Split struct symtab into two: struct symtab and compunit_symtab.
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
658 for (i = 0; i < addrs->num_sections; i++)
659 {
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
661
662 if (sect)
663 {
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
666
667 if (addrs->other[i].addr != 0)
668 {
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
671 }
672 else
673 addrs->other[i].addr = lower_offset;
674 }
675 else
676 {
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
709 }
710 }
711
712 do_cleanups (my_cleanup);
713 }
714
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
724 {
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803 }
804
805 /* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
813 {
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
843
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867 }
868
869 /* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872 static void
873 read_symbols (struct objfile *objfile, int add_flags)
874 {
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901 }
902
903 /* Initialize entry point information for this objfile. */
904
905 static void
906 init_entry_point_info (struct objfile *objfile)
907 {
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
937 }
938
939 if (ei->entry_point_p)
940 {
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
943 int found;
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
954 ei->entry_point
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975 }
976 }
977
978 /* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
981 This function does not set the OBJFILE's entry-point info.
982
983 OBJFILE is where the symbols are to be read from.
984
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
994
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
998
999 static void
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1002 int add_flags)
1003 {
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1007
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009
1010 if (objfile->sf == NULL)
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 void
1103 new_symfile_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 new_symfile_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269 }
1270
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open_maybe_remote (name);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Do not indicate a duplicate library in that
1381 case. While there is no guarantee that a system that provides
1382 meaningful inode numbers will never set st_ino to zero, this is
1383 merely an optimization, so we do not need to worry about false
1384 negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389 {
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 gdb_bfd_unref (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
1397 }
1398 else
1399 verified_as_different = 0;
1400
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402
1403 gdb_bfd_unref (abfd);
1404
1405 if (!file_crc_p)
1406 return 0;
1407
1408 if (crc != file_crc)
1409 {
1410 unsigned long parent_crc;
1411
1412 /* If one (or both) the files are accessed for example the via "remote:"
1413 gdbserver way it does not support the bfd_stat operation. Verify
1414 whether those two files are not the same manually. */
1415
1416 if (!verified_as_different)
1417 {
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 return 0;
1420 }
1421
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1426
1427 return 0;
1428 }
1429
1430 return 1;
1431 }
1432
1433 char *debug_file_directory = NULL;
1434 static void
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437 {
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1441 value);
1442 }
1443
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1446 #endif
1447
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1454
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460 {
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1477 + strlen (debuglink)
1478 + 1);
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1482 strcat (debugfile, debuglink);
1483
1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1485 return debugfile;
1486
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* Then try in the global debugfile directories.
1497
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
1500
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1503
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
1507 strcat (debugfile, "/");
1508 strcat (debugfile, dir);
1509 strcat (debugfile, debuglink);
1510
1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
1521 strlen (gdb_sysroot)) == 0
1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1523 {
1524 strcpy (debugfile, debugdir);
1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1526 strcat (debugfile, "/");
1527 strcat (debugfile, debuglink);
1528
1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
1534 }
1535 }
1536
1537 do_cleanups (back_to);
1538 xfree (debugfile);
1539 return NULL;
1540 }
1541
1542 /* Modify PATH to contain only "[/]directory/" part of PATH.
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546 static void
1547 terminate_after_last_dir_separator (char *path)
1548 {
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559 }
1560
1561 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564 char *
1565 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566 {
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
1582 cleanups = make_cleanup (xfree, debuglink);
1583 dir = xstrdup (objfile_name (objfile));
1584 make_cleanup (xfree, dir);
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1594 #ifdef HAVE_LSTAT
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 #endif /* HAVE_LSTAT */
1622 }
1623
1624 do_cleanups (cleanups);
1625 return debugfile;
1626 }
1627
1628 /* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
1640 conventions (because it is confusing and inconvenient). */
1641
1642 void
1643 symbol_file_command (char *args, int from_tty)
1644 {
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1649 symbol_file_clear (from_tty);
1650 }
1651 else
1652 {
1653 char **argv = gdb_buildargv (args);
1654 int flags = OBJF_USERLOADED;
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
1658 cleanups = make_cleanup_freeargv (argv);
1659 while (*argv != NULL)
1660 {
1661 if (strcmp (*argv, "-readnow") == 0)
1662 flags |= OBJF_READNOW;
1663 else if (**argv == '-')
1664 error (_("unknown option `%s'"), *argv);
1665 else
1666 {
1667 symbol_file_add_main_1 (*argv, from_tty, flags);
1668 name = *argv;
1669 }
1670
1671 argv++;
1672 }
1673
1674 if (name == NULL)
1675 error (_("no symbol file name was specified"));
1676
1677 do_cleanups (cleanups);
1678 }
1679 }
1680
1681 /* Set the initial language.
1682
1683 FIXME: A better solution would be to record the language in the
1684 psymtab when reading partial symbols, and then use it (if known) to
1685 set the language. This would be a win for formats that encode the
1686 language in an easily discoverable place, such as DWARF. For
1687 stabs, we can jump through hoops looking for specially named
1688 symbols or try to intuit the language from the specific type of
1689 stabs we find, but we can't do that until later when we read in
1690 full symbols. */
1691
1692 void
1693 set_initial_language (void)
1694 {
1695 enum language lang = main_language ();
1696
1697 if (lang == language_unknown)
1698 {
1699 char *name = main_name ();
1700 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1701
1702 if (sym != NULL)
1703 lang = SYMBOL_LANGUAGE (sym);
1704 }
1705
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
1710 }
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
1714 }
1715
1716 /* If NAME is a remote name open the file using remote protocol, otherwise
1717 open it normally. Returns a new reference to the BFD. On error,
1718 returns NULL with the BFD error set. */
1719
1720 bfd *
1721 gdb_bfd_open_maybe_remote (const char *name)
1722 {
1723 bfd *result;
1724
1725 if (remote_filename_p (name))
1726 result = remote_bfd_open (name, gnutarget);
1727 else
1728 result = gdb_bfd_open (name, gnutarget, -1);
1729
1730 return result;
1731 }
1732
1733 /* Open the file specified by NAME and hand it off to BFD for
1734 preliminary analysis. Return a newly initialized bfd *, which
1735 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1736 absolute). In case of trouble, error() is called. */
1737
1738 bfd *
1739 symfile_bfd_open (const char *cname)
1740 {
1741 bfd *sym_bfd;
1742 int desc;
1743 char *name, *absolute_name;
1744 struct cleanup *back_to;
1745
1746 if (remote_filename_p (cname))
1747 {
1748 sym_bfd = remote_bfd_open (cname, gnutarget);
1749 if (!sym_bfd)
1750 error (_("`%s': can't open to read symbols: %s."), cname,
1751 bfd_errmsg (bfd_get_error ()));
1752
1753 if (!bfd_check_format (sym_bfd, bfd_object))
1754 {
1755 make_cleanup_bfd_unref (sym_bfd);
1756 error (_("`%s': can't read symbols: %s."), cname,
1757 bfd_errmsg (bfd_get_error ()));
1758 }
1759
1760 return sym_bfd;
1761 }
1762
1763 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1764
1765 /* Look down path for it, allocate 2nd new malloc'd copy. */
1766 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1767 O_RDONLY | O_BINARY, &absolute_name);
1768 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1769 if (desc < 0)
1770 {
1771 char *exename = alloca (strlen (name) + 5);
1772
1773 strcat (strcpy (exename, name), ".exe");
1774 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1775 exename, O_RDONLY | O_BINARY, &absolute_name);
1776 }
1777 #endif
1778 if (desc < 0)
1779 {
1780 make_cleanup (xfree, name);
1781 perror_with_name (name);
1782 }
1783
1784 xfree (name);
1785 name = absolute_name;
1786 back_to = make_cleanup (xfree, name);
1787
1788 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1789 if (!sym_bfd)
1790 error (_("`%s': can't open to read symbols: %s."), name,
1791 bfd_errmsg (bfd_get_error ()));
1792 bfd_set_cacheable (sym_bfd, 1);
1793
1794 if (!bfd_check_format (sym_bfd, bfd_object))
1795 {
1796 make_cleanup_bfd_unref (sym_bfd);
1797 error (_("`%s': can't read symbols: %s."), name,
1798 bfd_errmsg (bfd_get_error ()));
1799 }
1800
1801 do_cleanups (back_to);
1802
1803 return sym_bfd;
1804 }
1805
1806 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1807 the section was not found. */
1808
1809 int
1810 get_section_index (struct objfile *objfile, char *section_name)
1811 {
1812 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1813
1814 if (sect)
1815 return sect->index;
1816 else
1817 return -1;
1818 }
1819
1820 /* Link SF into the global symtab_fns list.
1821 FLAVOUR is the file format that SF handles.
1822 Called on startup by the _initialize routine in each object file format
1823 reader, to register information about each format the reader is prepared
1824 to handle. */
1825
1826 void
1827 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1828 {
1829 registered_sym_fns fns = { flavour, sf };
1830
1831 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1832 }
1833
1834 /* Initialize OBJFILE to read symbols from its associated BFD. It
1835 either returns or calls error(). The result is an initialized
1836 struct sym_fns in the objfile structure, that contains cached
1837 information about the symbol file. */
1838
1839 static const struct sym_fns *
1840 find_sym_fns (bfd *abfd)
1841 {
1842 registered_sym_fns *rsf;
1843 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1844 int i;
1845
1846 if (our_flavour == bfd_target_srec_flavour
1847 || our_flavour == bfd_target_ihex_flavour
1848 || our_flavour == bfd_target_tekhex_flavour)
1849 return NULL; /* No symbols. */
1850
1851 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1852 if (our_flavour == rsf->sym_flavour)
1853 return rsf->sym_fns;
1854
1855 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1856 bfd_get_target (abfd));
1857 }
1858 \f
1859
1860 /* This function runs the load command of our current target. */
1861
1862 static void
1863 load_command (char *arg, int from_tty)
1864 {
1865 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1866
1867 dont_repeat ();
1868
1869 /* The user might be reloading because the binary has changed. Take
1870 this opportunity to check. */
1871 reopen_exec_file ();
1872 reread_symbols ();
1873
1874 if (arg == NULL)
1875 {
1876 char *parg;
1877 int count = 0;
1878
1879 parg = arg = get_exec_file (1);
1880
1881 /* Count how many \ " ' tab space there are in the name. */
1882 while ((parg = strpbrk (parg, "\\\"'\t ")))
1883 {
1884 parg++;
1885 count++;
1886 }
1887
1888 if (count)
1889 {
1890 /* We need to quote this string so buildargv can pull it apart. */
1891 char *temp = xmalloc (strlen (arg) + count + 1 );
1892 char *ptemp = temp;
1893 char *prev;
1894
1895 make_cleanup (xfree, temp);
1896
1897 prev = parg = arg;
1898 while ((parg = strpbrk (parg, "\\\"'\t ")))
1899 {
1900 strncpy (ptemp, prev, parg - prev);
1901 ptemp += parg - prev;
1902 prev = parg++;
1903 *ptemp++ = '\\';
1904 }
1905 strcpy (ptemp, prev);
1906
1907 arg = temp;
1908 }
1909 }
1910
1911 target_load (arg, from_tty);
1912
1913 /* After re-loading the executable, we don't really know which
1914 overlays are mapped any more. */
1915 overlay_cache_invalid = 1;
1916
1917 do_cleanups (cleanup);
1918 }
1919
1920 /* This version of "load" should be usable for any target. Currently
1921 it is just used for remote targets, not inftarg.c or core files,
1922 on the theory that only in that case is it useful.
