* ada-lang.c (ada_index_type): Update comment.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h"
41 #include "regcache.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53 #include "parser-defs.h"
54 #include "varobj.h"
55 #include "elf-bfd.h"
56 #include "solib.h"
57 #include "remote.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67
68 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*deprecated_show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*deprecated_pre_add_symbol_hook) (const char *);
75 void (*deprecated_post_add_symbol_hook) (void);
76
77 static void clear_symtab_users_cleanup (void *ignore);
78
79 /* Global variables owned by this file */
80 int readnow_symbol_files; /* Read full symbols immediately */
81
82 /* External variables and functions referenced. */
83
84 extern void report_transfer_performance (unsigned long, time_t, time_t);
85
86 /* Functions this file defines */
87
88 #if 0
89 static int simple_read_overlay_region_table (void);
90 static void simple_free_overlay_region_table (void);
91 #endif
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void reread_separate_symbols (struct objfile *objfile);
100
101 static void cashier_psymtab (struct partial_symtab *);
102
103 bfd *symfile_bfd_open (char *);
104
105 int get_section_index (struct objfile *, char *);
106
107 static struct sym_fns *find_sym_fns (bfd *);
108
109 static void decrement_reading_symtab (void *);
110
111 static void overlay_invalidate_all (void);
112
113 void list_overlays_command (char *, int);
114
115 void map_overlay_command (char *, int);
116
117 void unmap_overlay_command (char *, int);
118
119 static void overlay_auto_command (char *, int);
120
121 static void overlay_manual_command (char *, int);
122
123 static void overlay_off_command (char *, int);
124
125 static void overlay_load_command (char *, int);
126
127 static void overlay_command (char *, int);
128
129 static void simple_free_overlay_table (void);
130
131 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int);
132
133 static int simple_read_overlay_table (void);
134
135 static int simple_overlay_update_1 (struct obj_section *);
136
137 static void add_filename_language (char *ext, enum language lang);
138
139 static void info_ext_lang_command (char *args, int from_tty);
140
141 static char *find_separate_debug_file (struct objfile *objfile);
142
143 static void init_filename_language_table (void);
144
145 static void symfile_find_segment_sections (struct objfile *objfile);
146
147 void _initialize_symfile (void);
148
149 /* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153 static struct sym_fns *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172 /* If non-zero, gdb will notify the user when it is loading symbols
173 from a file. This is almost always what users will want to have happen;
174 but for programs with lots of dynamically linked libraries, the output
175 can be more noise than signal. */
176
177 int print_symbol_loading = 1;
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
204
205 static int
206 compare_psymbols (const void *s1p, const void *s2p)
207 {
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
211 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
212 SYMBOL_SEARCH_NAME (*s2));
213 }
214
215 void
216 sort_pst_symbols (struct partial_symtab *pst)
217 {
218 /* Sort the global list; don't sort the static list */
219
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
222 compare_psymbols);
223 }
224
225 /* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230 char *
231 obsavestring (const char *ptr, int size, struct obstack *obstackp)
232 {
233 char *p = (char *) obstack_alloc (obstackp, size + 1);
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
238 const char *p1 = ptr;
239 char *p2 = p;
240 const char *end = ptr + size;
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246 }
247
248 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251 char *
252 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
254 {
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261 }
262
263 /* True if we are nested inside psymtab_to_symtab. */
264
265 int currently_reading_symtab = 0;
266
267 static void
268 decrement_reading_symtab (void *dummy)
269 {
270 currently_reading_symtab--;
271 }
272
273 /* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278 struct symtab *
279 psymtab_to_symtab (struct partial_symtab *pst)
280 {
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
287 {
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295 }
296
297 /* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306 void
307 find_lowest_section (bfd *abfd, asection *sect, void *obj)
308 {
309 asection **lowest = (asection **) obj;
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321 }
322
323 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325 struct section_addr_info *
326 alloc_section_addr_info (size_t num_sections)
327 {
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338 }
339
340
341 /* Return a freshly allocated copy of ADDRS. The section names, if
342 any, are also freshly allocated copies of those in ADDRS. */
343 struct section_addr_info *
344 copy_section_addr_info (struct section_addr_info *addrs)
345 {
346 struct section_addr_info *copy
347 = alloc_section_addr_info (addrs->num_sections);
348 int i;
349
350 copy->num_sections = addrs->num_sections;
351 for (i = 0; i < addrs->num_sections; i++)
352 {
353 copy->other[i].addr = addrs->other[i].addr;
354 if (addrs->other[i].name)
355 copy->other[i].name = xstrdup (addrs->other[i].name);
356 else
357 copy->other[i].name = NULL;
358 copy->other[i].sectindex = addrs->other[i].sectindex;
359 }
360
361 return copy;
362 }
363
364
365
366 /* Build (allocate and populate) a section_addr_info struct from
367 an existing section table. */
368
369 extern struct section_addr_info *
370 build_section_addr_info_from_section_table (const struct target_section *start,
371 const struct target_section *end)
372 {
373 struct section_addr_info *sap;
374 const struct target_section *stp;
375 int oidx;
376
377 sap = alloc_section_addr_info (end - start);
378
379 for (stp = start, oidx = 0; stp != end; stp++)
380 {
381 if (bfd_get_section_flags (stp->bfd,
382 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
383 && oidx < end - start)
384 {
385 sap->other[oidx].addr = stp->addr;
386 sap->other[oidx].name
387 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
388 sap->other[oidx].sectindex = stp->the_bfd_section->index;
389 oidx++;
390 }
391 }
392
393 return sap;
394 }
395
396
397 /* Free all memory allocated by build_section_addr_info_from_section_table. */
398
399 extern void
400 free_section_addr_info (struct section_addr_info *sap)
401 {
402 int idx;
403
404 for (idx = 0; idx < sap->num_sections; idx++)
405 if (sap->other[idx].name)
406 xfree (sap->other[idx].name);
407 xfree (sap);
408 }
409
410
411 /* Initialize OBJFILE's sect_index_* members. */
412 static void
413 init_objfile_sect_indices (struct objfile *objfile)
414 {
415 asection *sect;
416 int i;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".text");
419 if (sect)
420 objfile->sect_index_text = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".data");
423 if (sect)
424 objfile->sect_index_data = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
427 if (sect)
428 objfile->sect_index_bss = sect->index;
429
430 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
431 if (sect)
432 objfile->sect_index_rodata = sect->index;
433
434 /* This is where things get really weird... We MUST have valid
435 indices for the various sect_index_* members or gdb will abort.
436 So if for example, there is no ".text" section, we have to
437 accomodate that. First, check for a file with the standard
438 one or two segments. */
439
440 symfile_find_segment_sections (objfile);
441
442 /* Except when explicitly adding symbol files at some address,
443 section_offsets contains nothing but zeros, so it doesn't matter
444 which slot in section_offsets the individual sect_index_* members
445 index into. So if they are all zero, it is safe to just point
446 all the currently uninitialized indices to the first slot. But
447 beware: if this is the main executable, it may be relocated
448 later, e.g. by the remote qOffsets packet, and then this will
449 be wrong! That's why we try segments first. */
450
451 for (i = 0; i < objfile->num_sections; i++)
452 {
453 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 {
455 break;
456 }
457 }
458 if (i == objfile->num_sections)
459 {
460 if (objfile->sect_index_text == -1)
461 objfile->sect_index_text = 0;
462 if (objfile->sect_index_data == -1)
463 objfile->sect_index_data = 0;
464 if (objfile->sect_index_bss == -1)
465 objfile->sect_index_bss = 0;
466 if (objfile->sect_index_rodata == -1)
467 objfile->sect_index_rodata = 0;
468 }
469 }
470
471 /* The arguments to place_section. */
472
473 struct place_section_arg
474 {
475 struct section_offsets *offsets;
476 CORE_ADDR lowest;
477 };
478
479 /* Find a unique offset to use for loadable section SECT if
480 the user did not provide an offset. */
481
482 static void
483 place_section (bfd *abfd, asection *sect, void *obj)
484 {
485 struct place_section_arg *arg = obj;
486 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
487 int done;
488 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
489
490 /* We are only interested in allocated sections. */
491 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
492 return;
493
494 /* If the user specified an offset, honor it. */
495 if (offsets[sect->index] != 0)
496 return;
497
498 /* Otherwise, let's try to find a place for the section. */
499 start_addr = (arg->lowest + align - 1) & -align;
500
501 do {
502 asection *cur_sec;
503
504 done = 1;
505
506 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
507 {
508 int indx = cur_sec->index;
509 CORE_ADDR cur_offset;
510
511 /* We don't need to compare against ourself. */
512 if (cur_sec == sect)
513 continue;
514
515 /* We can only conflict with allocated sections. */
516 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
517 continue;
518
519 /* If the section offset is 0, either the section has not been placed
520 yet, or it was the lowest section placed (in which case LOWEST
521 will be past its end). */
522 if (offsets[indx] == 0)
523 continue;
524
525 /* If this section would overlap us, then we must move up. */
526 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
527 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
528 {
529 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
530 start_addr = (start_addr + align - 1) & -align;
531 done = 0;
532 break;
533 }
534
535 /* Otherwise, we appear to be OK. So far. */
536 }
537 }
538 while (!done);
539
540 offsets[sect->index] = start_addr;
541 arg->lowest = start_addr + bfd_get_section_size (sect);
542 }
543
544 /* Parse the user's idea of an offset for dynamic linking, into our idea
545 of how to represent it for fast symbol reading. This is the default
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550 void
551 default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553 {
554 int i;
555
556 objfile->num_sections = bfd_count_sections (objfile->obfd);
557 objfile->section_offsets = (struct section_offsets *)
558 obstack_alloc (&objfile->objfile_obstack,
559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
560 memset (objfile->section_offsets, 0,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
641 offsets[cur_sec->index]);
642 offsets[cur_sec->index] = 0;
643 }
644 }
645 }
646
647 /* Remember the bfd indexes for the .text, .data, .bss and
648 .rodata sections. */
649 init_objfile_sect_indices (objfile);
650 }
651
652
653 /* Divide the file into segments, which are individual relocatable units.
654 This is the default version of the sym_fns.sym_segments function for
655 symbol readers that do not have an explicit representation of segments.
656 It assumes that object files do not have segments, and fully linked
657 files have a single segment. */
658
659 struct symfile_segment_data *
660 default_symfile_segments (bfd *abfd)
661 {
662 int num_sections, i;
663 asection *sect;
664 struct symfile_segment_data *data;
665 CORE_ADDR low, high;
666
667 /* Relocatable files contain enough information to position each
668 loadable section independently; they should not be relocated
669 in segments. */
670 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
671 return NULL;
672
673 /* Make sure there is at least one loadable section in the file. */
674 for (sect = abfd->sections; sect != NULL; sect = sect->next)
675 {
676 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
677 continue;
678
679 break;
680 }
681 if (sect == NULL)
682 return NULL;
683
684 low = bfd_get_section_vma (abfd, sect);
685 high = low + bfd_get_section_size (sect);
686
687 data = XZALLOC (struct symfile_segment_data);
688 data->num_segments = 1;
689 data->segment_bases = XCALLOC (1, CORE_ADDR);
690 data->segment_sizes = XCALLOC (1, CORE_ADDR);
691
692 num_sections = bfd_count_sections (abfd);
693 data->segment_info = XCALLOC (num_sections, int);
694
695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
696 {
697 CORE_ADDR vma;
698
699 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
700 continue;
701
702 vma = bfd_get_section_vma (abfd, sect);
703 if (vma < low)
704 low = vma;
705 if (vma + bfd_get_section_size (sect) > high)
706 high = vma + bfd_get_section_size (sect);
707
708 data->segment_info[i] = 1;
709 }
710
711 data->segment_bases[0] = low;
712 data->segment_sizes[0] = high - low;
713
714 return data;
715 }
716
717 /* Process a symbol file, as either the main file or as a dynamically
718 loaded file.
719
720 OBJFILE is where the symbols are to be read from.
721
722 ADDRS is the list of section load addresses. If the user has given
723 an 'add-symbol-file' command, then this is the list of offsets and
724 addresses he or she provided as arguments to the command; or, if
725 we're handling a shared library, these are the actual addresses the
726 sections are loaded at, according to the inferior's dynamic linker
727 (as gleaned by GDB's shared library code). We convert each address
728 into an offset from the section VMA's as it appears in the object
729 file, and then call the file's sym_offsets function to convert this
730 into a format-specific offset table --- a `struct section_offsets'.
731 If ADDRS is non-zero, OFFSETS must be zero.
732
733 OFFSETS is a table of section offsets already in the right
734 format-specific representation. NUM_OFFSETS is the number of
735 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
736 assume this is the proper table the call to sym_offsets described
737 above would produce. Instead of calling sym_offsets, we just dump
738 it right into objfile->section_offsets. (When we're re-reading
739 symbols from an objfile, we don't have the original load address
740 list any more; all we have is the section offset table.) If
741 OFFSETS is non-zero, ADDRS must be zero.
742
743 ADD_FLAGS encodes verbosity level, whether this is main symbol or
744 an extra symbol file such as dynamically loaded code, and wether
745 breakpoint reset should be deferred. */
746
747 void
748 syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
752 int add_flags)
753 {
754 struct section_addr_info *local_addr = NULL;
755 struct cleanup *old_chain;
756 const int mainline = add_flags & SYMFILE_MAINLINE;
757
758 gdb_assert (! (addrs && offsets));
759
760 init_entry_point_info (objfile);
761 objfile->sf = find_sym_fns (objfile->obfd);
762
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
768 old_chain = make_cleanup_free_objfile (objfile);
769
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
775 local_addr
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
783 if (mainline)
784 {
785 /* We will modify the main symbol table, make sure that all its users
786 will be cleaned up if an error occurs during symbol reading. */
787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
801
802 (*objfile->sf->sym_new_init) (objfile);
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
807 and assume that <addr> is where that got loaded.
808
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
811 if (!mainline && addrs && addrs->other[0].name)
812 {
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
818 /* Find lowest loadable section to be used as starting point for
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
824 &lower_sect);
825 if (lower_sect == NULL)
826 {
827 warning (_("no loadable sections found in added symbol-file %s"),
828 objfile->name);
829 lower_offset = 0;
830 }
831 else
832 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
833
834 /* Calculate offsets for the loadable sections.
835 FIXME! Sections must be in order of increasing loadable section
836 so that contiguous sections can use the lower-offset!!!
837
838 Adjust offsets if the segments are not contiguous.
839 If the section is contiguous, its offset should be set to
840 the offset of the highest loadable section lower than it
841 (the loadable section directly below it in memory).
