_verbose)
819 {
820 if (pre_add_symbol_hook)
821 pre_add_symbol_hook (name);
822 else
823 {
824 printf_unfiltered ("Reading symbols from %s...", name);
825 wrap_here ("");
826 gdb_flush (gdb_stdout);
827 }
828 }
829 syms_from_objfile (objfile, addrs, offsets, num_offsets,
830 mainline, from_tty);
831
832 /* We now have at least a partial symbol table. Check to see if the
833 user requested that all symbols be read on initial access via either
834 the gdb startup command line or on a per symbol file basis. Expand
835 all partial symbol tables for this objfile if so. */
836
837 if ((flags & OBJF_READNOW) || readnow_symbol_files)
838 {
839 if (from_tty || info_verbose)
840 {
841 printf_unfiltered ("expanding to full symbols...");
842 wrap_here ("");
843 gdb_flush (gdb_stdout);
844 }
845
846 for (psymtab = objfile->psymtabs;
847 psymtab != NULL;
848 psymtab = psymtab->next)
849 {
850 psymtab_to_symtab (psymtab);
851 }
852 }
853
854 debugfile = find_separate_debug_file (objfile);
855 if (debugfile)
856 {
857 if (addrs != NULL)
858 {
859 objfile->separate_debug_objfile
860 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
861 }
862 else
863 {
864 objfile->separate_debug_objfile
865 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
866 }
867 objfile->separate_debug_objfile->separate_debug_objfile_backlink
868 = objfile;
869
870 /* Put the separate debug object before the normal one, this is so that
871 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
872 put_objfile_before (objfile->separate_debug_objfile, objfile);
873
874 xfree (debugfile);
875 }
876
877 if (!have_partial_symbols () && !have_full_symbols ())
878 {
879 wrap_here ("");
880 printf_unfiltered ("(no debugging symbols found)...");
881 wrap_here ("");
882 }
883
884 if (from_tty || info_verbose)
885 {
886 if (post_add_symbol_hook)
887 post_add_symbol_hook ();
888 else
889 {
890 printf_unfiltered ("done.\n");
891 }
892 }
893
894 /* We print some messages regardless of whether 'from_tty ||
895 info_verbose' is true, so make sure they go out at the right
896 time. */
897 gdb_flush (gdb_stdout);
898
899 do_cleanups (my_cleanups);
900
901 if (objfile->sf == NULL)
902 return objfile; /* No symbols. */
903
904 new_symfile_objfile (objfile, mainline, from_tty);
905
906 if (target_new_objfile_hook)
907 target_new_objfile_hook (objfile);
908
909 return (objfile);
910 }
911
912
913 /* Process a symbol file, as either the main file or as a dynamically
914 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
915 for details. */
916 struct objfile *
917 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
918 int mainline, int flags)
919 {
920 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
921 mainline, flags);
922 }
923
924
925 /* Call symbol_file_add() with default values and update whatever is
926 affected by the loading of a new main().
927 Used when the file is supplied in the gdb command line
928 and by some targets with special loading requirements.
929 The auxiliary function, symbol_file_add_main_1(), has the flags
930 argument for the switches that can only be specified in the symbol_file
931 command itself. */
932
933 void
934 symbol_file_add_main (char *args, int from_tty)
935 {
936 symbol_file_add_main_1 (args, from_tty, 0);
937 }
938
939 static void
940 symbol_file_add_main_1 (char *args, int from_tty, int flags)
941 {
942 symbol_file_add (args, from_tty, NULL, 1, flags);
943
944 #ifdef HPUXHPPA
945 RESET_HP_UX_GLOBALS ();
946 #endif
947
948 /* Getting new symbols may change our opinion about
949 what is frameless. */
950 reinit_frame_cache ();
951
952 set_initial_language ();
953 }
954
955 void
956 symbol_file_clear (int from_tty)
957 {
958 if ((have_full_symbols () || have_partial_symbols ())
959 && from_tty
960 && !query ("Discard symbol table from `%s'? ",
961 symfile_objfile->name))
962 error ("Not confirmed.");
963 free_all_objfiles ();
964
965 /* solib descriptors may have handles to objfiles. Since their
966 storage has just been released, we'd better wipe the solib
967 descriptors as well.
968 */
969 #if defined(SOLIB_RESTART)
970 SOLIB_RESTART ();
971 #endif
972
973 symfile_objfile = NULL;
974 if (from_tty)
975 printf_unfiltered ("No symbol file now.\n");
976 #ifdef HPUXHPPA
977 RESET_HP_UX_GLOBALS ();
978 #endif
979 }
980
981 static char *
982 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
983 {
984 asection *sect;
985 bfd_size_type debuglink_size;
986 unsigned long crc32;
987 char *contents;
988 int crc_offset;
989 unsigned char *p;
990
991 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
992
993 if (sect == NULL)
994 return NULL;
995
996 debuglink_size = bfd_section_size (objfile->obfd, sect);
997
998 contents = xmalloc (debuglink_size);
999 bfd_get_section_contents (objfile->obfd, sect, contents,
1000 (file_ptr)0, (bfd_size_type)debuglink_size);
1001
1002 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1003 crc_offset = strlen (contents) + 1;
1004 crc_offset = (crc_offset + 3) & ~3;
1005
1006 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1007
1008 *crc32_out = crc32;
1009 return contents;
1010 }
1011
1012 static int
1013 separate_debug_file_exists (const char *name, unsigned long crc)
1014 {
1015 unsigned long file_crc = 0;
1016 int fd;
1017 char buffer[8*1024];
1018 int count;
1019
1020 fd = open (name, O_RDONLY | O_BINARY);
1021 if (fd < 0)
1022 return 0;
1023
1024 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1025 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1026
1027 close (fd);
1028
1029 return crc == file_crc;
1030 }
1031
1032 static char *debug_file_directory = NULL;
1033
1034 #if ! defined (DEBUG_SUBDIRECTORY)
1035 #define DEBUG_SUBDIRECTORY ".debug"
1036 #endif
1037
1038 static char *
1039 find_separate_debug_file (struct objfile *objfile)
1040 {
1041 asection *sect;
1042 char *basename;
1043 char *dir;
1044 char *debugfile;
1045 char *name_copy;
1046 bfd_size_type debuglink_size;
1047 unsigned long crc32;
1048 int i;
1049
1050 basename = get_debug_link_info (objfile, &crc32);
1051
1052 if (basename == NULL)
1053 return NULL;
1054
1055 dir = xstrdup (objfile->name);
1056
1057 /* Strip off the final filename part, leaving the directory name,
1058 followed by a slash. Objfile names should always be absolute and
1059 tilde-expanded, so there should always be a slash in there
1060 somewhere. */
1061 for (i = strlen(dir) - 1; i >= 0; i--)
1062 {
1063 if (IS_DIR_SEPARATOR (dir[i]))
1064 break;
1065 }
1066 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1067 dir[i+1] = '\0';
1068
1069 debugfile = alloca (strlen (debug_file_directory) + 1
1070 + strlen (dir)
1071 + strlen (DEBUG_SUBDIRECTORY)
1072 + strlen ("/")
1073 + strlen (basename)
1074 + 1);
1075
1076 /* First try in the same directory as the original file. */
1077 strcpy (debugfile, dir);
1078 strcat (debugfile, basename);
1079
1080 if (separate_debug_file_exists (debugfile, crc32))
1081 {
1082 xfree (basename);
1083 xfree (dir);
1084 return xstrdup (debugfile);
1085 }
1086
1087 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1088 strcpy (debugfile, dir);
1089 strcat (debugfile, DEBUG_SUBDIRECTORY);
1090 strcat (debugfile, "/");
1091 strcat (debugfile, basename);
1092
1093 if (separate_debug_file_exists (debugfile, crc32))
1094 {
1095 xfree (basename);
1096 xfree (dir);
1097 return xstrdup (debugfile);
1098 }
1099
1100 /* Then try in the global debugfile directory. */
1101 strcpy (debugfile, debug_file_directory);
1102 strcat (debugfile, "/");
1103 strcat (debugfile, dir);
1104 strcat (debugfile, basename);
1105
1106 if (separate_debug_file_exists (debugfile, crc32))
1107 {
1108 xfree (basename);
1109 xfree (dir);
1110 return xstrdup (debugfile);
1111 }
1112
1113 xfree (basename);
1114 xfree (dir);
1115 return NULL;
1116 }
1117
1118
1119 /* This is the symbol-file command. Read the file, analyze its
1120 symbols, and add a struct symtab to a symtab list. The syntax of
1121 the command is rather bizarre--(1) buildargv implements various
1122 quoting conventions which are undocumented and have little or
1123 nothing in common with the way things are quoted (or not quoted)
1124 elsewhere in GDB, (2) options are used, which are not generally
1125 used in GDB (perhaps "set mapped on", "set readnow on" would be
1126 better), (3) the order of options matters, which is contrary to GNU
1127 conventions (because it is confusing and inconvenient). */
1128 /* Note: ezannoni 2000-04-17. This function used to have support for
1129 rombug (see remote-os9k.c). It consisted of a call to target_link()
1130 (target.c) to get the address of the text segment from the target,
1131 and pass that to symbol_file_add(). This is no longer supported. */
1132
1133 void
1134 symbol_file_command (char *args, int from_tty)
1135 {
1136 char **argv;
1137 char *name = NULL;
1138 struct cleanup *cleanups;
1139 int flags = OBJF_USERLOADED;
1140
1141 dont_repeat ();
1142
1143 if (args == NULL)
1144 {
1145 symbol_file_clear (from_tty);
1146 }
1147 else
1148 {
1149 if ((argv = buildargv (args)) == NULL)
1150 {
1151 nomem (0);
1152 }
1153 cleanups = make_cleanup_freeargv (argv);
1154 while (*argv != NULL)
1155 {
1156 if (strcmp (*argv, "-readnow") == 0)
1157 flags |= OBJF_READNOW;
1158 else if (**argv == '-')
1159 error ("unknown option `%s'", *argv);
1160 else
1161 {
1162 name = *argv;
1163
1164 symbol_file_add_main_1 (name, from_tty, flags);
1165 }
1166 argv++;
1167 }
1168
1169 if (name == NULL)
1170 {
1171 error ("no symbol file name was specified");
1172 }
1173 do_cleanups (cleanups);
1174 }
1175 }
1176
1177 /* Set the initial language.
1178
1179 A better solution would be to record the language in the psymtab when reading
1180 partial symbols, and then use it (if known) to set the language. This would
1181 be a win for formats that encode the language in an easily discoverable place,
1182 such as DWARF. For stabs, we can jump through hoops looking for specially
1183 named symbols or try to intuit the language from the specific type of stabs
1184 we find, but we can't do that until later when we read in full symbols.
1185 FIXME. */
1186
1187 static void
1188 set_initial_language (void)
1189 {
1190 struct partial_symtab *pst;
1191 enum language lang = language_unknown;
1192
1193 pst = find_main_psymtab ();
1194 if (pst != NULL)
1195 {
1196 if (pst->filename != NULL)
1197 {
1198 lang = deduce_language_from_filename (pst->filename);
1199 }
1200 if (lang == language_unknown)
1201 {
1202 /* Make C the default language */
1203 lang = language_c;
1204 }
1205 set_language (lang);
1206 expected_language = current_language; /* Don't warn the user */
1207 }
1208 }
1209
1210 /* Open file specified by NAME and hand it off to BFD for preliminary
1211 analysis. Result is a newly initialized bfd *, which includes a newly
1212 malloc'd` copy of NAME (tilde-expanded and made absolute).