1923
1924 Avoiding xmodem and the like seems like a win (a) because we don't have
1925 to worry about finding it, and (b) On VMS, fork() is very slow and so
1926 we don't want to run a subprocess. On the other hand, I'm not sure how
1927 performance compares. */
1928
1929 static int validate_download = 0;
1930
1931 /* Callback service function for generic_load (bfd_map_over_sections). */
1932
1933 static void
1934 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1935 {
1936 bfd_size_type *sum = data;
1937
1938 *sum += bfd_get_section_size (asec);
1939 }
1940
1941 /* Opaque data for load_section_callback. */
1942 struct load_section_data {
1943 CORE_ADDR load_offset;
1944 struct load_progress_data *progress_data;
1945 VEC(memory_write_request_s) *requests;
1946 };
1947
1948 /* Opaque data for load_progress. */
1949 struct load_progress_data {
1950 /* Cumulative data. */
1951 unsigned long write_count;
1952 unsigned long data_count;
1953 bfd_size_type total_size;
1954 };
1955
1956 /* Opaque data for load_progress for a single section. */
1957 struct load_progress_section_data {
1958 struct load_progress_data *cumulative;
1959
1960 /* Per-section data. */
1961 const char *section_name;
1962 ULONGEST section_sent;
1963 ULONGEST section_size;
1964 CORE_ADDR lma;
1965 gdb_byte *buffer;
1966 };
1967
1968 /* Target write callback routine for progress reporting. */
1969
1970 static void
1971 load_progress (ULONGEST bytes, void *untyped_arg)
1972 {
1973 struct load_progress_section_data *args = untyped_arg;
1974 struct load_progress_data *totals;
1975
1976 if (args == NULL)
1977 /* Writing padding data. No easy way to get at the cumulative
1978 stats, so just ignore this. */
1979 return;
1980
1981 totals = args->cumulative;
1982
1983 if (bytes == 0 && args->section_sent == 0)
1984 {
1985 /* The write is just starting. Let the user know we've started
1986 this section. */
1987 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1988 args->section_name, hex_string (args->section_size),
1989 paddress (target_gdbarch (), args->lma));
1990 return;
1991 }
1992
1993 if (validate_download)
1994 {
1995 /* Broken memories and broken monitors manifest themselves here
1996 when bring new computers to life. This doubles already slow
1997 downloads. */
1998 /* NOTE: cagney/1999-10-18: A more efficient implementation
1999 might add a verify_memory() method to the target vector and
2000 then use that. remote.c could implement that method using
2001 the ``qCRC'' packet. */
2002 gdb_byte *check = xmalloc (bytes);
2003 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2004
2005 if (target_read_memory (args->lma, check, bytes) != 0)
2006 error (_("Download verify read failed at %s"),
2007 paddress (target_gdbarch (), args->lma));
2008 if (memcmp (args->buffer, check, bytes) != 0)
2009 error (_("Download verify compare failed at %s"),
2010 paddress (target_gdbarch (), args->lma));
2011 do_cleanups (verify_cleanups);
2012 }
2013 totals->data_count += bytes;
2014 args->lma += bytes;
2015 args->buffer += bytes;
2016 totals->write_count += 1;
2017 args->section_sent += bytes;
2018 if (check_quit_flag ()
2019 || (deprecated_ui_load_progress_hook != NULL
2020 && deprecated_ui_load_progress_hook (args->section_name,
2021 args->section_sent)))
2022 error (_("Canceled the download"));
2023
2024 if (deprecated_show_load_progress != NULL)
2025 deprecated_show_load_progress (args->section_name,
2026 args->section_sent,
2027 args->section_size,
2028 totals->data_count,
2029 totals->total_size);
2030 }
2031
2032 /* Callback service function for generic_load (bfd_map_over_sections). */
2033
2034 static void
2035 load_section_callback (bfd *abfd, asection *asec, void *data)
2036 {
2037 struct memory_write_request *new_request;
2038 struct load_section_data *args = data;
2039 struct load_progress_section_data *section_data;
2040 bfd_size_type size = bfd_get_section_size (asec);
2041 gdb_byte *buffer;
2042 const char *sect_name = bfd_get_section_name (abfd, asec);
2043
2044 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2045 return;
2046
2047 if (size == 0)
2048 return;
2049
2050 new_request = VEC_safe_push (memory_write_request_s,
2051 args->requests, NULL);
2052 memset (new_request, 0, sizeof (struct memory_write_request));
2053 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2054 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2055 new_request->end = new_request->begin + size; /* FIXME Should size
2056 be in instead? */
2057 new_request->data = xmalloc (size);
2058 new_request->baton = section_data;
2059
2060 buffer = new_request->data;
2061
2062 section_data->cumulative = args->progress_data;
2063 section_data->section_name = sect_name;
2064 section_data->section_size = size;
2065 section_data->lma = new_request->begin;
2066 section_data->buffer = buffer;
2067
2068 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2069 }
2070
2071 /* Clean up an entire memory request vector, including load
2072 data and progress records. */
2073
2074 static void
2075 clear_memory_write_data (void *arg)
2076 {
2077 VEC(memory_write_request_s) **vec_p = arg;
2078 VEC(memory_write_request_s) *vec = *vec_p;
2079 int i;
2080 struct memory_write_request *mr;
2081
2082 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2083 {
2084 xfree (mr->data);
2085 xfree (mr->baton);
2086 }
2087 VEC_free (memory_write_request_s, vec);
2088 }
2089
2090 void
2091 generic_load (const char *args, int from_tty)
2092 {
2093 bfd *loadfile_bfd;
2094 struct timeval start_time, end_time;
2095 char *filename;
2096 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2097 struct load_section_data cbdata;
2098 struct load_progress_data total_progress;
2099 struct ui_out *uiout = current_uiout;
2100
2101 CORE_ADDR entry;
2102 char **argv;
2103
2104 memset (&cbdata, 0, sizeof (cbdata));
2105 memset (&total_progress, 0, sizeof (total_progress));
2106 cbdata.progress_data = &total_progress;
2107
2108 make_cleanup (clear_memory_write_data, &cbdata.requests);
2109
2110 if (args == NULL)
2111 error_no_arg (_("file to load"));
2112
2113 argv = gdb_buildargv (args);
2114 make_cleanup_freeargv (argv);
2115
2116 filename = tilde_expand (argv[0]);
2117 make_cleanup (xfree, filename);
2118
2119 if (argv[1] != NULL)
2120 {
2121 const char *endptr;
2122
2123 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2124
2125 /* If the last word was not a valid number then
2126 treat it as a file name with spaces in. */
2127 if (argv[1] == endptr)
2128 error (_("Invalid download offset:%s."), argv[1]);
2129
2130 if (argv[2] != NULL)
2131 error (_("Too many parameters."));
2132 }
2133
2134 /* Open the file for loading. */
2135 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2136 if (loadfile_bfd == NULL)
2137 {
2138 perror_with_name (filename);
2139 return;
2140 }
2141
2142 make_cleanup_bfd_unref (loadfile_bfd);
2143
2144 if (!bfd_check_format (loadfile_bfd, bfd_object))
2145 {
2146 error (_("\"%s\" is not an object file: %s"), filename,
2147 bfd_errmsg (bfd_get_error ()));
2148 }
2149
2150 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2151 (void *) &total_progress.total_size);
2152
2153 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2154
2155 gettimeofday (&start_time, NULL);
2156
2157 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2158 load_progress) != 0)
2159 error (_("Load failed"));
2160
2161 gettimeofday (&end_time, NULL);
2162
2163 entry = bfd_get_start_address (loadfile_bfd);
2164 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2165 ui_out_text (uiout, "Start address ");
2166 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2167 ui_out_text (uiout, ", load size ");
2168 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2169 ui_out_text (uiout, "\n");
2170 /* We were doing this in remote-mips.c, I suspect it is right
2171 for other targets too. */
2172 regcache_write_pc (get_current_regcache (), entry);
2173
2174 /* Reset breakpoints, now that we have changed the load image. For
2175 instance, breakpoints may have been set (or reset, by
2176 post_create_inferior) while connected to the target but before we
2177 loaded the program. In that case, the prologue analyzer could
2178 have read instructions from the target to find the right
2179 breakpoint locations. Loading has changed the contents of that
2180 memory. */
2181
2182 breakpoint_re_set ();
2183
2184 /* FIXME: are we supposed to call symbol_file_add or not? According
2185 to a comment from remote-mips.c (where a call to symbol_file_add
2186 was commented out), making the call confuses GDB if more than one
2187 file is loaded in. Some targets do (e.g., remote-vx.c) but
2188 others don't (or didn't - perhaps they have all been deleted). */
2189
2190 print_transfer_performance (gdb_stdout, total_progress.data_count,
2191 total_progress.write_count,
2192 &start_time, &end_time);
2193
2194 do_cleanups (old_cleanups);
2195 }
2196
2197 /* Report how fast the transfer went. */
2198
2199 void
2200 print_transfer_performance (struct ui_file *stream,
2201 unsigned long data_count,
2202 unsigned long write_count,
2203 const struct timeval *start_time,
2204 const struct timeval *end_time)
2205 {
2206 ULONGEST time_count;
2207 struct ui_out *uiout = current_uiout;
2208
2209 /* Compute the elapsed time in milliseconds, as a tradeoff between
2210 accuracy and overflow. */
2211 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2212 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2213
2214 ui_out_text (uiout, "Transfer rate: ");
2215 if (time_count > 0)
2216 {
2217 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2218
2219 if (ui_out_is_mi_like_p (uiout))
2220 {
2221 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2222 ui_out_text (uiout, " bits/sec");
2223 }
2224 else if (rate < 1024)
2225 {
2226 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2227 ui_out_text (uiout, " bytes/sec");
2228 }
2229 else
2230 {
2231 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2232 ui_out_text (uiout, " KB/sec");
2233 }
2234 }
2235 else
2236 {
2237 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2238 ui_out_text (uiout, " bits in <1 sec");
2239 }
2240 if (write_count > 0)
2241 {
2242 ui_out_text (uiout, ", ");
2243 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2244 ui_out_text (uiout, " bytes/write");
2245 }
2246 ui_out_text (uiout, ".\n");
2247 }
2248
2249 /* This function allows the addition of incrementally linked object files.