842 this_offset = lower_offset = lower_addr - lower_orig_addr */
843
844 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
845 {
846 if (addrs->other[i].addr != 0)
847 {
848 sect = bfd_get_section_by_name (objfile->obfd,
849 addrs->other[i].name);
850 if (sect)
851 {
852 addrs->other[i].addr
853 -= bfd_section_vma (objfile->obfd, sect);
854 lower_offset = addrs->other[i].addr;
855 /* This is the index used by BFD. */
856 addrs->other[i].sectindex = sect->index ;
857 }
858 else
859 {
860 warning (_("section %s not found in %s"),
861 addrs->other[i].name,
862 objfile->name);
863 addrs->other[i].addr = 0;
864 }
865 }
866 else
867 addrs->other[i].addr = lower_offset;
868 }
869 }
870
871 /* Initialize symbol reading routines for this objfile, allow complaints to
872 appear for this new file, and record how verbose to be, then do the
873 initial symbol reading for this file. */
874
875 (*objfile->sf->sym_init) (objfile);
876 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
877
878 if (addrs)
879 (*objfile->sf->sym_offsets) (objfile, addrs);
880 else
881 {
882 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
883
884 /* Just copy in the offset table directly as given to us. */
885 objfile->num_sections = num_offsets;
886 objfile->section_offsets
887 = ((struct section_offsets *)
888 obstack_alloc (&objfile->objfile_obstack, size));
889 memcpy (objfile->section_offsets, offsets, size);
890
891 init_objfile_sect_indices (objfile);
892 }
893
894 (*objfile->sf->sym_read) (objfile, mainline);
895
896 /* Discard cleanups as symbol reading was successful. */
897
898 discard_cleanups (old_chain);
899 xfree (local_addr);
900 }
901
902 /* Perform required actions after either reading in the initial
903 symbols for a new objfile, or mapping in the symbols from a reusable
904 objfile. */
905
906 void
907 new_symfile_objfile (struct objfile *objfile, int add_flags)
908 {
909
910 /* If this is the main symbol file we have to clean up all users of the
911 old main symbol file. Otherwise it is sufficient to fixup all the
912 breakpoints that may have been redefined by this symbol file. */
913 if (add_flags & SYMFILE_MAINLINE)
914 {
915 /* OK, make it the "real" symbol file. */
916 symfile_objfile = objfile;
917
918 clear_symtab_users ();
919 }
920 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
921 {
922 breakpoint_re_set ();
923 }
924
925 /* We're done reading the symbol file; finish off complaints. */
926 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
927 }
928
929 /* Process a symbol file, as either the main file or as a dynamically
930 loaded file.
931
932 ABFD is a BFD already open on the file, as from symfile_bfd_open.
933 This BFD will be closed on error, and is always consumed by this function.
934
935 ADD_FLAGS encodes verbosity, whether this is main symbol file or
936 extra, such as dynamically loaded code, and what to do with breakpoins.
937
938 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
939 syms_from_objfile, above.
940 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
941
942 Upon success, returns a pointer to the objfile that was added.
943 Upon failure, jumps back to command level (never returns). */
944
945 static struct objfile *
946 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
947 int add_flags,
948 struct section_addr_info *addrs,
949 struct section_offsets *offsets,
950 int num_offsets,
951 int flags)
952 {
953 struct objfile *objfile;
954 struct partial_symtab *psymtab;
955 char *debugfile = NULL;
956 struct section_addr_info *orig_addrs = NULL;
957 struct cleanup *my_cleanups;
958 const char *name = bfd_get_filename (abfd);
959 const int from_tty = add_flags & SYMFILE_VERBOSE;
960
961 my_cleanups = make_cleanup_bfd_close (abfd);
962
963 /* Give user a chance to burp if we'd be
964 interactively wiping out any existing symbols. */
965
966 if ((have_full_symbols () || have_partial_symbols ())
967 && (add_flags & SYMFILE_MAINLINE)
968 && from_tty
969 && !query (_("Load new symbol table from \"%s\"? "), name))
970 error (_("Not confirmed."));
971
972 objfile = allocate_objfile (abfd, flags);
973 discard_cleanups (my_cleanups);
974
975 if (addrs)
976 {
977 orig_addrs = copy_section_addr_info (addrs);
978 make_cleanup_free_section_addr_info (orig_addrs);
979 }
980
981 /* We either created a new mapped symbol table, mapped an existing
982 symbol table file which has not had initial symbol reading
983 performed, or need to read an unmapped symbol table. */
984 if (from_tty || info_verbose)
985 {
986 if (deprecated_pre_add_symbol_hook)
987 deprecated_pre_add_symbol_hook (name);
988 else
989 {
990 if (print_symbol_loading)
991 {
992 printf_unfiltered (_("Reading symbols from %s..."), name);
993 wrap_here ("");
994 gdb_flush (gdb_stdout);
995 }
996 }
997 }
998 syms_from_objfile (objfile, addrs, offsets, num_offsets,
999 add_flags);
1000
1001 /* We now have at least a partial symbol table. Check to see if the
1002 user requested that all symbols be read on initial access via either
1003 the gdb startup command line or on a per symbol file basis. Expand
1004 all partial symbol tables for this objfile if so. */
1005
1006 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1007 {
1008 if ((from_tty || info_verbose) && print_symbol_loading)
1009 {
1010 printf_unfiltered (_("expanding to full symbols..."));
1011 wrap_here ("");
1012 gdb_flush (gdb_stdout);
1013 }
1014
1015 for (psymtab = objfile->psymtabs;
1016 psymtab != NULL;
1017 psymtab = psymtab->next)
1018 {
1019 psymtab_to_symtab (psymtab);
1020 }
1021 }
1022
1023 /* If the file has its own symbol tables it has no separate debug info.
1024 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1025 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1026 if (objfile->psymtabs == NULL)
1027 debugfile = find_separate_debug_file (objfile);
1028 if (debugfile)
1029 {
1030 if (addrs != NULL)
1031 {
1032 objfile->separate_debug_objfile
1033 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1034 }
1035 else
1036 {
1037 objfile->separate_debug_objfile
1038 = symbol_file_add (debugfile, add_flags, NULL, flags);
1039 }
1040 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1041 = objfile;
1042
1043 /* Put the separate debug object before the normal one, this is so that
1044 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1045 put_objfile_before (objfile->separate_debug_objfile, objfile);
1046
1047 xfree (debugfile);
1048 }
1049
1050 if (!have_partial_symbols () && !have_full_symbols ()
1051 && print_symbol_loading)
1052 {
1053 wrap_here ("");
1054 printf_unfiltered (_("(no debugging symbols found)"));
1055 if (from_tty || info_verbose)
1056 printf_unfiltered ("...");
1057 else
1058 printf_unfiltered ("\n");
1059 wrap_here ("");
1060 }
1061
1062 if (from_tty || info_verbose)
1063 {
1064 if (deprecated_post_add_symbol_hook)
1065 deprecated_post_add_symbol_hook ();
1066 else
1067 {
1068 if (print_symbol_loading)
1069 printf_unfiltered (_("done.\n"));
1070 }
1071 }
1072
1073 /* We print some messages regardless of whether 'from_tty ||
1074 info_verbose' is true, so make sure they go out at the right
1075 time. */
1076 gdb_flush (gdb_stdout);
1077
1078 do_cleanups (my_cleanups);
1079
1080 if (objfile->sf == NULL)
1081 return objfile; /* No symbols. */
1082
1083 new_symfile_objfile (objfile, add_flags);
1084
1085 observer_notify_new_objfile (objfile);
1086
1087 bfd_cache_close_all ();
1088 return (objfile);
1089 }
1090
1091
1092 /* Process the symbol file ABFD, as either the main file or as a
1093 dynamically loaded file.
1094
1095 See symbol_file_add_with_addrs_or_offsets's comments for
1096 details. */
1097 struct objfile *
1098 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1099 struct section_addr_info *addrs,
1100 int flags)
1101 {
1102 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1103 flags);
1104 }
1105
1106
1107 /* Process a symbol file, as either the main file or as a dynamically
1108 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1109 for details. */
1110 struct objfile *
1111 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1112 int flags)
1113 {
1114 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1115 flags);
1116 }
1117
1118
1119 /* Call symbol_file_add() with default values and update whatever is
1120 affected by the loading of a new main().
1121 Used when the file is supplied in the gdb command line
1122 and by some targets with special loading requirements.
1123 The auxiliary function, symbol_file_add_main_1(), has the flags
1124 argument for the switches that can only be specified in the symbol_file
1125 command itself. */
1126
1127 void
1128 symbol_file_add_main (char *args, int from_tty)
1129 {
1130 symbol_file_add_main_1 (args, from_tty, 0);
1131 }
1132
1133 static void
1134 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1135 {
1136 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1137 symbol_file_add (args, add_flags, NULL, flags);
1138
1139 /* Getting new symbols may change our opinion about
1140 what is frameless. */
1141 reinit_frame_cache ();
1142
1143 set_initial_language ();
1144 }
1145
1146 void
1147 symbol_file_clear (int from_tty)
1148 {
1149 if ((have_full_symbols () || have_partial_symbols ())
1150 && from_tty
1151 && (symfile_objfile
1152 ? !query (_("Discard symbol table from `%s'? "),
1153 symfile_objfile->name)
1154 : !query (_("Discard symbol table? "))))
1155 error (_("Not confirmed."));
1156
1157 free_all_objfiles ();
1158
1159 /* solib descriptors may have handles to objfiles. Since their
1160 storage has just been released, we'd better wipe the solib
1161 descriptors as well. */
1162 no_shared_libraries (NULL, from_tty);
1163
1164 symfile_objfile = NULL;
1165 if (from_tty)
1166 printf_unfiltered (_("No symbol file now.\n"));
1167 }
1168
1169 struct build_id
1170 {
1171 size_t size;
1172 gdb_byte data[1];
1173 };
1174
1175 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1176
1177 static struct build_id *
1178 build_id_bfd_get (bfd *abfd)
1179 {
1180 struct build_id *retval;
1181
1182 if (!bfd_check_format (abfd, bfd_object)
1183 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1184 || elf_tdata (abfd)->build_id == NULL)
1185 return NULL;
1186
1187 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1188 retval->size = elf_tdata (abfd)->build_id_size;
1189 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1190
1191 return retval;
1192 }
1193
1194 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1195
1196 static int
1197 build_id_verify (const char *filename, struct build_id *check)
1198 {
1199 bfd *abfd;
1200 struct build_id *found = NULL;
1201 int retval = 0;
1202
1203 /* We expect to be silent on the non-existing files. */
1204 if (remote_filename_p (filename))
1205 abfd = remote_bfd_open (filename, gnutarget);
1206 else
1207 abfd = bfd_openr (filename, gnutarget);
1208 if (abfd == NULL)
1209 return 0;
1210
1211 found = build_id_bfd_get (abfd);
1212
1213 if (found == NULL)
1214 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1215 else if (found->size != check->size
1216 || memcmp (found->data, check->data, found->size) != 0)
1217 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1218 else
1219 retval = 1;
1220
1221 if (!bfd_close (abfd))
1222 warning (_("cannot close \"%s\": %s"), filename,
1223 bfd_errmsg (bfd_get_error ()));
1224
1225 xfree (found);
1226
1227 return retval;
1228 }
1229
1230 static char *
1231 build_id_to_debug_filename (struct build_id *build_id)
1232 {
1233 char *link, *s, *retval = NULL;
1234 gdb_byte *data = build_id->data;
1235 size_t size = build_id->size;
1236
1237 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1238 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1239 + 2 * size + (sizeof ".debug" - 1) + 1);
1240 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1241 if (size > 0)
1242 {
1243 size--;
1244 s += sprintf (s, "%02x", (unsigned) *data++);
1245 }
1246 if (size > 0)
1247 *s++ = '/';
1248 while (size-- > 0)
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 strcpy (s, ".debug");
1251
1252 /* lrealpath() is expensive even for the usually non-existent files. */
1253 if (access (link, F_OK) == 0)
1254 retval = lrealpath (link);
1255 xfree (link);
1256
1257 if (retval != NULL && !build_id_verify (retval, build_id))
1258 {
1259 xfree (retval);
1260 retval = NULL;
1261 }
1262
1263 return retval;
1264 }
1265
1266 static char *
1267 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1268 {
1269 asection *sect;
1270 bfd_size_type debuglink_size;
1271 unsigned long crc32;
1272 char *contents;
1273 int crc_offset;
1274 unsigned char *p;
1275
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
1282
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1292
1293 *crc32_out = crc32;
1294 return contents;
1295 }
1296
1297 static int
1298 separate_debug_file_exists (const char *name, unsigned long crc)
1299 {
1300 unsigned long file_crc = 0;
1301 bfd *abfd;
1302 gdb_byte buffer[8*1024];
1303 int count;
1304
1305 if (remote_filename_p (name))
1306 abfd = remote_bfd_open (name, gnutarget);
1307 else
1308 abfd = bfd_openr (name, gnutarget);
1309
1310 if (!abfd)
1311 return 0;
1312
1313 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1314 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1315
1316 bfd_close (abfd);
1317
1318 return crc == file_crc;
1319 }
1320
1321 char *debug_file_directory = NULL;
1322 static void
1323 show_debug_file_directory (struct ui_file *file, int from_tty,
1324 struct cmd_list_element *c, const char *value)
1325 {
1326 fprintf_filtered (file, _("\
1327 The directory where separate debug symbols are searched for is \"%s\".\n"),
1328 value);
1329 }
1330
1331 #if ! defined (DEBUG_SUBDIRECTORY)
1332 #define DEBUG_SUBDIRECTORY ".debug"
1333 #endif
1334
1335 static char *
1336 find_separate_debug_file (struct objfile *objfile)
1337 {
1338 asection *sect;
1339 char *basename;
1340 char *dir;
1341 char *debugfile;
1342 char *name_copy;
1343 char *canon_name;
1344 bfd_size_type debuglink_size;
1345 unsigned long crc32;
1346 int i;
1347 struct build_id *build_id;
1348
1349 build_id = build_id_bfd_get (objfile->obfd);
1350 if (build_id != NULL)
1351 {
1352 char *build_id_name;
1353
1354 build_id_name = build_id_to_debug_filename (build_id);
1355 xfree (build_id);
1356 /* Prevent looping on a stripped .debug file. */
1357 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1358 {
1359 warning (_("\"%s\": separate debug info file has no debug info"),
1360 build_id_name);
1361 xfree (build_id_name);
1362 }
1363 else if (build_id_name != NULL)
1364 return build_id_name;
1365 }
1366
1367 basename = get_debug_link_info (objfile, &crc32);
1368
1369 if (basename == NULL)
1370 return NULL;
1371
1372 dir = xstrdup (objfile->name);
1373
1374 /* Strip off the final filename part, leaving the directory name,
1375 followed by a slash. Objfile names should always be absolute and
1376 tilde-expanded, so there should always be a slash in there
1377 somewhere. */
1378 for (i = strlen(dir) - 1; i >= 0; i--)
1379 {
1380 if (IS_DIR_SEPARATOR (dir[i]))
1381 break;
1382 }
1383 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1384 dir[i+1] = '\0';
1385
1386 debugfile = alloca (strlen (debug_file_directory) + 1
1387 + strlen (dir)
1388 + strlen (DEBUG_SUBDIRECTORY)
1389 + strlen ("/")
1390 + strlen (basename)
1391 + 1);
1392
1393 /* First try in the same directory as the original file. */
1394 strcpy (debugfile, dir);
1395 strcat (debugfile, basename);
1396
1397 if (separate_debug_file_exists (debugfile, crc32))
1398 {
1399 xfree (basename);
1400 xfree (dir);
1401 return xstrdup (debugfile);
1402 }
1403
1404 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, DEBUG_SUBDIRECTORY);
1407 strcat (debugfile, "/");
1408 strcat (debugfile, basename);
1409
1410 if (separate_debug_file_exists (debugfile, crc32))
1411 {
1412 xfree (basename);
1413 xfree (dir);
1414 return xstrdup (debugfile);
1415 }
1416
1417 /* Then try in the global debugfile directory. */
1418 strcpy (debugfile, debug_file_directory);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, dir);
1421 strcat (debugfile, basename);
1422
1423 if (separate_debug_file_exists (debugfile, crc32))
1424 {
1425 xfree (basename);
1426 xfree (dir);
1427 return xstrdup (debugfile);
1428 }
1429
1430 /* If the file is in the sysroot, try using its base path in the
1431 global debugfile directory. */
1432 canon_name = lrealpath (dir);
1433 if (canon_name
1434 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1435 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1436 {
1437 strcpy (debugfile, debug_file_directory);
1438 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1439 strcat (debugfile, "/");
1440 strcat (debugfile, basename);
1441
1442 if (separate_debug_file_exists (debugfile, crc32))
1443 {
1444 xfree (canon_name);
1445 xfree (basename);
1446 xfree (dir);
1447 return xstrdup (debugfile);
1448 }
1449 }
1450
1451 if (canon_name)
1452 xfree (canon_name);
1453
1454 xfree (basename);
1455 xfree (dir);
1456 return NULL;
1457 }
1458
1459
1460 /* This is the symbol-file command. Read the file, analyze its
1461 symbols, and add a struct symtab to a symtab list. The syntax of
1462 the command is rather bizarre:
1463
1464 1. The function buildargv implements various quoting conventions
1465 which are undocumented and have little or nothing in common with
1466 the way things are quoted (or not quoted) elsewhere in GDB.
