2002-09-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
41 #include "gdb_obstack.h"
42 #include "completer.h"
43 #include "bcache.h"
44
45 #include <sys/types.h>
46 #include <fcntl.h>
47 #include "gdb_string.h"
48 #include "gdb_stat.h"
49 #include <ctype.h>
50 #include <time.h>
51
52 #ifndef O_BINARY
53 #define O_BINARY 0
54 #endif
55
56 #ifdef HPUXHPPA
57
58 /* Some HP-UX related globals to clear when a new "main"
59 symbol file is loaded. HP-specific. */
60
61 extern int hp_som_som_object_present;
62 extern int hp_cxx_exception_support_initialized;
63 #define RESET_HP_UX_GLOBALS() do {\
64 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
65 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
66 } while (0)
67 #endif
68
69 int (*ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*pre_add_symbol_hook) (char *);
76 void (*post_add_symbol_hook) (void);
77 void (*target_new_objfile_hook) (struct objfile *);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void set_initial_language (void);
96
97 static void load_command (char *, int);
98
99 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
100
101 static void add_symbol_file_command (char *, int);
102
103 static void add_shared_symbol_files_command (char *, int);
104
105 static void cashier_psymtab (struct partial_symtab *);
106
107 bfd *symfile_bfd_open (char *);
108
109 int get_section_index (struct objfile *, char *);
110
111 static void find_sym_fns (struct objfile *);
112
113 static void decrement_reading_symtab (void *);
114
115 static void overlay_invalidate_all (void);
116
117 static int overlay_is_mapped (struct obj_section *);
118
119 void list_overlays_command (char *, int);
120
121 void map_overlay_command (char *, int);
122
123 void unmap_overlay_command (char *, int);
124
125 static void overlay_auto_command (char *, int);
126
127 static void overlay_manual_command (char *, int);
128
129 static void overlay_off_command (char *, int);
130
131 static void overlay_load_command (char *, int);
132
133 static void overlay_command (char *, int);
134
135 static void simple_free_overlay_table (void);
136
137 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
138
139 static int simple_read_overlay_table (void);
140
141 static int simple_overlay_update_1 (struct obj_section *);
142
143 static void add_filename_language (char *ext, enum language lang);
144
145 static void set_ext_lang_command (char *args, int from_tty);
146
147 static void info_ext_lang_command (char *args, int from_tty);
148
149 static void init_filename_language_table (void);
150
151 void _initialize_symfile (void);
152
153 /* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157 static struct sym_fns *symtab_fns = NULL;
158
159 /* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162 #ifdef SYMBOL_RELOADING_DEFAULT
163 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164 #else
165 int symbol_reloading = 0;
166 #endif
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179
180 /* For systems that support it, a threshold size in megabytes. If
181 automatically adding a new library's symbol table to those already
182 known to the debugger would cause the total shared library symbol
183 size to exceed this threshhold, then the shlib's symbols are not
184 added. The threshold is ignored if the user explicitly asks for a
185 shlib to be added, such as when using the "sharedlibrary"
186 command. */
187
188 int auto_solib_limit;
189 \f
190
191 /* Since this function is called from within qsort, in an ANSI environment
192 it must conform to the prototype for qsort, which specifies that the
193 comparison function takes two "void *" pointers. */
194
195 static int
196 compare_symbols (const void *s1p, const void *s2p)
197 {
198 register struct symbol **s1, **s2;
199
200 s1 = (struct symbol **) s1p;
201 s2 = (struct symbol **) s2p;
202 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
203 }
204
205 /*
206
207 LOCAL FUNCTION
208
209 compare_psymbols -- compare two partial symbols by name
210
211 DESCRIPTION
212
213 Given pointers to pointers to two partial symbol table entries,
214 compare them by name and return -N, 0, or +N (ala strcmp).
215 Typically used by sorting routines like qsort().
216
217 NOTES
218
219 Does direct compare of first two characters before punting
220 and passing to strcmp for longer compares. Note that the
221 original version had a bug whereby two null strings or two
222 identically named one character strings would return the
223 comparison of memory following the null byte.
224
225 */
226
227 static int
228 compare_psymbols (const void *s1p, const void *s2p)
229 {
230 register struct partial_symbol **s1, **s2;
231 register char *st1, *st2;
232
233 s1 = (struct partial_symbol **) s1p;
234 s2 = (struct partial_symbol **) s2p;
235 st1 = SYMBOL_SOURCE_NAME (*s1);
236 st2 = SYMBOL_SOURCE_NAME (*s2);
237
238
239 if ((st1[0] - st2[0]) || !st1[0])
240 {
241 return (st1[0] - st2[0]);
242 }
243 else if ((st1[1] - st2[1]) || !st1[1])
244 {
245 return (st1[1] - st2[1]);
246 }
247 else
248 {
249 return (strcmp (st1, st2));
250 }
251 }
252
253 void
254 sort_pst_symbols (struct partial_symtab *pst)
255 {
256 /* Sort the global list; don't sort the static list */
257
258 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
259 pst->n_global_syms, sizeof (struct partial_symbol *),
260 compare_psymbols);
261 }
262
263 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
264
265 void
266 sort_block_syms (register struct block *b)
267 {
268 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
269 sizeof (struct symbol *), compare_symbols);
270 }
271
272 /* Call sort_symtab_syms to sort alphabetically
273 the symbols of each block of one symtab. */
274
275 void
276 sort_symtab_syms (register struct symtab *s)
277 {
278 register struct blockvector *bv;
279 int nbl;
280 int i;
281 register struct block *b;
282
283 if (s == 0)
284 return;
285 bv = BLOCKVECTOR (s);
286 nbl = BLOCKVECTOR_NBLOCKS (bv);
287 for (i = 0; i < nbl; i++)
288 {
289 b = BLOCKVECTOR_BLOCK (bv, i);
290 if (BLOCK_SHOULD_SORT (b))
291 sort_block_syms (b);
292 }
293 }
294
295 /* Make a null terminated copy of the string at PTR with SIZE characters in
296 the obstack pointed to by OBSTACKP . Returns the address of the copy.
297 Note that the string at PTR does not have to be null terminated, I.E. it
298 may be part of a larger string and we are only saving a substring. */
299
300 char *
301 obsavestring (char *ptr, int size, struct obstack *obstackp)
302 {
303 register char *p = (char *) obstack_alloc (obstackp, size + 1);
304 /* Open-coded memcpy--saves function call time. These strings are usually
305 short. FIXME: Is this really still true with a compiler that can
306 inline memcpy? */
307 {
308 register char *p1 = ptr;
309 register char *p2 = p;
310 char *end = ptr + size;
311 while (p1 != end)
312 *p2++ = *p1++;
313 }
314 p[size] = 0;
315 return p;
316 }
317
318 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
319 in the obstack pointed to by OBSTACKP. */
320
321 char *
322 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
323 const char *s3)
324 {
325 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
326 register char *val = (char *) obstack_alloc (obstackp, len);
327 strcpy (val, s1);
328 strcat (val, s2);
329 strcat (val, s3);
330 return val;
331 }
332
333 /* True if we are nested inside psymtab_to_symtab. */
334
335 int currently_reading_symtab = 0;
336
337 static void
338 decrement_reading_symtab (void *dummy)
339 {
340 currently_reading_symtab--;
341 }
342
343 /* Get the symbol table that corresponds to a partial_symtab.
344 This is fast after the first time you do it. In fact, there
345 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
346 case inline. */
347
348 struct symtab *
349 psymtab_to_symtab (register struct partial_symtab *pst)
350 {
351 /* If it's been looked up before, return it. */
352 if (pst->symtab)
353 return pst->symtab;
354
355 /* If it has not yet been read in, read it. */
356 if (!pst->readin)
357 {
358 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
359 currently_reading_symtab++;
360 (*pst->read_symtab) (pst);
361 do_cleanups (back_to);
362 }
363
364 return pst->symtab;
365 }
366
367 /* Initialize entry point information for this objfile. */
368
369 void
370 init_entry_point_info (struct objfile *objfile)
371 {
372 /* Save startup file's range of PC addresses to help blockframe.c
373 decide where the bottom of the stack is. */
374
375 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
376 {
377 /* Executable file -- record its entry point so we'll recognize
378 the startup file because it contains the entry point. */
379 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
380 }
381 else
382 {
383 /* Examination of non-executable.o files. Short-circuit this stuff. */
384 objfile->ei.entry_point = INVALID_ENTRY_POINT;
385 }
386 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
387 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
388 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
389 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
390 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
391 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
392 }
393
394 /* Get current entry point address. */
395
396 CORE_ADDR
397 entry_point_address (void)
398 {
399 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
400 }
401
402 /* Remember the lowest-addressed loadable section we've seen.
403 This function is called via bfd_map_over_sections.
404
405 In case of equal vmas, the section with the largest size becomes the
406 lowest-addressed loadable section.
407
408 If the vmas and sizes are equal, the last section is considered the
409 lowest-addressed loadable section. */
410
411 void
412 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
413 {
414 asection **lowest = (asection **) obj;
415
416 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
417 return;
418 if (!*lowest)
419 *lowest = sect; /* First loadable section */
420 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
421 *lowest = sect; /* A lower loadable section */
422 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
423 && (bfd_section_size (abfd, (*lowest))
424 <= bfd_section_size (abfd, sect)))
425 *lowest = sect;
426 }
427
428
429 /* Build (allocate and populate) a section_addr_info struct from
430 an existing section table. */
431
432 extern struct section_addr_info *
433 build_section_addr_info_from_section_table (const struct section_table *start,
434 const struct section_table *end)
435 {
436 struct section_addr_info *sap;
437 const struct section_table *stp;
438 int oidx;
439
440 sap = xmalloc (sizeof (struct section_addr_info));
441 memset (sap, 0, sizeof (struct section_addr_info));
442
443 for (stp = start, oidx = 0; stp != end; stp++)
444 {
445 if (bfd_get_section_flags (stp->bfd,
446 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
447 && oidx < MAX_SECTIONS)
448 {
449 sap->other[oidx].addr = stp->addr;
450 sap->other[oidx].name
451 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
452 sap->other[oidx].sectindex = stp->the_bfd_section->index;
453 oidx++;
454 }
455 }
456
457 return sap;
458 }
459
460
461 /* Free all memory allocated by build_section_addr_info_from_section_table. */
462
463 extern void
464 free_section_addr_info (struct section_addr_info *sap)
465 {
466 int idx;
467
468 for (idx = 0; idx < MAX_SECTIONS; idx++)
469 if (sap->other[idx].name)
470 xfree (sap->other[idx].name);
471 xfree (sap);
472 }
473
474
475 /* Parse the user's idea of an offset for dynamic linking, into our idea
476 of how to represent it for fast symbol reading. This is the default
477 version of the sym_fns.sym_offsets function for symbol readers that
478 don't need to do anything special. It allocates a section_offsets table
479 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
480
481 void
482 default_symfile_offsets (struct objfile *objfile,
483 struct section_addr_info *addrs)
484 {
485 int i;
486 asection *sect = NULL;
487
488 objfile->num_sections = SECT_OFF_MAX;
489 objfile->section_offsets = (struct section_offsets *)
490 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
491 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
492
493 /* Now calculate offsets for section that were specified by the
494 caller. */
495 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
496 {
497 struct other_sections *osp ;
498
499 osp = &addrs->other[i] ;
500 if (osp->addr == 0)
501 continue;
502
503 /* Record all sections in offsets */
504 /* The section_offsets in the objfile are here filled in using
505 the BFD index. */
506 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
507 }
508
509 /* Remember the bfd indexes for the .text, .data, .bss and
510 .rodata sections. */
511
512 sect = bfd_get_section_by_name (objfile->obfd, ".text");
513 if (sect)
514 objfile->sect_index_text = sect->index;
515
516 sect = bfd_get_section_by_name (objfile->obfd, ".data");
517 if (sect)
518 objfile->sect_index_data = sect->index;
519
520 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
521 if (sect)
522 objfile->sect_index_bss = sect->index;
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
525 if (sect)
526 objfile->sect_index_rodata = sect->index;
527
528 /* This is where things get really weird... We MUST have valid
529 indices for the various sect_index_* members or gdb will abort.
530 So if for example, there is no ".text" section, we have to
531 accomodate that. Except when explicitly adding symbol files at
532 some address, section_offsets contains nothing but zeros, so it
533 doesn't matter which slot in section_offsets the individual
534 sect_index_* members index into. So if they are all zero, it is
535 safe to just point all the currently uninitialized indices to the
536 first slot. */
537
538 for (i = 0; i < objfile->num_sections; i++)
539 {
540 if (ANOFFSET (objfile->section_offsets, i) != 0)
541 {
542 break;
543 }
544 }
545 if (i == objfile->num_sections)
546 {
547 if (objfile->sect_index_text == -1)
548 objfile->sect_index_text = 0;
549 if (objfile->sect_index_data == -1)
550 objfile->sect_index_data = 0;
551 if (objfile->sect_index_bss == -1)
552 objfile->sect_index_bss = 0;
553 if (objfile->sect_index_rodata == -1)
554 objfile->sect_index_rodata = 0;
555 }
556 }
557
558 /* Process a symbol file, as either the main file or as a dynamically
559 loaded file.