2250 It does not modify any state in the target, only in the debugger. */
2251 /* Note: ezannoni 2000-04-13 This function/command used to have a
2252 special case syntax for the rombug target (Rombug is the boot
2253 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2254 rombug case, the user doesn't need to supply a text address,
2255 instead a call to target_link() (in target.c) would supply the
2256 value to use. We are now discontinuing this type of ad hoc syntax. */
2257
2258 static void
2259 add_symbol_file_command (char *args, int from_tty)
2260 {
2261 struct gdbarch *gdbarch = get_current_arch ();
2262 char *filename = NULL;
2263 int flags = OBJF_USERLOADED | OBJF_SHARED;
2264 char *arg;
2265 int section_index = 0;
2266 int argcnt = 0;
2267 int sec_num = 0;
2268 int i;
2269 int expecting_sec_name = 0;
2270 int expecting_sec_addr = 0;
2271 char **argv;
2272 struct objfile *objf;
2273
2274 struct sect_opt
2275 {
2276 char *name;
2277 char *value;
2278 };
2279
2280 struct section_addr_info *section_addrs;
2281 struct sect_opt *sect_opts = NULL;
2282 size_t num_sect_opts = 0;
2283 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2284
2285 num_sect_opts = 16;
2286 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2287 * sizeof (struct sect_opt));
2288
2289 dont_repeat ();
2290
2291 if (args == NULL)
2292 error (_("add-symbol-file takes a file name and an address"));
2293
2294 argv = gdb_buildargv (args);
2295 make_cleanup_freeargv (argv);
2296
2297 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2298 {
2299 /* Process the argument. */
2300 if (argcnt == 0)
2301 {
2302 /* The first argument is the file name. */
2303 filename = tilde_expand (arg);
2304 make_cleanup (xfree, filename);
2305 }
2306 else if (argcnt == 1)
2307 {
2308 /* The second argument is always the text address at which
2309 to load the program. */
2310 sect_opts[section_index].name = ".text";
2311 sect_opts[section_index].value = arg;
2312 if (++section_index >= num_sect_opts)
2313 {
2314 num_sect_opts *= 2;
2315 sect_opts = ((struct sect_opt *)
2316 xrealloc (sect_opts,
2317 num_sect_opts
2318 * sizeof (struct sect_opt)));
2319 }
2320 }
2321 else
2322 {
2323 /* It's an option (starting with '-') or it's an argument
2324 to an option. */
2325 if (expecting_sec_name)
2326 {
2327 sect_opts[section_index].name = arg;
2328 expecting_sec_name = 0;
2329 }
2330 else if (expecting_sec_addr)
2331 {
2332 sect_opts[section_index].value = arg;
2333 expecting_sec_addr = 0;
2334 if (++section_index >= num_sect_opts)
2335 {
2336 num_sect_opts *= 2;
2337 sect_opts = ((struct sect_opt *)
2338 xrealloc (sect_opts,
2339 num_sect_opts
2340 * sizeof (struct sect_opt)));
2341 }
2342 }
2343 else if (strcmp (arg, "-readnow") == 0)
2344 flags |= OBJF_READNOW;
2345 else if (strcmp (arg, "-s") == 0)
2346 {
2347 expecting_sec_name = 1;
2348 expecting_sec_addr = 1;
2349 }
2350 else
2351 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2352 " [-readnow] [-s <secname> <addr>]*"));
2353 }
2354 }
2355
2356 /* This command takes at least two arguments. The first one is a
2357 filename, and the second is the address where this file has been
2358 loaded. Abort now if this address hasn't been provided by the
2359 user. */
2360 if (section_index < 1)
2361 error (_("The address where %s has been loaded is missing"), filename);
2362
2363 /* Print the prompt for the query below. And save the arguments into
2364 a sect_addr_info structure to be passed around to other
2365 functions. We have to split this up into separate print
2366 statements because hex_string returns a local static
2367 string. */
2368
2369 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2370 section_addrs = alloc_section_addr_info (section_index);
2371 make_cleanup (xfree, section_addrs);
2372 for (i = 0; i < section_index; i++)
2373 {
2374 CORE_ADDR addr;
2375 char *val = sect_opts[i].value;
2376 char *sec = sect_opts[i].name;
2377
2378 addr = parse_and_eval_address (val);
2379
2380 /* Here we store the section offsets in the order they were
2381 entered on the command line. */
2382 section_addrs->other[sec_num].name = sec;
2383 section_addrs->other[sec_num].addr = addr;
2384 printf_unfiltered ("\t%s_addr = %s\n", sec,
2385 paddress (gdbarch, addr));
2386 sec_num++;
2387
2388 /* The object's sections are initialized when a
2389 call is made to build_objfile_section_table (objfile).
2390 This happens in reread_symbols.
2391 At this point, we don't know what file type this is,
2392 so we can't determine what section names are valid. */
2393 }
2394 section_addrs->num_sections = sec_num;
2395
2396 if (from_tty && (!query ("%s", "")))
2397 error (_("Not confirmed."));
2398
2399 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2400 section_addrs, flags);
2401
2402 add_target_sections_of_objfile (objf);
2403
2404 /* Getting new symbols may change our opinion about what is
2405 frameless. */
2406 reinit_frame_cache ();
2407 do_cleanups (my_cleanups);
2408 }
2409 \f
2410
2411 /* This function removes a symbol file that was added via add-symbol-file. */
2412
2413 static void
2414 remove_symbol_file_command (char *args, int from_tty)
2415 {
2416 char **argv;
2417 struct objfile *objf = NULL;
2418 struct cleanup *my_cleanups;
2419 struct program_space *pspace = current_program_space;
2420 struct gdbarch *gdbarch = get_current_arch ();
2421
2422 dont_repeat ();
2423
2424 if (args == NULL)
2425 error (_("remove-symbol-file: no symbol file provided"));
2426
2427 my_cleanups = make_cleanup (null_cleanup, NULL);
2428
2429 argv = gdb_buildargv (args);
2430
2431 if (strcmp (argv[0], "-a") == 0)
2432 {
2433 /* Interpret the next argument as an address. */
2434 CORE_ADDR addr;
2435
2436 if (argv[1] == NULL)
2437 error (_("Missing address argument"));
2438
2439 if (argv[2] != NULL)
2440 error (_("Junk after %s"), argv[1]);
2441
2442 addr = parse_and_eval_address (argv[1]);
2443
2444 ALL_OBJFILES (objf)
2445 {
2446 if ((objf->flags & OBJF_USERLOADED) != 0
2447 && (objf->flags & OBJF_SHARED) != 0
2448 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2449 break;
2450 }
2451 }
2452 else if (argv[0] != NULL)
2453 {
2454 /* Interpret the current argument as a file name. */
2455 char *filename;
2456
2457 if (argv[1] != NULL)
2458 error (_("Junk after %s"), argv[0]);
2459
2460 filename = tilde_expand (argv[0]);
2461 make_cleanup (xfree, filename);
2462
2463 ALL_OBJFILES (objf)
2464 {
2465 if ((objf->flags & OBJF_USERLOADED) != 0
2466 && (objf->flags & OBJF_SHARED) != 0
2467 && objf->pspace == pspace
2468 && filename_cmp (filename, objfile_name (objf)) == 0)
2469 break;
2470 }
2471 }
2472
2473 if (objf == NULL)
2474 error (_("No symbol file found"));
2475
2476 if (from_tty
2477 && !query (_("Remove symbol table from file \"%s\"? "),
2478 objfile_name (objf)))
2479 error (_("Not confirmed."));
2480
2481 free_objfile (objf);
2482 clear_symtab_users (0);
2483
2484 do_cleanups (my_cleanups);
2485 }
2486
2487 typedef struct objfile *objfilep;
2488
2489 DEF_VEC_P (objfilep);
2490
2491 /* Re-read symbols if a symbol-file has changed. */
2492
2493 void
2494 reread_symbols (void)
2495 {
2496 struct objfile *objfile;
2497 long new_modtime;
2498 struct stat new_statbuf;
2499 int res;
2500 VEC (objfilep) *new_objfiles = NULL;
2501 struct cleanup *all_cleanups;
2502
2503 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2504
2505 /* With the addition of shared libraries, this should be modified,
2506 the load time should be saved in the partial symbol tables, since
2507 different tables may come from different source files. FIXME.