1467
1468 2. Options are used, which are not generally used in GDB (perhaps
1469 "set mapped on", "set readnow on" would be better)
1470
1471 3. The order of options matters, which is contrary to GNU
1472 conventions (because it is confusing and inconvenient). */
1473
1474 void
1475 symbol_file_command (char *args, int from_tty)
1476 {
1477 dont_repeat ();
1478
1479 if (args == NULL)
1480 {
1481 symbol_file_clear (from_tty);
1482 }
1483 else
1484 {
1485 char **argv = gdb_buildargv (args);
1486 int flags = OBJF_USERLOADED;
1487 struct cleanup *cleanups;
1488 char *name = NULL;
1489
1490 cleanups = make_cleanup_freeargv (argv);
1491 while (*argv != NULL)
1492 {
1493 if (strcmp (*argv, "-readnow") == 0)
1494 flags |= OBJF_READNOW;
1495 else if (**argv == '-')
1496 error (_("unknown option `%s'"), *argv);
1497 else
1498 {
1499 symbol_file_add_main_1 (*argv, from_tty, flags);
1500 name = *argv;
1501 }
1502
1503 argv++;
1504 }
1505
1506 if (name == NULL)
1507 error (_("no symbol file name was specified"));
1508
1509 do_cleanups (cleanups);
1510 }
1511 }
1512
1513 /* Set the initial language.
1514
1515 FIXME: A better solution would be to record the language in the
1516 psymtab when reading partial symbols, and then use it (if known) to
1517 set the language. This would be a win for formats that encode the
1518 language in an easily discoverable place, such as DWARF. For
1519 stabs, we can jump through hoops looking for specially named
1520 symbols or try to intuit the language from the specific type of
1521 stabs we find, but we can't do that until later when we read in
1522 full symbols. */
1523
1524 void
1525 set_initial_language (void)
1526 {
1527 struct partial_symtab *pst;
1528 enum language lang = language_unknown;
1529
1530 pst = find_main_psymtab ();
1531 if (pst != NULL)
1532 {
1533 if (pst->filename != NULL)
1534 lang = deduce_language_from_filename (pst->filename);
1535
1536 if (lang == language_unknown)
1537 {
1538 /* Make C the default language */
1539 lang = language_c;
1540 }
1541
1542 set_language (lang);
1543 expected_language = current_language; /* Don't warn the user. */
1544 }
1545 }
1546
1547 /* Open the file specified by NAME and hand it off to BFD for
1548 preliminary analysis. Return a newly initialized bfd *, which
1549 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1550 absolute). In case of trouble, error() is called. */
1551
1552 bfd *
1553 symfile_bfd_open (char *name)
1554 {
1555 bfd *sym_bfd;
1556 int desc;
1557 char *absolute_name;
1558
1559 if (remote_filename_p (name))
1560 {
1561 name = xstrdup (name);
1562 sym_bfd = remote_bfd_open (name, gnutarget);
1563 if (!sym_bfd)
1564 {
1565 make_cleanup (xfree, name);
1566 error (_("`%s': can't open to read symbols: %s."), name,
1567 bfd_errmsg (bfd_get_error ()));
1568 }
1569
1570 if (!bfd_check_format (sym_bfd, bfd_object))
1571 {
1572 bfd_close (sym_bfd);
1573 make_cleanup (xfree, name);
1574 error (_("`%s': can't read symbols: %s."), name,
1575 bfd_errmsg (bfd_get_error ()));
1576 }
1577
1578 return sym_bfd;
1579 }
1580
1581 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1582
1583 /* Look down path for it, allocate 2nd new malloc'd copy. */
1584 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1585 O_RDONLY | O_BINARY, &absolute_name);
1586 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1587 if (desc < 0)
1588 {
1589 char *exename = alloca (strlen (name) + 5);
1590 strcat (strcpy (exename, name), ".exe");
1591 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1592 O_RDONLY | O_BINARY, &absolute_name);
1593 }
1594 #endif
1595 if (desc < 0)
1596 {
1597 make_cleanup (xfree, name);
1598 perror_with_name (name);
1599 }
1600
1601 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1602 bfd. It'll be freed in free_objfile(). */
1603 xfree (name);
1604 name = absolute_name;
1605
1606 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1607 if (!sym_bfd)
1608 {
1609 close (desc);
1610 make_cleanup (xfree, name);
1611 error (_("`%s': can't open to read symbols: %s."), name,
1612 bfd_errmsg (bfd_get_error ()));
1613 }
1614 bfd_set_cacheable (sym_bfd, 1);
1615
1616 if (!bfd_check_format (sym_bfd, bfd_object))
1617 {
1618 /* FIXME: should be checking for errors from bfd_close (for one
1619 thing, on error it does not free all the storage associated
1620 with the bfd). */
1621 bfd_close (sym_bfd); /* This also closes desc. */
1622 make_cleanup (xfree, name);
1623 error (_("`%s': can't read symbols: %s."), name,
1624 bfd_errmsg (bfd_get_error ()));
1625 }
1626
1627 return sym_bfd;
1628 }
1629
1630 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1631 the section was not found. */
1632
1633 int
1634 get_section_index (struct objfile *objfile, char *section_name)
1635 {
1636 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1637
1638 if (sect)
1639 return sect->index;
1640 else
1641 return -1;
1642 }
1643
1644 /* Link SF into the global symtab_fns list. Called on startup by the
1645 _initialize routine in each object file format reader, to register
1646 information about each format the the reader is prepared to
1647 handle. */
1648
1649 void
1650 add_symtab_fns (struct sym_fns *sf)
1651 {
1652 sf->next = symtab_fns;
1653 symtab_fns = sf;
1654 }
1655
1656 /* Initialize OBJFILE to read symbols from its associated BFD. It
1657 either returns or calls error(). The result is an initialized
1658 struct sym_fns in the objfile structure, that contains cached
1659 information about the symbol file. */
1660
1661 static struct sym_fns *
1662 find_sym_fns (bfd *abfd)
1663 {
1664 struct sym_fns *sf;
1665 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1666
1667 if (our_flavour == bfd_target_srec_flavour
1668 || our_flavour == bfd_target_ihex_flavour
1669 || our_flavour == bfd_target_tekhex_flavour)
1670 return NULL; /* No symbols. */
1671
1672 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1673 if (our_flavour == sf->sym_flavour)
1674 return sf;
1675
1676 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1677 bfd_get_target (abfd));
1678 }
1679 \f
1680
1681 /* This function runs the load command of our current target. */
1682
1683 static void
1684 load_command (char *arg, int from_tty)
1685 {
1686 /* The user might be reloading because the binary has changed. Take
1687 this opportunity to check. */
1688 reopen_exec_file ();
1689 reread_symbols ();
1690
1691 if (arg == NULL)
1692 {
1693 char *parg;
1694 int count = 0;
1695
1696 parg = arg = get_exec_file (1);
1697
1698 /* Count how many \ " ' tab space there are in the name. */
1699 while ((parg = strpbrk (parg, "\\\"'\t ")))
1700 {
1701 parg++;
1702 count++;
1703 }
1704
1705 if (count)
1706 {
1707 /* We need to quote this string so buildargv can pull it apart. */
1708 char *temp = xmalloc (strlen (arg) + count + 1 );
1709 char *ptemp = temp;
1710 char *prev;
1711
1712 make_cleanup (xfree, temp);
1713
1714 prev = parg = arg;
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 strncpy (ptemp, prev, parg - prev);
1718 ptemp += parg - prev;
1719 prev = parg++;
1720 *ptemp++ = '\\';
1721 }
1722 strcpy (ptemp, prev);
1723
1724 arg = temp;
1725 }
1726 }
1727
1728 target_load (arg, from_tty);
1729
1730 /* After re-loading the executable, we don't really know which
1731 overlays are mapped any more. */
1732 overlay_cache_invalid = 1;
1733 }
1734
1735 /* This version of "load" should be usable for any target. Currently
1736 it is just used for remote targets, not inftarg.c or core files,
1737 on the theory that only in that case is it useful.
1738
1739 Avoiding xmodem and the like seems like a win (a) because we don't have
1740 to worry about finding it, and (b) On VMS, fork() is very slow and so
1741 we don't want to run a subprocess. On the other hand, I'm not sure how
1742 performance compares. */
1743
1744 static int validate_download = 0;
1745
1746 /* Callback service function for generic_load (bfd_map_over_sections). */
1747
1748 static void
1749 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1750 {
1751 bfd_size_type *sum = data;
1752
1753 *sum += bfd_get_section_size (asec);
1754 }
1755
1756 /* Opaque data for load_section_callback. */
1757 struct load_section_data {
1758 unsigned long load_offset;
1759 struct load_progress_data *progress_data;
1760 VEC(memory_write_request_s) *requests;
1761 };
1762
1763 /* Opaque data for load_progress. */
1764 struct load_progress_data {
1765 /* Cumulative data. */
1766 unsigned long write_count;
1767 unsigned long data_count;
1768 bfd_size_type total_size;
1769 };
1770
1771 /* Opaque data for load_progress for a single section. */
1772 struct load_progress_section_data {
1773 struct load_progress_data *cumulative;
1774
1775 /* Per-section data. */
1776 const char *section_name;
1777 ULONGEST section_sent;
1778 ULONGEST section_size;
1779 CORE_ADDR lma;
1780 gdb_byte *buffer;
1781 };
1782
1783 /* Target write callback routine for progress reporting. */
1784
1785 static void
1786 load_progress (ULONGEST bytes, void *untyped_arg)
1787 {
1788 struct load_progress_section_data *args = untyped_arg;
1789 struct load_progress_data *totals;
1790
1791 if (args == NULL)
1792 /* Writing padding data. No easy way to get at the cumulative
1793 stats, so just ignore this. */
1794 return;
1795
1796 totals = args->cumulative;
1797
1798 if (bytes == 0 && args->section_sent == 0)
1799 {
1800 /* The write is just starting. Let the user know we've started
1801 this section. */
1802 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1803 args->section_name, paddr_nz (args->section_size),
1804 paddr_nz (args->lma));
1805 return;
1806 }
1807
1808 if (validate_download)
1809 {
1810 /* Broken memories and broken monitors manifest themselves here
1811 when bring new computers to life. This doubles already slow
1812 downloads. */
1813 /* NOTE: cagney/1999-10-18: A more efficient implementation
1814 might add a verify_memory() method to the target vector and
1815 then use that. remote.c could implement that method using
1816 the ``qCRC'' packet. */
1817 gdb_byte *check = xmalloc (bytes);
1818 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1819
1820 if (target_read_memory (args->lma, check, bytes) != 0)
1821 error (_("Download verify read failed at 0x%s"),
1822 paddr (args->lma));
1823 if (memcmp (args->buffer, check, bytes) != 0)
1824 error (_("Download verify compare failed at 0x%s"),
1825 paddr (args->lma));
1826 do_cleanups (verify_cleanups);
1827 }
1828 totals->data_count += bytes;
1829 args->lma += bytes;
1830 args->buffer += bytes;
1831 totals->write_count += 1;
1832 args->section_sent += bytes;
1833 if (quit_flag
1834 || (deprecated_ui_load_progress_hook != NULL
1835 && deprecated_ui_load_progress_hook (args->section_name,
1836 args->section_sent)))
1837 error (_("Canceled the download"));
1838
1839 if (deprecated_show_load_progress != NULL)
1840 deprecated_show_load_progress (args->section_name,
1841 args->section_sent,
1842 args->section_size,
1843 totals->data_count,
1844 totals->total_size);
1845 }
1846
1847 /* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849 static void
1850 load_section_callback (bfd *abfd, asection *asec, void *data)
1851 {
1852 struct memory_write_request *new_request;
1853 struct load_section_data *args = data;
1854 struct load_progress_section_data *section_data;
1855 bfd_size_type size = bfd_get_section_size (asec);
1856 gdb_byte *buffer;
1857 const char *sect_name = bfd_get_section_name (abfd, asec);
1858
1859 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1860 return;
1861
1862 if (size == 0)
1863 return;
1864
1865 new_request = VEC_safe_push (memory_write_request_s,
1866 args->requests, NULL);
1867 memset (new_request, 0, sizeof (struct memory_write_request));
1868 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1869 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1870 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1871 new_request->data = xmalloc (size);
1872 new_request->baton = section_data;
1873
1874 buffer = new_request->data;
1875
1876 section_data->cumulative = args->progress_data;
1877 section_data->section_name = sect_name;
1878 section_data->section_size = size;
1879 section_data->lma = new_request->begin;
1880 section_data->buffer = buffer;
1881
1882 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1883 }
1884
1885 /* Clean up an entire memory request vector, including load
1886 data and progress records. */
1887
1888 static void
1889 clear_memory_write_data (void *arg)
1890 {
1891 VEC(memory_write_request_s) **vec_p = arg;
1892 VEC(memory_write_request_s) *vec = *vec_p;
1893 int i;
1894 struct memory_write_request *mr;
1895
1896 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1897 {
1898 xfree (mr->data);
1899 xfree (mr->baton);
1900 }
1901 VEC_free (memory_write_request_s, vec);
1902 }
1903
1904 void
1905 generic_load (char *args, int from_tty)
1906 {
1907 bfd *loadfile_bfd;
1908 struct timeval start_time, end_time;
1909 char *filename;
1910 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1911 struct load_section_data cbdata;
1912 struct load_progress_data total_progress;
1913
1914 CORE_ADDR entry;
1915 char **argv;
1916
1917 memset (&cbdata, 0, sizeof (cbdata));
1918 memset (&total_progress, 0, sizeof (total_progress));
1919 cbdata.progress_data = &total_progress;
