2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 static struct sym_fns *symtab_fns = NULL;
151
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 #else
158 int symbol_reloading = 0;
159 #endif
160 static void
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167 }
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197 char *
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
199 {
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
205 const char *p1 = ptr;
206 char *p2 = p;
207 const char *end = ptr + size;
208
209 while (p1 != end)
210 *p2++ = *p1++;
211 }
212 p[size] = 0;
213 return p;
214 }
215
216 /* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
219
220 char *
221 obconcat (struct obstack *obstackp, ...)
222 {
223 va_list ap;
224
225 va_start (ap, obstackp);
226 for (;;)
227 {
228 const char *s = va_arg (ap, const char *);
229
230 if (s == NULL)
231 break;
232
233 obstack_grow_str (obstackp, s);
234 }
235 va_end (ap);
236 obstack_1grow (obstackp, 0);
237
238 return obstack_finish (obstackp);
239 }
240
241 /* True if we are reading a symbol table. */
242
243 int currently_reading_symtab = 0;
244
245 static void
246 decrement_reading_symtab (void *dummy)
247 {
248 currently_reading_symtab--;
249 }
250
251 /* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
253 struct cleanup *
254 increment_reading_symtab (void)
255 {
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
258 }
259
260 /* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
262
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
265
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
268
269 void
270 find_lowest_section (bfd *abfd, asection *sect, void *obj)
271 {
272 asection **lowest = (asection **) obj;
273
274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
275 return;
276 if (!*lowest)
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
283 *lowest = sect;
284 }
285
286 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
287
288 struct section_addr_info *
289 alloc_section_addr_info (size_t num_sections)
290 {
291 struct section_addr_info *sap;
292 size_t size;
293
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
299
300 return sap;
301 }
302
303 /* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
305
306 extern struct section_addr_info *
307 build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
309 {
310 struct section_addr_info *sap;
311 const struct target_section *stp;
312 int oidx;
313
314 sap = alloc_section_addr_info (end - start);
315
316 for (stp = start, oidx = 0; stp != end; stp++)
317 {
318 if (bfd_get_section_flags (stp->bfd,
319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
320 && oidx < end - start)
321 {
322 sap->other[oidx].addr = stp->addr;
323 sap->other[oidx].name
324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
326 oidx++;
327 }
328 }
329
330 return sap;
331 }
332
333 /* Create a section_addr_info from section offsets in ABFD. */
334
335 static struct section_addr_info *
336 build_section_addr_info_from_bfd (bfd *abfd)
337 {
338 struct section_addr_info *sap;
339 int i;
340 struct bfd_section *sec;
341
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
345 {
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
348 sap->other[i].sectindex = sec->index;
349 i++;
350 }
351 return sap;
352 }
353
354 /* Create a section_addr_info from section offsets in OBJFILE. */
355
356 struct section_addr_info *
357 build_section_addr_info_from_objfile (const struct objfile *objfile)
358 {
359 struct section_addr_info *sap;
360 int i;
361
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 */
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 {
368 int sectindex = sap->other[i].sectindex;
369
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
371 }
372 return sap;
373 }
374
375 /* Free all memory allocated by build_section_addr_info_from_section_table. */
376
377 extern void
378 free_section_addr_info (struct section_addr_info *sap)
379 {
380 int idx;
381
382 for (idx = 0; idx < sap->num_sections; idx++)
383 if (sap->other[idx].name)
384 xfree (sap->other[idx].name);
385 xfree (sap);
386 }
387
388
389 /* Initialize OBJFILE's sect_index_* members. */
390 static void
391 init_objfile_sect_indices (struct objfile *objfile)
392 {
393 asection *sect;
394 int i;
395
396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
397 if (sect)
398 objfile->sect_index_text = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
401 if (sect)
402 objfile->sect_index_data = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
405 if (sect)
406 objfile->sect_index_bss = sect->index;
407
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
409 if (sect)
410 objfile->sect_index_rodata = sect->index;
411
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
417
418 symfile_find_segment_sections (objfile);
419
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
428
429 for (i = 0; i < objfile->num_sections; i++)
430 {
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
432 {
433 break;
434 }
435 }
436 if (i == objfile->num_sections)
437 {
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
446 }
447 }
448
449 /* The arguments to place_section. */
450
451 struct place_section_arg
452 {
453 struct section_offsets *offsets;
454 CORE_ADDR lowest;
455 };
456
457 /* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
459
460 static void
461 place_section (bfd *abfd, asection *sect, void *obj)
462 {
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 int done;
466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
467
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
470 return;
471
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
474 return;
475
476 /* Otherwise, let's try to find a place for the section. */
477 start_addr = (arg->lowest + align - 1) & -align;
478
479 do {
480 asection *cur_sec;
481
482 done = 1;
483
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 {
486 int indx = cur_sec->index;
487
488 /* We don't need to compare against ourself. */
489 if (cur_sec == sect)
490 continue;
491
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
494 continue;
495
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
500 continue;
501
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 {
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
508 done = 0;
509 break;
510 }
511
512 /* Otherwise, we appear to be OK. So far. */
513 }
514 }
515 while (!done);
516
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
519 }
520
521 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
523 entries. */
524
525 void
526 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 int num_sections,
528 struct section_addr_info *addrs)
529 {
530 int i;
531
532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
533
534 /* Now calculate offsets for section that were specified by the caller. */
535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
536 {
537 struct other_sections *osp;
538
539 osp = &addrs->other[i];
540 if (osp->addr == 0)
541 continue;
542
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
545 the BFD index. */
546 section_offsets->offsets[osp->sectindex] = osp->addr;
547 }
548 }
549
550 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
551 their (name, sectindex) pair. sectindex makes the sort by name stable. */
552
553 static int
554 addrs_section_compar (const void *ap, const void *bp)
555 {
556 const struct other_sections *a = *((struct other_sections **) ap);
557 const struct other_sections *b = *((struct other_sections **) bp);
558 int retval, a_idx, b_idx;
559
560 retval = strcmp (a->name, b->name);
561 if (retval)
562 return retval;
563
564 /* SECTINDEX is undefined iff ADDR is zero. */
565 a_idx = a->addr == 0 ? 0 : a->sectindex;
566 b_idx = b->addr == 0 ? 0 : b->sectindex;
567 return a_idx - b_idx;
568 }
569
570 /* Provide sorted array of pointers to sections of ADDRS. The array is
571 terminated by NULL. Caller is responsible to call xfree for it. */
572
573 static struct other_sections **
574 addrs_section_sort (struct section_addr_info *addrs)
575 {
576 struct other_sections **array;
577 int i;
578
579 /* `+ 1' for the NULL terminator. */
580 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
581 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
582 array[i] = &addrs->other[i];
583 array[i] = NULL;
584
585 qsort (array, i, sizeof (*array), addrs_section_compar);
586
587 return array;
588 }
589
590 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
591 also SECTINDEXes specific to ABFD there. This function can be used to
592 rebase ADDRS to start referencing different BFD than before. */
593
594 void
595 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
596 {
597 asection *lower_sect;
598 CORE_ADDR lower_offset;
599 int i;
600 struct cleanup *my_cleanup;
601 struct section_addr_info *abfd_addrs;
602 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
603 struct other_sections **addrs_to_abfd_addrs;
604
605 /* Find lowest loadable section to be used as starting point for
606 continguous sections. */
607 lower_sect = NULL;
608 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
609 if (lower_sect == NULL)
610 {
611 warning (_("no loadable sections found in added symbol-file %s"),
612 bfd_get_filename (abfd));
613 lower_offset = 0;
614 }
615 else
616 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
617
618 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
619 in ABFD. Section names are not unique - there can be multiple sections of
620 the same name. Also the sections of the same name do not have to be
621 adjacent to each other. Some sections may be present only in one of the
622 files. Even sections present in both files do not have to be in the same
623 order.
624
625 Use stable sort by name for the sections in both files. Then linearly
626 scan both lists matching as most of the entries as possible. */
627
628 addrs_sorted = addrs_section_sort (addrs);
629 my_cleanup = make_cleanup (xfree, addrs_sorted);
630
631 abfd_addrs = build_section_addr_info_from_bfd (abfd);
632 make_cleanup_free_section_addr_info (abfd_addrs);
633 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
634 make_cleanup (xfree, abfd_addrs_sorted);
635
636 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
637
638 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
639 * addrs->num_sections);
640 make_cleanup (xfree, addrs_to_abfd_addrs);
641
642 while (*addrs_sorted)
643 {
644 const char *sect_name = (*addrs_sorted)->name;
645
646 while (*abfd_addrs_sorted
647 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
648 abfd_addrs_sorted++;
649
650 if (*abfd_addrs_sorted
651 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
652 {
653 int index_in_addrs;
654
655 /* Make the found item directly addressable from ADDRS. */
656 index_in_addrs = *addrs_sorted - addrs->other;
657 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
658 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
659
660 /* Never use the same ABFD entry twice. */
661 abfd_addrs_sorted++;
662 }
663
664 addrs_sorted++;
665 }
666
667 /* Calculate offsets for the loadable sections.
668 FIXME! Sections must be in order of increasing loadable section
669 so that contiguous sections can use the lower-offset!!!
670
671 Adjust offsets if the segments are not contiguous.
672 If the section is contiguous, its offset should be set to
673 the offset of the highest loadable section lower than it
674 (the loadable section directly below it in memory).
675 this_offset = lower_offset = lower_addr - lower_orig_addr */
676
677 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
678 {
679 const char *sect_name = addrs->other[i].name;
680 struct other_sections *sect = addrs_to_abfd_addrs[i];
681
682 if (sect)
683 {
684 /* This is the index used by BFD. */
685 addrs->other[i].sectindex = sect->sectindex;
686
687 if (addrs->other[i].addr != 0)
688 {
689 addrs->other[i].addr -= sect->addr;
690 lower_offset = addrs->other[i].addr;
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 else
696 {
697 /* This section does not exist in ABFD, which is normally
698 unexpected and we want to issue a warning.
699
700 However, the ELF prelinker does create a few sections which are
701 marked in the main executable as loadable (they are loaded in
702 memory from the DYNAMIC segment) and yet are not present in
703 separate debug info files. This is fine, and should not cause
704 a warning. Shared libraries contain just the section
705 ".gnu.liblist" but it is not marked as loadable there. There is
706 no other way to identify them than by their name as the sections
707 created by prelink have no special flags. */
708
709 if (!(strcmp (sect_name, ".gnu.liblist") == 0
710 || strcmp (sect_name, ".gnu.conflict") == 0
711 || strcmp (sect_name, ".dynbss") == 0
712 || strcmp (sect_name, ".sdynbss") == 0))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717
718 /* SECTINDEX is invalid if ADDR is zero. */
719 }
720 }
721
722 do_cleanups (my_cleanup);
723 }
724
725 /* Parse the user's idea of an offset for dynamic linking, into our idea
726 of how to represent it for fast symbol reading. This is the default
727 version of the sym_fns.sym_offsets function for symbol readers that
728 don't need to do anything special. It allocates a section_offsets table
729 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
730
731 void
732 default_symfile_offsets (struct objfile *objfile,
733 struct section_addr_info *addrs)
734 {
735 objfile->num_sections = bfd_count_sections (objfile->obfd);
736 objfile->section_offsets = (struct section_offsets *)
737 obstack_alloc (&objfile->objfile_obstack,
738 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
739 relative_addr_info_to_section_offsets (objfile->section_offsets,
740 objfile->num_sections, addrs);
741
742 /* For relocatable files, all loadable sections will start at zero.