1213 In case of trouble, error() is called. */
1214
1215 bfd *
1216 symfile_bfd_open (char *name)
1217 {
1218 bfd *sym_bfd;
1219 int desc;
1220 char *absolute_name;
1221
1222
1223
1224 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1225
1226 /* Look down path for it, allocate 2nd new malloc'd copy. */
1227 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1228 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1229 if (desc < 0)
1230 {
1231 char *exename = alloca (strlen (name) + 5);
1232 strcat (strcpy (exename, name), ".exe");
1233 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1234 0, &absolute_name);
1235 }
1236 #endif
1237 if (desc < 0)
1238 {
1239 make_cleanup (xfree, name);
1240 perror_with_name (name);
1241 }
1242 xfree (name); /* Free 1st new malloc'd copy */
1243 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1244 /* It'll be freed in free_objfile(). */
1245
1246 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1247 if (!sym_bfd)
1248 {
1249 close (desc);
1250 make_cleanup (xfree, name);
1251 error ("\"%s\": can't open to read symbols: %s.", name,
1252 bfd_errmsg (bfd_get_error ()));
1253 }
1254 bfd_set_cacheable (sym_bfd, 1);
1255
1256 if (!bfd_check_format (sym_bfd, bfd_object))
1257 {
1258 /* FIXME: should be checking for errors from bfd_close (for one thing,
1259 on error it does not free all the storage associated with the
1260 bfd). */
1261 bfd_close (sym_bfd); /* This also closes desc */
1262 make_cleanup (xfree, name);
1263 error ("\"%s\": can't read symbols: %s.", name,
1264 bfd_errmsg (bfd_get_error ()));
1265 }
1266 return (sym_bfd);
1267 }
1268
1269 /* Return the section index for the given section name. Return -1 if
1270 the section was not found. */
1271 int
1272 get_section_index (struct objfile *objfile, char *section_name)
1273 {
1274 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1275 if (sect)
1276 return sect->index;
1277 else
1278 return -1;
1279 }
1280
1281 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1282 startup by the _initialize routine in each object file format reader,
1283 to register information about each format the the reader is prepared
1284 to handle. */
1285
1286 void
1287 add_symtab_fns (struct sym_fns *sf)
1288 {
1289 sf->next = symtab_fns;
1290 symtab_fns = sf;
1291 }
1292
1293
1294 /* Initialize to read symbols from the symbol file sym_bfd. It either
1295 returns or calls error(). The result is an initialized struct sym_fns
1296 in the objfile structure, that contains cached information about the
1297 symbol file. */
1298
1299 static void
1300 find_sym_fns (struct objfile *objfile)
1301 {
1302 struct sym_fns *sf;
1303 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1304 char *our_target = bfd_get_target (objfile->obfd);
1305
1306 if (our_flavour == bfd_target_srec_flavour
1307 || our_flavour == bfd_target_ihex_flavour
1308 || our_flavour == bfd_target_tekhex_flavour)
1309 return; /* No symbols. */
1310
1311 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1312 {
1313 if (our_flavour == sf->sym_flavour)
1314 {
1315 objfile->sf = sf;
1316 return;
1317 }
1318 }
1319 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1320 bfd_get_target (objfile->obfd));
1321 }
1322 \f
1323 /* This function runs the load command of our current target. */
1324
1325 static void
1326 load_command (char *arg, int from_tty)
1327 {
1328 if (arg == NULL)
1329 arg = get_exec_file (1);
1330 target_load (arg, from_tty);
1331
1332 /* After re-loading the executable, we don't really know which
1333 overlays are mapped any more. */
1334 overlay_cache_invalid = 1;
1335 }
1336
1337 /* This version of "load" should be usable for any target. Currently
1338 it is just used for remote targets, not inftarg.c or core files,
1339 on the theory that only in that case is it useful.
1340
1341 Avoiding xmodem and the like seems like a win (a) because we don't have
1342 to worry about finding it, and (b) On VMS, fork() is very slow and so
1343 we don't want to run a subprocess. On the other hand, I'm not sure how
1344 performance compares. */
1345
1346 static int download_write_size = 512;
1347 static int validate_download = 0;
1348
1349 /* Callback service function for generic_load (bfd_map_over_sections). */
1350
1351 static void
1352 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1353 {
1354 bfd_size_type *sum = data;
1355
1356 *sum += bfd_get_section_size_before_reloc (asec);
1357 }
1358
1359 /* Opaque data for load_section_callback. */
1360 struct load_section_data {
1361 unsigned long load_offset;
1362 unsigned long write_count;
1363 unsigned long data_count;
1364 bfd_size_type total_size;
1365 };
1366
1367 /* Callback service function for generic_load (bfd_map_over_sections). */
1368
1369 static void
1370 load_section_callback (bfd *abfd, asection *asec, void *data)
1371 {
1372 struct load_section_data *args = data;
1373
1374 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1375 {
1376 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1377 if (size > 0)
1378 {
1379 char *buffer;
1380 struct cleanup *old_chain;
1381 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1382 bfd_size_type block_size;
1383 int err;
1384 const char *sect_name = bfd_get_section_name (abfd, asec);
1385 bfd_size_type sent;
1386
1387 if (download_write_size > 0 && size > download_write_size)
1388 block_size = download_write_size;
1389 else
1390 block_size = size;
1391
1392 buffer = xmalloc (size);
1393 old_chain = make_cleanup (xfree, buffer);
1394
1395 /* Is this really necessary? I guess it gives the user something
1396 to look at during a long download. */
1397 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1398 sect_name, paddr_nz (size), paddr_nz (lma));
1399
1400 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1401
1402 sent = 0;
1403 do
1404 {
1405 int len;
1406 bfd_size_type this_transfer = size - sent;
1407
1408 if (this_transfer >= block_size)
1409 this_transfer = block_size;
1410 len = target_write_memory_partial (lma, buffer,
1411 this_transfer, &err);
1412 if (err)
1413 break;
1414 if (validate_download)
1415 {
1416 /* Broken memories and broken monitors manifest
1417 themselves here when bring new computers to
1418 life. This doubles already slow downloads. */
1419 /* NOTE: cagney/1999-10-18: A more efficient
1420 implementation might add a verify_memory()
1421 method to the target vector and then use
1422 that. remote.c could implement that method
1423 using the ``qCRC'' packet. */
1424 char *check = xmalloc (len);
1425 struct cleanup *verify_cleanups =
1426 make_cleanup (xfree, check);
1427
1428 if (target_read_memory (lma, check, len) != 0)
1429 error ("Download verify read failed at 0x%s",
1430 paddr (lma));
1431 if (memcmp (buffer, check, len) != 0)
1432 error ("Download verify compare failed at 0x%s",
1433 paddr (lma));
1434 do_cleanups (verify_cleanups);
1435 }
1436 args->data_count += len;
1437 lma += len;
1438 buffer += len;
1439 args->write_count += 1;
1440 sent += len;
1441 if (quit_flag
1442 || (ui_load_progress_hook != NULL
1443 && ui_load_progress_hook (sect_name, sent)))
1444 error ("Canceled the download");
1445
1446 if (show_load_progress != NULL)
1447 show_load_progress (sect_name, sent, size,
1448 args->data_count, args->total_size);
1449 }
1450 while (sent < size);
1451
1452 if (err != 0)
1453 error ("Memory access error while loading section %s.", sect_name);
1454
1455 do_cleanups (old_chain);
1456 }
1457 }
1458 }
1459
1460 void
1461 generic_load (char *args, int from_tty)
1462 {
1463 asection *s;
1464 bfd *loadfile_bfd;
1465 time_t start_time, end_time; /* Start and end times of download */
1466 char *filename;
1467 struct cleanup *old_cleanups;
1468 char *offptr;
1469 struct load_section_data cbdata;
1470 CORE_ADDR entry;
1471
1472 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1473 cbdata.write_count = 0; /* Number of writes needed. */
1474 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1475 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1476
1477 /* Parse the input argument - the user can specify a load offset as
1478 a second argument. */
1479 filename = xmalloc (strlen (args) + 1);
1480 old_cleanups = make_cleanup (xfree, filename);
1481 strcpy (filename, args);
1482 offptr = strchr (filename, ' ');
1483 if (offptr != NULL)
1484 {
1485 char *endptr;
1486
1487 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1488 if (offptr == endptr)
1489 error ("Invalid download offset:%s\n", offptr);
1490 *offptr = '\0';
1491 }
1492 else
1493 cbdata.load_offset = 0;
1494
1495 /* Open the file for loading. */
1496 loadfile_bfd = bfd_openr (filename, gnutarget);
1497 if (loadfile_bfd == NULL)
1498 {
1499 perror_with_name (filename);
1500 return;
1501 }
1502
1503 /* FIXME: should be checking for errors from bfd_close (for one thing,
1504 on error it does not free all the storage associated with the
1505 bfd). */
1506 make_cleanup_bfd_close (loadfile_bfd);
1507
1508 if (!bfd_check_format (loadfile_bfd, bfd_object))
1509 {
1510 error ("\"%s\" is not an object file: %s", filename,
1511 bfd_errmsg (bfd_get_error ()));
1512 }
1513
1514 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1515 (void *) &cbdata.total_size);
1516
1517 start_time = time (NULL);
1518
1519 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1520
1521 end_time = time (NULL);
1522
1523 entry = bfd_get_start_address (loadfile_bfd);
1524 ui_out_text (uiout, "Start address ");
1525 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1526 ui_out_text (uiout, ", load size ");
1527 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1528 ui_out_text (uiout, "\n");
1529 /* We were doing this in remote-mips.c, I suspect it is right
1530 for other targets too. */
1531 write_pc (entry);
1532
1533 /* FIXME: are we supposed to call symbol_file_add or not? According
1534 to a comment from remote-mips.c (where a call to symbol_file_add
1535 was commented out), making the call confuses GDB if more than one
1536 file is loaded in. Some targets do (e.g., remote-vx.c) but
1537 others don't (or didn't - perhaphs they have all been deleted). */
1538
1539 print_transfer_performance (gdb_stdout, cbdata.data_count,
1540 cbdata.write_count, end_time - start_time);
1541
1542 do_cleanups (old_cleanups);
1543 }
1544
1545 /* Report how fast the transfer went. */
1546
1547 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1548 replaced by print_transfer_performance (with a very different
1549 function signature). */
1550
1551 void
1552 report_transfer_performance (unsigned long data_count, time_t start_time,
1553 time_t end_time)
1554 {
1555 print_transfer_performance (gdb_stdout, data_count,
1556 end_time - start_time, 0);
1557 }
1558
1559 void
1560 print_transfer_performance (struct ui_file *stream,
1561 unsigned long data_count,
1562 unsigned long write_count,
1563 unsigned long time_count)
1564 {
1565 ui_out_text (uiout, "Transfer rate: ");
1566 if (time_count > 0)
1567 {
1568 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1569 (data_count * 8) / time_count);
1570 ui_out_text (uiout, " bits/sec");
1571 }
1572 else
1573 {
1574 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1575 ui_out_text (uiout, " bits in <1 sec");
1576 }
1577 if (write_count > 0)
1578 {
1579 ui_out_text (uiout, ", ");
1580 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1581 ui_out_text (uiout, " bytes/write");
1582 }
1583 ui_out_text (uiout, ".\n");
1584 }
1585
1586 /* This function allows the addition of incrementally linked object files.