1920
1921 make_cleanup (clear_memory_write_data, &cbdata.requests);
1922
1923 if (args == NULL)
1924 error_no_arg (_("file to load"));
1925
1926 argv = gdb_buildargv (args);
1927 make_cleanup_freeargv (argv);
1928
1929 filename = tilde_expand (argv[0]);
1930 make_cleanup (xfree, filename);
1931
1932 if (argv[1] != NULL)
1933 {
1934 char *endptr;
1935
1936 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1937
1938 /* If the last word was not a valid number then
1939 treat it as a file name with spaces in. */
1940 if (argv[1] == endptr)
1941 error (_("Invalid download offset:%s."), argv[1]);
1942
1943 if (argv[2] != NULL)
1944 error (_("Too many parameters."));
1945 }
1946
1947 /* Open the file for loading. */
1948 loadfile_bfd = bfd_openr (filename, gnutarget);
1949 if (loadfile_bfd == NULL)
1950 {
1951 perror_with_name (filename);
1952 return;
1953 }
1954
1955 /* FIXME: should be checking for errors from bfd_close (for one thing,
1956 on error it does not free all the storage associated with the
1957 bfd). */
1958 make_cleanup_bfd_close (loadfile_bfd);
1959
1960 if (!bfd_check_format (loadfile_bfd, bfd_object))
1961 {
1962 error (_("\"%s\" is not an object file: %s"), filename,
1963 bfd_errmsg (bfd_get_error ()));
1964 }
1965
1966 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1967 (void *) &total_progress.total_size);
1968
1969 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1970
1971 gettimeofday (&start_time, NULL);
1972
1973 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1974 load_progress) != 0)
1975 error (_("Load failed"));
1976
1977 gettimeofday (&end_time, NULL);
1978
1979 entry = bfd_get_start_address (loadfile_bfd);
1980 ui_out_text (uiout, "Start address ");
1981 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1982 ui_out_text (uiout, ", load size ");
1983 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1984 ui_out_text (uiout, "\n");
1985 /* We were doing this in remote-mips.c, I suspect it is right
1986 for other targets too. */
1987 regcache_write_pc (get_current_regcache (), entry);
1988
1989 /* FIXME: are we supposed to call symbol_file_add or not? According
1990 to a comment from remote-mips.c (where a call to symbol_file_add
1991 was commented out), making the call confuses GDB if more than one
1992 file is loaded in. Some targets do (e.g., remote-vx.c) but
1993 others don't (or didn't - perhaps they have all been deleted). */
1994
1995 print_transfer_performance (gdb_stdout, total_progress.data_count,
1996 total_progress.write_count,
1997 &start_time, &end_time);
1998
1999 do_cleanups (old_cleanups);
2000 }
2001
2002 /* Report how fast the transfer went. */
2003
2004 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2005 replaced by print_transfer_performance (with a very different
2006 function signature). */
2007
2008 void
2009 report_transfer_performance (unsigned long data_count, time_t start_time,
2010 time_t end_time)
2011 {
2012 struct timeval start, end;
2013
2014 start.tv_sec = start_time;
2015 start.tv_usec = 0;
2016 end.tv_sec = end_time;
2017 end.tv_usec = 0;
2018
2019 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2020 }
2021
2022 void
2023 print_transfer_performance (struct ui_file *stream,
2024 unsigned long data_count,
2025 unsigned long write_count,
2026 const struct timeval *start_time,
2027 const struct timeval *end_time)
2028 {
2029 ULONGEST time_count;
2030
2031 /* Compute the elapsed time in milliseconds, as a tradeoff between
2032 accuracy and overflow. */
2033 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2034 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2035
2036 ui_out_text (uiout, "Transfer rate: ");
2037 if (time_count > 0)
2038 {
2039 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2040
2041 if (ui_out_is_mi_like_p (uiout))
2042 {
2043 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2044 ui_out_text (uiout, " bits/sec");
2045 }
2046 else if (rate < 1024)
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2049 ui_out_text (uiout, " bytes/sec");
2050 }
2051 else
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2054 ui_out_text (uiout, " KB/sec");
2055 }
2056 }
2057 else
2058 {
2059 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2060 ui_out_text (uiout, " bits in <1 sec");
2061 }
2062 if (write_count > 0)
2063 {
2064 ui_out_text (uiout, ", ");
2065 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2066 ui_out_text (uiout, " bytes/write");
2067 }
2068 ui_out_text (uiout, ".\n");
2069 }
2070
2071 /* This function allows the addition of incrementally linked object files.
2072 It does not modify any state in the target, only in the debugger. */
2073 /* Note: ezannoni 2000-04-13 This function/command used to have a
2074 special case syntax for the rombug target (Rombug is the boot
2075 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2076 rombug case, the user doesn't need to supply a text address,
2077 instead a call to target_link() (in target.c) would supply the
2078 value to use. We are now discontinuing this type of ad hoc syntax. */
2079
2080 static void
2081 add_symbol_file_command (char *args, int from_tty)
2082 {
2083 char *filename = NULL;
2084 int flags = OBJF_USERLOADED;
2085 char *arg;
2086 int expecting_option = 0;
2087 int section_index = 0;
2088 int argcnt = 0;
2089 int sec_num = 0;
2090 int i;
2091 int expecting_sec_name = 0;
2092 int expecting_sec_addr = 0;
2093 char **argv;
2094
2095 struct sect_opt
2096 {
2097 char *name;
2098 char *value;
2099 };
2100
2101 struct section_addr_info *section_addrs;
2102 struct sect_opt *sect_opts = NULL;
2103 size_t num_sect_opts = 0;
2104 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2105
2106 num_sect_opts = 16;
2107 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2108 * sizeof (struct sect_opt));
2109
2110 dont_repeat ();
2111
2112 if (args == NULL)
2113 error (_("add-symbol-file takes a file name and an address"));
2114
2115 argv = gdb_buildargv (args);
2116 make_cleanup_freeargv (argv);
2117
2118 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2119 {
2120 /* Process the argument. */
2121 if (argcnt == 0)
2122 {
2123 /* The first argument is the file name. */
2124 filename = tilde_expand (arg);
2125 make_cleanup (xfree, filename);
2126 }
2127 else
2128 if (argcnt == 1)
2129 {
2130 /* The second argument is always the text address at which
2131 to load the program. */
2132 sect_opts[section_index].name = ".text";
2133 sect_opts[section_index].value = arg;
2134 if (++section_index >= num_sect_opts)
2135 {
2136 num_sect_opts *= 2;
2137 sect_opts = ((struct sect_opt *)
2138 xrealloc (sect_opts,
2139 num_sect_opts
2140 * sizeof (struct sect_opt)));
2141 }
2142 }
2143 else
2144 {
2145 /* It's an option (starting with '-') or it's an argument
2146 to an option */
2147
2148 if (*arg == '-')
2149 {
2150 if (strcmp (arg, "-readnow") == 0)
2151 flags |= OBJF_READNOW;
2152 else if (strcmp (arg, "-s") == 0)
2153 {
2154 expecting_sec_name = 1;
2155 expecting_sec_addr = 1;
2156 }
2157 }
2158 else
2159 {
2160 if (expecting_sec_name)
2161 {
2162 sect_opts[section_index].name = arg;
2163 expecting_sec_name = 0;
2164 }
2165 else
2166 if (expecting_sec_addr)
2167 {
2168 sect_opts[section_index].value = arg;
2169 expecting_sec_addr = 0;
2170 if (++section_index >= num_sect_opts)
2171 {
2172 num_sect_opts *= 2;
2173 sect_opts = ((struct sect_opt *)
2174 xrealloc (sect_opts,
2175 num_sect_opts
2176 * sizeof (struct sect_opt)));
2177 }
2178 }
2179 else
2180 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2181 }
2182 }
2183 }
2184
2185 /* This command takes at least two arguments. The first one is a
2186 filename, and the second is the address where this file has been
2187 loaded. Abort now if this address hasn't been provided by the
2188 user. */
2189 if (section_index < 1)
2190 error (_("The address where %s has been loaded is missing"), filename);
2191
2192 /* Print the prompt for the query below. And save the arguments into
2193 a sect_addr_info structure to be passed around to other
2194 functions. We have to split this up into separate print
2195 statements because hex_string returns a local static
2196 string. */
2197
2198 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2199 section_addrs = alloc_section_addr_info (section_index);
2200 make_cleanup (xfree, section_addrs);
2201 for (i = 0; i < section_index; i++)
2202 {
2203 CORE_ADDR addr;
2204 char *val = sect_opts[i].value;
2205 char *sec = sect_opts[i].name;
2206
2207 addr = parse_and_eval_address (val);
2208
2209 /* Here we store the section offsets in the order they were
2210 entered on the command line. */
2211 section_addrs->other[sec_num].name = sec;
2212 section_addrs->other[sec_num].addr = addr;
2213 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2214 sec_num++;
2215
2216 /* The object's sections are initialized when a
2217 call is made to build_objfile_section_table (objfile).
2218 This happens in reread_symbols.
2219 At this point, we don't know what file type this is,
2220 so we can't determine what section names are valid. */
2221 }
2222
2223 if (from_tty && (!query ("%s", "")))
2224 error (_("Not confirmed."));
2225
2226 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2227 section_addrs, flags);
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
2232 do_cleanups (my_cleanups);
2233 }
2234 \f
2235
2236 /* Re-read symbols if a symbol-file has changed. */
2237 void
2238 reread_symbols (void)
2239 {
2240 struct objfile *objfile;
2241 long new_modtime;
2242 int reread_one = 0;
2243 struct stat new_statbuf;
2244 int res;
2245
2246 /* With the addition of shared libraries, this should be modified,
2247 the load time should be saved in the partial symbol tables, since
2248 different tables may come from different source files. FIXME.
2249 This routine should then walk down each partial symbol table
2250 and see if the symbol table that it originates from has been changed */
2251
2252 for (objfile = object_files; objfile; objfile = objfile->next)
2253 {
2254 if (objfile->obfd)
2255 {
2256 #ifdef DEPRECATED_IBM6000_TARGET
2257 /* If this object is from a shared library, then you should
2258 stat on the library name, not member name. */
2259
2260 if (objfile->obfd->my_archive)
2261 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2262 else
2263 #endif
2264 res = stat (objfile->name, &new_statbuf);
2265 if (res != 0)
2266 {
2267 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2268 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2269 objfile->name);
2270 continue;
2271 }
2272 new_modtime = new_statbuf.st_mtime;
2273 if (new_modtime != objfile->mtime)
2274 {
2275 struct cleanup *old_cleanups;
2276 struct section_offsets *offsets;
2277 int num_offsets;
2278 char *obfd_filename;
2279
2280 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2281 objfile->name);
2282
2283 /* There are various functions like symbol_file_add,
2284 symfile_bfd_open, syms_from_objfile, etc., which might
2285 appear to do what we want. But they have various other
2286 effects which we *don't* want. So we just do stuff
2287 ourselves. We don't worry about mapped files (for one thing,
2288 any mapped file will be out of date). */
2289
2290 /* If we get an error, blow away this objfile (not sure if
2291 that is the correct response for things like shared
2292 libraries). */
2293 old_cleanups = make_cleanup_free_objfile (objfile);
2294 /* We need to do this whenever any symbols go away. */
2295 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2296
2297 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2298 bfd_get_filename (exec_bfd)) == 0)
2299 {
2300 /* Reload EXEC_BFD without asking anything. */
2301
2302 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2303 }
2304
2305 /* Clean up any state BFD has sitting around. We don't need
2306 to close the descriptor but BFD lacks a way of closing the
2307 BFD without closing the descriptor. */
2308 obfd_filename = bfd_get_filename (objfile->obfd);
2309 if (!bfd_close (objfile->obfd))
2310 error (_("Can't close BFD for %s: %s"), objfile->name,
2311 bfd_errmsg (bfd_get_error ()));
2312 if (remote_filename_p (obfd_filename))
2313 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2314 else
2315 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2316 if (objfile->obfd == NULL)
2317 error (_("Can't open %s to read symbols."), objfile->name);
2318 /* bfd_openr sets cacheable to true, which is what we want. */
2319 if (!bfd_check_format (objfile->obfd, bfd_object))
2320 error (_("Can't read symbols from %s: %s."), objfile->name,
2321 bfd_errmsg (bfd_get_error ()));
2322
2323 /* Save the offsets, we will nuke them with the rest of the
2324 objfile_obstack. */
2325 num_offsets = objfile->num_sections;
2326 offsets = ((struct section_offsets *)
2327 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2328 memcpy (offsets, objfile->section_offsets,
2329 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2330
2331 /* Remove any references to this objfile in the global
2332 value lists. */
2333 preserve_values (objfile);
2334
2335 /* Nuke all the state that we will re-read. Much of the following
2336 code which sets things to NULL really is necessary to tell
2337 other parts of GDB that there is nothing currently there.