743 The zero is meaningless, so try to pick arbitrary addresses such
744 that no loadable sections overlap. This algorithm is quadratic,
745 but the number of sections in a single object file is generally
746 small. */
747 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
748 {
749 struct place_section_arg arg;
750 bfd *abfd = objfile->obfd;
751 asection *cur_sec;
752
753 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
754 /* We do not expect this to happen; just skip this step if the
755 relocatable file has a section with an assigned VMA. */
756 if (bfd_section_vma (abfd, cur_sec) != 0)
757 break;
758
759 if (cur_sec == NULL)
760 {
761 CORE_ADDR *offsets = objfile->section_offsets->offsets;
762
763 /* Pick non-overlapping offsets for sections the user did not
764 place explicitly. */
765 arg.offsets = objfile->section_offsets;
766 arg.lowest = 0;
767 bfd_map_over_sections (objfile->obfd, place_section, &arg);
768
769 /* Correctly filling in the section offsets is not quite
770 enough. Relocatable files have two properties that
771 (most) shared objects do not:
772
773 - Their debug information will contain relocations. Some
774 shared libraries do also, but many do not, so this can not
775 be assumed.
776
777 - If there are multiple code sections they will be loaded
778 at different relative addresses in memory than they are
779 in the objfile, since all sections in the file will start
780 at address zero.
781
782 Because GDB has very limited ability to map from an
783 address in debug info to the correct code section,
784 it relies on adding SECT_OFF_TEXT to things which might be
785 code. If we clear all the section offsets, and set the
786 section VMAs instead, then symfile_relocate_debug_section
787 will return meaningful debug information pointing at the
788 correct sections.
789
790 GDB has too many different data structures for section
791 addresses - a bfd, objfile, and so_list all have section
792 tables, as does exec_ops. Some of these could probably
793 be eliminated. */
794
795 for (cur_sec = abfd->sections; cur_sec != NULL;
796 cur_sec = cur_sec->next)
797 {
798 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
799 continue;
800
801 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
802 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 /* Discard cleanups as symbol reading was successful. */
1002
1003 discard_cleanups (old_chain);
1004 xfree (local_addr);
1005 }
1006
1007 /* Perform required actions after either reading in the initial
1008 symbols for a new objfile, or mapping in the symbols from a reusable
1009 objfile. */
1010
1011 void
1012 new_symfile_objfile (struct objfile *objfile, int add_flags)
1013 {
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1025 {
1026 breakpoint_re_set ();
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1031 }
1032
1033 /* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1038
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1045
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1048
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
1055 int flags)
1056 {
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1061
1062 my_cleanups = make_cleanup_bfd_close (abfd);
1063
1064 /* Give user a chance to burp if we'd be
1065 interactively wiping out any existing symbols. */
1066
1067 if ((have_full_symbols () || have_partial_symbols ())
1068 && (add_flags & SYMFILE_MAINLINE)
1069 && from_tty
1070 && !query (_("Load new symbol table from \"%s\"? "), name))
1071 error (_("Not confirmed."));
1072
1073 objfile = allocate_objfile (abfd, flags);
1074 discard_cleanups (my_cleanups);
1075
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (from_tty || info_verbose)
1080 {
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1083 else
1084 {
1085 printf_unfiltered (_("Reading symbols from %s..."), name);
1086 wrap_here ("");
1087 gdb_flush (gdb_stdout);
1088 }
1089 }
1090 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1091 add_flags);
1092
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1097
1098 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1099 {
1100 if (from_tty || info_verbose)
1101 {
1102 printf_unfiltered (_("expanding to full symbols..."));
1103 wrap_here ("");
1104 gdb_flush (gdb_stdout);
1105 }
1106
1107 if (objfile->sf)
1108 objfile->sf->qf->expand_all_symtabs (objfile);
1109 }
1110
1111 if ((from_tty || info_verbose)
1112 && !objfile_has_symbols (objfile))
1113 {
1114 wrap_here ("");
1115 printf_unfiltered (_("(no debugging symbols found)..."));
1116 wrap_here ("");
1117 }
1118
1119 if (from_tty || info_verbose)
1120 {
1121 if (deprecated_post_add_symbol_hook)
1122 deprecated_post_add_symbol_hook ();
1123 else
1124 printf_unfiltered (_("done.\n"));
1125 }
1126
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
1132 do_cleanups (my_cleanups);
1133
1134 if (objfile->sf == NULL)
1135 {
1136 observer_notify_new_objfile (objfile);
1137 return objfile; /* No symbols. */
1138 }
1139
1140 new_symfile_objfile (objfile, add_flags);
1141
1142 observer_notify_new_objfile (objfile);
1143
1144 bfd_cache_close_all ();
1145 return (objfile);
1146 }
1147
1148 /* Add BFD as a separate debug file for OBJFILE. */
1149
1150 void
1151 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1152 {
1153 struct objfile *new_objfile;
1154 struct section_addr_info *sap;
1155 struct cleanup *my_cleanup;
1156
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 sap = build_section_addr_info_from_objfile (objfile);
1161 my_cleanup = make_cleanup_free_section_addr_info (sap);
1162
1163 new_objfile = symbol_file_add_with_addrs_or_offsets
1164 (bfd, symfile_flags,
1165 sap, NULL, 0,
1166 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1167 | OBJF_USERLOADED));
1168
1169 do_cleanups (my_cleanup);
1170
1171 add_separate_debug_objfile (new_objfile, objfile);
1172 }
1173
1174 /* Process the symbol file ABFD, as either the main file or as a
1175 dynamically loaded file.
1176
1177 See symbol_file_add_with_addrs_or_offsets's comments for
1178 details. */
1179 struct objfile *
1180 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1181 struct section_addr_info *addrs,
1182 int flags)
1183 {
1184 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1185 flags);
1186 }
1187
1188
1189 /* Process a symbol file, as either the main file or as a dynamically
1190 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1191 for details. */
1192 struct objfile *
1193 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1194 int flags)
1195 {
1196 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1197 flags);
1198 }
1199
1200
1201 /* Call symbol_file_add() with default values and update whatever is
1202 affected by the loading of a new main().
1203 Used when the file is supplied in the gdb command line
1204 and by some targets with special loading requirements.
1205 The auxiliary function, symbol_file_add_main_1(), has the flags
1206 argument for the switches that can only be specified in the symbol_file
1207 command itself. */
1208
1209 void
1210 symbol_file_add_main (char *args, int from_tty)
1211 {
1212 symbol_file_add_main_1 (args, from_tty, 0);
1213 }
1214
1215 static void
1216 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1217 {
1218 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1219 symbol_file_add (args, add_flags, NULL, flags);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 set_initial_language ();
1226 }
1227
1228 void
1229 symbol_file_clear (int from_tty)
1230 {
1231 if ((have_full_symbols () || have_partial_symbols ())
1232 && from_tty
1233 && (symfile_objfile
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 symfile_objfile->name)
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1238
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1242
1243 free_all_objfiles ();
1244
1245 gdb_assert (symfile_objfile == NULL);
1246 if (from_tty)
1247 printf_unfiltered (_("No symbol file now.\n"));
1248 }
1249
1250 static char *
1251 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1252 {
1253 asection *sect;
1254 bfd_size_type debuglink_size;
1255 unsigned long crc32;
1256 char *contents;
1257 int crc_offset;
1258
1259 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1260
1261 if (sect == NULL)
1262 return NULL;
1263
1264 debuglink_size = bfd_section_size (objfile->obfd, sect);
1265
1266 contents = xmalloc (debuglink_size);
1267 bfd_get_section_contents (objfile->obfd, sect, contents,
1268 (file_ptr)0, (bfd_size_type)debuglink_size);
1269
1270 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1271 crc_offset = strlen (contents) + 1;
1272 crc_offset = (crc_offset + 3) & ~3;
1273
1274 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1275
1276 *crc32_out = crc32;
1277 return contents;
1278 }
1279
1280 static int
1281 separate_debug_file_exists (const char *name, unsigned long crc,
1282 struct objfile *parent_objfile)
1283 {
1284 unsigned long file_crc = 0;
1285 bfd *abfd;
1286 gdb_byte buffer[8*1024];
1287 int count;
1288 struct stat parent_stat, abfd_stat;
1289
1290 /* Find a separate debug info file as if symbols would be present in
1291 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1292 section can contain just the basename of PARENT_OBJFILE without any
1293 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1294 the separate debug infos with the same basename can exist. */
1295
1296 if (strcmp (name, parent_objfile->name) == 0)
1297 return 0;
1298
1299 abfd = bfd_open_maybe_remote (name);
1300
1301 if (!abfd)
1302 return 0;
1303
1304 /* Verify symlinks were not the cause of strcmp name difference above.
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Do not indicate a duplicate library in that
1309 case. While there is no guarantee that a system that provides
1310 meaningful inode numbers will never set st_ino to zero, this is
1311 merely an optimization, so we do not need to worry about false
1312 negatives. */
1313
1314 if (bfd_stat (abfd, &abfd_stat) == 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1316 && abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino
1318 && abfd_stat.st_ino != 0)
1319 {
1320 bfd_close (abfd);
1321 return 0;
1322 }
1323
1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1326
1327 bfd_close (abfd);
1328
1329 if (crc != file_crc)
1330 {
1331 warning (_("the debug information found in \"%s\""
1332 " does not match \"%s\" (CRC mismatch).\n"),
1333 name, parent_objfile->name);
1334 return 0;
1335 }
1336
1337 return 1;
1338 }
1339
1340 char *debug_file_directory = NULL;
1341 static void
1342 show_debug_file_directory (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c, const char *value)
1344 {
1345 fprintf_filtered (file, _("\
1346 The directory where separate debug symbols are searched for is \"%s\".\n"),
1347 value);
1348 }
1349
1350 #if ! defined (DEBUG_SUBDIRECTORY)
1351 #define DEBUG_SUBDIRECTORY ".debug"
1352 #endif
1353
1354 char *
1355 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1356 {
1357 char *basename, *debugdir;
1358 char *dir = NULL;
1359 char *debugfile = NULL;
1360 char *canon_name = NULL;
1361 unsigned long crc32;
1362 int i;
1363
1364 basename = get_debug_link_info (objfile, &crc32);
1365
1366 if (basename == NULL)
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
1369 goto cleanup_return_debugfile;
1370
1371 dir = xstrdup (objfile->name);
1372
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1376 somewhere. */
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1378 {
1379 if (IS_DIR_SEPARATOR (dir[i]))
1380 break;
1381 }
1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1383 dir[i+1] = '\0';
1384
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1387 i = strlen (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1390
1391 debugfile = xmalloc (strlen (debug_file_directory) + 1
1392 + i
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 goto cleanup_return_debugfile;
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 goto cleanup_return_debugfile;
1413
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1418
1419 debugdir = debug_file_directory;
1420 do
1421 {
1422 char *debugdir_end;
1423
1424 while (*debugdir == DIRNAME_SEPARATOR)
1425 debugdir++;
1426
1427 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1428 if (debugdir_end == NULL)
1429 debugdir_end = &debugdir[strlen (debugdir)];
1430
1431 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1432 debugfile[debugdir_end - debugdir] = 0;
1433 strcat (debugfile, "/");
1434 strcat (debugfile, dir);
1435 strcat (debugfile, basename);
1436
1437 if (separate_debug_file_exists (debugfile, crc32, objfile))
1438 goto cleanup_return_debugfile;
1439
1440 /* If the file is in the sysroot, try using its base path in the
1441 global debugfile directory. */
1442 if (canon_name
1443 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1444 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1445 {
1446 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1447 debugfile[debugdir_end - debugdir] = 0;
1448 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1449 strcat (debugfile, "/");
1450 strcat (debugfile, basename);
1451
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 goto cleanup_return_debugfile;
1454 }
1455
1456 debugdir = debugdir_end;
1457 }
1458 while (*debugdir != 0);
1459
1460 xfree (debugfile);
1461 debugfile = NULL;
1462
1463 cleanup_return_debugfile:
1464 xfree (canon_name);
1465 xfree (basename);
1466 xfree (dir);
1467 return debugfile;
1468 }
1469
1470
1471 /* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
1473 the command is rather bizarre:
1474
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1478
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1481
1482 3. The order of options matters, which is contrary to GNU
1483 conventions (because it is confusing and inconvenient). */
1484
1485 void
1486 symbol_file_command (char *args, int from_tty)
1487 {
1488 dont_repeat ();
1489
1490 if (args == NULL)
1491 {
1492 symbol_file_clear (from_tty);
1493 }
1494 else
1495 {
1496 char **argv = gdb_buildargv (args);
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1499 char *name = NULL;
1500
1501 cleanups = make_cleanup_freeargv (argv);
1502 while (*argv != NULL)
1503 {
1504 if (strcmp (*argv, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else if (**argv == '-')
1507 error (_("unknown option `%s'"), *argv);
1508 else
1509 {
1510 symbol_file_add_main_1 (*argv, from_tty, flags);
1511 name = *argv;
1512 }
1513
1514 argv++;
1515 }
1516
1517 if (name == NULL)
1518 error (_("no symbol file name was specified"));
1519
1520 do_cleanups (cleanups);
1521 }
1522 }
1523
1524 /* Set the initial language.