2508 This routine should then walk down each partial symbol table
2509 and see if the symbol table that it originates from has been changed. */
2510
2511 for (objfile = object_files; objfile; objfile = objfile->next)
2512 {
2513 if (objfile->obfd == NULL)
2514 continue;
2515
2516 /* Separate debug objfiles are handled in the main objfile. */
2517 if (objfile->separate_debug_objfile_backlink)
2518 continue;
2519
2520 /* If this object is from an archive (what you usually create with
2521 `ar', often called a `static library' on most systems, though
2522 a `shared library' on AIX is also an archive), then you should
2523 stat on the archive name, not member name. */
2524 if (objfile->obfd->my_archive)
2525 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2526 else
2527 res = stat (objfile_name (objfile), &new_statbuf);
2528 if (res != 0)
2529 {
2530 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2531 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2532 objfile_name (objfile));
2533 continue;
2534 }
2535 new_modtime = new_statbuf.st_mtime;
2536 if (new_modtime != objfile->mtime)
2537 {
2538 struct cleanup *old_cleanups;
2539 struct section_offsets *offsets;
2540 int num_offsets;
2541 char *original_name;
2542
2543 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2544 objfile_name (objfile));
2545
2546 /* There are various functions like symbol_file_add,
2547 symfile_bfd_open, syms_from_objfile, etc., which might
2548 appear to do what we want. But they have various other
2549 effects which we *don't* want. So we just do stuff
2550 ourselves. We don't worry about mapped files (for one thing,
2551 any mapped file will be out of date). */
2552
2553 /* If we get an error, blow away this objfile (not sure if
2554 that is the correct response for things like shared
2555 libraries). */
2556 old_cleanups = make_cleanup_free_objfile (objfile);
2557 /* We need to do this whenever any symbols go away. */
2558 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2559
2560 if (exec_bfd != NULL
2561 && filename_cmp (bfd_get_filename (objfile->obfd),
2562 bfd_get_filename (exec_bfd)) == 0)
2563 {
2564 /* Reload EXEC_BFD without asking anything. */
2565
2566 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2567 }
2568
2569 /* Keep the calls order approx. the same as in free_objfile. */
2570
2571 /* Free the separate debug objfiles. It will be
2572 automatically recreated by sym_read. */
2573 free_objfile_separate_debug (objfile);
2574
2575 /* Remove any references to this objfile in the global
2576 value lists. */
2577 preserve_values (objfile);
2578
2579 /* Nuke all the state that we will re-read. Much of the following
2580 code which sets things to NULL really is necessary to tell
2581 other parts of GDB that there is nothing currently there.
2582
2583 Try to keep the freeing order compatible with free_objfile. */
2584
2585 if (objfile->sf != NULL)
2586 {
2587 (*objfile->sf->sym_finish) (objfile);
2588 }
2589
2590 clear_objfile_data (objfile);
2591
2592 /* Clean up any state BFD has sitting around. */
2593 {
2594 struct bfd *obfd = objfile->obfd;
2595 char *obfd_filename;
2596
2597 obfd_filename = bfd_get_filename (objfile->obfd);
2598 /* Open the new BFD before freeing the old one, so that
2599 the filename remains live. */
2600 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2601 if (objfile->obfd == NULL)
2602 {
2603 /* We have to make a cleanup and error here, rather
2604 than erroring later, because once we unref OBFD,
2605 OBFD_FILENAME will be freed. */
2606 make_cleanup_bfd_unref (obfd);
2607 error (_("Can't open %s to read symbols."), obfd_filename);
2608 }
2609 gdb_bfd_unref (obfd);
2610 }
2611
2612 original_name = xstrdup (objfile->original_name);
2613 make_cleanup (xfree, original_name);
2614
2615 /* bfd_openr sets cacheable to true, which is what we want. */
2616 if (!bfd_check_format (objfile->obfd, bfd_object))
2617 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2618 bfd_errmsg (bfd_get_error ()));
2619
2620 /* Save the offsets, we will nuke them with the rest of the
2621 objfile_obstack. */
2622 num_offsets = objfile->num_sections;
2623 offsets = ((struct section_offsets *)
2624 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2625 memcpy (offsets, objfile->section_offsets,
2626 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2627
2628 /* FIXME: Do we have to free a whole linked list, or is this
2629 enough? */
2630 if (objfile->global_psymbols.list)
2631 xfree (objfile->global_psymbols.list);
2632 memset (&objfile->global_psymbols, 0,
2633 sizeof (objfile->global_psymbols));
2634 if (objfile->static_psymbols.list)
2635 xfree (objfile->static_psymbols.list);
2636 memset (&objfile->static_psymbols, 0,
2637 sizeof (objfile->static_psymbols));
2638
2639 /* Free the obstacks for non-reusable objfiles. */
2640 psymbol_bcache_free (objfile->psymbol_cache);
2641 objfile->psymbol_cache = psymbol_bcache_init ();
2642 obstack_free (&objfile->objfile_obstack, 0);
2643 objfile->sections = NULL;
2644 objfile->compunit_symtabs = NULL;
2645 objfile->psymtabs = NULL;
2646 objfile->psymtabs_addrmap = NULL;
2647 objfile->free_psymtabs = NULL;
2648 objfile->template_symbols = NULL;
2649
2650 /* obstack_init also initializes the obstack so it is
2651 empty. We could use obstack_specify_allocation but
2652 gdb_obstack.h specifies the alloc/dealloc functions. */
2653 obstack_init (&objfile->objfile_obstack);
2654
2655 /* set_objfile_per_bfd potentially allocates the per-bfd
2656 data on the objfile's obstack (if sharing data across
2657 multiple users is not possible), so it's important to
2658 do it *after* the obstack has been initialized. */
2659 set_objfile_per_bfd (objfile);
2660
2661 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2662 original_name,
2663 strlen (original_name));
2664
2665 /* Reset the sym_fns pointer. The ELF reader can change it
2666 based on whether .gdb_index is present, and we need it to
2667 start over. PR symtab/15885 */
2668 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2669
2670 build_objfile_section_table (objfile);
2671 terminate_minimal_symbol_table (objfile);
2672
2673 /* We use the same section offsets as from last time. I'm not
2674 sure whether that is always correct for shared libraries. */
2675 objfile->section_offsets = (struct section_offsets *)
2676 obstack_alloc (&objfile->objfile_obstack,
2677 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2678 memcpy (objfile->section_offsets, offsets,
2679 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2680 objfile->num_sections = num_offsets;
2681
2682 /* What the hell is sym_new_init for, anyway? The concept of
2683 distinguishing between the main file and additional files
2684 in this way seems rather dubious. */
2685 if (objfile == symfile_objfile)
2686 {
2687 (*objfile->sf->sym_new_init) (objfile);
2688 }
2689
2690 (*objfile->sf->sym_init) (objfile);
2691 clear_complaints (&symfile_complaints, 1, 1);
2692
2693 objfile->flags &= ~OBJF_PSYMTABS_READ;
2694 read_symbols (objfile, 0);
2695
2696 if (!objfile_has_symbols (objfile))
2697 {
2698 wrap_here ("");
2699 printf_unfiltered (_("(no debugging symbols found)\n"));
2700 wrap_here ("");
2701 }
2702
2703 /* We're done reading the symbol file; finish off complaints. */
2704 clear_complaints (&symfile_complaints, 0, 1);
2705
2706 /* Getting new symbols may change our opinion about what is
2707 frameless. */
2708
2709 reinit_frame_cache ();
2710
2711 /* Discard cleanups as symbol reading was successful. */
2712 discard_cleanups (old_cleanups);
2713
2714 /* If the mtime has changed between the time we set new_modtime
2715 and now, we *want* this to be out of date, so don't call stat
2716 again now. */
2717 objfile->mtime = new_modtime;
2718 init_entry_point_info (objfile);
2719
2720 VEC_safe_push (objfilep, new_objfiles, objfile);
2721 }
2722 }
2723
2724 if (new_objfiles)
2725 {
2726 int ix;
2727
2728 /* Notify objfiles that we've modified objfile sections. */
2729 objfiles_changed ();
2730
2731 clear_symtab_users (0);
2732
2733 /* clear_objfile_data for each objfile was called before freeing it and
2734 observer_notify_new_objfile (NULL) has been called by
2735 clear_symtab_users above. Notify the new files now. */
2736 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2737 observer_notify_new_objfile (objfile);
2738
2739 /* At least one objfile has changed, so we can consider that
2740 the executable we're debugging has changed too. */
2741 observer_notify_executable_changed ();
2742 }
2743
2744 do_cleanups (all_cleanups);
2745 }
2746 \f
2747
2748 typedef struct
2749 {
2750 char *ext;
2751 enum language lang;
2752 }
2753 filename_language;
2754
2755 static filename_language *filename_language_table;
2756 static int fl_table_size, fl_table_next;
2757
2758 static void
2759 add_filename_language (char *ext, enum language lang)
2760 {
2761 if (fl_table_next >= fl_table_size)
2762 {
2763 fl_table_size += 10;
2764 filename_language_table =
2765 xrealloc (filename_language_table,
2766 fl_table_size * sizeof (*filename_language_table));
2767 }
2768
2769 filename_language_table[fl_table_next].ext = xstrdup (ext);
2770 filename_language_table[fl_table_next].lang = lang;
2771 fl_table_next++;
2772 }
2773
2774 static char *ext_args;
2775 static void
2776 show_ext_args (struct ui_file *file, int from_tty,
2777 struct cmd_list_element *c, const char *value)
2778 {
2779 fprintf_filtered (file,
2780 _("Mapping between filename extension "
2781 "and source language is \"%s\".\n"),
2782 value);
2783 }
2784
2785 static void
2786 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2787 {
2788 int i;
2789 char *cp = ext_args;
2790 enum language lang;
2791
2792 /* First arg is filename extension, starting with '.' */
2793 if (*cp != '.')