2338
2339 Try to keep the freeing order compatible with free_objfile. */
2340
2341 if (objfile->sf != NULL)
2342 {
2343 (*objfile->sf->sym_finish) (objfile);
2344 }
2345
2346 clear_objfile_data (objfile);
2347
2348 /* FIXME: Do we have to free a whole linked list, or is this
2349 enough? */
2350 if (objfile->global_psymbols.list)
2351 xfree (objfile->global_psymbols.list);
2352 memset (&objfile->global_psymbols, 0,
2353 sizeof (objfile->global_psymbols));
2354 if (objfile->static_psymbols.list)
2355 xfree (objfile->static_psymbols.list);
2356 memset (&objfile->static_psymbols, 0,
2357 sizeof (objfile->static_psymbols));
2358
2359 /* Free the obstacks for non-reusable objfiles */
2360 bcache_xfree (objfile->psymbol_cache);
2361 objfile->psymbol_cache = bcache_xmalloc ();
2362 bcache_xfree (objfile->macro_cache);
2363 objfile->macro_cache = bcache_xmalloc ();
2364 if (objfile->demangled_names_hash != NULL)
2365 {
2366 htab_delete (objfile->demangled_names_hash);
2367 objfile->demangled_names_hash = NULL;
2368 }
2369 obstack_free (&objfile->objfile_obstack, 0);
2370 objfile->sections = NULL;
2371 objfile->symtabs = NULL;
2372 objfile->psymtabs = NULL;
2373 objfile->psymtabs_addrmap = NULL;
2374 objfile->free_psymtabs = NULL;
2375 objfile->cp_namespace_symtab = NULL;
2376 objfile->msymbols = NULL;
2377 objfile->deprecated_sym_private = NULL;
2378 objfile->minimal_symbol_count = 0;
2379 memset (&objfile->msymbol_hash, 0,
2380 sizeof (objfile->msymbol_hash));
2381 memset (&objfile->msymbol_demangled_hash, 0,
2382 sizeof (objfile->msymbol_demangled_hash));
2383
2384 objfile->psymbol_cache = bcache_xmalloc ();
2385 objfile->macro_cache = bcache_xmalloc ();
2386 /* obstack_init also initializes the obstack so it is
2387 empty. We could use obstack_specify_allocation but
2388 gdb_obstack.h specifies the alloc/dealloc
2389 functions. */
2390 obstack_init (&objfile->objfile_obstack);
2391 if (build_objfile_section_table (objfile))
2392 {
2393 error (_("Can't find the file sections in `%s': %s"),
2394 objfile->name, bfd_errmsg (bfd_get_error ()));
2395 }
2396 terminate_minimal_symbol_table (objfile);
2397
2398 /* We use the same section offsets as from last time. I'm not
2399 sure whether that is always correct for shared libraries. */
2400 objfile->section_offsets = (struct section_offsets *)
2401 obstack_alloc (&objfile->objfile_obstack,
2402 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2403 memcpy (objfile->section_offsets, offsets,
2404 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2405 objfile->num_sections = num_offsets;
2406
2407 /* What the hell is sym_new_init for, anyway? The concept of
2408 distinguishing between the main file and additional files
2409 in this way seems rather dubious. */
2410 if (objfile == symfile_objfile)
2411 {
2412 (*objfile->sf->sym_new_init) (objfile);
2413 }
2414
2415 (*objfile->sf->sym_init) (objfile);
2416 clear_complaints (&symfile_complaints, 1, 1);
2417 /* The "mainline" parameter is a hideous hack; I think leaving it
2418 zero is OK since dbxread.c also does what it needs to do if
2419 objfile->global_psymbols.size is 0. */
2420 (*objfile->sf->sym_read) (objfile, 0);
2421 if (!have_partial_symbols () && !have_full_symbols ())
2422 {
2423 wrap_here ("");
2424 printf_unfiltered (_("(no debugging symbols found)\n"));
2425 wrap_here ("");
2426 }
2427
2428 /* We're done reading the symbol file; finish off complaints. */
2429 clear_complaints (&symfile_complaints, 0, 1);
2430
2431 /* Getting new symbols may change our opinion about what is
2432 frameless. */
2433
2434 reinit_frame_cache ();
2435
2436 /* Discard cleanups as symbol reading was successful. */
2437 discard_cleanups (old_cleanups);
2438
2439 /* If the mtime has changed between the time we set new_modtime
2440 and now, we *want* this to be out of date, so don't call stat
2441 again now. */
2442 objfile->mtime = new_modtime;
2443 reread_one = 1;
2444 reread_separate_symbols (objfile);
2445 init_entry_point_info (objfile);
2446 }
2447 }
2448 }
2449
2450 if (reread_one)
2451 {
2452 clear_symtab_users ();
2453 /* At least one objfile has changed, so we can consider that
2454 the executable we're debugging has changed too. */
2455 observer_notify_executable_changed ();
2456 }
2457
2458 }
2459
2460
2461 /* Handle separate debug info for OBJFILE, which has just been
2462 re-read:
2463 - If we had separate debug info before, but now we don't, get rid
2464 of the separated objfile.
2465 - If we didn't have separated debug info before, but now we do,
2466 read in the new separated debug info file.
2467 - If the debug link points to a different file, toss the old one
2468 and read the new one.
2469 This function does *not* handle the case where objfile is still
2470 using the same separate debug info file, but that file's timestamp
2471 has changed. That case should be handled by the loop in
2472 reread_symbols already. */
2473 static void
2474 reread_separate_symbols (struct objfile *objfile)
2475 {
2476 char *debug_file;
2477 unsigned long crc32;
2478
2479 /* Does the updated objfile's debug info live in a
2480 separate file? */
2481 debug_file = find_separate_debug_file (objfile);
2482
2483 if (objfile->separate_debug_objfile)
2484 {
2485 /* There are two cases where we need to get rid of
2486 the old separated debug info objfile:
2487 - if the new primary objfile doesn't have
2488 separated debug info, or
2489 - if the new primary objfile has separate debug
2490 info, but it's under a different filename.
2491
2492 If the old and new objfiles both have separate
2493 debug info, under the same filename, then we're
2494 okay --- if the separated file's contents have
2495 changed, we will have caught that when we
2496 visited it in this function's outermost
2497 loop. */
2498 if (! debug_file
2499 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2500 free_objfile (objfile->separate_debug_objfile);
2501 }
2502
2503 /* If the new objfile has separate debug info, and we
2504 haven't loaded it already, do so now. */
2505 if (debug_file
2506 && ! objfile->separate_debug_objfile)
2507 {
2508 /* Use the same section offset table as objfile itself.
2509 Preserve the flags from objfile that make sense. */
2510 objfile->separate_debug_objfile
2511 = (symbol_file_add_with_addrs_or_offsets
2512 (symfile_bfd_open (debug_file),
2513 info_verbose ? SYMFILE_VERBOSE : 0,
2514 0, /* No addr table. */
2515 objfile->section_offsets, objfile->num_sections,
2516 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2517 | OBJF_USERLOADED)));
2518 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2519 = objfile;
2520 }
2521 if (debug_file)
2522 xfree (debug_file);
2523 }
2524
2525
2526 \f
2527
2528
2529 typedef struct
2530 {
2531 char *ext;
2532 enum language lang;
2533 }
2534 filename_language;
2535
2536 static filename_language *filename_language_table;
2537 static int fl_table_size, fl_table_next;
2538
2539 static void
2540 add_filename_language (char *ext, enum language lang)
2541 {
2542 if (fl_table_next >= fl_table_size)
2543 {
2544 fl_table_size += 10;
2545 filename_language_table =
2546 xrealloc (filename_language_table,
2547 fl_table_size * sizeof (*filename_language_table));
2548 }
2549
2550 filename_language_table[fl_table_next].ext = xstrdup (ext);
2551 filename_language_table[fl_table_next].lang = lang;
2552 fl_table_next++;
2553 }
2554
2555 static char *ext_args;
2556 static void
2557 show_ext_args (struct ui_file *file, int from_tty,
2558 struct cmd_list_element *c, const char *value)
2559 {
2560 fprintf_filtered (file, _("\
2561 Mapping between filename extension and source language is \"%s\".\n"),
2562 value);
2563 }
2564
2565 static void
2566 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2567 {
2568 int i;
2569 char *cp = ext_args;
2570 enum language lang;
2571
2572 /* First arg is filename extension, starting with '.' */
2573 if (*cp != '.')
2574 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2575
2576 /* Find end of first arg. */
2577 while (*cp && !isspace (*cp))
2578 cp++;
2579
2580 if (*cp == '\0')
2581 error (_("'%s': two arguments required -- filename extension and language"),
2582 ext_args);
2583
2584 /* Null-terminate first arg */
2585 *cp++ = '\0';
2586
2587 /* Find beginning of second arg, which should be a source language. */
2588 while (*cp && isspace (*cp))
2589 cp++;
2590
2591 if (*cp == '\0')
2592 error (_("'%s': two arguments required -- filename extension and language"),
2593 ext_args);
2594
2595 /* Lookup the language from among those we know. */
2596 lang = language_enum (cp);
2597
2598 /* Now lookup the filename extension: do we already know it? */
2599 for (i = 0; i < fl_table_next; i++)
2600 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2601 break;
2602
2603 if (i >= fl_table_next)
2604 {
2605 /* new file extension */
2606 add_filename_language (ext_args, lang);
2607 }
2608 else
2609 {
2610 /* redefining a previously known filename extension */
2611
2612 /* if (from_tty) */
2613 /* query ("Really make files of type %s '%s'?", */
2614 /* ext_args, language_str (lang)); */
2615
2616 xfree (filename_language_table[i].ext);
2617 filename_language_table[i].ext = xstrdup (ext_args);
2618 filename_language_table[i].lang = lang;
2619 }
2620 }
2621
2622 static void
2623 info_ext_lang_command (char *args, int from_tty)
2624 {
2625 int i;
2626
2627 printf_filtered (_("Filename extensions and the languages they represent:"));
2628 printf_filtered ("\n\n");
2629 for (i = 0; i < fl_table_next; i++)
2630 printf_filtered ("\t%s\t- %s\n",
2631 filename_language_table[i].ext,
2632 language_str (filename_language_table[i].lang));
2633 }
2634
2635 static void
2636 init_filename_language_table (void)
2637 {
2638 if (fl_table_size == 0) /* protect against repetition */
2639 {
2640 fl_table_size = 20;
2641 fl_table_next = 0;
2642 filename_language_table =
2643 xmalloc (fl_table_size * sizeof (*filename_language_table));
2644 add_filename_language (".c", language_c);
2645 add_filename_language (".C", language_cplus);
2646 add_filename_language (".cc", language_cplus);
2647 add_filename_language (".cp", language_cplus);
2648 add_filename_language (".cpp", language_cplus);
2649 add_filename_language (".cxx", language_cplus);
2650 add_filename_language (".c++", language_cplus);
2651 add_filename_language (".java", language_java);
2652 add_filename_language (".class", language_java);
2653 add_filename_language (".m", language_objc);
2654 add_filename_language (".f", language_fortran);
2655 add_filename_language (".F", language_fortran);
2656 add_filename_language (".s", language_asm);
2657 add_filename_language (".sx", language_asm);
2658 add_filename_language (".S", language_asm);
2659 add_filename_language (".pas", language_pascal);
2660 add_filename_language (".p", language_pascal);
2661 add_filename_language (".pp", language_pascal);
2662 add_filename_language (".adb", language_ada);
2663 add_filename_language (".ads", language_ada);
2664 add_filename_language (".a", language_ada);
2665 add_filename_language (".ada", language_ada);
2666 }
2667 }
2668
2669 enum language
2670 deduce_language_from_filename (char *filename)
2671 {
2672 int i;
2673 char *cp;
2674
2675 if (filename != NULL)
2676 if ((cp = strrchr (filename, '.')) != NULL)
2677 for (i = 0; i < fl_table_next; i++)
2678 if (strcmp (cp, filename_language_table[i].ext) == 0)
2679 return filename_language_table[i].lang;
2680
2681 return language_unknown;
2682 }
2683 \f
2684 /* allocate_symtab:
2685
2686 Allocate and partly initialize a new symbol table. Return a pointer
2687 to it. error() if no space.
2688
2689 Caller must set these fields:
2690 LINETABLE(symtab)
2691 symtab->blockvector
2692 symtab->dirname
2693 symtab->free_code
2694 symtab->free_ptr
2695 possibly free_named_symtabs (symtab->filename);
2696 */
2697
2698 struct symtab *
2699 allocate_symtab (char *filename, struct objfile *objfile)
2700 {
2701 struct symtab *symtab;
2702
2703 symtab = (struct symtab *)
2704 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2705 memset (symtab, 0, sizeof (*symtab));
2706 symtab->filename = obsavestring (filename, strlen (filename),
2707 &objfile->objfile_obstack);
2708 symtab->fullname = NULL;
2709 symtab->language = deduce_language_from_filename (filename);
2710 symtab->debugformat = obsavestring ("unknown", 7,
2711 &objfile->objfile_obstack);
2712
2713 /* Hook it to the objfile it comes from */
2714
2715 symtab->objfile = objfile;
2716 symtab->next = objfile->symtabs;
2717 objfile->symtabs = symtab;
2718
2719 return (symtab);
2720 }
2721
2722 struct partial_symtab *
2723 allocate_psymtab (char *filename, struct objfile *objfile)
2724 {
2725 struct partial_symtab *psymtab;
2726
2727 if (objfile->free_psymtabs)
2728 {
2729 psymtab = objfile->free_psymtabs;
2730 objfile->free_psymtabs = psymtab->next;
2731 }
2732 else
2733 psymtab = (struct partial_symtab *)
2734 obstack_alloc (&objfile->objfile_obstack,
2735 sizeof (struct partial_symtab));
2736
2737 memset (psymtab, 0, sizeof (struct partial_symtab));
2738 psymtab->filename = obsavestring (filename, strlen (filename),
2739 &objfile->objfile_obstack);
2740 psymtab->symtab = NULL;
2741
2742 /* Prepend it to the psymtab list for the objfile it belongs to.
2743 Psymtabs are searched in most recent inserted -> least recent
2744 inserted order. */
2745
2746 psymtab->objfile = objfile;
2747 psymtab->next = objfile->psymtabs;
2748 objfile->psymtabs = psymtab;
2749 #if 0
2750 {
2751 struct partial_symtab **prev_pst;
2752 psymtab->objfile = objfile;
2753 psymtab->next = NULL;
2754 prev_pst = &(objfile->psymtabs);
2755 while ((*prev_pst) != NULL)
2756 prev_pst = &((*prev_pst)->next);
2757 (*prev_pst) = psymtab;
2758 }
2759 #endif
2760
2761 return (psymtab);
2762 }
2763
2764 void
2765 discard_psymtab (struct partial_symtab *pst)
2766 {
2767 struct partial_symtab **prev_pst;
2768
2769 /* From dbxread.c:
2770 Empty psymtabs happen as a result of header files which don't
2771 have any symbols in them. There can be a lot of them. But this
2772 check is wrong, in that a psymtab with N_SLINE entries but
2773 nothing else is not empty, but we don't realize that. Fixing
2774 that without slowing things down might be tricky. */
2775
2776 /* First, snip it out of the psymtab chain */
2777
2778 prev_pst = &(pst->objfile->psymtabs);
2779 while ((*prev_pst) != pst)
2780 prev_pst = &((*prev_pst)->next);
2781 (*prev_pst) = pst->next;
2782
2783 /* Next, put it on a free list for recycling */
2784
2785 pst->next = pst->objfile->free_psymtabs;
2786 pst->objfile->free_psymtabs = pst;
2787 }
2788 \f
2789
2790 /* Reset all data structures in gdb which may contain references to symbol
2791 table data. */
2792
2793 void
2794 clear_symtab_users (void)
2795 {
2796 /* Someday, we should do better than this, by only blowing away
2797 the things that really need to be blown. */
2798
2799 /* Clear the "current" symtab first, because it is no longer valid.
2800 breakpoint_re_set may try to access the current symtab. */
2801 clear_current_source_symtab_and_line ();
2802
2803 clear_displays ();
2804 breakpoint_re_set ();
2805 set_default_breakpoint (0, 0, 0, 0);
2806 clear_pc_function_cache ();
2807 observer_notify_new_objfile (NULL);
2808
2809 /* Clear globals which might have pointed into a removed objfile.