1525
1526 FIXME: A better solution would be to record the language in the
1527 psymtab when reading partial symbols, and then use it (if known) to
1528 set the language. This would be a win for formats that encode the
1529 language in an easily discoverable place, such as DWARF. For
1530 stabs, we can jump through hoops looking for specially named
1531 symbols or try to intuit the language from the specific type of
1532 stabs we find, but we can't do that until later when we read in
1533 full symbols. */
1534
1535 void
1536 set_initial_language (void)
1537 {
1538 char *filename;
1539 enum language lang = language_unknown;
1540
1541 filename = find_main_filename ();
1542 if (filename != NULL)
1543 lang = deduce_language_from_filename (filename);
1544
1545 if (lang == language_unknown)
1546 {
1547 /* Make C the default language */
1548 lang = language_c;
1549 }
1550
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
1553 }
1554
1555 /* If NAME is a remote name open the file using remote protocol, otherwise
1556 open it normally. */
1557
1558 bfd *
1559 bfd_open_maybe_remote (const char *name)
1560 {
1561 if (remote_filename_p (name))
1562 return remote_bfd_open (name, gnutarget);
1563 else
1564 return bfd_openr (name, gnutarget);
1565 }
1566
1567
1568 /* Open the file specified by NAME and hand it off to BFD for
1569 preliminary analysis. Return a newly initialized bfd *, which
1570 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1571 absolute). In case of trouble, error() is called. */
1572
1573 bfd *
1574 symfile_bfd_open (char *name)
1575 {
1576 bfd *sym_bfd;
1577 int desc;
1578 char *absolute_name;
1579
1580 if (remote_filename_p (name))
1581 {
1582 name = xstrdup (name);
1583 sym_bfd = remote_bfd_open (name, gnutarget);
1584 if (!sym_bfd)
1585 {
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't open to read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 if (!bfd_check_format (sym_bfd, bfd_object))
1592 {
1593 bfd_close (sym_bfd);
1594 make_cleanup (xfree, name);
1595 error (_("`%s': can't read symbols: %s."), name,
1596 bfd_errmsg (bfd_get_error ()));
1597 }
1598
1599 return sym_bfd;
1600 }
1601
1602 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1603
1604 /* Look down path for it, allocate 2nd new malloc'd copy. */
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1608 if (desc < 0)
1609 {
1610 char *exename = alloca (strlen (name) + 5);
1611
1612 strcat (strcpy (exename, name), ".exe");
1613 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1614 O_RDONLY | O_BINARY, &absolute_name);
1615 }
1616 #endif
1617 if (desc < 0)
1618 {
1619 make_cleanup (xfree, name);
1620 perror_with_name (name);
1621 }
1622
1623 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1624 bfd. It'll be freed in free_objfile(). */
1625 xfree (name);
1626 name = absolute_name;
1627
1628 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1629 if (!sym_bfd)
1630 {
1631 close (desc);
1632 make_cleanup (xfree, name);
1633 error (_("`%s': can't open to read symbols: %s."), name,
1634 bfd_errmsg (bfd_get_error ()));
1635 }
1636 bfd_set_cacheable (sym_bfd, 1);
1637
1638 if (!bfd_check_format (sym_bfd, bfd_object))
1639 {
1640 /* FIXME: should be checking for errors from bfd_close (for one
1641 thing, on error it does not free all the storage associated
1642 with the bfd). */
1643 bfd_close (sym_bfd); /* This also closes desc. */
1644 make_cleanup (xfree, name);
1645 error (_("`%s': can't read symbols: %s."), name,
1646 bfd_errmsg (bfd_get_error ()));
1647 }
1648
1649 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1650 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1651
1652 return sym_bfd;
1653 }
1654
1655 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
1658 int
1659 get_section_index (struct objfile *objfile, char *section_name)
1660 {
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1662
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667 }
1668
1669 /* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
1673
1674 void
1675 add_symtab_fns (struct sym_fns *sf)
1676 {
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679 }
1680
1681 /* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
1685
1686 static struct sym_fns *
1687 find_sym_fns (bfd *abfd)
1688 {
1689 struct sym_fns *sf;
1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1691
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
1695 return NULL; /* No symbols. */
1696
1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
1700
1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1702 bfd_get_target (abfd));
1703 }
1704 \f
1705
1706 /* This function runs the load command of our current target. */
1707
1708 static void
1709 load_command (char *arg, int from_tty)
1710 {
1711 /* The user might be reloading because the binary has changed. Take
1712 this opportunity to check. */
1713 reopen_exec_file ();
1714 reread_symbols ();
1715
1716 if (arg == NULL)
1717 {
1718 char *parg;
1719 int count = 0;
1720
1721 parg = arg = get_exec_file (1);
1722
1723 /* Count how many \ " ' tab space there are in the name. */
1724 while ((parg = strpbrk (parg, "\\\"'\t ")))
1725 {
1726 parg++;
1727 count++;
1728 }
1729
1730 if (count)
1731 {
1732 /* We need to quote this string so buildargv can pull it apart. */
1733 char *temp = xmalloc (strlen (arg) + count + 1 );
1734 char *ptemp = temp;
1735 char *prev;
1736
1737 make_cleanup (xfree, temp);
1738
1739 prev = parg = arg;
1740 while ((parg = strpbrk (parg, "\\\"'\t ")))
1741 {
1742 strncpy (ptemp, prev, parg - prev);
1743 ptemp += parg - prev;
1744 prev = parg++;
1745 *ptemp++ = '\\';
1746 }
1747 strcpy (ptemp, prev);
1748
1749 arg = temp;
1750 }
1751 }
1752
1753 target_load (arg, from_tty);
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
1758 }
1759
1760 /* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
1768
1769 static int validate_download = 0;
1770
1771 /* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773 static void
1774 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775 {
1776 bfd_size_type *sum = data;
1777
1778 *sum += bfd_get_section_size (asec);
1779 }
1780
1781 /* Opaque data for load_section_callback. */
1782 struct load_section_data {
1783 unsigned long load_offset;
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786 };
1787
1788 /* Opaque data for load_progress. */
1789 struct load_progress_data {
1790 /* Cumulative data. */
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
1794 };
1795
1796 /* Opaque data for load_progress for a single section. */
1797 struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
1799
1800 /* Per-section data. */
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
1806 };
1807
1808 /* Target write callback routine for progress reporting. */
1809
1810 static void
1811 load_progress (ULONGEST bytes, void *untyped_arg)
1812 {
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1828 args->section_name, hex_string (args->section_size),
1829 paddress (target_gdbarch, args->lma));
1830 return;
1831 }
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at %s"),
1847 paddress (target_gdbarch, args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at %s"),
1850 paddress (target_gdbarch, args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
1853 totals->data_count += bytes;
1854 args->lma += bytes;
1855 args->buffer += bytes;
1856 totals->write_count += 1;
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
1868 totals->data_count,
1869 totals->total_size);
1870 }
1871
1872 /* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874 static void
1875 load_section_callback (bfd *abfd, asection *asec, void *data)
1876 {
1877 struct memory_write_request *new_request;
1878 struct load_section_data *args = data;
1879 struct load_progress_section_data *section_data;
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
1882 const char *sect_name = bfd_get_section_name (abfd, asec);
1883
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
1886
1887 if (size == 0)
1888 return;
1889
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
1898
1899 buffer = new_request->data;
1900
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1908 }
1909
1910 /* Clean up an entire memory request vector, including load
1911 data and progress records. */
1912
1913 static void
1914 clear_memory_write_data (void *arg)
1915 {
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
1920
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
1927 }
1928
1929 void
1930 generic_load (char *args, int from_tty)
1931 {
1932 bfd *loadfile_bfd;
1933 struct timeval start_time, end_time;
1934 char *filename;
1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1936 struct load_section_data cbdata;
1937 struct load_progress_data total_progress;
1938
1939 CORE_ADDR entry;
1940 char **argv;
1941
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
1947
1948 if (args == NULL)
1949 error_no_arg (_("file to load"));
1950
1951 argv = gdb_buildargv (args);
1952 make_cleanup_freeargv (argv);
1953
1954 filename = tilde_expand (argv[0]);
1955 make_cleanup (xfree, filename);
1956
1957 if (argv[1] != NULL)
1958 {
1959 char *endptr;
1960
1961 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1962
1963 /* If the last word was not a valid number then
1964 treat it as a file name with spaces in. */
1965 if (argv[1] == endptr)
1966 error (_("Invalid download offset:%s."), argv[1]);
1967
1968 if (argv[2] != NULL)
1969 error (_("Too many parameters."));
1970 }
1971
1972 /* Open the file for loading. */
1973 loadfile_bfd = bfd_openr (filename, gnutarget);
1974 if (loadfile_bfd == NULL)
1975 {
1976 perror_with_name (filename);
1977 return;
1978 }
1979
1980 /* FIXME: should be checking for errors from bfd_close (for one thing,
1981 on error it does not free all the storage associated with the
1982 bfd). */
1983 make_cleanup_bfd_close (loadfile_bfd);
1984
1985 if (!bfd_check_format (loadfile_bfd, bfd_object))
1986 {
1987 error (_("\"%s\" is not an object file: %s"), filename,
1988 bfd_errmsg (bfd_get_error ()));
1989 }
1990
1991 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1992 (void *) &total_progress.total_size);
1993
1994 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1995
1996 gettimeofday (&start_time, NULL);
1997
1998 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1999 load_progress) != 0)
2000 error (_("Load failed"));
2001
2002 gettimeofday (&end_time, NULL);
2003
2004 entry = bfd_get_start_address (loadfile_bfd);
2005 ui_out_text (uiout, "Start address ");
2006 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2007 ui_out_text (uiout, ", load size ");
2008 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2009 ui_out_text (uiout, "\n");
2010 /* We were doing this in remote-mips.c, I suspect it is right
2011 for other targets too. */
2012 regcache_write_pc (get_current_regcache (), entry);
2013
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2020 memory. */
2021
2022 breakpoint_re_set ();
2023
2024 /* FIXME: are we supposed to call symbol_file_add or not? According
2025 to a comment from remote-mips.c (where a call to symbol_file_add
2026 was commented out), making the call confuses GDB if more than one
2027 file is loaded in. Some targets do (e.g., remote-vx.c) but
2028 others don't (or didn't - perhaps they have all been deleted). */
2029
2030 print_transfer_performance (gdb_stdout, total_progress.data_count,
2031 total_progress.write_count,
2032 &start_time, &end_time);
2033
2034 do_cleanups (old_cleanups);
2035 }
2036
2037 /* Report how fast the transfer went. */
2038
2039 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2040 replaced by print_transfer_performance (with a very different
2041 function signature). */
2042
2043 void
2044 report_transfer_performance (unsigned long data_count, time_t start_time,
2045 time_t end_time)
2046 {
2047 struct timeval start, end;
2048
2049 start.tv_sec = start_time;
2050 start.tv_usec = 0;
2051 end.tv_sec = end_time;
2052 end.tv_usec = 0;
2053
2054 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2055 }
2056
2057 void
2058 print_transfer_performance (struct ui_file *stream,
2059 unsigned long data_count,
2060 unsigned long write_count,
2061 const struct timeval *start_time,
2062 const struct timeval *end_time)
2063 {
2064 ULONGEST time_count;
2065
2066 /* Compute the elapsed time in milliseconds, as a tradeoff between
2067 accuracy and overflow. */
2068 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2069 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2070
2071 ui_out_text (uiout, "Transfer rate: ");
2072 if (time_count > 0)
2073 {
2074 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2075
2076 if (ui_out_is_mi_like_p (uiout))
2077 {
2078 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2079 ui_out_text (uiout, " bits/sec");
2080 }
2081 else if (rate < 1024)
2082 {
2083 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2084 ui_out_text (uiout, " bytes/sec");
2085 }
2086 else
2087 {
2088 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2089 ui_out_text (uiout, " KB/sec");
2090 }
2091 }
2092 else
2093 {
2094 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2095 ui_out_text (uiout, " bits in <1 sec");
2096 }
2097 if (write_count > 0)
2098 {
2099 ui_out_text (uiout, ", ");
2100 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2101 ui_out_text (uiout, " bytes/write");
2102 }
2103 ui_out_text (uiout, ".\n");
2104 }
2105
2106 /* This function allows the addition of incrementally linked object files.