560
561 OBJFILE is where the symbols are to be read from.
562
563 ADDR is the address where the text segment was loaded, unless the
564 objfile is the main symbol file, in which case it is zero.
565
566 MAINLINE is nonzero if this is the main symbol file, or zero if
567 it's an extra symbol file such as dynamically loaded code.
568
569 VERBO is nonzero if the caller has printed a verbose message about
570 the symbol reading (and complaints can be more terse about it). */
571
572 void
573 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
574 int mainline, int verbo)
575 {
576 asection *lower_sect;
577 asection *sect;
578 CORE_ADDR lower_offset;
579 struct section_addr_info local_addr;
580 struct cleanup *old_chain;
581 int i;
582
583 /* If ADDRS is NULL, initialize the local section_addr_info struct and
584 point ADDRS to it. We now establish the convention that an addr of
585 zero means no load address was specified. */
586
587 if (addrs == NULL)
588 {
589 memset (&local_addr, 0, sizeof (local_addr));
590 addrs = &local_addr;
591 }
592
593 init_entry_point_info (objfile);
594 find_sym_fns (objfile);
595
596 if (objfile->sf == NULL)
597 return; /* No symbols. */
598
599 /* Make sure that partially constructed symbol tables will be cleaned up
600 if an error occurs during symbol reading. */
601 old_chain = make_cleanup_free_objfile (objfile);
602
603 if (mainline)
604 {
605 /* We will modify the main symbol table, make sure that all its users
606 will be cleaned up if an error occurs during symbol reading. */
607 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
608
609 /* Since no error yet, throw away the old symbol table. */
610
611 if (symfile_objfile != NULL)
612 {
613 free_objfile (symfile_objfile);
614 symfile_objfile = NULL;
615 }
616
617 /* Currently we keep symbols from the add-symbol-file command.
618 If the user wants to get rid of them, they should do "symbol-file"
619 without arguments first. Not sure this is the best behavior
620 (PR 2207). */
621
622 (*objfile->sf->sym_new_init) (objfile);
623 }
624
625 /* Convert addr into an offset rather than an absolute address.
626 We find the lowest address of a loaded segment in the objfile,
627 and assume that <addr> is where that got loaded.
628
629 We no longer warn if the lowest section is not a text segment (as
630 happens for the PA64 port. */
631 if (!mainline)
632 {
633 /* Find lowest loadable section to be used as starting point for
634 continguous sections. FIXME!! won't work without call to find
635 .text first, but this assumes text is lowest section. */
636 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
637 if (lower_sect == NULL)
638 bfd_map_over_sections (objfile->obfd, find_lowest_section,
639 (PTR) &lower_sect);
640 if (lower_sect == NULL)
641 warning ("no loadable sections found in added symbol-file %s",
642 objfile->name);
643 else
644 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
645 warning ("Lowest section in %s is %s at %s",
646 objfile->name,
647 bfd_section_name (objfile->obfd, lower_sect),
648 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
649 if (lower_sect != NULL)
650 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
651 else
652 lower_offset = 0;
653
654 /* Calculate offsets for the loadable sections.
655 FIXME! Sections must be in order of increasing loadable section
656 so that contiguous sections can use the lower-offset!!!
657
658 Adjust offsets if the segments are not contiguous.
659 If the section is contiguous, its offset should be set to
660 the offset of the highest loadable section lower than it
661 (the loadable section directly below it in memory).
662 this_offset = lower_offset = lower_addr - lower_orig_addr */
663
664 /* Calculate offsets for sections. */
665 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
666 {
667 if (addrs->other[i].addr != 0)
668 {
669 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
670 if (sect)
671 {
672 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s", addrs->other[i].name,
680 objfile->name);
681 addrs->other[i].addr = 0;
682 }
683 }
684 else
685 addrs->other[i].addr = lower_offset;
686 }
687 }
688
689 /* Initialize symbol reading routines for this objfile, allow complaints to
690 appear for this new file, and record how verbose to be, then do the
691 initial symbol reading for this file. */
692
693 (*objfile->sf->sym_init) (objfile);
694 clear_complaints (&symfile_complaints, 1, verbo);
695
696 (*objfile->sf->sym_offsets) (objfile, addrs);
697
698 #ifndef IBM6000_TARGET
699 /* This is a SVR4/SunOS specific hack, I think. In any event, it
700 screws RS/6000. sym_offsets should be doing this sort of thing,
701 because it knows the mapping between bfd sections and
702 section_offsets. */
703 /* This is a hack. As far as I can tell, section offsets are not
704 target dependent. They are all set to addr with a couple of
705 exceptions. The exceptions are sysvr4 shared libraries, whose
706 offsets are kept in solib structures anyway and rs6000 xcoff
707 which handles shared libraries in a completely unique way.
708
709 Section offsets are built similarly, except that they are built
710 by adding addr in all cases because there is no clear mapping
711 from section_offsets into actual sections. Note that solib.c
712 has a different algorithm for finding section offsets.
713
714 These should probably all be collapsed into some target
715 independent form of shared library support. FIXME. */
716
717 if (addrs)
718 {
719 struct obj_section *s;
720
721 /* Map section offsets in "addr" back to the object's
722 sections by comparing the section names with bfd's
723 section names. Then adjust the section address by
724 the offset. */ /* for gdb/13815 */
725
726 ALL_OBJFILE_OSECTIONS (objfile, s)
727 {
728 CORE_ADDR s_addr = 0;
729 int i;
730
731 for (i = 0;
732 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
733 i++)
734 if (strcmp (bfd_section_name (s->objfile->obfd,
735 s->the_bfd_section),
736 addrs->other[i].name) == 0)
737 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
738
739 s->addr -= s->offset;
740 s->addr += s_addr;
741 s->endaddr -= s->offset;
742 s->endaddr += s_addr;
743 s->offset += s_addr;
744 }
745 }
746 #endif /* not IBM6000_TARGET */
747
748 (*objfile->sf->sym_read) (objfile, mainline);
749
750 if (!have_partial_symbols () && !have_full_symbols ())
751 {
752 wrap_here ("");
753 printf_filtered ("(no debugging symbols found)...");
754 wrap_here ("");
755 }
756
757 /* Don't allow char * to have a typename (else would get caddr_t).
758 Ditto void *. FIXME: Check whether this is now done by all the
759 symbol readers themselves (many of them now do), and if so remove
760 it from here. */
761
762 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
763 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
764
765 /* Mark the objfile has having had initial symbol read attempted. Note
766 that this does not mean we found any symbols... */
767
768 objfile->flags |= OBJF_SYMS;
769
770 /* Discard cleanups as symbol reading was successful. */
771
772 discard_cleanups (old_chain);
773
774 /* Call this after reading in a new symbol table to give target
775 dependent code a crack at the new symbols. For instance, this
776 could be used to update the values of target-specific symbols GDB
777 needs to keep track of (such as _sigtramp, or whatever). */
778
779 TARGET_SYMFILE_POSTREAD (objfile);
780 }
781
782 /* Perform required actions after either reading in the initial
783 symbols for a new objfile, or mapping in the symbols from a reusable
784 objfile. */
785
786 void
787 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
788 {
789
790 /* If this is the main symbol file we have to clean up all users of the
791 old main symbol file. Otherwise it is sufficient to fixup all the
792 breakpoints that may have been redefined by this symbol file. */
793 if (mainline)
794 {
795 /* OK, make it the "real" symbol file. */
796 symfile_objfile = objfile;
797
798 clear_symtab_users ();
799 }
800 else
801 {
802 breakpoint_re_set ();
803 }
804
805 /* We're done reading the symbol file; finish off complaints. */
806 clear_complaints (&symfile_complaints, 0, verbo);
807 }
808
809 /* Process a symbol file, as either the main file or as a dynamically
810 loaded file.
811
812 NAME is the file name (which will be tilde-expanded and made
813 absolute herein) (but we don't free or modify NAME itself).
814 FROM_TTY says how verbose to be. MAINLINE specifies whether this
815 is the main symbol file, or whether it's an extra symbol file such
816 as dynamically loaded code. If !mainline, ADDR is the address
817 where the text segment was loaded.
818
819 Upon success, returns a pointer to the objfile that was added.
820 Upon failure, jumps back to command level (never returns). */
821
822 struct objfile *
823 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
824 int mainline, int flags)
825 {
826 struct objfile *objfile;
827 struct partial_symtab *psymtab;
828 bfd *abfd;
829
830 /* Open a bfd for the file, and give user a chance to burp if we'd be
831 interactively wiping out any existing symbols. */
832
833 abfd = symfile_bfd_open (name);
834
835 if ((have_full_symbols () || have_partial_symbols ())
836 && mainline
837 && from_tty
838 && !query ("Load new symbol table from \"%s\"? ", name))
839 error ("Not confirmed.");
840
841 objfile = allocate_objfile (abfd, flags);
842
843 /* If the objfile uses a mapped symbol file, and we have a psymtab for
844 it, then skip reading any symbols at this time. */
845
846 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
847 {
848 /* We mapped in an existing symbol table file that already has had
849 initial symbol reading performed, so we can skip that part. Notify
850 the user that instead of reading the symbols, they have been mapped.
851 */
852 if (from_tty || info_verbose)
853 {
854 printf_filtered ("Mapped symbols for %s...", name);
855 wrap_here ("");
856 gdb_flush (gdb_stdout);
857 }
858 init_entry_point_info (objfile);
859 find_sym_fns (objfile);
860 }
861 else
862 {
863 /* We either created a new mapped symbol table, mapped an existing
864 symbol table file which has not had initial symbol reading
865 performed, or need to read an unmapped symbol table. */
866 if (from_tty || info_verbose)
867 {
868 if (pre_add_symbol_hook)
869 pre_add_symbol_hook (name);
870 else
871 {
872 printf_filtered ("Reading symbols from %s...", name);
873 wrap_here ("");
874 gdb_flush (gdb_stdout);
875 }
876 }
877 syms_from_objfile (objfile, addrs, mainline, from_tty);
878 }
879
880 /* We now have at least a partial symbol table. Check to see if the
881 user requested that all symbols be read on initial access via either
882 the gdb startup command line or on a per symbol file basis. Expand
883 all partial symbol tables for this objfile if so. */
884
885 if ((flags & OBJF_READNOW) || readnow_symbol_files)
886 {
887 if (from_tty || info_verbose)
888 {
889 printf_filtered ("expanding to full symbols...");
890 wrap_here ("");
891 gdb_flush (gdb_stdout);
892 }
893
894 for (psymtab = objfile->psymtabs;
895 psymtab != NULL;
896 psymtab = psymtab->next)
897 {
898 psymtab_to_symtab (psymtab);
899 }
900 }
901
902 if (from_tty || info_verbose)
903 {
904 if (post_add_symbol_hook)
905 post_add_symbol_hook ();
906 else
907 {
908 printf_filtered ("done.\n");
909 gdb_flush (gdb_stdout);
910 }
911 }
912
913 if (objfile->sf == NULL)
914 return objfile; /* No symbols. */
915
916 new_symfile_objfile (objfile, mainline, from_tty);
917
918 if (target_new_objfile_hook)
919 target_new_objfile_hook (objfile);
920
921 return (objfile);
922 }
923
924 /* Call symbol_file_add() with default values and update whatever is
925 affected by the loading of a new main().
926 Used when the file is supplied in the gdb command line
927 and by some targets with special loading requirements.
928 The auxiliary function, symbol_file_add_main_1(), has the flags
929 argument for the switches that can only be specified in the symbol_file
930 command itself. */
931
932 void
933 symbol_file_add_main (char *args, int from_tty)
934 {
935 symbol_file_add_main_1 (args, from_tty, 0);
936 }
937
938 static void
939 symbol_file_add_main_1 (char *args, int from_tty, int flags)
940 {
941 symbol_file_add (args, from_tty, NULL, 1, flags);
942
943 #ifdef HPUXHPPA
944 RESET_HP_UX_GLOBALS ();
945 #endif
946
947 /* Getting new symbols may change our opinion about
948 what is frameless. */
949 reinit_frame_cache ();
950
951 set_initial_language ();
952 }
953
954 void
955 symbol_file_clear (int from_tty)
956 {
957 if ((have_full_symbols () || have_partial_symbols ())
958 && from_tty
959 && !query ("Discard symbol table from `%s'? ",
960 symfile_objfile->name))
961 error ("Not confirmed.");
962 free_all_objfiles ();
963
964 /* solib descriptors may have handles to objfiles. Since their
965 storage has just been released, we'd better wipe the solib
966 descriptors as well.