1587 It does not modify any state in the target, only in the debugger. */
1588 /* Note: ezannoni 2000-04-13 This function/command used to have a
1589 special case syntax for the rombug target (Rombug is the boot
1590 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1591 rombug case, the user doesn't need to supply a text address,
1592 instead a call to target_link() (in target.c) would supply the
1593 value to use. We are now discontinuing this type of ad hoc syntax. */
1594
1595 static void
1596 add_symbol_file_command (char *args, int from_tty)
1597 {
1598 char *filename = NULL;
1599 int flags = OBJF_USERLOADED;
1600 char *arg;
1601 int expecting_option = 0;
1602 int section_index = 0;
1603 int argcnt = 0;
1604 int sec_num = 0;
1605 int i;
1606 int expecting_sec_name = 0;
1607 int expecting_sec_addr = 0;
1608
1609 struct sect_opt
1610 {
1611 char *name;
1612 char *value;
1613 };
1614
1615 struct section_addr_info *section_addrs;
1616 struct sect_opt *sect_opts = NULL;
1617 size_t num_sect_opts = 0;
1618 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1619
1620 num_sect_opts = 16;
1621 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1622 * sizeof (struct sect_opt));
1623
1624 dont_repeat ();
1625
1626 if (args == NULL)
1627 error ("add-symbol-file takes a file name and an address");
1628
1629 /* Make a copy of the string that we can safely write into. */
1630 args = xstrdup (args);
1631
1632 while (*args != '\000')
1633 {
1634 /* Any leading spaces? */
1635 while (isspace (*args))
1636 args++;
1637
1638 /* Point arg to the beginning of the argument. */
1639 arg = args;
1640
1641 /* Move args pointer over the argument. */
1642 while ((*args != '\000') && !isspace (*args))
1643 args++;
1644
1645 /* If there are more arguments, terminate arg and
1646 proceed past it. */
1647 if (*args != '\000')
1648 *args++ = '\000';
1649
1650 /* Now process the argument. */
1651 if (argcnt == 0)
1652 {
1653 /* The first argument is the file name. */
1654 filename = tilde_expand (arg);
1655 make_cleanup (xfree, filename);
1656 }
1657 else
1658 if (argcnt == 1)
1659 {
1660 /* The second argument is always the text address at which
1661 to load the program. */
1662 sect_opts[section_index].name = ".text";
1663 sect_opts[section_index].value = arg;
1664 if (++section_index > num_sect_opts)
1665 {
1666 num_sect_opts *= 2;
1667 sect_opts = ((struct sect_opt *)
1668 xrealloc (sect_opts,
1669 num_sect_opts
1670 * sizeof (struct sect_opt)));
1671 }
1672 }
1673 else
1674 {
1675 /* It's an option (starting with '-') or it's an argument
1676 to an option */
1677
1678 if (*arg == '-')
1679 {
1680 if (strcmp (arg, "-readnow") == 0)
1681 flags |= OBJF_READNOW;
1682 else if (strcmp (arg, "-s") == 0)
1683 {
1684 expecting_sec_name = 1;
1685 expecting_sec_addr = 1;
1686 }
1687 }
1688 else
1689 {
1690 if (expecting_sec_name)
1691 {
1692 sect_opts[section_index].name = arg;
1693 expecting_sec_name = 0;
1694 }
1695 else
1696 if (expecting_sec_addr)
1697 {
1698 sect_opts[section_index].value = arg;
1699 expecting_sec_addr = 0;
1700 if (++section_index > num_sect_opts)
1701 {
1702 num_sect_opts *= 2;
1703 sect_opts = ((struct sect_opt *)
1704 xrealloc (sect_opts,
1705 num_sect_opts
1706 * sizeof (struct sect_opt)));
1707 }
1708 }
1709 else
1710 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1711 }
1712 }
1713 argcnt++;
1714 }
1715
1716 /* Print the prompt for the query below. And save the arguments into
1717 a sect_addr_info structure to be passed around to other
1718 functions. We have to split this up into separate print
1719 statements because local_hex_string returns a local static
1720 string. */
1721
1722 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
1723 section_addrs = alloc_section_addr_info (section_index);
1724 make_cleanup (xfree, section_addrs);
1725 for (i = 0; i < section_index; i++)
1726 {
1727 CORE_ADDR addr;
1728 char *val = sect_opts[i].value;
1729 char *sec = sect_opts[i].name;
1730
1731 addr = parse_and_eval_address (val);
1732
1733 /* Here we store the section offsets in the order they were
1734 entered on the command line. */
1735 section_addrs->other[sec_num].name = sec;
1736 section_addrs->other[sec_num].addr = addr;
1737 printf_unfiltered ("\t%s_addr = %s\n",
1738 sec,
1739 local_hex_string ((unsigned long)addr));
1740 sec_num++;
1741
1742 /* The object's sections are initialized when a
1743 call is made to build_objfile_section_table (objfile).
1744 This happens in reread_symbols.
1745 At this point, we don't know what file type this is,
1746 so we can't determine what section names are valid. */
1747 }
1748
1749 if (from_tty && (!query ("%s", "")))
1750 error ("Not confirmed.");
1751
1752 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1753
1754 /* Getting new symbols may change our opinion about what is
1755 frameless. */
1756 reinit_frame_cache ();
1757 do_cleanups (my_cleanups);
1758 }
1759 \f
1760 static void
1761 add_shared_symbol_files_command (char *args, int from_tty)
1762 {
1763 #ifdef ADD_SHARED_SYMBOL_FILES
1764 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1765 #else
1766 error ("This command is not available in this configuration of GDB.");
1767 #endif
1768 }
1769 \f
1770 /* Re-read symbols if a symbol-file has changed. */
1771 void
1772 reread_symbols (void)
1773 {
1774 struct objfile *objfile;
1775 long new_modtime;
1776 int reread_one = 0;
1777 struct stat new_statbuf;
1778 int res;
1779
1780 /* With the addition of shared libraries, this should be modified,
1781 the load time should be saved in the partial symbol tables, since
1782 different tables may come from different source files. FIXME.
1783 This routine should then walk down each partial symbol table
1784 and see if the symbol table that it originates from has been changed */
1785
1786 for (objfile = object_files; objfile; objfile = objfile->next)
1787 {
1788 if (objfile->obfd)
1789 {
1790 #ifdef DEPRECATED_IBM6000_TARGET
1791 /* If this object is from a shared library, then you should
1792 stat on the library name, not member name. */
1793
1794 if (objfile->obfd->my_archive)
1795 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1796 else
1797 #endif
1798 res = stat (objfile->name, &new_statbuf);
1799 if (res != 0)
1800 {
1801 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1802 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
1803 objfile->name);
1804 continue;
1805 }
1806 new_modtime = new_statbuf.st_mtime;
1807 if (new_modtime != objfile->mtime)
1808 {
1809 struct cleanup *old_cleanups;
1810 struct section_offsets *offsets;
1811 int num_offsets;
1812 char *obfd_filename;
1813
1814 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
1815 objfile->name);
1816
1817 /* There are various functions like symbol_file_add,
1818 symfile_bfd_open, syms_from_objfile, etc., which might
1819 appear to do what we want. But they have various other
1820 effects which we *don't* want. So we just do stuff
1821 ourselves. We don't worry about mapped files (for one thing,
1822 any mapped file will be out of date). */
1823
1824 /* If we get an error, blow away this objfile (not sure if
1825 that is the correct response for things like shared
1826 libraries). */
1827 old_cleanups = make_cleanup_free_objfile (objfile);
1828 /* We need to do this whenever any symbols go away. */
1829 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1830
1831 /* Clean up any state BFD has sitting around. We don't need
1832 to close the descriptor but BFD lacks a way of closing the
1833 BFD without closing the descriptor. */
1834 obfd_filename = bfd_get_filename (objfile->obfd);
1835 if (!bfd_close (objfile->obfd))
1836 error ("Can't close BFD for %s: %s", objfile->name,
1837 bfd_errmsg (bfd_get_error ()));
1838 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1839 if (objfile->obfd == NULL)
1840 error ("Can't open %s to read symbols.", objfile->name);
1841 /* bfd_openr sets cacheable to true, which is what we want. */
1842 if (!bfd_check_format (objfile->obfd, bfd_object))
1843 error ("Can't read symbols from %s: %s.", objfile->name,
1844 bfd_errmsg (bfd_get_error ()));
1845
1846 /* Save the offsets, we will nuke them with the rest of the
1847 objfile_obstack. */
1848 num_offsets = objfile->num_sections;
1849 offsets = ((struct section_offsets *)
1850 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1851 memcpy (offsets, objfile->section_offsets,
1852 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1853
1854 /* Nuke all the state that we will re-read. Much of the following
1855 code which sets things to NULL really is necessary to tell
1856 other parts of GDB that there is nothing currently there. */
1857
1858 /* FIXME: Do we have to free a whole linked list, or is this
1859 enough? */
1860 if (objfile->global_psymbols.list)
1861 xmfree (objfile->md, objfile->global_psymbols.list);
1862 memset (&objfile->global_psymbols, 0,
1863 sizeof (objfile->global_psymbols));
1864 if (objfile->static_psymbols.list)
1865 xmfree (objfile->md, objfile->static_psymbols.list);
1866 memset (&objfile->static_psymbols, 0,
1867 sizeof (objfile->static_psymbols));
1868
1869 /* Free the obstacks for non-reusable objfiles */
1870 bcache_xfree (objfile->psymbol_cache);
1871 objfile->psymbol_cache = bcache_xmalloc ();
1872 bcache_xfree (objfile->macro_cache);
1873 objfile->macro_cache = bcache_xmalloc ();
1874 if (objfile->demangled_names_hash != NULL)
1875 {
1876 htab_delete (objfile->demangled_names_hash);
1877 objfile->demangled_names_hash = NULL;
1878 }
1879 obstack_free (&objfile->objfile_obstack, 0);
1880 objfile->sections = NULL;
1881 objfile->symtabs = NULL;
1882 objfile->psymtabs = NULL;
1883 objfile->free_psymtabs = NULL;
1884 objfile->cp_namespace_symtab = NULL;
1885 objfile->msymbols = NULL;
1886 objfile->sym_private = NULL;
1887 objfile->minimal_symbol_count = 0;
1888 memset (&objfile->msymbol_hash, 0,
1889 sizeof (objfile->msymbol_hash));
1890 memset (&objfile->msymbol_demangled_hash, 0,
1891 sizeof (objfile->msymbol_demangled_hash));
1892 objfile->fundamental_types = NULL;
1893 clear_objfile_data (objfile);
1894 if (objfile->sf != NULL)
1895 {
1896 (*objfile->sf->sym_finish) (objfile);
1897 }
1898
1899 /* We never make this a mapped file. */
1900 objfile->md = NULL;
1901 objfile->psymbol_cache = bcache_xmalloc ();
1902 objfile->macro_cache = bcache_xmalloc ();
1903 /* obstack_init also initializes the obstack so it is
1904 empty. We could use obstack_specify_allocation but
1905 gdb_obstack.h specifies the alloc/dealloc
1906 functions. */
1907 obstack_init (&objfile->objfile_obstack);
1908 if (build_objfile_section_table (objfile))
1909 {
1910 error ("Can't find the file sections in `%s': %s",
1911 objfile->name, bfd_errmsg (bfd_get_error ()));
1912 }
1913 terminate_minimal_symbol_table (objfile);
1914
1915 /* We use the same section offsets as from last time. I'm not
1916 sure whether that is always correct for shared libraries. */
1917 objfile->section_offsets = (struct section_offsets *)
1918 obstack_alloc (&objfile->objfile_obstack,
1919 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1920 memcpy (objfile->section_offsets, offsets,
1921 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1922 objfile->num_sections = num_offsets;
1923
1924 /* What the hell is sym_new_init for, anyway? The concept of
1925 distinguishing between the main file and additional files
1926 in this way seems rather dubious. */
1927 if (objfile == symfile_objfile)
1928 {
1929 (*objfile->sf->sym_new_init) (objfile);
1930 #ifdef HPUXHPPA
1931 RESET_HP_UX_GLOBALS ();
1932 #endif
1933 }
1934
1935 (*objfile->sf->sym_init) (objfile);
1936 clear_complaints (&symfile_complaints, 1, 1);
1937 /* The "mainline" parameter is a hideous hack; I think leaving it
1938 zero is OK since dbxread.c also does what it needs to do if
1939 objfile->global_psymbols.size is 0. */
1940 (*objfile->sf->sym_read) (objfile, 0);
1941 if (!have_partial_symbols () && !have_full_symbols ())
1942 {
1943 wrap_here ("");
1944 printf_unfiltered ("(no debugging symbols found)\n");
1945 wrap_here ("");
1946 }
1947 objfile->flags |= OBJF_SYMS;
1948
1949 /* We're done reading the symbol file; finish off complaints. */
1950 clear_complaints (&symfile_complaints, 0, 1);
1951
1952 /* Getting new symbols may change our opinion about what is
1953 frameless. */
1954
1955 reinit_frame_cache ();
1956
1957 /* Discard cleanups as symbol reading was successful. */
1958 discard_cleanups (old_cleanups);
1959
1960 /* If the mtime has changed between the time we set new_modtime
1961 and now, we *want* this to be out of date, so don't call stat
1962 again now. */
1963 objfile->mtime = new_modtime;
1964 reread_one = 1;
1965 reread_separate_symbols (objfile);
1966 }
1967 }
1968 }
1969
1970 if (reread_one)
1971 clear_symtab_users ();
1972 }
1973
1974
1975 /* Handle separate debug info for OBJFILE, which has just been
1976 re-read:
1977 - If we had separate debug info before, but now we don't, get rid
1978 of the separated objfile.