2107 It does not modify any state in the target, only in the debugger. */
2108 /* Note: ezannoni 2000-04-13 This function/command used to have a
2109 special case syntax for the rombug target (Rombug is the boot
2110 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2111 rombug case, the user doesn't need to supply a text address,
2112 instead a call to target_link() (in target.c) would supply the
2113 value to use. We are now discontinuing this type of ad hoc syntax. */
2114
2115 static void
2116 add_symbol_file_command (char *args, int from_tty)
2117 {
2118 struct gdbarch *gdbarch = get_current_arch ();
2119 char *filename = NULL;
2120 int flags = OBJF_USERLOADED;
2121 char *arg;
2122 int section_index = 0;
2123 int argcnt = 0;
2124 int sec_num = 0;
2125 int i;
2126 int expecting_sec_name = 0;
2127 int expecting_sec_addr = 0;
2128 char **argv;
2129
2130 struct sect_opt
2131 {
2132 char *name;
2133 char *value;
2134 };
2135
2136 struct section_addr_info *section_addrs;
2137 struct sect_opt *sect_opts = NULL;
2138 size_t num_sect_opts = 0;
2139 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2140
2141 num_sect_opts = 16;
2142 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2143 * sizeof (struct sect_opt));
2144
2145 dont_repeat ();
2146
2147 if (args == NULL)
2148 error (_("add-symbol-file takes a file name and an address"));
2149
2150 argv = gdb_buildargv (args);
2151 make_cleanup_freeargv (argv);
2152
2153 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2154 {
2155 /* Process the argument. */
2156 if (argcnt == 0)
2157 {
2158 /* The first argument is the file name. */
2159 filename = tilde_expand (arg);
2160 make_cleanup (xfree, filename);
2161 }
2162 else
2163 if (argcnt == 1)
2164 {
2165 /* The second argument is always the text address at which
2166 to load the program. */
2167 sect_opts[section_index].name = ".text";
2168 sect_opts[section_index].value = arg;
2169 if (++section_index >= num_sect_opts)
2170 {
2171 num_sect_opts *= 2;
2172 sect_opts = ((struct sect_opt *)
2173 xrealloc (sect_opts,
2174 num_sect_opts
2175 * sizeof (struct sect_opt)));
2176 }
2177 }
2178 else
2179 {
2180 /* It's an option (starting with '-') or it's an argument
2181 to an option */
2182
2183 if (*arg == '-')
2184 {
2185 if (strcmp (arg, "-readnow") == 0)
2186 flags |= OBJF_READNOW;
2187 else if (strcmp (arg, "-s") == 0)
2188 {
2189 expecting_sec_name = 1;
2190 expecting_sec_addr = 1;
2191 }
2192 }
2193 else
2194 {
2195 if (expecting_sec_name)
2196 {
2197 sect_opts[section_index].name = arg;
2198 expecting_sec_name = 0;
2199 }
2200 else
2201 if (expecting_sec_addr)
2202 {
2203 sect_opts[section_index].value = arg;
2204 expecting_sec_addr = 0;
2205 if (++section_index >= num_sect_opts)
2206 {
2207 num_sect_opts *= 2;
2208 sect_opts = ((struct sect_opt *)
2209 xrealloc (sect_opts,
2210 num_sect_opts
2211 * sizeof (struct sect_opt)));
2212 }
2213 }
2214 else
2215 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2216 }
2217 }
2218 }
2219
2220 /* This command takes at least two arguments. The first one is a
2221 filename, and the second is the address where this file has been
2222 loaded. Abort now if this address hasn't been provided by the
2223 user. */
2224 if (section_index < 1)
2225 error (_("The address where %s has been loaded is missing"), filename);
2226
2227 /* Print the prompt for the query below. And save the arguments into
2228 a sect_addr_info structure to be passed around to other
2229 functions. We have to split this up into separate print
2230 statements because hex_string returns a local static
2231 string. */
2232
2233 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2234 section_addrs = alloc_section_addr_info (section_index);
2235 make_cleanup (xfree, section_addrs);
2236 for (i = 0; i < section_index; i++)
2237 {
2238 CORE_ADDR addr;
2239 char *val = sect_opts[i].value;
2240 char *sec = sect_opts[i].name;
2241
2242 addr = parse_and_eval_address (val);
2243
2244 /* Here we store the section offsets in the order they were
2245 entered on the command line. */
2246 section_addrs->other[sec_num].name = sec;
2247 section_addrs->other[sec_num].addr = addr;
2248 printf_unfiltered ("\t%s_addr = %s\n", sec,
2249 paddress (gdbarch, addr));
2250 sec_num++;
2251
2252 /* The object's sections are initialized when a
2253 call is made to build_objfile_section_table (objfile).
2254 This happens in reread_symbols.
2255 At this point, we don't know what file type this is,
2256 so we can't determine what section names are valid. */
2257 }
2258
2259 if (from_tty && (!query ("%s", "")))
2260 error (_("Not confirmed."));
2261
2262 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2263 section_addrs, flags);
2264
2265 /* Getting new symbols may change our opinion about what is
2266 frameless. */
2267 reinit_frame_cache ();
2268 do_cleanups (my_cleanups);
2269 }
2270 \f
2271
2272 /* Re-read symbols if a symbol-file has changed. */
2273 void
2274 reread_symbols (void)
2275 {
2276 struct objfile *objfile;
2277 long new_modtime;
2278 int reread_one = 0;
2279 struct stat new_statbuf;
2280 int res;
2281
2282 /* With the addition of shared libraries, this should be modified,
2283 the load time should be saved in the partial symbol tables, since
2284 different tables may come from different source files. FIXME.
2285 This routine should then walk down each partial symbol table
2286 and see if the symbol table that it originates from has been changed */
2287
2288 for (objfile = object_files; objfile; objfile = objfile->next)
2289 {
2290 /* solib-sunos.c creates one objfile with obfd. */
2291 if (objfile->obfd == NULL)
2292 continue;
2293
2294 /* Separate debug objfiles are handled in the main objfile. */
2295 if (objfile->separate_debug_objfile_backlink)
2296 continue;
2297
2298 /* If this object is from an archive (what you usually create with
2299 `ar', often called a `static library' on most systems, though
2300 a `shared library' on AIX is also an archive), then you should
2301 stat on the archive name, not member name. */
2302 if (objfile->obfd->my_archive)
2303 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2304 else
2305 res = stat (objfile->name, &new_statbuf);
2306 if (res != 0)
2307 {
2308 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2309 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2310 objfile->name);
2311 continue;
2312 }
2313 new_modtime = new_statbuf.st_mtime;
2314 if (new_modtime != objfile->mtime)
2315 {
2316 struct cleanup *old_cleanups;
2317 struct section_offsets *offsets;
2318 int num_offsets;
2319 char *obfd_filename;
2320
2321 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2322 objfile->name);
2323
2324 /* There are various functions like symbol_file_add,
2325 symfile_bfd_open, syms_from_objfile, etc., which might
2326 appear to do what we want. But they have various other
2327 effects which we *don't* want. So we just do stuff
2328 ourselves. We don't worry about mapped files (for one thing,
2329 any mapped file will be out of date). */
2330
2331 /* If we get an error, blow away this objfile (not sure if
2332 that is the correct response for things like shared
2333 libraries). */
2334 old_cleanups = make_cleanup_free_objfile (objfile);
2335 /* We need to do this whenever any symbols go away. */
2336 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2337
2338 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2339 bfd_get_filename (exec_bfd)) == 0)
2340 {
2341 /* Reload EXEC_BFD without asking anything. */
2342
2343 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2344 }
2345
2346 /* Clean up any state BFD has sitting around. We don't need
2347 to close the descriptor but BFD lacks a way of closing the
2348 BFD without closing the descriptor. */
2349 obfd_filename = bfd_get_filename (objfile->obfd);
2350 if (!bfd_close (objfile->obfd))
2351 error (_("Can't close BFD for %s: %s"), objfile->name,
2352 bfd_errmsg (bfd_get_error ()));
2353 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2354 if (objfile->obfd == NULL)
2355 error (_("Can't open %s to read symbols."), objfile->name);
2356 else
2357 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2358 /* bfd_openr sets cacheable to true, which is what we want. */
2359 if (!bfd_check_format (objfile->obfd, bfd_object))
2360 error (_("Can't read symbols from %s: %s."), objfile->name,
2361 bfd_errmsg (bfd_get_error ()));
2362
2363 /* Save the offsets, we will nuke them with the rest of the
2364 objfile_obstack. */
2365 num_offsets = objfile->num_sections;
2366 offsets = ((struct section_offsets *)
2367 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2368 memcpy (offsets, objfile->section_offsets,
2369 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2370
2371 /* Remove any references to this objfile in the global
2372 value lists. */
2373 preserve_values (objfile);
2374
2375 /* Nuke all the state that we will re-read. Much of the following
2376 code which sets things to NULL really is necessary to tell
2377 other parts of GDB that there is nothing currently there.