967 */
968 #if defined(SOLIB_RESTART)
969 SOLIB_RESTART ();
970 #endif
971
972 symfile_objfile = NULL;
973 if (from_tty)
974 printf_unfiltered ("No symbol file now.\n");
975 #ifdef HPUXHPPA
976 RESET_HP_UX_GLOBALS ();
977 #endif
978 }
979
980 /* This is the symbol-file command. Read the file, analyze its
981 symbols, and add a struct symtab to a symtab list. The syntax of
982 the command is rather bizarre--(1) buildargv implements various
983 quoting conventions which are undocumented and have little or
984 nothing in common with the way things are quoted (or not quoted)
985 elsewhere in GDB, (2) options are used, which are not generally
986 used in GDB (perhaps "set mapped on", "set readnow on" would be
987 better), (3) the order of options matters, which is contrary to GNU
988 conventions (because it is confusing and inconvenient). */
989 /* Note: ezannoni 2000-04-17. This function used to have support for
990 rombug (see remote-os9k.c). It consisted of a call to target_link()
991 (target.c) to get the address of the text segment from the target,
992 and pass that to symbol_file_add(). This is no longer supported. */
993
994 void
995 symbol_file_command (char *args, int from_tty)
996 {
997 char **argv;
998 char *name = NULL;
999 struct cleanup *cleanups;
1000 int flags = OBJF_USERLOADED;
1001
1002 dont_repeat ();
1003
1004 if (args == NULL)
1005 {
1006 symbol_file_clear (from_tty);
1007 }
1008 else
1009 {
1010 if ((argv = buildargv (args)) == NULL)
1011 {
1012 nomem (0);
1013 }
1014 cleanups = make_cleanup_freeargv (argv);
1015 while (*argv != NULL)
1016 {
1017 if (STREQ (*argv, "-mapped"))
1018 flags |= OBJF_MAPPED;
1019 else
1020 if (STREQ (*argv, "-readnow"))
1021 flags |= OBJF_READNOW;
1022 else
1023 if (**argv == '-')
1024 error ("unknown option `%s'", *argv);
1025 else
1026 {
1027 name = *argv;
1028
1029 symbol_file_add_main_1 (name, from_tty, flags);
1030 }
1031 argv++;
1032 }
1033
1034 if (name == NULL)
1035 {
1036 error ("no symbol file name was specified");
1037 }
1038 do_cleanups (cleanups);
1039 }
1040 }
1041
1042 /* Set the initial language.
1043
1044 A better solution would be to record the language in the psymtab when reading
1045 partial symbols, and then use it (if known) to set the language. This would
1046 be a win for formats that encode the language in an easily discoverable place,
1047 such as DWARF. For stabs, we can jump through hoops looking for specially
1048 named symbols or try to intuit the language from the specific type of stabs
1049 we find, but we can't do that until later when we read in full symbols.
1050 FIXME. */
1051
1052 static void
1053 set_initial_language (void)
1054 {
1055 struct partial_symtab *pst;
1056 enum language lang = language_unknown;
1057
1058 pst = find_main_psymtab ();
1059 if (pst != NULL)
1060 {
1061 if (pst->filename != NULL)
1062 {
1063 lang = deduce_language_from_filename (pst->filename);
1064 }
1065 if (lang == language_unknown)
1066 {
1067 /* Make C the default language */
1068 lang = language_c;
1069 }
1070 set_language (lang);
1071 expected_language = current_language; /* Don't warn the user */
1072 }
1073 }
1074
1075 /* Open file specified by NAME and hand it off to BFD for preliminary
1076 analysis. Result is a newly initialized bfd *, which includes a newly
1077 malloc'd` copy of NAME (tilde-expanded and made absolute).
1078 In case of trouble, error() is called. */
1079
1080 bfd *
1081 symfile_bfd_open (char *name)
1082 {
1083 bfd *sym_bfd;
1084 int desc;
1085 char *absolute_name;
1086
1087
1088
1089 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1090
1091 /* Look down path for it, allocate 2nd new malloc'd copy. */
1092 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1093 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1094 if (desc < 0)
1095 {
1096 char *exename = alloca (strlen (name) + 5);
1097 strcat (strcpy (exename, name), ".exe");
1098 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1099 0, &absolute_name);
1100 }
1101 #endif
1102 if (desc < 0)
1103 {
1104 make_cleanup (xfree, name);
1105 perror_with_name (name);
1106 }
1107 xfree (name); /* Free 1st new malloc'd copy */
1108 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1109 /* It'll be freed in free_objfile(). */
1110
1111 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1112 if (!sym_bfd)
1113 {
1114 close (desc);
1115 make_cleanup (xfree, name);
1116 error ("\"%s\": can't open to read symbols: %s.", name,
1117 bfd_errmsg (bfd_get_error ()));
1118 }
1119 sym_bfd->cacheable = 1;
1120
1121 if (!bfd_check_format (sym_bfd, bfd_object))
1122 {
1123 /* FIXME: should be checking for errors from bfd_close (for one thing,
1124 on error it does not free all the storage associated with the
1125 bfd). */
1126 bfd_close (sym_bfd); /* This also closes desc */
1127 make_cleanup (xfree, name);
1128 error ("\"%s\": can't read symbols: %s.", name,
1129 bfd_errmsg (bfd_get_error ()));
1130 }
1131 return (sym_bfd);
1132 }
1133
1134 /* Return the section index for the given section name. Return -1 if
1135 the section was not found. */
1136 int
1137 get_section_index (struct objfile *objfile, char *section_name)
1138 {
1139 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1140 if (sect)
1141 return sect->index;
1142 else
1143 return -1;
1144 }
1145
1146 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1147 startup by the _initialize routine in each object file format reader,
1148 to register information about each format the the reader is prepared
1149 to handle. */
1150
1151 void
1152 add_symtab_fns (struct sym_fns *sf)
1153 {
1154 sf->next = symtab_fns;
1155 symtab_fns = sf;
1156 }
1157
1158
1159 /* Initialize to read symbols from the symbol file sym_bfd. It either
1160 returns or calls error(). The result is an initialized struct sym_fns
1161 in the objfile structure, that contains cached information about the
1162 symbol file. */
1163
1164 static void
1165 find_sym_fns (struct objfile *objfile)
1166 {
1167 struct sym_fns *sf;
1168 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1169 char *our_target = bfd_get_target (objfile->obfd);
1170
1171 if (our_flavour == bfd_target_srec_flavour
1172 || our_flavour == bfd_target_ihex_flavour
1173 || our_flavour == bfd_target_tekhex_flavour)
1174 return; /* No symbols. */
1175
1176 /* Special kludge for apollo. See dstread.c. */
1177 if (STREQN (our_target, "apollo", 6))
1178 our_flavour = (enum bfd_flavour) -2;
1179
1180 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1181 {
1182 if (our_flavour == sf->sym_flavour)
1183 {
1184 objfile->sf = sf;
1185 return;
1186 }
1187 }
1188 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1189 bfd_get_target (objfile->obfd));
1190 }
1191 \f
1192 /* This function runs the load command of our current target. */
1193
1194 static void
1195 load_command (char *arg, int from_tty)
1196 {
1197 if (arg == NULL)
1198 arg = get_exec_file (1);
1199 target_load (arg, from_tty);
1200
1201 /* After re-loading the executable, we don't really know which
1202 overlays are mapped any more. */
1203 overlay_cache_invalid = 1;
1204 }
1205
1206 /* This version of "load" should be usable for any target. Currently
1207 it is just used for remote targets, not inftarg.c or core files,
1208 on the theory that only in that case is it useful.
1209
1210 Avoiding xmodem and the like seems like a win (a) because we don't have
1211 to worry about finding it, and (b) On VMS, fork() is very slow and so
1212 we don't want to run a subprocess. On the other hand, I'm not sure how
1213 performance compares. */
1214
1215 static int download_write_size = 512;
1216 static int validate_download = 0;
1217
1218 /* Callback service function for generic_load (bfd_map_over_sections). */
1219
1220 static void
1221 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1222 {
1223 bfd_size_type *sum = data;
1224
1225 *sum += bfd_get_section_size_before_reloc (asec);
1226 }
1227
1228 /* Opaque data for load_section_callback. */
1229 struct load_section_data {
1230 unsigned long load_offset;
1231 unsigned long write_count;
1232 unsigned long data_count;
1233 bfd_size_type total_size;
1234 };
1235
1236 /* Callback service function for generic_load (bfd_map_over_sections). */
1237
1238 static void
1239 load_section_callback (bfd *abfd, asection *asec, void *data)
1240 {
1241 struct load_section_data *args = data;
1242
1243 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1244 {
1245 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1246 if (size > 0)
1247 {
1248 char *buffer;
1249 struct cleanup *old_chain;
1250 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1251 bfd_size_type block_size;
1252 int err;
1253 const char *sect_name = bfd_get_section_name (abfd, asec);
1254 bfd_size_type sent;
1255
1256 if (download_write_size > 0 && size > download_write_size)
1257 block_size = download_write_size;
1258 else
1259 block_size = size;
1260
1261 buffer = xmalloc (size);
1262 old_chain = make_cleanup (xfree, buffer);
1263
1264 /* Is this really necessary? I guess it gives the user something
1265 to look at during a long download. */
1266 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1267 sect_name, paddr_nz (size), paddr_nz (lma));
1268
1269 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1270
1271 sent = 0;
1272 do
1273 {
1274 int len;
1275 bfd_size_type this_transfer = size - sent;
1276
1277 if (this_transfer >= block_size)
1278 this_transfer = block_size;
1279 len = target_write_memory_partial (lma, buffer,
1280 this_transfer, &err);
1281 if (err)
1282 break;
1283 if (validate_download)
1284 {
1285 /* Broken memories and broken monitors manifest
1286 themselves here when bring new computers to
1287 life. This doubles already slow downloads. */
1288 /* NOTE: cagney/1999-10-18: A more efficient
1289 implementation might add a verify_memory()
1290 method to the target vector and then use
1291 that. remote.c could implement that method
1292 using the ``qCRC'' packet. */
1293 char *check = xmalloc (len);
1294 struct cleanup *verify_cleanups =
1295 make_cleanup (xfree, check);
1296
1297 if (target_read_memory (lma, check, len) != 0)
1298 error ("Download verify read failed at 0x%s",
1299 paddr (lma));
1300 if (memcmp (buffer, check, len) != 0)
1301 error ("Download verify compare failed at 0x%s",
1302 paddr (lma));
1303 do_cleanups (verify_cleanups);
1304 }
1305 args->data_count += len;
1306 lma += len;
1307 buffer += len;
1308 args->write_count += 1;
1309 sent += len;
1310 if (quit_flag
1311 || (ui_load_progress_hook != NULL
1312 && ui_load_progress_hook (sect_name, sent)))
1313 error ("Canceled the download");
1314
1315 if (show_load_progress != NULL)
1316 show_load_progress (sect_name, sent, size,
1317 args->data_count, args->total_size);
1318 }
1319 while (sent < size);
1320
1321 if (err != 0)
1322 error ("Memory access error while loading section %s.", sect_name);
1323
1324 do_cleanups (old_chain);
1325 }
1326 }
1327 }
1328
1329 void
1330 generic_load (char *args, int from_tty)
1331 {
1332 asection *s;
1333 bfd *loadfile_bfd;
1334 time_t start_time, end_time; /* Start and end times of download */
1335 char *filename;
1336 struct cleanup *old_cleanups;
1337 char *offptr;
1338 struct load_section_data cbdata;
1339 CORE_ADDR entry;
1340
1341 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1342 cbdata.write_count = 0; /* Number of writes needed. */
1343 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1344 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1345
1346 /* Parse the input argument - the user can specify a load offset as
1347 a second argument. */
1348 filename = xmalloc (strlen (args) + 1);
1349 old_cleanups = make_cleanup (xfree, filename);
1350 strcpy (filename, args);
1351 offptr = strchr (filename, ' ');
1352 if (offptr != NULL)
1353 {
1354 char *endptr;
1355
1356 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1357 if (offptr == endptr)
1358 error ("Invalid download offset:%s\n", offptr);
1359 *offptr = '\0';
1360 }
1361 else
1362 cbdata.load_offset = 0;
1363
1364 /* Open the file for loading. */
1365 loadfile_bfd = bfd_openr (filename, gnutarget);
1366 if (loadfile_bfd == NULL)
1367 {
1368 perror_with_name (filename);
1369 return;
1370 }
1371
1372 /* FIXME: should be checking for errors from bfd_close (for one thing,
1373 on error it does not free all the storage associated with the
1374 bfd). */
1375 make_cleanup_bfd_close (loadfile_bfd);
1376
1377 if (!bfd_check_format (loadfile_bfd, bfd_object))
1378 {
1379 error ("\"%s\" is not an object file: %s", filename,
1380 bfd_errmsg (bfd_get_error ()));
1381 }
1382
1383 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1384 (void *) &cbdata.total_size);
1385
1386 start_time = time (NULL);
1387
1388 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1389
1390 end_time = time (NULL);
1391
1392 entry = bfd_get_start_address (loadfile_bfd);
1393 ui_out_text (uiout, "Start address ");
1394 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1395 ui_out_text (uiout, ", load size ");
1396 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1397 ui_out_text (uiout, "\n");
1398 /* We were doing this in remote-mips.c, I suspect it is right
1399 for other targets too. */
1400 write_pc (entry);
1401
1402 /* FIXME: are we supposed to call symbol_file_add or not? According to
1403 a comment from remote-mips.c (where a call to symbol_file_add was
1404 commented out), making the call confuses GDB if more than one file is
1405 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1406 does. */
1407
1408 print_transfer_performance (gdb_stdout, cbdata.data_count,
1409 cbdata.write_count, end_time - start_time);
1410
1411 do_cleanups (old_cleanups);
1412 }
1413
1414 /* Report how fast the transfer went. */
1415
1416 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1417 replaced by print_transfer_performance (with a very different
1418 function signature). */
1419
1420 void
1421 report_transfer_performance (unsigned long data_count, time_t start_time,
1422 time_t end_time)
1423 {
1424 print_transfer_performance (gdb_stdout, data_count,
1425 end_time - start_time, 0);
1426 }
1427
1428 void
1429 print_transfer_performance (struct ui_file *stream,
1430 unsigned long data_count,
1431 unsigned long write_count,
1432 unsigned long time_count)
1433 {
1434 ui_out_text (uiout, "Transfer rate: ");
1435 if (time_count > 0)
1436 {
1437 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1438 (data_count * 8) / time_count);
1439 ui_out_text (uiout, " bits/sec");
1440 }
1441 else
1442 {
1443 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1444 ui_out_text (uiout, " bits in <1 sec");
1445 }
1446 if (write_count > 0)
1447 {
1448 ui_out_text (uiout, ", ");
1449 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1450 ui_out_text (uiout, " bytes/write");
1451 }
1452 ui_out_text (uiout, ".\n");
1453 }
1454
1455 /* This function allows the addition of incrementally linked object files.