1979 - If we didn't have separated debug info before, but now we do,
1980 read in the new separated debug info file.
1981 - If the debug link points to a different file, toss the old one
1982 and read the new one.
1983 This function does *not* handle the case where objfile is still
1984 using the same separate debug info file, but that file's timestamp
1985 has changed. That case should be handled by the loop in
1986 reread_symbols already. */
1987 static void
1988 reread_separate_symbols (struct objfile *objfile)
1989 {
1990 char *debug_file;
1991 unsigned long crc32;
1992
1993 /* Does the updated objfile's debug info live in a
1994 separate file? */
1995 debug_file = find_separate_debug_file (objfile);
1996
1997 if (objfile->separate_debug_objfile)
1998 {
1999 /* There are two cases where we need to get rid of
2000 the old separated debug info objfile:
2001 - if the new primary objfile doesn't have
2002 separated debug info, or
2003 - if the new primary objfile has separate debug
2004 info, but it's under a different filename.
2005
2006 If the old and new objfiles both have separate
2007 debug info, under the same filename, then we're
2008 okay --- if the separated file's contents have
2009 changed, we will have caught that when we
2010 visited it in this function's outermost
2011 loop. */
2012 if (! debug_file
2013 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2014 free_objfile (objfile->separate_debug_objfile);
2015 }
2016
2017 /* If the new objfile has separate debug info, and we
2018 haven't loaded it already, do so now. */
2019 if (debug_file
2020 && ! objfile->separate_debug_objfile)
2021 {
2022 /* Use the same section offset table as objfile itself.
2023 Preserve the flags from objfile that make sense. */
2024 objfile->separate_debug_objfile
2025 = (symbol_file_add_with_addrs_or_offsets
2026 (debug_file,
2027 info_verbose, /* from_tty: Don't override the default. */
2028 0, /* No addr table. */
2029 objfile->section_offsets, objfile->num_sections,
2030 0, /* Not mainline. See comments about this above. */
2031 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2032 | OBJF_USERLOADED)));
2033 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2034 = objfile;
2035 }
2036 }
2037
2038
2039 \f
2040
2041
2042 typedef struct
2043 {
2044 char *ext;
2045 enum language lang;
2046 }
2047 filename_language;
2048
2049 static filename_language *filename_language_table;
2050 static int fl_table_size, fl_table_next;
2051
2052 static void
2053 add_filename_language (char *ext, enum language lang)
2054 {
2055 if (fl_table_next >= fl_table_size)
2056 {
2057 fl_table_size += 10;
2058 filename_language_table =
2059 xrealloc (filename_language_table,
2060 fl_table_size * sizeof (*filename_language_table));
2061 }
2062
2063 filename_language_table[fl_table_next].ext = xstrdup (ext);
2064 filename_language_table[fl_table_next].lang = lang;
2065 fl_table_next++;
2066 }
2067
2068 static char *ext_args;
2069
2070 static void
2071 set_ext_lang_command (char *args, int from_tty)
2072 {
2073 int i;
2074 char *cp = ext_args;
2075 enum language lang;
2076
2077 /* First arg is filename extension, starting with '.' */
2078 if (*cp != '.')
2079 error ("'%s': Filename extension must begin with '.'", ext_args);
2080
2081 /* Find end of first arg. */
2082 while (*cp && !isspace (*cp))
2083 cp++;
2084
2085 if (*cp == '\0')
2086 error ("'%s': two arguments required -- filename extension and language",
2087 ext_args);
2088
2089 /* Null-terminate first arg */
2090 *cp++ = '\0';
2091
2092 /* Find beginning of second arg, which should be a source language. */
2093 while (*cp && isspace (*cp))
2094 cp++;
2095
2096 if (*cp == '\0')
2097 error ("'%s': two arguments required -- filename extension and language",
2098 ext_args);
2099
2100 /* Lookup the language from among those we know. */
2101 lang = language_enum (cp);
2102
2103 /* Now lookup the filename extension: do we already know it? */
2104 for (i = 0; i < fl_table_next; i++)
2105 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2106 break;
2107
2108 if (i >= fl_table_next)
2109 {
2110 /* new file extension */
2111 add_filename_language (ext_args, lang);
2112 }
2113 else
2114 {
2115 /* redefining a previously known filename extension */
2116
2117 /* if (from_tty) */
2118 /* query ("Really make files of type %s '%s'?", */
2119 /* ext_args, language_str (lang)); */
2120
2121 xfree (filename_language_table[i].ext);
2122 filename_language_table[i].ext = xstrdup (ext_args);
2123 filename_language_table[i].lang = lang;
2124 }
2125 }
2126
2127 static void
2128 info_ext_lang_command (char *args, int from_tty)
2129 {
2130 int i;
2131
2132 printf_filtered ("Filename extensions and the languages they represent:");
2133 printf_filtered ("\n\n");
2134 for (i = 0; i < fl_table_next; i++)
2135 printf_filtered ("\t%s\t- %s\n",
2136 filename_language_table[i].ext,
2137 language_str (filename_language_table[i].lang));
2138 }
2139
2140 static void
2141 init_filename_language_table (void)
2142 {
2143 if (fl_table_size == 0) /* protect against repetition */
2144 {
2145 fl_table_size = 20;
2146 fl_table_next = 0;
2147 filename_language_table =
2148 xmalloc (fl_table_size * sizeof (*filename_language_table));
2149 add_filename_language (".c", language_c);
2150 add_filename_language (".C", language_cplus);
2151 add_filename_language (".cc", language_cplus);
2152 add_filename_language (".cp", language_cplus);
2153 add_filename_language (".cpp", language_cplus);
2154 add_filename_language (".cxx", language_cplus);
2155 add_filename_language (".c++", language_cplus);
2156 add_filename_language (".java", language_java);
2157 add_filename_language (".class", language_java);
2158 add_filename_language (".m", language_objc);
2159 add_filename_language (".f", language_fortran);
2160 add_filename_language (".F", language_fortran);
2161 add_filename_language (".s", language_asm);
2162 add_filename_language (".S", language_asm);
2163 add_filename_language (".pas", language_pascal);
2164 add_filename_language (".p", language_pascal);
2165 add_filename_language (".pp", language_pascal);
2166 }
2167 }
2168
2169 enum language
2170 deduce_language_from_filename (char *filename)
2171 {
2172 int i;
2173 char *cp;
2174
2175 if (filename != NULL)
2176 if ((cp = strrchr (filename, '.')) != NULL)
2177 for (i = 0; i < fl_table_next; i++)
2178 if (strcmp (cp, filename_language_table[i].ext) == 0)
2179 return filename_language_table[i].lang;
2180
2181 return language_unknown;
2182 }
2183 \f
2184 /* allocate_symtab:
2185
2186 Allocate and partly initialize a new symbol table. Return a pointer
2187 to it. error() if no space.
2188
2189 Caller must set these fields:
2190 LINETABLE(symtab)
2191 symtab->blockvector
2192 symtab->dirname
2193 symtab->free_code
2194 symtab->free_ptr
2195 possibly free_named_symtabs (symtab->filename);
2196 */
2197
2198 struct symtab *
2199 allocate_symtab (char *filename, struct objfile *objfile)
2200 {
2201 struct symtab *symtab;
2202
2203 symtab = (struct symtab *)
2204 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2205 memset (symtab, 0, sizeof (*symtab));
2206 symtab->filename = obsavestring (filename, strlen (filename),
2207 &objfile->objfile_obstack);
2208 symtab->fullname = NULL;
2209 symtab->language = deduce_language_from_filename (filename);
2210 symtab->debugformat = obsavestring ("unknown", 7,
2211 &objfile->objfile_obstack);
2212
2213 /* Hook it to the objfile it comes from */
2214
2215 symtab->objfile = objfile;
2216 symtab->next = objfile->symtabs;
2217 objfile->symtabs = symtab;
2218
2219 /* FIXME: This should go away. It is only defined for the Z8000,
2220 and the Z8000 definition of this macro doesn't have anything to
2221 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2222 here for convenience. */
2223 #ifdef INIT_EXTRA_SYMTAB_INFO
2224 INIT_EXTRA_SYMTAB_INFO (symtab);
2225 #endif
2226
2227 return (symtab);
2228 }
2229
2230 struct partial_symtab *
2231 allocate_psymtab (char *filename, struct objfile *objfile)
2232 {
2233 struct partial_symtab *psymtab;
2234
2235 if (objfile->free_psymtabs)
2236 {
2237 psymtab = objfile->free_psymtabs;
2238 objfile->free_psymtabs = psymtab->next;
2239 }
2240 else
2241 psymtab = (struct partial_symtab *)
2242 obstack_alloc (&objfile->objfile_obstack,
2243 sizeof (struct partial_symtab));
2244
2245 memset (psymtab, 0, sizeof (struct partial_symtab));
2246 psymtab->filename = obsavestring (filename, strlen (filename),
2247 &objfile->objfile_obstack);
2248 psymtab->symtab = NULL;
2249
2250 /* Prepend it to the psymtab list for the objfile it belongs to.