2378
2379 Try to keep the freeing order compatible with free_objfile. */
2380
2381 if (objfile->sf != NULL)
2382 {
2383 (*objfile->sf->sym_finish) (objfile);
2384 }
2385
2386 clear_objfile_data (objfile);
2387
2388 /* Free the separate debug objfiles. It will be
2389 automatically recreated by sym_read. */
2390 free_objfile_separate_debug (objfile);
2391
2392 /* FIXME: Do we have to free a whole linked list, or is this
2393 enough? */
2394 if (objfile->global_psymbols.list)
2395 xfree (objfile->global_psymbols.list);
2396 memset (&objfile->global_psymbols, 0,
2397 sizeof (objfile->global_psymbols));
2398 if (objfile->static_psymbols.list)
2399 xfree (objfile->static_psymbols.list);
2400 memset (&objfile->static_psymbols, 0,
2401 sizeof (objfile->static_psymbols));
2402
2403 /* Free the obstacks for non-reusable objfiles */
2404 bcache_xfree (objfile->psymbol_cache);
2405 objfile->psymbol_cache = bcache_xmalloc ();
2406 bcache_xfree (objfile->macro_cache);
2407 objfile->macro_cache = bcache_xmalloc ();
2408 bcache_xfree (objfile->filename_cache);
2409 objfile->filename_cache = bcache_xmalloc ();
2410 if (objfile->demangled_names_hash != NULL)
2411 {
2412 htab_delete (objfile->demangled_names_hash);
2413 objfile->demangled_names_hash = NULL;
2414 }
2415 obstack_free (&objfile->objfile_obstack, 0);
2416 objfile->sections = NULL;
2417 objfile->symtabs = NULL;
2418 objfile->psymtabs = NULL;
2419 objfile->psymtabs_addrmap = NULL;
2420 objfile->free_psymtabs = NULL;
2421 objfile->cp_namespace_symtab = NULL;
2422 objfile->msymbols = NULL;
2423 objfile->deprecated_sym_private = NULL;
2424 objfile->minimal_symbol_count = 0;
2425 memset (&objfile->msymbol_hash, 0,
2426 sizeof (objfile->msymbol_hash));
2427 memset (&objfile->msymbol_demangled_hash, 0,
2428 sizeof (objfile->msymbol_demangled_hash));
2429
2430 objfile->psymbol_cache = bcache_xmalloc ();
2431 objfile->macro_cache = bcache_xmalloc ();
2432 objfile->filename_cache = bcache_xmalloc ();
2433 /* obstack_init also initializes the obstack so it is
2434 empty. We could use obstack_specify_allocation but
2435 gdb_obstack.h specifies the alloc/dealloc
2436 functions. */
2437 obstack_init (&objfile->objfile_obstack);
2438 if (build_objfile_section_table (objfile))
2439 {
2440 error (_("Can't find the file sections in `%s': %s"),
2441 objfile->name, bfd_errmsg (bfd_get_error ()));
2442 }
2443 terminate_minimal_symbol_table (objfile);
2444
2445 /* We use the same section offsets as from last time. I'm not
2446 sure whether that is always correct for shared libraries. */
2447 objfile->section_offsets = (struct section_offsets *)
2448 obstack_alloc (&objfile->objfile_obstack,
2449 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2450 memcpy (objfile->section_offsets, offsets,
2451 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2452 objfile->num_sections = num_offsets;
2453
2454 /* What the hell is sym_new_init for, anyway? The concept of
2455 distinguishing between the main file and additional files
2456 in this way seems rather dubious. */
2457 if (objfile == symfile_objfile)
2458 {
2459 (*objfile->sf->sym_new_init) (objfile);
2460 }
2461
2462 (*objfile->sf->sym_init) (objfile);
2463 clear_complaints (&symfile_complaints, 1, 1);
2464 /* Do not set flags as this is safe and we don't want to be
2465 verbose. */
2466 (*objfile->sf->sym_read) (objfile, 0);
2467 if (!objfile_has_symbols (objfile))
2468 {
2469 wrap_here ("");
2470 printf_unfiltered (_("(no debugging symbols found)\n"));
2471 wrap_here ("");
2472 }
2473
2474 /* We're done reading the symbol file; finish off complaints. */
2475 clear_complaints (&symfile_complaints, 0, 1);
2476
2477 /* Getting new symbols may change our opinion about what is
2478 frameless. */
2479
2480 reinit_frame_cache ();
2481
2482 /* Discard cleanups as symbol reading was successful. */
2483 discard_cleanups (old_cleanups);
2484
2485 /* If the mtime has changed between the time we set new_modtime
2486 and now, we *want* this to be out of date, so don't call stat
2487 again now. */
2488 objfile->mtime = new_modtime;
2489 reread_one = 1;
2490 init_entry_point_info (objfile);
2491 }
2492 }
2493
2494 if (reread_one)
2495 {
2496 /* Notify objfiles that we've modified objfile sections. */
2497 objfiles_changed ();
2498
2499 clear_symtab_users ();
2500 /* At least one objfile has changed, so we can consider that
2501 the executable we're debugging has changed too. */
2502 observer_notify_executable_changed ();
2503 }
2504 }
2505 \f
2506
2507
2508 typedef struct
2509 {
2510 char *ext;
2511 enum language lang;
2512 }
2513 filename_language;
2514
2515 static filename_language *filename_language_table;
2516 static int fl_table_size, fl_table_next;
2517
2518 static void
2519 add_filename_language (char *ext, enum language lang)
2520 {
2521 if (fl_table_next >= fl_table_size)
2522 {
2523 fl_table_size += 10;
2524 filename_language_table =
2525 xrealloc (filename_language_table,
2526 fl_table_size * sizeof (*filename_language_table));
2527 }
2528
2529 filename_language_table[fl_table_next].ext = xstrdup (ext);
2530 filename_language_table[fl_table_next].lang = lang;
2531 fl_table_next++;
2532 }
2533
2534 static char *ext_args;
2535 static void
2536 show_ext_args (struct ui_file *file, int from_tty,
2537 struct cmd_list_element *c, const char *value)
2538 {
2539 fprintf_filtered (file, _("\
2540 Mapping between filename extension and source language is \"%s\".\n"),
2541 value);
2542 }
2543
2544 static void
2545 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2546 {
2547 int i;
2548 char *cp = ext_args;
2549 enum language lang;
2550
2551 /* First arg is filename extension, starting with '.' */
2552 if (*cp != '.')
2553 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2554
2555 /* Find end of first arg. */
2556 while (*cp && !isspace (*cp))
2557 cp++;
2558
2559 if (*cp == '\0')
2560 error (_("'%s': two arguments required -- filename extension and language"),
2561 ext_args);
2562
2563 /* Null-terminate first arg */
2564 *cp++ = '\0';
2565
2566 /* Find beginning of second arg, which should be a source language. */
2567 while (*cp && isspace (*cp))
2568 cp++;
2569
2570 if (*cp == '\0')
2571 error (_("'%s': two arguments required -- filename extension and language"),
2572 ext_args);
2573
2574 /* Lookup the language from among those we know. */
2575 lang = language_enum (cp);
2576
2577 /* Now lookup the filename extension: do we already know it? */
2578 for (i = 0; i < fl_table_next; i++)
2579 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2580 break;
2581
2582 if (i >= fl_table_next)
2583 {
2584 /* new file extension */
2585 add_filename_language (ext_args, lang);
2586 }
2587 else
2588 {
2589 /* redefining a previously known filename extension */
2590
2591 /* if (from_tty) */
2592 /* query ("Really make files of type %s '%s'?", */
2593 /* ext_args, language_str (lang)); */
2594
2595 xfree (filename_language_table[i].ext);
2596 filename_language_table[i].ext = xstrdup (ext_args);
2597 filename_language_table[i].lang = lang;
2598 }
2599 }
2600
2601 static void
2602 info_ext_lang_command (char *args, int from_tty)
2603 {
2604 int i;
2605
2606 printf_filtered (_("Filename extensions and the languages they represent:"));
2607 printf_filtered ("\n\n");
2608 for (i = 0; i < fl_table_next; i++)
2609 printf_filtered ("\t%s\t- %s\n",
2610 filename_language_table[i].ext,
2611 language_str (filename_language_table[i].lang));
2612 }
2613
2614 static void
2615 init_filename_language_table (void)
2616 {
2617 if (fl_table_size == 0) /* protect against repetition */
2618 {
2619 fl_table_size = 20;
2620 fl_table_next = 0;
2621 filename_language_table =
2622 xmalloc (fl_table_size * sizeof (*filename_language_table));
2623 add_filename_language (".c", language_c);
2624 add_filename_language (".d", language_d);
2625 add_filename_language (".C", language_cplus);
2626 add_filename_language (".cc", language_cplus);
2627 add_filename_language (".cp", language_cplus);
2628 add_filename_language (".cpp", language_cplus);
2629 add_filename_language (".cxx", language_cplus);
2630 add_filename_language (".c++", language_cplus);
2631 add_filename_language (".java", language_java);
2632 add_filename_language (".class", language_java);
2633 add_filename_language (".m", language_objc);
2634 add_filename_language (".f", language_fortran);
2635 add_filename_language (".F", language_fortran);
2636 add_filename_language (".s", language_asm);
2637 add_filename_language (".sx", language_asm);
2638 add_filename_language (".S", language_asm);
2639 add_filename_language (".pas", language_pascal);
2640 add_filename_language (".p", language_pascal);
2641 add_filename_language (".pp", language_pascal);
2642 add_filename_language (".adb", language_ada);
2643 add_filename_language (".ads", language_ada);
2644 add_filename_language (".a", language_ada);
2645 add_filename_language (".ada", language_ada);
2646 add_filename_language (".dg", language_ada);
2647 }
2648 }
2649
2650 enum language
2651 deduce_language_from_filename (char *filename)
2652 {
2653 int i;
2654 char *cp;
2655
2656 if (filename != NULL)
2657 if ((cp = strrchr (filename, '.')) != NULL)
2658 for (i = 0; i < fl_table_next; i++)
2659 if (strcmp (cp, filename_language_table[i].ext) == 0)
2660 return filename_language_table[i].lang;
2661
2662 return language_unknown;
2663 }
2664 \f
2665 /* allocate_symtab:
2666
2667 Allocate and partly initialize a new symbol table. Return a pointer
2668 to it. error() if no space.