1456 It does not modify any state in the target, only in the debugger. */
1457 /* Note: ezannoni 2000-04-13 This function/command used to have a
1458 special case syntax for the rombug target (Rombug is the boot
1459 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1460 rombug case, the user doesn't need to supply a text address,
1461 instead a call to target_link() (in target.c) would supply the
1462 value to use. We are now discontinuing this type of ad hoc syntax. */
1463
1464 /* ARGSUSED */
1465 static void
1466 add_symbol_file_command (char *args, int from_tty)
1467 {
1468 char *filename = NULL;
1469 int flags = OBJF_USERLOADED;
1470 char *arg;
1471 int expecting_option = 0;
1472 int section_index = 0;
1473 int argcnt = 0;
1474 int sec_num = 0;
1475 int i;
1476 int expecting_sec_name = 0;
1477 int expecting_sec_addr = 0;
1478
1479 struct
1480 {
1481 char *name;
1482 char *value;
1483 } sect_opts[SECT_OFF_MAX];
1484
1485 struct section_addr_info section_addrs;
1486 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1487
1488 dont_repeat ();
1489
1490 if (args == NULL)
1491 error ("add-symbol-file takes a file name and an address");
1492
1493 /* Make a copy of the string that we can safely write into. */
1494 args = xstrdup (args);
1495
1496 /* Ensure section_addrs is initialized */
1497 memset (&section_addrs, 0, sizeof (section_addrs));
1498
1499 while (*args != '\000')
1500 {
1501 /* Any leading spaces? */
1502 while (isspace (*args))
1503 args++;
1504
1505 /* Point arg to the beginning of the argument. */
1506 arg = args;
1507
1508 /* Move args pointer over the argument. */
1509 while ((*args != '\000') && !isspace (*args))
1510 args++;
1511
1512 /* If there are more arguments, terminate arg and
1513 proceed past it. */
1514 if (*args != '\000')
1515 *args++ = '\000';
1516
1517 /* Now process the argument. */
1518 if (argcnt == 0)
1519 {
1520 /* The first argument is the file name. */
1521 filename = tilde_expand (arg);
1522 make_cleanup (xfree, filename);
1523 }
1524 else
1525 if (argcnt == 1)
1526 {
1527 /* The second argument is always the text address at which
1528 to load the program. */
1529 sect_opts[section_index].name = ".text";
1530 sect_opts[section_index].value = arg;
1531 section_index++;
1532 }
1533 else
1534 {
1535 /* It's an option (starting with '-') or it's an argument
1536 to an option */
1537
1538 if (*arg == '-')
1539 {
1540 if (strcmp (arg, "-mapped") == 0)
1541 flags |= OBJF_MAPPED;
1542 else
1543 if (strcmp (arg, "-readnow") == 0)
1544 flags |= OBJF_READNOW;
1545 else
1546 if (strcmp (arg, "-s") == 0)
1547 {
1548 if (section_index >= SECT_OFF_MAX)
1549 error ("Too many sections specified.");
1550 expecting_sec_name = 1;
1551 expecting_sec_addr = 1;
1552 }
1553 }
1554 else
1555 {
1556 if (expecting_sec_name)
1557 {
1558 sect_opts[section_index].name = arg;
1559 expecting_sec_name = 0;
1560 }
1561 else
1562 if (expecting_sec_addr)
1563 {
1564 sect_opts[section_index].value = arg;
1565 expecting_sec_addr = 0;
1566 section_index++;
1567 }
1568 else
1569 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1570 }
1571 }
1572 argcnt++;
1573 }
1574
1575 /* Print the prompt for the query below. And save the arguments into
1576 a sect_addr_info structure to be passed around to other
1577 functions. We have to split this up into separate print
1578 statements because local_hex_string returns a local static
1579 string. */
1580
1581 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1582 for (i = 0; i < section_index; i++)
1583 {
1584 CORE_ADDR addr;
1585 char *val = sect_opts[i].value;
1586 char *sec = sect_opts[i].name;
1587
1588 val = sect_opts[i].value;
1589 if (val[0] == '0' && val[1] == 'x')
1590 addr = strtoul (val+2, NULL, 16);
1591 else
1592 addr = strtoul (val, NULL, 10);
1593
1594 /* Here we store the section offsets in the order they were
1595 entered on the command line. */
1596 section_addrs.other[sec_num].name = sec;
1597 section_addrs.other[sec_num].addr = addr;
1598 printf_filtered ("\t%s_addr = %s\n",
1599 sec,
1600 local_hex_string ((unsigned long)addr));
1601 sec_num++;
1602
1603 /* The object's sections are initialized when a
1604 call is made to build_objfile_section_table (objfile).
1605 This happens in reread_symbols.
1606 At this point, we don't know what file type this is,
1607 so we can't determine what section names are valid. */
1608 }
1609
1610 if (from_tty && (!query ("%s", "")))
1611 error ("Not confirmed.");
1612
1613 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1614
1615 /* Getting new symbols may change our opinion about what is
1616 frameless. */
1617 reinit_frame_cache ();
1618 do_cleanups (my_cleanups);
1619 }
1620 \f
1621 static void
1622 add_shared_symbol_files_command (char *args, int from_tty)
1623 {
1624 #ifdef ADD_SHARED_SYMBOL_FILES
1625 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1626 #else
1627 error ("This command is not available in this configuration of GDB.");
1628 #endif
1629 }
1630 \f
1631 /* Re-read symbols if a symbol-file has changed. */
1632 void
1633 reread_symbols (void)
1634 {
1635 struct objfile *objfile;
1636 long new_modtime;
1637 int reread_one = 0;
1638 struct stat new_statbuf;
1639 int res;
1640
1641 /* With the addition of shared libraries, this should be modified,
1642 the load time should be saved in the partial symbol tables, since
1643 different tables may come from different source files. FIXME.
1644 This routine should then walk down each partial symbol table
1645 and see if the symbol table that it originates from has been changed */
1646
1647 for (objfile = object_files; objfile; objfile = objfile->next)
1648 {
1649 if (objfile->obfd)
1650 {
1651 #ifdef IBM6000_TARGET
1652 /* If this object is from a shared library, then you should
1653 stat on the library name, not member name. */
1654
1655 if (objfile->obfd->my_archive)
1656 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1657 else
1658 #endif
1659 res = stat (objfile->name, &new_statbuf);
1660 if (res != 0)
1661 {
1662 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1663 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1664 objfile->name);
1665 continue;
1666 }
1667 new_modtime = new_statbuf.st_mtime;
1668 if (new_modtime != objfile->mtime)
1669 {
1670 struct cleanup *old_cleanups;
1671 struct section_offsets *offsets;
1672 int num_offsets;
1673 char *obfd_filename;
1674
1675 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1676 objfile->name);
1677
1678 /* There are various functions like symbol_file_add,
1679 symfile_bfd_open, syms_from_objfile, etc., which might
1680 appear to do what we want. But they have various other
1681 effects which we *don't* want. So we just do stuff
1682 ourselves. We don't worry about mapped files (for one thing,
1683 any mapped file will be out of date). */
1684
1685 /* If we get an error, blow away this objfile (not sure if
1686 that is the correct response for things like shared
1687 libraries). */
1688 old_cleanups = make_cleanup_free_objfile (objfile);
1689 /* We need to do this whenever any symbols go away. */
1690 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1691
1692 /* Clean up any state BFD has sitting around. We don't need
1693 to close the descriptor but BFD lacks a way of closing the
1694 BFD without closing the descriptor. */
1695 obfd_filename = bfd_get_filename (objfile->obfd);
1696 if (!bfd_close (objfile->obfd))
1697 error ("Can't close BFD for %s: %s", objfile->name,
1698 bfd_errmsg (bfd_get_error ()));
1699 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1700 if (objfile->obfd == NULL)
1701 error ("Can't open %s to read symbols.", objfile->name);
1702 /* bfd_openr sets cacheable to true, which is what we want. */
1703 if (!bfd_check_format (objfile->obfd, bfd_object))
1704 error ("Can't read symbols from %s: %s.", objfile->name,
1705 bfd_errmsg (bfd_get_error ()));
1706
1707 /* Save the offsets, we will nuke them with the rest of the
1708 psymbol_obstack. */
1709 num_offsets = objfile->num_sections;
1710 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1711 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1712
1713 /* Nuke all the state that we will re-read. Much of the following
1714 code which sets things to NULL really is necessary to tell
1715 other parts of GDB that there is nothing currently there. */
1716
1717 /* FIXME: Do we have to free a whole linked list, or is this
1718 enough? */
1719 if (objfile->global_psymbols.list)
1720 xmfree (objfile->md, objfile->global_psymbols.list);
1721 memset (&objfile->global_psymbols, 0,
1722 sizeof (objfile->global_psymbols));
1723 if (objfile->static_psymbols.list)
1724 xmfree (objfile->md, objfile->static_psymbols.list);
1725 memset (&objfile->static_psymbols, 0,
1726 sizeof (objfile->static_psymbols));
1727
1728 /* Free the obstacks for non-reusable objfiles */
1729 bcache_xfree (objfile->psymbol_cache);
1730 objfile->psymbol_cache = bcache_xmalloc ();
1731 bcache_xfree (objfile->macro_cache);
1732 objfile->macro_cache = bcache_xmalloc ();
1733 obstack_free (&objfile->psymbol_obstack, 0);
1734 obstack_free (&objfile->symbol_obstack, 0);
1735 obstack_free (&objfile->type_obstack, 0);
1736 objfile->sections = NULL;
1737 objfile->symtabs = NULL;
1738 objfile->psymtabs = NULL;
1739 objfile->free_psymtabs = NULL;
1740 objfile->msymbols = NULL;
1741 objfile->minimal_symbol_count = 0;
1742 memset (&objfile->msymbol_hash, 0,
1743 sizeof (objfile->msymbol_hash));
1744 memset (&objfile->msymbol_demangled_hash, 0,
1745 sizeof (objfile->msymbol_demangled_hash));
1746 objfile->fundamental_types = NULL;
1747 if (objfile->sf != NULL)
1748 {
1749 (*objfile->sf->sym_finish) (objfile);
1750 }
1751
1752 /* We never make this a mapped file. */
1753 objfile->md = NULL;
1754 /* obstack_specify_allocation also initializes the obstack so
1755 it is empty. */
1756 objfile->psymbol_cache = bcache_xmalloc ();
1757 objfile->macro_cache = bcache_xmalloc ();
1758 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1759 xmalloc, xfree);
1760 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1761 xmalloc, xfree);
1762 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1763 xmalloc, xfree);
1764 if (build_objfile_section_table (objfile))
1765 {
1766 error ("Can't find the file sections in `%s': %s",
1767 objfile->name, bfd_errmsg (bfd_get_error ()));
1768 }
1769
1770 /* We use the same section offsets as from last time. I'm not
1771 sure whether that is always correct for shared libraries. */
1772 objfile->section_offsets = (struct section_offsets *)
1773 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1774 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1775 objfile->num_sections = num_offsets;
1776
1777 /* What the hell is sym_new_init for, anyway? The concept of
1778 distinguishing between the main file and additional files
1779 in this way seems rather dubious. */
1780 if (objfile == symfile_objfile)
1781 {
1782 (*objfile->sf->sym_new_init) (objfile);
1783 #ifdef HPUXHPPA
1784 RESET_HP_UX_GLOBALS ();
1785 #endif
1786 }
1787
1788 (*objfile->sf->sym_init) (objfile);
1789 clear_complaints (&symfile_complaints, 1, 1);
1790 /* The "mainline" parameter is a hideous hack; I think leaving it
1791 zero is OK since dbxread.c also does what it needs to do if
1792 objfile->global_psymbols.size is 0. */
1793 (*objfile->sf->sym_read) (objfile, 0);
1794 if (!have_partial_symbols () && !have_full_symbols ())
1795 {
1796 wrap_here ("");
1797 printf_filtered ("(no debugging symbols found)\n");
1798 wrap_here ("");
1799 }
1800 objfile->flags |= OBJF_SYMS;
1801
1802 /* We're done reading the symbol file; finish off complaints. */
1803 clear_complaints (&symfile_complaints, 0, 1);
1804
1805 /* Getting new symbols may change our opinion about what is
1806 frameless. */
1807
1808 reinit_frame_cache ();
1809
1810 /* Discard cleanups as symbol reading was successful. */
1811 discard_cleanups (old_cleanups);
1812
1813 /* If the mtime has changed between the time we set new_modtime
1814 and now, we *want* this to be out of date, so don't call stat
1815 again now. */
1816 objfile->mtime = new_modtime;
1817 reread_one = 1;
1818
1819 /* Call this after reading in a new symbol table to give target
1820 dependent code a crack at the new symbols. For instance, this
1821 could be used to update the values of target-specific symbols GDB
1822 needs to keep track of (such as _sigtramp, or whatever). */
1823
1824 TARGET_SYMFILE_POSTREAD (objfile);
1825 }
1826 }
1827 }
1828
1829 if (reread_one)
1830 clear_symtab_users ();
1831 }
1832 \f
1833
1834
1835 typedef struct
1836 {
1837 char *ext;
1838 enum language lang;
1839 }
1840 filename_language;
1841
1842 static filename_language *filename_language_table;
1843 static int fl_table_size, fl_table_next;
1844
1845 static void
1846 add_filename_language (char *ext, enum language lang)
1847 {
1848 if (fl_table_next >= fl_table_size)
1849 {
1850 fl_table_size += 10;
1851 filename_language_table =
1852 xrealloc (filename_language_table,
1853 fl_table_size * sizeof (*filename_language_table));
1854 }
1855
1856 filename_language_table[fl_table_next].ext = xstrdup (ext);
1857 filename_language_table[fl_table_next].lang = lang;
1858 fl_table_next++;
1859 }
1860
1861 static char *ext_args;
1862
1863 static void
1864 set_ext_lang_command (char *args, int from_tty)
1865 {
1866 int i;
1867 char *cp = ext_args;
1868 enum language lang;
1869
1870 /* First arg is filename extension, starting with '.' */
1871 if (*cp != '.')