2794 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2795
2796 /* Find end of first arg. */
2797 while (*cp && !isspace (*cp))
2798 cp++;
2799
2800 if (*cp == '\0')
2801 error (_("'%s': two arguments required -- "
2802 "filename extension and language"),
2803 ext_args);
2804
2805 /* Null-terminate first arg. */
2806 *cp++ = '\0';
2807
2808 /* Find beginning of second arg, which should be a source language. */
2809 cp = skip_spaces (cp);
2810
2811 if (*cp == '\0')
2812 error (_("'%s': two arguments required -- "
2813 "filename extension and language"),
2814 ext_args);
2815
2816 /* Lookup the language from among those we know. */
2817 lang = language_enum (cp);
2818
2819 /* Now lookup the filename extension: do we already know it? */
2820 for (i = 0; i < fl_table_next; i++)
2821 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2822 break;
2823
2824 if (i >= fl_table_next)
2825 {
2826 /* New file extension. */
2827 add_filename_language (ext_args, lang);
2828 }
2829 else
2830 {
2831 /* Redefining a previously known filename extension. */
2832
2833 /* if (from_tty) */
2834 /* query ("Really make files of type %s '%s'?", */
2835 /* ext_args, language_str (lang)); */
2836
2837 xfree (filename_language_table[i].ext);
2838 filename_language_table[i].ext = xstrdup (ext_args);
2839 filename_language_table[i].lang = lang;
2840 }
2841 }
2842
2843 static void
2844 info_ext_lang_command (char *args, int from_tty)
2845 {
2846 int i;
2847
2848 printf_filtered (_("Filename extensions and the languages they represent:"));
2849 printf_filtered ("\n\n");
2850 for (i = 0; i < fl_table_next; i++)
2851 printf_filtered ("\t%s\t- %s\n",
2852 filename_language_table[i].ext,
2853 language_str (filename_language_table[i].lang));
2854 }
2855
2856 static void
2857 init_filename_language_table (void)
2858 {
2859 if (fl_table_size == 0) /* Protect against repetition. */
2860 {
2861 fl_table_size = 20;
2862 fl_table_next = 0;
2863 filename_language_table =
2864 xmalloc (fl_table_size * sizeof (*filename_language_table));
2865 add_filename_language (".c", language_c);
2866 add_filename_language (".d", language_d);
2867 add_filename_language (".C", language_cplus);
2868 add_filename_language (".cc", language_cplus);
2869 add_filename_language (".cp", language_cplus);
2870 add_filename_language (".cpp", language_cplus);
2871 add_filename_language (".cxx", language_cplus);
2872 add_filename_language (".c++", language_cplus);
2873 add_filename_language (".java", language_java);
2874 add_filename_language (".class", language_java);
2875 add_filename_language (".m", language_objc);
2876 add_filename_language (".f", language_fortran);
2877 add_filename_language (".F", language_fortran);
2878 add_filename_language (".for", language_fortran);
2879 add_filename_language (".FOR", language_fortran);
2880 add_filename_language (".ftn", language_fortran);
2881 add_filename_language (".FTN", language_fortran);
2882 add_filename_language (".fpp", language_fortran);
2883 add_filename_language (".FPP", language_fortran);
2884 add_filename_language (".f90", language_fortran);
2885 add_filename_language (".F90", language_fortran);
2886 add_filename_language (".f95", language_fortran);
2887 add_filename_language (".F95", language_fortran);
2888 add_filename_language (".f03", language_fortran);
2889 add_filename_language (".F03", language_fortran);
2890 add_filename_language (".f08", language_fortran);
2891 add_filename_language (".F08", language_fortran);
2892 add_filename_language (".s", language_asm);
2893 add_filename_language (".sx", language_asm);
2894 add_filename_language (".S", language_asm);
2895 add_filename_language (".pas", language_pascal);
2896 add_filename_language (".p", language_pascal);
2897 add_filename_language (".pp", language_pascal);
2898 add_filename_language (".adb", language_ada);
2899 add_filename_language (".ads", language_ada);
2900 add_filename_language (".a", language_ada);
2901 add_filename_language (".ada", language_ada);
2902 add_filename_language (".dg", language_ada);
2903 }
2904 }
2905
2906 enum language
2907 deduce_language_from_filename (const char *filename)
2908 {
2909 int i;
2910 char *cp;
2911
2912 if (filename != NULL)
2913 if ((cp = strrchr (filename, '.')) != NULL)
2914 for (i = 0; i < fl_table_next; i++)
2915 if (strcmp (cp, filename_language_table[i].ext) == 0)
2916 return filename_language_table[i].lang;
2917
2918 return language_unknown;
2919 }
2920 \f
2921 /* Allocate and initialize a new symbol table.
2922 CUST is from the result of allocate_compunit_symtab. */
2923
2924 struct symtab *
2925 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2926 {
2927 struct objfile *objfile = cust->objfile;
2928 struct symtab *symtab
2929 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2930
2931 symtab->filename = bcache (filename, strlen (filename) + 1,
2932 objfile->per_bfd->filename_cache);
2933 symtab->fullname = NULL;
2934 symtab->language = deduce_language_from_filename (filename);
2935
2936 /* This can be very verbose with lots of headers.
2937 Only print at higher debug levels. */
2938 if (symtab_create_debug >= 2)
2939 {
2940 /* Be a bit clever with debugging messages, and don't print objfile
2941 every time, only when it changes. */
2942 static char *last_objfile_name = NULL;
2943
2944 if (last_objfile_name == NULL
2945 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2946 {
2947 xfree (last_objfile_name);
2948 last_objfile_name = xstrdup (objfile_name (objfile));
2949 fprintf_unfiltered (gdb_stdlog,
2950 "Creating one or more symtabs for objfile %s ...\n",
2951 last_objfile_name);
2952 }
2953 fprintf_unfiltered (gdb_stdlog,
2954 "Created symtab %s for module %s.\n",
2955 host_address_to_string (symtab), filename);
2956 }
2957
2958 /* Add it to CUST's list of symtabs. */
2959 if (cust->filetabs == NULL)
2960 {
2961 cust->filetabs = symtab;
2962 cust->last_filetab = symtab;
2963 }
2964 else
2965 {
2966 cust->last_filetab->next = symtab;
2967 cust->last_filetab = symtab;
2968 }
2969
2970 /* Backlink to the containing compunit symtab. */
2971 symtab->compunit_symtab = cust;
2972
2973 return symtab;
2974 }
2975
2976 /* Allocate and initialize a new compunit.
2977 NAME is the name of the main source file, if there is one, or some
2978 descriptive text if there are no source files. */
2979
2980 struct compunit_symtab *
2981 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2982 {
2983 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2984 struct compunit_symtab);
2985 const char *saved_name;
2986
2987 cu->objfile = objfile;
2988
2989 /* The name we record here is only for display/debugging purposes.
2990 Just save the basename to avoid path issues (too long for display,
2991 relative vs absolute, etc.). */
2992 saved_name = lbasename (name);
2993 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2994 strlen (saved_name));
2995
2996 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2997
2998 if (symtab_create_debug)
2999 {
3000 fprintf_unfiltered (gdb_stdlog,
3001 "Created compunit symtab %s for %s.\n",
3002 host_address_to_string (cu),
3003 cu->name);
3004 }
3005
3006 return cu;
3007 }
3008
3009 /* Hook CU to the objfile it comes from. */
3010
3011 void
3012 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3013 {
3014 cu->next = cu->objfile->compunit_symtabs;
3015 cu->objfile->compunit_symtabs = cu;
3016 }
3017 \f
3018
3019 /* Reset all data structures in gdb which may contain references to symbol
3020 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
3021
3022 void
3023 clear_symtab_users (int add_flags)
3024 {
3025 /* Someday, we should do better than this, by only blowing away
3026 the things that really need to be blown. */
3027
3028 /* Clear the "current" symtab first, because it is no longer valid.
3029 breakpoint_re_set may try to access the current symtab. */
3030 clear_current_source_symtab_and_line ();
3031
3032 clear_displays ();
3033 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3034 breakpoint_re_set ();
3035 clear_last_displayed_sal ();
3036 clear_pc_function_cache ();
3037 observer_notify_new_objfile (NULL);
3038
3039 /* Clear globals which might have pointed into a removed objfile.
3040 FIXME: It's not clear which of these are supposed to persist
3041 between expressions and which ought to be reset each time. */
3042 expression_context_block = NULL;
3043 innermost_block = NULL;
3044
3045 /* Varobj may refer to old symbols, perform a cleanup. */
3046 varobj_invalidate ();
3047
3048 }
3049
3050 static void
3051 clear_symtab_users_cleanup (void *ignore)
3052 {
3053 clear_symtab_users (0);
3054 }
3055 \f
3056 /* OVERLAYS:
3057 The following code implements an abstraction for debugging overlay sections.
3058
3059 The target model is as follows:
3060 1) The gnu linker will permit multiple sections to be mapped into the
3061 same VMA, each with its own unique LMA (or load address).
3062 2) It is assumed that some runtime mechanism exists for mapping the
3063 sections, one by one, from the load address into the VMA address.
3064 3) This code provides a mechanism for gdb to keep track of which
3065 sections should be considered to be mapped from the VMA to the LMA.
3066 This information is used for symbol lookup, and memory read/write.
3067 For instance, if a section has been mapped then its contents
3068 should be read from the VMA, otherwise from the LMA.
3069
3070 Two levels of debugger support for overlays are available. One is
3071 "manual", in which the debugger relies on the user to tell it which
3072 overlays are currently mapped. This level of support is
3073 implemented entirely in the core debugger, and the information about
3074 whether a section is mapped is kept in the objfile->obj_section table.
3075
3076 The second level of support is "automatic", and is only available if
3077 the target-specific code provides functionality to read the target's
3078 overlay mapping table, and translate its contents for the debugger
3079 (by updating the mapped state information in the obj_section tables).
3080
3081 The interface is as follows:
3082 User commands:
3083 overlay map <name> -- tell gdb to consider this section mapped
3084 overlay unmap <name> -- tell gdb to consider this section unmapped
3085 overlay list -- list the sections that GDB thinks are mapped
3086 overlay read-target -- get the target's state of what's mapped
3087 overlay off/manual/auto -- set overlay debugging state
3088 Functional interface:
3089 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3090 section, return that section.