2669
2670 Caller must set these fields:
2671 LINETABLE(symtab)
2672 symtab->blockvector
2673 symtab->dirname
2674 symtab->free_code
2675 symtab->free_ptr
2676 */
2677
2678 struct symtab *
2679 allocate_symtab (char *filename, struct objfile *objfile)
2680 {
2681 struct symtab *symtab;
2682
2683 symtab = (struct symtab *)
2684 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2685 memset (symtab, 0, sizeof (*symtab));
2686 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2687 objfile->filename_cache);
2688 symtab->fullname = NULL;
2689 symtab->language = deduce_language_from_filename (filename);
2690 symtab->debugformat = "unknown";
2691
2692 /* Hook it to the objfile it comes from */
2693
2694 symtab->objfile = objfile;
2695 symtab->next = objfile->symtabs;
2696 objfile->symtabs = symtab;
2697
2698 return (symtab);
2699 }
2700 \f
2701
2702 /* Reset all data structures in gdb which may contain references to symbol
2703 table data. */
2704
2705 void
2706 clear_symtab_users (void)
2707 {
2708 /* Someday, we should do better than this, by only blowing away
2709 the things that really need to be blown. */
2710
2711 /* Clear the "current" symtab first, because it is no longer valid.
2712 breakpoint_re_set may try to access the current symtab. */
2713 clear_current_source_symtab_and_line ();
2714
2715 clear_displays ();
2716 breakpoint_re_set ();
2717 set_default_breakpoint (0, NULL, 0, 0, 0);
2718 clear_pc_function_cache ();
2719 observer_notify_new_objfile (NULL);
2720
2721 /* Clear globals which might have pointed into a removed objfile.
2722 FIXME: It's not clear which of these are supposed to persist
2723 between expressions and which ought to be reset each time. */
2724 expression_context_block = NULL;
2725 innermost_block = NULL;
2726
2727 /* Varobj may refer to old symbols, perform a cleanup. */
2728 varobj_invalidate ();
2729
2730 }
2731
2732 static void
2733 clear_symtab_users_cleanup (void *ignore)
2734 {
2735 clear_symtab_users ();
2736 }
2737 \f
2738 /* OVERLAYS:
2739 The following code implements an abstraction for debugging overlay sections.
2740
2741 The target model is as follows:
2742 1) The gnu linker will permit multiple sections to be mapped into the
2743 same VMA, each with its own unique LMA (or load address).
2744 2) It is assumed that some runtime mechanism exists for mapping the
2745 sections, one by one, from the load address into the VMA address.
2746 3) This code provides a mechanism for gdb to keep track of which
2747 sections should be considered to be mapped from the VMA to the LMA.
2748 This information is used for symbol lookup, and memory read/write.
2749 For instance, if a section has been mapped then its contents
2750 should be read from the VMA, otherwise from the LMA.
2751
2752 Two levels of debugger support for overlays are available. One is
2753 "manual", in which the debugger relies on the user to tell it which
2754 overlays are currently mapped. This level of support is
2755 implemented entirely in the core debugger, and the information about
2756 whether a section is mapped is kept in the objfile->obj_section table.
2757
2758 The second level of support is "automatic", and is only available if
2759 the target-specific code provides functionality to read the target's
2760 overlay mapping table, and translate its contents for the debugger
2761 (by updating the mapped state information in the obj_section tables).
2762
2763 The interface is as follows:
2764 User commands:
2765 overlay map <name> -- tell gdb to consider this section mapped
2766 overlay unmap <name> -- tell gdb to consider this section unmapped
2767 overlay list -- list the sections that GDB thinks are mapped
2768 overlay read-target -- get the target's state of what's mapped
2769 overlay off/manual/auto -- set overlay debugging state
2770 Functional interface:
2771 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2772 section, return that section.
2773 find_pc_overlay(pc): find any overlay section that contains
2774 the pc, either in its VMA or its LMA
2775 section_is_mapped(sect): true if overlay is marked as mapped
2776 section_is_overlay(sect): true if section's VMA != LMA
2777 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2778 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2779 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2780 overlay_mapped_address(...): map an address from section's LMA to VMA
2781 overlay_unmapped_address(...): map an address from section's VMA to LMA
2782 symbol_overlayed_address(...): Return a "current" address for symbol:
2783 either in VMA or LMA depending on whether
2784 the symbol's section is currently mapped
2785 */
2786
2787 /* Overlay debugging state: */
2788
2789 enum overlay_debugging_state overlay_debugging = ovly_off;
2790 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2791
2792 /* Function: section_is_overlay (SECTION)
2793 Returns true if SECTION has VMA not equal to LMA, ie.
2794 SECTION is loaded at an address different from where it will "run". */
2795
2796 int
2797 section_is_overlay (struct obj_section *section)
2798 {
2799 if (overlay_debugging && section)
2800 {
2801 bfd *abfd = section->objfile->obfd;
2802 asection *bfd_section = section->the_bfd_section;
2803
2804 if (bfd_section_lma (abfd, bfd_section) != 0
2805 && bfd_section_lma (abfd, bfd_section)
2806 != bfd_section_vma (abfd, bfd_section))
2807 return 1;
2808 }
2809
2810 return 0;
2811 }
2812
2813 /* Function: overlay_invalidate_all (void)
2814 Invalidate the mapped state of all overlay sections (mark it as stale). */
2815
2816 static void
2817 overlay_invalidate_all (void)
2818 {
2819 struct objfile *objfile;
2820 struct obj_section *sect;
2821
2822 ALL_OBJSECTIONS (objfile, sect)
2823 if (section_is_overlay (sect))
2824 sect->ovly_mapped = -1;
2825 }
2826
2827 /* Function: section_is_mapped (SECTION)
2828 Returns true if section is an overlay, and is currently mapped.
2829
2830 Access to the ovly_mapped flag is restricted to this function, so
2831 that we can do automatic update. If the global flag
2832 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2833 overlay_invalidate_all. If the mapped state of the particular
2834 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2835
2836 int
2837 section_is_mapped (struct obj_section *osect)
2838 {
2839 struct gdbarch *gdbarch;
2840
2841 if (osect == 0 || !section_is_overlay (osect))
2842 return 0;
2843
2844 switch (overlay_debugging)
2845 {
2846 default:
2847 case ovly_off:
2848 return 0; /* overlay debugging off */
2849 case ovly_auto: /* overlay debugging automatic */
2850 /* Unles there is a gdbarch_overlay_update function,
2851 there's really nothing useful to do here (can't really go auto) */
2852 gdbarch = get_objfile_arch (osect->objfile);
2853 if (gdbarch_overlay_update_p (gdbarch))
2854 {
2855 if (overlay_cache_invalid)
2856 {
2857 overlay_invalidate_all ();
2858 overlay_cache_invalid = 0;
2859 }
2860 if (osect->ovly_mapped == -1)
2861 gdbarch_overlay_update (gdbarch, osect);
2862 }
2863 /* fall thru to manual case */
2864 case ovly_on: /* overlay debugging manual */
2865 return osect->ovly_mapped == 1;
2866 }
2867 }
2868
2869 /* Function: pc_in_unmapped_range
2870 If PC falls into the lma range of SECTION, return true, else false. */
2871
2872 CORE_ADDR
2873 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2874 {
2875 if (section_is_overlay (section))
2876 {
2877 bfd *abfd = section->objfile->obfd;
2878 asection *bfd_section = section->the_bfd_section;
2879
2880 /* We assume the LMA is relocated by the same offset as the VMA. */
2881 bfd_vma size = bfd_get_section_size (bfd_section);
2882 CORE_ADDR offset = obj_section_offset (section);
2883
2884 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2885 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2886 return 1;
2887 }
2888
2889 return 0;
2890 }
2891
2892 /* Function: pc_in_mapped_range
2893 If PC falls into the vma range of SECTION, return true, else false. */
2894
2895 CORE_ADDR
2896 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2897 {
2898 if (section_is_overlay (section))
2899 {
2900 if (obj_section_addr (section) <= pc
2901 && pc < obj_section_endaddr (section))
2902 return 1;
2903 }
2904
2905 return 0;
2906 }
2907
2908
2909 /* Return true if the mapped ranges of sections A and B overlap, false
2910 otherwise. */
2911 static int
2912 sections_overlap (struct obj_section *a, struct obj_section *b)
2913 {
2914 CORE_ADDR a_start = obj_section_addr (a);
2915 CORE_ADDR a_end = obj_section_endaddr (a);
2916 CORE_ADDR b_start = obj_section_addr (b);
2917 CORE_ADDR b_end = obj_section_endaddr (b);
2918
2919 return (a_start < b_end && b_start < a_end);
2920 }
2921
2922 /* Function: overlay_unmapped_address (PC, SECTION)
2923 Returns the address corresponding to PC in the unmapped (load) range.
2924 May be the same as PC. */
2925
2926 CORE_ADDR
2927 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2928 {
2929 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2930 {
2931 bfd *abfd = section->objfile->obfd;
2932 asection *bfd_section = section->the_bfd_section;
2933
2934 return pc + bfd_section_lma (abfd, bfd_section)
2935 - bfd_section_vma (abfd, bfd_section);
2936 }
2937
2938 return pc;
2939 }
2940
2941 /* Function: overlay_mapped_address (PC, SECTION)
2942 Returns the address corresponding to PC in the mapped (runtime) range.
2943 May be the same as PC. */
2944
2945 CORE_ADDR
2946 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2947 {
2948 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2949 {
2950 bfd *abfd = section->objfile->obfd;
2951 asection *bfd_section = section->the_bfd_section;
2952
2953 return pc + bfd_section_vma (abfd, bfd_section)
2954 - bfd_section_lma (abfd, bfd_section);
2955 }
2956
2957 return pc;
2958 }
2959
2960
2961 /* Function: symbol_overlayed_address
2962 Return one of two addresses (relative to the VMA or to the LMA),
2963 depending on whether the section is mapped or not. */
2964
2965 CORE_ADDR
2966 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2967 {
2968 if (overlay_debugging)
2969 {
2970 /* If the symbol has no section, just return its regular address. */
2971 if (section == 0)
2972 return address;
2973 /* If the symbol's section is not an overlay, just return its address */
2974 if (!section_is_overlay (section))
2975 return address;
2976 /* If the symbol's section is mapped, just return its address */
2977 if (section_is_mapped (section))
2978 return address;
2979 /*
2980 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2981 * then return its LOADED address rather than its vma address!!