1872 error ("'%s': Filename extension must begin with '.'", ext_args);
1873
1874 /* Find end of first arg. */
1875 while (*cp && !isspace (*cp))
1876 cp++;
1877
1878 if (*cp == '\0')
1879 error ("'%s': two arguments required -- filename extension and language",
1880 ext_args);
1881
1882 /* Null-terminate first arg */
1883 *cp++ = '\0';
1884
1885 /* Find beginning of second arg, which should be a source language. */
1886 while (*cp && isspace (*cp))
1887 cp++;
1888
1889 if (*cp == '\0')
1890 error ("'%s': two arguments required -- filename extension and language",
1891 ext_args);
1892
1893 /* Lookup the language from among those we know. */
1894 lang = language_enum (cp);
1895
1896 /* Now lookup the filename extension: do we already know it? */
1897 for (i = 0; i < fl_table_next; i++)
1898 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1899 break;
1900
1901 if (i >= fl_table_next)
1902 {
1903 /* new file extension */
1904 add_filename_language (ext_args, lang);
1905 }
1906 else
1907 {
1908 /* redefining a previously known filename extension */
1909
1910 /* if (from_tty) */
1911 /* query ("Really make files of type %s '%s'?", */
1912 /* ext_args, language_str (lang)); */
1913
1914 xfree (filename_language_table[i].ext);
1915 filename_language_table[i].ext = xstrdup (ext_args);
1916 filename_language_table[i].lang = lang;
1917 }
1918 }
1919
1920 static void
1921 info_ext_lang_command (char *args, int from_tty)
1922 {
1923 int i;
1924
1925 printf_filtered ("Filename extensions and the languages they represent:");
1926 printf_filtered ("\n\n");
1927 for (i = 0; i < fl_table_next; i++)
1928 printf_filtered ("\t%s\t- %s\n",
1929 filename_language_table[i].ext,
1930 language_str (filename_language_table[i].lang));
1931 }
1932
1933 static void
1934 init_filename_language_table (void)
1935 {
1936 if (fl_table_size == 0) /* protect against repetition */
1937 {
1938 fl_table_size = 20;
1939 fl_table_next = 0;
1940 filename_language_table =
1941 xmalloc (fl_table_size * sizeof (*filename_language_table));
1942 add_filename_language (".c", language_c);
1943 add_filename_language (".C", language_cplus);
1944 add_filename_language (".cc", language_cplus);
1945 add_filename_language (".cp", language_cplus);
1946 add_filename_language (".cpp", language_cplus);
1947 add_filename_language (".cxx", language_cplus);
1948 add_filename_language (".c++", language_cplus);
1949 add_filename_language (".java", language_java);
1950 add_filename_language (".class", language_java);
1951 /* OBSOLETE add_filename_language (".ch", language_chill); */
1952 /* OBSOLETE add_filename_language (".c186", language_chill); */
1953 /* OBSOLETE add_filename_language (".c286", language_chill); */
1954 add_filename_language (".f", language_fortran);
1955 add_filename_language (".F", language_fortran);
1956 add_filename_language (".s", language_asm);
1957 add_filename_language (".S", language_asm);
1958 add_filename_language (".pas", language_pascal);
1959 add_filename_language (".p", language_pascal);
1960 add_filename_language (".pp", language_pascal);
1961 }
1962 }
1963
1964 enum language
1965 deduce_language_from_filename (char *filename)
1966 {
1967 int i;
1968 char *cp;
1969
1970 if (filename != NULL)
1971 if ((cp = strrchr (filename, '.')) != NULL)
1972 for (i = 0; i < fl_table_next; i++)
1973 if (strcmp (cp, filename_language_table[i].ext) == 0)
1974 return filename_language_table[i].lang;
1975
1976 return language_unknown;
1977 }
1978 \f
1979 /* allocate_symtab:
1980
1981 Allocate and partly initialize a new symbol table. Return a pointer
1982 to it. error() if no space.
1983
1984 Caller must set these fields:
1985 LINETABLE(symtab)
1986 symtab->blockvector
1987 symtab->dirname
1988 symtab->free_code
1989 symtab->free_ptr
1990 possibly free_named_symtabs (symtab->filename);
1991 */
1992
1993 struct symtab *
1994 allocate_symtab (char *filename, struct objfile *objfile)
1995 {
1996 register struct symtab *symtab;
1997
1998 symtab = (struct symtab *)
1999 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2000 memset (symtab, 0, sizeof (*symtab));
2001 symtab->filename = obsavestring (filename, strlen (filename),
2002 &objfile->symbol_obstack);
2003 symtab->fullname = NULL;
2004 symtab->language = deduce_language_from_filename (filename);
2005 symtab->debugformat = obsavestring ("unknown", 7,
2006 &objfile->symbol_obstack);
2007
2008 /* Hook it to the objfile it comes from */
2009
2010 symtab->objfile = objfile;
2011 symtab->next = objfile->symtabs;
2012 objfile->symtabs = symtab;
2013
2014 /* FIXME: This should go away. It is only defined for the Z8000,
2015 and the Z8000 definition of this macro doesn't have anything to
2016 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2017 here for convenience. */
2018 #ifdef INIT_EXTRA_SYMTAB_INFO
2019 INIT_EXTRA_SYMTAB_INFO (symtab);
2020 #endif
2021
2022 return (symtab);
2023 }
2024
2025 struct partial_symtab *
2026 allocate_psymtab (char *filename, struct objfile *objfile)
2027 {
2028 struct partial_symtab *psymtab;
2029
2030 if (objfile->free_psymtabs)
2031 {
2032 psymtab = objfile->free_psymtabs;
2033 objfile->free_psymtabs = psymtab->next;
2034 }
2035 else
2036 psymtab = (struct partial_symtab *)
2037 obstack_alloc (&objfile->psymbol_obstack,
2038 sizeof (struct partial_symtab));
2039
2040 memset (psymtab, 0, sizeof (struct partial_symtab));
2041 psymtab->filename = obsavestring (filename, strlen (filename),
2042 &objfile->psymbol_obstack);
2043 psymtab->symtab = NULL;
2044
2045 /* Prepend it to the psymtab list for the objfile it belongs to.
2046 Psymtabs are searched in most recent inserted -> least recent
2047 inserted order. */
2048
2049 psymtab->objfile = objfile;
2050 psymtab->next = objfile->psymtabs;
2051 objfile->psymtabs = psymtab;
2052 #if 0
2053 {
2054 struct partial_symtab **prev_pst;
2055 psymtab->objfile = objfile;
2056 psymtab->next = NULL;
2057 prev_pst = &(objfile->psymtabs);
2058 while ((*prev_pst) != NULL)
2059 prev_pst = &((*prev_pst)->next);
2060 (*prev_pst) = psymtab;
2061 }
2062 #endif
2063
2064 return (psymtab);
2065 }
2066
2067 void
2068 discard_psymtab (struct partial_symtab *pst)
2069 {
2070 struct partial_symtab **prev_pst;
2071
2072 /* From dbxread.c:
2073 Empty psymtabs happen as a result of header files which don't
2074 have any symbols in them. There can be a lot of them. But this
2075 check is wrong, in that a psymtab with N_SLINE entries but
2076 nothing else is not empty, but we don't realize that. Fixing
2077 that without slowing things down might be tricky. */
2078
2079 /* First, snip it out of the psymtab chain */
2080
2081 prev_pst = &(pst->objfile->psymtabs);
2082 while ((*prev_pst) != pst)
2083 prev_pst = &((*prev_pst)->next);
2084 (*prev_pst) = pst->next;
2085
2086 /* Next, put it on a free list for recycling */
2087
2088 pst->next = pst->objfile->free_psymtabs;
2089 pst->objfile->free_psymtabs = pst;
2090 }
2091 \f
2092
2093 /* Reset all data structures in gdb which may contain references to symbol
2094 table data. */
2095
2096 void
2097 clear_symtab_users (void)
2098 {
2099 /* Someday, we should do better than this, by only blowing away
2100 the things that really need to be blown. */
2101 clear_value_history ();
2102 clear_displays ();
2103 clear_internalvars ();
2104 breakpoint_re_set ();
2105 set_default_breakpoint (0, 0, 0, 0);
2106 current_source_symtab = 0;
2107 current_source_line = 0;
2108 clear_pc_function_cache ();
2109 if (target_new_objfile_hook)
2110 target_new_objfile_hook (NULL);
2111 }
2112
2113 static void
2114 clear_symtab_users_cleanup (void *ignore)
2115 {
2116 clear_symtab_users ();
2117 }
2118
2119 /* clear_symtab_users_once:
2120
2121 This function is run after symbol reading, or from a cleanup.
2122 If an old symbol table was obsoleted, the old symbol table
2123 has been blown away, but the other GDB data structures that may
2124 reference it have not yet been cleared or re-directed. (The old
2125 symtab was zapped, and the cleanup queued, in free_named_symtab()
2126 below.)
2127
2128 This function can be queued N times as a cleanup, or called
2129 directly; it will do all the work the first time, and then will be a
2130 no-op until the next time it is queued. This works by bumping a
2131 counter at queueing time. Much later when the cleanup is run, or at
2132 the end of symbol processing (in case the cleanup is discarded), if
2133 the queued count is greater than the "done-count", we do the work
2134 and set the done-count to the queued count. If the queued count is
2135 less than or equal to the done-count, we just ignore the call. This
2136 is needed because reading a single .o file will often replace many
2137 symtabs (one per .h file, for example), and we don't want to reset
2138 the breakpoints N times in the user's face.