2810 FIXME: It's not clear which of these are supposed to persist
2811 between expressions and which ought to be reset each time. */
2812 expression_context_block = NULL;
2813 innermost_block = NULL;
2814
2815 /* Varobj may refer to old symbols, perform a cleanup. */
2816 varobj_invalidate ();
2817
2818 }
2819
2820 static void
2821 clear_symtab_users_cleanup (void *ignore)
2822 {
2823 clear_symtab_users ();
2824 }
2825
2826 /* clear_symtab_users_once:
2827
2828 This function is run after symbol reading, or from a cleanup.
2829 If an old symbol table was obsoleted, the old symbol table
2830 has been blown away, but the other GDB data structures that may
2831 reference it have not yet been cleared or re-directed. (The old
2832 symtab was zapped, and the cleanup queued, in free_named_symtab()
2833 below.)
2834
2835 This function can be queued N times as a cleanup, or called
2836 directly; it will do all the work the first time, and then will be a
2837 no-op until the next time it is queued. This works by bumping a
2838 counter at queueing time. Much later when the cleanup is run, or at
2839 the end of symbol processing (in case the cleanup is discarded), if
2840 the queued count is greater than the "done-count", we do the work
2841 and set the done-count to the queued count. If the queued count is
2842 less than or equal to the done-count, we just ignore the call. This
2843 is needed because reading a single .o file will often replace many
2844 symtabs (one per .h file, for example), and we don't want to reset
2845 the breakpoints N times in the user's face.
2846
2847 The reason we both queue a cleanup, and call it directly after symbol
2848 reading, is because the cleanup protects us in case of errors, but is
2849 discarded if symbol reading is successful. */
2850
2851 #if 0
2852 /* FIXME: As free_named_symtabs is currently a big noop this function
2853 is no longer needed. */
2854 static void clear_symtab_users_once (void);
2855
2856 static int clear_symtab_users_queued;
2857 static int clear_symtab_users_done;
2858
2859 static void
2860 clear_symtab_users_once (void)
2861 {
2862 /* Enforce once-per-`do_cleanups'-semantics */
2863 if (clear_symtab_users_queued <= clear_symtab_users_done)
2864 return;
2865 clear_symtab_users_done = clear_symtab_users_queued;
2866
2867 clear_symtab_users ();
2868 }
2869 #endif
2870
2871 /* Delete the specified psymtab, and any others that reference it. */
2872
2873 static void
2874 cashier_psymtab (struct partial_symtab *pst)
2875 {
2876 struct partial_symtab *ps, *pprev = NULL;
2877 int i;
2878
2879 /* Find its previous psymtab in the chain */
2880 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2881 {
2882 if (ps == pst)
2883 break;
2884 pprev = ps;
2885 }
2886
2887 if (ps)
2888 {
2889 /* Unhook it from the chain. */
2890 if (ps == pst->objfile->psymtabs)
2891 pst->objfile->psymtabs = ps->next;
2892 else
2893 pprev->next = ps->next;
2894
2895 /* FIXME, we can't conveniently deallocate the entries in the
2896 partial_symbol lists (global_psymbols/static_psymbols) that
2897 this psymtab points to. These just take up space until all
2898 the psymtabs are reclaimed. Ditto the dependencies list and
2899 filename, which are all in the objfile_obstack. */
2900
2901 /* We need to cashier any psymtab that has this one as a dependency... */
2902 again:
2903 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2904 {
2905 for (i = 0; i < ps->number_of_dependencies; i++)
2906 {
2907 if (ps->dependencies[i] == pst)
2908 {
2909 cashier_psymtab (ps);
2910 goto again; /* Must restart, chain has been munged. */
2911 }
2912 }
2913 }
2914 }
2915 }
2916
2917 /* If a symtab or psymtab for filename NAME is found, free it along
2918 with any dependent breakpoints, displays, etc.
2919 Used when loading new versions of object modules with the "add-file"
2920 command. This is only called on the top-level symtab or psymtab's name;
2921 it is not called for subsidiary files such as .h files.
2922
2923 Return value is 1 if we blew away the environment, 0 if not.
2924 FIXME. The return value appears to never be used.
2925
2926 FIXME. I think this is not the best way to do this. We should
2927 work on being gentler to the environment while still cleaning up
2928 all stray pointers into the freed symtab. */
2929
2930 int
2931 free_named_symtabs (char *name)
2932 {
2933 #if 0
2934 /* FIXME: With the new method of each objfile having it's own
2935 psymtab list, this function needs serious rethinking. In particular,
2936 why was it ever necessary to toss psymtabs with specific compilation
2937 unit filenames, as opposed to all psymtabs from a particular symbol
2938 file? -- fnf
2939 Well, the answer is that some systems permit reloading of particular
2940 compilation units. We want to blow away any old info about these
2941 compilation units, regardless of which objfiles they arrived in. --gnu. */
2942
2943 struct symtab *s;
2944 struct symtab *prev;
2945 struct partial_symtab *ps;
2946 struct blockvector *bv;
2947 int blewit = 0;
2948
2949 /* We only wack things if the symbol-reload switch is set. */
2950 if (!symbol_reloading)
2951 return 0;
2952
2953 /* Some symbol formats have trouble providing file names... */
2954 if (name == 0 || *name == '\0')
2955 return 0;
2956
2957 /* Look for a psymtab with the specified name. */
2958
2959 again2:
2960 for (ps = partial_symtab_list; ps; ps = ps->next)
2961 {
2962 if (strcmp (name, ps->filename) == 0)
2963 {
2964 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2965 goto again2; /* Must restart, chain has been munged */
2966 }
2967 }
2968
2969 /* Look for a symtab with the specified name. */
2970
2971 for (s = symtab_list; s; s = s->next)
2972 {
2973 if (strcmp (name, s->filename) == 0)
2974 break;
2975 prev = s;
2976 }
2977
2978 if (s)
2979 {
2980 if (s == symtab_list)
2981 symtab_list = s->next;
2982 else
2983 prev->next = s->next;
2984
2985 /* For now, queue a delete for all breakpoints, displays, etc., whether
2986 or not they depend on the symtab being freed. This should be
2987 changed so that only those data structures affected are deleted. */
2988
2989 /* But don't delete anything if the symtab is empty.
2990 This test is necessary due to a bug in "dbxread.c" that
2991 causes empty symtabs to be created for N_SO symbols that
2992 contain the pathname of the object file. (This problem
2993 has been fixed in GDB 3.9x). */
2994
2995 bv = BLOCKVECTOR (s);
2996 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2997 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2998 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2999 {
3000 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3001 name);
3002 clear_symtab_users_queued++;
3003 make_cleanup (clear_symtab_users_once, 0);
3004 blewit = 1;
3005 }
3006 else
3007 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3008 name);
3009
3010 free_symtab (s);
3011 }
3012 else
3013 {
3014 /* It is still possible that some breakpoints will be affected
3015 even though no symtab was found, since the file might have
3016 been compiled without debugging, and hence not be associated
3017 with a symtab. In order to handle this correctly, we would need
3018 to keep a list of text address ranges for undebuggable files.
3019 For now, we do nothing, since this is a fairly obscure case. */
3020 ;
3021 }
3022
3023 /* FIXME, what about the minimal symbol table? */
3024 return blewit;
3025 #else
3026 return (0);
3027 #endif
3028 }
3029 \f
3030 /* Allocate and partially fill a partial symtab. It will be
3031 completely filled at the end of the symbol list.
3032
3033 FILENAME is the name of the symbol-file we are reading from. */
3034
3035 struct partial_symtab *
3036 start_psymtab_common (struct objfile *objfile,
3037 struct section_offsets *section_offsets, char *filename,
3038 CORE_ADDR textlow, struct partial_symbol **global_syms,
3039 struct partial_symbol **static_syms)
3040 {
3041 struct partial_symtab *psymtab;
3042
3043 psymtab = allocate_psymtab (filename, objfile);
3044 psymtab->section_offsets = section_offsets;
3045 psymtab->textlow = textlow;
3046 psymtab->texthigh = psymtab->textlow; /* default */
3047 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3048 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3049 return (psymtab);
3050 }
3051 \f
3052 /* Helper function, initialises partial symbol structure and stashes
3053 it into objfile's bcache. Note that our caching mechanism will
3054 use all fields of struct partial_symbol to determine hash value of the
3055 structure. In other words, having two symbols with the same name but
3056 different domain (or address) is possible and correct. */
3057
3058 static const struct partial_symbol *
3059 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3060 enum address_class class,
3061 long val, /* Value as a long */
3062 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3063 enum language language, struct objfile *objfile,
3064 int *added)
3065 {
3066 char *buf = name;
3067 /* psymbol is static so that there will be no uninitialized gaps in the
3068 structure which might contain random data, causing cache misses in
3069 bcache. */
3070 static struct partial_symbol psymbol;
3071
3072 if (name[namelength] != '\0')
3073 {
3074 buf = alloca (namelength + 1);
3075 /* Create local copy of the partial symbol */
3076 memcpy (buf, name, namelength);
3077 buf[namelength] = '\0';
3078 }
3079 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3080 if (val != 0)
3081 {
3082 SYMBOL_VALUE (&psymbol) = val;
3083 }
3084 else
3085 {
3086 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3087 }
3088 SYMBOL_SECTION (&psymbol) = 0;
3089 SYMBOL_LANGUAGE (&psymbol) = language;
3090 PSYMBOL_DOMAIN (&psymbol) = domain;
3091 PSYMBOL_CLASS (&psymbol) = class;
3092
3093 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3094
3095 /* Stash the partial symbol away in the cache */
3096 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3097 objfile->psymbol_cache, added);
3098 }
3099
3100 /* Helper function, adds partial symbol to the given partial symbol
3101 list. */
3102
3103 static void
3104 append_psymbol_to_list (struct psymbol_allocation_list *list,
3105 const struct partial_symbol *psym,
3106 struct objfile *objfile)
3107 {
3108 if (list->next >= list->list + list->size)
3109 extend_psymbol_list (list, objfile);
3110 *list->next++ = (struct partial_symbol *) psym;
3111 OBJSTAT (objfile, n_psyms++);
3112 }
3113
3114 /* Add a symbol with a long value to a psymtab.
3115 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3116 Return the partial symbol that has been added. */
3117
3118 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3119 symbol is so that callers can get access to the symbol's demangled
3120 name, which they don't have any cheap way to determine otherwise.
3121 (Currenly, dwarf2read.c is the only file who uses that information,
3122 though it's possible that other readers might in the future.)
3123 Elena wasn't thrilled about that, and I don't blame her, but we
3124 couldn't come up with a better way to get that information. If
3125 it's needed in other situations, we could consider breaking up
3126 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3127 cache. */
3128
3129 const struct partial_symbol *
3130 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3131 enum address_class class,
3132 struct psymbol_allocation_list *list,
3133 long val, /* Value as a long */
3134 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3135 enum language language, struct objfile *objfile)
3136 {
3137 const struct partial_symbol *psym;
3138
3139 int added;
3140
3141 /* Stash the partial symbol away in the cache */
3142 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3143 val, coreaddr, language, objfile, &added);
3144
3145 /* Do not duplicate global partial symbols. */
3146 if (list == &objfile->global_psymbols
3147 && !added)
3148 return psym;
3149
3150 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3151 append_psymbol_to_list (list, psym, objfile);
3152 return psym;
3153 }
3154
3155 /* Initialize storage for partial symbols. */
3156
3157 void
3158 init_psymbol_list (struct objfile *objfile, int total_symbols)
3159 {
3160 /* Free any previously allocated psymbol lists. */
3161
3162 if (objfile->global_psymbols.list)
3163 {
3164 xfree (objfile->global_psymbols.list);
3165 }
3166 if (objfile->static_psymbols.list)
3167 {
3168 xfree (objfile->static_psymbols.list);
3169 }
3170
3171 /* Current best guess is that approximately a twentieth
3172 of the total symbols (in a debugging file) are global or static
3173 oriented symbols */
3174
3175 objfile->global_psymbols.size = total_symbols / 10;
3176 objfile->static_psymbols.size = total_symbols / 10;
3177
3178 if (objfile->global_psymbols.size > 0)
3179 {
3180 objfile->global_psymbols.next =
3181 objfile->global_psymbols.list = (struct partial_symbol **)
3182 xmalloc ((objfile->global_psymbols.size
3183 * sizeof (struct partial_symbol *)));
3184 }
3185 if (objfile->static_psymbols.size > 0)
3186 {
3187 objfile->static_psymbols.next =
3188 objfile->static_psymbols.list = (struct partial_symbol **)
3189 xmalloc ((objfile->static_psymbols.size
3190 * sizeof (struct partial_symbol *)));
3191 }
3192 }
3193
3194 /* OVERLAYS:
3195 The following code implements an abstraction for debugging overlay sections.
3196
3197 The target model is as follows:
3198 1) The gnu linker will permit multiple sections to be mapped into the
3199 same VMA, each with its own unique LMA (or load address).
3200 2) It is assumed that some runtime mechanism exists for mapping the
3201 sections, one by one, from the load address into the VMA address.
3202 3) This code provides a mechanism for gdb to keep track of which
3203 sections should be considered to be mapped from the VMA to the LMA.
3204 This information is used for symbol lookup, and memory read/write.
3205 For instance, if a section has been mapped then its contents
3206 should be read from the VMA, otherwise from the LMA.
3207
3208 Two levels of debugger support for overlays are available. One is
3209 "manual", in which the debugger relies on the user to tell it which
3210 overlays are currently mapped. This level of support is
3211 implemented entirely in the core debugger, and the information about
3212 whether a section is mapped is kept in the objfile->obj_section table.
3213
3214 The second level of support is "automatic", and is only available if
3215 the target-specific code provides functionality to read the target's
3216 overlay mapping table, and translate its contents for the debugger
3217 (by updating the mapped state information in the obj_section tables).
3218
3219 The interface is as follows:
3220 User commands:
3221 overlay map <name> -- tell gdb to consider this section mapped
3222 overlay unmap <name> -- tell gdb to consider this section unmapped
3223 overlay list -- list the sections that GDB thinks are mapped
3224 overlay read-target -- get the target's state of what's mapped
3225 overlay off/manual/auto -- set overlay debugging state
3226 Functional interface:
3227 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3228 section, return that section.