2982 */
2983 return overlay_unmapped_address (address, section);
2984 }
2985 return address;
2986 }
2987
2988 /* Function: find_pc_overlay (PC)
2989 Return the best-match overlay section for PC:
2990 If PC matches a mapped overlay section's VMA, return that section.
2991 Else if PC matches an unmapped section's VMA, return that section.
2992 Else if PC matches an unmapped section's LMA, return that section. */
2993
2994 struct obj_section *
2995 find_pc_overlay (CORE_ADDR pc)
2996 {
2997 struct objfile *objfile;
2998 struct obj_section *osect, *best_match = NULL;
2999
3000 if (overlay_debugging)
3001 ALL_OBJSECTIONS (objfile, osect)
3002 if (section_is_overlay (osect))
3003 {
3004 if (pc_in_mapped_range (pc, osect))
3005 {
3006 if (section_is_mapped (osect))
3007 return osect;
3008 else
3009 best_match = osect;
3010 }
3011 else if (pc_in_unmapped_range (pc, osect))
3012 best_match = osect;
3013 }
3014 return best_match;
3015 }
3016
3017 /* Function: find_pc_mapped_section (PC)
3018 If PC falls into the VMA address range of an overlay section that is
3019 currently marked as MAPPED, return that section. Else return NULL. */
3020
3021 struct obj_section *
3022 find_pc_mapped_section (CORE_ADDR pc)
3023 {
3024 struct objfile *objfile;
3025 struct obj_section *osect;
3026
3027 if (overlay_debugging)
3028 ALL_OBJSECTIONS (objfile, osect)
3029 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3030 return osect;
3031
3032 return NULL;
3033 }
3034
3035 /* Function: list_overlays_command
3036 Print a list of mapped sections and their PC ranges */
3037
3038 void
3039 list_overlays_command (char *args, int from_tty)
3040 {
3041 int nmapped = 0;
3042 struct objfile *objfile;
3043 struct obj_section *osect;
3044
3045 if (overlay_debugging)
3046 ALL_OBJSECTIONS (objfile, osect)
3047 if (section_is_mapped (osect))
3048 {
3049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3050 const char *name;
3051 bfd_vma lma, vma;
3052 int size;
3053
3054 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3055 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3056 size = bfd_get_section_size (osect->the_bfd_section);
3057 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3058
3059 printf_filtered ("Section %s, loaded at ", name);
3060 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3061 puts_filtered (" - ");
3062 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3063 printf_filtered (", mapped at ");
3064 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3065 puts_filtered (" - ");
3066 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3067 puts_filtered ("\n");
3068
3069 nmapped++;
3070 }
3071 if (nmapped == 0)
3072 printf_filtered (_("No sections are mapped.\n"));
3073 }
3074
3075 /* Function: map_overlay_command
3076 Mark the named section as mapped (ie. residing at its VMA address). */
3077
3078 void
3079 map_overlay_command (char *args, int from_tty)
3080 {
3081 struct objfile *objfile, *objfile2;
3082 struct obj_section *sec, *sec2;
3083
3084 if (!overlay_debugging)
3085 error (_("\
3086 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3087 the 'overlay manual' command."));
3088
3089 if (args == 0 || *args == 0)
3090 error (_("Argument required: name of an overlay section"));
3091
3092 /* First, find a section matching the user supplied argument */
3093 ALL_OBJSECTIONS (objfile, sec)
3094 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3095 {
3096 /* Now, check to see if the section is an overlay. */
3097 if (!section_is_overlay (sec))
3098 continue; /* not an overlay section */
3099
3100 /* Mark the overlay as "mapped" */
3101 sec->ovly_mapped = 1;
3102
3103 /* Next, make a pass and unmap any sections that are
3104 overlapped by this new section: */
3105 ALL_OBJSECTIONS (objfile2, sec2)
3106 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3107 {
3108 if (info_verbose)
3109 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3110 bfd_section_name (objfile->obfd,
3111 sec2->the_bfd_section));
3112 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3113 }
3114 return;
3115 }
3116 error (_("No overlay section called %s"), args);
3117 }
3118
3119 /* Function: unmap_overlay_command
3120 Mark the overlay section as unmapped
3121 (ie. resident in its LMA address range, rather than the VMA range). */
3122
3123 void
3124 unmap_overlay_command (char *args, int from_tty)
3125 {
3126 struct objfile *objfile;
3127 struct obj_section *sec;
3128
3129 if (!overlay_debugging)
3130 error (_("\
3131 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3132 the 'overlay manual' command."));
3133
3134 if (args == 0 || *args == 0)
3135 error (_("Argument required: name of an overlay section"));
3136
3137 /* First, find a section matching the user supplied argument */
3138 ALL_OBJSECTIONS (objfile, sec)
3139 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3140 {
3141 if (!sec->ovly_mapped)
3142 error (_("Section %s is not mapped"), args);
3143 sec->ovly_mapped = 0;
3144 return;
3145 }
3146 error (_("No overlay section called %s"), args);
3147 }
3148
3149 /* Function: overlay_auto_command
3150 A utility command to turn on overlay debugging.
3151 Possibly this should be done via a set/show command. */
3152
3153 static void
3154 overlay_auto_command (char *args, int from_tty)
3155 {
3156 overlay_debugging = ovly_auto;
3157 enable_overlay_breakpoints ();
3158 if (info_verbose)
3159 printf_unfiltered (_("Automatic overlay debugging enabled."));
3160 }
3161
3162 /* Function: overlay_manual_command
3163 A utility command to turn on overlay debugging.
3164 Possibly this should be done via a set/show command. */
3165
3166 static void
3167 overlay_manual_command (char *args, int from_tty)
3168 {
3169 overlay_debugging = ovly_on;
3170 disable_overlay_breakpoints ();
3171 if (info_verbose)
3172 printf_unfiltered (_("Overlay debugging enabled."));
3173 }
3174
3175 /* Function: overlay_off_command
3176 A utility command to turn on overlay debugging.
3177 Possibly this should be done via a set/show command. */
3178
3179 static void
3180 overlay_off_command (char *args, int from_tty)
3181 {
3182 overlay_debugging = ovly_off;
3183 disable_overlay_breakpoints ();
3184 if (info_verbose)
3185 printf_unfiltered (_("Overlay debugging disabled."));
3186 }
3187
3188 static void
3189 overlay_load_command (char *args, int from_tty)
3190 {
3191 struct gdbarch *gdbarch = get_current_arch ();
3192
3193 if (gdbarch_overlay_update_p (gdbarch))
3194 gdbarch_overlay_update (gdbarch, NULL);
3195 else
3196 error (_("This target does not know how to read its overlay state."));
3197 }
3198
3199 /* Function: overlay_command
3200 A place-holder for a mis-typed command */
3201
3202 /* Command list chain containing all defined "overlay" subcommands. */
3203 struct cmd_list_element *overlaylist;
3204
3205 static void
3206 overlay_command (char *args, int from_tty)
3207 {
3208 printf_unfiltered
3209 ("\"overlay\" must be followed by the name of an overlay command.\n");
3210 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3211 }
3212
3213
3214 /* Target Overlays for the "Simplest" overlay manager:
3215
3216 This is GDB's default target overlay layer. It works with the
3217 minimal overlay manager supplied as an example by Cygnus. The
3218 entry point is via a function pointer "gdbarch_overlay_update",
3219 so targets that use a different runtime overlay manager can
3220 substitute their own overlay_update function and take over the
3221 function pointer.
3222
3223 The overlay_update function pokes around in the target's data structures
3224 to see what overlays are mapped, and updates GDB's overlay mapping with
3225 this information.
3226
3227 In this simple implementation, the target data structures are as follows:
3228 unsigned _novlys; /# number of overlay sections #/
3229 unsigned _ovly_table[_novlys][4] = {
3230 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3231 {..., ..., ..., ...},
3232 }
3233 unsigned _novly_regions; /# number of overlay regions #/
3234 unsigned _ovly_region_table[_novly_regions][3] = {
3235 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3236 {..., ..., ...},
3237 }
3238 These functions will attempt to update GDB's mappedness state in the
3239 symbol section table, based on the target's mappedness state.
3240
3241 To do this, we keep a cached copy of the target's _ovly_table, and
3242 attempt to detect when the cached copy is invalidated. The main
3243 entry point is "simple_overlay_update(SECT), which looks up SECT in
3244 the cached table and re-reads only the entry for that section from
3245 the target (whenever possible).
3246 */
3247
3248 /* Cached, dynamically allocated copies of the target data structures: */
3249 static unsigned (*cache_ovly_table)[4] = 0;
3250 #if 0
3251 static unsigned (*cache_ovly_region_table)[3] = 0;
3252 #endif
3253 static unsigned cache_novlys = 0;
3254 #if 0
3255 static unsigned cache_novly_regions = 0;
3256 #endif
3257 static CORE_ADDR cache_ovly_table_base = 0;
3258 #if 0
3259 static CORE_ADDR cache_ovly_region_table_base = 0;
3260 #endif
3261 enum ovly_index
3262 {
3263 VMA, SIZE, LMA, MAPPED
3264 };
3265
3266 /* Throw away the cached copy of _ovly_table */
3267 static void
3268 simple_free_overlay_table (void)
3269 {
3270 if (cache_ovly_table)
3271 xfree (cache_ovly_table);
3272 cache_novlys = 0;
3273 cache_ovly_table = NULL;
3274 cache_ovly_table_base = 0;
3275 }
3276
3277 #if 0
3278 /* Throw away the cached copy of _ovly_region_table */
3279 static void
3280 simple_free_overlay_region_table (void)
3281 {
3282 if (cache_ovly_region_table)
3283 xfree (cache_ovly_region_table);
3284 cache_novly_regions = 0;
3285 cache_ovly_region_table = NULL;
3286 cache_ovly_region_table_base = 0;
3287 }
3288 #endif
3289
3290 /* Read an array of ints of size SIZE from the target into a local buffer.
3291 Convert to host order. int LEN is number of ints */
3292 static void
3293 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3294 int len, int size, enum bfd_endian byte_order)
3295 {
3296 /* FIXME (alloca): Not safe if array is very large. */
3297 gdb_byte *buf = alloca (len * size);
3298 int i;
3299
3300 read_memory (memaddr, buf, len * size);
3301 for (i = 0; i < len; i++)
3302 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3303 }
3304
3305 /* Find and grab a copy of the target _ovly_table
3306 (and _novlys, which is needed for the table's size) */
3307 static int
3308 simple_read_overlay_table (void)
3309 {
3310 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3311 struct gdbarch *gdbarch;
3312 int word_size;
3313 enum bfd_endian byte_order;
3314
3315 simple_free_overlay_table ();
3316 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3317 if (! novlys_msym)
3318 {
3319 error (_("Error reading inferior's overlay table: "
3320 "couldn't find `_novlys' variable\n"
3321 "in inferior. Use `overlay manual' mode."));
3322 return 0;
3323 }
3324
3325 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3326 if (! ovly_table_msym)
3327 {
3328 error (_("Error reading inferior's overlay table: couldn't find "
3329 "`_ovly_table' array\n"
3330 "in inferior. Use `overlay manual' mode."));
3331 return 0;
3332 }
3333
3334 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3335 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3336 byte_order = gdbarch_byte_order (gdbarch);
3337
3338 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3339 4, byte_order);
3340 cache_ovly_table
3341 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3342 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3343 read_target_long_array (cache_ovly_table_base,
3344 (unsigned int *) cache_ovly_table,
3345 cache_novlys * 4, word_size, byte_order);
3346
3347 return 1; /* SUCCESS */
3348 }
3349
3350 #if 0
3351 /* Find and grab a copy of the target _ovly_region_table
3352 (and _novly_regions, which is needed for the table's size) */
3353 static int
3354 simple_read_overlay_region_table (void)
3355 {
3356 struct minimal_symbol *msym;
3357 struct gdbarch *gdbarch;
3358 int word_size;
3359 enum bfd_endian byte_order;
3360
3361 simple_free_overlay_region_table ();
3362 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3363 if (msym == NULL)
3364 return 0; /* failure */
3365
3366 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3367 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3368 byte_order = gdbarch_byte_order (gdbarch);
3369
3370 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3371 4, byte_order);
3372
3373 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3374 if (cache_ovly_region_table != NULL)
3375 {
3376 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3377 if (msym != NULL)
3378 {
3379 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3380 read_target_long_array (cache_ovly_region_table_base,
3381 (unsigned int *) cache_ovly_region_table,
3382 cache_novly_regions * 3,
3383 word_size, byte_order);
3384 }
3385 else
3386 return 0; /* failure */
3387 }
3388 else
3389 return 0; /* failure */
3390 return 1; /* SUCCESS */
3391 }
3392 #endif
3393
3394 /* Function: simple_overlay_update_1
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3401
3402 static int
3403 simple_overlay_update_1 (struct obj_section *osect)
3404 {
3405 int i, size;
3406 bfd *obfd = osect->objfile->obfd;
3407 asection *bsect = osect->the_bfd_section;
3408 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3409 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3411
3412 size = bfd_get_section_size (osect->the_bfd_section);
3413 for (i = 0; i < cache_novlys; i++)
3414 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3415 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3416 /* && cache_ovly_table[i][SIZE] == size */ )
3417 {
3418 read_target_long_array (cache_ovly_table_base + i * word_size,
3419 (unsigned int *) cache_ovly_table[i],
3420 4, word_size, byte_order);
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
3424 {
3425 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3426 return 1;
3427 }
3428 else /* Warning! Warning! Target's ovly table has changed! */
3429 return 0;
3430 }
3431 return 0;
3432 }
3433
3434 /* Function: simple_overlay_update
3435 If OSECT is NULL, then update all sections' mapped state
3436 (after re-reading the entire target _ovly_table).