2139
2140 The reason we both queue a cleanup, and call it directly after symbol
2141 reading, is because the cleanup protects us in case of errors, but is
2142 discarded if symbol reading is successful. */
2143
2144 #if 0
2145 /* FIXME: As free_named_symtabs is currently a big noop this function
2146 is no longer needed. */
2147 static void clear_symtab_users_once (void);
2148
2149 static int clear_symtab_users_queued;
2150 static int clear_symtab_users_done;
2151
2152 static void
2153 clear_symtab_users_once (void)
2154 {
2155 /* Enforce once-per-`do_cleanups'-semantics */
2156 if (clear_symtab_users_queued <= clear_symtab_users_done)
2157 return;
2158 clear_symtab_users_done = clear_symtab_users_queued;
2159
2160 clear_symtab_users ();
2161 }
2162 #endif
2163
2164 /* Delete the specified psymtab, and any others that reference it. */
2165
2166 static void
2167 cashier_psymtab (struct partial_symtab *pst)
2168 {
2169 struct partial_symtab *ps, *pprev = NULL;
2170 int i;
2171
2172 /* Find its previous psymtab in the chain */
2173 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2174 {
2175 if (ps == pst)
2176 break;
2177 pprev = ps;
2178 }
2179
2180 if (ps)
2181 {
2182 /* Unhook it from the chain. */
2183 if (ps == pst->objfile->psymtabs)
2184 pst->objfile->psymtabs = ps->next;
2185 else
2186 pprev->next = ps->next;
2187
2188 /* FIXME, we can't conveniently deallocate the entries in the
2189 partial_symbol lists (global_psymbols/static_psymbols) that
2190 this psymtab points to. These just take up space until all
2191 the psymtabs are reclaimed. Ditto the dependencies list and
2192 filename, which are all in the psymbol_obstack. */
2193
2194 /* We need to cashier any psymtab that has this one as a dependency... */
2195 again:
2196 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2197 {
2198 for (i = 0; i < ps->number_of_dependencies; i++)
2199 {
2200 if (ps->dependencies[i] == pst)
2201 {
2202 cashier_psymtab (ps);
2203 goto again; /* Must restart, chain has been munged. */
2204 }
2205 }
2206 }
2207 }
2208 }
2209
2210 /* If a symtab or psymtab for filename NAME is found, free it along
2211 with any dependent breakpoints, displays, etc.
2212 Used when loading new versions of object modules with the "add-file"
2213 command. This is only called on the top-level symtab or psymtab's name;
2214 it is not called for subsidiary files such as .h files.
2215
2216 Return value is 1 if we blew away the environment, 0 if not.
2217 FIXME. The return value appears to never be used.
2218
2219 FIXME. I think this is not the best way to do this. We should
2220 work on being gentler to the environment while still cleaning up
2221 all stray pointers into the freed symtab. */
2222
2223 int
2224 free_named_symtabs (char *name)
2225 {
2226 #if 0
2227 /* FIXME: With the new method of each objfile having it's own
2228 psymtab list, this function needs serious rethinking. In particular,
2229 why was it ever necessary to toss psymtabs with specific compilation
2230 unit filenames, as opposed to all psymtabs from a particular symbol
2231 file? -- fnf
2232 Well, the answer is that some systems permit reloading of particular
2233 compilation units. We want to blow away any old info about these
2234 compilation units, regardless of which objfiles they arrived in. --gnu. */
2235
2236 register struct symtab *s;
2237 register struct symtab *prev;
2238 register struct partial_symtab *ps;
2239 struct blockvector *bv;
2240 int blewit = 0;
2241
2242 /* We only wack things if the symbol-reload switch is set. */
2243 if (!symbol_reloading)
2244 return 0;
2245
2246 /* Some symbol formats have trouble providing file names... */
2247 if (name == 0 || *name == '\0')
2248 return 0;
2249
2250 /* Look for a psymtab with the specified name. */
2251
2252 again2:
2253 for (ps = partial_symtab_list; ps; ps = ps->next)
2254 {
2255 if (STREQ (name, ps->filename))
2256 {
2257 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2258 goto again2; /* Must restart, chain has been munged */
2259 }
2260 }
2261
2262 /* Look for a symtab with the specified name. */
2263
2264 for (s = symtab_list; s; s = s->next)
2265 {
2266 if (STREQ (name, s->filename))
2267 break;
2268 prev = s;
2269 }
2270
2271 if (s)
2272 {
2273 if (s == symtab_list)
2274 symtab_list = s->next;
2275 else
2276 prev->next = s->next;
2277
2278 /* For now, queue a delete for all breakpoints, displays, etc., whether
2279 or not they depend on the symtab being freed. This should be
2280 changed so that only those data structures affected are deleted. */
2281
2282 /* But don't delete anything if the symtab is empty.
2283 This test is necessary due to a bug in "dbxread.c" that
2284 causes empty symtabs to be created for N_SO symbols that
2285 contain the pathname of the object file. (This problem
2286 has been fixed in GDB 3.9x). */
2287
2288 bv = BLOCKVECTOR (s);
2289 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2290 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2291 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2292 {
2293 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2294 name);
2295 clear_symtab_users_queued++;
2296 make_cleanup (clear_symtab_users_once, 0);
2297 blewit = 1;
2298 }
2299 else
2300 {
2301 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2302 name);
2303 }
2304
2305 free_symtab (s);
2306 }
2307 else
2308 {
2309 /* It is still possible that some breakpoints will be affected
2310 even though no symtab was found, since the file might have
2311 been compiled without debugging, and hence not be associated
2312 with a symtab. In order to handle this correctly, we would need
2313 to keep a list of text address ranges for undebuggable files.
2314 For now, we do nothing, since this is a fairly obscure case. */
2315 ;
2316 }
2317
2318 /* FIXME, what about the minimal symbol table? */
2319 return blewit;
2320 #else
2321 return (0);
2322 #endif
2323 }
2324 \f
2325 /* Allocate and partially fill a partial symtab. It will be
2326 completely filled at the end of the symbol list.
2327
2328 FILENAME is the name of the symbol-file we are reading from. */
2329
2330 struct partial_symtab *
2331 start_psymtab_common (struct objfile *objfile,
2332 struct section_offsets *section_offsets, char *filename,
2333 CORE_ADDR textlow, struct partial_symbol **global_syms,
2334 struct partial_symbol **static_syms)
2335 {
2336 struct partial_symtab *psymtab;
2337
2338 psymtab = allocate_psymtab (filename, objfile);
2339 psymtab->section_offsets = section_offsets;
2340 psymtab->textlow = textlow;
2341 psymtab->texthigh = psymtab->textlow; /* default */
2342 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2343 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2344 return (psymtab);
2345 }
2346 \f
2347 /* Add a symbol with a long value to a psymtab.
2348 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2349
2350 void
2351 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2352 enum address_class class,
2353 struct psymbol_allocation_list *list, long val, /* Value as a long */
2354 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2355 enum language language, struct objfile *objfile)
2356 {
2357 register struct partial_symbol *psym;
2358 char *buf = alloca (namelength + 1);
2359 /* psymbol is static so that there will be no uninitialized gaps in the
2360 structure which might contain random data, causing cache misses in
2361 bcache. */
2362 static struct partial_symbol psymbol;
2363
2364 /* Create local copy of the partial symbol */
2365 memcpy (buf, name, namelength);
2366 buf[namelength] = '\0';
2367 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2368 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2369 if (val != 0)
2370 {
2371 SYMBOL_VALUE (&psymbol) = val;
2372 }
2373 else
2374 {
2375 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2376 }
2377 SYMBOL_SECTION (&psymbol) = 0;
2378 SYMBOL_LANGUAGE (&psymbol) = language;
2379 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2380 PSYMBOL_CLASS (&psymbol) = class;
2381 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2382
2383 /* Stash the partial symbol away in the cache */
2384 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2385
2386 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2387 if (list->next >= list->list + list->size)
2388 {
2389 extend_psymbol_list (list, objfile);
2390 }
2391 *list->next++ = psym;
2392 OBJSTAT (objfile, n_psyms++);
2393 }
2394
2395 /* Add a symbol with a long value to a psymtab. This differs from
2396 * add_psymbol_to_list above in taking both a mangled and a demangled
2397 * name. */
2398
2399 void
2400 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2401 int dem_namelength, namespace_enum namespace,
2402 enum address_class class,
2403 struct psymbol_allocation_list *list, long val, /* Value as a long */
2404 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2405 enum language language,
2406 struct objfile *objfile)
2407 {
2408 register struct partial_symbol *psym;
2409 char *buf = alloca (namelength + 1);
2410 /* psymbol is static so that there will be no uninitialized gaps in the
2411 structure which might contain random data, causing cache misses in
2412 bcache. */
2413 static struct partial_symbol psymbol;
2414
2415 /* Create local copy of the partial symbol */
2416
2417 memcpy (buf, name, namelength);
2418 buf[namelength] = '\0';
2419 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2420
2421 buf = alloca (dem_namelength + 1);
2422 memcpy (buf, dem_name, dem_namelength);
2423 buf[dem_namelength] = '\0';
2424
2425 switch (language)
2426 {
2427 case language_c:
2428 case language_cplus:
2429 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2430 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2431 break;
2432 /* OBSOLETE case language_chill: */
2433 /* OBSOLETE SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = */
2434 /* OBSOLETE bcache (buf, dem_namelength + 1, objfile->psymbol_cache); */
2435
2436 /* FIXME What should be done for the default case? Ignoring for now. */
2437 }
2438
2439 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2440 if (val != 0)
2441 {
2442 SYMBOL_VALUE (&psymbol) = val;
2443 }
2444 else
2445 {
2446 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2447 }
2448 SYMBOL_SECTION (&psymbol) = 0;
2449 SYMBOL_LANGUAGE (&psymbol) = language;
2450 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2451 PSYMBOL_CLASS (&psymbol) = class;
2452 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2453
2454 /* Stash the partial symbol away in the cache */
2455 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2456
2457 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2458 if (list->next >= list->list + list->size)
2459 {
2460 extend_psymbol_list (list, objfile);
2461 }
2462 *list->next++ = psym;
2463 OBJSTAT (objfile, n_psyms++);
2464 }
2465
2466 /* Initialize storage for partial symbols. */
2467
2468 void
2469 init_psymbol_list (struct objfile *objfile, int total_symbols)
2470 {
2471 /* Free any previously allocated psymbol lists. */
2472
2473 if (objfile->global_psymbols.list)
2474 {
2475 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2476 }
2477 if (objfile->static_psymbols.list)
2478 {
2479 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2480 }
2481
2482 /* Current best guess is that approximately a twentieth
2483 of the total symbols (in a debugging file) are global or static
2484 oriented symbols */
2485
2486 objfile->global_psymbols.size = total_symbols / 10;
2487 objfile->static_psymbols.size = total_symbols / 10;
2488
2489 if (objfile->global_psymbols.size > 0)
2490 {
2491 objfile->global_psymbols.next =
2492 objfile->global_psymbols.list = (struct partial_symbol **)
2493 xmmalloc (objfile->md, (objfile->global_psymbols.size
2494 * sizeof (struct partial_symbol *)));
2495 }
2496 if (objfile->static_psymbols.size > 0)
2497 {
2498 objfile->static_psymbols.next =
2499 objfile->static_psymbols.list = (struct partial_symbol **)
2500 xmmalloc (objfile->md, (objfile->static_psymbols.size
2501 * sizeof (struct partial_symbol *)));
2502 }
2503 }
2504
2505 /* OVERLAYS:
2506 The following code implements an abstraction for debugging overlay sections.
2507
2508 The target model is as follows:
2509 1) The gnu linker will permit multiple sections to be mapped into the
2510 same VMA, each with its own unique LMA (or load address).
2511 2) It is assumed that some runtime mechanism exists for mapping the
2512 sections, one by one, from the load address into the VMA address.
2513 3) This code provides a mechanism for gdb to keep track of which
2514 sections should be considered to be mapped from the VMA to the LMA.
2515 This information is used for symbol lookup, and memory read/write.
2516 For instance, if a section has been mapped then its contents
2517 should be read from the VMA, otherwise from the LMA.
2518
2519 Two levels of debugger support for overlays are available. One is
2520 "manual", in which the debugger relies on the user to tell it which
2521 overlays are currently mapped. This level of support is
2522 implemented entirely in the core debugger, and the information about
2523 whether a section is mapped is kept in the objfile->obj_section table.
2524
2525 The second level of support is "automatic", and is only available if
2526 the target-specific code provides functionality to read the target's
2527 overlay mapping table, and translate its contents for the debugger
2528 (by updating the mapped state information in the obj_section tables).
2529
2530 The interface is as follows:
2531 User commands:
2532 overlay map <name> -- tell gdb to consider this section mapped
2533 overlay unmap <name> -- tell gdb to consider this section unmapped
2534 overlay list -- list the sections that GDB thinks are mapped
2535 overlay read-target -- get the target's state of what's mapped
2536 overlay off/manual/auto -- set overlay debugging state
2537 Functional interface:
2538 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2539 section, return that section.