3091 find_pc_overlay(pc): find any overlay section that contains
3092 the pc, either in its VMA or its LMA
3093 section_is_mapped(sect): true if overlay is marked as mapped
3094 section_is_overlay(sect): true if section's VMA != LMA
3095 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3096 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3097 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3098 overlay_mapped_address(...): map an address from section's LMA to VMA
3099 overlay_unmapped_address(...): map an address from section's VMA to LMA
3100 symbol_overlayed_address(...): Return a "current" address for symbol:
3101 either in VMA or LMA depending on whether
3102 the symbol's section is currently mapped. */
3103
3104 /* Overlay debugging state: */
3105
3106 enum overlay_debugging_state overlay_debugging = ovly_off;
3107 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3108
3109 /* Function: section_is_overlay (SECTION)
3110 Returns true if SECTION has VMA not equal to LMA, ie.
3111 SECTION is loaded at an address different from where it will "run". */
3112
3113 int
3114 section_is_overlay (struct obj_section *section)
3115 {
3116 if (overlay_debugging && section)
3117 {
3118 bfd *abfd = section->objfile->obfd;
3119 asection *bfd_section = section->the_bfd_section;
3120
3121 if (bfd_section_lma (abfd, bfd_section) != 0
3122 && bfd_section_lma (abfd, bfd_section)
3123 != bfd_section_vma (abfd, bfd_section))
3124 return 1;
3125 }
3126
3127 return 0;
3128 }
3129
3130 /* Function: overlay_invalidate_all (void)
3131 Invalidate the mapped state of all overlay sections (mark it as stale). */
3132
3133 static void
3134 overlay_invalidate_all (void)
3135 {
3136 struct objfile *objfile;
3137 struct obj_section *sect;
3138
3139 ALL_OBJSECTIONS (objfile, sect)
3140 if (section_is_overlay (sect))
3141 sect->ovly_mapped = -1;
3142 }
3143
3144 /* Function: section_is_mapped (SECTION)
3145 Returns true if section is an overlay, and is currently mapped.
3146
3147 Access to the ovly_mapped flag is restricted to this function, so
3148 that we can do automatic update. If the global flag
3149 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3150 overlay_invalidate_all. If the mapped state of the particular
3151 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3152
3153 int
3154 section_is_mapped (struct obj_section *osect)
3155 {
3156 struct gdbarch *gdbarch;
3157
3158 if (osect == 0 || !section_is_overlay (osect))
3159 return 0;
3160
3161 switch (overlay_debugging)
3162 {
3163 default:
3164 case ovly_off:
3165 return 0; /* overlay debugging off */
3166 case ovly_auto: /* overlay debugging automatic */
3167 /* Unles there is a gdbarch_overlay_update function,
3168 there's really nothing useful to do here (can't really go auto). */
3169 gdbarch = get_objfile_arch (osect->objfile);
3170 if (gdbarch_overlay_update_p (gdbarch))
3171 {
3172 if (overlay_cache_invalid)
3173 {
3174 overlay_invalidate_all ();
3175 overlay_cache_invalid = 0;
3176 }
3177 if (osect->ovly_mapped == -1)
3178 gdbarch_overlay_update (gdbarch, osect);
3179 }
3180 /* fall thru to manual case */
3181 case ovly_on: /* overlay debugging manual */
3182 return osect->ovly_mapped == 1;
3183 }
3184 }
3185
3186 /* Function: pc_in_unmapped_range
3187 If PC falls into the lma range of SECTION, return true, else false. */
3188
3189 CORE_ADDR
3190 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3191 {
3192 if (section_is_overlay (section))
3193 {
3194 bfd *abfd = section->objfile->obfd;
3195 asection *bfd_section = section->the_bfd_section;
3196
3197 /* We assume the LMA is relocated by the same offset as the VMA. */
3198 bfd_vma size = bfd_get_section_size (bfd_section);
3199 CORE_ADDR offset = obj_section_offset (section);
3200
3201 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3202 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3203 return 1;
3204 }
3205
3206 return 0;
3207 }
3208
3209 /* Function: pc_in_mapped_range
3210 If PC falls into the vma range of SECTION, return true, else false. */
3211
3212 CORE_ADDR
3213 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3214 {
3215 if (section_is_overlay (section))
3216 {
3217 if (obj_section_addr (section) <= pc
3218 && pc < obj_section_endaddr (section))
3219 return 1;
3220 }
3221
3222 return 0;
3223 }
3224
3225 /* Return true if the mapped ranges of sections A and B overlap, false
3226 otherwise. */
3227
3228 static int
3229 sections_overlap (struct obj_section *a, struct obj_section *b)
3230 {
3231 CORE_ADDR a_start = obj_section_addr (a);
3232 CORE_ADDR a_end = obj_section_endaddr (a);
3233 CORE_ADDR b_start = obj_section_addr (b);
3234 CORE_ADDR b_end = obj_section_endaddr (b);
3235
3236 return (a_start < b_end && b_start < a_end);
3237 }
3238
3239 /* Function: overlay_unmapped_address (PC, SECTION)
3240 Returns the address corresponding to PC in the unmapped (load) range.
3241 May be the same as PC. */
3242
3243 CORE_ADDR
3244 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3245 {
3246 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3247 {
3248 bfd *abfd = section->objfile->obfd;
3249 asection *bfd_section = section->the_bfd_section;
3250
3251 return pc + bfd_section_lma (abfd, bfd_section)
3252 - bfd_section_vma (abfd, bfd_section);
3253 }
3254
3255 return pc;
3256 }
3257
3258 /* Function: overlay_mapped_address (PC, SECTION)
3259 Returns the address corresponding to PC in the mapped (runtime) range.
3260 May be the same as PC. */
3261
3262 CORE_ADDR
3263 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3264 {
3265 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3266 {
3267 bfd *abfd = section->objfile->obfd;
3268 asection *bfd_section = section->the_bfd_section;
3269
3270 return pc + bfd_section_vma (abfd, bfd_section)
3271 - bfd_section_lma (abfd, bfd_section);
3272 }
3273
3274 return pc;
3275 }
3276
3277 /* Function: symbol_overlayed_address
3278 Return one of two addresses (relative to the VMA or to the LMA),
3279 depending on whether the section is mapped or not. */
3280
3281 CORE_ADDR
3282 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3283 {
3284 if (overlay_debugging)
3285 {
3286 /* If the symbol has no section, just return its regular address. */
3287 if (section == 0)
3288 return address;
3289 /* If the symbol's section is not an overlay, just return its
3290 address. */
3291 if (!section_is_overlay (section))
3292 return address;
3293 /* If the symbol's section is mapped, just return its address. */
3294 if (section_is_mapped (section))
3295 return address;
3296 /*
3297 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3298 * then return its LOADED address rather than its vma address!!
3299 */
3300 return overlay_unmapped_address (address, section);
3301 }
3302 return address;
3303 }
3304
3305 /* Function: find_pc_overlay (PC)
3306 Return the best-match overlay section for PC:
3307 If PC matches a mapped overlay section's VMA, return that section.
3308 Else if PC matches an unmapped section's VMA, return that section.
3309 Else if PC matches an unmapped section's LMA, return that section. */
3310
3311 struct obj_section *
3312 find_pc_overlay (CORE_ADDR pc)
3313 {
3314 struct objfile *objfile;
3315 struct obj_section *osect, *best_match = NULL;
3316
3317 if (overlay_debugging)
3318 ALL_OBJSECTIONS (objfile, osect)
3319 if (section_is_overlay (osect))
3320 {
3321 if (pc_in_mapped_range (pc, osect))
3322 {
3323 if (section_is_mapped (osect))
3324 return osect;
3325 else
3326 best_match = osect;
3327 }
3328 else if (pc_in_unmapped_range (pc, osect))
3329 best_match = osect;
3330 }
3331 return best_match;
3332 }
3333
3334 /* Function: find_pc_mapped_section (PC)
3335 If PC falls into the VMA address range of an overlay section that is
3336 currently marked as MAPPED, return that section. Else return NULL. */
3337
3338 struct obj_section *
3339 find_pc_mapped_section (CORE_ADDR pc)
3340 {
3341 struct objfile *objfile;
3342 struct obj_section *osect;
3343
3344 if (overlay_debugging)
3345 ALL_OBJSECTIONS (objfile, osect)
3346 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3347 return osect;
3348
3349 return NULL;
3350 }
3351
3352 /* Function: list_overlays_command
3353 Print a list of mapped sections and their PC ranges. */
3354
3355 static void
3356 list_overlays_command (char *args, int from_tty)
3357 {
3358 int nmapped = 0;
3359 struct objfile *objfile;
3360 struct obj_section *osect;
3361
3362 if (overlay_debugging)
3363 ALL_OBJSECTIONS (objfile, osect)
3364 if (section_is_mapped (osect))
3365 {
3366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3367 const char *name;
3368 bfd_vma lma, vma;
3369 int size;
3370
3371 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3372 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3373 size = bfd_get_section_size (osect->the_bfd_section);
3374 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3375
3376 printf_filtered ("Section %s, loaded at ", name);
3377 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3378 puts_filtered (" - ");
3379 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3380 printf_filtered (", mapped at ");
3381 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3382 puts_filtered (" - ");
3383 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3384 puts_filtered ("\n");
3385
3386 nmapped++;
3387 }
3388 if (nmapped == 0)
3389 printf_filtered (_("No sections are mapped.\n"));
3390 }
3391
3392 /* Function: map_overlay_command
3393 Mark the named section as mapped (ie. residing at its VMA address). */
3394
3395 static void
3396 map_overlay_command (char *args, int from_tty)
3397 {
3398 struct objfile *objfile, *objfile2;
3399 struct obj_section *sec, *sec2;
3400
3401 if (!overlay_debugging)
3402 error (_("Overlay debugging not enabled. Use "
3403 "either the 'overlay auto' or\n"
3404 "the 'overlay manual' command."));
3405
3406 if (args == 0 || *args == 0)
3407 error (_("Argument required: name of an overlay section"));
3408
3409 /* First, find a section matching the user supplied argument. */
3410 ALL_OBJSECTIONS (objfile, sec)
3411 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3412 {
3413 /* Now, check to see if the section is an overlay. */
3414 if (!section_is_overlay (sec))
3415 continue; /* not an overlay section */
3416
3417 /* Mark the overlay as "mapped". */
3418 sec->ovly_mapped = 1;
3419
3420 /* Next, make a pass and unmap any sections that are
3421 overlapped by this new section: */
3422 ALL_OBJSECTIONS (objfile2, sec2)
3423 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3424 {
3425 if (info_verbose)
3426 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3427 bfd_section_name (objfile->obfd,
3428 sec2->the_bfd_section));
3429 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3430 }
3431 return;
3432 }
3433 error (_("No overlay section called %s"), args);
3434 }
3435
3436 /* Function: unmap_overlay_command
3437 Mark the overlay section as unmapped
3438 (ie. resident in its LMA address range, rather than the VMA range). */
3439
3440 static void
3441 unmap_overlay_command (char *args, int from_tty)
3442 {
3443 struct objfile *objfile;
3444 struct obj_section *sec;
3445
3446 if (!overlay_debugging)
3447 error (_("Overlay debugging not enabled. "
3448 "Use either the 'overlay auto' or\n"
3449 "the 'overlay manual' command."));
3450
3451 if (args == 0 || *args == 0)
3452 error (_("Argument required: name of an overlay section"));
3453
3454 /* First, find a section matching the user supplied argument. */
3455 ALL_OBJSECTIONS (objfile, sec)
3456 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3457 {
3458 if (!sec->ovly_mapped)
3459 error (_("Section %s is not mapped"), args);
3460 sec->ovly_mapped = 0;
3461 return;
3462 }
3463 error (_("No overlay section called %s"), args);