2251 Psymtabs are searched in most recent inserted -> least recent
2252 inserted order. */
2253
2254 psymtab->objfile = objfile;
2255 psymtab->next = objfile->psymtabs;
2256 objfile->psymtabs = psymtab;
2257 #if 0
2258 {
2259 struct partial_symtab **prev_pst;
2260 psymtab->objfile = objfile;
2261 psymtab->next = NULL;
2262 prev_pst = &(objfile->psymtabs);
2263 while ((*prev_pst) != NULL)
2264 prev_pst = &((*prev_pst)->next);
2265 (*prev_pst) = psymtab;
2266 }
2267 #endif
2268
2269 return (psymtab);
2270 }
2271
2272 void
2273 discard_psymtab (struct partial_symtab *pst)
2274 {
2275 struct partial_symtab **prev_pst;
2276
2277 /* From dbxread.c:
2278 Empty psymtabs happen as a result of header files which don't
2279 have any symbols in them. There can be a lot of them. But this
2280 check is wrong, in that a psymtab with N_SLINE entries but
2281 nothing else is not empty, but we don't realize that. Fixing
2282 that without slowing things down might be tricky. */
2283
2284 /* First, snip it out of the psymtab chain */
2285
2286 prev_pst = &(pst->objfile->psymtabs);
2287 while ((*prev_pst) != pst)
2288 prev_pst = &((*prev_pst)->next);
2289 (*prev_pst) = pst->next;
2290
2291 /* Next, put it on a free list for recycling */
2292
2293 pst->next = pst->objfile->free_psymtabs;
2294 pst->objfile->free_psymtabs = pst;
2295 }
2296 \f
2297
2298 /* Reset all data structures in gdb which may contain references to symbol
2299 table data. */
2300
2301 void
2302 clear_symtab_users (void)
2303 {
2304 /* Someday, we should do better than this, by only blowing away
2305 the things that really need to be blown. */
2306 clear_value_history ();
2307 clear_displays ();
2308 clear_internalvars ();
2309 breakpoint_re_set ();
2310 set_default_breakpoint (0, 0, 0, 0);
2311 clear_current_source_symtab_and_line ();
2312 clear_pc_function_cache ();
2313 if (target_new_objfile_hook)
2314 target_new_objfile_hook (NULL);
2315 }
2316
2317 static void
2318 clear_symtab_users_cleanup (void *ignore)
2319 {
2320 clear_symtab_users ();
2321 }
2322
2323 /* clear_symtab_users_once:
2324
2325 This function is run after symbol reading, or from a cleanup.
2326 If an old symbol table was obsoleted, the old symbol table
2327 has been blown away, but the other GDB data structures that may
2328 reference it have not yet been cleared or re-directed. (The old
2329 symtab was zapped, and the cleanup queued, in free_named_symtab()
2330 below.)
2331
2332 This function can be queued N times as a cleanup, or called
2333 directly; it will do all the work the first time, and then will be a
2334 no-op until the next time it is queued. This works by bumping a
2335 counter at queueing time. Much later when the cleanup is run, or at
2336 the end of symbol processing (in case the cleanup is discarded), if
2337 the queued count is greater than the "done-count", we do the work
2338 and set the done-count to the queued count. If the queued count is
2339 less than or equal to the done-count, we just ignore the call. This
2340 is needed because reading a single .o file will often replace many
2341 symtabs (one per .h file, for example), and we don't want to reset
2342 the breakpoints N times in the user's face.
2343
2344 The reason we both queue a cleanup, and call it directly after symbol
2345 reading, is because the cleanup protects us in case of errors, but is
2346 discarded if symbol reading is successful. */
2347
2348 #if 0
2349 /* FIXME: As free_named_symtabs is currently a big noop this function
2350 is no longer needed. */
2351 static void clear_symtab_users_once (void);
2352
2353 static int clear_symtab_users_queued;
2354 static int clear_symtab_users_done;
2355
2356 static void
2357 clear_symtab_users_once (void)
2358 {
2359 /* Enforce once-per-`do_cleanups'-semantics */
2360 if (clear_symtab_users_queued <= clear_symtab_users_done)
2361 return;
2362 clear_symtab_users_done = clear_symtab_users_queued;
2363
2364 clear_symtab_users ();
2365 }
2366 #endif
2367
2368 /* Delete the specified psymtab, and any others that reference it. */
2369
2370 static void
2371 cashier_psymtab (struct partial_symtab *pst)
2372 {
2373 struct partial_symtab *ps, *pprev = NULL;
2374 int i;
2375
2376 /* Find its previous psymtab in the chain */
2377 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2378 {
2379 if (ps == pst)
2380 break;
2381 pprev = ps;
2382 }
2383
2384 if (ps)
2385 {
2386 /* Unhook it from the chain. */
2387 if (ps == pst->objfile->psymtabs)
2388 pst->objfile->psymtabs = ps->next;
2389 else
2390 pprev->next = ps->next;
2391
2392 /* FIXME, we can't conveniently deallocate the entries in the
2393 partial_symbol lists (global_psymbols/static_psymbols) that
2394 this psymtab points to. These just take up space until all
2395 the psymtabs are reclaimed. Ditto the dependencies list and
2396 filename, which are all in the objfile_obstack. */
2397
2398 /* We need to cashier any psymtab that has this one as a dependency... */
2399 again:
2400 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2401 {
2402 for (i = 0; i < ps->number_of_dependencies; i++)
2403 {
2404 if (ps->dependencies[i] == pst)
2405 {
2406 cashier_psymtab (ps);
2407 goto again; /* Must restart, chain has been munged. */
2408 }
2409 }
2410 }
2411 }
2412 }
2413
2414 /* If a symtab or psymtab for filename NAME is found, free it along
2415 with any dependent breakpoints, displays, etc.
2416 Used when loading new versions of object modules with the "add-file"
2417 command. This is only called on the top-level symtab or psymtab's name;
2418 it is not called for subsidiary files such as .h files.
2419
2420 Return value is 1 if we blew away the environment, 0 if not.
2421 FIXME. The return value appears to never be used.
2422
2423 FIXME. I think this is not the best way to do this. We should
2424 work on being gentler to the environment while still cleaning up
2425 all stray pointers into the freed symtab. */
2426
2427 int
2428 free_named_symtabs (char *name)
2429 {
2430 #if 0
2431 /* FIXME: With the new method of each objfile having it's own
2432 psymtab list, this function needs serious rethinking. In particular,
2433 why was it ever necessary to toss psymtabs with specific compilation
2434 unit filenames, as opposed to all psymtabs from a particular symbol
2435 file? -- fnf
2436 Well, the answer is that some systems permit reloading of particular
2437 compilation units. We want to blow away any old info about these
2438 compilation units, regardless of which objfiles they arrived in. --gnu. */
2439
2440 struct symtab *s;
2441 struct symtab *prev;
2442 struct partial_symtab *ps;
2443 struct blockvector *bv;
2444 int blewit = 0;
2445
2446 /* We only wack things if the symbol-reload switch is set. */
2447 if (!symbol_reloading)
2448 return 0;
2449
2450 /* Some symbol formats have trouble providing file names... */
2451 if (name == 0 || *name == '\0')
2452 return 0;
2453
2454 /* Look for a psymtab with the specified name. */
2455
2456 again2:
2457 for (ps = partial_symtab_list; ps; ps = ps->next)
2458 {
2459 if (strcmp (name, ps->filename) == 0)
2460 {
2461 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2462 goto again2; /* Must restart, chain has been munged */
2463 }
2464 }
2465
2466 /* Look for a symtab with the specified name. */
2467
2468 for (s = symtab_list; s; s = s->next)
2469 {
2470 if (strcmp (name, s->filename) == 0)
2471 break;
2472 prev = s;
2473 }
2474
2475 if (s)
2476 {
2477 if (s == symtab_list)
2478 symtab_list = s->next;
2479 else
2480 prev->next = s->next;
2481
2482 /* For now, queue a delete for all breakpoints, displays, etc., whether
2483 or not they depend on the symtab being freed. This should be
2484 changed so that only those data structures affected are deleted. */
2485
2486 /* But don't delete anything if the symtab is empty.
2487 This test is necessary due to a bug in "dbxread.c" that
2488 causes empty symtabs to be created for N_SO symbols that
2489 contain the pathname of the object file. (This problem
2490 has been fixed in GDB 3.9x). */
2491
2492 bv = BLOCKVECTOR (s);
2493 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2494 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2495 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2496 {
2497 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2498 name);
2499 clear_symtab_users_queued++;
2500 make_cleanup (clear_symtab_users_once, 0);
2501 blewit = 1;
2502 }
2503 else
2504 {
2505 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2506 name);
2507 }
2508
2509 free_symtab (s);
2510 }
2511 else
2512 {
2513 /* It is still possible that some breakpoints will be affected
2514 even though no symtab was found, since the file might have
2515 been compiled without debugging, and hence not be associated
2516 with a symtab. In order to handle this correctly, we would need
2517 to keep a list of text address ranges for undebuggable files.
2518 For now, we do nothing, since this is a fairly obscure case. */
2519 ;
2520 }
2521
2522 /* FIXME, what about the minimal symbol table? */
2523 return blewit;
2524 #else
2525 return (0);
2526 #endif
2527 }
2528 \f
2529 /* Allocate and partially fill a partial symtab. It will be
2530 completely filled at the end of the symbol list.
2531
2532 FILENAME is the name of the symbol-file we are reading from. */
2533
2534 struct partial_symtab *
2535 start_psymtab_common (struct objfile *objfile,
2536 struct section_offsets *section_offsets, char *filename,
2537 CORE_ADDR textlow, struct partial_symbol **global_syms,
2538 struct partial_symbol **static_syms)
2539 {
2540 struct partial_symtab *psymtab;
2541
2542 psymtab = allocate_psymtab (filename, objfile);
2543 psymtab->section_offsets = section_offsets;
2544 psymtab->textlow = textlow;
2545 psymtab->texthigh = psymtab->textlow; /* default */
2546 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2547 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2548 return (psymtab);
2549 }
2550 \f
2551 /* Add a symbol with a long value to a psymtab.
2552 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2553 Return the partial symbol that has been added. */
2554
2555 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2556 symbol is so that callers can get access to the symbol's demangled
2557 name, which they don't have any cheap way to determine otherwise.
2558 (Currenly, dwarf2read.c is the only file who uses that information,
2559 though it's possible that other readers might in the future.)