2540 find_pc_overlay(pc): find any overlay section that contains
2541 the pc, either in its VMA or its LMA
2542 overlay_is_mapped(sect): true if overlay is marked as mapped
2543 section_is_overlay(sect): true if section's VMA != LMA
2544 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2545 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2546 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2547 overlay_mapped_address(...): map an address from section's LMA to VMA
2548 overlay_unmapped_address(...): map an address from section's VMA to LMA
2549 symbol_overlayed_address(...): Return a "current" address for symbol:
2550 either in VMA or LMA depending on whether
2551 the symbol's section is currently mapped
2552 */
2553
2554 /* Overlay debugging state: */
2555
2556 enum overlay_debugging_state overlay_debugging = ovly_off;
2557 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2558
2559 /* Target vector for refreshing overlay mapped state */
2560 static void simple_overlay_update (struct obj_section *);
2561 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2562
2563 /* Function: section_is_overlay (SECTION)
2564 Returns true if SECTION has VMA not equal to LMA, ie.
2565 SECTION is loaded at an address different from where it will "run". */
2566
2567 int
2568 section_is_overlay (asection *section)
2569 {
2570 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2571
2572 if (overlay_debugging)
2573 if (section && section->lma != 0 &&
2574 section->vma != section->lma)
2575 return 1;
2576
2577 return 0;
2578 }
2579
2580 /* Function: overlay_invalidate_all (void)
2581 Invalidate the mapped state of all overlay sections (mark it as stale). */
2582
2583 static void
2584 overlay_invalidate_all (void)
2585 {
2586 struct objfile *objfile;
2587 struct obj_section *sect;
2588
2589 ALL_OBJSECTIONS (objfile, sect)
2590 if (section_is_overlay (sect->the_bfd_section))
2591 sect->ovly_mapped = -1;
2592 }
2593
2594 /* Function: overlay_is_mapped (SECTION)
2595 Returns true if section is an overlay, and is currently mapped.
2596 Private: public access is thru function section_is_mapped.
2597
2598 Access to the ovly_mapped flag is restricted to this function, so
2599 that we can do automatic update. If the global flag
2600 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2601 overlay_invalidate_all. If the mapped state of the particular
2602 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2603
2604 static int
2605 overlay_is_mapped (struct obj_section *osect)
2606 {
2607 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2608 return 0;
2609
2610 switch (overlay_debugging)
2611 {
2612 default:
2613 case ovly_off:
2614 return 0; /* overlay debugging off */
2615 case ovly_auto: /* overlay debugging automatic */
2616 /* Unles there is a target_overlay_update function,
2617 there's really nothing useful to do here (can't really go auto) */
2618 if (target_overlay_update)
2619 {
2620 if (overlay_cache_invalid)
2621 {
2622 overlay_invalidate_all ();
2623 overlay_cache_invalid = 0;
2624 }
2625 if (osect->ovly_mapped == -1)
2626 (*target_overlay_update) (osect);
2627 }
2628 /* fall thru to manual case */
2629 case ovly_on: /* overlay debugging manual */
2630 return osect->ovly_mapped == 1;
2631 }
2632 }
2633
2634 /* Function: section_is_mapped
2635 Returns true if section is an overlay, and is currently mapped. */
2636
2637 int
2638 section_is_mapped (asection *section)
2639 {
2640 struct objfile *objfile;
2641 struct obj_section *osect;
2642
2643 if (overlay_debugging)
2644 if (section && section_is_overlay (section))
2645 ALL_OBJSECTIONS (objfile, osect)
2646 if (osect->the_bfd_section == section)
2647 return overlay_is_mapped (osect);
2648
2649 return 0;
2650 }
2651
2652 /* Function: pc_in_unmapped_range
2653 If PC falls into the lma range of SECTION, return true, else false. */
2654
2655 CORE_ADDR
2656 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2657 {
2658 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2659
2660 int size;
2661
2662 if (overlay_debugging)
2663 if (section && section_is_overlay (section))
2664 {
2665 size = bfd_get_section_size_before_reloc (section);
2666 if (section->lma <= pc && pc < section->lma + size)
2667 return 1;
2668 }
2669 return 0;
2670 }
2671
2672 /* Function: pc_in_mapped_range
2673 If PC falls into the vma range of SECTION, return true, else false. */
2674
2675 CORE_ADDR
2676 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2677 {
2678 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2679
2680 int size;
2681
2682 if (overlay_debugging)
2683 if (section && section_is_overlay (section))
2684 {
2685 size = bfd_get_section_size_before_reloc (section);
2686 if (section->vma <= pc && pc < section->vma + size)
2687 return 1;
2688 }
2689 return 0;
2690 }
2691
2692
2693 /* Return true if the mapped ranges of sections A and B overlap, false
2694 otherwise. */
2695 int
2696 sections_overlap (asection *a, asection *b)
2697 {
2698 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2699
2700 CORE_ADDR a_start = a->vma;
2701 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2702 CORE_ADDR b_start = b->vma;
2703 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2704
2705 return (a_start < b_end && b_start < a_end);
2706 }
2707
2708 /* Function: overlay_unmapped_address (PC, SECTION)
2709 Returns the address corresponding to PC in the unmapped (load) range.
2710 May be the same as PC. */
2711
2712 CORE_ADDR
2713 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2714 {
2715 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2716
2717 if (overlay_debugging)
2718 if (section && section_is_overlay (section) &&
2719 pc_in_mapped_range (pc, section))
2720 return pc + section->lma - section->vma;
2721
2722 return pc;
2723 }
2724
2725 /* Function: overlay_mapped_address (PC, SECTION)
2726 Returns the address corresponding to PC in the mapped (runtime) range.
2727 May be the same as PC. */
2728
2729 CORE_ADDR
2730 overlay_mapped_address (CORE_ADDR pc, asection *section)
2731 {
2732 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2733
2734 if (overlay_debugging)
2735 if (section && section_is_overlay (section) &&
2736 pc_in_unmapped_range (pc, section))
2737 return pc + section->vma - section->lma;
2738
2739 return pc;
2740 }
2741
2742
2743 /* Function: symbol_overlayed_address
2744 Return one of two addresses (relative to the VMA or to the LMA),
2745 depending on whether the section is mapped or not. */
2746
2747 CORE_ADDR
2748 symbol_overlayed_address (CORE_ADDR address, asection *section)
2749 {
2750 if (overlay_debugging)
2751 {
2752 /* If the symbol has no section, just return its regular address. */
2753 if (section == 0)
2754 return address;
2755 /* If the symbol's section is not an overlay, just return its address */
2756 if (!section_is_overlay (section))
2757 return address;
2758 /* If the symbol's section is mapped, just return its address */
2759 if (section_is_mapped (section))
2760 return address;
2761 /*
2762 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2763 * then return its LOADED address rather than its vma address!!
2764 */
2765 return overlay_unmapped_address (address, section);
2766 }
2767 return address;
2768 }
2769
2770 /* Function: find_pc_overlay (PC)
2771 Return the best-match overlay section for PC:
2772 If PC matches a mapped overlay section's VMA, return that section.
2773 Else if PC matches an unmapped section's VMA, return that section.
2774 Else if PC matches an unmapped section's LMA, return that section. */
2775
2776 asection *
2777 find_pc_overlay (CORE_ADDR pc)
2778 {
2779 struct objfile *objfile;
2780 struct obj_section *osect, *best_match = NULL;
2781
2782 if (overlay_debugging)
2783 ALL_OBJSECTIONS (objfile, osect)
2784 if (section_is_overlay (osect->the_bfd_section))
2785 {
2786 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2787 {
2788 if (overlay_is_mapped (osect))
2789 return osect->the_bfd_section;
2790 else
2791 best_match = osect;
2792 }
2793 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2794 best_match = osect;
2795 }
2796 return best_match ? best_match->the_bfd_section : NULL;
2797 }
2798
2799 /* Function: find_pc_mapped_section (PC)
2800 If PC falls into the VMA address range of an overlay section that is
2801 currently marked as MAPPED, return that section. Else return NULL. */
2802
2803 asection *
2804 find_pc_mapped_section (CORE_ADDR pc)
2805 {
2806 struct objfile *objfile;
2807 struct obj_section *osect;
2808
2809 if (overlay_debugging)
2810 ALL_OBJSECTIONS (objfile, osect)
2811 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2812 overlay_is_mapped (osect))
2813 return osect->the_bfd_section;
2814
2815 return NULL;
2816 }
2817
2818 /* Function: list_overlays_command
2819 Print a list of mapped sections and their PC ranges */
2820
2821 void
2822 list_overlays_command (char *args, int from_tty)
2823 {
2824 int nmapped = 0;
2825 struct objfile *objfile;
2826 struct obj_section *osect;
2827
2828 if (overlay_debugging)
2829 ALL_OBJSECTIONS (objfile, osect)
2830 if (overlay_is_mapped (osect))
2831 {
2832 const char *name;
2833 bfd_vma lma, vma;
2834 int size;
2835
2836 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2837 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2838 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2839 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2840
2841 printf_filtered ("Section %s, loaded at ", name);
2842 print_address_numeric (lma, 1, gdb_stdout);
2843 puts_filtered (" - ");
2844 print_address_numeric (lma + size, 1, gdb_stdout);
2845 printf_filtered (", mapped at ");
2846 print_address_numeric (vma, 1, gdb_stdout);
2847 puts_filtered (" - ");
2848 print_address_numeric (vma + size, 1, gdb_stdout);
2849 puts_filtered ("\n");
2850
2851 nmapped++;
2852 }
2853 if (nmapped == 0)
2854 printf_filtered ("No sections are mapped.\n");
2855 }
2856
2857 /* Function: map_overlay_command
2858 Mark the named section as mapped (ie. residing at its VMA address). */
2859
2860 void
2861 map_overlay_command (char *args, int from_tty)
2862 {
2863 struct objfile *objfile, *objfile2;
2864 struct obj_section *sec, *sec2;
2865 asection *bfdsec;
2866
2867 if (!overlay_debugging)
2868 error ("\
2869 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2870 the 'overlay manual' command.");
2871
2872 if (args == 0 || *args == 0)
2873 error ("Argument required: name of an overlay section");
2874
2875 /* First, find a section matching the user supplied argument */
2876 ALL_OBJSECTIONS (objfile, sec)
2877 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2878 {
2879 /* Now, check to see if the section is an overlay. */
2880 bfdsec = sec->the_bfd_section;
2881 if (!section_is_overlay (bfdsec))
2882 continue; /* not an overlay section */
2883
2884 /* Mark the overlay as "mapped" */
2885 sec->ovly_mapped = 1;
2886
2887 /* Next, make a pass and unmap any sections that are
2888 overlapped by this new section: */
2889 ALL_OBJSECTIONS (objfile2, sec2)
2890 if (sec2->ovly_mapped
2891 && sec != sec2
2892 && sec->the_bfd_section != sec2->the_bfd_section
2893 && sections_overlap (sec->the_bfd_section,
2894 sec2->the_bfd_section))
2895 {
2896 if (info_verbose)
2897 printf_filtered ("Note: section %s unmapped by overlap\n",
2898 bfd_section_name (objfile->obfd,
2899 sec2->the_bfd_section));
2900 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2901 }
2902 return;
2903 }
2904 error ("No overlay section called %s", args);
2905 }
2906
2907 /* Function: unmap_overlay_command
2908 Mark the overlay section as unmapped
2909 (ie. resident in its LMA address range, rather than the VMA range). */
2910
2911 void
2912 unmap_overlay_command (char *args, int from_tty)
2913 {
2914 struct objfile *objfile;
2915 struct obj_section *sec;
2916
2917 if (!overlay_debugging)
2918 error ("\
2919 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2920 the 'overlay manual' command.");
2921
2922 if (args == 0 || *args == 0)
2923 error ("Argument required: name of an overlay section");
2924
2925 /* First, find a section matching the user supplied argument */
2926 ALL_OBJSECTIONS (objfile, sec)
2927 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2928 {
2929 if (!sec->ovly_mapped)
2930 error ("Section %s is not mapped", args);
2931 sec->ovly_mapped = 0;
2932 return;
2933 }
2934 error ("No overlay section called %s", args);
2935 }
2936
2937 /* Function: overlay_auto_command
2938 A utility command to turn on overlay debugging.
2939 Possibly this should be done via a set/show command. */
2940
2941 static void
2942 overlay_auto_command (char *args, int from_tty)
2943 {
2944 overlay_debugging = ovly_auto;
2945 enable_overlay_breakpoints ();
2946 if (info_verbose)
2947 printf_filtered ("Automatic overlay debugging enabled.");
2948 }
2949
2950 /* Function: overlay_manual_command
2951 A utility command to turn on overlay debugging.
2952 Possibly this should be done via a set/show command. */
2953
2954 static void
2955 overlay_manual_command (char *args, int from_tty)
2956 {
2957 overlay_debugging = ovly_on;
2958 disable_overlay_breakpoints ();
2959 if (info_verbose)
2960 printf_filtered ("Overlay debugging enabled.");
2961 }
2962
2963 /* Function: overlay_off_command
2964 A utility command to turn on overlay debugging.
2965 Possibly this should be done via a set/show command. */
2966
2967 static void
2968 overlay_off_command (char *args, int from_tty)
2969 {
2970 overlay_debugging = ovly_off;
2971 disable_overlay_breakpoints ();
2972 if (info_verbose)
2973 printf_filtered ("Overlay debugging disabled.");
2974 }
2975
2976 static void
2977 overlay_load_command (char *args, int from_tty)
2978 {
2979 if (target_overlay_update)
2980 (*target_overlay_update) (NULL);
2981 else
2982 error ("This target does not know how to read its overlay state.");
2983 }
2984
2985 /* Function: overlay_command
2986 A place-holder for a mis-typed command */
2987
2988 /* Command list chain containing all defined "overlay" subcommands. */
2989 struct cmd_list_element *overlaylist;
2990
2991 static void
2992 overlay_command (char *args, int from_tty)
2993 {
2994 printf_unfiltered
2995 ("\"overlay\" must be followed by the name of an overlay command.\n");
2996 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2997 }
2998
2999
3000 /* Target Overlays for the "Simplest" overlay manager:
3001
3002 This is GDB's default target overlay layer. It works with the
3003 minimal overlay manager supplied as an example by Cygnus. The
3004 entry point is via a function pointer "target_overlay_update",
3005 so targets that use a different runtime overlay manager can
3006 substitute their own overlay_update function and take over the
3007 function pointer.