3229 find_pc_overlay(pc): find any overlay section that contains
3230 the pc, either in its VMA or its LMA
3231 section_is_mapped(sect): true if overlay is marked as mapped
3232 section_is_overlay(sect): true if section's VMA != LMA
3233 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3234 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3235 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3236 overlay_mapped_address(...): map an address from section's LMA to VMA
3237 overlay_unmapped_address(...): map an address from section's VMA to LMA
3238 symbol_overlayed_address(...): Return a "current" address for symbol:
3239 either in VMA or LMA depending on whether
3240 the symbol's section is currently mapped
3241 */
3242
3243 /* Overlay debugging state: */
3244
3245 enum overlay_debugging_state overlay_debugging = ovly_off;
3246 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3247
3248 /* Function: section_is_overlay (SECTION)
3249 Returns true if SECTION has VMA not equal to LMA, ie.
3250 SECTION is loaded at an address different from where it will "run". */
3251
3252 int
3253 section_is_overlay (struct obj_section *section)
3254 {
3255 if (overlay_debugging && section)
3256 {
3257 bfd *abfd = section->objfile->obfd;
3258 asection *bfd_section = section->the_bfd_section;
3259
3260 if (bfd_section_lma (abfd, bfd_section) != 0
3261 && bfd_section_lma (abfd, bfd_section)
3262 != bfd_section_vma (abfd, bfd_section))
3263 return 1;
3264 }
3265
3266 return 0;
3267 }
3268
3269 /* Function: overlay_invalidate_all (void)
3270 Invalidate the mapped state of all overlay sections (mark it as stale). */
3271
3272 static void
3273 overlay_invalidate_all (void)
3274 {
3275 struct objfile *objfile;
3276 struct obj_section *sect;
3277
3278 ALL_OBJSECTIONS (objfile, sect)
3279 if (section_is_overlay (sect))
3280 sect->ovly_mapped = -1;
3281 }
3282
3283 /* Function: section_is_mapped (SECTION)
3284 Returns true if section is an overlay, and is currently mapped.
3285
3286 Access to the ovly_mapped flag is restricted to this function, so
3287 that we can do automatic update. If the global flag
3288 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3289 overlay_invalidate_all. If the mapped state of the particular
3290 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3291
3292 int
3293 section_is_mapped (struct obj_section *osect)
3294 {
3295 struct gdbarch *gdbarch;
3296
3297 if (osect == 0 || !section_is_overlay (osect))
3298 return 0;
3299
3300 switch (overlay_debugging)
3301 {
3302 default:
3303 case ovly_off:
3304 return 0; /* overlay debugging off */
3305 case ovly_auto: /* overlay debugging automatic */
3306 /* Unles there is a gdbarch_overlay_update function,
3307 there's really nothing useful to do here (can't really go auto) */
3308 gdbarch = get_objfile_arch (osect->objfile);
3309 if (gdbarch_overlay_update_p (gdbarch))
3310 {
3311 if (overlay_cache_invalid)
3312 {
3313 overlay_invalidate_all ();
3314 overlay_cache_invalid = 0;
3315 }
3316 if (osect->ovly_mapped == -1)
3317 gdbarch_overlay_update (gdbarch, osect);
3318 }
3319 /* fall thru to manual case */
3320 case ovly_on: /* overlay debugging manual */
3321 return osect->ovly_mapped == 1;
3322 }
3323 }
3324
3325 /* Function: pc_in_unmapped_range
3326 If PC falls into the lma range of SECTION, return true, else false. */
3327
3328 CORE_ADDR
3329 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3330 {
3331 if (section_is_overlay (section))
3332 {
3333 bfd *abfd = section->objfile->obfd;
3334 asection *bfd_section = section->the_bfd_section;
3335
3336 /* We assume the LMA is relocated by the same offset as the VMA. */
3337 bfd_vma size = bfd_get_section_size (bfd_section);
3338 CORE_ADDR offset = obj_section_offset (section);
3339
3340 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3341 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3342 return 1;
3343 }
3344
3345 return 0;
3346 }
3347
3348 /* Function: pc_in_mapped_range
3349 If PC falls into the vma range of SECTION, return true, else false. */
3350
3351 CORE_ADDR
3352 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3353 {
3354 if (section_is_overlay (section))
3355 {
3356 if (obj_section_addr (section) <= pc
3357 && pc < obj_section_endaddr (section))
3358 return 1;
3359 }
3360
3361 return 0;
3362 }
3363
3364
3365 /* Return true if the mapped ranges of sections A and B overlap, false
3366 otherwise. */
3367 static int
3368 sections_overlap (struct obj_section *a, struct obj_section *b)
3369 {
3370 CORE_ADDR a_start = obj_section_addr (a);
3371 CORE_ADDR a_end = obj_section_endaddr (a);
3372 CORE_ADDR b_start = obj_section_addr (b);
3373 CORE_ADDR b_end = obj_section_endaddr (b);
3374
3375 return (a_start < b_end && b_start < a_end);
3376 }
3377
3378 /* Function: overlay_unmapped_address (PC, SECTION)
3379 Returns the address corresponding to PC in the unmapped (load) range.
3380 May be the same as PC. */
3381
3382 CORE_ADDR
3383 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3384 {
3385 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3386 {
3387 bfd *abfd = section->objfile->obfd;
3388 asection *bfd_section = section->the_bfd_section;
3389
3390 return pc + bfd_section_lma (abfd, bfd_section)
3391 - bfd_section_vma (abfd, bfd_section);
3392 }
3393
3394 return pc;
3395 }
3396
3397 /* Function: overlay_mapped_address (PC, SECTION)
3398 Returns the address corresponding to PC in the mapped (runtime) range.
3399 May be the same as PC. */
3400
3401 CORE_ADDR
3402 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3403 {
3404 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3405 {
3406 bfd *abfd = section->objfile->obfd;
3407 asection *bfd_section = section->the_bfd_section;
3408
3409 return pc + bfd_section_vma (abfd, bfd_section)
3410 - bfd_section_lma (abfd, bfd_section);
3411 }
3412
3413 return pc;
3414 }
3415
3416
3417 /* Function: symbol_overlayed_address
3418 Return one of two addresses (relative to the VMA or to the LMA),
3419 depending on whether the section is mapped or not. */
3420
3421 CORE_ADDR
3422 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3423 {
3424 if (overlay_debugging)
3425 {
3426 /* If the symbol has no section, just return its regular address. */
3427 if (section == 0)
3428 return address;
3429 /* If the symbol's section is not an overlay, just return its address */
3430 if (!section_is_overlay (section))
3431 return address;
3432 /* If the symbol's section is mapped, just return its address */
3433 if (section_is_mapped (section))
3434 return address;
3435 /*
3436 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3437 * then return its LOADED address rather than its vma address!!
3438 */
3439 return overlay_unmapped_address (address, section);
3440 }
3441 return address;
3442 }
3443
3444 /* Function: find_pc_overlay (PC)
3445 Return the best-match overlay section for PC:
3446 If PC matches a mapped overlay section's VMA, return that section.
3447 Else if PC matches an unmapped section's VMA, return that section.
3448 Else if PC matches an unmapped section's LMA, return that section. */
3449
3450 struct obj_section *
3451 find_pc_overlay (CORE_ADDR pc)
3452 {
3453 struct objfile *objfile;
3454 struct obj_section *osect, *best_match = NULL;
3455
3456 if (overlay_debugging)
3457 ALL_OBJSECTIONS (objfile, osect)
3458 if (section_is_overlay (osect))
3459 {
3460 if (pc_in_mapped_range (pc, osect))
3461 {
3462 if (section_is_mapped (osect))
3463 return osect;
3464 else
3465 best_match = osect;
3466 }
3467 else if (pc_in_unmapped_range (pc, osect))
3468 best_match = osect;
3469 }
3470 return best_match;
3471 }
3472
3473 /* Function: find_pc_mapped_section (PC)
3474 If PC falls into the VMA address range of an overlay section that is
3475 currently marked as MAPPED, return that section. Else return NULL. */
3476
3477 struct obj_section *
3478 find_pc_mapped_section (CORE_ADDR pc)
3479 {
3480 struct objfile *objfile;
3481 struct obj_section *osect;
3482
3483 if (overlay_debugging)
3484 ALL_OBJSECTIONS (objfile, osect)
3485 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3486 return osect;
3487
3488 return NULL;
3489 }
3490
3491 /* Function: list_overlays_command
3492 Print a list of mapped sections and their PC ranges */
3493
3494 void
3495 list_overlays_command (char *args, int from_tty)
3496 {
3497 int nmapped = 0;
3498 struct objfile *objfile;
3499 struct obj_section *osect;
3500
3501 if (overlay_debugging)
3502 ALL_OBJSECTIONS (objfile, osect)
3503 if (section_is_mapped (osect))
3504 {
3505 const char *name;
3506 bfd_vma lma, vma;
3507 int size;
3508
3509 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3510 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3511 size = bfd_get_section_size (osect->the_bfd_section);
3512 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3513
3514 printf_filtered ("Section %s, loaded at ", name);
3515 fputs_filtered (paddress (lma), gdb_stdout);
3516 puts_filtered (" - ");
3517 fputs_filtered (paddress (lma + size), gdb_stdout);
3518 printf_filtered (", mapped at ");
3519 fputs_filtered (paddress (vma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (vma + size), gdb_stdout);
3522 puts_filtered ("\n");
3523
3524 nmapped++;
3525 }
3526 if (nmapped == 0)
3527 printf_filtered (_("No sections are mapped.\n"));
3528 }
3529
3530 /* Function: map_overlay_command
3531 Mark the named section as mapped (ie. residing at its VMA address). */
3532
3533 void
3534 map_overlay_command (char *args, int from_tty)
3535 {
3536 struct objfile *objfile, *objfile2;
3537 struct obj_section *sec, *sec2;
3538
3539 if (!overlay_debugging)
3540 error (_("\
3541 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3542 the 'overlay manual' command."));
3543
3544 if (args == 0 || *args == 0)
3545 error (_("Argument required: name of an overlay section"));
3546
3547 /* First, find a section matching the user supplied argument */
3548 ALL_OBJSECTIONS (objfile, sec)
3549 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3550 {
3551 /* Now, check to see if the section is an overlay. */
3552 if (!section_is_overlay (sec))
3553 continue; /* not an overlay section */
3554
3555 /* Mark the overlay as "mapped" */
3556 sec->ovly_mapped = 1;
3557
3558 /* Next, make a pass and unmap any sections that are
3559 overlapped by this new section: */
3560 ALL_OBJSECTIONS (objfile2, sec2)
3561 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3562 {
3563 if (info_verbose)
3564 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3565 bfd_section_name (objfile->obfd,
3566 sec2->the_bfd_section));
3567 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3568 }
3569 return;
3570 }
3571 error (_("No overlay section called %s"), args);
3572 }
3573
3574 /* Function: unmap_overlay_command
3575 Mark the overlay section as unmapped
3576 (ie. resident in its LMA address range, rather than the VMA range). */
3577
3578 void
3579 unmap_overlay_command (char *args, int from_tty)
3580 {
3581 struct objfile *objfile;
3582 struct obj_section *sec;
3583
3584 if (!overlay_debugging)
3585 error (_("\
3586 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3587 the 'overlay manual' command."));
3588
3589 if (args == 0 || *args == 0)
3590 error (_("Argument required: name of an overlay section"));
3591
3592 /* First, find a section matching the user supplied argument */
3593 ALL_OBJSECTIONS (objfile, sec)
3594 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3595 {
3596 if (!sec->ovly_mapped)
3597 error (_("Section %s is not mapped"), args);
3598 sec->ovly_mapped = 0;
3599 return;
3600 }
3601 error (_("No overlay section called %s"), args);
3602 }
3603
3604 /* Function: overlay_auto_command
3605 A utility command to turn on overlay debugging.
3606 Possibly this should be done via a set/show command. */
3607
3608 static void
3609 overlay_auto_command (char *args, int from_tty)
3610 {
3611 overlay_debugging = ovly_auto;
3612 enable_overlay_breakpoints ();
3613 if (info_verbose)
3614 printf_unfiltered (_("Automatic overlay debugging enabled."));
3615 }
3616
3617 /* Function: overlay_manual_command
3618 A utility command to turn on overlay debugging.
3619 Possibly this should be done via a set/show command. */
3620
3621 static void
3622 overlay_manual_command (char *args, int from_tty)
3623 {
3624 overlay_debugging = ovly_on;
3625 disable_overlay_breakpoints ();
3626 if (info_verbose)
3627 printf_unfiltered (_("Overlay debugging enabled."));
3628 }
3629
3630 /* Function: overlay_off_command
3631 A utility command to turn on overlay debugging.
3632 Possibly this should be done via a set/show command. */
3633
3634 static void
3635 overlay_off_command (char *args, int from_tty)
3636 {
3637 overlay_debugging = ovly_off;
3638 disable_overlay_breakpoints ();
3639 if (info_verbose)
3640 printf_unfiltered (_("Overlay debugging disabled."));
3641 }
3642
3643 static void
3644 overlay_load_command (char *args, int from_tty)
3645 {
3646 if (gdbarch_overlay_update_p (current_gdbarch))
3647 gdbarch_overlay_update (current_gdbarch, NULL);
3648 else
3649 error (_("This target does not know how to read its overlay state."));
3650 }
3651
3652 /* Function: overlay_command
3653 A place-holder for a mis-typed command */
3654
3655 /* Command list chain containing all defined "overlay" subcommands. */
3656 struct cmd_list_element *overlaylist;
3657
3658 static void
3659 overlay_command (char *args, int from_tty)
3660 {
3661 printf_unfiltered
3662 ("\"overlay\" must be followed by the name of an overlay command.\n");
3663 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3664 }
3665
3666
3667 /* Target Overlays for the "Simplest" overlay manager:
3668
3669 This is GDB's default target overlay layer. It works with the
3670 minimal overlay manager supplied as an example by Cygnus. The
3671 entry point is via a function pointer "gdbarch_overlay_update",
3672 so targets that use a different runtime overlay manager can
3673 substitute their own overlay_update function and take over the
3674 function pointer.
3675
3676 The overlay_update function pokes around in the target's data structures
3677 to see what overlays are mapped, and updates GDB's overlay mapping with
3678 this information.
3679
3680 In this simple implementation, the target data structures are as follows:
3681 unsigned _novlys; /# number of overlay sections #/
3682 unsigned _ovly_table[_novlys][4] = {
3683 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3684 {..., ..., ..., ...},
3685 }
3686 unsigned _novly_regions; /# number of overlay regions #/
3687 unsigned _ovly_region_table[_novly_regions][3] = {
3688 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3689 {..., ..., ...},
3690 }
3691 These functions will attempt to update GDB's mappedness state in the
3692 symbol section table, based on the target's mappedness state.
3693
3694 To do this, we keep a cached copy of the target's _ovly_table, and
3695 attempt to detect when the cached copy is invalidated. The main
3696 entry point is "simple_overlay_update(SECT), which looks up SECT in
3697 the cached table and re-reads only the entry for that section from
3698 the target (whenever possible).