2560 Elena wasn't thrilled about that, and I don't blame her, but we
2561 couldn't come up with a better way to get that information. If
2562 it's needed in other situations, we could consider breaking up
2563 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2564 cache. */
2565
2566 const struct partial_symbol *
2567 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2568 enum address_class class,
2569 struct psymbol_allocation_list *list, long val, /* Value as a long */
2570 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2571 enum language language, struct objfile *objfile)
2572 {
2573 struct partial_symbol *psym;
2574 char *buf = alloca (namelength + 1);
2575 /* psymbol is static so that there will be no uninitialized gaps in the
2576 structure which might contain random data, causing cache misses in
2577 bcache. */
2578 static struct partial_symbol psymbol;
2579
2580 /* Create local copy of the partial symbol */
2581 memcpy (buf, name, namelength);
2582 buf[namelength] = '\0';
2583 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2584 if (val != 0)
2585 {
2586 SYMBOL_VALUE (&psymbol) = val;
2587 }
2588 else
2589 {
2590 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2591 }
2592 SYMBOL_SECTION (&psymbol) = 0;
2593 SYMBOL_LANGUAGE (&psymbol) = language;
2594 PSYMBOL_DOMAIN (&psymbol) = domain;
2595 PSYMBOL_CLASS (&psymbol) = class;
2596
2597 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2598
2599 /* Stash the partial symbol away in the cache */
2600 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2601 objfile->psymbol_cache);
2602
2603 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2604 if (list->next >= list->list + list->size)
2605 {
2606 extend_psymbol_list (list, objfile);
2607 }
2608 *list->next++ = psym;
2609 OBJSTAT (objfile, n_psyms++);
2610
2611 return psym;
2612 }
2613
2614 /* Add a symbol with a long value to a psymtab. This differs from
2615 * add_psymbol_to_list above in taking both a mangled and a demangled
2616 * name. */
2617
2618 void
2619 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2620 int dem_namelength, domain_enum domain,
2621 enum address_class class,
2622 struct psymbol_allocation_list *list, long val, /* Value as a long */
2623 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2624 enum language language,
2625 struct objfile *objfile)
2626 {
2627 struct partial_symbol *psym;
2628 char *buf = alloca (namelength + 1);
2629 /* psymbol is static so that there will be no uninitialized gaps in the
2630 structure which might contain random data, causing cache misses in
2631 bcache. */
2632 static struct partial_symbol psymbol;
2633
2634 /* Create local copy of the partial symbol */
2635
2636 memcpy (buf, name, namelength);
2637 buf[namelength] = '\0';
2638 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2639 objfile->psymbol_cache);
2640
2641 buf = alloca (dem_namelength + 1);
2642 memcpy (buf, dem_name, dem_namelength);
2643 buf[dem_namelength] = '\0';
2644
2645 switch (language)
2646 {
2647 case language_c:
2648 case language_cplus:
2649 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2650 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2651 break;
2652 /* FIXME What should be done for the default case? Ignoring for now. */
2653 }
2654
2655 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2656 if (val != 0)
2657 {
2658 SYMBOL_VALUE (&psymbol) = val;
2659 }
2660 else
2661 {
2662 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2663 }
2664 SYMBOL_SECTION (&psymbol) = 0;
2665 SYMBOL_LANGUAGE (&psymbol) = language;
2666 PSYMBOL_DOMAIN (&psymbol) = domain;
2667 PSYMBOL_CLASS (&psymbol) = class;
2668 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2669
2670 /* Stash the partial symbol away in the cache */
2671 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2672 objfile->psymbol_cache);
2673
2674 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2675 if (list->next >= list->list + list->size)
2676 {
2677 extend_psymbol_list (list, objfile);
2678 }
2679 *list->next++ = psym;
2680 OBJSTAT (objfile, n_psyms++);
2681 }
2682
2683 /* Initialize storage for partial symbols. */
2684
2685 void
2686 init_psymbol_list (struct objfile *objfile, int total_symbols)
2687 {
2688 /* Free any previously allocated psymbol lists. */
2689
2690 if (objfile->global_psymbols.list)
2691 {
2692 xmfree (objfile->md, objfile->global_psymbols.list);
2693 }
2694 if (objfile->static_psymbols.list)
2695 {
2696 xmfree (objfile->md, objfile->static_psymbols.list);
2697 }
2698
2699 /* Current best guess is that approximately a twentieth
2700 of the total symbols (in a debugging file) are global or static
2701 oriented symbols */
2702
2703 objfile->global_psymbols.size = total_symbols / 10;
2704 objfile->static_psymbols.size = total_symbols / 10;
2705
2706 if (objfile->global_psymbols.size > 0)
2707 {
2708 objfile->global_psymbols.next =
2709 objfile->global_psymbols.list = (struct partial_symbol **)
2710 xmmalloc (objfile->md, (objfile->global_psymbols.size
2711 * sizeof (struct partial_symbol *)));
2712 }
2713 if (objfile->static_psymbols.size > 0)
2714 {
2715 objfile->static_psymbols.next =
2716 objfile->static_psymbols.list = (struct partial_symbol **)
2717 xmmalloc (objfile->md, (objfile->static_psymbols.size
2718 * sizeof (struct partial_symbol *)));
2719 }
2720 }
2721
2722 /* OVERLAYS:
2723 The following code implements an abstraction for debugging overlay sections.
2724
2725 The target model is as follows:
2726 1) The gnu linker will permit multiple sections to be mapped into the
2727 same VMA, each with its own unique LMA (or load address).
2728 2) It is assumed that some runtime mechanism exists for mapping the
2729 sections, one by one, from the load address into the VMA address.
2730 3) This code provides a mechanism for gdb to keep track of which
2731 sections should be considered to be mapped from the VMA to the LMA.
2732 This information is used for symbol lookup, and memory read/write.
2733 For instance, if a section has been mapped then its contents
2734 should be read from the VMA, otherwise from the LMA.
2735
2736 Two levels of debugger support for overlays are available. One is
2737 "manual", in which the debugger relies on the user to tell it which
2738 overlays are currently mapped. This level of support is
2739 implemented entirely in the core debugger, and the information about
2740 whether a section is mapped is kept in the objfile->obj_section table.
2741
2742 The second level of support is "automatic", and is only available if
2743 the target-specific code provides functionality to read the target's
2744 overlay mapping table, and translate its contents for the debugger
2745 (by updating the mapped state information in the obj_section tables).
2746
2747 The interface is as follows:
2748 User commands:
2749 overlay map <name> -- tell gdb to consider this section mapped
2750 overlay unmap <name> -- tell gdb to consider this section unmapped
2751 overlay list -- list the sections that GDB thinks are mapped
2752 overlay read-target -- get the target's state of what's mapped
2753 overlay off/manual/auto -- set overlay debugging state
2754 Functional interface:
2755 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2756 section, return that section.
2757 find_pc_overlay(pc): find any overlay section that contains
2758 the pc, either in its VMA or its LMA
2759 overlay_is_mapped(sect): true if overlay is marked as mapped
2760 section_is_overlay(sect): true if section's VMA != LMA
2761 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2762 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2763 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2764 overlay_mapped_address(...): map an address from section's LMA to VMA
2765 overlay_unmapped_address(...): map an address from section's VMA to LMA
2766 symbol_overlayed_address(...): Return a "current" address for symbol:
2767 either in VMA or LMA depending on whether
2768 the symbol's section is currently mapped
2769 */
2770
2771 /* Overlay debugging state: */
2772
2773 enum overlay_debugging_state overlay_debugging = ovly_off;
2774 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2775
2776 /* Target vector for refreshing overlay mapped state */
2777 static void simple_overlay_update (struct obj_section *);
2778 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2779
2780 /* Function: section_is_overlay (SECTION)
2781 Returns true if SECTION has VMA not equal to LMA, ie.
2782 SECTION is loaded at an address different from where it will "run". */
2783
2784 int
2785 section_is_overlay (asection *section)
2786 {
2787 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2788
2789 if (overlay_debugging)
2790 if (section && section->lma != 0 &&
2791 section->vma != section->lma)
2792 return 1;
2793
2794 return 0;
2795 }
2796
2797 /* Function: overlay_invalidate_all (void)
2798 Invalidate the mapped state of all overlay sections (mark it as stale). */
2799
2800 static void
2801 overlay_invalidate_all (void)
2802 {
2803 struct objfile *objfile;
2804 struct obj_section *sect;
2805
2806 ALL_OBJSECTIONS (objfile, sect)
2807 if (section_is_overlay (sect->the_bfd_section))
2808 sect->ovly_mapped = -1;
2809 }
2810
2811 /* Function: overlay_is_mapped (SECTION)
2812 Returns true if section is an overlay, and is currently mapped.
2813 Private: public access is thru function section_is_mapped.
2814
2815 Access to the ovly_mapped flag is restricted to this function, so
2816 that we can do automatic update. If the global flag
2817 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2818 overlay_invalidate_all. If the mapped state of the particular
2819 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2820
2821 static int
2822 overlay_is_mapped (struct obj_section *osect)
2823 {
2824 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2825 return 0;
2826
2827 switch (overlay_debugging)
2828 {
2829 default:
2830 case ovly_off:
2831 return 0; /* overlay debugging off */
2832 case ovly_auto: /* overlay debugging automatic */
2833 /* Unles there is a target_overlay_update function,
2834 there's really nothing useful to do here (can't really go auto) */
2835 if (target_overlay_update)
2836 {
2837 if (overlay_cache_invalid)
2838 {
2839 overlay_invalidate_all ();
2840 overlay_cache_invalid = 0;
2841 }
2842 if (osect->ovly_mapped == -1)
2843 (*target_overlay_update) (osect);
2844 }
2845 /* fall thru to manual case */
2846 case ovly_on: /* overlay debugging manual */
2847 return osect->ovly_mapped == 1;
2848 }
2849 }
2850
2851 /* Function: section_is_mapped
2852 Returns true if section is an overlay, and is currently mapped. */
2853
2854 int
2855 section_is_mapped (asection *section)
2856 {
2857 struct objfile *objfile;
2858 struct obj_section *osect;
2859
2860 if (overlay_debugging)
2861 if (section && section_is_overlay (section))
2862 ALL_OBJSECTIONS (objfile, osect)
2863 if (osect->the_bfd_section == section)
2864 return overlay_is_mapped (osect);
2865
2866 return 0;
2867 }
2868
2869 /* Function: pc_in_unmapped_range
2870 If PC falls into the lma range of SECTION, return true, else false. */
2871
2872 CORE_ADDR
2873 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2874 {
2875 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2876
2877 int size;
2878
2879 if (overlay_debugging)
2880 if (section && section_is_overlay (section))
2881 {
2882 size = bfd_get_section_size_before_reloc (section);
2883 if (section->lma <= pc && pc < section->lma + size)
2884 return 1;
2885 }
2886 return 0;
2887 }
2888
2889 /* Function: pc_in_mapped_range
2890 If PC falls into the vma range of SECTION, return true, else false. */
2891
2892 CORE_ADDR
2893 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2894 {
2895 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2896
2897 int size;
2898
2899 if (overlay_debugging)
2900 if (section && section_is_overlay (section))
2901 {
2902 size = bfd_get_section_size_before_reloc (section);
2903 if (section->vma <= pc && pc < section->vma + size)
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909
2910 /* Return true if the mapped ranges of sections A and B overlap, false
2911 otherwise. */
2912 static int
2913 sections_overlap (asection *a, asection *b)
2914 {
2915 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2916
2917 CORE_ADDR a_start = a->vma;
2918 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2919 CORE_ADDR b_start = b->vma;
2920 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2921
2922 return (a_start < b_end && b_start < a_end);
2923 }
2924
2925 /* Function: overlay_unmapped_address (PC, SECTION)
2926 Returns the address corresponding to PC in the unmapped (load) range.
2927 May be the same as PC. */
2928
2929 CORE_ADDR
2930 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2931 {
2932 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2933
2934 if (overlay_debugging)
2935 if (section && section_is_overlay (section) &&
2936 pc_in_mapped_range (pc, section))
2937 return pc + section->lma - section->vma;
2938
2939 return pc;
2940 }
2941
2942 /* Function: overlay_mapped_address (PC, SECTION)
2943 Returns the address corresponding to PC in the mapped (runtime) range.
2944 May be the same as PC. */
2945
2946 CORE_ADDR
2947 overlay_mapped_address (CORE_ADDR pc, asection *section)
2948 {
2949 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2950
2951 if (overlay_debugging)
2952 if (section && section_is_overlay (section) &&
2953 pc_in_unmapped_range (pc, section))
2954 return pc + section->vma - section->lma;
2955
2956 return pc;
2957 }
2958
2959
2960 /* Function: symbol_overlayed_address
2961 Return one of two addresses (relative to the VMA or to the LMA),
2962 depending on whether the section is mapped or not. */
2963
2964 CORE_ADDR
2965 symbol_overlayed_address (CORE_ADDR address, asection *section)
2966 {
2967 if (overlay_debugging)
2968 {
2969 /* If the symbol has no section, just return its regular address. */
2970 if (section == 0)
2971 return address;
2972 /* If the symbol's section is not an overlay, just return its address */
2973 if (!section_is_overlay (section))
2974 return address;
2975 /* If the symbol's section is mapped, just return its address */
2976 if (section_is_mapped (section))
2977 return address;
2978 /*
2979 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2980 * then return its LOADED address rather than its vma address!!