3464 }
3465
3466 /* Function: overlay_auto_command
3467 A utility command to turn on overlay debugging.
3468 Possibly this should be done via a set/show command. */
3469
3470 static void
3471 overlay_auto_command (char *args, int from_tty)
3472 {
3473 overlay_debugging = ovly_auto;
3474 enable_overlay_breakpoints ();
3475 if (info_verbose)
3476 printf_unfiltered (_("Automatic overlay debugging enabled."));
3477 }
3478
3479 /* Function: overlay_manual_command
3480 A utility command to turn on overlay debugging.
3481 Possibly this should be done via a set/show command. */
3482
3483 static void
3484 overlay_manual_command (char *args, int from_tty)
3485 {
3486 overlay_debugging = ovly_on;
3487 disable_overlay_breakpoints ();
3488 if (info_verbose)
3489 printf_unfiltered (_("Overlay debugging enabled."));
3490 }
3491
3492 /* Function: overlay_off_command
3493 A utility command to turn on overlay debugging.
3494 Possibly this should be done via a set/show command. */
3495
3496 static void
3497 overlay_off_command (char *args, int from_tty)
3498 {
3499 overlay_debugging = ovly_off;
3500 disable_overlay_breakpoints ();
3501 if (info_verbose)
3502 printf_unfiltered (_("Overlay debugging disabled."));
3503 }
3504
3505 static void
3506 overlay_load_command (char *args, int from_tty)
3507 {
3508 struct gdbarch *gdbarch = get_current_arch ();
3509
3510 if (gdbarch_overlay_update_p (gdbarch))
3511 gdbarch_overlay_update (gdbarch, NULL);
3512 else
3513 error (_("This target does not know how to read its overlay state."));
3514 }
3515
3516 /* Function: overlay_command
3517 A place-holder for a mis-typed command. */
3518
3519 /* Command list chain containing all defined "overlay" subcommands. */
3520 static struct cmd_list_element *overlaylist;
3521
3522 static void
3523 overlay_command (char *args, int from_tty)
3524 {
3525 printf_unfiltered
3526 ("\"overlay\" must be followed by the name of an overlay command.\n");
3527 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3528 }
3529
3530 /* Target Overlays for the "Simplest" overlay manager:
3531
3532 This is GDB's default target overlay layer. It works with the
3533 minimal overlay manager supplied as an example by Cygnus. The
3534 entry point is via a function pointer "gdbarch_overlay_update",
3535 so targets that use a different runtime overlay manager can
3536 substitute their own overlay_update function and take over the
3537 function pointer.
3538
3539 The overlay_update function pokes around in the target's data structures
3540 to see what overlays are mapped, and updates GDB's overlay mapping with
3541 this information.
3542
3543 In this simple implementation, the target data structures are as follows:
3544 unsigned _novlys; /# number of overlay sections #/
3545 unsigned _ovly_table[_novlys][4] = {
3546 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3547 {..., ..., ..., ...},
3548 }
3549 unsigned _novly_regions; /# number of overlay regions #/
3550 unsigned _ovly_region_table[_novly_regions][3] = {
3551 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3552 {..., ..., ...},
3553 }
3554 These functions will attempt to update GDB's mappedness state in the
3555 symbol section table, based on the target's mappedness state.
3556
3557 To do this, we keep a cached copy of the target's _ovly_table, and
3558 attempt to detect when the cached copy is invalidated. The main
3559 entry point is "simple_overlay_update(SECT), which looks up SECT in
3560 the cached table and re-reads only the entry for that section from
3561 the target (whenever possible). */
3562
3563 /* Cached, dynamically allocated copies of the target data structures: */
3564 static unsigned (*cache_ovly_table)[4] = 0;
3565 static unsigned cache_novlys = 0;
3566 static CORE_ADDR cache_ovly_table_base = 0;
3567 enum ovly_index
3568 {
3569 VMA, SIZE, LMA, MAPPED
3570 };
3571
3572 /* Throw away the cached copy of _ovly_table. */
3573
3574 static void
3575 simple_free_overlay_table (void)
3576 {
3577 if (cache_ovly_table)
3578 xfree (cache_ovly_table);
3579 cache_novlys = 0;
3580 cache_ovly_table = NULL;
3581 cache_ovly_table_base = 0;
3582 }
3583
3584 /* Read an array of ints of size SIZE from the target into a local buffer.
3585 Convert to host order. int LEN is number of ints. */
3586
3587 static void
3588 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3589 int len, int size, enum bfd_endian byte_order)
3590 {
3591 /* FIXME (alloca): Not safe if array is very large. */
3592 gdb_byte *buf = alloca (len * size);
3593 int i;
3594
3595 read_memory (memaddr, buf, len * size);
3596 for (i = 0; i < len; i++)
3597 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3598 }
3599
3600 /* Find and grab a copy of the target _ovly_table
3601 (and _novlys, which is needed for the table's size). */
3602
3603 static int
3604 simple_read_overlay_table (void)
3605 {
3606 struct bound_minimal_symbol novlys_msym;
3607 struct bound_minimal_symbol ovly_table_msym;
3608 struct gdbarch *gdbarch;
3609 int word_size;
3610 enum bfd_endian byte_order;
3611
3612 simple_free_overlay_table ();
3613 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3614 if (! novlys_msym.minsym)
3615 {
3616 error (_("Error reading inferior's overlay table: "
3617 "couldn't find `_novlys' variable\n"
3618 "in inferior. Use `overlay manual' mode."));
3619 return 0;
3620 }
3621
3622 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3623 if (! ovly_table_msym.minsym)
3624 {
3625 error (_("Error reading inferior's overlay table: couldn't find "
3626 "`_ovly_table' array\n"
3627 "in inferior. Use `overlay manual' mode."));
3628 return 0;
3629 }
3630
3631 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3632 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3633 byte_order = gdbarch_byte_order (gdbarch);
3634
3635 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3636 4, byte_order);
3637 cache_ovly_table
3638 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3639 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3640 read_target_long_array (cache_ovly_table_base,
3641 (unsigned int *) cache_ovly_table,
3642 cache_novlys * 4, word_size, byte_order);
3643
3644 return 1; /* SUCCESS */
3645 }
3646
3647 /* Function: simple_overlay_update_1
3648 A helper function for simple_overlay_update. Assuming a cached copy
3649 of _ovly_table exists, look through it to find an entry whose vma,
3650 lma and size match those of OSECT. Re-read the entry and make sure
3651 it still matches OSECT (else the table may no longer be valid).
3652 Set OSECT's mapped state to match the entry. Return: 1 for
3653 success, 0 for failure. */
3654
3655 static int
3656 simple_overlay_update_1 (struct obj_section *osect)
3657 {
3658 int i, size;
3659 bfd *obfd = osect->objfile->obfd;
3660 asection *bsect = osect->the_bfd_section;
3661 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3662 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3664
3665 size = bfd_get_section_size (osect->the_bfd_section);
3666 for (i = 0; i < cache_novlys; i++)
3667 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3668 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3669 /* && cache_ovly_table[i][SIZE] == size */ )
3670 {
3671 read_target_long_array (cache_ovly_table_base + i * word_size,
3672 (unsigned int *) cache_ovly_table[i],
3673 4, word_size, byte_order);
3674 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3675 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3676 /* && cache_ovly_table[i][SIZE] == size */ )
3677 {
3678 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3679 return 1;
3680 }
3681 else /* Warning! Warning! Target's ovly table has changed! */
3682 return 0;
3683 }
3684 return 0;
3685 }
3686
3687 /* Function: simple_overlay_update
3688 If OSECT is NULL, then update all sections' mapped state
3689 (after re-reading the entire target _ovly_table).
3690 If OSECT is non-NULL, then try to find a matching entry in the
3691 cached ovly_table and update only OSECT's mapped state.
3692 If a cached entry can't be found or the cache isn't valid, then
3693 re-read the entire cache, and go ahead and update all sections. */
3694
3695 void
3696 simple_overlay_update (struct obj_section *osect)
3697 {
3698 struct objfile *objfile;
3699
3700 /* Were we given an osect to look up? NULL means do all of them. */
3701 if (osect)
3702 /* Have we got a cached copy of the target's overlay table? */
3703 if (cache_ovly_table != NULL)
3704 {
3705 /* Does its cached location match what's currently in the
3706 symtab? */
3707 struct bound_minimal_symbol minsym
3708 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3709
3710 if (minsym.minsym == NULL)
3711 error (_("Error reading inferior's overlay table: couldn't "
3712 "find `_ovly_table' array\n"
3713 "in inferior. Use `overlay manual' mode."));
3714
3715 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3716 /* Then go ahead and try to look up this single section in
3717 the cache. */
3718 if (simple_overlay_update_1 (osect))
3719 /* Found it! We're done. */
3720 return;
3721 }
3722
3723 /* Cached table no good: need to read the entire table anew.
3724 Or else we want all the sections, in which case it's actually
3725 more efficient to read the whole table in one block anyway. */
3726
3727 if (! simple_read_overlay_table ())
3728 return;
3729
3730 /* Now may as well update all sections, even if only one was requested. */
3731 ALL_OBJSECTIONS (objfile, osect)
3732 if (section_is_overlay (osect))
3733 {
3734 int i, size;
3735 bfd *obfd = osect->objfile->obfd;
3736 asection *bsect = osect->the_bfd_section;
3737
3738 size = bfd_get_section_size (bsect);
3739 for (i = 0; i < cache_novlys; i++)
3740 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3741 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3742 /* && cache_ovly_table[i][SIZE] == size */ )
3743 { /* obj_section matches i'th entry in ovly_table. */
3744 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3745 break; /* finished with inner for loop: break out. */
3746 }
3747 }
3748 }
3749
3750 /* Set the output sections and output offsets for section SECTP in
3751 ABFD. The relocation code in BFD will read these offsets, so we
3752 need to be sure they're initialized. We map each section to itself,
3753 with no offset; this means that SECTP->vma will be honored. */
3754
3755 static void
3756 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3757 {
3758 sectp->output_section = sectp;
3759 sectp->output_offset = 0;
3760 }
3761
3762 /* Default implementation for sym_relocate. */
3763
3764 bfd_byte *
3765 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3766 bfd_byte *buf)
3767 {
3768 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3769 DWO file. */
3770 bfd *abfd = sectp->owner;
3771
3772 /* We're only interested in sections with relocation
3773 information. */
3774 if ((sectp->flags & SEC_RELOC) == 0)
3775 return NULL;
3776
3777 /* We will handle section offsets properly elsewhere, so relocate as if
3778 all sections begin at 0. */
3779 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3780
3781 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3782 }
3783
3784 /* Relocate the contents of a debug section SECTP in ABFD. The
3785 contents are stored in BUF if it is non-NULL, or returned in a
3786 malloc'd buffer otherwise.