3699 */
3700
3701 /* Cached, dynamically allocated copies of the target data structures: */
3702 static unsigned (*cache_ovly_table)[4] = 0;
3703 #if 0
3704 static unsigned (*cache_ovly_region_table)[3] = 0;
3705 #endif
3706 static unsigned cache_novlys = 0;
3707 #if 0
3708 static unsigned cache_novly_regions = 0;
3709 #endif
3710 static CORE_ADDR cache_ovly_table_base = 0;
3711 #if 0
3712 static CORE_ADDR cache_ovly_region_table_base = 0;
3713 #endif
3714 enum ovly_index
3715 {
3716 VMA, SIZE, LMA, MAPPED
3717 };
3718
3719 /* Throw away the cached copy of _ovly_table */
3720 static void
3721 simple_free_overlay_table (void)
3722 {
3723 if (cache_ovly_table)
3724 xfree (cache_ovly_table);
3725 cache_novlys = 0;
3726 cache_ovly_table = NULL;
3727 cache_ovly_table_base = 0;
3728 }
3729
3730 #if 0
3731 /* Throw away the cached copy of _ovly_region_table */
3732 static void
3733 simple_free_overlay_region_table (void)
3734 {
3735 if (cache_ovly_region_table)
3736 xfree (cache_ovly_region_table);
3737 cache_novly_regions = 0;
3738 cache_ovly_region_table = NULL;
3739 cache_ovly_region_table_base = 0;
3740 }
3741 #endif
3742
3743 /* Read an array of ints of size SIZE from the target into a local buffer.
3744 Convert to host order. int LEN is number of ints */
3745 static void
3746 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3747 int len, int size)
3748 {
3749 /* FIXME (alloca): Not safe if array is very large. */
3750 gdb_byte *buf = alloca (len * size);
3751 int i;
3752
3753 read_memory (memaddr, buf, len * size);
3754 for (i = 0; i < len; i++)
3755 myaddr[i] = extract_unsigned_integer (size * i + buf, size);
3756 }
3757
3758 /* Find and grab a copy of the target _ovly_table
3759 (and _novlys, which is needed for the table's size) */
3760 static int
3761 simple_read_overlay_table (void)
3762 {
3763 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3764 struct gdbarch *gdbarch;
3765 int word_size;
3766
3767 simple_free_overlay_table ();
3768 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3769 if (! novlys_msym)
3770 {
3771 error (_("Error reading inferior's overlay table: "
3772 "couldn't find `_novlys' variable\n"
3773 "in inferior. Use `overlay manual' mode."));
3774 return 0;
3775 }
3776
3777 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3778 if (! ovly_table_msym)
3779 {
3780 error (_("Error reading inferior's overlay table: couldn't find "
3781 "`_ovly_table' array\n"
3782 "in inferior. Use `overlay manual' mode."));
3783 return 0;
3784 }
3785
3786 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3787 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3788
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3790 cache_ovly_table
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
3794 (unsigned int *) cache_ovly_table,
3795 cache_novlys * 4, word_size);
3796
3797 return 1; /* SUCCESS */
3798 }
3799
3800 #if 0
3801 /* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
3803 static int
3804 simple_read_overlay_region_table (void)
3805 {
3806 struct minimal_symbol *msym;
3807
3808 simple_free_overlay_region_table ();
3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3810 if (msym != NULL)
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3812 else
3813 return 0; /* failure */
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3816 {
3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3818 if (msym != NULL)
3819 {
3820 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msym));
3821 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3822 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3823 read_target_long_array (cache_ovly_region_table_base,
3824 (unsigned int *) cache_ovly_region_table,
3825 cache_novly_regions * 3, word_size);
3826 }
3827 else
3828 return 0; /* failure */
3829 }
3830 else
3831 return 0; /* failure */
3832 return 1; /* SUCCESS */
3833 }
3834 #endif
3835
3836 /* Function: simple_overlay_update_1
3837 A helper function for simple_overlay_update. Assuming a cached copy
3838 of _ovly_table exists, look through it to find an entry whose vma,
3839 lma and size match those of OSECT. Re-read the entry and make sure
3840 it still matches OSECT (else the table may no longer be valid).
3841 Set OSECT's mapped state to match the entry. Return: 1 for
3842 success, 0 for failure. */
3843
3844 static int
3845 simple_overlay_update_1 (struct obj_section *osect)
3846 {
3847 int i, size;
3848 bfd *obfd = osect->objfile->obfd;
3849 asection *bsect = osect->the_bfd_section;
3850 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3851 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3852
3853 size = bfd_get_section_size (osect->the_bfd_section);
3854 for (i = 0; i < cache_novlys; i++)
3855 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3856 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3857 /* && cache_ovly_table[i][SIZE] == size */ )
3858 {
3859 read_target_long_array (cache_ovly_table_base + i * word_size,
3860 (unsigned int *) cache_ovly_table[i],
3861 4, word_size);
3862 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3863 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3864 /* && cache_ovly_table[i][SIZE] == size */ )
3865 {
3866 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3867 return 1;
3868 }
3869 else /* Warning! Warning! Target's ovly table has changed! */
3870 return 0;
3871 }
3872 return 0;
3873 }
3874
3875 /* Function: simple_overlay_update
3876 If OSECT is NULL, then update all sections' mapped state
3877 (after re-reading the entire target _ovly_table).
3878 If OSECT is non-NULL, then try to find a matching entry in the
3879 cached ovly_table and update only OSECT's mapped state.
3880 If a cached entry can't be found or the cache isn't valid, then
3881 re-read the entire cache, and go ahead and update all sections. */
3882
3883 void
3884 simple_overlay_update (struct obj_section *osect)
3885 {
3886 struct objfile *objfile;
3887
3888 /* Were we given an osect to look up? NULL means do all of them. */
3889 if (osect)
3890 /* Have we got a cached copy of the target's overlay table? */
3891 if (cache_ovly_table != NULL)
3892 /* Does its cached location match what's currently in the symtab? */
3893 if (cache_ovly_table_base ==
3894 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3895 /* Then go ahead and try to look up this single section in the cache */
3896 if (simple_overlay_update_1 (osect))
3897 /* Found it! We're done. */
3898 return;
3899
3900 /* Cached table no good: need to read the entire table anew.
3901 Or else we want all the sections, in which case it's actually
3902 more efficient to read the whole table in one block anyway. */
3903
3904 if (! simple_read_overlay_table ())
3905 return;
3906
3907 /* Now may as well update all sections, even if only one was requested. */
3908 ALL_OBJSECTIONS (objfile, osect)
3909 if (section_is_overlay (osect))
3910 {
3911 int i, size;
3912 bfd *obfd = osect->objfile->obfd;
3913 asection *bsect = osect->the_bfd_section;
3914
3915 size = bfd_get_section_size (bsect);
3916 for (i = 0; i < cache_novlys; i++)
3917 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3918 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3919 /* && cache_ovly_table[i][SIZE] == size */ )
3920 { /* obj_section matches i'th entry in ovly_table */
3921 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3922 break; /* finished with inner for loop: break out */
3923 }
3924 }
3925 }
3926
3927 /* Set the output sections and output offsets for section SECTP in
3928 ABFD. The relocation code in BFD will read these offsets, so we
3929 need to be sure they're initialized. We map each section to itself,
3930 with no offset; this means that SECTP->vma will be honored. */
3931
3932 static void
3933 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3934 {
3935 sectp->output_section = sectp;
3936 sectp->output_offset = 0;
3937 }
3938
3939 /* Relocate the contents of a debug section SECTP in ABFD. The
3940 contents are stored in BUF if it is non-NULL, or returned in a
3941 malloc'd buffer otherwise.
3942
3943 For some platforms and debug info formats, shared libraries contain
3944 relocations against the debug sections (particularly for DWARF-2;
3945 one affected platform is PowerPC GNU/Linux, although it depends on
3946 the version of the linker in use). Also, ELF object files naturally
3947 have unresolved relocations for their debug sections. We need to apply
3948 the relocations in order to get the locations of symbols correct.
3949 Another example that may require relocation processing, is the
3950 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3951 debug section. */
3952
3953 bfd_byte *
3954 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3955 {
3956 /* We're only interested in sections with relocation
3957 information. */
3958 if ((sectp->flags & SEC_RELOC) == 0)
3959 return NULL;
3960
3961 /* We will handle section offsets properly elsewhere, so relocate as if
3962 all sections begin at 0. */
3963 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3964
3965 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3966 }
3967
3968 struct symfile_segment_data *
3969 get_symfile_segment_data (bfd *abfd)
3970 {
3971 struct sym_fns *sf = find_sym_fns (abfd);
3972
3973 if (sf == NULL)
3974 return NULL;
3975
3976 return sf->sym_segments (abfd);
3977 }
3978
3979 void
3980 free_symfile_segment_data (struct symfile_segment_data *data)
3981 {
3982 xfree (data->segment_bases);
3983 xfree (data->segment_sizes);
3984 xfree (data->segment_info);
3985 xfree (data);
3986 }
3987
3988
3989 /* Given:
3990 - DATA, containing segment addresses from the object file ABFD, and
3991 the mapping from ABFD's sections onto the segments that own them,
3992 and
3993 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3994 segment addresses reported by the target,
3995 store the appropriate offsets for each section in OFFSETS.
3996
3997 If there are fewer entries in SEGMENT_BASES than there are segments
3998 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3999
4000 If there are more entries, then ignore the extra. The target may
4001 not be able to distinguish between an empty data segment and a
4002 missing data segment; a missing text segment is less plausible. */
4003 int
4004 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4005 struct section_offsets *offsets,
4006 int num_segment_bases,
4007 const CORE_ADDR *segment_bases)
4008 {
4009 int i;
4010 asection *sect;
4011
4012 /* It doesn't make sense to call this function unless you have some
4013 segment base addresses. */
4014 gdb_assert (segment_bases > 0);
4015
4016 /* If we do not have segment mappings for the object file, we
4017 can not relocate it by segments. */
4018 gdb_assert (data != NULL);
4019 gdb_assert (data->num_segments > 0);
4020
4021 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4022 {
4023 int which = data->segment_info[i];
4024
4025 gdb_assert (0 <= which && which <= data->num_segments);
4026
4027 /* Don't bother computing offsets for sections that aren't
4028 loaded as part of any segment. */
4029 if (! which)
4030 continue;
4031
4032 /* Use the last SEGMENT_BASES entry as the address of any extra
4033 segments mentioned in DATA->segment_info. */
4034 if (which > num_segment_bases)
4035 which = num_segment_bases;
4036
4037 offsets->offsets[i] = (segment_bases[which - 1]
4038 - data->segment_bases[which - 1]);
4039 }
4040
4041 return 1;
4042 }
4043
4044 static void
4045 symfile_find_segment_sections (struct objfile *objfile)
4046 {
4047 bfd *abfd = objfile->obfd;
4048 int i;
4049 asection *sect;
4050 struct symfile_segment_data *data;
4051
4052 data = get_symfile_segment_data (objfile->obfd);
4053 if (data == NULL)
4054 return;
4055
4056 if (data->num_segments != 1 && data->num_segments != 2)
4057 {
4058 free_symfile_segment_data (data);
4059 return;
4060 }
4061
4062 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4063 {
4064 CORE_ADDR vma;
4065 int which = data->segment_info[i];
4066
4067 if (which == 1)
4068 {
4069 if (objfile->sect_index_text == -1)
4070 objfile->sect_index_text = sect->index;
4071
4072 if (objfile->sect_index_rodata == -1)
4073 objfile->sect_index_rodata = sect->index;
4074 }
4075 else if (which == 2)
4076 {
4077 if (objfile->sect_index_data == -1)
4078 objfile->sect_index_data = sect->index;
4079
4080 if (objfile->sect_index_bss == -1)
4081 objfile->sect_index_bss = sect->index;
4082 }
4083 }
4084
4085 free_symfile_segment_data (data);
4086 }
4087
4088 void
4089 _initialize_symfile (void)
4090 {
4091 struct cmd_list_element *c;
4092
4093 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4094 Load symbol table from executable file FILE.\n\
4095 The `file' command can also load symbol tables, as well as setting the file\n\
4096 to execute."), &cmdlist);
4097 set_cmd_completer (c, filename_completer);
4098
4099 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4100 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4101 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4102 ADDR is the starting address of the file's text.\n\
4103 The optional arguments are section-name section-address pairs and\n\
4104 should be specified if the data and bss segments are not contiguous\n\
4105 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4106 &cmdlist);
4107 set_cmd_completer (c, filename_completer);
4108
4109 c = add_cmd ("load", class_files, load_command, _("\
4110 Dynamically load FILE into the running program, and record its symbols\n\
4111 for access from GDB.\n\
4112 A load OFFSET may also be given."), &cmdlist);
4113 set_cmd_completer (c, filename_completer);
4114
4115 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4116 &symbol_reloading, _("\
4117 Set dynamic symbol table reloading multiple times in one run."), _("\
4118 Show dynamic symbol table reloading multiple times in one run."), NULL,
4119 NULL,
4120 show_symbol_reloading,
4121 &setlist, &showlist);
4122
4123 add_prefix_cmd ("overlay", class_support, overlay_command,
4124 _("Commands for debugging overlays."), &overlaylist,
4125 "overlay ", 0, &cmdlist);
4126
4127 add_com_alias ("ovly", "overlay", class_alias, 1);
4128 add_com_alias ("ov", "overlay", class_alias, 1);
4129
4130 add_cmd ("map-overlay", class_support, map_overlay_command,
4131 _("Assert that an overlay section is mapped."), &overlaylist);
4132
4133 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4134 _("Assert that an overlay section is unmapped."), &overlaylist);
4135
4136 add_cmd ("list-overlays", class_support, list_overlays_command,
4137 _("List mappings of overlay sections."), &overlaylist);
4138
4139 add_cmd ("manual", class_support, overlay_manual_command,
4140 _("Enable overlay debugging."), &overlaylist);
4141 add_cmd ("off", class_support, overlay_off_command,
4142 _("Disable overlay debugging."), &overlaylist);
4143 add_cmd ("auto", class_support, overlay_auto_command,
4144 _("Enable automatic overlay debugging."), &overlaylist);
4145 add_cmd ("load-target", class_support, overlay_load_command,
4146 _("Read the overlay mapping state from the target."), &overlaylist);
4147
4148 /* Filename extension to source language lookup table: */
4149 init_filename_language_table ();
4150 add_setshow_string_noescape_cmd ("extension-language", class_files,
4151 &ext_args, _("\
4152 Set mapping between filename extension and source language."), _("\
4153 Show mapping between filename extension and source language."), _("\
4154 Usage: set extension-language .foo bar"),
4155 set_ext_lang_command,
4156 show_ext_args,
4157 &setlist, &showlist);
4158
4159 add_info ("extensions", info_ext_lang_command,
4160 _("All filename extensions associated with a source language."));
4161
4162 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4163 &debug_file_directory, _("\
4164 Set the directory where separate debug symbols are searched for."), _("\
4165 Show the directory where separate debug symbols are searched for."), _("\
4166 Separate debug symbols are first searched for in the same\n\
4167 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4168 and lastly at the path of the directory of the binary with\n\
4169 the global debug-file directory prepended."),
4170 NULL,
4171 show_debug_file_directory,
4172 &setlist, &showlist);
4173
4174 add_setshow_boolean_cmd ("symbol-loading", no_class,
4175 &print_symbol_loading, _("\
4176 Set printing of symbol loading messages."), _("\
4177 Show printing of symbol loading messages."), NULL,
4178 NULL,
4179 NULL,
4180 &setprintlist, &showprintlist);
4181 }
This page took 0.168201 seconds and 4 git commands to generate.