2981 */
2982 return overlay_unmapped_address (address, section);
2983 }
2984 return address;
2985 }
2986
2987 /* Function: find_pc_overlay (PC)
2988 Return the best-match overlay section for PC:
2989 If PC matches a mapped overlay section's VMA, return that section.
2990 Else if PC matches an unmapped section's VMA, return that section.
2991 Else if PC matches an unmapped section's LMA, return that section. */
2992
2993 asection *
2994 find_pc_overlay (CORE_ADDR pc)
2995 {
2996 struct objfile *objfile;
2997 struct obj_section *osect, *best_match = NULL;
2998
2999 if (overlay_debugging)
3000 ALL_OBJSECTIONS (objfile, osect)
3001 if (section_is_overlay (osect->the_bfd_section))
3002 {
3003 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3004 {
3005 if (overlay_is_mapped (osect))
3006 return osect->the_bfd_section;
3007 else
3008 best_match = osect;
3009 }
3010 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3011 best_match = osect;
3012 }
3013 return best_match ? best_match->the_bfd_section : NULL;
3014 }
3015
3016 /* Function: find_pc_mapped_section (PC)
3017 If PC falls into the VMA address range of an overlay section that is
3018 currently marked as MAPPED, return that section. Else return NULL. */
3019
3020 asection *
3021 find_pc_mapped_section (CORE_ADDR pc)
3022 {
3023 struct objfile *objfile;
3024 struct obj_section *osect;
3025
3026 if (overlay_debugging)
3027 ALL_OBJSECTIONS (objfile, osect)
3028 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3029 overlay_is_mapped (osect))
3030 return osect->the_bfd_section;
3031
3032 return NULL;
3033 }
3034
3035 /* Function: list_overlays_command
3036 Print a list of mapped sections and their PC ranges */
3037
3038 void
3039 list_overlays_command (char *args, int from_tty)
3040 {
3041 int nmapped = 0;
3042 struct objfile *objfile;
3043 struct obj_section *osect;
3044
3045 if (overlay_debugging)
3046 ALL_OBJSECTIONS (objfile, osect)
3047 if (overlay_is_mapped (osect))
3048 {
3049 const char *name;
3050 bfd_vma lma, vma;
3051 int size;
3052
3053 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3054 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3055 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3056 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3057
3058 printf_filtered ("Section %s, loaded at ", name);
3059 print_address_numeric (lma, 1, gdb_stdout);
3060 puts_filtered (" - ");
3061 print_address_numeric (lma + size, 1, gdb_stdout);
3062 printf_filtered (", mapped at ");
3063 print_address_numeric (vma, 1, gdb_stdout);
3064 puts_filtered (" - ");
3065 print_address_numeric (vma + size, 1, gdb_stdout);
3066 puts_filtered ("\n");
3067
3068 nmapped++;
3069 }
3070 if (nmapped == 0)
3071 printf_filtered ("No sections are mapped.\n");
3072 }
3073
3074 /* Function: map_overlay_command
3075 Mark the named section as mapped (ie. residing at its VMA address). */
3076
3077 void
3078 map_overlay_command (char *args, int from_tty)
3079 {
3080 struct objfile *objfile, *objfile2;
3081 struct obj_section *sec, *sec2;
3082 asection *bfdsec;
3083
3084 if (!overlay_debugging)
3085 error ("\
3086 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3087 the 'overlay manual' command.");
3088
3089 if (args == 0 || *args == 0)
3090 error ("Argument required: name of an overlay section");
3091
3092 /* First, find a section matching the user supplied argument */
3093 ALL_OBJSECTIONS (objfile, sec)
3094 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3095 {
3096 /* Now, check to see if the section is an overlay. */
3097 bfdsec = sec->the_bfd_section;
3098 if (!section_is_overlay (bfdsec))
3099 continue; /* not an overlay section */
3100
3101 /* Mark the overlay as "mapped" */
3102 sec->ovly_mapped = 1;
3103
3104 /* Next, make a pass and unmap any sections that are
3105 overlapped by this new section: */
3106 ALL_OBJSECTIONS (objfile2, sec2)
3107 if (sec2->ovly_mapped
3108 && sec != sec2
3109 && sec->the_bfd_section != sec2->the_bfd_section
3110 && sections_overlap (sec->the_bfd_section,
3111 sec2->the_bfd_section))
3112 {
3113 if (info_verbose)
3114 printf_unfiltered ("Note: section %s unmapped by overlap\n",
3115 bfd_section_name (objfile->obfd,
3116 sec2->the_bfd_section));
3117 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3118 }
3119 return;
3120 }
3121 error ("No overlay section called %s", args);
3122 }
3123
3124 /* Function: unmap_overlay_command
3125 Mark the overlay section as unmapped
3126 (ie. resident in its LMA address range, rather than the VMA range). */
3127
3128 void
3129 unmap_overlay_command (char *args, int from_tty)
3130 {
3131 struct objfile *objfile;
3132 struct obj_section *sec;
3133
3134 if (!overlay_debugging)
3135 error ("\
3136 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3137 the 'overlay manual' command.");
3138
3139 if (args == 0 || *args == 0)
3140 error ("Argument required: name of an overlay section");
3141
3142 /* First, find a section matching the user supplied argument */
3143 ALL_OBJSECTIONS (objfile, sec)
3144 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3145 {
3146 if (!sec->ovly_mapped)
3147 error ("Section %s is not mapped", args);
3148 sec->ovly_mapped = 0;
3149 return;
3150 }
3151 error ("No overlay section called %s", args);
3152 }
3153
3154 /* Function: overlay_auto_command
3155 A utility command to turn on overlay debugging.
3156 Possibly this should be done via a set/show command. */
3157
3158 static void
3159 overlay_auto_command (char *args, int from_tty)
3160 {
3161 overlay_debugging = ovly_auto;
3162 enable_overlay_breakpoints ();
3163 if (info_verbose)
3164 printf_unfiltered ("Automatic overlay debugging enabled.");
3165 }
3166
3167 /* Function: overlay_manual_command
3168 A utility command to turn on overlay debugging.
3169 Possibly this should be done via a set/show command. */
3170
3171 static void
3172 overlay_manual_command (char *args, int from_tty)
3173 {
3174 overlay_debugging = ovly_on;
3175 disable_overlay_breakpoints ();
3176 if (info_verbose)
3177 printf_unfiltered ("Overlay debugging enabled.");
3178 }
3179
3180 /* Function: overlay_off_command
3181 A utility command to turn on overlay debugging.
3182 Possibly this should be done via a set/show command. */
3183
3184 static void
3185 overlay_off_command (char *args, int from_tty)
3186 {
3187 overlay_debugging = ovly_off;
3188 disable_overlay_breakpoints ();
3189 if (info_verbose)
3190 printf_unfiltered ("Overlay debugging disabled.");
3191 }
3192
3193 static void
3194 overlay_load_command (char *args, int from_tty)
3195 {
3196 if (target_overlay_update)
3197 (*target_overlay_update) (NULL);
3198 else
3199 error ("This target does not know how to read its overlay state.");
3200 }
3201
3202 /* Function: overlay_command
3203 A place-holder for a mis-typed command */
3204
3205 /* Command list chain containing all defined "overlay" subcommands. */
3206 struct cmd_list_element *overlaylist;
3207
3208 static void
3209 overlay_command (char *args, int from_tty)
3210 {
3211 printf_unfiltered
3212 ("\"overlay\" must be followed by the name of an overlay command.\n");
3213 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3214 }
3215
3216
3217 /* Target Overlays for the "Simplest" overlay manager:
3218
3219 This is GDB's default target overlay layer. It works with the
3220 minimal overlay manager supplied as an example by Cygnus. The
3221 entry point is via a function pointer "target_overlay_update",
3222 so targets that use a different runtime overlay manager can
3223 substitute their own overlay_update function and take over the
3224 function pointer.
3225
3226 The overlay_update function pokes around in the target's data structures
3227 to see what overlays are mapped, and updates GDB's overlay mapping with
3228 this information.
3229
3230 In this simple implementation, the target data structures are as follows:
3231 unsigned _novlys; /# number of overlay sections #/
3232 unsigned _ovly_table[_novlys][4] = {
3233 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3234 {..., ..., ..., ...},
3235 }
3236 unsigned _novly_regions; /# number of overlay regions #/
3237 unsigned _ovly_region_table[_novly_regions][3] = {
3238 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3239 {..., ..., ...},
3240 }
3241 These functions will attempt to update GDB's mappedness state in the
3242 symbol section table, based on the target's mappedness state.
3243
3244 To do this, we keep a cached copy of the target's _ovly_table, and
3245 attempt to detect when the cached copy is invalidated. The main
3246 entry point is "simple_overlay_update(SECT), which looks up SECT in
3247 the cached table and re-reads only the entry for that section from
3248 the target (whenever possible).
3249 */
3250
3251 /* Cached, dynamically allocated copies of the target data structures: */
3252 static unsigned (*cache_ovly_table)[4] = 0;
3253 #if 0
3254 static unsigned (*cache_ovly_region_table)[3] = 0;
3255 #endif
3256 static unsigned cache_novlys = 0;
3257 #if 0
3258 static unsigned cache_novly_regions = 0;
3259 #endif
3260 static CORE_ADDR cache_ovly_table_base = 0;
3261 #if 0
3262 static CORE_ADDR cache_ovly_region_table_base = 0;
3263 #endif
3264 enum ovly_index
3265 {
3266 VMA, SIZE, LMA, MAPPED
3267 };
3268 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3269
3270 /* Throw away the cached copy of _ovly_table */
3271 static void
3272 simple_free_overlay_table (void)
3273 {
3274 if (cache_ovly_table)
3275 xfree (cache_ovly_table);
3276 cache_novlys = 0;
3277 cache_ovly_table = NULL;
3278 cache_ovly_table_base = 0;
3279 }
3280
3281 #if 0
3282 /* Throw away the cached copy of _ovly_region_table */
3283 static void
3284 simple_free_overlay_region_table (void)
3285 {
3286 if (cache_ovly_region_table)
3287 xfree (cache_ovly_region_table);
3288 cache_novly_regions = 0;
3289 cache_ovly_region_table = NULL;
3290 cache_ovly_region_table_base = 0;
3291 }
3292 #endif
3293
3294 /* Read an array of ints from the target into a local buffer.