3008
3009 The overlay_update function pokes around in the target's data structures
3010 to see what overlays are mapped, and updates GDB's overlay mapping with
3011 this information.
3012
3013 In this simple implementation, the target data structures are as follows:
3014 unsigned _novlys; /# number of overlay sections #/
3015 unsigned _ovly_table[_novlys][4] = {
3016 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3017 {..., ..., ..., ...},
3018 }
3019 unsigned _novly_regions; /# number of overlay regions #/
3020 unsigned _ovly_region_table[_novly_regions][3] = {
3021 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3022 {..., ..., ...},
3023 }
3024 These functions will attempt to update GDB's mappedness state in the
3025 symbol section table, based on the target's mappedness state.
3026
3027 To do this, we keep a cached copy of the target's _ovly_table, and
3028 attempt to detect when the cached copy is invalidated. The main
3029 entry point is "simple_overlay_update(SECT), which looks up SECT in
3030 the cached table and re-reads only the entry for that section from
3031 the target (whenever possible).
3032 */
3033
3034 /* Cached, dynamically allocated copies of the target data structures: */
3035 static unsigned (*cache_ovly_table)[4] = 0;
3036 #if 0
3037 static unsigned (*cache_ovly_region_table)[3] = 0;
3038 #endif
3039 static unsigned cache_novlys = 0;
3040 #if 0
3041 static unsigned cache_novly_regions = 0;
3042 #endif
3043 static CORE_ADDR cache_ovly_table_base = 0;
3044 #if 0
3045 static CORE_ADDR cache_ovly_region_table_base = 0;
3046 #endif
3047 enum ovly_index
3048 {
3049 VMA, SIZE, LMA, MAPPED
3050 };
3051 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3052
3053 /* Throw away the cached copy of _ovly_table */
3054 static void
3055 simple_free_overlay_table (void)
3056 {
3057 if (cache_ovly_table)
3058 xfree (cache_ovly_table);
3059 cache_novlys = 0;
3060 cache_ovly_table = NULL;
3061 cache_ovly_table_base = 0;
3062 }
3063
3064 #if 0
3065 /* Throw away the cached copy of _ovly_region_table */
3066 static void
3067 simple_free_overlay_region_table (void)
3068 {
3069 if (cache_ovly_region_table)
3070 xfree (cache_ovly_region_table);
3071 cache_novly_regions = 0;
3072 cache_ovly_region_table = NULL;
3073 cache_ovly_region_table_base = 0;
3074 }
3075 #endif
3076
3077 /* Read an array of ints from the target into a local buffer.
3078 Convert to host order. int LEN is number of ints */
3079 static void
3080 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3081 {
3082 /* FIXME (alloca): Not safe if array is very large. */
3083 char *buf = alloca (len * TARGET_LONG_BYTES);
3084 int i;
3085
3086 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3087 for (i = 0; i < len; i++)
3088 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3089 TARGET_LONG_BYTES);
3090 }
3091
3092 /* Find and grab a copy of the target _ovly_table
3093 (and _novlys, which is needed for the table's size) */
3094 static int
3095 simple_read_overlay_table (void)
3096 {
3097 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3098
3099 simple_free_overlay_table ();
3100 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3101 if (! novlys_msym)
3102 {
3103 error ("Error reading inferior's overlay table: "
3104 "couldn't find `_novlys' variable\n"
3105 "in inferior. Use `overlay manual' mode.");
3106 return 0;
3107 }
3108
3109 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3110 if (! ovly_table_msym)
3111 {
3112 error ("Error reading inferior's overlay table: couldn't find "
3113 "`_ovly_table' array\n"
3114 "in inferior. Use `overlay manual' mode.");
3115 return 0;
3116 }
3117
3118 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3119 cache_ovly_table
3120 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3121 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3122 read_target_long_array (cache_ovly_table_base,
3123 (int *) cache_ovly_table,
3124 cache_novlys * 4);
3125
3126 return 1; /* SUCCESS */
3127 }
3128
3129 #if 0
3130 /* Find and grab a copy of the target _ovly_region_table
3131 (and _novly_regions, which is needed for the table's size) */
3132 static int
3133 simple_read_overlay_region_table (void)
3134 {
3135 struct minimal_symbol *msym;
3136
3137 simple_free_overlay_region_table ();
3138 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3139 if (msym != NULL)
3140 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3141 else
3142 return 0; /* failure */
3143 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3144 if (cache_ovly_region_table != NULL)
3145 {
3146 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3147 if (msym != NULL)
3148 {
3149 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3150 read_target_long_array (cache_ovly_region_table_base,
3151 (int *) cache_ovly_region_table,
3152 cache_novly_regions * 3);
3153 }
3154 else
3155 return 0; /* failure */
3156 }
3157 else
3158 return 0; /* failure */
3159 return 1; /* SUCCESS */
3160 }
3161 #endif
3162
3163 /* Function: simple_overlay_update_1
3164 A helper function for simple_overlay_update. Assuming a cached copy
3165 of _ovly_table exists, look through it to find an entry whose vma,
3166 lma and size match those of OSECT. Re-read the entry and make sure
3167 it still matches OSECT (else the table may no longer be valid).
3168 Set OSECT's mapped state to match the entry. Return: 1 for
3169 success, 0 for failure. */
3170
3171 static int
3172 simple_overlay_update_1 (struct obj_section *osect)
3173 {
3174 int i, size;
3175 bfd *obfd = osect->objfile->obfd;
3176 asection *bsect = osect->the_bfd_section;
3177
3178 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3179 for (i = 0; i < cache_novlys; i++)
3180 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3181 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3182 /* && cache_ovly_table[i][SIZE] == size */ )
3183 {
3184 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3185 (int *) cache_ovly_table[i], 4);
3186 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3187 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3188 /* && cache_ovly_table[i][SIZE] == size */ )
3189 {
3190 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3191 return 1;
3192 }
3193 else /* Warning! Warning! Target's ovly table has changed! */
3194 return 0;
3195 }
3196 return 0;
3197 }
3198
3199 /* Function: simple_overlay_update
3200 If OSECT is NULL, then update all sections' mapped state
3201 (after re-reading the entire target _ovly_table).
3202 If OSECT is non-NULL, then try to find a matching entry in the
3203 cached ovly_table and update only OSECT's mapped state.
3204 If a cached entry can't be found or the cache isn't valid, then
3205 re-read the entire cache, and go ahead and update all sections. */
3206
3207 static void
3208 simple_overlay_update (struct obj_section *osect)
3209 {
3210 struct objfile *objfile;
3211
3212 /* Were we given an osect to look up? NULL means do all of them. */
3213 if (osect)
3214 /* Have we got a cached copy of the target's overlay table? */
3215 if (cache_ovly_table != NULL)
3216 /* Does its cached location match what's currently in the symtab? */
3217 if (cache_ovly_table_base ==
3218 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3219 /* Then go ahead and try to look up this single section in the cache */
3220 if (simple_overlay_update_1 (osect))
3221 /* Found it! We're done. */
3222 return;
3223
3224 /* Cached table no good: need to read the entire table anew.
3225 Or else we want all the sections, in which case it's actually
3226 more efficient to read the whole table in one block anyway. */
3227
3228 if (! simple_read_overlay_table ())
3229 return;
3230
3231 /* Now may as well update all sections, even if only one was requested. */
3232 ALL_OBJSECTIONS (objfile, osect)
3233 if (section_is_overlay (osect->the_bfd_section))
3234 {
3235 int i, size;
3236 bfd *obfd = osect->objfile->obfd;
3237 asection *bsect = osect->the_bfd_section;
3238
3239 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3240 for (i = 0; i < cache_novlys; i++)
3241 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3242 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3243 /* && cache_ovly_table[i][SIZE] == size */ )
3244 { /* obj_section matches i'th entry in ovly_table */
3245 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3246 break; /* finished with inner for loop: break out */
3247 }
3248 }
3249 }
3250
3251
3252 void
3253 _initialize_symfile (void)
3254 {
3255 struct cmd_list_element *c;
3256
3257 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3258 "Load symbol table from executable file FILE.\n\
3259 The `file' command can also load symbol tables, as well as setting the file\n\
3260 to execute.", &cmdlist);
3261 set_cmd_completer (c, filename_completer);
3262
3263 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3264 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3265 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3266 ADDR is the starting address of the file's text.\n\
3267 The optional arguments are section-name section-address pairs and\n\
3268 should be specified if the data and bss segments are not contiguous\n\
3269 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3270 &cmdlist);
3271 set_cmd_completer (c, filename_completer);
3272
3273 c = add_cmd ("add-shared-symbol-files", class_files,
3274 add_shared_symbol_files_command,
3275 "Load the symbols from shared objects in the dynamic linker's link map.",
3276 &cmdlist);
3277 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3278 &cmdlist);
3279
3280 c = add_cmd ("load", class_files, load_command,
3281 "Dynamically load FILE into the running program, and record its symbols\n\
3282 for access from GDB.", &cmdlist);
3283 set_cmd_completer (c, filename_completer);
3284
3285 add_show_from_set
3286 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3287 (char *) &symbol_reloading,
3288 "Set dynamic symbol table reloading multiple times in one run.",
3289 &setlist),
3290 &showlist);
3291
3292 add_prefix_cmd ("overlay", class_support, overlay_command,
3293 "Commands for debugging overlays.", &overlaylist,
3294 "overlay ", 0, &cmdlist);
3295
3296 add_com_alias ("ovly", "overlay", class_alias, 1);
3297 add_com_alias ("ov", "overlay", class_alias, 1);
3298
3299 add_cmd ("map-overlay", class_support, map_overlay_command,
3300 "Assert that an overlay section is mapped.", &overlaylist);
3301
3302 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3303 "Assert that an overlay section is unmapped.", &overlaylist);
3304
3305 add_cmd ("list-overlays", class_support, list_overlays_command,
3306 "List mappings of overlay sections.", &overlaylist);
3307
3308 add_cmd ("manual", class_support, overlay_manual_command,
3309 "Enable overlay debugging.", &overlaylist);
3310 add_cmd ("off", class_support, overlay_off_command,
3311 "Disable overlay debugging.", &overlaylist);
3312 add_cmd ("auto", class_support, overlay_auto_command,
3313 "Enable automatic overlay debugging.", &overlaylist);
3314 add_cmd ("load-target", class_support, overlay_load_command,
3315 "Read the overlay mapping state from the target.", &overlaylist);
3316
3317 /* Filename extension to source language lookup table: */
3318 init_filename_language_table ();
3319 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3320 (char *) &ext_args,
3321 "Set mapping between filename extension and source language.\n\
3322 Usage: set extension-language .foo bar",
3323 &setlist);
3324 set_cmd_cfunc (c, set_ext_lang_command);
3325
3326 add_info ("extensions", info_ext_lang_command,
3327 "All filename extensions associated with a source language.");
3328
3329 add_show_from_set
3330 (add_set_cmd ("download-write-size", class_obscure,
3331 var_integer, (char *) &download_write_size,
3332 "Set the write size used when downloading a program.\n"
3333 "Only used when downloading a program onto a remote\n"
3334 "target. Specify zero, or a negative value, to disable\n"
3335 "blocked writes. The actual size of each transfer is also\n"
3336 "limited by the size of the target packet and the memory\n"
3337 "cache.\n",
3338 &setlist),
3339 &showlist);
3340 }
This page took 0.112288 seconds and 4 git commands to generate.