3437 If OSECT is non-NULL, then try to find a matching entry in the
3438 cached ovly_table and update only OSECT's mapped state.
3439 If a cached entry can't be found or the cache isn't valid, then
3440 re-read the entire cache, and go ahead and update all sections. */
3441
3442 void
3443 simple_overlay_update (struct obj_section *osect)
3444 {
3445 struct objfile *objfile;
3446
3447 /* Were we given an osect to look up? NULL means do all of them. */
3448 if (osect)
3449 /* Have we got a cached copy of the target's overlay table? */
3450 if (cache_ovly_table != NULL)
3451 /* Does its cached location match what's currently in the symtab? */
3452 if (cache_ovly_table_base ==
3453 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3454 /* Then go ahead and try to look up this single section in the cache */
3455 if (simple_overlay_update_1 (osect))
3456 /* Found it! We're done. */
3457 return;
3458
3459 /* Cached table no good: need to read the entire table anew.
3460 Or else we want all the sections, in which case it's actually
3461 more efficient to read the whole table in one block anyway. */
3462
3463 if (! simple_read_overlay_table ())
3464 return;
3465
3466 /* Now may as well update all sections, even if only one was requested. */
3467 ALL_OBJSECTIONS (objfile, osect)
3468 if (section_is_overlay (osect))
3469 {
3470 int i, size;
3471 bfd *obfd = osect->objfile->obfd;
3472 asection *bsect = osect->the_bfd_section;
3473
3474 size = bfd_get_section_size (bsect);
3475 for (i = 0; i < cache_novlys; i++)
3476 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3477 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3478 /* && cache_ovly_table[i][SIZE] == size */ )
3479 { /* obj_section matches i'th entry in ovly_table */
3480 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3481 break; /* finished with inner for loop: break out */
3482 }
3483 }
3484 }
3485
3486 /* Set the output sections and output offsets for section SECTP in
3487 ABFD. The relocation code in BFD will read these offsets, so we
3488 need to be sure they're initialized. We map each section to itself,
3489 with no offset; this means that SECTP->vma will be honored. */
3490
3491 static void
3492 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3493 {
3494 sectp->output_section = sectp;
3495 sectp->output_offset = 0;
3496 }
3497
3498 /* Default implementation for sym_relocate. */
3499
3500
3501 bfd_byte *
3502 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3503 bfd_byte *buf)
3504 {
3505 bfd *abfd = objfile->obfd;
3506
3507 /* We're only interested in sections with relocation
3508 information. */
3509 if ((sectp->flags & SEC_RELOC) == 0)
3510 return NULL;
3511
3512 /* We will handle section offsets properly elsewhere, so relocate as if
3513 all sections begin at 0. */
3514 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3515
3516 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3517 }
3518
3519 /* Relocate the contents of a debug section SECTP in ABFD. The
3520 contents are stored in BUF if it is non-NULL, or returned in a
3521 malloc'd buffer otherwise.
3522
3523 For some platforms and debug info formats, shared libraries contain
3524 relocations against the debug sections (particularly for DWARF-2;
3525 one affected platform is PowerPC GNU/Linux, although it depends on
3526 the version of the linker in use). Also, ELF object files naturally
3527 have unresolved relocations for their debug sections. We need to apply
3528 the relocations in order to get the locations of symbols correct.
3529 Another example that may require relocation processing, is the
3530 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3531 debug section. */
3532
3533 bfd_byte *
3534 symfile_relocate_debug_section (struct objfile *objfile,
3535 asection *sectp, bfd_byte *buf)
3536 {
3537 gdb_assert (objfile->sf->sym_relocate);
3538
3539 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3540 }
3541
3542 struct symfile_segment_data *
3543 get_symfile_segment_data (bfd *abfd)
3544 {
3545 struct sym_fns *sf = find_sym_fns (abfd);
3546
3547 if (sf == NULL)
3548 return NULL;
3549
3550 return sf->sym_segments (abfd);
3551 }
3552
3553 void
3554 free_symfile_segment_data (struct symfile_segment_data *data)
3555 {
3556 xfree (data->segment_bases);
3557 xfree (data->segment_sizes);
3558 xfree (data->segment_info);
3559 xfree (data);
3560 }
3561
3562
3563 /* Given:
3564 - DATA, containing segment addresses from the object file ABFD, and
3565 the mapping from ABFD's sections onto the segments that own them,
3566 and
3567 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3568 segment addresses reported by the target,
3569 store the appropriate offsets for each section in OFFSETS.
3570
3571 If there are fewer entries in SEGMENT_BASES than there are segments
3572 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3573
3574 If there are more entries, then ignore the extra. The target may
3575 not be able to distinguish between an empty data segment and a
3576 missing data segment; a missing text segment is less plausible. */
3577 int
3578 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3579 struct section_offsets *offsets,
3580 int num_segment_bases,
3581 const CORE_ADDR *segment_bases)
3582 {
3583 int i;
3584 asection *sect;
3585
3586 /* It doesn't make sense to call this function unless you have some
3587 segment base addresses. */
3588 gdb_assert (num_segment_bases > 0);
3589
3590 /* If we do not have segment mappings for the object file, we
3591 can not relocate it by segments. */
3592 gdb_assert (data != NULL);
3593 gdb_assert (data->num_segments > 0);
3594
3595 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3596 {
3597 int which = data->segment_info[i];
3598
3599 gdb_assert (0 <= which && which <= data->num_segments);
3600
3601 /* Don't bother computing offsets for sections that aren't
3602 loaded as part of any segment. */
3603 if (! which)
3604 continue;
3605
3606 /* Use the last SEGMENT_BASES entry as the address of any extra
3607 segments mentioned in DATA->segment_info. */
3608 if (which > num_segment_bases)
3609 which = num_segment_bases;
3610
3611 offsets->offsets[i] = (segment_bases[which - 1]
3612 - data->segment_bases[which - 1]);
3613 }
3614
3615 return 1;
3616 }
3617
3618 static void
3619 symfile_find_segment_sections (struct objfile *objfile)
3620 {
3621 bfd *abfd = objfile->obfd;
3622 int i;
3623 asection *sect;
3624 struct symfile_segment_data *data;
3625
3626 data = get_symfile_segment_data (objfile->obfd);
3627 if (data == NULL)
3628 return;
3629
3630 if (data->num_segments != 1 && data->num_segments != 2)
3631 {
3632 free_symfile_segment_data (data);
3633 return;
3634 }
3635
3636 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3637 {
3638 int which = data->segment_info[i];
3639
3640 if (which == 1)
3641 {
3642 if (objfile->sect_index_text == -1)
3643 objfile->sect_index_text = sect->index;
3644
3645 if (objfile->sect_index_rodata == -1)
3646 objfile->sect_index_rodata = sect->index;
3647 }
3648 else if (which == 2)
3649 {
3650 if (objfile->sect_index_data == -1)
3651 objfile->sect_index_data = sect->index;
3652
3653 if (objfile->sect_index_bss == -1)
3654 objfile->sect_index_bss = sect->index;
3655 }
3656 }
3657
3658 free_symfile_segment_data (data);
3659 }
3660
3661 void
3662 _initialize_symfile (void)
3663 {
3664 struct cmd_list_element *c;
3665
3666 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3667 Load symbol table from executable file FILE.\n\
3668 The `file' command can also load symbol tables, as well as setting the file\n\
3669 to execute."), &cmdlist);
3670 set_cmd_completer (c, filename_completer);
3671
3672 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3673 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3674 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3675 ADDR is the starting address of the file's text.\n\
3676 The optional arguments are section-name section-address pairs and\n\
3677 should be specified if the data and bss segments are not contiguous\n\
3678 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3679 &cmdlist);
3680 set_cmd_completer (c, filename_completer);
3681
3682 c = add_cmd ("load", class_files, load_command, _("\
3683 Dynamically load FILE into the running program, and record its symbols\n\
3684 for access from GDB.\n\
3685 A load OFFSET may also be given."), &cmdlist);
3686 set_cmd_completer (c, filename_completer);
3687
3688 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3689 &symbol_reloading, _("\
3690 Set dynamic symbol table reloading multiple times in one run."), _("\
3691 Show dynamic symbol table reloading multiple times in one run."), NULL,
3692 NULL,
3693 show_symbol_reloading,
3694 &setlist, &showlist);
3695
3696 add_prefix_cmd ("overlay", class_support, overlay_command,
3697 _("Commands for debugging overlays."), &overlaylist,
3698 "overlay ", 0, &cmdlist);
3699
3700 add_com_alias ("ovly", "overlay", class_alias, 1);
3701 add_com_alias ("ov", "overlay", class_alias, 1);
3702
3703 add_cmd ("map-overlay", class_support, map_overlay_command,
3704 _("Assert that an overlay section is mapped."), &overlaylist);
3705
3706 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3707 _("Assert that an overlay section is unmapped."), &overlaylist);
3708
3709 add_cmd ("list-overlays", class_support, list_overlays_command,
3710 _("List mappings of overlay sections."), &overlaylist);
3711
3712 add_cmd ("manual", class_support, overlay_manual_command,
3713 _("Enable overlay debugging."), &overlaylist);
3714 add_cmd ("off", class_support, overlay_off_command,
3715 _("Disable overlay debugging."), &overlaylist);
3716 add_cmd ("auto", class_support, overlay_auto_command,
3717 _("Enable automatic overlay debugging."), &overlaylist);
3718 add_cmd ("load-target", class_support, overlay_load_command,
3719 _("Read the overlay mapping state from the target."), &overlaylist);
3720
3721 /* Filename extension to source language lookup table: */
3722 init_filename_language_table ();
3723 add_setshow_string_noescape_cmd ("extension-language", class_files,
3724 &ext_args, _("\
3725 Set mapping between filename extension and source language."), _("\
3726 Show mapping between filename extension and source language."), _("\
3727 Usage: set extension-language .foo bar"),
3728 set_ext_lang_command,
3729 show_ext_args,
3730 &setlist, &showlist);
3731
3732 add_info ("extensions", info_ext_lang_command,
3733 _("All filename extensions associated with a source language."));
3734
3735 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3736 &debug_file_directory, _("\
3737 Set the directories where separate debug symbols are searched for."), _("\
3738 Show the directories where separate debug symbols are searched for."), _("\
3739 Separate debug symbols are first searched for in the same\n\
3740 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3741 and lastly at the path of the directory of the binary with\n\
3742 each global debug-file-directory component prepended."),
3743 NULL,
3744 show_debug_file_directory,
3745 &setlist, &showlist);
3746 }
This page took 0.120499 seconds and 4 git commands to generate.