3295 Convert to host order. int LEN is number of ints */
3296 static void
3297 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3298 {
3299 /* FIXME (alloca): Not safe if array is very large. */
3300 char *buf = alloca (len * TARGET_LONG_BYTES);
3301 int i;
3302
3303 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3304 for (i = 0; i < len; i++)
3305 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3306 TARGET_LONG_BYTES);
3307 }
3308
3309 /* Find and grab a copy of the target _ovly_table
3310 (and _novlys, which is needed for the table's size) */
3311 static int
3312 simple_read_overlay_table (void)
3313 {
3314 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3315
3316 simple_free_overlay_table ();
3317 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3318 if (! novlys_msym)
3319 {
3320 error ("Error reading inferior's overlay table: "
3321 "couldn't find `_novlys' variable\n"
3322 "in inferior. Use `overlay manual' mode.");
3323 return 0;
3324 }
3325
3326 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3327 if (! ovly_table_msym)
3328 {
3329 error ("Error reading inferior's overlay table: couldn't find "
3330 "`_ovly_table' array\n"
3331 "in inferior. Use `overlay manual' mode.");
3332 return 0;
3333 }
3334
3335 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3336 cache_ovly_table
3337 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3338 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3339 read_target_long_array (cache_ovly_table_base,
3340 (int *) cache_ovly_table,
3341 cache_novlys * 4);
3342
3343 return 1; /* SUCCESS */
3344 }
3345
3346 #if 0
3347 /* Find and grab a copy of the target _ovly_region_table
3348 (and _novly_regions, which is needed for the table's size) */
3349 static int
3350 simple_read_overlay_region_table (void)
3351 {
3352 struct minimal_symbol *msym;
3353
3354 simple_free_overlay_region_table ();
3355 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3356 if (msym != NULL)
3357 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3358 else
3359 return 0; /* failure */
3360 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3361 if (cache_ovly_region_table != NULL)
3362 {
3363 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3364 if (msym != NULL)
3365 {
3366 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3367 read_target_long_array (cache_ovly_region_table_base,
3368 (int *) cache_ovly_region_table,
3369 cache_novly_regions * 3);
3370 }
3371 else
3372 return 0; /* failure */
3373 }
3374 else
3375 return 0; /* failure */
3376 return 1; /* SUCCESS */
3377 }
3378 #endif
3379
3380 /* Function: simple_overlay_update_1
3381 A helper function for simple_overlay_update. Assuming a cached copy
3382 of _ovly_table exists, look through it to find an entry whose vma,
3383 lma and size match those of OSECT. Re-read the entry and make sure
3384 it still matches OSECT (else the table may no longer be valid).
3385 Set OSECT's mapped state to match the entry. Return: 1 for
3386 success, 0 for failure. */
3387
3388 static int
3389 simple_overlay_update_1 (struct obj_section *osect)
3390 {
3391 int i, size;
3392 bfd *obfd = osect->objfile->obfd;
3393 asection *bsect = osect->the_bfd_section;
3394
3395 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3396 for (i = 0; i < cache_novlys; i++)
3397 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3398 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3399 /* && cache_ovly_table[i][SIZE] == size */ )
3400 {
3401 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3402 (int *) cache_ovly_table[i], 4);
3403 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3404 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3405 /* && cache_ovly_table[i][SIZE] == size */ )
3406 {
3407 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3408 return 1;
3409 }
3410 else /* Warning! Warning! Target's ovly table has changed! */
3411 return 0;
3412 }
3413 return 0;
3414 }
3415
3416 /* Function: simple_overlay_update
3417 If OSECT is NULL, then update all sections' mapped state
3418 (after re-reading the entire target _ovly_table).
3419 If OSECT is non-NULL, then try to find a matching entry in the
3420 cached ovly_table and update only OSECT's mapped state.
3421 If a cached entry can't be found or the cache isn't valid, then
3422 re-read the entire cache, and go ahead and update all sections. */
3423
3424 static void
3425 simple_overlay_update (struct obj_section *osect)
3426 {
3427 struct objfile *objfile;
3428
3429 /* Were we given an osect to look up? NULL means do all of them. */
3430 if (osect)
3431 /* Have we got a cached copy of the target's overlay table? */
3432 if (cache_ovly_table != NULL)
3433 /* Does its cached location match what's currently in the symtab? */
3434 if (cache_ovly_table_base ==
3435 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3436 /* Then go ahead and try to look up this single section in the cache */
3437 if (simple_overlay_update_1 (osect))
3438 /* Found it! We're done. */
3439 return;
3440
3441 /* Cached table no good: need to read the entire table anew.
3442 Or else we want all the sections, in which case it's actually
3443 more efficient to read the whole table in one block anyway. */
3444
3445 if (! simple_read_overlay_table ())
3446 return;
3447
3448 /* Now may as well update all sections, even if only one was requested. */
3449 ALL_OBJSECTIONS (objfile, osect)
3450 if (section_is_overlay (osect->the_bfd_section))
3451 {
3452 int i, size;
3453 bfd *obfd = osect->objfile->obfd;
3454 asection *bsect = osect->the_bfd_section;
3455
3456 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3457 for (i = 0; i < cache_novlys; i++)
3458 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3459 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3460 /* && cache_ovly_table[i][SIZE] == size */ )
3461 { /* obj_section matches i'th entry in ovly_table */
3462 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3463 break; /* finished with inner for loop: break out */
3464 }
3465 }
3466 }
3467
3468 /* Set the output sections and output offsets for section SECTP in
3469 ABFD. The relocation code in BFD will read these offsets, so we
3470 need to be sure they're initialized. We map each section to itself,
3471 with no offset; this means that SECTP->vma will be honored. */
3472
3473 static void
3474 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3475 {
3476 sectp->output_section = sectp;
3477 sectp->output_offset = 0;
3478 }
3479
3480 /* Relocate the contents of a debug section SECTP in ABFD. The
3481 contents are stored in BUF if it is non-NULL, or returned in a
3482 malloc'd buffer otherwise.
3483
3484 For some platforms and debug info formats, shared libraries contain
3485 relocations against the debug sections (particularly for DWARF-2;
3486 one affected platform is PowerPC GNU/Linux, although it depends on
3487 the version of the linker in use). Also, ELF object files naturally
3488 have unresolved relocations for their debug sections. We need to apply
3489 the relocations in order to get the locations of symbols correct. */
3490
3491 bfd_byte *
3492 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3493 {
3494 /* We're only interested in debugging sections with relocation
3495 information. */
3496 if ((sectp->flags & SEC_RELOC) == 0)
3497 return NULL;
3498 if ((sectp->flags & SEC_DEBUGGING) == 0)
3499 return NULL;
3500
3501 /* We will handle section offsets properly elsewhere, so relocate as if
3502 all sections begin at 0. */
3503 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3504
3505 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3506 }
3507
3508 void
3509 _initialize_symfile (void)
3510 {
3511 struct cmd_list_element *c;
3512
3513 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3514 "Load symbol table from executable file FILE.\n\
3515 The `file' command can also load symbol tables, as well as setting the file\n\
3516 to execute.", &cmdlist);
3517 set_cmd_completer (c, filename_completer);
3518
3519 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3520 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3521 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3522 ADDR is the starting address of the file's text.\n\
3523 The optional arguments are section-name section-address pairs and\n\
3524 should be specified if the data and bss segments are not contiguous\n\
3525 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3526 &cmdlist);
3527 set_cmd_completer (c, filename_completer);
3528
3529 c = add_cmd ("add-shared-symbol-files", class_files,
3530 add_shared_symbol_files_command,
3531 "Load the symbols from shared objects in the dynamic linker's link map.",
3532 &cmdlist);
3533 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3534 &cmdlist);
3535
3536 c = add_cmd ("load", class_files, load_command,
3537 "Dynamically load FILE into the running program, and record its symbols\n\
3538 for access from GDB.", &cmdlist);
3539 set_cmd_completer (c, filename_completer);
3540
3541 add_show_from_set
3542 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3543 (char *) &symbol_reloading,
3544 "Set dynamic symbol table reloading multiple times in one run.",
3545 &setlist),
3546 &showlist);
3547
3548 add_prefix_cmd ("overlay", class_support, overlay_command,
3549 "Commands for debugging overlays.", &overlaylist,
3550 "overlay ", 0, &cmdlist);
3551
3552 add_com_alias ("ovly", "overlay", class_alias, 1);
3553 add_com_alias ("ov", "overlay", class_alias, 1);
3554
3555 add_cmd ("map-overlay", class_support, map_overlay_command,
3556 "Assert that an overlay section is mapped.", &overlaylist);
3557
3558 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3559 "Assert that an overlay section is unmapped.", &overlaylist);
3560
3561 add_cmd ("list-overlays", class_support, list_overlays_command,
3562 "List mappings of overlay sections.", &overlaylist);
3563
3564 add_cmd ("manual", class_support, overlay_manual_command,
3565 "Enable overlay debugging.", &overlaylist);
3566 add_cmd ("off", class_support, overlay_off_command,
3567 "Disable overlay debugging.", &overlaylist);
3568 add_cmd ("auto", class_support, overlay_auto_command,
3569 "Enable automatic overlay debugging.", &overlaylist);
3570 add_cmd ("load-target", class_support, overlay_load_command,
3571 "Read the overlay mapping state from the target.", &overlaylist);
3572
3573 /* Filename extension to source language lookup table: */
3574 init_filename_language_table ();
3575 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3576 (char *) &ext_args,
3577 "Set mapping between filename extension and source language.\n\
3578 Usage: set extension-language .foo bar",
3579 &setlist);
3580 set_cmd_cfunc (c, set_ext_lang_command);
3581
3582 add_info ("extensions", info_ext_lang_command,
3583 "All filename extensions associated with a source language.");
3584
3585 add_show_from_set
3586 (add_set_cmd ("download-write-size", class_obscure,
3587 var_integer, (char *) &download_write_size,
3588 "Set the write size used when downloading a program.\n"
3589 "Only used when downloading a program onto a remote\n"
3590 "target. Specify zero, or a negative value, to disable\n"
3591 "blocked writes. The actual size of each transfer is also\n"
3592 "limited by the size of the target packet and the memory\n"
3593 "cache.\n",
3594 &setlist),
3595 &showlist);
3596
3597 debug_file_directory = xstrdup (DEBUGDIR);
3598 c = (add_set_cmd
3599 ("debug-file-directory", class_support, var_string,
3600 (char *) &debug_file_directory,
3601 "Set the directory where separate debug symbols are searched for.\n"
3602 "Separate debug symbols are first searched for in the same\n"
3603 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3604 "' subdirectory,\n"
3605 "and lastly at the path of the directory of the binary with\n"
3606 "the global debug-file directory prepended\n",
3607 &setlist));
3608 add_show_from_set (c, &showlist);
3609 set_cmd_completer (c, filename_completer);
3610 }
This page took 0.149974 seconds and 4 git commands to generate.