3787
3788 For some platforms and debug info formats, shared libraries contain
3789 relocations against the debug sections (particularly for DWARF-2;
3790 one affected platform is PowerPC GNU/Linux, although it depends on
3791 the version of the linker in use). Also, ELF object files naturally
3792 have unresolved relocations for their debug sections. We need to apply
3793 the relocations in order to get the locations of symbols correct.
3794 Another example that may require relocation processing, is the
3795 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3796 debug section. */
3797
3798 bfd_byte *
3799 symfile_relocate_debug_section (struct objfile *objfile,
3800 asection *sectp, bfd_byte *buf)
3801 {
3802 gdb_assert (objfile->sf->sym_relocate);
3803
3804 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3805 }
3806
3807 struct symfile_segment_data *
3808 get_symfile_segment_data (bfd *abfd)
3809 {
3810 const struct sym_fns *sf = find_sym_fns (abfd);
3811
3812 if (sf == NULL)
3813 return NULL;
3814
3815 return sf->sym_segments (abfd);
3816 }
3817
3818 void
3819 free_symfile_segment_data (struct symfile_segment_data *data)
3820 {
3821 xfree (data->segment_bases);
3822 xfree (data->segment_sizes);
3823 xfree (data->segment_info);
3824 xfree (data);
3825 }
3826
3827 /* Given:
3828 - DATA, containing segment addresses from the object file ABFD, and
3829 the mapping from ABFD's sections onto the segments that own them,
3830 and
3831 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3832 segment addresses reported by the target,
3833 store the appropriate offsets for each section in OFFSETS.
3834
3835 If there are fewer entries in SEGMENT_BASES than there are segments
3836 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3837
3838 If there are more entries, then ignore the extra. The target may
3839 not be able to distinguish between an empty data segment and a
3840 missing data segment; a missing text segment is less plausible. */
3841
3842 int
3843 symfile_map_offsets_to_segments (bfd *abfd,
3844 const struct symfile_segment_data *data,
3845 struct section_offsets *offsets,
3846 int num_segment_bases,
3847 const CORE_ADDR *segment_bases)
3848 {
3849 int i;
3850 asection *sect;
3851
3852 /* It doesn't make sense to call this function unless you have some
3853 segment base addresses. */
3854 gdb_assert (num_segment_bases > 0);
3855
3856 /* If we do not have segment mappings for the object file, we
3857 can not relocate it by segments. */
3858 gdb_assert (data != NULL);
3859 gdb_assert (data->num_segments > 0);
3860
3861 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3862 {
3863 int which = data->segment_info[i];
3864
3865 gdb_assert (0 <= which && which <= data->num_segments);
3866
3867 /* Don't bother computing offsets for sections that aren't
3868 loaded as part of any segment. */
3869 if (! which)
3870 continue;
3871
3872 /* Use the last SEGMENT_BASES entry as the address of any extra
3873 segments mentioned in DATA->segment_info. */
3874 if (which > num_segment_bases)
3875 which = num_segment_bases;
3876
3877 offsets->offsets[i] = (segment_bases[which - 1]
3878 - data->segment_bases[which - 1]);
3879 }
3880
3881 return 1;
3882 }
3883
3884 static void
3885 symfile_find_segment_sections (struct objfile *objfile)
3886 {
3887 bfd *abfd = objfile->obfd;
3888 int i;
3889 asection *sect;
3890 struct symfile_segment_data *data;
3891
3892 data = get_symfile_segment_data (objfile->obfd);
3893 if (data == NULL)
3894 return;
3895
3896 if (data->num_segments != 1 && data->num_segments != 2)
3897 {
3898 free_symfile_segment_data (data);
3899 return;
3900 }
3901
3902 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3903 {
3904 int which = data->segment_info[i];
3905
3906 if (which == 1)
3907 {
3908 if (objfile->sect_index_text == -1)
3909 objfile->sect_index_text = sect->index;
3910
3911 if (objfile->sect_index_rodata == -1)
3912 objfile->sect_index_rodata = sect->index;
3913 }
3914 else if (which == 2)
3915 {
3916 if (objfile->sect_index_data == -1)
3917 objfile->sect_index_data = sect->index;
3918
3919 if (objfile->sect_index_bss == -1)
3920 objfile->sect_index_bss = sect->index;
3921 }
3922 }
3923
3924 free_symfile_segment_data (data);
3925 }
3926
3927 /* Listen for free_objfile events. */
3928
3929 static void
3930 symfile_free_objfile (struct objfile *objfile)
3931 {
3932 /* Remove the target sections owned by this objfile. */
3933 if (objfile != NULL)
3934 remove_target_sections ((void *) objfile);
3935 }
3936
3937 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3938 Expand all symtabs that match the specified criteria.
3939 See quick_symbol_functions.expand_symtabs_matching for details. */
3940
3941 void
3942 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3943 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3944 enum search_domain kind,
3945 void *data)
3946 {
3947 struct objfile *objfile;
3948
3949 ALL_OBJFILES (objfile)
3950 {
3951 if (objfile->sf)
3952 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3953 symbol_matcher, kind,
3954 data);
3955 }
3956 }
3957
3958 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3959 Map function FUN over every file.
3960 See quick_symbol_functions.map_symbol_filenames for details. */
3961
3962 void
3963 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3964 int need_fullname)
3965 {
3966 struct objfile *objfile;
3967
3968 ALL_OBJFILES (objfile)
3969 {
3970 if (objfile->sf)
3971 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3972 need_fullname);
3973 }
3974 }
3975
3976 void
3977 _initialize_symfile (void)
3978 {
3979 struct cmd_list_element *c;
3980
3981 observer_attach_free_objfile (symfile_free_objfile);
3982
3983 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3984 Load symbol table from executable file FILE.\n\
3985 The `file' command can also load symbol tables, as well as setting the file\n\
3986 to execute."), &cmdlist);
3987 set_cmd_completer (c, filename_completer);
3988
3989 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3990 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3991 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3992 ...]\nADDR is the starting address of the file's text.\n\
3993 The optional arguments are section-name section-address pairs and\n\
3994 should be specified if the data and bss segments are not contiguous\n\
3995 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3996 &cmdlist);
3997 set_cmd_completer (c, filename_completer);
3998
3999 c = add_cmd ("remove-symbol-file", class_files,
4000 remove_symbol_file_command, _("\
4001 Remove a symbol file added via the add-symbol-file command.\n\
4002 Usage: remove-symbol-file FILENAME\n\
4003 remove-symbol-file -a ADDRESS\n\
4004 The file to remove can be identified by its filename or by an address\n\
4005 that lies within the boundaries of this symbol file in memory."),
4006 &cmdlist);
4007
4008 c = add_cmd ("load", class_files, load_command, _("\
4009 Dynamically load FILE into the running program, and record its symbols\n\
4010 for access from GDB.\n\
4011 A load OFFSET may also be given."), &cmdlist);
4012 set_cmd_completer (c, filename_completer);
4013
4014 add_prefix_cmd ("overlay", class_support, overlay_command,
4015 _("Commands for debugging overlays."), &overlaylist,
4016 "overlay ", 0, &cmdlist);
4017
4018 add_com_alias ("ovly", "overlay", class_alias, 1);
4019 add_com_alias ("ov", "overlay", class_alias, 1);
4020
4021 add_cmd ("map-overlay", class_support, map_overlay_command,
4022 _("Assert that an overlay section is mapped."), &overlaylist);
4023
4024 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4025 _("Assert that an overlay section is unmapped."), &overlaylist);
4026
4027 add_cmd ("list-overlays", class_support, list_overlays_command,
4028 _("List mappings of overlay sections."), &overlaylist);
4029
4030 add_cmd ("manual", class_support, overlay_manual_command,
4031 _("Enable overlay debugging."), &overlaylist);
4032 add_cmd ("off", class_support, overlay_off_command,
4033 _("Disable overlay debugging."), &overlaylist);
4034 add_cmd ("auto", class_support, overlay_auto_command,
4035 _("Enable automatic overlay debugging."), &overlaylist);
4036 add_cmd ("load-target", class_support, overlay_load_command,
4037 _("Read the overlay mapping state from the target."), &overlaylist);
4038
4039 /* Filename extension to source language lookup table: */
4040 init_filename_language_table ();
4041 add_setshow_string_noescape_cmd ("extension-language", class_files,
4042 &ext_args, _("\
4043 Set mapping between filename extension and source language."), _("\
4044 Show mapping between filename extension and source language."), _("\
4045 Usage: set extension-language .foo bar"),
4046 set_ext_lang_command,
4047 show_ext_args,
4048 &setlist, &showlist);
4049
4050 add_info ("extensions", info_ext_lang_command,
4051 _("All filename extensions associated with a source language."));
4052
4053 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4054 &debug_file_directory, _("\
4055 Set the directories where separate debug symbols are searched for."), _("\
4056 Show the directories where separate debug symbols are searched for."), _("\
4057 Separate debug symbols are first searched for in the same\n\
4058 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4059 and lastly at the path of the directory of the binary with\n\
4060 each global debug-file-directory component prepended."),
4061 NULL,
4062 show_debug_file_directory,
4063 &setlist, &showlist);
4064
4065 add_setshow_enum_cmd ("symbol-loading", no_class,
4066 print_symbol_loading_enums, &print_symbol_loading,
4067 _("\
4068 Set printing of symbol loading messages."), _("\
4069 Show printing of symbol loading messages."), _("\
4070 off == turn all messages off\n\
4071 brief == print messages for the executable,\n\
4072 and brief messages for shared libraries\n\
4073 full == print messages for the executable,\n\
4074 and messages for each shared library."),
4075 NULL,
4076 NULL,
4077 &setprintlist, &showprintlist);
4078 }
This page took 0.413103 seconds and 4 git commands to generate.